VILNIUS UNIVERSITY
FACULTY OF MATHEMATICS AND INFORMATICS

MODELLING AND DATA ANALYSIS MASTER’S STUDY PROGRAMME

Master’s thesis

Sensitivity Analysis of Online String-Matching
Algorithms

Srautinio teksto paieSkos algoritmo jautrumo analizeé

ALVARO RIVERA MONTANO

Supervisor: Assoc. Prof. Dr. Viktor Skorniakov

Vilnius, 2021

Table of contents

ADStract . . o . v o i e i
List of figures L L i e iv
List of tables o 0 0 i i e v
List of abbreviations o . 0 o i i e e e e e e e e e e e e e e e e e vi
1 Introduction @ i i i i i i it e 2
1.1 ODbjectives o o o e e e e e e 3
111 Aim ... e 3

1.1.2 Goals o e e 3

2 Background e e e e e e e e e e e e e e e e e 4
2.1 String Matching Algorithms oL 4
2.1.1 Classification of String-Matching Algorithms 4

2.2 A Characters Distance Sampling Algorithm 0oL 6
2.2.1 Pseudocode 8

2.3 Classic Algorithms L e e 11
2.3.1 Brute force algorithm 12

2.3.2 Knuth-Morris-Pratt 13

2.3.3 Boyer-Moore-Horspool algorithm o 14

3 Experimental Evaluation e e e e e 15
3.1 Character Distance Algorithm Implementation 15
3.2 Concepts . ..o e 17
3.3 Experiments L L e e e 17
3.4 Parameterso Lo e e e e 18
3.5 Text Corpora oo o e e e 20
3.6 Scripting e 21
3.7 Dataset L e e e 22
3.7.1 Variables e 22

3.8 Exploratory Data Analysis e e 23
3.9 Experimental Results L 27
3.9.1 Polynomial Regression e 27

3.9.2 Metrics e e e 28

3.9.3 Model experiments e e e e e e 29

3.9.4 (Case SCenarios i et e 30

3.10 Algorithms comparison o e e e e 35

3.10.1 Case Scenarios v v i e e e e e e e e e 35

3.10.2 Summary oL e e e e e 38

4 ConcluSions . . v v v v v i i e e e e e e e e e e e e e 40
4.1 Future Work o e 41
References o v v i i i i i i i e e i e e e s e e e e e e e e e e e e e 43
ApPPendiCes . . v v v i i i e 44
A Search Time Table for Patterns of length 2 in English 44
Search Time Table for Patterns of length 8 in English, 45

C Search Time Table for Patterns of length 16 in English 46
D Search Time Table for Patterns of length 2 in Lithuanian 47
E Search Time Table for Patterns of length 8 in Lithuanian 48
F Search Time Table for Patterns of length 16 in Lithuanian 49
G Search Time Table for Patterns of length 2 in German 50
H Search Time Table for Patterns of length 8 in German 51
I Search Time Table for Patterns of length 16 in German 52
J Plot for Patterns of length 2 in English o oo oL 53
K Plot for Patterns of length 8 in English 54
L Plot for Patterns of length 16 in English o 0oL 55
M Plot for Patterns of length 2 in German L o Lo 56
N Plot for Patterns of length 8 in German 57
O Plot for Patterns of length 16 in German 58
P Plot for Patterns of length 2 in Lithuaniano .o 0oL 59
Q Plot for Patterns of length 8 in Lithuanian 60
R Plot for Patterns of length 16 in Lithuanian 61
S Plot for Patterns of different lengths, 100k of chars 62
T Plot for Patterns of different lengths, Im of chars 63
U Plot for Patterns of different lengths, 5m of chars, . 64
V Plot for Patterns of different lengths, 10m of chars 65
W Auxiliary Functions 66
X Compute Character Distance Function, 67
Y SearchO Function e 68
Z Searchl Function e 69

ii

List of images

© 0 N O Ot ke W N =

W W W W W W W NN NN NN NN HE e e
S Ot xR W NN = O O 0O Ut W N = O O NN Ut W Ny = O

A character comparison string-matching algorithm™ L
Taxonomy of the string-matching algorithms!™
Example of an Automaton e e e
Character Distance Algorithm
Pseudocode for the functions Get-Position and Compute-Character-Distance
Pseudocode for the functions Compute-Distance-Sampling and Compute-Position-Sampling . . .
Pseudocode for the functions Verify and RestoringVerify
Pseudocode for the function Search-0 L L
Pseudocode for the function Search-1 o o
Pseudocode for the function Search-24+ oo o oo
List of comparison based string-matching algorithms® 0L,
Example of shift and matching in the Naive Algorithm.[*81
Shift in the Knuth-Morris-Pratt algorithm. !4l
Example of the Searching Phase of the Horspool Algorithm.®l
Pre processing stage results. L Lo
Maximum and average characters distances!™ . . .o L.
Performance results obtained from the timeit() function
Performance of the Algorithms in the case of long patterns
Dataframe with fixed parameters. e e e e e e
Some of the collected Lithuanian texts o
Number of character occurrences in a document.o
The second script in action L e e e e e
Density function L
Density function per documento
Frequencies of occurrences of the pivot characters by language
Pre processing time(s) in comparison with the size of the document
Space in number of characters in comparison with the pivot rank and text length
Pre processing space required by pivot character. 0o oL
Searching time (s) in comparison with the Text size (chars)
Model with Linear Regression e
Model with Polynomial Regression
Metrics for the model oL
Descriptive statistics for case scenario 1
Plot for case scenario 1. L
Instances of the case scenario 1

Descriptive statistics for case scenario 2o e e e e e

iii

© © 0 0o O Ot Ut

10

26

37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
92
53

Plot for case scenario 2. L e e e e e e 32

Descriptive statistics for case scenario 3 L L e 32
Plot for case scenario 3. L 33
Plot for case scenario 4. L e e e e 33
Search time over a text of lm charslength o 0oL 34
Search time over a text of 5m chars length o o oo 34
Search imes for the three algorithms o o oo 35
Case 1 of algorithm comparisons e 35
Plot for the case 1 of algorithm comparisons, 36
Case 2 of algorithm comparisons 36
Plot for the case 2 of algorithm comparisons 37
Case 3 of algorithm comparisons e 37
Plot for the case 3 of algorithm comparisons L oL 37
Case 4 of algorithm comparisons L 38
Plot for the case 4 of algorithm comparisons 38
Confusion Matrix o . 0 o e e e 38
Metrics for the logistic regression model oL 39

iv

List of Tables

[N U

Search functions L e 15
Auxiliary functions. L 15
Generated Dataset L e e e 22
Descriptive statistics for the dataset 24
Primary vs Auxiliary function cases 26

List of abbreviations

BMH Boyer-Moore-Horspool
KMP Knuth-Morris-Pratt
MAE Mean absolute error
MSE Mean squared Error

OAT One-factor-at-a-time

R2 R Squared

RMSE Root mean squared error

vi

Abstract

Alvaro Rivera Montano, Sensitivity Analysis of Online String-Matching Algorithms: Master’s Thesis/
Supervisor Assoc. Prof. Dr. Viktor Skorniakov; Vilnius University, Faculty of Mathematics and Infor-

matics.

String-matching is a well known and studied problem in computer science that allows us to find occurrences of a pattern
inside a text. As datasets grow larger every year, it becomes more and more important to know which algorithms work
better in specific situations, as there is not a single algorithm that will be well suited for every scenario. The aim of

this paper is to analyse a new algorithm proposed by Faro et al. [10]

, which takes the approach of subsampling the text
and patterns before calculating the distance of the elements in the subsample. Sensitivity analysis is used to allow us to
test the robustness of the proposed algorithm. An extensive experimental comparison of the parameters, together with
a comparison with classical algorithms, was presented. A dataset was generated from the performance measurements

applied during the experiments and in addition, some suggestions about case scenarios of when to use the newly proposed

algorithm.

Key words : String matching, online string matching, sensitivity analysis, characters distance, characters sampling,

experimental evaluation, algorithm comparison, dataset generation.

1 Introduction

String matching is a well known and studied problem in computer science; It consists of finding the occurrences

of a pattern x of length m in a text y of length n. Both z and y are built over the same alphabet of size s.

The fields where applications of string matching are being used are quite extensive and include
diverse areas such as text processing, speech recognition, information retrieval, among others. For instance in
linguistics and literature is used to search for patterns in huge corpus and dictionaries, in biology to search for
amino acid sequence patterns!'3l, and in computer science to search for a large amount of data that are stored

in linear files. Therefore there is a constant need for more and faster solutions to the text searching problem.

Offline and online solutions exist depending on if the text or otherwise the pattern is provided
first and if an index is required to preprocess the text. Indexes that are realized by data structures are used
by the offline solutions, which try to drastically speed up searching by preprocessing the text and building a
data structure that allows searching in time proportional to the length of the pattern. For this reason, such
kind of problem is known as indexed searching!®l. Among the most efficient solutions to such a problem, we
mention those based on suffix trees. However, despite their optimal time performance, the space requirements
of full-index data structures, as suffix-trees and suffix-arrays, are from 4 to 20 times the size of the text, and

such space requirement is too large for many practical applications.

A more practical solution is the online string matching approach, which utilizes partial or no indexes
at all. The Online solution assumes the text is not preprocessed, and thus they need to scan the text online
when searching. In this thesis, the focus is on the performance of online string matching algorithms. Various
online string-matching algorithms have been proposed throughout the years, being two of the most well known
the Knuth-Morris-Pratt algorithm and the Boyer-Moore algorithm, especially with its Horspool variation, this
kind of algorithms have followed the approach of the original Naive algorithm but using auxiliary functions to

skip some of the characters that are being scanned.

A different approach to the online string machine problem was introduced by 6] which consists in
the construction of a succinct sampled version of the text and in the application of any online string matching
algorithm directly on the sampled sequence. The drawback of this approach is that any occurrence reported in
the sampled-text may require to be verified in the original text. However, a sampled-text approach has a lot of

good features: it may be easy to implement, may require little extra space, and may allow fast searching.

More recently 1% extended the works of!! by introducing the idea of the Character Distance of
Pivots algorithm, which shows promising results; however, not many experiments have been conducted to cor-
roborate that this could indeed be a good alternative to more classical string matching algorithms. In this thesis,

the focus is on this new online algorithm and its comparison with the standard algorithms of the field.

1.1 Objectives
1.1.1 Aim

The aim of this thesis is to investigate the performance of the online string matching algorithm suggested by

Faro et al.['% to evaluate it in comparison with standard string matching algorithms.

1.1.2 Goals

e To measure the performance of the algorithm in reference to Preprocessing time, Searching Time, and
Space requirements.

e To perform experiments (measured primarily by the time of execution) on diverse factors such as language,
text size, and pattern length.

e To generate a dataset from the results of the experiments.

e To compare the results obtained from the experiments with the results of standard string matching algo-
rithms.

e To summarize the results obtained from both the parameter experiments as well as the comparison between
algorithms.

e To recommend case scenarios when the use of a specific algorithm could be useful.

The novelty of this thesis stems from the fact that the algorithm suggested by Faro et al.['% is
brand new and, consequently, investigations of such kind were not performed; furthermore, an extensive analysis
of the subsampling string matching approach is non-existent, and this thesis could be an initial step to lead to

further investigations of the topic.

2 Background

In this section, some concepts related to string-matching algorithms are discussed, as well as their categories
and use cases to posteriorly introduce the main algorithm that will be analysed in the experimental section of

the thesis.

2.1 String Matching Algorithms

Finding all the occurrences of a string in a text is known as string matching, and it is a very important subject
that belongs to the domain of text processing. It has been extensively studied and applied in the field of computer
science, mainly due to its various practical applications in different areas like information analysis and retrieval.
String matching algorithms are often used as part of more complex software systems!®l. Many programs in
different fields of science require to match patterns; among these, we can mention information retrieval, biology,

and speech recognition.

—
o —-m— m

alded—d=] ——__,f -

N N S R - R
L

—) e

I

ot 4 i ——— | &
ol .

— e

vt
-
' —
£

Pattern

Figure 1: A character comparison string-matching algorithm[ll]

2.1.1 Classification of String-Matching Algorithms

Exact string matching algorithms are the most common type of matching algorithms; in this case, the algorithm
expects a full match of the string; however, there is another matching alternative, the approximate string
matching algorithm, which searches for a substring that is close to the given pattern string, how the closeness
degree is calculated depends on the application and complexity of the problem. For this thesis, the focus is on

exact string matching.

String Matching
Algorithms
Exact String Matching Approximate String
Algorithms Matching Algorithms

! !

Single Pa.nem Multiple P_altern P B Backtracking
Matching Matching e Based
Algorithms - Algorithms
[

Algorithms
Software Based Hondwara Basad Software Based Hardware Based
Exact matching Single Match Multiple Matching Multiple Matching
Algorithms HEERineS Algorithms Algorithms

Character E N
Automata Based Bit-Parallelism N
[Comparison [HashlnﬂAnnroﬂ:h]{ Approach J[Approach][Hybndnppmu:h]

Approach
[11]

— / 3

Figure 2: Taxonomy of the string-matching algorithms

An important question in string matching that will affect the type of preferred solution is about
which string, the pattern, or the text, is given first. In the case, the text is given first, and a full indexing of
it is created then we call this Offline string-matching, otherwise in the case when the pattern is given first, and
we can process the pattern at the moment of running time then this case would be considered as Online string
matching. In this thesis, we are interested only in analysing this kind of algorithms. Partial indexing of the text
for online string matching algorithms!"! is also common, which is the case of the algorithm that will be analysed
in this thesis. An example of online string-matching algorithm is the one that utilise the approach of automata
like we can see in figure 3 in this case, a finite automaton tries to match the pattern ’ababc’ over the alphabet
Sigma= a,b,c. However, in this work, the focus is on Online algorithms!'7l of the most common type, which are

the Character Comparison algorithms!”l, which compare characters one by one, like the one showed in figure 1 .

Figure 3: Example of an Automaton

2.2 A Characters Distance Sampling Algorithm

In this section, the main algorithm of this thesis is presented, proposed by Faro!'®! extending the work done
by Claude!®! with the sampled string matching approach. In the following subsections, the ideas introduced by

Faro et al. are explained.

Let y be the input text, of length n, and let = be the input pattern, of length m, both over the
alphabet ¥ of length 0. We refer to z[i] as the i-th character of the string = starting at position 1, for 1 <i <m

Firstly a sampled alphabet ¥ C ¥ is defined; in this algorithm, the sampled alphabet is called the
set of pivot characters. The set ¥ in practice is just reduced to a single character[5l; therefore, for the rest of

the paper, we can assume that || = 1 and this set composed of just one character is known as the pivot character.

Tex. [a|b[a[a[c[a[b]d[a[a[c[a[b[c[c] pattem: |2 |c [a [b |

Pivot = a
S led S led
toxt e [alal Ta[| Tala[[a[[T] patem [a | la [|

Char Char

02
Distance: Distance:
2|12(2
N

-

Ne

reference original
table E> | text

Figure 4: Character Distance Algorithm

In figure 4, we can see a basic example of how the algorithm works; initially, we select a pivot
character; after that, the text will be subsampled to only keep the positions of that character. In the selection
of the pivot character, one option could be to just rank the frequencies of characters and select one of the most
frequent ones. In the example, the pivot is the character ’a’; the same is done with the pattern we want to
search. After this, the distances between the occurrences of the characters are kept and stored in an auxiliary
table; up to this point is what we call preprocessing time, which is one of the performance values measured in

this thesis. This is done once per document unless we changed the pivot character.

After the initial step, we enter into the searching phase, the most important performance measure-
ment, where the algorithm checks if there are occurrences of the distances of the pattern in the distances of the
text, in our example, the pattern only has one distance of value 2, and there are three occurrences of that value
in the distances of the text. After this, with the help of the auxiliary table, we check the original text only for
those three candidate distances using a classical one by one character matching function and this allows us to

avoid having to check the whole document.

We now need to define the concept of bounded position sampling, which is the approach used by

the algorithm.

Definition 1 (The Bounded Position Sampling) Let y be a text of length n, let C' C ¥ be the
set, of pivot characters and let n. be the number of occurrences of any character of C' in the input text y. First
we define the position function, ¢ : {1,...,n.} — {1,...,n} where §(¢) is the position of the i-th occurrence of
any character of C in y. Assume now that k is a given threshold constant. We defne the k-bounded position
function, 0y : {1,...,n.} = {0,...,k — 1}, where 0, (¢) is the position (modulus k) of the i-th occurrence of any

character of ¢ in y. Formally we have

0r(i) =[6(:) mod k], foreachi=1,...,n,

The k-bounded-position sampled version of y, indicated by ¥ , is a numeric sequence, of length n,

defined as

Y= <6k(1)ﬂ 6k(2)> v 76k (nc)>

Then we have 0 < y[i] < k, for each 1 <i <mn,

Definition 2 (The Characters Distance Sampling) Let ¢ € ¥ be the pivot character, let
ne < n be the number of occurrences of the pivot character in the text y and let § be the position function of
y. We define the characters distance function A(7) = §(i + 1) — (i), for 1 < i < n, — 1, as the distance between
two consecutive occurrences of the character ¢ in y. The characters-distance sampled version of the text y is a

numeric sequence, indicated by g, of length n, — 1 defined as:

Then we have:

Y tAG) <n—1

To be able to retrieve the original i-th position §(¢), of the pivot character, from the i-th element
of the k-bounded position sampled text ¢ , a block-mapping table 7 is also maintained which stores the indexes

of the last positions of the pivot character in each k-block of the original text, for a given input block size k.

Is assumed that the text y is divided in [n/k] blocks of length k, with the last block containing (n
mod k) characters. Then 7[i] = j if the j-th occurrence of the pivot character in y is also its last occurrence in
the i-th block. If the i-th block of y does not contain any occurrence of the pivot character then r[é] is set to be

equal to the last position of the pivot character in one of the previous blocks.

2.2.1 Pseudocode

In this section, all the procedures that compose the algorithms are explained, including the auxiliary functions
as well as the procedures that are used depending on the number of pivot character occurrences that exist in

the input pattern.

GET-POSITION(T, b, ¥, i) COMPUTE-CHARACTER-DISTANCE-SAMPLING(Y, T)
1. while 7[b] < 7 do 1. g+ ()
2. b—b+1 2. ne «— len(y)
3. pe—(b—1) % k+ i 3. be—1
4 return (p, b) 4. (61,b) «— GET-POSITION(T, b, 3, 1)
5. for 7 «— 2 to n. do
6. (6i,b) «— GET-POSITION(T, b, 9, %)
7. gli — 1] «— 6(z) — 6(: — 1)
8. return

Figure 5: Pseudocode for the functions Get-Position and Compute-Character-Distance

In the figure figure 5, the pseudocode on the left shows the function Get-Position which, computes
the index of the block that corresponds to the i-th occurrence of the pivot character in y, in other words, we

obtain the position of the character in the original text.

The pseudocode of the function on the right named Compute-Character-Distance-Sampling com-
putes the character distance sampled version of y, which is obtained from 3. So we get ¢ which will be use in

our main Search function to process the distances between occurrences of the selected pivot character in y.

COMPUTE-DISTANCE-SAMPLING(y, 1, %) COMPUTE-POSITION-SAMPLING (y, n, 5, k)
L § 1) L g0
2. j<—0 2. T «— a table of [n/k] entries
3. p—20 3. for i < 1 to [n/k] do 7[i] — 0
4. for i < 1 to n do 4. 30
5. if y[i] € X then 5. for i < 1 to n do
6. je—j+1 6. if 7[[</k]] = 0 then
7. glil—i—p 7. r[[i/k]] < r[[i/k] — 1]
8. pi 8. if y[i] € ¥ then
9. return (g, 7) 9. je—j+1
10. 9lj] < i mod k
11. ([i/k]] — j
12. return (¢,7,7)

Figure 6: Pseudocode for the functions Compute-Distance-Sampling and Compute-Position-Sampling

In the figure figure 6, on the left we have the pseudocode for the function Compute-Distance-
Sampling which is used for the construction of the character distance sampling version of a text y. In practice,
this is used inside the search functions as a filtering phase to process the distances of the pivot character in the

pattern x and is calculated online.

On the right, we have the pseudocode for the function Compute-Position-Sampling, which con-
structs the character position sampling version of a text y. This is the main function in the preprocessing stage,
and the entry point to the workflow of the algorithm, the parameters that need to be provided are the text y, the

alphabet from where we will select the pivot character, and the constant k, which is the value for the segment

size.
VERIFY(z, m, y, §) RESTORINGVERIFY(z, m, vy, s, k, D(x), q,)
1. i—0 1. q— qq
2. while i <m and z[i] = y[s +i] do 2. c—0
3. fe—1+1 3. fori—stos+k—1do
4. if i = m then 4. q — 8(q,yli])
5. report occurrence at s 5. if (g = m) then
6. report occurrence at i —m+ 1

Figure 7: Pseudocode for the functions Verify and RestoringVerify

In the figure figure 7, the pseudocode on the left shows the function Verify which, as the name
indicates, verifies the occurrences of a pattern z of length m, in a document y, of length n, starting at the
provided position s. This function is used inside our main Search procedure to verify if candidate matching
distances of a pattern and a text contains also matching characters; it simply compares the substring of the text
y[s---s+m —1] and the pattern x, character by character, going from left to right until a mismatch is found or
the two strings completely match if so it reports an occurrence at the position s. The time complexity for this

function is O(m) in the worst case.

The pseudocode on the right of In the figure figure 7, shows the function RestoringVerify which
uses a string matching automaton of = to remember the positions of the text which have been already processed

during a previous call yo the Verify function.

SEARCH-0(z, 7, ¥)

A We assume ¢ does not occur in ©
1. m « len(x)

2 ne «— len(y)

3 b—1

4. (50 — 0

5. for i <2 to n. do

6 (6i,b) «— GET-POSITION(T, b, ¥, 1)

7 if (6; —6i—1 > m) then

8 search for z in y[6; 1 + 1..6; — 1]
9. if (n+1— 6, >m) then

10. search for z in y[én,. + 1..n|

Figure 8: Pseudocode for the function Search-0

Figure figure 8 shows the pseudocode of the function Search-0 for the sampled string matching problem, this
function will be called when there are no occurrences of the pivot character ¢ in the pattern z, so m. equals to
zero, in this case, there will be no distances to calculate, so this would be the first kind of exception case of the
algorithm. Under this assumption, the algorithm searches for the pattern x in all substrings of the original text,

which do not contain the pivot character.

We can identify those substrings by the intervals [§(¢) + 1---6(¢ + 1) — 1], for each 0 < i < n,
assuming that §(0) =0 and 6 (n.+1) =n+1

Specifically, for each 1 < ¢ < m.+1 the algorithm checks if the interval 6(i) — 0(i — 1) is greater than
c. If this is the case then the algorithm searches for x in the substring of the text y[6(¢ — 1)+ 1--- (i) — 1] using
any classical matching algorithm. Otherwise we simply skip this substring as no occurrences of the pattern were
found in the searched position. The worst-case and average time complexity of the Search-0 algorithm are O(n)

and O (nlog, m/m), respectively.

SEARCH-1(z, 9, y)
We assume ¢ occurs once in z
m «— len(z)
ne «— len(y)
o «— min{i : z[i] = ¢}
b—1
b — 0
(61,b) — GET-POSITION(7, b, 7, 1)
for i < 2 to n. do
(6;,b) — GET-POSITION(T, b, y, t)
if (61',1 —b;o>a—1land & —6;_1 >m — (1) then
10. VERIFY(z, m, y, §i—1 — a+ 1)
11. if (bn, —bp.—1>a—1land n+1—6,, >m— «) then
12. VERIFY(z, m, y, 6p, — a+ 1)

© RN LN

Figure 9: Pseudocode for the function Search-1

Suppose now the case where the pattern x contains a single occurrence of the pivot character ¢, so that the
length of the sampled version of the pattern is still equal to zero. The algorithm efficiently takes advantage of
the information precomputed in ¥ using the positions of the pivot character ¢ in y as an anchor to locate all

candidate occurrences of z.

Figure figure 9 shows the pseudocode of the algorithm which searches for all occurrences of a pattern
x, when the pivot character ¢ occurs only once in it. Specifically, let « be the unique position in & which contains
the pivot character, we assume that z[a] = ¢ and z[1--- o — 1] does not contain ¢. Then, for each 0 < i <n.—1,
the algorithm checks if the interval (i — 1) — §(¢ — 2) is greater than o — 1 and if the interval §(:) — 6(i — 1)
is greater than m — a . So if that case happens then algorithm will simply check if the substring of the text
y[o(i) —a+1---5(i) + m —] is equal to the pattern, otherwise the substring is skipped. As before we assume
that §(0) = 0 and 6 (n. + 1) = n + 1. Finally the last alignment of the pattern in the text is verified separately

at the end of the main cycle.

10

SEARCH-2T (z, 9, v)
A We assume ¢ occurs more than once in z

1 m «— len(z)

2 n — len(y)

3. o «— min{i : zfi] = ¢}

4. b—1

5 (z,m) «— COMPUTE-DISTANCE-SAMPLING (z, m, {c})
6 search for T in 3 :

7 for each i such that & = g[i..i +m — 1] do

8 (6i,b) — GET-POSITION(T, b, 2)

9 VERIFY(x, m, y, 6; —)

Figure 10: Pseudocode for the function Search-2+

If the number of occurrences of the pivot character in x are 2 or more, i.e. m. > 2 and m > 1)
then the algorithm uses the sampled text § to compute on the fly the character-distance sampled version of y
and use it to search for any occurrence of T. This is used as a filtering phase for locating in y any candidate

occurrence of x.

figure 10 shows the pseudocode of the algorithm which searches for all occurrences of a pattern z,
when the pivot character ¢ occurs more than once in it. First the character distance sampled version of the
pattern T is computed. Then the algorithm searches for 7 in i using any exact online string matching algorithm.
Notice that 7 can be efficiently retrieved online from the sampled text ¢. For each occurrence position j of Z in
7 an additional procedure must be run to check if such occurrence corresponds to a match of the whole pattern
x in y . For this purpose the algorithm checks if the substring of the text y[6(j) —a---0(j) — a+m — 1] is equal
to x , where « , as before, is the first position in 2 where the pivot character occurs. The value of 4(j) can be

obtained in constant time from g[j] .

2.3 Classic Algorithms

In this section, some traditional string-matching algorithms are explained, initially the basic Naive algorithm,
and posteriorly two of the most well known classical algorithms, the Knuth—Morris—Pratt algorithm, and the
Boyer-Moore-Horspool. These algorithms will be posteriorly compared with the Character Distance algorithm

in the experiments section of the thesis.

11

Algorithms based on characters comparison

BF Brute-Force [CLRS01]

MP Morris-Pratt [T 1970
KMP Knuth-Morris-Fratt [KMPTT] 1977
BM Bapyer-Moore [BMTT] 1977
HOR Horspool [Huarg0)] 19810
G5 Galil-Seiferas [GSR3] 1983
AG Apostolico-Giancarlo [AGEE| 1986
KR Karp-Hahin [KRET] 1987
T Zhu-Taksoka [Z2T&T] 1987
QM Optimal-Mismatch [Sunti] 1941
M5 Maximal-Shift [Sunt] 194)
Qs Quick-Search [Suno| 1941
AC Apostolico-Crochemore [AaCe1] 19491
™ Two=Way [CPa1] 1991
TunBM Tuned-Boyer-Moore [H5491] 19491
oL Colussi [Culti1] 19491
SMITH Smith [Smifl] 1991
GG Galil-Giancarlo [GGaz| 1952
RAITA Raita [Rait2] 1992
SMOA String-Matching on Ordered ALphabet [Crat2] 1952
MSH Not-So-Maive [HanB3] 195
TEM Turbo-Boyer-Moore [CCGT94) 1954
RCOL Reverse-Colussi [Cultid] 1954
SKIP Skip=Search [CLPog] 1955
ASKIP Alpha-Skip-Search [CLPBg| 1948
KMFS EMP-Skip-Search [CLPBE] 19598
BR Berry-Ravindran [BRAa] 1954
AT Ahmed- Kaykobad-Chowdhury [AKCDH] 20005
FS Fast-Search [CFnd] 20005
FFS Forward-Fast-Search [CF5| 20004
BFS Backward-Fast-Search, Fast-Boyer-Moore [CFOs,CLOs) 2004
TS Tailed-Substring [CFiM] 20004
S5ABS Sheik-Sumit-Anindya-Balakrishnan-Selar [SAFTO4] 20004
TWSES Thathoo-Virmani-Sai-Balakrishnan-Sekar [TWVL™] 2006
PEMH Bayyer-Moore- Horspool using Probabilities [Maehailb] 20066
F15 Franek-Jennings-Smyth [F.I507] 2007
2BLOCK 2.Block Boyer-Moore [Sh0T) 2007
HASHg Wu-Manber for Single Pattern Matching [Lee0T] 2007
TESW Two-Sliding-Window [HAKST08] 2008
BMHg Bayyer-Moore-Horspool with g-grams [KPT08] 2008
GRASPm Genomic Rapid Algo for String Pm [2006
S5EF S3EF [Kiilog] 2008

Figure 11: List of comparison based string-matching algorithms]

2.3.1 Brute force algorithm

Features

It doesn’t need to preprocess the pattern nor the text.

The space required by the algorithm is constant.

The sliding window shift always moves one position to the right.

e Comparisons can be made in any order.

Searching stage in O(m x n) time complexity.

2n expected text character comparisons.

The naive algorithm, also known as brute force, effectuates the character check at all positions in
the text between position one and n, whether an occurrence of the candidate pattern begins there or not. After
each attempt, the sliding windows will be shifted to the right by exactly one position. The naive algorithm does
not require a preprocessing stage for the text nor the pattern; the required space in memory required by the

algorithm will be constant. During the searching stage, the text character comparisons can be effectuated in

12

0 N O N RN S mex

SHIFT=3

- DD FATTER
N

Figure 12: Example of shift and matching in the Naive Algorithm.®l

any order.

2.3.2 Knuth-Morris-Pratt

Features

e The algorithm performs the comparison from left to right.
e The Preprocessing stage in O(m) space and time complexity.
e Searching stage in O(m+n) time complexity.

e The maximum of character comparisons during the searching stage is 2n-1.

J i+
v | | u [
S T
v [v Je] |

Figure 13: Shift in the Knuth-Morris-Pratt algorithm. (4]

Unlike with the case of the naive algorithm, when the KMP encounters a new mismatch, it performs
some analysis on the substring before trying to find its occurrences in the text. Backtracking on the pattern
never occurs with this algorithm as it avoids to compare a second time a character that was already involved in

another comparison with some character of the pattern.

13

2.3.3 Boyer-Moore-Horspool algorithm

Features

e Improved and simplified version of the Boyer-Moore algorithm.
e Uses the bad-character shift auxiliary table.
e Easy and straightforward to implement.

e Preprocessing phase in O(m + o) time and O(o) space complexity.

Searching phase in O(m X n) time complexity.

e The mean number of comparisons for a single character is between 1/0 and 2/(c + 1)

a A C G
bmBe[a) |1 6 2 8

Searching phase

First attempt:

y [ScCATCGCRGAGAGTATACAGTACG

1

r |[GCAGAGAZG

Shift by 1 (bmBc[4])

Second attempt:

y [G[CATCGCAGAGAGTATACAGTACG

2 1

r |GCAGAGAG

Shift by 2 (bmBe[@])

Figure 14: Example of the Searching Phase of the Horspool Algorithm. [*!

The execution time in the case of the Boyer-Moore-Horspool algorithm is linear in relation to the
length of the pattern that is being searched. BMH has a lower execution time than many of the popular string-
searching algorithms. One of many variations of the Boyer-Moorel?! algorithm, Horspool uses the auxiliary
table for bad matches to exclude the positions where the substring can’t match the pattern and skip the bad
characters; this allows the algorithm to perform better when it can utilize more often the auxiliary table like in

the cases of large input patterns, therefore the larger the pattern, the faster the searching process.

14

3 Experimental Evaluation

In this section, the experimental evaluation of the algorithm and its required steps to accomplish it are explained.
After the initial step of implementing the newly proposed algorithm, several text files are collected, and multiple
versions of each document are created; posteriorly, those documents are used together with multiple combinations
of input parameters to evaluate the performance of the searching algorithm under different case scenarios and
to record the outputs to generate a dataset that will be used for data exploration, model fitting, analysis,

summarization and finally for performance comparison with other algorithms.

3.1 Character Distance Algorithm Implementation

A publicly available working code for the algorithm didn’t exist; therefore, it was required to implement the algo-
rithm from scratch for this thesis, which was done using Python 3. Several functions were implemented following

the notes and pseudo code from the original document and posteriorly tested thoroughly using the library Pytest.

Function Description

Secondary function, it is triggered when there are no instances
Search0

of the pivot character in the input pattern.

Secondary function, similar to SearchO is triggered when there is
Searchl

only one instance of the pivot character in the pattern.

The main function, it uses the character distances to find occurrences
Search 2+

of the pattern in the text.

Table 1: Search functions

In table 1 the three searching functions can be seen; the function Search2+ will be used when
there are at least two pivot characters present in the pattern; otherwise, the other two functions would be called

depending on if there is one or zero occurrences of the pivot character.

Function Description

get position Gets the original position in the input text.
compute position sampling Computes the preprocessing step.
compute_distance sampling Samples the distances for the pattern.

compute character distance sampling | Computes the Characters Distance sampled version of the text.

Verify Verifies a match.

Table 2: Auxiliary functions.

15

In table 2 the auxiliary functions are shown. Some are used to preprocess the text and pattern,
others to sample the positions of the characters where the pivot character is present, to restore the location of

the character in the original text and to verify matches.

pre = compute position_sampling(y,n,alpha,k)

print (pre)

([e, 44, 85, 239, 56, 97, 178, 210, 241, 253, 97,
129, 149, 189, 211, 238, 253, 182, 185, 192, 194,

38, 5@, 57, 79, 86, 101, 134, 141, 157, 231, 136,
99, 113, 220, 66, 123, 145, 211, 42, 53, 175, 247,
52, 237, 241, 19, 48, 58, 109, 136, 148, 167, 169,
9, 65, 75, 88, 92, 95, 209, 213, 130, 206, 251, 1,
122, 132, 171, 190, 222, 234, 244, 58, 71, 83, 126
2, 120, 141, 21e, 248, 71, 153, 9, 13, 49, 58, 62,

Figure 15: Pre processing stage results.

The Preprocessing space required by the Character Distances String-Matching will depend not only
on the size of the document but also on the number of occurrences of pivot character; a typical value for the 1st

ranked pivot would be around 8 percent of the size of the document.

In figure 15 we can observe an example of a typical output for the preprocessing function com-
putePositionSampling, we can see the array storing the distances between the occurrences of the chosen pivot

character, bounded by the segment constant ’k,” which in this case is 256.

Maximum and average character distances
I T T T
I A E R l'llil.t I.I.i.!|1.

— avg char dist

2 000 - —
2000 _ _ _ hound

distance

L1000

0 2 1 G & 10 12 14 16 18 20

rank of pivot char

Figure 16: Maximum and average characters distances "]

The figure 16 shows the average and maximum distances between two consecutive occurrences,
computed for the most frequent characters in a text. On the x-axis, we have the characters which are ordered

on the base of their rank value; on the y-axis, the searching time. The red line represents the bound k = 256.

16

3.2 Concepts

A sensitivity analysis of string matching algorithms allows us to test the robustness of the results of a model
in the presence of input uncertainty. Some important aspects to take into consideration while measuring the

performance of algorithms and that have been applied during the experiments are:

Efficiency measurement: In this case, we need to run the algorithm with the same parameters
multiple times to compute the mean of values obtained over those several running times; we do this to minimize

errors generated while measuring.

Stability Measurement: It refers to the variation that exists from the average of the running
times, is computed as the standard deviation of those evaluated times during the observations. A big number
of string matching algorithms seem to present low stability when encountering short patterns and the opposite

in the presence of really long ones.

Flexibility measurement: Refers to how well the algorithm can adapt when it encounters differ-
ent kinds of input data, for example, if it can maintain a good performance while dealing with both small and
large texts, different kind of alphabet sizes, input patterns of various lengths, etc. Several algorithms can obtain
excellent performance when dealing with a certain specific type of input data, but they underperform in other

situations.

3.3 Experiments

The experiments were executed locally on a PC running Intel Core i7 4790 CPU with a @3.6GHz clock speed and
32 Gb of memory ddr3 3200 MHz. The operating system used was Windows 10, and during the experiments, only
the regular background processes ran to decrease random variation, the time results were averages of 50 runs.

The algorithms presented in the previous section were implemented using the Python programming language.

For the methodology in all tests, a one-factor-at-a-time experimental design was followed['?) to
ensure the accuracy and effectiveness of tests and case scenarios testing that aims to simulate realistic user
behavior. Comparisons have been performed in terms of pre-processing times, searching times, and space
consumption; 50 instances of each set of parameters were generated to capture the variation of the algorithm

when induced by the text itself and to be able to summarize the mean performance easily for each combination.

The Python function timeit() was used to obtain the pre-processing and searching times, and the
values of the parameters 'number’ and 'repeat’ were set to -5 and -10 respectively to have more representative
values and to comply with the principles of efficiency and stability mentioned before. The number parameter
controls how many executions are done for each timing, and it helps to get representative timings as sometimes,
at the moment of the specific measurement, some other application running in the background might affect the re-

sults. The 'repeat’ argument controls how many timings will be produced, and its use is to get accurate statistics.

17

print (result)

print {result.best)
print (result.worst)
print {result.average)
print (result.all runs)
print (result.timings)
print {resulthtdev}

13.7 = £ 136 ms per loop (mean * std. dev. of 3 runs, 2 loops =ach)
13.5462139680681021

13.86@362766812847

12.736823800811826

[27.892427800062842, 27.568298968804882, 27.728725408824894
[13.545213508601021, 13.8014042800820081, 13.368362702812847]
B.13563568542376882580

Figure 17: Performance results obtained from the timeit() function

In figure 17 we can see an example of the results of measuring one combination of input parameters;
the measurement was effectuated three times with two loops each one, and the values for the best, worst, average,
and standard deviation were obtained, as well as the individual measuring values. For the experiments, the

average value was taken.

m=64, 1.9mb, English

10
®- New
s Krnp
8 Horspool
E 6
[}
E
—0—o—o— % ——90—o—"
2
1e) 2(t) 3(h) 4{a) 5(n) 6(0) T(s) 8(i) 9(d) 10(r) 1L() 12(f)

rank

Figure 18: Performance of the Algorithms in the case of long patterns

The figure 18 shows an example of a search time comparison in the case of a long pattern, the

comparison is done between pivot characters and also with the KMP and Horspool algorithms.

3.4 Parameters

The parameters selected to test the robustness of the algorithm are:

Text length: Measured in number of characters, at first look is the variable that will most likely
affect the searching time the most. Different text files of variate sizes have been selected and are explained in

the following subsection.

18

Pattern length: Measured in number of characters, processed online by the algorithm to search

for occurrences of the pivot character in it. Several length values are used.

Language: Multiple texts of different genres in 3 different languages are used as input parameters

(English, German and Lithuanian).

Alphabet size: Measured by number of unique characters in the text, medium to large sizes of

alphabets were used. The alphabet was extracted from each text.

The pivot rank: The top 5 most frequent characters in the text are selected as input values and
they are used by the proposed algorithm to calculate de distances between the occurrences of the character in

the text.

The segment size: Parameter 'k’ used by the characters distance algorithm has been set to 256
for all the experiments as this is the value recommended by the author of the paper for non trivial analyses as

it allows to store a character distance of up to 256 in one byte and that way resources are optimized.

Algorithm Pivot rank File Size Number of Characters Language Alphabet Size Pattemn Length Search Time

0 Char Distance 1 19 1936071 English 53 32 4596316
1 Char Distance 1 19 1936071 English 53 32 4538377
2 Char Distance 1 19 1936071 English 53 32 4.640500
3 Char Distance 1 19 1936071 English 53 32 4.580073
4 Char Distance 1 19 1936071 English 53 32 4.639909
5 Char Distance 1 19 1936071 English 53 32 4649653
6 Char Distance 1 19 1936071 English 53 32 4 682030
7 Char Distance 1 19 1936071 English 53 32 4671264
8 Char Distance 1 19 1936071 English 53 32 4662442
9 Char Distance 1 19 1936071 English 53 32 4620195
10 Kmp None 19 1936071 English 53 32 6.322556
" Kmp MNone 19 1936071 English 53 32 6327763
12 Kmp None 19 1936071 English 53 32 §.335027
13 Kmp Mone 19 1936071 English 53 32 §.335652
14 Kmp MNone 19 1936071 English 53 32 §.345591

Figure 19: Dataframe with fixed parameters.

In figure 20 we can see an example of a dataframe showing performance measurements of the

searching times with a fixed set of parameters repeated several times for two different algorithms.

19

3.5 Text Corpora

For this work, two main text repositories were used to obtain the texts from, Project Gutenberg, which is an
online repository of ebooks; this was the source for the English and German texts, and the second repository

used was epaveldas.lt, which was used to obtain the texts in Lithuanian.

=] V.Azusilis_Buhalteris.bet

=] V.Azusilis_Mokslinininkas.txt

=] K.Almenas_Sienapiute.txt

=] K.Barenas_Beragio_ozio_metai.tct
=] V.Azusilis_Finansininkas.txt

=] S.Saltenis_Kales_vaikai.txt

=] K.Almenas_Upe_i_rytus_upe_i_siaure.txt
=] P.Dirgela_Vilties+ pilnuju_knygos.tct
=] R.Klimas_Maskvos_laikas.txt

=] M.Katiliskis_Miskais_ateina_ruduo.txt
=] P.Dirgela_Alibi_knygos.tet

Figure 20: Some of the collected Lithuanian texts

In total, 150 texts were collected, 100 from the Project Gutenberg repository and 50 from the
epaveldas.lt repository. Each one of the three languages (English, German, Lithuanian) counts with 50 books.
The file sizes of the documents vary between 100kb up to 5Mb, and the alphabet size varies from 77 to 153
(Alphabets also include symbols).

The library Markovify was used to create 50 different versions for each book in the three languages;
the goal is to be able to create simulated texts that retain a natural language structure and to produce several

instances of the same set of parameters but with different texts.

The top 10 most frequent words of each document for patterns of lengths that range from 2 to 8

were also stored in an extra file to be used posteriorly by the text processing script.

A count of the occurrences of each character in the document is also applied to posteriorly calculate

the frequencies for the selection of the pivot characters with higher rank values.

OrderedDict([('e’, 20872), ('n', 13219), ('i', 11831), ('r', 18669), ('t', 9894), ('s', 8238), ('h', 7337), ('a’', 6627),
("u', 6315), ('d", 5416), ('1', 4929), ('c', 4829), ('o’', 4411), ('m', 36@5), ('g', 3026), ('b', 1938), ('w', 1907), ('f', 17
74), ('k', 123@), ('z', 1213), ('u', 982), ('p', 669), ('v', 642), ('B', 588), ('a', 572), ('&', 477), ('y', 283), ('j', 21
2), ("', 37), ("a", 25)1)

DdiCt_ke)"S(['E', ‘ﬂ', 'i', 'l’", ‘t', ' ‘, 'h', ‘El'_, ‘u', 'd', ‘1'_7 =
WU A, e, Ty, e), "))

, ‘e, 'm', ‘gr, 'bt, ‘wl, ‘£, k', ‘z', 'U°, 'p’,

Figure 21: Number of character occurrences in a document.

20

3.6 Scripting

To automatize the process 2 Python scripts were coded. The steps are as follow:
Script 1:

e The script loads the 150 documents (50 per language) one by one.
e For each document 50 variations of the same text are created using the library Markovify.
e For patterns of length 8 or less the top 10 most frequent words are retrieved.

e For longer patterns 10 random patterns are extracted from the text.
Script 2:

e A list of all the input variables and its possible values are feed to the script and the library itertools is
used to create a full cross product of all the possible combinations of values.

e The script loads one of the text files generated by the previous script together with the most frequent
words and random patterns assigned to that text by the previous script.

e The values of all by one parameter are set to fixed values.

e The function timeit() is called to measure the preprocessing and searching time of the algorithm with
respect to the document and the input variables, the values of the parameters 'number’ and 'repeat’ are
set to -5 and -10 respectively. In this stage the required preprocessing space is also stored.

e the script stores the average of values and generates a data-frame row with the output of the function
timeit ().

e The same step is repeated 50 times for each combination of parameters before proceeding to the next
combination.

e The resulting data-frames are merged to firstly generate the individual datasets for each language and
posteriorly those are also merged to produce the final dataset of times for the Character Distance string-

matching algorithm.

[("und®, 4851), (‘der", 3476), ('die", 3201), ('den", 1881), ('mit", 1518),
n', 1124), ('auf', 1086)]

928 ns t 242 ns per loop (mean t std. dev. of 1@ runs, 5 loops each)

154 ms t 2.87 ms per loop (mean % std. dev. of 19 runs, 5 loops each)

877 ns t 282 ns per loop (mean t std. dev. of 18 runs, 5 loops each)
+ 1.79 ms per loop (mean t std. dev. of 1@ runs, 5 loops each)

+ 173 ns per loop {(mean * std. dev. of 18 runs, 5 loops each)
159 ms + 3.86 ms per loop (mean t std. dev. of 18 runs, 5 loops each)

Figure 22: The second script in action

The figure 22 shows the timeit() function measuring the preprocessing and searching times of the most frequent

German 3 character-length patterns with respect to the text.

21

3.7 Dataset

After all the steps mentioned in the previous section a dataset was generated from a full cross product of the
available variables and 50 instances of each set of parameter combination were generated to capture the variation

of the algorithm induced by the text.

Pivot Rank Pivot Char TextLength Language Alphabet Size Pattern Length Case Pre Space Pre Time SearchTime

0 1 e 244282 English 87 2 2 24753 0.082751 0.109219
1 1 e 244282 English a7 2 2 24753 0.080321 0.110577
2 1 e 244282 English 87 2 2 24753 0.080142 0.106833
3 1 e 244282 English a7 2 2 24753 0.080078 0.106362
4 1 e 244282 English 87 2 2 24753 0.079275 0.106915
374995 5 e 598306 Lithuanian 91 64 1 25443 0.180132 0.020387
374996 5 e 598306 Lithuanian 91 64 1 25443 0.196452 0.019980
374997 5 e 598306 Lithuanian 91 64 1 25443 0179141 0.067453
374998 5 e 598306 Lithuanian 91 64 1 25443 0.180390 0.019261
374999 5 e 598306 Lithuanian 91 64 1 25443 0.173994 0.017906

375000 rows = 10 columns

Table 3: Generated Dataset

3.7.1 Variables

Pivot Rank refers to the position in the rank of frequencies of the specific pivot character in the chosen text,
the set of possible values is (1..5)

Pivot Char is the character that represents the before mentioned position in the rank of frequencies.

Text Length is the size of the text measured by the number of characters in it.

Language in this case can be one of three values English, Lithuanian, German.

Alphabet size refers to the unique set of characters in the text.

Pattern Length is the length of the input pattern, the possible lengths are (2..8, 16,32,64).

Case indicates when the function that calculates distances is being used (1) otherwise an auxiliary function is

being used (2).

Pre Space is the extra space required for the algorithm to construct its partial index and is measured by the

number of characters in it.

Pre Time is the preprocessing time required for the algorithm to create its partial index and it is measured in

seconds.

Search Time is the time required for the algorithm to search for the matches of the pattern x in y.

22

3.8 Exploratory Data Analysis

In this subsection, a few explorations to the data will be performed to have a better understanding of its nuances,
including plotting the density function, frequency of pivot characters and plots related to preprocessing space,

preprocessing time and searching time in relation to some independent variables.

10 B
f
1
z ° [\
i
=
a
4
2
o ‘} T T T T
00 02 04 06 08
SearchTime

Figure 23: Deunsity function

figure 23 shows the density function for the searching time of our dataset where we can notice most

of the values are concentrated in the 0 - 0.2 range, we can also observe some right skewness.

3.5
3.0
2.5
& Text Length
= ext Len
@ 2.0 J
s N 420552
0,5 ' 561631
— 844260
1.0
0.5 \/
%0 %00 0.2 0.4

SearchTime

Figure 24: Density function per document

In figure 24 it can be seen that the density function has 2 peaks per each document, the explanation
for this is that sometimes we cannot use the primary function of the algorithm as there is no presence of the pivot

character in the pattern and therefore we cannot calculate distances so a slower auxiliary function is used instead.

23

Pivot Rank Text Length Alphabet Size Pattern Length Case Pre Space Pre Time SearchTime

count 375000.000000 3.750000e+05 375000.000000 375000.000000 375000.000000 375000.000000 375000.000000 375000.000000

mean 3.000000 4.528325%e+05 96.408667 14.700000 1478779 31785294667 0.139773 0.099953
std 1.414215 2.966641e+05 10.822273 18.488129 0.499481 24581.044640 0.092040 0.092696
min 1.000000 9.390400e+04 77.000000 2.000000 1.000000 3734.000000 0.027577 0.002532
25% 2.000000 2.249240e+05 90.000000 4000000 1.000000 13822.000000 0.068369 0.034840
50% 3.000000 3.688950e+05 95.000000 6.500000 1.000000 24396.500000 0.113267 0.070128
76% 4.000000 6.279250e+05 102.000000 16.000000 2.000000 42591.000000 0.195616 0.129537
max 5000000 1.474801e+086 153.000000 64.000000 2.000000 173268.000000 0611948 0.786649

Table 4: Descriptive statistics for the dataset

Table 4 shows the descriptive statistics of the dataset, some interesting characteristics can be no-
ticed, for instance the broad margin of difference between the Min and Max searching times, as well as how the
mean of the preprocessing time is higher than the mean of the searching time. Another interesting aspect seems
to be that the preprocessing memory space needed by the algorithm seems to be of around 7 to 14 percent of

the size of the provided text.

Language = English Language = Lithuanian Language = German

25000

20000
+ 15000 Language
g mam English
o wew Lithuanian

10000 German

5000 I I

l- — e | I
a e h i knor s t u a eh i knor st u a e h i

0 i kn or s tu

Pivot Char Pivot Char Pivot Char

Figure 25: Frequencies of occurrences of the pivot characters by language

In figure 25 we can observe the number of occurrences of the selected pivot characters per language,
it can be seen that only 9 characters have been used as pivots in English and in most of the cases the same five
characters (’a’,’e’,’n’,’0’,’t’) have been used. In the case of the Lithuanian language we can see that 10 characters

have been used, with two of them only been selected in seldom occasions(’k’ and 'n’). For the German language

IAY 137 000 0.0 I
717n7r7t)'

8 characters have been used and in most of the occasions it was the same 5 characters (’e

24

06 g
=
05 =
« 8§ ¢
. § B
- B .
Eﬂ.ﬂ- . gé E -
£ a8 8 O
w 0.3 L
& P i
a | LR |
0.3 . f;;\i EE;“«
qﬁ-mia -g'“
s mEgle e
0.1 ,,m_é';r{:_m'
iEe"
1]
00
02 04 LHLS 0.3 1.0 1.2 14
Text Length et

Figure 26: Pre processing time(s) in comparison with the size of the document

In figure 26 we can see the relationship between the text length by number of characters and the

preprocessing time in seconds, it can be seen a clear linear relationship between the length and time.

1e6
Pivot Rank I -
1.4 1 - » 1)
. [| L 1] - L |
1_2 L 2 [T | [] i
s 3 % % . =" .
1D . 4 . _BE 8 []
%E] . 5 .I'."I'-;-. m - .'f-" ™ -
3 0.8 - [
=
E 06
0.4
0.2

0 25000 0000 TSO000 100000 125000 150000 175000
Pre Space

Figure 27: Space in number of characters in comparison with the pivot rank and text length

As we can see on figure 27 , the required space used by the preprocessing step depends mostly
on two factors, the text length and the selection of the pivot character specially its rank as if the frequency of
the pivot character is higher then more distances will be calculated and therefore more memory space will be

required .

25

case 1 case 2
Count 196208 178792
Percentage 52.3 41.7
Search Time (avg) 0.0546 0.1496

Table 5: Primary vs Auxiliary function cases

As the proposed algorithm needs to detect more than one instance of the selected pivot character
in the pattern to be able to calculate any distance between occurrences of the pivot, a question arises about
what to do when there are no instances or only one instance of the pivot character in the pattern, in this case
an auxiliary function will be called, this function takes advantage of the preprocessing step but uses a classical
approach!” for the searching process, therefore in the cases where the secondary function is called, the searching
times will increase. In the table 5 we can see the number of cases in our dataset where the Primary function
(case 1) was used and the number of times when the auxiliary function (case 2) was called. It can be seen that
the number of times when each function is called doesn’t differ by a big margin and observing the averages of

the searching times we can see that the primary function is almost three times as fast as the auxiliary one.

175000 =«
150000

125000

100000

75000

Pre Space

50000

25000

s
M

3
Pivot Rank

i
wn

Figure 28: Pre processing space required by pivot character.

In figure 28 we can see that the selection of the pivot character affects the space in memory required
by the algorithm. The highest-ranked pivot character requires more space in memory because it is the most
frequent character, and that means that there are more occurrences of it in both the pattern and the text and

more distances need to be stored.

26

=
=

-
- -
07

L]
2
06 : a § g
. o E &
“ B - &
g oo e 22 2% §°
= i " E S e &
. | = - -
£ FLATEE R
1] '-E“ 1= ,!H - - = =
203 * ‘“":”QE_H,:; % i 2 L8
=M 5 s B 2 =
4 . 4 a : =
02 F a =2 = =
5 23 i

- ™ L] !
N EEEE

.'!Il-! (5 -

on -:l!luli- l'itlliil'i:'3 LI : :

02 04 06 LLE:] 1.0 1.2 14
Text Length et

Figure 29: Searching time (s) in comparison with the Text size (chars)

In figure 29 we can observe the searching time in seconds for different text lengths expressed in
number of characters, we can see that as the text length increases the searching time also increases in most of
the cases however there are many exceptions and therefore probably other factors are involved including the

selection of the rank of the pivot character, pattern length, alphabet size, etc.

3.9 Experimental Results

In this section firstly a model that predicts the searching times of the algorithm is explained and posteriorly

several case scenarios with different combination of input parameters will be shown 14,

As the data seemed to have linear characteristics, a simple linear regression was tried; however,
it was under-fitting; a quadratic polynomial regression was then tried, which fitted quite well to the data; one
possible explanation of this can be that because the algorithm uses two procedures depending on if there are
enough characters to calculate distances or not, the existence of the second procedure seems to affect the shape

of the density function.

3.9.1 Polynomial Regression

Polynomial is a form of regression analysis in which the relationship between the independent variable x and

the dependent variable y is modelled as an nth degree polynomial.The formula is as follows:

y(x, w) = wo + wiz + wor® + ... 4 wyr™ = ij:z:j (1)

27

Where m represents the order of the polynomial and 2/ expresses z raised to the power j. The

coefficient of the polynomial is represented by w.

In our case the value of the polynomial degree m is specified to be m=2. Then the polynomial

becomes a quadratic polynomial(2).

2
y(x, w) = wo + wix + woz” = ijxj (2)
J=0

The PolynomialFeatures class of scikit-learn is used to convert the original features into their higher

order terms. Then the training is done using Linear Regression.

Predicted and Actual Data Predicted and Actual Data

05 A

0.4 1

0.3 1

0.2 1

01

0.0 1

00 01 02 03 04 05 0.6 0o 01 02 03 04 05 0.6

Figure 30: Model with Linear Regression Figure 31: Model with Polynomial Regression

In figure 30 we can see the results from applying linear regression to the data; the model seems
to be under-fitting; the opposite can be said about the polynomial regression of degree 2 (quadratic) seen in

figure 31 which seems to fit the data quite well and is the model that was chosen.

3.9.2 Metrics

The metrics used to evaluate the model are explained in this section.

N A
MAE(y,) = > lyi — il (3)
i=1

The Mean absolute error or MAE (3) where y; represents the true value, §; represents the predicted
value and n represents the number of values. It averages the absolute differences between predictions and actual
values. It gives an idea of how wrong the predictions were. The measure gives an idea of the magnitude of the
error, but it does not explain the direction of it (e.g., over or under predicting). The Smaller the value of MAE,

the better the accuracy of the predictive model.

28

> (i —9)? (4)

i=1

MSE(y, 9) =

S|

The Mean Squared Error or MSE (4) is much like the mean absolute error in that it provides a gross
idea of the magnitude of error, y; represents the true value, g; represents the predicted value and n represents

the number of values. The Smaller the value of MSE, the better the accuracy of the predictive model.

Taking the square root of the mean squared error converts the units back to the original units of the
output variable and can be meaningful for description and presentation. This is called the Root Mean Squared

Error (or RMSE).

The R2 (or R Squared) metric provides an indication of the goodness of fit of a set of predictions

to the actual values. In statistical literature, this measure is called the coefficient of determination.

mean_squared_error(y_test, yy_pred)

©.90014498481467965538

mean_squared_error(y_train, yy_pred_train)

©.800148756482790587

mean_absolute_error(y_test, yy_pred)

0.006808364320045123

mean_absolute_error(y_train, yy_pred_train)

©.080681287809721792

r2_score(y_test, yy_pred)

©.9832528176600361

r2_score(y_train, yy_pred_train)

©.9835877235937246

Figure 32: Metrics for the model

In figure figure 32 the metric evaluation results are shown, We can see that in the case of the three
metrics the difference between the training error and the testing error is minimum. Mean Squared Error, Mean

absolute error and r2 score were applied receiving satisfactory values therefore this model was selected.

3.9.3 Model experiments

After selecting the model it was used to perform the sensitivity analysis of the robustness of the proposed
algorithm, observing how the different input values affect the resulting searching time with previously unseen

data.

29

3.9.4 Case scenarios

A common approach is used for the sensitivity analysis namely changing one-factor-at-a-time (OAT)], to see
the effect this change produces on the output, therefore sensitivity is measured by monitoring changes in the

output after fixing all of the input values with the exception of one.

In this section, several case scenarios!*® will be shown, the values of some of the input variables

will be fixed, and the output in terms of the searching time of the algorithm will be observed.

Case scenario 1: Searching time in relation to the rank of the pivot characters with different text
sizes in English. Values: Pivot Rank = (1..5), Alphabet Size = 80, Text Length = (100 different text lengths),
Language = English, Pattern Length = 8

mean std min max

Pivot Rank

1st 0067959 0038160 0012804 0126865
2nd 0073120 0.040548 0.014005 0.135182
Jrd 0072843 0.040217 0.014011 0134223
4th 0.074254 0.041005 0.014197 0136752
5th 0073462 0.040504 0.014056 0.13522%

Figure 33: Descriptive statistics for case scenario 1

It can be seen in the figure figure 34, and in the summary of figure figure 33 that in this case
scenario, there is an apparent difference in the mean of the searching times mainly between the highest-ranked
character and the others; the mean was obtained from 100 values of text sizes, and four were selected to be

plotted, in the plot the difference in search time is more noticeable in the largest text documents.

T Pattern Length=8, Language=English, Alphabet Size=80 chars.

—s— 200000 chars

—— 400000 chars
0175 —s— 700000 chars
1000000 chars
0.150
— 0125
©
E
F o100 7]
5 — B
@
@ 0075
oW
e i

0025 — + t

0.000 1 2 3 4 5

Pivot Rank

Figure 34: Plot for case scenario 1

30

Pivot Rank Language Alphabet Size Pattern Length TextLength SearchTime

0 1st English 80 8 100000 0.012804
1 2nd English 80 3 100000 0.014005
2 3rd English 80 B8 100000 0.014011
3 th English 80 B8 100000 0.014197
4 5th English 80 8 100000 0.014056
5 1st English 80 8 200000 0.024609
6 2nd English 80 B8 200000 0.026867
7 3rd English 80 B8 200000 0.0265901
8 4th English 80 8 200000 0.027382
9 5th English 80 B8 200000 0.027382
10 1st English 80 B8 300000 0.036439
1 2nd English 80 B8 300000 0.039688
12 3rd English 80 8 300000 0.039717
13 th English 80 B8 300000 0.0404584
14 5th English 80 B8 300000 0.040051
15 1st English 80 B8 400000 0.048378

Figure 35: Instances of the case scenario 1

Case scenario 2: Searching time in relation to the rank of the pivot characters with different text
sizes in German. Values: Pivot Rank = (1..5), Alphabet Size = 80, Text Length = (100 different text lengths),
Language = German, Pattern Length = 16

mean std min max

Pivot Rank

1st 0.071446 0.041414 001876 0.135593
2nd 0.063083 0.036360 0.010818 0.118328
Jrd 0.06436% 0.0368358 0010908 0121195
4th 0.067738 0.038753 0.011450 0127230
5th 0.069471 0.03%514 0011785 0.13052%

Figure 36: Descriptive statistics for case scenario 2

In this case, we switch the language to German, and the pattern length to 16, and the rest of the
variables will have the same values as the previous case. In the summary of means on figure 36 we can observe
that unlike in the previous case, now the highest-ranked character is the slowest; this would be something
interesting to investigate further as the reason might be the language, longer pattern length, or both. In figure

figure 37 we can see that the second and third pivot characters are better candidates than the typical first one.

31

G Pattern Length=16, Language=German, Alphabet Size=80 chars.

—— 200000 chars
—— 400000 chars
0175 —s— 700000 chars

1000000 chars
0.150

=
R
o

Search Time (s)
(=] [=]
3 g

0.050 —

0.025 —

0000
Pivot Rank

Figure 37: Plot for case scenario 2

Case scenario 3: Searching time in relation to the rank of the pivot characters with different
text sizes in Lithuanian. Values: Pivot Rank = (1..5), Alphabet Size = 80, Text Length = (100 different text
lengths), Language = Lithuanian, Pattern Length = 2

mean std min max

Pivot Rank

1st 0.139305 0.076796 0.025900 0.254861
2nd 0126483 0.06%281 0023531 0.230488
3rd 0116188 0.063448 0.022015 0211304
4th 0111687 0.060982 0021126 0.203086
5th 0106122 0.057526 0.020085 0.192555

Figure 38: Descriptive statistics for case scenario 3

In this case, we switch the language to Lithuanian, and the pattern length to 2, and the rest of
the variables will have the same values as the previous case. In the summary of means on figure 38 we can
observe that in this short-length pattern, the 5th pivot character is the best alternative, and once again, the
highest-ranked character is the slowest; this is also something that can be investigated further. In figure figure 39
we can see clearly the lower-ranked pivot characters are better candidates, in this case, so it seems apparent

that a short length pattern prefers a lower-ranked pivot, and this could be a good hypothesis to investigate.

32

T Pattern Length=2, Language=Lithuanian, Alphabet Size=80 chars.
—— 200000 chars

—*— 400000 chars

025 —s— 700000 chars
1000000 chars
— 020
&
o —
5 T
F o015 S
= I e
2 1
(]
7]
@D p10 _—
e ———
e S 1
0.05 —_—
000 1 2 3 4 5
Pivot Rank

Figure 39: Plot for case scenario 3

Case scenario 4: Searching time in relation to multiple pattern lengths (2..8,16,32,64) and lan-

guages (English, German, Lithuanian,) Values: Pivot Rank = 1, Alphabet Size = 120, Text Length = 1000000

In figure 40 we can see clearly how the longer patterns take considerably less time than the shorter
ones; also, there is an apparent minor but semi-constant difference between the searching times of the three

languages; therefore, it could be an interesting relationship to investigate further.

Pivot Rank=1st, Text Length=1000000 chars, Alphabet Size=120 chars.

0.30
—— English
o —— German
: —— Lithuanian
W 0.20
u
E
'—
' 0.15
e
[1+]
L]
N 0,10
0.05

2 3 4 5 6 7 8 16 32 64
Pattern Length (number of chars)

Figure 40: Plot for case scenario 4

Case scenario 5: Searching time in relation to Pattern Length per each language and with 2
different text sizes. Values: Pivot Rank = 1, Alphabet size = 80, Text Length = (1000000, 5000000), Language
= (English, German, Lithuanian), Pattern Length = (2..8,16,32,64)

33

Pivot Rank=1st, Text Length=5000000 chars, Alphabet Size=80 chars. Pivot Rank=1st, Text Length=10000000 chars. Alphabet Size=80 chars.

3.0 17
—— English —— English
2.8 —— German —— German
—— Lithuanian 16 —=— Lithuanian

2.6
C))
v 2.4 w 15
E E
= =
£ 2.2 =
£ 14
[o
& 2.0 &
1.8 13
1.6
2 3 4 5 6 7 8 16 32 64 oz 2 2 4 B 6 7 8 16 B 64
Pattern Length (number of chars) Pattern Length (number of chars)
Figure 41: Search time over a text of 1m chars length Figure 42: Search time over a text of 5m chars length

In both figure figure 41 and figure 42, we can see that when the pattern length is larger, the
searching time is reduced; this is explained by the fact that when we input larger patterns, the chances of having
several instances of the pivot characters in it are increased, as well as the chances to have unique combinations
of pivot distances which means that the algorithm would skip unwanted combinations. When talking about the

language, we can observe that when the text file is larger, the German files start to take a longer Searching time.

These were just a few of the possible combinations that can be explored further; many interesting

characteristics were found from the plots and descriptive statistics.

34

3.10 Algorithms comparison

In this section, the Characters Distance algorithm will be matched with the two classic algorithms mentioned
in previous sections of this thesis, which are the Knuth-Morris-Pratt algorithm and the Boyer-Moore-Horspool
algorithm. Following the same procedure as with the character distance algorithm, the searching times of both
of these algorithms were recorded from experiments, this way at the end, three datasets in total were generated,
one for the new algorithm, which consists of 375000 rows and two smaller datasets of 75000 rows one for the
Knuth-Morris-Pratt algorithm and one for the Boyer-Moore-Horspool algorithm. The reason for the smaller
dataset is because those two algorithms don’t require a pivot character. In figure 43 we can see a dataframe
with combined instances of the three algorithms.

Algorithm Pivotrank File Size Number of Characters Language Alphabet Size Pattern Length Search Time

0 Char Distance 1 19 1936071 English 53 R 45%316
1 Char Distance 1 19 1936071 Engsh 53 2 4530377
2 Char Distance 1 19 1936071 English 53 2 4640500
3 Char Distance 1 19 1936071 English 53 32 4590073
4 Char Distance 1 19 1936071 Engiish 53 32 4639909
5 Char Distance 1 19 1936071 Engiish 53 32 4643653
6 Char Distance 1 19 1936071 Engiish 53 32 4882030
7 Char Distance 1 19 1936071 English 53 32 4871264
8 Char Distance 1 19 1936071 English 53 2 486442
9 Char Distance 1 19 1936071 Engish 53 2 462019
10 Kmp None 19 1936071 English 53 2 632255
1 Kmp None 19 1936071 English 53 2 6327763
12 Kmp None 19 1936071 Engiish 53 32 6335027
3 Kmp None 19 1936071 Engiish 53 32 63352
u Kmp None 19 1936071 Engiish 53 32 6345591
15 Kmp None 19 1936071 English 53 32 6303044
3 Kmp None 19 1936071 English 53 2 6339993
17 Kmp None 19 1936071 English 53 2 6326840
18 Kmp None 19 1936071 Engiish 53 2 64333%
19 Kmp None 19 1936071 English 53 32 6304986
2 Horspool None 19 1936071 Engiish 53 32 4178744
2 Horspool None 19 1936071 English 53 2 4231810
2 Horspool None 19 1936071 Engiish 53 32 4150449
2 Horspool None 19 1936071 English 53 2 4101013
2 Horspool None 19 1936071 English 53 2 a1
2% Horspool None 19 1936071 English 53 2 4083449
% Horspool None 19 1936071 Engish 53 2 4025849
27 Horspool None 19 1936071 English 53 32 4005826
2 Horspool None 19 1936071 English 53 32 4085720

Figure 43: Search imes for the three algorithms

Continuing with the comparisons started in the previous section, we introduce several case scenarios
where the values of some of the input variables will be fixed, and the output in terms of the searching time of

the algorithm will be observed and compared among the three suggested algorithms.

3.10.1 Case Scenarios

Case scenario 1: Performance of the algorithms in response to the following input values: Text Length =

1212000, Language = English, Pattern Length = 7

[{"1(e)': ©.1654628284741193},
{'2(t)': ©8.3607999492669478},
{*3(a)': 0.16601524979341775},
{'4(0)": 0.37708655709866434},
{'5(n)": ©.38064670003950596},
{'Horspool': ©.1802993662422523},
{"KMP': 0.2102183416718617}]

Figure 44: Case 1 of algorithm comparisons

35

We can observe in figure 44 that the Character Distance algorithm outperforms the other two
algorithms when using the first and third in the rank of the pivots, however when selecting the other pivots the

searching time almost doubles in time.

pattern length =7, size = 1212000 chars, English

1.0
@ Chars Distance
= Kmp
Horspool
0.8
—~ 06
a
4]
£
04 ° o o
P R e R T T T T T P T T PP T R P T TP TP TR T PP TR T e
& &
0.0
1(e) at) - da) 4o) 5(n)
pivot rank

Figure 45: Plot for the case 1 of algorithm comparisons

Case scenario 2: Performance of the algorithms in response to the following input values: Text

Length = 210000, Language = German, Pattern Length = 3

pattern length =3, size = 210000 chars, German

@ Chars Distance

0200

=== Kmp
0175 Horspool
0150
0125
0
@ 0100 ®
®
£] o
0.075
B T T TT T TT T TY ET TP T T TP IIT FIT TP TP TP TTTTPTT CITTITTITY) U ITITIIT:
e
0.025
0.000 .
1(e) 2in) U 4 5s)
pivot rank

Figure 46: Case 2 of algorithm comparisons

We can observe in figure 47 that the Character Distance algorithm is slower with all but one of
the pivot characters, this confirms the presumption that the new algorithm would perform poorly with short
patterns as it cannot calculate any distances and must relay on a slower auxiliary function for the searching

process.

36

"1(e)’: ©.10012514155823737},
"2(n)’: 8.99237416763789952},
"3(1)': ©.98520948316436261},
"4(r)': 8.98416526194196194},
'5(s)': ©.93833484366815537},
"Horspool': ©.85289042112417519},
"KMP': ©.85581361462827772}]

el el

Figure 47: Plot for the case 2 of algorithm comparisons

Case scenario 3: Performance of the algorithms in response to the following input values: Text

Length = 700000, Language = Lithuanian, Pattern Length = 10

[{"1(i)': ©.89161540657992885},

"2(a)': ©.84811017085704343},
"3(s)': ©.17269980302080512},
"4(u)': ©.19998076057527214},
"5(r)': ©.19767943234182894},
"Horspool': ©.18681854857559502},
"KMP': ©.12999487994238734}]

e

Figure 48: Case 3 of algorithm comparisons

We can observe in figure 49 that the Character Distance algorithm is only faster than the other

with the top 2 pivot characters, this seems to a common case with medium length patterns.

pattern length =10, size = 700000 chars, Lithuanian

@~ Chars Distance

040

= Kmp

035 Horspool

0.30

025
=
© 0.20 o []
E ®

015

010 o

0.05 o

000

1ie) 2 o da 4o) 3(n)
pivot rank

Figure 49: Plot for the case 3 of algorithm comparisons

Case scenario 4: Performance of the algorithms in response to the following input values: Text

Length = 860000, Language = English, Pattern Length = 64

We can observe in figure 51 that the Character Distance algorithm is greatly superior to the other
algorithms when it encounters really long patterns as the positions of distance are so unique that they allow the

algorithm to discard non matching patterns faster.

37

pattern length =64, size = 860000 chars, English

0200

0175
0150
0125
—
%)
=
@ 0100
£
=]
0.075
o
0.050 ® 5 i
@ Chars Distance ®
0025 .. kmp
Horspool
0000
1ie)) _ da) 4(o) 3n)
pivot rank

Figure 50: Case 4 of algorithm comparisons

"1(e)': ©.05779447592794895},
'2(t)': ©.046353009412995647},
"3(a)': 0.93916726412717253},
"4(o)': ©.93844749415293336},
'S(n)': ©.9319578964263208076],
"Horspool': 9.09718544082716107},
"KMP': ©.1667418583202498}]

el el e T T

Figure 51: Plot for the case 4 of algorithm comparisons

3.10.2 Summary

We can observe that in most cases, the newly proposed algorithm outperforms the classical ones when the
most efficient pivot character is selected. A classifier was implemented using logistic regression to compare the
proposed Characters Distance algorithm against the Boyer Moore Horspool algorithm; we took 75000 instances
from each of the algorithms datasets and combined them for a total of 150k instances divided into a training set
of 120k instances and a test set of 30k; the metrics can be seen in figure 52 and figure 53. From the metrics,
we can see that the Characters Distance algorithm (True Positive) was of 25010 instances (predicted positive)
+ 1790 (predicted negative) against the BMH algorithm 2449 instances (predicted negative) + 1790 (predicted

positive) of the BMH algorithm. In most cases, the newly proposed algorithm is the recommended option.

True Positive True Negative
Predicted Positive { 25010] ‘ 751 |
Predicted Negative ‘ 1790 ‘ i 2449 I

Figure 52: Confusion Matrix

38

Measure Value Derivations

Sensitivity 09332 TPR=TP/ (TP +FN)
Specificity 07653 SPC =TN/(FP + TN)
Precision 0.9708 PPV =TP /(TP +FP)
Negative Predictive Value 0.5777 NPV =TN /(TN + FN)
False Positive Rate 02347 FPR =FP [(FP +TN)
False Discovery Rate 0.0292 FDR=FP/(FP +TP)
False Negative Rate 0.0668 FNR =FN/(FN + TP)

Accuracy 09153 ACC = (TP +TN)/(P+N)

F1 Score 09517 F1=2TP/(2TP + FP + FN)

Figure 53: Metrics for the logistic regression model

When the pivot character is not efficiently selected like in the case of a random selection, then the

classical algorithms can outperform the new one.

It would be of great interest to compare the new algorithm with Offline string matching algo-
rithms!'®! or algorithms that make use of automata for their matchings as those present better-searching speed

performancel'?l| although with the caveat of having to create a full index of the texts.

39

4 Conclusions

Performance analysis of the newly proposed online algorithm was presented in this paper, scanning multiple texts
and measuring its preprocessing time, space required, and searching time, with multiple values and iterations
applied to the parameters text length, pivot character, alphabet size, language, and pattern length. A dataset
was created that was used to fit a linear regression model. Comparison of the Character Distance Sampling
Algorithm was made against two of the most important classical algorithms in the field, Knuth-Morris—Pratt

and Boyer—-Moore—Horspool.

Several case scenarios were discussed in this thesis that attempt to be a guideline about when to
use different parameter values for the new algorithm depending on the situation and also when to use the new

algorithm in comparison with choosing a classical one.

The pivot character is the parameter that presented the most interesting outcomes as it seems to
be explaining an underlying structure of the languages; in future works, it would be interesting to try different
combinations when selecting the pivot character; in this thesis, the top five most frequent characters in the
specific text was the strategy used; however, several other options could be tried, for instance merging two

pivots or applying other conditions on the selection besides frequency.

Some important observations are that in cases when the algorithm doesn’t encounter any occur-
rences of the pivot character or only encounters one, the performance of the algorithm is affected drastically as
it needs to use a secondary function to complete the searching process; on the other hand, we observed that an
ideal setup for the algorithm is when it encounters large patterns with several occurrences of the pivot character

as the distances between the pivot characters will be less common and therefore easier to locate.

Another interesting observation is that the preprocessing time is directly connected with both the
text size as well as with the rank of the pivot character; choosing a low ranked pivot character will produce a
faster pre-processing time as well as occupying less space in memory but will in most cases reduce the searching

speed performance.

The parameter that affects the most in relation to searching time is the length of the text as
expected; however, we also observed that other aspects such as pattern length, language, and especially which

pivot character is selected seem to affect the outcome greatly.

The newly proposed algorithm presented better searching times than both of the other alternatives
in most of the cases with the exception of when smaller patterns of less than 4 characters were given. This fact
made that the comparisons between the algorithm parameter values itself would be produce more interesting

results than the comparison with the other algorithms.

40

4.1 Future Work

Even though interesting results have been obtained, many ideas that are outside the scope of this thesis could
be explored in future works. For instance, more Online String Matching algorithms could be added to the grid
of comparisons to have a bigger spectrum of choices, as well to add further parameter combinations such as

broadening the selection of languages, utilizing really small alphabets, lengthier patterns, and larger corpora.

One of the key parts of the newly proposed online algorithm, which is subsampling the alphabet,
could also be explored further by using a combination of pivot characters to calculate the distances instead of

having the pivot ranking of frequencies as the unique criterion for the subsampling.

Focusing on an offline approach could also be another alternative as some of the ideas as subsampling
the alphabets could work both with online and offline string matching algorithms. On the other hand, modifying
the algorithm to work not only with exact string matching problems but also with approximate methods could

greatly increase the number of experiments and the use cases proposed in this thesis.

Finally, applying these ideas into a Big Data setting could be considered as well as those applications

could benefit greatly of faster searching times.

41

References

[1] K. Al-Khamaiseh and S. ALShagarin. A survey of string matching algorithms. Int. J. Eng. Res. Appl, 4
(7):144-156, 2014.

[2] D. Cantone and S. Faro. Fast-search algorithms: New efficient variants of the boyer-moore pattern-matching

algorithm. J. Autom. Lang. Comb., 10(5/6):589-608, 2005.
[3] C. Charras. Bmh algorithm. https://www-igm.univ-mlv.fr/ lecroq/string/node14.html, 2020.
[4] C. Charras. Kmp algorithm. https://www-igm.univ-mlv.fr/~lecroq/string/node8.html, 2020.

[5] C. Charras, T. Lecrog, and J. D. Pehoushek. A very fast string matching algorithm for small alphabets and
long patterns. pages 55—64, 1998.

[6] F. Claude, G. Navarro, H. Peltola, L. Salmela, and J. Tarhio. String matching with alphabet sampling.
Journal of Discrete Algorithms, 11:37-50, 2012.

[7] M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on strings. Cambridge University Press, 2007.

[8] S. Faro and T. Lecroq. The exact online string matching problem: A review of the most recent results.

ACM Computing Surveys (CSUR), 45(2):1-42, 2013.

[9] S. Faro, T. Lecroq, S. Borzi, S. Di Mauro, and A. Maggio. The string matching algorithms research tool.
pages 99-111, 2016.

[10] S. Faro, F. P. Marino, and A. Pavone. Efficient online string matching based on characters distance text

sampling. Algorithmica, 82(11):3390-3412, 2020.

[11] S. I. Hakak, A. Kamsin, P. Shivakumara, G. A. Gilkar, W. Z. Khan, and M. Imran. Exact string matching
algorithms: Survey, issues, and future research directions. IEEE Access, 7:69614-69637, 2019.

[12] J. Holub, W. F. Smyth, and S. Wang. Fast pattern-matching on indeterminate strings. Journal of Discrete
Algorithms, 6(1):37-50, 2008.

[13] P. Kalsi, H. Peltola, and J. Tarhio. Comparison of exact string matching algorithms for biological sequences.

pages 417-426, 2008.

[14] T. Lecroq. Experimental results on string matching algorithms. Software: Practice and Ezperience, 25(7):

727-765, 1995.
[15] T. Lecroq. Fast exact string matching algorithms. Information Processing Letters, 102(6):229-235, 2007.

[16] K. Lei, Y. Ma, and Z. Tan. Performance comparison and evaluation of web development technologies
in php, python, and node. js. In 2014 IEEE 17th international conference on computational science and

engineering, pages 661-668. IEEE, 2014.

42

https://www-igm.univ-mlv.fr/~lecroq/string/node14.html
https://www-igm.univ-mlv.fr/~lecroq/string/node8.html

[17] P. D. Michailidis and K. G. Margaritis. On-line string matching algorithms: Survey and experimental
results. International journal of computer mathematics, 76(4):411-434, 2001.

[18] Ques10. Naive algorithm. https://wuw.ques10.com/p/41120/the-naive-string-matching-algorithms-1/,
2020.

[19] A. Saltelli, M. Ratto, S. Tarantola, F. Campolongo, E. Commission, et al. Sensitivity analysis practices:
Strategies for model-based inference. Reliability Engineering & System Safety, 91(10-11):1109-1125, 2006.

43

https://www.ques10.com/p/41120/the-naive-string-matching-algorithms-1/

A Search Time Table for Patterns of length 2 in English

Pivot Rank Language

Alphabet Size

Pattern Length TextLength

SearchTime

=T T= R = - e - E I -, B - R FE R %

=3 =k =3 =k & =k
h o W =

1st
2nd
3rd
4th
5th
1st
2nd
3rd
4th
5th
1st
2nd
3rd
4th
5th
1st

English
English
English
English
English
English
English
English
English
English
English
English
English
English
English
English

80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80

2

[L N e e e e L = I L = I =

100000
100000
100000
100000
100000
200000
200000
200000
200000
200000
300000
300000
300000
300000
300000
400000

0.025853
0.023544
0.021921
0.020499
0.019542
0.050545
0.0463584
0.042560
0.039825
0.039825
0.075187
0.0e8807
0.063048
0.058992
0.056112
0.099561

B Search Time Table for Patterns of length 8 in English

Pivot Rank Language Alphabet Size Pattern Length TextLength SearchTime

0 1st English 80 8 100000 0.012804
1 2nd English 80 8 100000 0.014005
2 3rd English 80 8 100000 0.014011
3 dth English 80 8 100000 0.014197
4 5th English 80 8 100000 0.014056
5 1st English 80 8 200000 0.024609
6 2nd English 80 8 200000 0.026867
7 3rd English 80 8 200000 0.026901
8 dth English 80 8 200000 0.027352
9 5th English 80 8 200000 0.027382
10 1st English 80 8 300000 0.036439
1" 2nd English 80 8 300000 0.039685
12 3rd English 80 8 300000 0.039717
13 4th English 80 8 300000 0.0404384
14 5th English 80 8 300000 0.040051
15 1st English 80 8 400000 0.048378

45

C Search Time Table for Patterns of length 16 in English

Pivot Rank Language Alphabet Size Pattern Length TextLength SearchTime

0 1st English 60 16 100000 0.011403
1 2nd English 80 16 100000 0.010980
Fi 3rd English 60 16 100000 0.011151
3 4th English 80 16 100000 0.011537
4 Gth English 80 16 100000 0.011650
3 1st English 60 16 200000 0.022436
B Znd English 80 16 200000 0.021448
7 3rd English 60 16 200000 0.021813
] dth English 80 16 200000 0.022693
9 5th English 60 16 200000 0.022693
10 1st English 80 16 300000 0.033498
1 Znd English 60 16 300000 0.031877
12 3rd English 80 16 300000 0.032402
13 dth English 60 16 300000 0.0337568
14 Gth English 80 16 300000 0.034095
15 1st English 60 16 400000 0.044670

46

D Search Time Table for Patterns of length 2 in Lithuanian

Pivot Rank Language Alphabet Size Pattern Length TextLength SearchTime

0 1st Lithuanian 80 2 100000 0.025900
1 2nd Lithuanian 80 2 100000 0.023831
2 3rd Lithuanian 80 2 100000 0.022015
3 4th Lithuanian 80 2 100000 0.021126
4 5th Lithuanian 60 2 100000 0.020085
3 1st Lithuanian 60 2 200000 0.051005
6 Znd Lithuanian 60 2 200000 0.046724
T 3rd Lithuanian 60 2 200000 0.043115
] 4th Lithuanian 80 2 200000 0.041447
9 5th Lithuanian 80 2 200000 0.041447
10 1st Lithuanian 80 2 300000 0.076003
1 Znd Lithuanian 60 2 300000 0.069443
12 3rd Lithuanian 60 2 300000 0.0e4007
13 4th Lithuanian 60 2 300000 0.061550
14 5th Lithuanian 60 2 300000 0.055414
15 1st Lithuanian 60 2 400000 0.100975

47

E Search Time Table for Patterns of length 8 in Lithuanian

Pivot Rank Language Alphabet Size Pattern Length TextLength SearchTime

0 1st Lithuanian 60 8 100000 0.013283
1 2nd Lithuanian 80 8 100000 0.014424
Fi 3rd Lithuamian 80 8 100000 0.014537
3 Ath Lithuanian 80 8 100000 0.015256
4 5th Lithuanian 60 8 100000 0.015030
3 1st Lithuanian 60 8 200000 0.025932
6 2nd Lithuanian 80 8 200000 0.028070
[3rd Lithuamian 80 8 200000 0.028320
8 4th Lithuanian 80 8 200000 0.029867
9 5th Lithuanian 60 8 200000 0.029867
10 1st Lithuanian 60 8 300000 0.038550
1 2nd Lithuanian 80 8 300000 0.041619
12 3rd Lithuamian 80 8 300000 0.041970
13 4th Lithuanian 80 8 300000 0.044335
14 5th Lithuanian 60 8 300000 0.043649
15 1st Lithuanian 60 8 400000 0.051219

48

F Search Time Table for Patterns of length 16 in Lithuanian

Pivot Rank Language Alphabet Size Pattern Length Textlength SearchTime

0 1st Lithuanian 80 16 100000 0.012040
1 2nd Lithuanian 50 16 100000 0.011558
2 3rd Lithuanian 60 16 100000 0.011837
3 4th Lithuanian 80 16 100000 0.012755
4 5th Lithuanian 60 16 100000 0.012783
5 1st Lithuanian 80 16 200000 0.024073
b6 2nd Lithuanian 80 16 200000 0.022970
[3rd Lithuanian 60 16 200000 0.023550
8 4th Lithuanian 80 16 200000 0.025497
9 5th Lithuanian 60 16 200000 0.025497
10 1st Lithuanian 60 16 300000 0.036087
11 2nd Lithuanian 80 16 300000 0.034286
12 3rd Lithuanian 60 16 300000 0.035134
13 4th Lithuanian 80 16 300000 0.038100
14 5th Lithuanian 80 16 300000 0.038172

-
n

1st Lithuanian 60 16 400000 0.0451459

49

G Search Time Table for Patterns of length 2 in German

Pivot Rank Language Alphabet Size Pattern Length TextLength SearchTime

0 1st German 80 2 100000 0.025985
1 2nd (German 80 2 100000 0.023144
2 3rd German 80 2 100000 0.021338
3 4th German 80 2 100000 0.020073
4 5th German 30 2 100000 0.019340
5 1st German 80 2 200000 0.051911
6 2nd (German 80 2 200000 0.046079
7 3rd German 80 2 200000 0.042492
8 4th German 80 2 200000 0.040070
9 5th (German 80 2 200000 0.040070
10 1st German 80 2 300000 0.077850
1 2nd German 80 2 300000 0.068963
12 3rd (German 80 2 300000 0.063560
13 4th German 80 2 300000 0.059974
14 5th German 80 2 300000 0.057761
15 1st German 30 2 400000 0.103883

50

H Search Time Table for Patterns of length 8 in German

Pivot Rank Language Alphabet Size Pattern Length TextLength SearchTime

0 1st German 60 8 100000 0.012616
1 2nd German 60 8 100000 0.012981
2 3rd German 80] 100000 0.013106
3 4th German 60 8 100000 0.013448
4 bth German 80] 100000 0.013530
5 1st German 80] 200000 0.025327
b 2nd German 60 8 200000 0.025514
[3rd German 80] 200000 0.026185
8 4th German 60 8 200000 0.0265980
9 5th German 60 8 200000 0.0265980
10 1st German 80] 300000 0.038131
1 2nd German 60 8 300000 0.038873
12 3rd German 80] 300000 0.039257
13 4th German 80 8 300000 0.040495
14 5th German 60 8 300000 0.040729
15 1st German 80] 400000 0.051110

o1

I Search Time Table for Patterns of length 16 in German

Pivot Rank Language Alphabet Size Pattern Length TextLength SearchTime

0 1st German 80 16 100000 0.011876
1 2nd German 80 16 100000 0.010618
2 3rd German 80 16 100000 0.010908
3 4th German 80 16 100000 0.011450
4 5th German 80 16 100000 0.011785
5 1st German 80 16 200000 0.024479
6 2nd German 80 16 200000 0.021819
7 3rd German 80 16 200000 0.022422
8 dth German 80 16 200000 0.023615
9 5th German 80 16 200000 0.023615
10 1st German 80 16 300000 0.037M77
11 2nd German 80 16 300000 0.033049
12 3rd German 80 16 300000 0.033930
13 4th German 80 16 300000 0.035766
14 5th German 80 16 300000 0.036761
15 1st German 80 16 400000 0.050051

52

J Plot for Patterns of length 2 in English

030 Pattern Length=2, Language=English, Alphabet Size=80 chars.

—s— 200000 chars

—=— 400000 chars

0.25 —s— 700000 chars
1000000 chars

[=]
]
o

Search Time (s)
(=

=
-
(=]

0.05 *

o.0o 1 2 3 4]

Pivot Rank

93

K Plot for Patterns of length 8 in English

Pattern Length=8, Language=English, Alphabet Size=80 chars.

0.200
—— 200000 chars
—+— 400000 chars
0175 —s— TO0000 chars
1000000 chars
0.150
£ p125
o
E —
= o100 5 _——
= —
&
@ 0075
w
0.050 — t T
0.025 . ? T T T
0.000 : P 3 4 5

Pivot Rank

54

L Plot for Patterns of length 16 in English

Search Time (s)

0186

14

012

10

Q.08

00G

004

oz

uoa

Pattern Length=16, Language=English, Alphabet Size=80 chars.

—e— 200000 chars
—=— 400000 chars
—s— 700000 chars

1000000 chars

3 4]

Pivot Rank

95

M Plot for Patterns of length 2 in German

030 Pattern Length=2, Language=German, Alphabet Size=80 chars.

—s— 200000 chars

—=— 400000 chars

0.25 —s— 700000 chars
1000000 chars

[=]
]
o

Search Time (s)
(=

=
-
(=]

0.05 =

o.0o 1 2 3 4]

Pivot Rank

56

N Plot for Patterns of length 8 in German

Pattern Length=8, Language=5GCerman, Alphabet Size=80 chars.

0200
—s— 200000 chars
—+— 400000 chars
0175
—s— T00000 chars
1000000 chars
0.150
L. p125
Q@
£
F o100 !
= - s 3 T T
&
& 0.075
w
0.050 - * * ¥ ¥
0.025 - * * * .
LLLLD 1 2 3 4 5

Pivot Rank

57

O Plot for Patterns of length 16 in German

Pattern Length=16, Language=3German, Alphabet Size=80 chars.

0200
—s— 200000 chars
—+— 400000 chars
0175 —s— TO0000 chars
1000000 chars
0150

=
—
[}
[}

Search Time (s)
g &

0.050 —_— . .

0025 L -

0.000 1 2 3 4 3

Pivot Rank

o8

P Plot for Patterns of length 2 in Lithuanian

030 Pattern Length=2, Language=Lithuanian, Alphabet Size=80 chars.

—s— 200000 chars

—=— 400000 chars

0.25 —s— 700000 chars
1000000 chars

[=]
]
o

Search Time (s)
(=

— — .
010 ’—-—-—-—._‘_____‘________-_-_

0.05 — 3

o.00 1 2 3 4 3

Pivot Rank

99

Q Plot for Patterns of length 8 in Lithuanian

Pattern Length=8, Language=Lithuanian, Alphabet Size=80 chars.

0.200
—s— 200000 chars
—+— 400000 chars
0175 —s— TO0000 chars
1000000 chars
0.150
L. p125
Q@
£ —
= 0100 + I
= —
&
& 0.075
w
0.050 — t T
0.025 . ? T T T
0.000 - 3 5 4 5

Pivot Rank

60

R Plot for Patterns of length 16 in Lithuanian

Search Time (s)

0200

0175

0150

0125

0100

0075

0030

0025

Quoo0

Pattern Length=16, Language=Lithuanian, Alphabet Size=80 chars.

—s— 200000 chars
—+— 400000 chars
—s— T00000 chars

1000000 chars

| l e —— T T
1 2 3 5
Pivot Rank

61

S Plot for Patterns of different lengths, 100k of chars

ST Pivot Rank=1st, Text Length=100000 chars, Alphabet Size=80 chars.
—— English

—— German

0.025])
—— Lithuanian

0.020

0.015

Search Time (s)

0.010

0.005

0.000 2 3 4 5 6 7 8 16 32 64

Pattern Length (number of chars)

62

T Plot for Patterns of different lengths, 1m of chars

Pivot Rank=1st, Text Length=1000000 chars, Alphabet Size=80 chars.

—— English
—— German
—— Lithuanian

search Time (s)
o o
[(%
Ln (=]

=
[
o

0.05

0.00 2 3 4 5 6 7 8 16 32 64

Pattern Length (number of chars)

63

U Plot for Patterns of different lengths, 5m of chars

Pivot Rank=1st, Text Length=5000000 chars, Alphabet Size=80 chars.

—— English
2.8 —— German
—— Lithuanian

N
I

B
(N

Search Time (s)

I
w D

=
[}

2 3 4 5 s} i 8 16 32 64
Pattern Length (number of chars)

64

V Plot for Patterns of different lengths, 10m of chars

Pivot Rank=1st, Text Length=10000000 chars, Alphabet Size=80 chars.

17
—— English
—— German
16 —— Lithuanian

=
un

Search Time (s)
=

13

12 2 3 4 5 6 7 8 16 32 64
Pattern Length (number of chars)

65

W Auxiliary Functions

deft get position(t,b,yy,i): # get original position in y

while t[b] < i:
b = b+l

p = ((b-1) * k} + yy[i] # restore the original position using k instead

return p, b

det compute distance sampling(y,n,alpha): #used for sampling the pattern

yyy = []
j=

p:

@ @

for 1 in range(l,n}:
if y[i] in alpha:
j= J+1
yyy.append(i - p)
p=1

return yyy

66

X Compute Character Distance Function

def compute character distance sampling(yy,t): #to get yyy from yy

nc = len(yy)
yyy = []
pos = []

for i in range(nc):
yyy .append(@}

for 1 in range(nc):
pos.append(8)

b =1

pos[1],b = get position(t,b,yy,1)
for 1 in range (2,nc):

pos[i],b = get position(t,b,yy,1)
yyy[i-1] = pos[i] - pos[i-1]

return yyy

67

Y SearchO Function

def search8(x,yy,y.,t): # no ocurrences of the pivot ch

cc = @

m = len(x)
nc = len(yy)
b =28

pos = []

for 1 in range(nc):
pos.append(@)

pos[@] = @
for i in range (2,nc):
pos[i],b = get_position(t,b,yy,1) #get original position in y
#print(pos[i],b)
if((pos[i] - pos[i-1]) » m): # if a pattern of lenght m can fit in t
if len(auxﬂ(x,y[{pGS[i-i]}:(pns[i])]}} > B: #from the position a
cc = cc + 1 # count matches

if(n - pos[nc-1] > m): # if can fit in (n - position of last ome range)

print ('final’,naive(x,y[(pos[nc-1]):n+1]))

return

68

Z Searchl Function

def searchil(x,yy,y,t,pivot): #one ocurrence of the pivot ch

cc = @8

m = len(x)

nc = len(yy)

a = X.index(pivot[@])
b =1

pos = []

for 1 in range(nc):

pos.append(@)
pos[@] = @
pos[1],b = get_position(t,b,yy,1)

for 1 in range (2,nc):
pos[i],b = get position(t,b,yy,i) #get original position in y
#print(pos[i],b)
if((pos[i-1] - pos[i-2]) » a - 1 and (pos[i] - pos[i-1]) > m - a): #
cc = cc + (verify(x,m,y,pos[i-1] - a))

if((pos[nc-1] - pos[nc-2]) > a - 1 and (n - pos[nc-1]) >m - a): # if a
cc = cc + (verify(x,m,y,pos[nc-1] - a))

#print ("number of matchesl: ",cc) # count of matches

return

69

	Abstract
	List of figures
	List of tables
	List of abbreviations
	Introduction
	Objectives
	Aim
	Goals

	Background
	String Matching Algorithms
	Classification of String-Matching Algorithms

	A Characters Distance Sampling Algorithm
	Pseudocode

	Classic Algorithms
	Brute force algorithm
	Knuth-Morris-Pratt
	Boyer-Moore-Horspool algorithm

	Experimental Evaluation
	Character Distance Algorithm Implementation
	Concepts
	Experiments
	Parameters
	Text Corpora
	Scripting
	Dataset
	Variables

	Exploratory Data Analysis
	Experimental Results
	Polynomial Regression
	Metrics
	Model experiments
	Case scenarios

	Algorithms comparison
	Case Scenarios
	Summary

	Conclusions
	Future Work

	References
	Appendices
	Search Time Table for Patterns of length 2 in English
	Search Time Table for Patterns of length 8 in English
	Search Time Table for Patterns of length 16 in English
	Search Time Table for Patterns of length 2 in Lithuanian
	Search Time Table for Patterns of length 8 in Lithuanian
	Search Time Table for Patterns of length 16 in Lithuanian
	Search Time Table for Patterns of length 2 in German
	Search Time Table for Patterns of length 8 in German
	Search Time Table for Patterns of length 16 in German
	Plot for Patterns of length 2 in English
	Plot for Patterns of length 8 in English
	Plot for Patterns of length 16 in English
	Plot for Patterns of length 2 in German
	Plot for Patterns of length 8 in German
	Plot for Patterns of length 16 in German
	Plot for Patterns of length 2 in Lithuanian
	Plot for Patterns of length 8 in Lithuanian
	Plot for Patterns of length 16 in Lithuanian
	Plot for Patterns of different lengths, 100k of chars
	Plot for Patterns of different lengths, 1m of chars
	Plot for Patterns of different lengths, 5m of chars
	Plot for Patterns of different lengths, 10m of chars
	Auxiliary Functions
	Compute Character Distance Function
	Search0 Function
	Search1 Function

