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Funkcinių duomenų atvejo analizė
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Funkcinių duomenų atvejo analizė

Santrauka

Funkcinė duomenų analizė – tai informacijos apie tam tikrame intervale apibrėžtas funkcijas ar
kreives analizė, sutrumpintai vadinama "FDA". Tai reiškia, kad stebimi duomenys turi būti inter-
pretuojami kaip funkcijos ar kreivės, o ne duomenų taškų rinkinys.

Šio darbo tikslas yra ištirti kai kurias FDA metodikas, pradedant nuo pirmojo žingsnio – iš
turimų duomenų atstatant imties kreivių formą. Tyrimas apima vieną iš populiariausių metodų,
funkcinių pagrindinių komponenčių analizę (fPCA). FPCA yra populiarus ir naudingas įrankis
dimensijų mažinimui. Be to, sukurtas funkcinės tiesinės regresijos modelis. Diskretieji kiekvie-
no dalyvaujančio kintamojo duomenys suglodinami naudojant Furjė ir B-splainų bazines funkcijas,
panaudojus šiurkštumo baudą funkcijų glodumui nustatyti apibendrintos kros-validacijos (GCV)
metodu. Galiausiai R2 ir F-santykio funkcijos panaudotos nustatant funkcinio tiesinio modelio tin-
kamumą. FDA metodai yra taikomi klimato duomenų rinkiniams.

Raktiniai žodžiai : Funkcinė duomenų analizė; funkcinių pagrindinių komponentų analizė; funk-
cinis boxplot; fANOVA; funkcinė tiesinė regresija; klimato duomenys;

Functional Data Analysis - Case Study

Abstract

Functional Data Analysis refer to the analysis of information on functions or curves defined on
some interval, which abbreviated as “FDA”. This involves thinking of the observed data as functions
or curves rather than a set of data points.

The aim of this thesis is to investigate some FDA methodologies, starting with the very first
step of constructing the functional form of the sample curves from their discrete data points. The
study includes one of the most popular techniques of which is Functional Principal Components
Analysis(fPCA). FPCA is a popular and useful tool for dimension reduction. In addition, a Func-
tional Linear Regression Model is constructed. The discrete observed data points for each involved
variables are smoothing by Fourier Basis and B-spline Basis, roughness penalty used to control the
degree of the smoothness, smoothing parameter set by generalized cross-validation (GCV). Final-
ly,the functions of R2 and F-ratio were computed for the goodness-of-fit of functional linear model.
Each of the aforementioned Functional Data Analysis methodologies applies to a real climate data
set.

Key words : Functional data analysis; functional principal component analysis; functional boxplot;
fANOVA; functional linear regression; climate data;
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1 Introduction
Functional Data Analysis refers to a collection of methods for analysis of information on
functions or curves defined on some interval, which abbreviated as "FDA" . Under an
FDA framework, it treats each sample element as an individual realization of an underly-
ing random process [40].

In traditional data analysis, data generally has such features that the data is either
time series data or cross-sectional data. Many statistical data obtained in practice often
take multiple cross-sections on the time series, and then select sample data constituted
by sample observations on this interface at the same time. Such data called "panel data".
Many researchers have studied the panel data, Panel data can alleviate the problem of
insufficient sample size and has many advantages such as identifying the impact of fac-
tors that are difficult to measure. However, the econometric model of panel model uses
a linear structure to describe the causal relationship between variables, and such model
relies on many assumptions, so that the specific application of these methods and the
type of data applicable have certain limitations. In practical, people often encounter a
type of data with obvious functional characteristic (referred to as Functional Data). The
term “Functional data analysis” was firstly proposed by Ramsay in a paper named “When
the Data are Functions” [41] published in 1982. Ramsay pointed out that the modern
sophisticated data collection hardware can acquire a series of functional data, for exam-
ple, eletro-encephalography (EEG) records, functional magnetic resonance image (fMRI)
data in medical diagnosis, speech signal, spatial data, and so on [41]. Functional data is
a kind of data in the form of a function or curves and usually have a value at each time
point. If the observed time points are very dense, these data will show a functional char-
acteristic in the data space more obviously. For example, some climate data of weather
stations in certain areas, various economic indexes, real-time transaction data of a stock
in stock market and so on. In functional data, the observations are changed from a static
to a dynamic conceptualized. Therefore, when presenting a continuous function using
classical multivariate statistical methods, it will bring about many disadvantages. In clas-
sical statistical, we tend to sample the observations at a limited number of points. In one
hand, information between sampling points is lost or the important information about the
smooth functional behaviour of the generating process that underpin the data is ignored
[16]. In another hand, it also suffers the number of covariance parameters is much larger
than the samples [41].

The core feature of FDA is that the data is functional. The phenotypic form of func-
tional data is a smooth curve or continuous function xi(t), i = 1,2, ..,N, where N is the
number of observations, t typically represent a time variable, but can be any variable .
"Function" refers to the internal structure of the data, not the external manifestation of
the data. This thesis will present some methods for analysing such data with functional
characteristic, a field known as Functional Data Analysis (FDA).

1.1 Literature Review
Ramsay and Dalzell (1991) [44] introduced some methods and tools suitable for func-
tional data analysis involves infinite dimensions, and conducted functional principal com-
ponents analysis and linear model on real data set of Canadian temperature and precip-
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itation. J.O.Ramsay and B.W.Silverman (1997) summarized the theory and methods of
functional data analysis and published the book "Functional Data Analysis"[43]. The
book comprehensively expounds the basic characteristics of functional data and its idea
of statistical analysis, by extending some traditional statistical methods to make them suit-
able for functional data, which greatly promotes the development of functional data anal-
ysis. Since the influential books by Ramsay and Silver( [41], [44], [42], [43], [56], [45] ),
Frédéric Ferraty and Philippe Vieu ([13]), functional data analysis methods was popular-
ized, and have been applied in many different fields, such as medical([2]), biology([23]),
genomics([26]) and so on.

Ana M.Guilera et al.(2008) [2] applied the functional data analysis method to the
medical field, using systemic lupus erythematosus patients as samples, and constructed
a logistic regression model based on functional data, aiming to give the probability of a
bivariate predictive dependent variable in terms of discrete time observations of a func-
tional predictor variable. And a functional PCA based approach is proposed in this paper.
Finally, the results are compared by different logit approaches, using a sample of Lupus
patients. In the field of public health, Farah Yasmeen et al. [67] also applied functional
time series model to age-specific breast cancer mortality and predict future breast can-
cer mortality rates by age separately for white and black women. Sarah J.Ratcliffe et al.
(2002) [48] applied modified functional regression to periodically stimulated foetal heart
rates represents an improvement than the best standard linear regression model.

In the filed of biology, functional data analysis has also been well applied. Takayoshi
Ikeda et al. [23] applied the statistical technique of FDA to the time series analysis of
plankton monitoring data. The main point of this analysis is to reveal patterns in the
seasonal cycle to access interannual variability of variables. By curve registration and
higher order derivatives using fit FDA curves, differences in the seasonal progress were
seen. It’s anticipated that the technique of FDA is a useful approach that can be applied
to a wide variety of marine ecological data.

In demographics, functional data analysis methods have also been widely used. Rob
J.Hyndman et al. [21] used a functional data for forecasting age-specific mortality and
fertility rates observed over time. The results show that it achieves better forecasting than
the other approaches to forecast mortality.

In signal and waves processing , functional data analysis methods also show strong ap-
plication prospects. J.Lucero [29] studied a FDA algorithm for the time normalization of
voice signals, which is more flexible than the previous dynamic programming approach.
For different application, the FDA algorithm allows the use of different optimization cri-
teria, like the weighted combination of derivatives of the wavelets or the time-dependent
weight function to emphasize segment of the time interval. The resultant functions are
smooth and differentiable, which can be used for further analysis. This algorithm might
have a wide application in many different fields.

The use of functional data analysis approach in the environmental field draws more
and more attention to the public ( Siegfried Hörmann et al. [17]; Curceac Stelian et al.
[8]; P.Z., Hadjipantelis et al.[40]). Gao H.Oliver et al.[35] used functional data analysis
methods to model the dynamics of diurnal ozone and nitrogen oxides cycles taking into
account the continuous nature of the photochemical system. Final representative summer
diurnal ozone profiles are constructed using functional clustering. Norshadida Shaadan
et al. [54] highlighted the advantages of using functional based methods for accessing
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the comparing the behaviour of PM10 pollutant during extreme haze years in the state
of Malaysia. This study also can be extended to the usage of functional depth method
for outlier or abnormal behaviour detector. Meredith C. King et al. [24] presented a
functional data analysis approach to analysing PM2.5 variability and change over space
and time, which allows for a better understanding of the temporal trends in nitrate and
sulfate levels. This approach allows for complete profile prediction for sites or times
without data and confirm existing findings and yield new insights about PM2.5 variation.

At present, FDA covers a wide variety of statistical methodologies including func-
tional principal component analysis, functional canonical components analysis, and func-
tional linear model, functional clustering analysis and so on.

Functional principal component analysis treats variables as a form of a function, so is
the sample covariance matrix. Juhyun Park et al. [36] did an in-depth study on princi-
pal component analysis and pointed out the analyzing functional data often leads to find
common factors. FPCA is a useful tool can summarize and characteristics the random
variables in a functional space. An alternative fPCA that produces directed components
is proposed, which can obtain more information and easier to interpret. This approach is
demonstrated with simulated examples and real data. Properties of some special cases are
also established.

Joon Jin Song et al. [57] further developed the application of principal component
analysis in medical and biological. They proposed a general methodological framework
of a unified approach with conjunction with functional principal components analysis,
and then clustered the gene expression of the time course, constructed the optimal num-
ber of bases functions in the smoothing step and fPCA using cross-validation technology.
Finally compared the performance with some other popular classifications methods. Sim-
ulated data analysis and real data analysis are conducted.

The analysis of variance of functional data is for statistical analysis of the differences
of some aspect of the objects. It is often to group the data by different geographical area
or several categories. Each group is composed of many individuals. In functional data
analysis, it is not only need to determine whether the specific effects of each group are
zero, but also if these effects are significant at a special time t. Analogously to the classical
statistical of variance analysis, most of the statistical machinery available for analysis
of variance is readily applicable to this functional problem. for example, error sum-of-
squares function, the squared multiple correlation function and the F-ratio function. But
because these functions are related to value of t, the analysis method is different from the
standard multivariate statistical method. By calculating the values of the two functions
R2 and F-ratio, then plot the functions, you can see the fit of the model from R2. From
the size of the F-ratio function and the given significance level, each individual can be
determined if there is a difference between individuals.

Functional regression is an area of research and the approach depends on if the re-
sponse or covariates are functional or scalar. Ramsay and Dalzell(1991) [44] consider a
functional regression model where both dependent and independent variables are func-
tions, and Ramsay and Silverman (2005) [42] considered its modelling strategy there-
after. They estimated the model by least square methods and assessing the fit of model
considering the square correlation function, R2. Hidetoshi Matsui et al. [32] proposed
a functional regression model where multiple functional predictors and a functional re-
sponse. They used the Gaussian Basis functions along with regularization techniques for
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transfer discretely observed data to a smooth function, of which provides a useful instru-
ment for that. They estimated the functional regression model by Least Square, Maximum
Likelihood and Penalized Maximum likelihood. Four modified criteria are implemented
for selection of regularization parameters, they are Generalized Information Criterion,
modified Akaike Information Criterion and Generalized Bayesian Information.

1.2 Objective
The aim of this master thesis is entirely related to the modelling of Functional Linear Re-
gression by means of Functional Data Analysis methodology. We explored some methods
of FDA, such as Functional Linear Models and Functional Principal Component Anal-
ysis, also conducting exploratory data analysis by means of FDA methodology. In this
thesis, we will use a real climate data set as the case for implementation.

1.3 Layout of Thesis
The layout of this thesis is to provide sufficient information regrading explore Functional
Data Analysis by means of FDA methodology. The next chapters will cover the follow-
ings:

• Chapter 2 introduced some techniques of functional data analysis.

The first part of this Chapter is representing the functional data. Two basis func-
tions are employed to construct the functional data, Fourier bases and B-spline
bases. The roughness penalty is also introduced used to measure the roughness
of curves and Generalized cross-validation used to deal with model selection. All
these techniques will be used throughout this thesis.

The second part of this Chapter will provide some functional descriptive statistics.

The third part of this Chapter will focus on Mathematics of Functional Principle
Component Analysis. This Chapter helps to clarify a stochastic process can be
written as a linear combination of basis functions, which is call the Karhunen -
Loeve expansion. Also, provide two graphical method to identify some information
based on two ordering methods, Tukey’s halfspace and kernel density estimate.

• Chapter 3 introduced the theory of Functional Linear Regression Model. The first
part is the functional analysis of variance that can be consider one special case of
functional linear model where predictors are scalar and response are functions. The
rest part of this Chapter is the functional linear model where the predictors and
response are functions.

• Chapter 4 Applying all the methodologies mentioned in previous sections to a real
climate dataset. Finally to compare different climate indicator profile can predict
temperature profile better based on fully functional linear model where univariate
functional response and univariate predictor.

• Chapter 5 Give the conclusion and recommendations that accumulated throughout
the this thesis.
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2 Methodology
In Statistic, it concerned with obtaining information from observation Xi,...,XN . The ob-
servation Xn can be scalars, vectors or other objects. While for functional data analysis, it
concerned with observations which are considered as functions or curves defined over set
T .

In this section, we will provide some mathematical foundations of the FDA-methods
used in this thesis. First of all, we will show how a function can be structured and
smoothed from discrete observations(Section 2.1), then provide some descriptive statistic
of functional data(Section 2.2). Section 2.3 focus on Functional Principal Components
Analysis.

2.1 Smoothing Techniques
The common design assumption of FDA that we assume there exists a smooth function x
giving rise to the observed data. But in practical, the samples are observed at finite data
points. So functional data analysis begins with converting discrete data points to smooth
varying functions by smoothing techniques. This emphasizes patterns in the data by mini-
mizing short-term deviations because of observational errors, such as measurement errors
and inherent system noise.

In a situation where the initial observations are typically can be represented as

yi j = xi(ti j)+ εi j

where t represent the time steps and yi j is the j-th observations of the ith sample
function, and xi j is a smooth function. The estimation xi takes into account a finite-
dimension functional space F = span{φ1, ...,φk},where φk is a set of functional building
blocks and K is the number of basis functions, so that the smooth function xi is defined as

xi(ti j) =
K

∑
k=1

cikφk(ti j)

.
The parameters cik are the coefficients related to k-th basis functions for the i-th func-

tion.
There are many ways to convert these observed N discrete data points to a function

Xi(t) with values xi(ti j) computable for any desired argument value t. The common way
to achieve that is assuming the sample curves can presented by a set of basis of functions
and to fit the basis coefficients using smoothing or interpolation [1].

If these observations are assumed to be errorless, then the process is called interpo-
lation. But if they have some observational errors, then the process of forming functions
from discrete data may call for smoothing [42]. The basic method to solve this problem is
to select a set of basis functions φk(t),k = 1,2, ...N that are mathematically independent
of each other, then use the linear combination of basis functions to give the estimated

value x̂(t) of the function xt, that is x̂(t) =
m
∑

k=1
ckφk(t). The choice of basis function is

very important for the estimation of the derivative, because dm x̂(t)
dt =

m
∑

k=1
ck

dmφk(t)
dt . Hence,
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not only should the estimation of the function being considered, but also estimation of the
first or higher derivatives.

There exists many smoothing methods in the studies, including use of Fourier smooth-
ing, regression splines, kernel smoothing, spline series, wavelet bases, roughness penal-
ties and so on. Two of the most important parametric smoothing methods are employed
in this thesis, Fourier basis functions and B-spline basis functions. The performance of
these two smoothing approaches was studied via real climate data set.

Fourier basis A parametric method is known as a basis representation since we use
a known basis to smooth the data. One best known basis system is Fourier basis. The
Fourier basis series is

φk(t) =


1 k =1
sin( k

2 ωt) k=2r, r ∈ N+

cos( k−1
2 ωt) k=2r+1, r ∈ N+

and r = 1, ..., K−1
2 , where K is the number of basis functions. The frequency parameter

ω is related to the period T by the relation ω = 2π

T . Fourier basis functions are periodic
that arranged in successive sine/cosine pairs except for the first term. And noticed K must
be an odd number ([35] pg 45-46). Fourier basis is useful when analysing periodical
functions, for example, examine annual trends with seasonal variation [42].

The function vector φ(t) = (φ1(t),φ2(t), ...,φk(t))′ is said to be orthogonal if the value
of t j are equally spaced within interval T and the period is equal to the length of interval T .
Because of that, the cross-product Φ′Φ is diagonal and can be made equal to the identity
by dividing the basis functions by suitable constants,

√
n for j = 0 and

√
n/2 for all other

j. The Fast Fourier Transform (FFT) algorithm can make it possible to compute all the
coefficients efficiently, which is one of the reasons why this basis became well known
[56] [11].

B-spline basis One common approach worth to mentioned is B-spline smoothing,
which constructed from polynomial pieces joined at many knots.

Once the knots are given, B-spines can be estimated recursively for any degree of
the polynomial by using a numerically stable algorithm [1] [10]. B-spline smoothing is
the most popular smoothing technique used, presumably because of its simplicity and
flexibility for tracking a wide range of non-parametric and semi-parametric modelling
situations [60].

Consider the sample curves as the observations of a second order stochastic process
X = {X(t) : t ∈ T} and the sample functions belong to the Hilbert space L2(T ). For a set
of K B-splines basis functions defined as [10]

φk,1(t) =

{
1 if tk ≤ t < tk+1

0 Otherwise

φk,m(t) =
t−ξk

ξk+m−1−ξk
φk,m−1(t)+

ξk+m− t
ξk+m−ξk+1

φk+i,m−1(t)

m is the order of the B-spline, m−1 is the degree[10]. Particularly, if the denominators
are 0, i.e. ξk+m−1 = ξk or ξk+m = ξk+1, the fraction should be evaluated as 0. [10], [9],
[63] separately provides the study of spline functions from basic to higher mathematical
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level. A very useful rule that the order of the spline basis to be at least two higher than the
highest order derivative to be used [42]. So in this thesis, a cubic B-spline will be used in
section of case study to fit the sample curves.

Figure 1. Simple example of the (a) Fourier series, and (b) (c) B-spline bases functions
defined over the interval [0,1]. The order of B-spline basis are 3 and 4 with inter knot
vector ξm=3 = [0, 1

3 ,
2
3 ,1] and ξm=4 = [0, 1

4 ,
2
4 ,

3
4 ,1] respectively.

Next step is how to use these basis to fit a function to the data. Defined a matrix Φ(t)
with dimensional n×K containing the elements φk(t j):

Φ(t) =

φ1(t0) φ2(t0) · · · φK(t0)
...

...
. . .

...
φ1(tT ) φ2(tT ) · · · φK(tT )


in which column k represents the values of corresponding k-th basis functions evalu-

ating at the data points of which has data for a subject. So the basis expansion function
for x(t) has the form:

yyy = Φccc =
K

∑
k=1

ckφk(t)

9



The solution of determining the coefficients vector ccc can obtained by minimizing the
least square criterion:

SMSSE(yyy|ccc) = (yyy−Φccc)′(yyy−Φccc)

as described in [56](pg 59-60). By least square principle, taking the first derivative
with respect to ccc, we obtained the estimation of ĉcc as:

ĉcc = (ΦΦΦ′ΦΦΦ−1)ΦΦΦ′yyy

Then get the fitted curves is:

ŷyy = Φ ˆ̂ccc = ΦΦΦ(ΦΦΦ′ΦΦΦ−1)ΦΦΦ′yyy

The Roughness Penalty For splines, the number of basis function K is defined by

order o f the spline+ the number o f knots

Determining the number of basis functions K involves the selection of the number
of knots. If too many knots are selected, it might cause overfitting of the data. On the
contrary, if too few knots, you might suffer underfitting issues. One way to solve this
problem is to select many knots and add a roughness penalty, which can trades off curve
roughness against lack of data fit. This method restricts the flexibility of fitted curves and
provides a good fit to the data with respect to the residual sum of squares and controls the
degree of smoothness at the same time.

As stated before, the coefficient vector ccc can be estimated by minimizing the (Φ′Φ)−1Φ′yyy.
Simple least square approximation is suitable when we assumed the residuals are iden-
tically independent distribution with zero mean and constant variance. However, fitting
basis expansions by least squares implies clumsy discontinuous control over the degree
of smoothing [56]. Adding a roughness penalty term can solve this problem that could
control the degree of the smoothness. The general version of the roughness penalized
fitting criterion is

min
X∈F

ni

∑
j=1
{yi j− xi(ti j)}2 +λ

∫
[Lx(t)]2dt

where yi j = xi(ti j)+εi j is the true value of observing x at time point ti j, and true error
εi, j are statistically independent and have normal distribution with mean 0 and constant
variance. If there are many knots, only minimizing the sum of squares errors is a least
square issue, it will result in overfitting problem as it follows every details in the data.
Hence, adding a roughness penalty term to the equation can solve this problem. The
parameter λ emphasis on the second term penalizing the goodness of fit quantified in the
sum of squared residuals in the first term.

There is a variety of ways to measure how "rough" or "wiggly" the curve is. One
measure of a function’s roughness is the total curvature, given by the integrated squared
second derivative

∫
[D2x(t)]2dt. In addition, Ramsay and Silverman(2005) introduced the

differential operator L = ω2D+D3 as the harmonic acceleration operator, and the integral
of the square of the harmonic acceleration operator may be an appropriate measure of
roughness for periodic data like the temperature curves [42] [42]. The roughness penalty
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method can produce a better estimation of derivatives than least square counterpart( [56]).
Hence, in the remainder of this thesis, the roughness penalty method is used.

Generalized Cross-Validation Referring to how to locate the penalty size, the gen-
eralized cross-validation measure (GCV) is popular developed by Craven and Wahba
(1797). It is designed to find an optimal value of the smoothing parameter λ [42].

The GCV method comprises selecting λ so that the following criterion minimized:

GCV (λ ) = (
n

n−d f (λ )
)(

SSE
n−d f (λ )

)

where d f (λ ) measures the effective number of parameters estimating xi(t). In addi-
tion, the GCV method wins when comparing to k-fold cross-validation in the respect of
computational, because GCV does not need to re-smooth the function k times as illus-
trated in Ramsay and Silver [42](2005, pg 97-99) .

Choosing a proper basis and its dimension for approximating functional form of sam-
ple curves is very essential. Ramsay and Silverman (2005 [56]) pointed up that the se-
lection of smoothing technique is determined by the primary behaviour of the data being
analysed [60]. In principle, the smooth curves should have featured the data being anal-
ysed. For instance, Fourier basis is generally selected when the data are periodic. There
are many instances of the application using Fourier basis, environmental matters [35] [4]
[31], cash flows process in Finance [27], and foetal heart rate tracing in the medical field
[48]. Spline bases are regularly chosen to represent non-periodic data, like traffic vol-
ume forecasting ([62]) and EEG signal process ([70]) and wavelet bases are selected to
represent data displaying discontinuities or rapid changes in behaviour [33].

2.2 Functional Descriptive Statistic
Once the functions or curves xi fit to the data properly, some descriptive statistics can
be analysed. In the classical statistic, the commonly used statistics for univariate data
include mean, variance, covariance and correlation coefficient, and so on. Analogously,
in functional data, when the observation is a smooth function X(t) that is in L2 and defined
on the interval T with the following sample mean and variance functions:

x̄(t) = (N−1)−1
N

∑
i=1

xi(t)

and similarly:

varX (t) = (N−1)−1
N

∑
i=1

[xi(t)− x̄i(t)]2

where N is the number of sample functions or curves.
The covariance function encapsulate the dependence of records across different argu-

ment values, for all possible t,s ∈ T:

covX (s, t) = (N−1)−1
N

∑
i=1

[xi(s)− x̄(s)][xi(t)− x̄(t)].
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and associated correlation function is:

corrX (s, t) =
covX (s, t)√

varX (s)varX (t)

In our case, we have more than one observed variables, take pairs of functions (xi,yi)
as an example, the cross-covariance function can be defined:

covX ,Y (t,s) = (N−1)−1
N

∑
i=1

[xi(t)− x̄(t)][yi(s)− ȳ(s)].

Beyond above application, the functional standard deviation or the square root of the
variance function var is concentrating on the underlying variability between observations.
For example, the variations that are considered as measurement errors not attributable to
the variability between observations [42] [? ].

One more benefits using functional data analysis is derivatives. The derivatives of
functional observations played an important role in functional data analysis. The first
derivative of a function with respect to time gives a description of rate of change of vari-
able, which corresponding to the velocity over time. The second derivative of a function
with respect to time represent how the rate of change is itself changing, which correspond-
ing to the acceleration over time. Plotting the first and second derivative as functions of
argument, or plotting the second derivative as functions of the first derivative, may reveal
important aspects of the processes generating the data. Ramsay and Silver (2005) intro-
duced the idea of incorporating derivatives into a linear model for functional data and
provide some applications (see [56], Chapter 17-19).

2.3 Functional Principal Component Analysis
2.3.1 Karhunen-Loeve Expansion

A basis function is a specific basis in function space and every continuous function can be
represented as a linear combination of basis functions. In this section, we are going to use
Karhuen-Loeve (K-L) expansion which is a presentation of a stochastic process in terms
of an infinite linear combination of orthogonal functions. Given such kind of form of
series to represent stochastic process was first considered by Kosambi (1943)[25]. In the
situation of a centred square-integrable stochastic process {X(t)}t∈[a,b] over a probability
space, if it satisfy a technical continuity condition, Xt can be represented as:

Xi(t) =
∞

∑
k=1

ξikφk(t)

where φk be the set of orthogonal basis functions in L2(a,b), ξik are uncorrelated
random coefficients. So, expansion if the process only taking K terms can be written as:

Xi(t) =
K

∑
k=1

ξikφk(t)

12



It is use only a finite number of terms, K, leading to errors in the orthogonal basis
decomposition, and K-L expansion is a representation of orthogonal basis decomposition
that minimizes the mean square errors.

Consider a square-integrable stochastic process {Xi(t), t ∈ [a,b]} with zero mean and
continuous covariance function KX (s, t), t,s ∈ [a,b]. The covariance function KX satisfies
the definition of a Mercer kernel, there exists a set {λk,φk} subject to∫ b

a
KX (s, t)φk(s)ds = λkφk(t),(λ1 ≥ λ2 ≥ ...≥ λn ≥ 0,n→ ∞)

.
where {λk,k ∈ N} are eigenvalues and {φk,k ∈ N} is corresponding eigenfunctions.

Further more,
∫ b

a φk(t)2dt = 1,
∫ b

a φk(t)φp(t)dt = 0(k < p). The vital of K-L theorem is
that it yields the best basis in the sense that it minimizes the total mean squared error
[70]. Since the orthogonal basis functions used in K-L presentation are determined by the
covariance function of the process, φk(t) is the corresponding orthogonal basis functions
of covariance functions KX (s, t) with respect to k:th eigenvalues λk. And it’s coefficient is

ξk =
∫ b

a
X(t)φk(t)dt

and satisfies

E(ξk) = E[
∫ b

a
X(t)φk(t)dt] =

∫ b

a
E[X(t)]φk(t)dt = 0

E(ξiξ j) = E[
∫ b

a

∫ b

a
X(t)X(s)φi(s)φ j(t)dtds]

=
∫ b

a

∫ b

a
E[X(t)X(s)]φ j(t)φi(s)dtds

=
∫ b

a
φ j(t)[

∫ b

a
KX (s, t)φi(s)ds]dt

= λi

∫ b

a
φ j(t)dt

= δi jλi

Using the fact that {φ j(t)} is orthogonal, δi j = 0 if i 6= j,δi j = 1,if i = j. Hence,
Var(ξk) = δkkλk = λk. The general case of a stochastic process Xi that is non-centralized
can be brought back to the case of centred stochastic process by removing its mean Xi−
E[Xi].

Since

Var[X(t)] =
∞

∑
k=0

φk(t)2Var(ξk) =
∞

∑
k=1

λkφk(t)2 =
∞

∑
k=1

λk

13



The total variance of the d-truncated approximation is
K
∑

k=1
λk and the d-truncated ex-

pansion explains

K
∑

k=1
λk

∞

∑
k=1

λk

of the variance.

2.3.2 Functional Principal Components Analysis

The principal components analysis (PCA) is a main methodology to reduce the dimen-
sionality of a data set, in the meantime preserving as much statistical information as pos-
sible. In multivariate data analysis, this can be achieved by transforming to some new axis
along which the data has largest variance. Denoting the projection of X on a new axis,
principal components ξk, by

fff k === Xξξξ k

where fff k is the vector containing the k-th PC’s scores, and PCA is trying to find sets
of normalized weights ξξξ k that maximize the variation in fff k. The first PC can be described
as ξξξ 1 for the linear combination values

ξξξ 1 = argmax[ fff ′′′ fff ] = argmax[ξξξ ′′′XXX ′′′XXXξξξ ]

that have the largest variaation under the constraint of ‖ξξξ 1‖2 = 1, where ‖·‖ represent
the L2− norm. By the same manner, the subsequent components can be done by max-
imizing the mean square, subject to the constraint ‖ξξξ m‖2 = 1 alogn with the additional
condition of orthogonality ξξξ

′′′
kξξξ m = 0, (m < k) [42]. Defined matrix V is the sample

variance-covariance matrix VVV = (N−1)−1XXX ′′′XXX . So the solution of maximization problem
is solved by finding a sequence set of eigenvalue-eigenvector pairs(λ j, ξ j) satisfying the
eigenequation VVV ξξξ === λλλξξξ .

The transition from classical multivariate data to functional data is not difficult, in-
volving essentially replacing a summation by an integral[41]. In functional version of
PCA, suppose we have a data yi(t) which can be considered as functional data. It’s co-
variance function v(s, t) defined as N−1yi(s)′yi(t). Analogous of multivariate statistic, the
principal components’ score are

fff k = yyyi(t)ξk(t)dt

and the first weight function ξ1(t) are now

ξ1(t) = argmax[
∫

T
yyyi(t)ξ (t)dt]′[

∫
T

yyyi(t)ξ (t)dt]

with the constraint
∫

ξ1(t)2dt = 1. The subsequent weight functions ξm is required
to satisfy

∫
ξm(t)2dt = 1 and additional orthogonality constraints that

∫
ξkξm = 0,m < k.

Each of the principal component weight function ξ (t) satisfies the equation
∫

v(s, t)ξ (t)dt =
λξ (s). ([56] pg 150). Additionally, suppose that each function yi(t) and eigenfunction ξ

have basis expansion that
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yi(t) =
K

∑
k=1

cikφk(t)

and

ξ (t) =
K

∑
k=1

bkφk(t).

Write these equations by matrix notation as xxx ===CCCφφφ and ξ (t) = φ(t)′bbb. Hence, to get
the principal components, we require to find eigenvalue and eigenfunction pairs(λ ,uuu) that
satisfying the following matrix:

N−1WWW 1/2C′CWWW 1/2,

and WWW is a order K symmetric matrix having entries
∫

φφ ′, principal component
function’s coefficient vector bbb = WWW−1/2uuu, where uuu is the eigenfunctions. (Ramsay and
Silverman, 2005, pg 160-163 [42])

As stated in [40], functional principal components analysis(fPCA) is an intrinsically
linear and unsupervised method to reduce dimension, which facilitates the conversion to
infinite-dimensional functional data onto a finite-dimensional vector of random scores.
Linear means the resulting representation is linear in the random functions.

In one sample of identically independent distribution smooth random functions Xi ∈
L2[T ], i = 1,2, ...n, we assume a well-defined mean function is µ = E(X) and covariance
function is KX (t,s) = cov{X(t),X(s)} = E[{Xi(t)− µ(t)}{Xi(s)− µ(s)}]. Noted that
KX (s, t) is symmetric positive definite, by Mercer’s theorem, K has the representation:

KX (s, t) =
∞

∑
k=1

λkφk(s)φk(t)

where λ1 ≥ λ2 ≥ ... ≥ 0 are eigenvalues in decreasing order and φk’s are the corre-
sponding orthonormal eigenfunctions. So the K-L expansion of the observation X is given
as:

Xi(t) = µ(t)+
K

∑
k=1

ξikφk(t)

where the ξik are the fPC’s scores with variance equal to the corresponding eigenval-
ues λk and eigenfunctions φk are the orthonormal basis by the random process Xi.

2.3.3 Varimax Rotation

Varimax rotation method can show more interesting properties of principal component
analysis by rotating the matrix ξξξ (t) by a K×K orthnormal matrix R, such that

ζ = Rξ

.
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Matrix R is chosen by maximizing the variance of the squared elements in ζ . R is
a rotation matrix, the overall sum of variance is still the same. Therefore, if the values
of elements are tend to be relatively larger or small , giving the PCs with more accen-
tuated features. Also, after rotation, rotated component score are no longer uncorrelated
[56][42].

2.3.4 Bagplot, Boxplot for Functional Data

Graphical methods could help to discover some data features that might not have been
clearly visible using mathematical models [55]. Ramsay and Silverman ([45]) introduced
the phase-plane plot, a plot of acceleration against velocity, which can highlight impor-
tant distributional characteristic. So, graphical methods are the way to identify some
information, which can not be obviously seen from a plot of original data. Hyndman and
Shang (2010) [22] applied two useful ordering methods to the first two functional princi-
pal component scores([22]). These two graphical methods can work for outliers detection
capability.

One of them is plot the functional data ordered by Tukey’s halfspace depth (Tukey,
1975 [59]). Tukey (1975) proposed functional data X = xi, i = 1, ...,n can be ordered by
halfspace location depth. The halfspace depth of an arbitrary point θ relative to a bivariate
data set Z = z1, ...,zn is given by the smallest number of data points contained in a closed
half-plane, of which the boundary line passes through θ (Tukey,1977), where θ ∈ R2 is
one data point in Z, then [55]

d(θ ,Z) = min
H

#{i;zi ∈H}

.
An element is close to the center of the sample will have a higher depth, while if it far

away from the center will have a low depth. Given a fixed α ≥ 0, Rousseeuw and Ruts
(1996)[50] defined the depth region Dα , the smallest number of data point in Dα is k,then

Dα = {x ∈ R2; d(x,X)≥ k}

In year 1999, Rousseeuw, Ruts, and Tukey ([51]) proposed the bivariate bagplot to
refer to the halfspace location. The robust bivariate principal component scores can be
ordered by Tukey’s halfspace location depth and plotted in a two-dimensional graph.

16



(i) The bivariate bagplot of smoothed temperature
data

(ii) The functional bagplot of smoothed temperature
data.

Figure 2. Bivariate bagplot and functional bagplot for the weekly temperature data of
36 cities. The dark and light gray region show the bag and fence regions, respectively.
The deepest depth represented by the red asterisk mark. In the functional bagplot, the
solid black line represents the median curve, surrounded by 95% pointwise confidence
intervals. The curves outside the railing are outliers. The outlier city is Minneapolis.

Figure 2 is the example of bagplot. The bag colored in light gray defined as the
smallest depth region in the sense that 50% of the total observations is falling into this
region. The outer region obtained by inflating the bag by a factor ρ . In order to ensure
that 99% of the observations fall into the fence that are projected bivariate scores follow
standard normal distribution, ρ prefer being 2.58 [22]. The functional curves is another
form of bivariate bagplot, exhibiting the median curve with the deepest depth, the inner
and outer regions. Hence, 50% of functions are in the inner region. The bivariate outliers
and functional outliers are lined by the same color.

Another one is ordering the curves by the value of kernel density estimate [53]. Let
oi = f̂ (zi), f̂ (zi) is a bivariate kernel density estimation which is calculated based on the
bivariate principal component scores. Then order the observations by the value of oi in a
decreasing order. Hence, the first observations is the curve with the highest density and
it may be treated as the “modal curve”. Whereas the last curve has the lowest density
value which may be treated as the most unusual curve. Hyndman (1996) [20]) introduced
the bivariate boxplot to refer to the highest density, and mapping the features of the HDR
boxplot into the functional space. Hyndman and Shang (2010) [22] compared these two
new outlier detection methods with existing outlier detecting methods, and the results
shows that the functional bagplot and boxplots are better to identify the outliers. One
examples is shown in Figure 3.
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(i) The bivariate HDR boxplot (ii) The functional HDR boxplot

Figure 3. The bivariate and functional HDR boxplot. The dark and light gray regions
show the 50% HDR and the 95% outer HDR, respectively. These correspond directly to
the equivalent regions with similar colours and shading in the right panel functional HDR
boxplot. Points outside these outer regions are identified as the outliers.

3 Functional Linear Model
One application of FDA involves the construction of functional models that allow to ex-
plore the relation between functional dependent variable and functional explanatory vari-
able [60]. Such models are called functional linear model. Functional linear model are
the functional expansion of the linear models in multivariate statistics. Linear model can
be functional in one or both of two ways:

• The dependent variable x is functional.

• One or more of the independent variable or covariates z is functional.

That means constructing the functional linear model depends on which variable being
functional. Horváth et al. [18] proposed three prototypes of linear model with assump-
tions of the dependent variable and independent variables have mean zero, and errors εi
are independent of the explanatory variables Xi.

The first scenario is:

Yi(t) =
∫

Ψ(t,s)Xi(s)ds+ εi(t)

in which both Yi and Xi are curves that is called fully functional linear model.

Second scenario is:

Yi =
∫

Ψ(s)Xi(s)ds+ εi
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when the regressor Xi are curves, but responseYi are scalars, which is called scalar
response model.

The other scenario is the functional response model:

Yi(t) = Ψ(t)xi + εi(t)

here the response Yi are curves, while regressors xi are scalars (Horváth, Lajos and
Kokoszka, Piotr, 2012 [18]).

Every variable will have fitted through some bases as described in previous sections.
The key problem is that the functions Ψ(t,s) are infinite dimensional objects which must
be estimated from a finite sample. Ψ(t,s) reflects the effect of the explanatory function Xi
at time s on the response function Yi at time t.

3.1 Functional Analysis of Variance (fANOVA)
Functional analysis of variance extends from classical analysis of variance to functional
data, abbreviated fANOVA. The aim at one-way fANOVA testing problem is to check if
a factor or a category variable has a statistically significant effect. This factor is usually
used to divide the individual functions into several groups [69]. Suppose we have k inde-
pendent sample groups of functional data Xi j(t), i = 1,2, ...,k, j = 1, ...,ni defined over a
given finite interval T = [a,b]. Let Sp(µ,γ) denotes a stochastic process with mean func-
tion E(Xi(t)) = µi(t) for all t ∈ T and covariance function γ(s, t), for all s, t ∈ T. In FDA,
t typically represents a time variable, Xi(t) represents the smoothed curves. Functional
One-way ANOVA problem is to test the main-effect functions are the same.

So the null hypothesis is :

H0 : µ1(t) = ...= µk(t), t ∈ T.

the alternative hypothesis that its negation holds. If the one-way ANOVA model is not
statistically significant, the null hypothesis is rejected. Then further investigation might
be required. Post Hoc Test can be used to test if any two main-effect functions are the
same[69]. This test can be written as:

HO : µi(t) = µ j(t), t ∈ T

H1 : µi(t) 6= µ j(t), f or some t ∈ T.

Suppose yi j(t) is the j-th function under the influence of the i-th group (i= 1,2, ...k; j =
1,2, ...,ni), then the model can be established as:

yi j(t) = µ(t)+αi(t)+ εi j(t)

where the function µ(t) is the grand mean function, αi(t) are specific effects on y(t)
in the factor of i. In order to identify such specific effects of different factors, we need
to add the constraint ∑

k
i=1 αi(t) = 0 for all t. The residual function εi j is the unexplained
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variation of the j-th within group i. Defined regression function β j by setting β1 = µ ,
β2 = α1, ..., βk−1 = αk. So, we have the equivalent model formulation:

yi j(t) =
k+1

∑
g=1

z(i j)gβg(t)+ εi j(t)

It also can be written in matrix notation:

Y(t) = Zβββ (t)+ εεε(t)

Where

βββ (t) = (β1(t),β2(t), ...,βk+1(t))T

= (µ(t),α1(t),α2(t), ...,αk(t))T

Z(kni)(k+1) =

1 1 0 · · · 0 0
...

...
. . .

...
1 0 0 · · · 0 1


Using the least square principle, our aim is to minimize the residual sum of squares.

Hence, the least squares fitting criterion becomes:

LMSSE(β ) = ∑
i

∑
j

∫
[yi j(t)−µ(t)−αi(t)]2dt

with the constraint ∑
k
i=1 αi(t) = 0 for all t.

The sum of squares functions are a vital source of information if considering the
importance of the different factor effects:

SSE(t) = ∑
i j
[yi j(t)− µ̂(t)− α̂i(t)]2

and the error sum of squares functions that taking only estimated grand mean function
µ̂ into account:

SSY (t) = ∑
i j
[yi j(t)− µ̂(t)]2

Then, F-test statistic and the squared multiple correction function RSQ are given by
the following formula:

F−Ratio =

(SSY−SSE)
d f (re f )

SSE
d f (error)

RSQ(t) =
SSY (t)−SSE(t)

SSY (t)
.
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where d f (error) is the degrees of freedom for error and d f (reg) is the number of
mathematically independent functions β in the model ([69] [56]).

The roughness penalties approach mentioned in the previous section also can play an
essential role in the functional linear regression model. As Ramsay et.al stated in [42],
adding the roughness penalty can reduce the possibilities of missing important features
and possessing extraneous features. Suppose parameter β̂ can be expressed as β̂ = Bθ ,
observed function yi can be expressed as y(t) =Cφ(t). Using a linear differential operator
L to defined the roughness penalty for β , the penalized least squares criterion becomes:

PENSSE(y|β ) =
∫
(Cφ −ZBθ)′(Cφ −ZBθ)+λ

∫
(LBθ)′(LBθ)

Smoothing parameter can be chosen by GCV method.

3.2 Fully Functional Linear Model
Fully Functional Linear Regression model constructed when the response and covariates
are curves (functions). Let Yi(t), i = 1, ..,N, t ∈ T are functional response and Xik(t),k = 1, ..K.
K is the number of functional independent variables. In general, the model can be written
as:

Yi(t) = β0(t)+
K

∑
k=1

∫
Tk

Xik(s)βk(s, t)ds+ εi(t), s ∈ Tk, t ∈ T (1)

The function β0(t) is the intercept function that captures the variation in the response
that does not depend on any of the covariate functions. The bivariate regression coefficient
function βk(s, t) reflects the effect of covariate functions Xik(s) on dependent function Yi
at each time t. εi(t) are the error functions. By smoothing techniques, the functions Xik(t)
and Yi(t) can be expand as a linear combination of some bases. Assume {φφφ m, m≥ 1} and
{ψψψg, g≥ 1} are some bases such that

Xik(s) =
Mk

∑
m=1

η̃ikmφkm(s) = η̃ηη
′′′
ikφφφ k(((sss))), s ∈ Tk

Yi(t) =
G

∑
g=1

θ̃igψg(t) = θ̃θθ
′′′
iψψψ(((ttt))), t ∈ T

Consider the coefficient functions βk(s, t) has following form with double expansion:

βk(s, t) = ∑
m,g

bkmgφkm(s)ψg(t)

= φφφ
′
k(s)Bkψψψ(t)

where B is a Mk ×G matrix of coefficients bkmg. By centring the model (1) in the
following way:
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X∗ik(s) = Xik(s)− X̄ik(s)

= η̃ηη
′
ikφφφ(s)− η̄ηη

′
ikφφφ(s)

= ηηη
′
ikφφφ(s)

Y ∗i (t) = Yi(t)− Ȳi(t)

= θ̃θθ
′
iψψψ(t)− θ̄θθ

′
iψψψ(t)

= θθθ
′
iψψψ(t)

Then, the model (1) becomes:

Y ∗i (t) =
K

∑
k=1

∫
Tk

X∗ik(s)βk(s, t)ds+ ε
∗
i (t), s ∈ Tk, t ∈ T (2)

So, we have the following form of model:

θθθ
′
iψ(t) =

K

∑
k=1

∫
Tk

ηηη
′
ikφφφ(s)φφφ ′k(s)Bkψψψ(t)ds+ ε

∗
i (t)

=
K

∑
k=1

ηηη
′
ikJkBkψψψ(t)+ ε

∗
i (t)

= z′iBψψψ(t)+ ε
∗
i (t) (3)

where Jφk =
∫

φ(s)φ(s)′ds is a Mk×Mk matrix, zi = (η ′i1Jφ1 , ...,η
′
iKJφK )

′ which is a

vector with length
K
∑

k=1
Mk, and B = (B1, ...,BK)

′ is a matrix with dimension (
K
∑

k=1
Mk×G).

Combining all the information above, we obtain:

Dψψψ(t) = ZBψψψ(t)+ εεε(t) (4)

where D is N×G matrix, Z is a N× (
K
∑

k=1
Mk).

B in above model (4) can be estimated by minimizing the integrated sum of squares
[56]:

N

∑
i=1

∫
[Y ∗i (t)−

K

∑
k=1

∫
Tk

X∗ik(s)βk(s, t)ds]2dt

=
∫

T
{(Dψψψ(t)−ZBψψψ(t))(Dψψψ(t)−ZBψψψ(t))′}dt

=
∫

T
{(D−ZB)ψψψ(t)ψψψ ′(t)(D−ZB)′}dt

= tr{(D−ZB)Jψ(D−ZB)′}
= tr{DJψ D′−DJψ B′Z′−ZBJψ D′+ZBJψ B′Z′}

(5)
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where Jψ =
∫

T ψ(t)ψ(t)′ is a matrix of basis function with G×G dimensions. we
must solve for B. Let the first derivative with respect to B is zero. We obtain:

−2(Z′DJψ)+2(Z′ZBJψ) = 0

→ Z′DJψ = Z′ZBJψ

By matrix vectorization, the solution of B is:

vec(Z′DJψ) = vec(Z′ZBJψ)

→ vec(B̂) = (Jψ ⊗Z′Z)−1vec(Z′DJψ)

where vec(B) is a column vector of length (∑K
k=1 Mk) × G.

3.3 Goodness of Fit [42]
One way extended from conventional linear model of accessing the fit of a functional
leaner model is to consider the square correlation function[56]:

R2(t) = 1−
∑
i
{ŷi(t)− yi(t)}2

∑
i
{yi(t)− ȳ(t)}2

R2 measures the proportion of the total sample variance of the responses explained by
the model [18]. For each individual function, an overall R2 measurement defined by:

R2(t) = 1−
∫
{ŷi(t)− yi(t)}2dt∫
{yi(t)− ȳ(t)}2dt

Ramsay and Silverman(2005) [56] conceive of an F-ratio function for the fit:

ŷi(t)− ȳ(t) =
J0

∑
j=1

Ci j(
K0

∑
k=1

B jkψk(t)) =
J0

∑
j=1

Ci jψ j(t)

Here K0− 1 is the degrees of freedom to the point-wise sum of squares ∑i{ŷi(t)−
ȳi(t)}2, n−K0 is the degrees of freedom to the residual sum of squares ∑i{yi(t)− ŷi(t)}2.
So, F-ratio function can be constructed by:

FAT IO(t) =
∑i{ŷi(t)− ȳ(t)}2/(K0−1)
∑i{yi(t)− ŷi(t)}2/(n−K0)

The parameter J0 and KO can be chosen by different methods, in which the choice of
the appropriate method is probably subjectively. However, ψ j(t) might not be the best fit
of ŷi(t) to the true observed value, so the F-ratio could be used only as an approximation
[56].
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4 Applications: Case Study on Climate Data
In this section, we illustrate the insights one can obtain by using FDA techniques on his-
torical climate data. This data set contains 4 years of high temporal resolution(hourly
measurements) data of various weather attributes, temperature(K), humidity(%), air pres-
sure(hPa), wind direction(meteorological degrees) and wind speed(m/s).

Original data are hourly weather time-series for 36 cities, 3 cities in Canada, 27 cities
in USA, and the rest are Israel cities, which acquired using Weather API on the Open-
WeatherMap Website. It is available under the ODbl License. The whole period of inter-
est in this paper is 2013-01-01 01:00 to 2016-12-30 23:00.

Three samples extracted from the original data set will be used in this thesis. The
first sample contains monthly records of all variables during the years from 2013 to 2016.
For each city, the time span is aligned such that month 1 is the first month of the first
year(2013). Furthermore, these monthly records by aggregating observed hourly data
within each month.

Sample two is the records measured in weeks of all variables during the years 2013-
2016. For each city, the time domain is aligned such that week 1 is the first week of the
first year(2013). Weekly records calculated by aggregating observed hourly data within
each week.

The third sample is the daily records of all variables during the years 2013-2016.
Same as samples 1 and 2, daily records obtained by aggregating observed hourly data
within a day. Individuals with any NA value were excluded from original data set before
the aggregation. In this thesis, three samples will be tested, but we are concentrating on
sample two measured by week when dealing with modelling.

4.1 Variables
Our observed data have five variables, they are:

Temperature: Temperature were measured in Kelvin scale.

Humidity: Humidity is a natural part of the our atmosphere, it comes from the amount
of water vapor in the air.

Pressure: Pressure is the pressure within the atmosphere of Earth. The standard atmo-
sphere (symbol: atm) is a unit of pressure defined as 101325 Pa (1013.25 hPa; 1013.25
mbar). Data in our case recorded by hPa unit.

Wind direction: Wind direction is reported by the direction from which it originates.
Wind direction were reported in degrees in our case.

Wind speed: Weather forecasts typically give the direction of the wind along with its
speed. For instance, a “southerly wind at 4m/s” is a wind blowing from the north at a
speed of 4m/h.

A brief explanation of these variables is presented, along with a short summary of any
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manipulations that has been made. Table 1 and 2, together with tables 6, 7 and 8 in
Appendix, includes descriptive statistics for the variables used.

Table 1. Summary statistics for temperature(K) of the second sample(weekly records)
City Mean SD Median City Mean SD Median

Vancouver 283.4067 6.070311 293.1192 Portland 284.2709 6.332019 294.3909
San.Francisco 287.2442 3.923411 293.6135 Seattle 283.69 5.815167 293.2045
Los.Angeles 290.3196 4.101892 299.8259 San.Diego 289.4416 3.594813 297.7546
Las.Vegas 292.6552 9.719126 310.2823 Phoenix 295.3331 8.88462 308.9593

Albuquerque 285.0698 8.654508 299.1572 Denver 282.2563 9.234211 296.2498
San.Antonio 293.1936 6.911027 303.9162 Dallas 292.1694 8.553323 306.086

Houston 293.7134 6.902858 303.2655 Kansas.City 286.5441 10.000147 300.7083
Minneapolis 279.612 12.585557 299.6084 Saint.Louis 286.2163 9.642247 301.5566

Chicago 283.1726 10.10729 300.5532 Nashville 288.1361 8.129465 300.4531
Indianapolis 284.4298 10.155913 300.5977 Atlanta 288.885 7.035304 298.3703

Detroit 282.7327 9.926664 299.9717 Jacksonville 293.8598 5.02865 301.4926
Charlotte 288.2368 7.439369 298.4307 Miami 297.9744 2.794086 301.9023
Pittsburgh 283.4743 9.30521 298.8626 Toronto 281.9634 9.398665 299.655

Philadelphia 285.0705 8.845086 301.3468 New.York 285.3736 9.099097 302.8306
Montreal 280.1779 11.316159 298.6286 Boston 283.8559 9.037263 299.7612
Beersheba 291.4523 5.796979 298.8389 Tel.Aviv.District 294.2746 5.105004 301.4063

Eilat 296.2143 6.127705 304.33 Haifa 293.479 4.166312 299.2359
Nahariyya 293.3869 4.451553 299.72 Jerusalem 291.0125 5.381442 298.3205

Table 2. Summary statistics for humidity(%) of the second sample(weekly records)
City Mean SD Median City Mean SD Median

Vancouver 81.34106 9.084305 95.14894 Portland 76.12011 10.374347 91.45349
San.Francisco 75.77783 10.461149 100 Seattle 73.21957 10.773027 92.78571
Los.Angeles 59.68254 14.80109 90 San.Diego 66.87151 12.797352 89
Las.Vegas 29.86178 14.141567 63.33929 Phoenix 35.11888 12.763552 64.81395

Albuquerque 43.08925 15.091454 77.24224 Denver 55.54585 13.943318 86.20497
San.Antonio 68.79609 10.707267 93 Dallas 65.11062 9.348952 81

Houston 73.96538 9.585483 93 Kansas.City 68.61697 10.069572 93
Minneapolis 71.99296 8.78817 89.69512 Saint.Louis 70.81481 8.913923 93

Chicago 75.8878 9.973895 96.33333 Nashville 69.08622 12.354477 95.4
Indianapolis 71.31427 7.236865 88.15385 Atlanta 72.52109 12.025483 93

Detroit 75.00767 8.536407 93.42262 Jacksonville 81.56583 9.262791 100
Charlotte 74.04162 11.997385 93.58683 Miami 78.57541 8.253615 95
Pittsburgh 73.94956 9.317893 90.89706 Toronto 77.44293 7.90227 96.8869

Philadelphia 68.57433 9.345597 90 New.York 67.69277 11.038487 88.86667
Montreal 73.71401 8.22532 86.625 Boston 75.04555 8.324099 100
Beersheba 62.79452 15.445961 83 Tel.Aviv.District 64.70785 10.628055 86.18605

Eilat 45.66191 14.780239 87.14881 Haifa 79.91217 16.366038 100
Nahariyya 79.66081 18.430461 100 Jerusalem 70.24683 15.759945 93.02439

4.2 Data Preparation
We have 36 cities and some cities are landlocked while some cities are coastal. for exam-
ple, Denver is a landlocked city, Boston is adjacent to the North Atlantic Ocean, and San
Francisco is adjacent to the North Pacific Ocean. In Canada, Vancouver is in the North Pa-
cific coastal city and Montreal and Toronto belong to North Atlantic coastal cities. Those
cities in Israel are close to the Mediterranean Sea. As large bodies of water act as natural
“heat reservoirs”, we suppose that the different regions have distinct weather patterns. For
all cities, we obtained hourly weather data onto 4 years. This allows us to look at changes
across weeks or months, even years. From raw data, Figure 72 (see Appendix) presents
observations from 2013-01-01 01:00 to 2013-12-31 23:00 measured by weeks.

In many cases, like in agriculture, the region is considered coastal if the coast directly
impacts the region’s weather, i.e. less than 7-10 km from the coastline. Based on that,
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we separate these 36 cities into four groups, they are North Atlantic coastal cities, North
Pacific Coastal cities, Mediterranean sea cities, and landlocked cities(see Table ??). In
order to intuitively have a look at that different regions have different weather patterns,
we will use different colors to represent the corresponding geographic climates of the
cities.

Figure 4. All cities location

Figure 5. All cities location
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Figure 6. Canada cities Figure 7. Israel cities

In figure 72(see Appendix), we concentrate on the sample 2 giving the weekly records
of different climate indicators over one year period. These are the individuals for which
we have full information over this period. Each data point, represents the observed value
of temperature, humidity, air pressure, wind direction, wind speed of every city.

Table 3. City Groups

Region City List
Atlantic
coastal

Montreal, Toronto, Houston, Jacksonville, Miami, Philadelphia, New
York and Boston

Pacific coastal Vancouver, Portland, San Francisco, Seattle, Los Angeles, San.Diego
and Las.Vegas

Continental
Las.Vegas, Phoenix, Albuquerque, Denver, San Antonio, Dallas,
Kansas.City, Minneapolis, Saint Louis, Chicago, Nashville, Indianapo-
lis, Atlanta, Detroit, Charlotte and Pittsburgh

Mediterranean
coastal Beersheba, Tel.Aviv.District, Eilat, Haifa, Nahariyya, Jerusalem

An immediate indication is the variability for each individual over time. Fig 72 shows
the raw data for each city. Clear that the temperature rise in the summer, fall in the
winter. We expect that different regions will have different weather patterns. In most
cases, continental cities show high peakedness which is cold winters and hot summers
and coastal cities display little amplitude which is cool winters and summers. Except
that, we still found some difference in level, for example, for those cities on the Pacific
coast will have similar weather, but the temperature of city Las Vegas in the middle year
is much higher than the other Pacific coastal cities. Similarly, in winter, city Jacksonville
and Huston have a higher temperature than other Atlantic coastal cities. The resource
of humidity in the atmosphere is water mass on earth. Relative humidity measures the
actual amount of moisture in the air as a percentage of the maximum amount of moisture
the air can hold. For the continental cities, the summer is the least humid months and
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winter is the most humid. For the coastal cities, the humidity variation between winter
and summer is lower than in continental cities, as we see the change range in coastal cities
is smaller than in other regions. Comparing the curves representing the annual variations
of pressure, we notice one Mediterranean city reaches far lowest from Mar to May, which
is quite different from other cities, so does one pacific ocean city.

4.3 Representing Functional Data
In this section, we construct for each individual function of time that represents the curves
of variables. Figure 77 provides examples of some curves (functions). Smoothing tech-
niques were performed using B-spline basis of order 4 and Fourier basis of 5 nbasis.
B-spline of order 4 is known as the cubic B-spline, which is a popular choice that provid-
ing a more flexible function. The ability of B-splines and Fourier bases to approximate
smooth curves observed is tested on sample 2 (See Figure 77, 78 in Appendix). The first
step was to choose the smoothing parameter λ . The smooth with roughness penalties
were performed with respect to the second derivatives for B-spline basis and harmonic
acceleration operation was used for Fourier basis. The penalty parameter λ was set by
using GCV criterion. Results are shown in Table 4.

Table 4. Best lambda value and the degree of freedom for sample 2

Functional
Variables

Type of Basis
functions K Best λ Minimum GCV df

Temperature Fourier 5 10000 208.3558 3.943231
B-splines 4 100 211.5421 6.802356

Humidity Fourier 5 10000 3462.731 3.894412
B-splines 4 100 3320.415 6.802356

Pressure Fourier Basis 5 1000 2842.8 4.779947
B-Splines 4 10 2583.211 11.282282

Wind direction Fourier 5 1000 47206.31 4.779947
B-splines 4 10 35382.59 11.282282

Wind speed Fourier 5 10000 18.54585 3.894412
B-splines 4 100 16.50470 6.802356

4.3.1 Temperature

For weekly temperature data smoothing by Fourier basis, figure 8 indicated an optimal
value of smoothing at λ = 104 because minimum GCV value obtained. At that value,
d f (λ ) = 3.943231.
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Figure 8. GCV for lambda values log10(λ ) = −2,0,2,4,6, for weekly temperature
records. The roughness penalty was defined by harmonic acceleration

Compare the smoothing mean curves to the observed data, the results are shown in
Figure 9, the raw data are apparently non-smooth (see Figure 72). However, it is reason-
able to assume that there is an underlying smoothly varying process that encapsulates the
dynamics behind observed data. The deviations from a smooth function can be treated
as aberrations or as instrumental errors. To get a sense of how well these curves explain
the data, we have plot the residuals for temperature data along with the Fourier basis, the
smallest standard deviation of the residuals from which is estimated is Haifa with 1.1K,
and Kansas with 3.1K for the worst fitted curves (See Figure 9 (iv)). The residuals along
with the B-spline basis fit is also provided (See Figure 9 (iii)-(v)), the smallest standard
deviation of the variation of the actual temperature around the curves smoothing by B-
spline basis is Haifa with 1.1K and biggest is Kansas with 2.9K.

Figure 10. The smoothed residual functions for the temperature data. Figure in left side
represents the functions smoothed by Fourier basis; figure in right side represents the
functions smoothed by B-spline basis.
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Figure 9. (i) Fitted mean curve of temperature. Mean function smoothing by B-spline
and Fourier basis presented. Blue line indicates the weekly mean value of temperature.
Red solid line represents the mean curves smooth by B-spline basis and orange solid line
represents the mean curves smooth by Fourier Basis. (ii) Best fitted temperature curve
smoothing by Fourier basis using GCV. (iii) Best fitted curve smoothing by B-spline basis
using GCV. (iv) Worse fitted temperature curve smoothing by Fourier basis. (v) Worse
fitted temperature curve smoothing by B-spline basis.

Figure 11. The smoothed functions for the temperature data. Figure in left side repre-
sents the functions smoothed by Fourier basis; figure in right side represents the functions
smoothed by B-spline basis.

As can be seen in Figure 12, the temperature variance surface is the direct represen-
tation of the temperature over time, which shows the mean temperature curves as well
as the covariance of the average weekly temperature of all cities. Looking at the smooth
temperature curve (Figure 11), it is evident that the temperature curves of Mediterranean
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Figure 12. (i) Covariance function value using Fourier basis expansion. (ii) Same surface
by contour plotting of Covariance function using Fourier basis expansion. (iii) Convari-
ance function value using B-spline basis expansion. (iv) Contour plotting of covariance
function using B-spline basis expansion.

coastal cities exhibit much higher weather patterns than the mean temperature (Figure
11(i) - (ii)). During winter time, the weekly temperature in Pacific coastal cities appear
marginally higher than mean temperature, while in summer, the temperature in coastal is
higher than the mean temperature. These patterns actively point that the yearly variation
of average temperatures is higher in continental cities than in coastal cities.

4.3.2 Humidity

Figure 13 (i) depicts the fitted mean curves given on the observed mean humidity applying
the information from Table 4. In this case, Fig.13 (ii) - (iii) are two plots of the residuals
for humidity data. Middle plot plotted along with the Fourier basis, the standard devia-
tion of the residuals of best fitted curves from which is estimated is Miami with 6 units.
The residuals along with the B-spline basis fit is also provided in right plot, the standard
deviation of best fitted curve is Miami with 6 units. Total residual functions of humidity
shown on the Figure 14.
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Figure 13. (i) Fitted mean curve of humidity. Mean function smoothing by B-spline and
Fourier basis presented. Blue line indicates the weekly mean value of humidity. Red solid
line represents the mean curves smooth by B-spline basis and orange solid line represents
the mean curves of humidity smoothing by Fourier Basis. (ii) Residual plot of best fitted
humidity curves smoothing by Fourier basis using GCV. (iii) Residual plot of best fitted
humidity curve smoothing by B-spline basis using GCV.

Figure 14. (i) The smoothed residuals functions for humidity using Fourier basis. (ii)
The smoothed residuals functions for humidity using B-spline basis.

4.3.3 Pressure

Applying the information in Table 4 to the observed weekly average pressure, the fitted
mean curves shown in Figure 15 (i). In the case of pressure, Figure 15 (ii) - (iii) are
two plots of the residuals for pressure data. Middle plot plotted along with the Fourier
basis, the standard deviation of the residuals of best fitted curves from which is estimated
is Haifa with 3 hPa. The residuals along with the B-spline basis fit is also provided in
right plot, the standard deviation of best fitted curve is Haifa with 2.4 hPa. Total residual
functions of pressure shown on the Figure 16.
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Figure 15. (i) Fitted mean curve of pressure. Mean function smoothing by B-spline and
Fourier basis presented. Blue line indicates the weekly mean value of pressure. Red solid
line represents the mean curves smooth by B-spline basis and orange solid line represents
the mean curves smooth by Fourier Basis. (ii) Residual plot of best fitting curves of
pressure smoothing by Fourier basis using GCV. (iii) Residual plot of best fitting curves
of pressure smoothing by B-spline basis using GCV.

Figure 16. (i) The smoothed residuals functions for pressure using Fourier basis. (ii) The
smoothed residuals functions for pressure using B-spline basis.

4.3.4 Wind Direction

Figure 17 (i) depicts the fitted mean curves of wind direction produced on the observed
mean value using the information from Table 4. Figure 17 (ii) - (iii) are two plots of the
residuals for wind direction. Middle plot plotted along with the Fourier basis, the standard
deviation of the residuals of best fitted curves from which is estimated is Tel Avlv District
with 21.3 units. The residuals along with the B-spline basis fit is also provided in right
plot, the standard deviation of best fitted curve is same city with 16.7 units. Total residual
functions of wind speed shown on the Figure 18.
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Figure 17. (i) Fitted mean curve of wind direction. Mean function smoothing by B-spline
and Fourier basis presented. Blue line indicates the weekly mean value of wind direction.
Red solid line represents the mean curves smooth by B-spline basis and orange solid line
represents the mean curves smooth by Fourier Basis. (ii) Residual plot of best fitting
curves of wind direction smoothing by Fourier basis. (iii) Residual plot of best fitting
curves of wind direction smoothing by B-spline basis.

Figure 18. (i) The smoothed residuals functions for wind direction using Fourier basis.
(ii) The smoothed residuals functions for wind direction using B-spline basis.

4.3.5 Wind Speed

Figure 19 (i) shows the fitted mean curves of wind speed produced from the observed
mean value utilizing the information from Table 4. Figure 19 (ii) - (iii) are two plots of
the residuals for wind speed. Middle plot plotted along with the Fourier basis, the standard
deviation of the residuals of best fitted curves from which is estimated is Los Angeles with
0.187 degree. The residuals along with the B-spline basis fit is also provided in right plot,
the standard deviation of best fitted curve is Los Angeles with 0.169 degree. Total residual
functions of wind direction shown on the Figure 20.
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Figure 19. (i) Fitted mean curve of wind speed. Mean function smoothing by B-spline
and Fourier basis presented. Blue line indicates the weekly mean value of wind speed.
Red solid line represents the mean curves smooth by B-spline basis and orange solid line
represents the mean curves smooth by Fourier Basis. (ii) Residual plot of best fitting
curves of wind speed smoothing by Fourier basis using GCV. (iii) Residual plot of best
fitting curves of wind speed smoothing by B-spline basis using GCV.

Figure 20. (i) The smoothed residuals functions for wind speed using Fourier basis. (ii)
The smoothed residuals functions for wind speed using B-spline basis.

4.4 Functional Principal Component Analysis
We explored the functional principal component analysis (fPCA) after smoothing curves
using Fourier basis with 5 terms. In classical statistic, PCA seeks to reduce the dimension-
ality of a multivariate data into independent linear combinations of the variables. In FDA,
the aim of fPCA is to reduce the dimensionality by finding those curves which capture the
fundamental modes of variation of the data.

4.4.1 Temperature

As the original PCs mainly captured variations coming from the initial functions, we
rotated original PCs using the VARIMAX rotation method. The fPCA of the temperature
curves reveals that the first three principal components account for more than 95% of
their variation about the mean curve. After VARIMAX rotation of these components, we
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get the three components displayed in Figure 21 ((i)-(iv)), and the effects of adding and
subtracting each rotated PCs from the mean function can be seen.

The first rotated component portrays primarily variations in Summer and Autumn and
the second captures stronger variation in winter. The third components very much like the
mean.

(i) Original data curves (ii) Rotated PC 1, Temperature

(iii) Rotated PC 2, Temperature (iv) Rotated PC 3, Temperature

Figure 21. The means plotted with the effect of each PC for weekly temperature data.
The dashed “+” shows the effect of adding the PC to the mean, the dashed “-” shows the
effect of subtracting the PC. The effects of the first three varimax-rotated components for
the temperature data. The Fraction-of-Variance-Explained for each component is shown
in the title.

In order to see if functional cluster or other features can be found, principal compo-
nent scores for pairs of harmonics, as has been done in Figure 22 for temperature data.
Most cities are falling into three clusters. The upper middle with the Pacific coastal, the
upper left with Atlantic coastal and continental cities and lower left with the Mediter-
ranean coastal cities. As stated in Chapter 2, the functional bagplot is considered as a
mapping of the bivariate bagplot of the first two robust principal component scores to
the functional curves[50]. Ordered by Tukey’s halfspace location depth, the bivariate and
functional bagplot of the temperature data displayed in Figure 22. The detected outliers in
the temperature data is Minneapolis. Figure 24 display the bivariate and functional HDR
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boxplot of the temperature data, the detected outliers is Minneapolis and Miami.

Figure 22. Scatter plots of the rotated principal component scores of the weekly temper-
ature data. Selected stations are labeled.

Figure 23. The bivariate bagplot and functional bagplot for temperature data is provided.
The bivariate principal component scores can be ordered by Tukey’s halfspace location
depth and plotted in a two-dimensional graph.

4.4.2 Humidity

For fPCA of humidity, the first three principal components originally account for more
than 95% of their variation about the mean curve. After VARIMAX rotation, three rotated
principal components displayed in Figure 25 ((ii) - (iv)). The first rotated PC1 portrays
primarily variations in Dec till Mar, the rotated PC2 captures stronger variation from
Apr till Aug. Rotated PC3 captures more variation from Aug till Dec. The principal
component scores for pairs of harmonics shown on Figure 26. Bagplot of humidity is
provided in Figure 27. There are five outliers detected, they are Los Angeles, Jacksonville,
Las Vegas, Nahariyya and Phoenix. Figure 28 display the bivariate and functional HDR
boxplot of the humidity data. The detected outliers is Los Angeles and Denver.
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Figure 24. The bivariate boxplot and functional boxplot for temperature data is provided.
The bivariate principal component scores can be ordered by the highest density regions
and plotted in a familiar two-dimensional graph. The dark and light gray regions show
the 50% HDR and the 95% outer HDR, respectively. These correspond directly to the
equivalent regions with similar colors and shading in the functional HDR boxplot.

(i) Original data curves (ii) Rotated PC 1, Humidity

(iii) Rotated PC 2, Humidity (iv) Rotated PC 3, Humidity

Figure 25. The means plotted with the effect of each PC for weekly humidity data. The
dashed “+” shows the effect of adding the PC to the mean, the dashed “-” shows the effect
of subtracting the PC. The effects of the first three varimax-rotated components for the
humidity data. The Fraction-of-Variance-Explained for each component is shown in the
title. 38



Figure 26. Scatter plots of the rotated principal component scores of the weekly humidity
data. Selected stations are labeled.

Figure 27. The bivariate bagplot and functional bagplot for humidity data is provided.
The bivariate principal component scores can be ordered by Tukey’s halfspace location
depth and plotted as a two-dimensional graph.
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Figure 28. The bivariate boxplot and functional boxplot for humidity data is provided.
The bivariate principal component scores can be ordered by the highest density regions
and plotted in a two-dimensional graph. The dark and light gray regions show the 50%
HDR and the 95% outer HDR, respectively. These correspond directly to the equivalent
regions with similar colors and shading in the functional HDR boxplot.

4.4.3 Pressure

After rotation, the first three rotated principal components displayed in Figure 29 ((ii)-
(iv)). The first rotated component accounts for 40% of the total variance that portrays
primarily variations from mid-July to Nov. The second component captures more vari-
ations from Dec to Apr, which accounts for nearly 35% of the total variance. The third
component captures more variation from Apr till July accounting for 25% of the total
variance. The principal component scores for pairs of harmonics shown on Figure 26.
Tukey’s halfspace bagplot of pressure is provided in Figure 27. Two curves detected as
outliers, they are Kansas and Beersheba. Figure 32 display the bivariate and functional
HDR boxplot of the pressure. Two functions were identified as outliers, Vancouver and
Seattle.
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(i) Original data curves (ii) Rotated PC 1, Pressure

(iii) Rotated PC 2, Pressure (iv) Rotated PC 3, Pressure

Figure 29. The means plotted with the effect of each PC for weekly pressure data. The
dashed “+” shows the effect of adding the PC to the mean, the dashed “-” shows the effect
of subtracting the PC. The effects of the first three varimax-rotated components for the
pressure data. The Fraction-of-Variance-Explained for each component is shown in the
title.

Figure 30. Scatter plots of the rotated principal component scores of the weekly pressure
data. Selected stations are labeled.
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Figure 31. The bivariate bagplot and functional bagplot for pressure data is provided.
The bivariate principal component scores can be ordered by Tukey’s halfspace location
depth and plotted in a two-dimensional graph.

Figure 32. The bivariate boxplot and functional boxplot for pressure data is provided.
The dark and light gray regions show the 50% HDR and the 95% outer HDR, respectively.
These correspond directly to the equivalent regions with similar colors and shading in the
functional HDR boxplot.

4.4.4 Wind Speed

The three rotated principal components displayed in Figure 33 ((ii)-(iv)). The first rotated
component accounts for 35% of the total variance that reveals primarily variations from
mid-July to Nov. The second component captures more variations from Dec to Apr, which
accounts for nearly 26.2% of the total variance. The third component captures stronger
variation from Apr till mid-July accounting for 38.7% of the total variance. The principal
component scores for pairs of harmonics shown on Figure 34. Tukey’s halfspace bagplot
is provided in Figure 35. Two curves detected as outliers, they are Toronto and Eilat.
Figure 32 display the bivariate and functional HDR boxplot of the pressure. Los Angeles
and Eilat were detected as outliers.
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(i) Original data curves (ii) Rotated PC 1, Wind Speed

(iii) Rotated PC 2, Wind Speed (iv) Rotated PC 3, Wind Speed

Figure 33. The means plotted with the effect of each PC for weekly wind speed. The
dashed “+” shows the effect of adding the PC to the mean, the dashed “-” shows the
effect of subtracting the PC. The effects of the first three varimax-rotated components for
the wind speed. The Fraction-of-Variance-Explained for each component is shown in the
title.
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Figure 34. Scatter plots of the rotated principal component scores of the weekly wind
speed data. Selected stations are labeled.

Figure 35. The bivariate bagplot and functional bagplot for wind speed data is provided.
The bivariate principal component scores can be ordered by Tukey’s halfspace location
depth and plotted in a graph.
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Figure 36. The bivariate boxplot and functional boxplot for wind speed data is provided.
The dark and light gray regions show the 50% HDR and the 95% outer HDR, respectively.
These correspond directly to the equivalent regions with similar colors and shading in the
functional HDR boxplot.

4.4.5 Wind Direction

After rotation, three rotated principal components displayed in Figure 37 ((ii)-(iv)). The
first rotated component accounts for 43.1% of the total variance that reveals primarily
variations from mid-Nov to Mar. The second component captures more variations from
Mar to mid-July, which accounts for 38.4% of the total variance. The third component
captures stronger variation from mid-July to Nove accounting for 17.9% of the total vari-
ance. The principal component scores for pairs of harmonics shown on Figure 38. Tukey’s
halfspace bagplot is provided in Figure 39 and no outliers being detected. But when or-
dered by highest density region, two curves identified as outliers. They are Denver and
Tel Aviv District, results are shown in Figure 40.
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(i) Original data curves (ii) Rotated PC 1, Wind direction

(iii) Rotated PC 2, Wind direction (iv) Rotated PC 3, Wind direction

Figure 37. The means plotted with the effect of each PC for weekly wind direction data.
The dashed “+” shows the effect of adding the PC to the mean, the dashed “-” shows the
effect of subtracting the PC. The effects of the first three varimax-rotated components for
the wind direction data. The explained variance for each component is shown in the title.

Figure 38. Scatter plots of the rotated principal component scores of the weekly wind
direction data. Selected stations are labeled.
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Figure 39. The bivariate bagplot and functional bagplot for wind direction is provided.
The bivariate principal component scores can be ordered by Tukey’s halfspace location
depth and plotted in a two-dimensional graph.

Figure 40. The bivariate boxplot and functional boxplot for wind direction data is pro-
vided. The bivariate principal component scores can be ordered by the highest density
regions. The dark and light gray regions show the 50% HDR and the 95% outer HDR,
respectively. These correspond directly to the equivalent regions with similar colors and
shading in the functional HDR boxplot.

4.5 Functional Linear Model
4.5.1 Functional analysis of variance

In this section, we would describe existing tests for the one-way ANOVA problem for
functional data, which is a natural way to quantity how much the pattern of annual vari-
ation of each climate indicator is attributed to different areas. In our case, we divided all
city locations into four groups: Atlantic coastal cities, Pacific coastal cities, Continental
cities and Mediterranean cities.

Consider Xi1(t),Xi2(t), ...,Xini(t), i= 1, ...,k, are k groups of independent random func-
tions defined over a finite interval T = [a,b]. Assume that Xi j(t), i = 1,2, ..k, j = 1, ...,ni
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are stochastic process with mean function µi(t), t ∈T and its covariance function γ(s, t),s, t ∈
T, for i= 1, ...k. Since we separated all cities into four groups, k = 4. In figure 11, it can be
seen that the temperatures at the coastal cities are basically higher than those continental
cities. Further investigate if the location statistically has an effect on the mean temper-
ature curves of the Atlantic coastal cities, Pacific coastal cities, Continental cities and
Mediterranean cities, is equivalent to the one-way ANOVA problem for functional data,
This issue was addressed by Zhang(2013) [69]. One-way analysis of variance problem
for functional data is to test the following null hypothesis

H0 : µ1(t) = µ2(t) = µ3(t) = µ4(t), t ∈ T.

H1 : T he means are not all equal.

R package fdANOVA [15] provides access to a wide range of overview of analysis of
variance methods for functional data. In our case, we applied all the tests under considera-
tions, getting the results given below. The p-values of the all results (Table 5) are less than
the significance level 0.05, H0 is rejected. Hence it can be concluded that location has an
effect on the mean temperature curves of the Atlantic coastal cities, Pacific coastal cities,
Continental cities and Mediterranean coastal cities. Same fANOVA process were tested
on other variables, results are shown in Table (9, 10, 11 and 12 in Appendix). For monthly
humidity data, p-value of most tests are bigger than 0.05 that the we don’t have enough
evidence to reject the null hypothesis. For weekly and daily humidity, the p-values of all
tests are smaller than 0.05. Which means location has an effect on mean curves weekly
humidity and daily humidity. For variable pressure, wind speed and wind direction, the
p-value of all tests results are smaller than 0.05.

Table 5. Values of test statistics and p-values of all tests for monthly / weekly / daily
temperature(K) data for [a,b]=[0,1]

Test monthly temp.data weekly temp.data daily temp.data
Test stat. p-value Test stat. p-value Test stat. p-value

CH 20510.98 0.0104 97531.51 0.0081 797934.9 0.0051
CS 20510.98 0.0049 97531.51 0.005 797934.9 0.0019

L2N 3846.623 0.002958811 18499.87 0.001503242 154817.7 0.0003885458
L2B 3846.623 0.001937893 18499.87 0.0009197085 154817.7 0.0001978849
L2b 3846.623 0.0065 18499.87 0.0051 154817.7 0.0017
FN 4.174943 0.007714193 4.243204 0.00451261 4.224115 0.001515482
FB 4.174943 0.0.007289066 4.243204 0.004035221 4.224115 0.00115749
Fb 4.174943 0.0233 4.243204 0.0183 4.224115 0.0114

GPF 4.319263 0.00187661 4.627195 0.0004611861 4.831433 4.042774e-05
Fmaxb 6.2333339 0.0094 9.589859 0.0022 21.38179 1e-04
TRP - 1 - 1 - 1
FP 4.183326 0.008 4.252671 0.003 4.224533 0.001

Notes: TRP - tests based on K = 30 random projections and p-value ANOVA without permutation.

4.5.2 Analysis of Variance Model

Analysis of variance can be modelled as a linear model for functional responses with
scalar covariates in the sense that variation in a functional response is decomposed into
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functional effects through a scalar matrix. In our case, the effect of different regions on
the shape of the climate variable curves is of interest.

For the i-th city in the k-th climate group, we have the model for temperature of
following form:

Tempik(t) = µ(t)+αik(t)+ εik(t).

Here αk represents the specific effects on temperature in climate group k, with a con-
straint ∑k αk(t) = 0 for all t ∈ T .

Figure 41 displays the estimated regions effects, along with 95% pointwise confidence
intervals estimated by the methods mentioned in the above methodology section. Figure
42 shows the composite effects µ +αk. We see that the Atlantic coastal cities have a
temperature about 5 Kelvin warmer than the mean temperature of all cities, but even
more so in Winter than other seasons. The Pacific coastal cities are close to the mean
temperature of all cities except the Winter and Spring. In Winter and Spring, the Pacific
coastal cities are colder than mean temperature of all cities. The continental cities are
cooler than average temperature of all cities, but close to mean temperature in Winter. In
Summer, the Mediterranean cities are slightly warmer than mean temperature of all cities,
but are colder in other seasons.

Figure 41. The region effects αk for the temperature functions in the functional analysis
of variance model. The effects αk(t) are required to sum to 0 for all t. The dashed lines
indicates 95% point-wise confidence intervals for the true effects.

We’ve also look at the squared correlation function (RSQ) and F-ratio functions (FRATIO).
Results are shown in Figure 43. RSQ function considers the drop in error sum of squares
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produced by taking climate region into effect relative to error sum of squares without
using climate region information. The squared correlation is relatively high. F-ratio is
everywhere higher than the 5% significant level. The difference between climate regions
are substantially stronger in Summer and Autumn.

Figure 42. The dashed red curves are estimated climate zone temperature profile µ +αk
for the temperature functions in the functional analysis of variance model. The solid black
curve is the mean function µ of all cities.
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Figure 43. (i) Squared multiple correlation RSQ. (ii) The corresponding F-ratio function
FRATIO. the dotted gray line indicates 5% significant level for the F-distribution with 5
and 32 degrees of freedom.

Same process are computed on other climate variables. For variable humidity, Humiik
is the humidity of i-th city in the k-th climate group, we have the model of following form:

Humiik(t) = µ(t)+αik(t)+ εik(t).

Here αk represents the specific effects on humidity in climate group k, with a con-
straint ∑k αk(t) = 0 for all t ∈ T .

Figure 44 displays the estimated regions effects, along with 95% pointwise confidence
intervals estimated. Figure 45 shows the composite effects µ +αk. We see that the At-
lantic coastal cities are much lower humidity than the mean humidity of all cities in Spring
the Summer, but are slightly in other season. But Pacific coastal cities are hold contrary
situation. The Pacific coastal cities are higher humidity than mean level from April until
Feb. The continental cities are much higher humidity than average humidity of all cities
during whole year. For Mediterranean cities, the humidity is lower than the mean level,
but even more so in Autumn and Winter.

Results of RSQ and FRATIO functions are shown in Figure 46. The squared correla-
tion is relatively low. F-ratio is everywhere lower than the 5% significant level.
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Figure 44. The region effects αk for the humidity functions in the functional analysis
of variance model. The effects αk(t) are required to sum to 0 for all t. The dashed lines
indicates 95% point-wise confidence intervals for the true effects.
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Figure 45. The dashed red curves are estimated climate zone humidity profile µ +αk for
the humidity functions in the functional analysis of variance model. The solid black curve
is the mean function µ of all cities.

Figure 46. (i) Squared multiple correlation RSQ. (ii) The corresponding F-ratio function
FRATIO. the dotted gray line indicates 5% significant level for the F-distribution with 5
and 32 degrees of freedom.

For variable pressure, Presik is the pressue of i-th city in the k-th climate group, we
have the model of following form:
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Presik(t) = µ(t)+αik(t)+ εik(t).

Here αk represents the specific effects on pressure in climate group k, with a constraint
∑k αk(t) = 0 for all t ∈ T .

Figure 47 displays the estimated regions effects, along with 95% pointwise confidence
intervals estimated. Figure 48 shows the composite effects µ +αk. We see that the At-
lantic coastal cities have a pressure around 10 hPa lower than the mean pressure of all
cities. But Pacific coastal cities are hold contrary situation. The Pacific coastal cities have
a higher pressure than mean level, but even more so in Spring. The continental cities hold
the same situations as Pacific coastal cities that higher than the mean pressure, but more
in Summer and Autumn. The Mediterranean cities pressure are very close to the mean
average, but slightly lower in July and higher in Dec and Jan.

Results of RSQ and FRATIO functions are shown in Figure 49. The squared cor-
relation is relatively high approaching to 1. F-ratio is everywhere higher than the 5%
significant level for the F-distribution with 5 and 32 degrees of freedom, in which case is
2.51. The difference between climate zones are substantially stronger in the Winter than
that in other seasons.

Figure 47. The region effects αk for the pressure functions in the functional analysis of
variance model. The effects αk(t) are required to sum to 0 for all t. The dashed lines
indicates 95% point-wise confidence intervals for the true effects.
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Figure 48. The dashed red curves are estimated climate zone pressure profile µ +αk for
the pressure functions in the functional analysis of variance model. The solid black curve
is the mean function µ of all cities.

Figure 49. (i) Squared multiple correlation RSQ. (ii) The corresponding F-ratio function
FRATIO.

For variable pressure, WSik is the pressue of i-th city in the k-th climate group, we
have the model of following form:
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WSik(t) = µ(t)+αik(t)+ εik(t).

Here αk represents the specific effects on wind speed in climate group k, with a con-
straint ∑k αk(t) = 0 for all t ∈ T .

Figure 50 displays the estimated regions effects on wind speed, along with 95% point-
wise confidence intervals estimated. Figure 51 shows the composite effects µ +αk. The
Atlantic coastal cities wind speed is higher than the mean average of all cities, but much
higher in Summer and Autumn. The pacific coastal cities are lower than the mean average
wind speed around 1 unit. The continental cities hold the opposite situations as Pacific
coastal cities. The wind speed of continental cities are higher than the mean average wind
speed, but even more so in Winter and Spring. The Mediterranean cities wind speed are
slightly fluctuate up and down upon the mean average.

Results of RSQ and FRATIO functions are shown in Figure 52. F-ratio is partially
higher than the 5% significant level. From March to Jun, the F-ratio is lower than the 5%
significant level. The difference between climate zones are substantially stronger in the
Spring and Winter.

Figure 50. The region effects αk for the wind speed functions in the functional analysis
of variance model. The effects αk(t) are required to sum to 0 for all t. The dashed lines
indicates 95% point-wise confidence intervals for the true effects.
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Figure 51. The dashed red curves are estimated climate zone wind speed profile µ +αk
for the wind speed functions in the functional analysis of variance model. The solid black
curve is the mean function µ of all cities.

Figure 52. (i) Squared multiple correlation RSQ. (ii) The corresponding F-ratio function
FRATIO. the dotted gray line indicates 5% significant level for the F-distribution with 5
and 32 degrees of freedom.

For variable pressure, WDik is the pressue of i-th city in the k-th climate group, we
have the model of following form:
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WDik(t) = µ(t)+αik(t)+ εik(t).

Here αk represents the specific effects on wind direction in climate group k, with a
constraint ∑k αk(t) = 0 for all t ∈ T .

Figure 53 displays the estimated regions effects on wind direction, along with 95%
pointwise confidence intervals estimated. Figure 54 shows the composite effects µ +αk.
The results of RSQ and FRATIO functions are shown in Figure 55. F-ratio is partially
higher than the 5% significant level and the difference between climate regions are sub-
stantially stronger in the Summer and Winter.

Figure 53. The region effects αk for the wind direction functions in the functional analysis
of variance model. The effects αk(t) are required to sum to 0 for all t. The dashed lines
indicates 95% point-wise confidence intervals for the true effects.
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Figure 54. The dashed red curves are estimated climate zone wind direction profile
µ +αk for the wind direction functions in the functional analysis of variance model. The
solid black curve is the mean function µ of all cities.

Figure 55. (i) Squared multiple correlation RSQ. (ii) The corresponding F-ratio function
FRATIO. the dotted gray line indicates 5% significant level for the F-distribution with 5
and 32 degrees of freedom.
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4.5.3 Fully Functional Regression Model

The aim of this subsection is to implement a fully functional linear model in which both
response y and covariate z are functions. The aim of this section is fourfold. We inves-
tigated to what extent we can predict the complete weekly temperature profile of a city
from information in its complete weekly other climate indicator profile. Then compare
the results to see which climate indicator profile is better for predicting the temperature
profile. We proposed the data by fitting a Fourier basis with 5 terms, applying a roughness
penalty smoother, smoothing parameter λ was set by GCV.

The first pair of climate indicator is temperature and humidity, that is using the com-
plete weekly humidity profile predict the temperature profile. So we have following func-
tional linear model:

Tempi(t) = α(t)+
∫ 52

0
Humii(t)β (s, t)ds+ εi(t)

.
Considered the expression of β (s, t) as double expansion with basis functions φ and

ψ . We used the same 5 basis functions to expand the temperature and humidity functions
for both basis system φ and ψ . Figure 56 displays the regression functions for the inter-
cept and humidity effects. The surface 56(ii) shows the influence of humidity at time s on
temperature at time t. The resulting prediction of the annual pattern of temperature at four
randomly selected cities is demonstrated in Figure 57. We can find out some situations of
the effect of humidity on temperature. Humidity from February to March is negatively as-
sociated with temperature throughout the year. Humidity from April to June is positively
associated with temperature throughout the year. Then humidity from July to September
is negatively associated with temperature throughout the entire year. Finally, humidity
from Oct to Jan associated positively with temperature throughout the year, particularly
with Summer temperature.

Figure 56. (i) Intercept coefficient. (ii) Perspective plot of estimated β function for the
prediction of temperature from humidity, estimated direct from data. The value β (s, t)
shows the influence of humidity at time s on temperature at time t. (iii) Contour plot of
corresponding estimated β function.
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Figure 57. Original data(solid red line) and predictions(dashed black line) of the tem-
perature relative to annual mean for each of 4 random selected cities.

Figure 58. (i) Proportion of variance of temperature explained by a linear model based
on weekly humidity records. (ii) Histogram of individual proportions of variance R2

i in
temperature explained by a linear model based on weekly humidity records. The left-hand
cell of the histogram includes all cases with negative R2

i values.

Figure 58 (i) plots the R2 function for the fit to the temperature data. The fit is better
in the Summer than other seasons. Figure 57 are overall R2 measure for four randomly
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selected cities. The value of R2
i are 0.828, 0.962, 0.117 and 0.544 respectively, clarifying

that Vancouver and San Antonio are cities whose temperature fit closely to those predicted
by the model based on their observed humidity profiles; for Haiva the fit is still not so bad
in that the humidity pattern accounts for over 54% of the variation of the temperature from
the overall population mean. Figure 58 (ii) gives a histogram of all involved 36 cities’ R2

i
values. We see that some cities, the R2

i value indicates excellent prediction, but for some
cities the temperature pattern is not well predicted at all. There are 8 cities having negative
R2

i values showing that for these cities the mean function actually provides a better fit to
the true value than does the predictor.

Figure 59 plots the F-ratio function for the fit to the temperature profile. The upper
5% and 1% of the F4:31 distribution are given. Within this model, F-ratio indicates that
the effect of weekly humidity on temperature is highly significant during April to August.

Figure 59. A plot of F-ratio function for the prediction of temperature from weekly
humidity data. The prediction is carried out using an estimated β function with both
bases are 5 terms. The horizontal gray lines show the upper 5% and 1% points of F4:31
distribution.

The second scenario is predicting the complete weekly temperature profile from com-
plete weekly pressure profile, so we have following functional linear model:

Tempi(t) = α(t)+
∫ 52

0
Presi(t)β (s, t)ds+ εi(t)

.
Figure 60 provides the intercept function and pressure regression function. The sur-

face 60(ii) shows the effects of pressure at time s on temperature at time t. The result-
ing prediction of the annual pattern of temperature at four randomly selected cities is
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demonstrated in Figure 61. Pressure from January to March is positively associated with
temperature throughout the year. Pressure from April to June is negatively associated
with temperature throughout the year. Then pressure from July to October is negatively
associated with temperature in Spring and Winter. Finally, pressure from November to
December associated positively with temperature throughout the year, particularly with
winter temperature.

The R2 function of the fitted temperature curve displayed in Figure 62 (i). The fit is
poor. Figure 61 are overall R2 measure for four randomly selected cities. The value of R2

i
are 0.7, 0.364, 0.335 and 0.678 respectively, illustrating that Seattle and Vancouver whose
temperature annual pattern explain over 60% of the variation of the temperature from the
overall population mean. Figure 62(ii) provides a histogram of all 36 cities’ R2

i values.
We see that for most cities, the R2

i value are smaller than 0.5. There are 12 cities having
negative R2

i values showing that for these cities the population mean function actually
provides a better fit to the true value than does the predictor.

Figure 63 is the F-ratio function for the fit to the temperature data. The upper 5% and
1% of the F4:31 distribution are given. Which shows that the effect of weekly pressure on
temperature is not significant.

Figure 60. (i) Intercept coefficient. (ii) Perspective plot of estimated β function for the
prediction of temperature from humidity, estimated direct from data. The value β (s, t)
shows the influence of humidity at time s on temperature at time t. (iii) Contour plot of
estimated β function.
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Figure 61. Original data(solid red line) and predictions(dashed black line) of the tem-
perature relative to annual mean for each of 4 random selected cities.

Figure 62. (i) Proportion of variance of temperature explained by a linear model based
on weekly humidity records. (ii) Histogram of individual proportions of variance R2

i in
temperature explained by a linear model based on weekly humidity records. The left-hand
cell of the histogram includes all cases with negative R2

i values.
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Figure 63. A plot of F-ratio function for the prediction of temperature from weekly
pressure data. The prediction is carried out using an estimated β function with both
bases are 5 terms. The horizontal gray lines show the upper 5% and 1% points of F4:31
distribution.

The third pair of climate indicator is temperature and wind speed, so we have follow-
ing functional linear model:

Tempi(t) = α(t)+
∫ 52

0
WSi(t)β (s, t)ds+ εi(t)

.
The regression functions of intercept the pressure effects are shown in Figure 64. The

surface 64(ii) shows the influence of pressure at time s on temperature at time t. The
resulting prediction of the annual pattern of temperature at four random selected cities is
demonstrated in Figure 65. Wind speed from January to February is positively associated
with temperature throughout the year, particularly with winter temperature. From March
to May, the wind speed is negatively associated with temperature throughout the year.
Then wind speed from May to Mid-Autumn is positively associated with temperature
throughout the year. Finally, wind speed from Mid-Autumn to December, the wind speed
is negatively associated with temperature.

Figure 66 (i) gives the R2 function for the fit to the temperature. Figure 65 are overall
R2 measure for four randomly selected cities. The value of R2

i are 0.959, 0.987, 0.986 and
0.784 respectively, illustrating that all four selected cities are places whose temperature
fit closely to those predicted by the model based on their observed wind speed profiles.
Figure 66(ii) is the histogram gives all involved 36 cities’ R2

i values. We see that for most
of the cities, the R2

i value indicates excellent predictions, but for a small proportion the
temperature pattern is not at all well predicted. There are 7 cities having negative R2

i
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values, which means for these cities, the population mean actually provides a better fit to
the true value than does the predictor.

Figure 67 plots the F-ratio function for the fit to the temperature data. The upper 5%
and 1% of the F4:31 distribution are given. We see that the effect of weekly wind speed on
temperature is partially highly significant, particularly in Spring.

Figure 64. (i) Intercept coefficient. (ii) Perspective plot of estimated β function for the
prediction of temperature from wind speed, estimated direct from data. The value β (s, t)
shows the influence of wind speed at time s on temperature at time t. (iii) Contour plot of
estimated β function.

Figure 65. Original data(solid red line) and predictions(dashed black line) of the tem-
perature relative to annual mean for each of 4 random selected cities.
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Figure 66. (i) Proportion of variance of temperature explained by a linear model based
on weekly humidity records. (ii) Histogram of individual proportions of variance R2

i in
temperature explained by a linear model based on weekly humidity records. The left-hand
cell of the histogram includes all cases with negative R2

i values.

Figure 67. A plot of F-ratio function for the prediction of temperature from weekly
pressure data. The prediction is carried out using an estimated β function with both
bases are 5 terms. The horizontal gray lines show the upper 5% and 1% points of F4:31
distribution.

The last pair of climate indicator is temperature and wind direction, so we have fol-
lowing functional linear model:
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Tempi(t) = α(t)+
52∫

0

WDi(t)β (s, t)ds+ εi(t)

.
Figure 68 gives the regression functions for the intercept and wind direction effects.

The surface 68 (ii) reflects the effect of wind direction at time s on temperature at time
t. Figure 69 gives the prediction of annual temperature at four randomly selected cities.
Wind direction from March to June is positively associated with temperature through-
out the year. Then Wind direction from July to November is negatively associated with
temperature throughout the year.

Figure 70 (i) is the R2 function for the fit to the temperature data. The fit is quite
good. Figure 69 are overall R2 measure for four randomly selected cities. The value of R2

i
are 0.922, 0.961, 0.889 and 0.736 respectively, illustrating that these are the cities whose
temperature fit closely to those predicted temperature. Figure 70(ii) is the histogram of
all 36 involved cities’ R2

i values. For most of the cities, the R2
i value are higher than 0.5

indicating excellent predictions. There are 6 cities having negative R2
i values. For these

cities, the population mean actually provides a better fit to the true value than does the
predictor.

Figure 71 is the F-ratio function for the fit to the temperature data. The upper 5%
and 1% of the F4:31 distribution are given. Within this model, the effect of weekly wind
direction on temperature is highly significant overall.

Figure 68. (i) Intercept coefficient. (ii) Perspective plot of estimated β function for the
prediction of temperature from wind direction, estimated direct from data. The value
β (s, t) shows the influence of humidity at time s on temperature at time t. (iii) Contour
plot of estimated β function.
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Figure 69. Original data(solid red line) and predictions(dashed black line) of the tem-
perature relative to annual mean for each of 4 random selected cities.

Figure 70. (i) Proportion of variance of temperature explained by a linear model based
on weekly humidity records. (ii) Histogram of individual proportions of variance R2

i in
temperature explained by a linear model based on weekly humidity records. The left-hand
cell of the histogram includes all cases with negative R2

i values.
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Figure 71. A plot of F-ratio function for the prediction of temperature from weekly
pressure data. The prediction is carried out using an estimated β function with both
bases are 5 terms. The horizontal gray lines show the upper 5% and 1% points of F4:31
distribution.

5 Conclusion
This Chapter will provide an overview and summaries subject to this thesis. A briefly
summary of the illustration implemented in Chapter 4 is also provided in this Chapter.
Also, some recommendations will be made for further research regarding Functional Data
Analysis or Functional Linear Regression Modelling.

5.1 Concluding Remarks
• Chapter 2 was to define the Functional Data Analysis and introduce some important

basis functions and smoothing techniques that were used throughout this thesis.
An In-depth explanation of the basis expansions is provided. In this thesis, the
emphasis was on the relevant methods, namely B-spline Bases and Fourier Bases.
The roughness penalty method is introduced to produce a better estimation. The
GCV criteria is used to locate a best parameter for smoothing. Some definition
of functional descriptive statistics were also introduced in Chapter 2 and relevant
interpretation were provided in Chapter 4 and Appendix.

• Another main part of Chapter 2 was providing the mathematical foundations of
Functional Principal Component Analysis. The relevant background to the mean-
ing of the Karhunen-Loeve expansion was also given. And two graphical methods
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based on ordering the first two robust principal component scores are introduced
for detecting outliers. Their relevant interpretation provided in Chapter 4 and Ap-
pendix.

• In Chapter 3, the Functional variance analysis and Fully Functional Linear Regres-
sion model were introduced. The goodness of fit evaluation is consider the squared
correlation function and F-ratio function.

• Chapter 4 applied all the FDA methods introduced in this thesis on a real climate
data set. The B-spline and Fourier basis were used to smooth weekly temperature,
humidity, pressure, wind speed and wind direction for all 36 cities. GCV was used
to compute optimal roughness penalty parameters.

The fPCA and Functional Linear Regression model were implemented based on
smoothing curves using Fourier basis with 5 terms, and Roughness Penalty parame-
ter set by Generalized Cross-Validation (GCV). Once the functional data of temper-
ature were obtained, the functional linear regression with one univariate predictor
was implemented for prediction of the temperature functional profile (See Figures
57, 61, 65, 69). The R2 and F-ratio function were computed for the goodness-of-fit.
Based on results, using wind direction profile to predict the temperature file has
better results than using other climate indicator profiles to predict the temperature
profile.

5.2 Recommendations
The R-package fda by Ramsay et al. (2009) [46] is the most popular and useful package
for functional data analysis. Unfortunately, the package fda has a bit restricted. For
example, when it comes to Functional Linear Regression model, R function fRegress
carries out a functional regression analysis, where the either the response or one or more
predictors are functional. However, only univariate independent variables are currently
allowed. More packages or functions must be released in that regard.

Regarding Functional Linear Regression modelling, a vast area of research is still
worth to explore. This thesis only provides the first step in this direction.
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Appendices

Table 6. Summary statistics for air pressure of the second sample(weekly records)
City Mean SD Median City Mean SD Median

Vancouver 1031.4165 22.239211 1090.932 Portland 1019.7541 6.952133 1038.5
San.Francisco 1018.3649 6.077586 1043 Seattle 1026.5128 6.580413 1037.963
Los.Angeles 1015.3962 5.650837 1039.5 San.Diego 1017.4041 5.843683 1038.5
Las.Vegas 1013.6635 8.344385 1044 Phoenix 1008.573 9.364447 1039.5

Albuquerque 1000.5354 25.841059 1042.5 Denver 1009.2733 23.704476 1045.232
San.Antonio 1015.6733 8.935095 1039.5 Dallas 1016.8727 6.508057 1039

Houston 1018.1443 5.768215 1038 Kansas.City 1006.7169 26.544626 1036
Minneapolis 1017.47 5.907473 1035.5 Saint.Louis 1017.3486 5.701971 1031.103

Chicago 1017.2595 5.133152 1032.667 Nashville 1018.4818 5.250517 1030.726
Indianapolis 1017.613 6.930368 1029.619 Atlanta 1019.8575 4.579584 1031.905

Detroit 1017.8522 4.846123 1031.714 Jacksonville 1019.5008 5.077366 1035.852
Charlotte 1019.4956 4.888808 1032.524 Miami 1019.4895 4.41419 1035.037
Pittsburgh 1018.4281 5.162766 1032.381 Toronto 1016.5045 5.101506 1030.238

Philadelphia 1019.1376 5.66031 1033.476 New.York 1013.8592 10.107746 1031
Montreal 1017.6404 5.751049 1032 Boston 1018.2256 5.01317 1030.889
Beersheba 988.0371 15.361048 1031 Tel.Aviv.District 1013.9259 5.354285 1030.5

Eilat 1006.402 9.542018 1028.5 Haifa 1016.8818 5.783307 1030
Nahariyya 1016.4298 5.662558 1030 Jerusalem 1001.9811 11.135762 1030

Table 7. Summary statistics for wind speed of the second sample(weekly records)
City Mean SD Median City Mean SD Median

Vancouver 1.3506904 0.6269651 2.714286 Portland 1.4770531 0.6990675 4.388889
San.Francisco 2.1495164 1.1073573 5.005952 Seattle 1.6921174 0.5957153 3.35119
Los.Angeles 0.8147688 0.2021461 1.452381 San.Diego 1.5469328 0.488266 2.77381
Las.Vegas 2.1715083 0.9978824 4.678571 Phoenix 1.152927 0.3491021 2.10119

Albuquerque 2.4840271 0.8323809 5.005952 Denver 1.7727065 0.8005295 3.482143
San.Antonio 2.6038314 0.822513 4.089286 Dallas 2.9598864 1.0090241 5.434524

Houston 2.8148589 0.9952568 4.880952 Kansas.City 3.0205194 0.8264794 4.869048
Minneapolis 2.9835089 0.7809965 4.559524 Saint.Louis 2.4340127 0.8761417 5.297619

Chicago 3.0500351 1.1980436 6.916667 Nashville 2.2055192 0.9631167 4.392857
Indianapolis 2.9852395 1.0771913 5.821429 Atlanta 1.982489 0.6631466 3.410714

Detroit 2.9457641 0.783143 4.952381 Jacksonville 2.6095788 0.7406071 4.190476
Charlotte 1.8768882 0.6261893 4.113095 Miami 2.6942221 0.7905506 4.261905
Pittsburgh 2.4403559 1.0132395 4.297619 Toronto 3.1272002 1.5135311 6.638889

Philadelphia 2.4698649 0.987828 5.35119 New.York 3.1737192 1.3561893 6.357143
Montreal 3.461157 0.9884434 5.702381 Boston 2.7745278 0.8265343 4.660714
Beersheba 2.034785 0.7076567 3.988095 Tel.Aviv.District 2.9124874 0.6686352 6.083333

Eilat 3.6484616 1.0176405 6.184524 Haifa 3.0790735 1.0599728 7.922619
Nahariyya 2.8918947 0.9537472 7.869048 Jerusalem 1.4064533 0.8163763 5.553571
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Table 8. Summary statistics for wind direction of the second sample(weekly records)
City Mean SD Median City Mean SD Median

Vancouver 152.4844 39.63026 212.0714 Portland 193.3868 60.63139 299.3333
San.Francisco 214.1795 43.41145 287.0238 Seattle 180.7629 61.78335 326.8542
Los.Angeles 140.2806 55.93296 229.8512 San.Diego 204.5378 49.45414 278.8452
Las.Vegas 164.8039 23.47239 214.7738 Phoenix 188.1813 62.45558 316.3095

Albuquerque 210.3578 37.75698 281.2083 Denver 162.9796 42.59023 224.9464
San.Antonio 140.656 26.33136 217.625 Dallas 169.7804 28.24975 251.4345

Houston 146.4601 37.13376 227.2143 Kansas.City 184.5819 40.94217 259.4524
Minneapolis 196.0566 43.22311 279.9162 Saint.Louis 187.3942 30.81072 253.491

Chicago 194.2598 43.28406 298.0714 Nashville 177.0295 30.02461 234.1369
Indianapolis 192.4849 33.93313 261.5 Atlanta 189.9282 50.95443 311.0833

Detroit 196.5428 43.24348 262.2635 Jacksonville 130.6037 47.2489 236.25
Charlotte 166.1933 34.96408 229.2275 Miami 137.6806 33.20761 223.4583
Pittsburgh 198.8997 35.10356 250.5625 Toronto 199.3987 36.84956 260.4192

Philadelphia 202.2631 39.31302 271.0903 New.York 203.4948 39.59365 286.1964
Montreal 194.5114 30.43563 242.1607 Boston 188.887 40.85981 262.7725
Beersheba 207.5152 76.36214 295.5595 Tel.Aviv.District 171.951 34.46227 230.5952

Eilat 143.9289 36.43999 241.6905 Haifa 188.1833 72.33378 276.9464
Nahariyya 187.5135 73.23475 283.6548 Jerusalem 199.3459 73.30682 292.494

Figure 72. The raw weekly temperature(K) data; the raw weekly air pressure (hPa)
data; the raw weekly humidity(%) data; the raw weekly wind speed(m/s) data; the raw
weekly wind direction(meteorological degrees). The Atlantic coastal cities in green; pa-
cific coastal cities in blue; the continental cities in red and Mediterranean coastal cities in
gray.
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Figure 73. GCV for lambda values log10(λ ) =−2,0,2,4,6, for weekly humidity records.
The roughness penalty was defined by harmonic acceleration

Figure 74. GCV for lambda values log10(λ ) =−2,0,2,4,6, for weekly pressure records.
The roughness penalty was defined by harmonic acceleration
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Figure 75. GCV for lambda values log10(λ ) = −2,0,2,4,6, for weekly wind direction
records. The roughness penalty was defined by harmonic acceleration

Figure 76. GCV for lambda values log10(λ ) = −2,0,2,4,6, for weekly wind speed
records. The roughness penalty was defined by harmonic acceleration
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Figure 77. (i) Smoothing temperature curves. (ii) Smoothing humidity curves. (iii)
Smoothing pressure curves. (iv) Smoothing wind speed curves. (v) Smoothing wind
direction. All curves smoothed by Fourier basis with 5 terms.
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Figure 78. (i) Smoothing temperature curves. (ii) Smoothing humidity curves. (iii)
Smoothing pressure curves. (iv) Smoothing wind speed curves. (v) Smoothing wind
direction. All curves smoothed by B-spline basis with 4 terms.

Figure 79. (a)-(c) The residuals for three best fitting curves of temperature using Fourier
basis expansion. (d)-(f) The residuals for three worst fitting curves of temperature using
smoothing by Fourier basis.
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Figure 80. (a)-(c) The residuals for three best fitting curves of temperature using B-
splines basis. (d)-(f) The residuals for three worst fitting curves of temperature using
smoothing by B-spline basis.

Figure 81. (a)-(c) The residuals for three best fitting curves of humidity using Fourier
basis. (d)-(f) The residuals for three worst fitting curves of humidity using smoothing by
Fourier basis.
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Figure 82. (a)-(c) The residuals for three best fitting curves of humidity using B-spline
basis. (d)-(f) The residuals for three worst fitting curves of humidity using smoothing by
B-spline basis.

Figure 83. (a)-(c) The residuals for three best fitting curves of pressure using Fourier
basis. (d)-(f) The residuals for three worst fitting curves of pressure using smoothing by
Fourier basis.
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Figure 84. (a)-(c) The residuals for three best fitting curves of pressure using B-spline
basis. (d)-(f) The residuals for three worst fitting curves of pressure using smoothing by
B-spline basis.

Figure 85. (a)-(c) The residuals for three best fitting curves of wind speed using Fourier
basis. (d)-(f) The residuals for three worst fitting curves of wind speed using smoothing
by Fourier basis.
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Figure 86. (a)-(c) The residuals for three best fitting curves of wind speed using B-spline
basis. (d)-(f) The residuals for three worst fitting curves of wind speed using smoothing
by B-spline basis.

Figure 87. (a)-(c) The residuals for three best fitting curves of wind direction using
Fourier basis. (d)-(f) The residuals for three worst fitting curves of wind direction using
smoothing by Fourier basis.
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Figure 89. The upper panel shows the first derivative of weekly temperature and lower
panel is the second derivative of weekly temperature.

Figure 88. (a)-(c) The residuals for three best fitting curves of wind direction using B-
spline basis. (d)-(f) The residuals for three worst fitting curves of wind direction using
smoothing by B-spline basis.
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Figure 90. The mean and standard deviation function for smoothed weekly pressure of
the 36 cities smoothing by Fourier basis and B-spline.

(i) (ii)

Figure 91. The left panel is a perspective plot of the bivariate correlation function values
for the weekly pressure data smoothing by Fourier basis. The right panel shows the same
surface by contour plotting. Time is measure in week.
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(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

Figure 92. Fitted smooth covariance surface at time t.
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Table 9. Values of test statistics and p-values of all tests for monthly / weekly / daily
humidity(%) data for [a,b]=[0,1]

Test monthly humidity data weekly humidity data daily humidity data
Test stat. p-value Test stat. p-value Test stat. p-value

CH 60430 0.1368 420544.6 0.054 3405062 0.0259
CS 60430 0.074 420544.6 0.026 3405062 0.0147

L2N 13185.72 0.07527099 86817.17 0.02158229 703230.2 0.005121522
L2B 13185.72 0.06246412 86817.17 0.01566294 703230.2 0.002829495
L2b 13185.72 0.0555 86817.17 0.0171 703230.2 0.0096
FN 2.02817 0.09383962 2.387249 0.0322534 2.51328 0.009425325
FB 2.02817 0.09039243 2.387249 0.02815819 2.51328 0.006517323
Fb 2.02817 0.0865 2.387249 0.0455 2.51328 0.0212

GPF 2.098127 0.07119105 2.354736 0.02329092 2.653862 0.002695601
Fmaxb 4.362853 0.0633 8.177968 0.0104 17.55597 4e-04
TRP - 1.557621e-10 - 1 - 6.129653e-08
FP 2.034817 0.082 2.384483 0.024 2.511479 0.011

Notes: TRP - tests based on K = 30 random projections and p-value ANOVA without permutation.

Table 10. Values of test statistics and p-values of all tests for monthly / weekly / daily
pressure(hPa) data for [a,b]=[0,1]

Test monthly air pressure weekly air pressure daily air pressure
Test stat. p-value Test stat. p-value Test stat. p-value

CH 56285.75 0.0274 259055.4 0.017 2051566 0.0204
CS 56285.75 0.0312 259055.4 0.0262 2051566 0.0116

L2N 11534.73 0.003616243 51882.85 0.001436771 418900.9 0.004038772
L2B 11534.73 0.002015064 51882.85 0.0006091707 418900.9 0.001919273
L2b 11534.73 0.0286 51882.85 0.0265 418900.9 0.0152
FN 2.755606 0.007284019 2.703271 0.003281729 2.374403 0.007493818
FB 2.755606 0.005205228 2.703271 0.001840787 2.374403 0.00447227
Fb 2.755606 0.0412 2.703271 0.0425 2.374403 0.0355

GPF 3.042881 0.001445816 3.874619 4.265625e-06 4.112353 1.046088e-08
Fmaxb 6.432095 0.011 12.78454 0.0013 24.51136 0
TRP - 2.906637e-06 - 0.001389225 - 1
FP 2.773687 0.012 2.700018 0.002 2.374552 0.007

Notes: TRP - tests based on K = 30 random projections and p-value ANOVA without permutation.
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Table 11. Values of test statistics and p-values of all tests for monthly / weekly / daily
wind speed(m/s) data for [a,b]=[0,1]

Test monthly wind speed weekly wind speed daily wind speed
Test stat. p-value Test stat. p-value Test stat. p-value

CH 462.0966 0.0063 2598.426 0.0015 29875.31 0
CS 462.0966 0.0025 2598.426 0.0014 29875.31 6e-04

L2N 108.7967 4.590971e-07 586.1731 3.094009e-09 6454.015 2.187917e-12
L2B 108.7967 9.770138e-08 586.1731 1.033963e-10 6454.015 0
L2b 108.7967 0 586.1731 2e-04 6454.015 2e-04
FN 5.804739 1.244521e-05 5.08179 2.052178e-07 3.918484 3.267457e-10
FB 5.804739 5.564039e-06 5.08179 2.041599e-08 3.918484 2.498002e-14
Fb 5.804739 0.0011 5.08179 6e-04 3.918484 8e-04

GPF 5.523986 1.09736e-06 4.906053 1.286082e-08 3.829353 2.401257e-11
Fmaxb 9.157585 0.0022 12.30951 7e-04 22.48578 1e-04
TRP - 1 - 1 - 1
FP 5.855598 0 5.083232 0 3.920896 0

Notes: TRP - tests based on K = 30 random projections and p-value ANOVA without permutation.

Table 12. Values of test statistics and p-values of all tests for monthly / weekly / daily
wind direction(meteorological degrees) data for [a,b]=[0,1]

Test monthly wind direction weekly wind direction daily wind direction
Test stat. p-value Test stat. p-value Test stat. p-value

CH 1824698 0 9316409 0 94760791 0
CS 1824698 0 9316409 0 94760791 0

L2N 344440.7 3.654743e-12 1785191 5.884182e-15 18432611 0
L2B 344440.7 1.679767e-13 1785191 0 18432611 0
L2b 344440.7 0 1785191 0 18432611 0
FN 8.747375 9.593759e-09 7.065632 3.915113e-11 4.812142 6.838974e-14
FB 8.747375 1.957259e-09 7.065632 6.568079e-13 4.812142 0
Fb 8.747375 0 7.065632 1e-04 4.812142 0

GPF 7.568427 3.350107e-10 6.479825 1.476597e-14 4.953651 0
Fmaxb 12.51006 1e-04 14.06415 9e-04 15.17025 0.0016
TRP - 1.561018e-10 - 5.291812e-08 - 4.863443e-11
FP 8.704647 0 7.097725 0 4.818358 0

Notes: TRP - tests based on K = 30 random projections and p-value ANOVA without permutation.
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