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Abstract

Alvaro Rivera Montano, Sensitivity Analysis of Online String-Matching Algorithms: Master's Thesis/

Supervisor Assoc. Prof. Dr. Viktor Skorniakov; Vilnius University, Faculty of Mathematics and Infor-

matics.

String-matching is a well known and studied problem in computer science that allows us to �nd occurrences of a pattern

inside a text. As datasets grow larger every year, it becomes more and more important to know which algorithms work

better in speci�c situations, as there is not a single algorithm that will be well suited for every scenario. The aim of

this paper is to analyse a new algorithm proposed by Faro et al. [10], which takes the approach of subsampling the text

and patterns before calculating the distance of the elements in the subsample. Sensitivity analysis is used to allow us to

test the robustness of the proposed algorithm. An extensive experimental comparison of the parameters, together with

a comparison with classical algorithms, was presented. A dataset was generated from the performance measurements

applied during the experiments and in addition, some suggestions about case scenarios of when to use the newly proposed

algorithm.

Key words : String matching, online string matching, sensitivity analysis, characters distance, characters sampling,

experimental evaluation, algorithm comparison, dataset generation.
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1 Introduction

String matching is a well known and studied problem in computer science; It consists of �nding the occurrences

of a pattern x of length m in a text y of length n. Both x and y are built over the same alphabet of size s.

The �elds where applications of string matching are being used are quite extensive and include

diverse areas such as text processing, speech recognition, information retrieval, among others. For instance in

linguistics and literature is used to search for patterns in huge corpus and dictionaries, in biology to search for

amino acid sequence patterns [13], and in computer science to search for a large amount of data that are stored

in linear �les. Therefore there is a constant need for more and faster solutions to the text searching problem.

O�ine and online solutions exist depending on if the text or otherwise the pattern is provided

�rst and if an index is required to preprocess the text. Indexes that are realized by data structures are used

by the o�ine solutions, which try to drastically speed up searching by preprocessing the text and building a

data structure that allows searching in time proportional to the length of the pattern. For this reason, such

kind of problem is known as indexed searching [9]. Among the most e�cient solutions to such a problem, we

mention those based on su�x trees. However, despite their optimal time performance, the space requirements

of full-index data structures, as su�x-trees and su�x-arrays, are from 4 to 20 times the size of the text, and

such space requirement is too large for many practical applications.

A more practical solution is the online string matching approach, which utilizes partial or no indexes

at all. The Online solution assumes the text is not preprocessed, and thus they need to scan the text online

when searching. In this thesis, the focus is on the performance of online string matching algorithms. Various

online string-matching algorithms have been proposed throughout the years, being two of the most well known

the Knuth-Morris-Pratt algorithm and the Boyer-Moore algorithm, especially with its Horspool variation, this

kind of algorithms have followed the approach of the original Naive algorithm but using auxiliary functions to

skip some of the characters that are being scanned.

A di�erent approach to the online string machine problem was introduced by [6], which consists in

the construction of a succinct sampled version of the text and in the application of any online string matching

algorithm directly on the sampled sequence. The drawback of this approach is that any occurrence reported in

the sampled-text may require to be veri�ed in the original text. However, a sampled-text approach has a lot of

good features: it may be easy to implement, may require little extra space, and may allow fast searching.

More recently [10] extended the works of [6] by introducing the idea of the Character Distance of

Pivots algorithm, which shows promising results; however, not many experiments have been conducted to cor-

roborate that this could indeed be a good alternative to more classical string matching algorithms. In this thesis,

the focus is on this new online algorithm and its comparison with the standard algorithms of the �eld.
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1.1 Objectives

1.1.1 Aim

The aim of this thesis is to investigate the performance of the online string matching algorithm suggested by

Faro et al. [10] to evaluate it in comparison with standard string matching algorithms.

1.1.2 Goals

� To measure the performance of the algorithm in reference to Preprocessing time, Searching Time, and

Space requirements.

� To perform experiments (measured primarily by the time of execution) on diverse factors such as language,

text size, and pattern length.

� To generate a dataset from the results of the experiments.

� To compare the results obtained from the experiments with the results of standard string matching algo-

rithms.

� To summarize the results obtained from both the parameter experiments as well as the comparison between

algorithms.

� To recommend case scenarios when the use of a speci�c algorithm could be useful.

The novelty of this thesis stems from the fact that the algorithm suggested by Faro et al. [10] is

brand new and, consequently, investigations of such kind were not performed; furthermore, an extensive analysis

of the subsampling string matching approach is non-existent, and this thesis could be an initial step to lead to

further investigations of the topic.

3



2 Background

In this section, some concepts related to string-matching algorithms are discussed, as well as their categories

and use cases to posteriorly introduce the main algorithm that will be analysed in the experimental section of

the thesis.

2.1 String Matching Algorithms

Finding all the occurrences of a string in a text is known as string matching, and it is a very important subject

that belongs to the domain of text processing. It has been extensively studied and applied in the �eld of computer

science, mainly due to its various practical applications in di�erent areas like information analysis and retrieval.

String matching algorithms are often used as part of more complex software systems [8]. Many programs in

di�erent �elds of science require to match patterns; among these, we can mention information retrieval, biology,

and speech recognition.

Figure 1: A character comparison string-matching algorithm [11]

2.1.1 Classi�cation of String-Matching Algorithms

Exact string matching algorithms are the most common type of matching algorithms; in this case, the algorithm

expects a full match of the string; however, there is another matching alternative, the approximate string

matching algorithm, which searches for a substring that is close to the given pattern string, how the closeness

degree is calculated depends on the application and complexity of the problem. For this thesis, the focus is on

exact string matching.

4



Figure 2: Taxonomy of the string-matching algorithms [11]

An important question in string matching that will a�ect the type of preferred solution is about

which string, the pattern, or the text, is given �rst. In the case, the text is given �rst, and a full indexing of

it is created then we call this O�ine string-matching, otherwise in the case when the pattern is given �rst, and

we can process the pattern at the moment of running time then this case would be considered as Online string

matching. In this thesis, we are interested only in analysing this kind of algorithms. Partial indexing of the text

for online string matching algorithms [1] is also common, which is the case of the algorithm that will be analysed

in this thesis. An example of online string-matching algorithm is the one that utilise the approach of automata

like we can see in �gure 3 in this case, a �nite automaton tries to match the pattern 'ababc' over the alphabet

Sigma= a,b,c. However, in this work, the focus is on Online algorithms [17] of the most common type, which are

the Character Comparison algorithms [7], which compare characters one by one, like the one showed in �gure 1 .

Figure 3: Example of an Automaton

5



2.2 A Characters Distance Sampling Algorithm

In this section, the main algorithm of this thesis is presented, proposed by Faro [10], extending the work done

by Claude [6] with the sampled string matching approach. In the following subsections, the ideas introduced by

Faro et al. are explained.

Let y be the input text, of length n, and let x be the input pattern, of length m, both over the

alphabet Σ of length σ. We refer to x[i] as the i-th character of the string x starting at position 1, for 1 ≤ i ≤ m

Firstly a sampled alphabet Σ̄ ⊂ Σ is de�ned; in this algorithm, the sampled alphabet is called the

set of pivot characters. The set Σ̄ in practice is just reduced to a single character [5]; therefore, for the rest of

the paper, we can assume that |Σ̄| = 1 and this set composed of just one character is known as the pivot character.

Figure 4: Character Distance Algorithm

In �gure 4, we can see a basic example of how the algorithm works; initially, we select a pivot

character; after that, the text will be subsampled to only keep the positions of that character. In the selection

of the pivot character, one option could be to just rank the frequencies of characters and select one of the most

frequent ones. In the example, the pivot is the character 'a'; the same is done with the pattern we want to

search. After this, the distances between the occurrences of the characters are kept and stored in an auxiliary

table; up to this point is what we call preprocessing time, which is one of the performance values measured in

this thesis. This is done once per document unless we changed the pivot character.

After the initial step, we enter into the searching phase, the most important performance measure-

ment, where the algorithm checks if there are occurrences of the distances of the pattern in the distances of the

text, in our example, the pattern only has one distance of value 2, and there are three occurrences of that value

in the distances of the text. After this, with the help of the auxiliary table, we check the original text only for

those three candidate distances using a classical one by one character matching function and this allows us to

avoid having to check the whole document.
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We now need to de�ne the concept of bounded position sampling, which is the approach used by

the algorithm.

De�nition 1 (The Bounded Position Sampling) Let y be a text of length n, let C ⊆ Σ be the

set of pivot characters and let nc be the number of occurrences of any character of C in the input text y. First

we de�ne the position function, δ : {1, . . . , nc} → {1, . . . , n} where δ(i) is the position of the i-th occurrence of

any character of C in y. Assume now that k is a given threshold constant. We defne the k-bounded position

function, δk : {1, . . . , nc} → {0, . . . , k − 1}, where δk(i) is the position (modulus k) of the i-th occurrence of any

character of c in y. Formally we have

δk(i) = [δ(i) mod k], for each i = 1, . . . , nc

The k-bounded-position sampled version of y, indicated by ẏ , is a numeric sequence, of length nc

de�ned as

ẏ = 〈δk(1), δk(2), . . . , δk (nc)〉

Then we have 0 ≤ ẏ[i] < k, for each 1 ≤ i ≤ nc

De�nition 2 (The Characters Distance Sampling) Let c ∈ Σ be the pivot character, let

nc ≤ n be the number of occurrences of the pivot character in the text y and let δ be the position function of

y. We de�ne the characters distance function ∆(i) = δ(i+ 1)− δ(i), for 1 ≤ i ≤ nc − 1, as the distance between

two consecutive occurrences of the character c in y. The characters-distance sampled version of the text y is a

numeric sequence, indicated by ȳ, of length nc − 1 de�ned as:

ȳ = 〈∆(1),∆(2), . . . ,∆ (nc − 1)〉

Then we have: ∑nc−1
i=1 ∆(i) ≤ n− 1

To be able to retrieve the original i-th position δ(i), of the pivot character, from the i-th element

of the k-bounded position sampled text ẏ , a block-mapping table τ is also maintained which stores the indexes

of the last positions of the pivot character in each k-block of the original text, for a given input block size k.
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Is assumed that the text y is divided in [n/ke blocks of length k, with the last block containing (n

mod k) characters. Then τ [i] = j if the j-th occurrence of the pivot character in y is also its last occurrence in

the i-th block. If the i-th block of y does not contain any occurrence of the pivot character then r[i] is set to be

equal to the last position of the pivot character in one of the previous blocks.

2.2.1 Pseudocode

In this section, all the procedures that compose the algorithms are explained, including the auxiliary functions

as well as the procedures that are used depending on the number of pivot character occurrences that exist in

the input pattern.

Figure 5: Pseudocode for the functions Get-Position and Compute-Character-Distance

In the �gure �gure 5, the pseudocode on the left shows the function Get-Position which, computes

the index of the block that corresponds to the i-th occurrence of the pivot character in y, in other words, we

obtain the position of the character in the original text.

The pseudocode of the function on the right named Compute-Character-Distance-Sampling com-

putes the character distance sampled version of y, which is obtained from ẏ. So we get ȳ which will be use in

our main Search function to process the distances between occurrences of the selected pivot character in y.

Figure 6: Pseudocode for the functions Compute-Distance-Sampling and Compute-Position-Sampling
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In the �gure �gure 6, on the left we have the pseudocode for the function Compute-Distance-

Sampling which is used for the construction of the character distance sampling version of a text y. In practice,

this is used inside the search functions as a �ltering phase to process the distances of the pivot character in the

pattern x and is calculated online.

On the right, we have the pseudocode for the function Compute-Position-Sampling, which con-

structs the character position sampling version of a text y. This is the main function in the preprocessing stage,

and the entry point to the work�ow of the algorithm, the parameters that need to be provided are the text y, the

alphabet from where we will select the pivot character, and the constant k, which is the value for the segment

size.

Figure 7: Pseudocode for the functions Verify and RestoringVerify

In the �gure �gure 7, the pseudocode on the left shows the function Verify which, as the name

indicates, veri�es the occurrences of a pattern x of length m, in a document y, of length n, starting at the

provided position s. This function is used inside our main Search procedure to verify if candidate matching

distances of a pattern and a text contains also matching characters; it simply compares the substring of the text

y[s · · · s+m− 1] and the pattern x, character by character, going from left to right until a mismatch is found or

the two strings completely match if so it reports an occurrence at the position s. The time complexity for this

function is O(m) in the worst case.

The pseudocode on the right of In the �gure �gure 7, shows the function RestoringVerify which

uses a string matching automaton of x to remember the positions of the text which have been already processed

during a previous call yo the Verify function.

Figure 8: Pseudocode for the function Search-0
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Figure �gure 8 shows the pseudocode of the function Search-0 for the sampled string matching problem, this

function will be called when there are no occurrences of the pivot character c in the pattern x, so mc equals to

zero, in this case, there will be no distances to calculate, so this would be the �rst kind of exception case of the

algorithm. Under this assumption, the algorithm searches for the pattern x in all substrings of the original text,

which do not contain the pivot character.

We can identify those substrings by the intervals [δ(i) + 1 · · · δ(i + 1) − 1], for each 0 ≤ i ≤ nc

assuming that δ(0) = 0 and δ (nc + 1) = n+ 1

Speci�cally, for each 1 ≤ i ≤ nc +1 the algorithm checks if the interval δ(i)−δ(i−1) is greater than

c. If this is the case then the algorithm searches for x in the substring of the text y[δ(i− 1) + 1 · · · δ(i)− 1] using

any classical matching algorithm. Otherwise we simply skip this substring as no occurrences of the pattern were

found in the searched position. The worst-case and average time complexity of the Search-0 algorithm are O(n)

and O (n logam/m), respectively.

Figure 9: Pseudocode for the function Search-1

Suppose now the case where the pattern x contains a single occurrence of the pivot character c, so that the

length of the sampled version of the pattern is still equal to zero. The algorithm e�ciently takes advantage of

the information precomputed in ẏ using the positions of the pivot character c in y as an anchor to locate all

candidate occurrences of x.

Figure �gure 9 shows the pseudocode of the algorithm which searches for all occurrences of a pattern

x, when the pivot character c occurs only once in it. Speci�cally, let α be the unique position in x which contains

the pivot character, we assume that x[α] = c and x[1 · · ·α−1] does not contain c. Then, for each 0 ≤ i ≤ nc−1,

the algorithm checks if the interval δ(i − 1) − δ(i − 2) is greater than α − 1 and if the interval δ(i) − δ(i − 1)

is greater than m − α . So if that case happens then algorithm will simply check if the substring of the text

y[δ(i)− α+ 1 · · · δ(i) +m− α] is equal to the pattern, otherwise the substring is skipped. As before we assume

that δ(0) = 0 and δ (nc + 1) = n+ 1. Finally the last alignment of the pattern in the text is veri�ed separately

at the end of the main cycle.
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Figure 10: Pseudocode for the function Search-2+

If the number of occurrences of the pivot character in x are 2 or more, i.e. mc ≥ 2 and m̄ ≥ 1)

then the algorithm uses the sampled text ȳ to compute on the �y the character-distance sampled version of y

and use it to search for any occurrence of x. This is used as a �ltering phase for locating in y any candidate

occurrence of x.

�gure 10 shows the pseudocode of the algorithm which searches for all occurrences of a pattern x,

when the pivot character c occurs more than once in it. First the character distance sampled version of the

pattern x is computed. Then the algorithm searches for x in y using any exact online string matching algorithm.

Notice that y can be e�ciently retrieved online from the sampled text ẏ. For each occurrence position j of x̄ in

ȳ an additional procedure must be run to check if such occurrence corresponds to a match of the whole pattern

x in y . For this purpose the algorithm checks if the substring of the text y[δ(j)−α · · · δ(j)−α+m− 1] is equal

to x , where α , as before, is the �rst position in x where the pivot character occurs. The value of δ(j) can be

obtained in constant time from ẏ[j] .

2.3 Classic Algorithms

In this section, some traditional string-matching algorithms are explained, initially the basic Naive algorithm,

and posteriorly two of the most well known classical algorithms, the Knuth�Morris�Pratt algorithm, and the

Boyer-Moore-Horspool. These algorithms will be posteriorly compared with the Character Distance algorithm

in the experiments section of the thesis.

11



Figure 11: List of comparison based string-matching algorithms [9]

2.3.1 Brute force algorithm

Features

� It doesn't need to preprocess the pattern nor the text.

� The space required by the algorithm is constant.

� The sliding window shift always moves one position to the right.

� Comparisons can be made in any order.

� Searching stage in O(m× n) time complexity.

� 2n expected text character comparisons.

The naive algorithm, also known as brute force, e�ectuates the character check at all positions in

the text between position one and n, whether an occurrence of the candidate pattern begins there or not. After

each attempt, the sliding windows will be shifted to the right by exactly one position. The naive algorithm does

not require a preprocessing stage for the text nor the pattern; the required space in memory required by the

algorithm will be constant. During the searching stage, the text character comparisons can be e�ectuated in

12



Figure 12: Example of shift and matching in the Naive Algorithm. [18]

any order.

2.3.2 Knuth-Morris-Pratt

Features

� The algorithm performs the comparison from left to right.

� The Preprocessing stage in O(m) space and time complexity.

� Searching stage in O(m+n) time complexity.

� The maximum of character comparisons during the searching stage is 2n-1.

.

Figure 13: Shift in the Knuth-Morris-Pratt algorithm. [4]

Unlike with the case of the naive algorithm, when the KMP encounters a new mismatch, it performs

some analysis on the substring before trying to �nd its occurrences in the text. Backtracking on the pattern

never occurs with this algorithm as it avoids to compare a second time a character that was already involved in

another comparison with some character of the pattern.
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2.3.3 Boyer-Moore-Horspool algorithm

Features

� Improved and simpli�ed version of the Boyer-Moore algorithm.

� Uses the bad-character shift auxiliary table.

� Easy and straightforward to implement.

� Preprocessing phase in O(m+ σ) time and O(σ) space complexity.

� Searching phase in O(m× n) time complexity.

� The mean number of comparisons for a single character is between 1/σ and 2/(σ + 1)

.

Figure 14: Example of the Searching Phase of the Horspool Algorithm. [3]

The execution time in the case of the Boyer-Moore-Horspool algorithm is linear in relation to the

length of the pattern that is being searched. BMH has a lower execution time than many of the popular string-

searching algorithms. One of many variations of the Boyer-Moore [2] algorithm, Horspool uses the auxiliary

table for bad matches to exclude the positions where the substring can't match the pattern and skip the bad

characters; this allows the algorithm to perform better when it can utilize more often the auxiliary table like in

the cases of large input patterns, therefore the larger the pattern, the faster the searching process.
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3 Experimental Evaluation

In this section, the experimental evaluation of the algorithm and its required steps to accomplish it are explained.

After the initial step of implementing the newly proposed algorithm, several text �les are collected, and multiple

versions of each document are created; posteriorly, those documents are used together with multiple combinations

of input parameters to evaluate the performance of the searching algorithm under di�erent case scenarios and

to record the outputs to generate a dataset that will be used for data exploration, model �tting, analysis,

summarization and �nally for performance comparison with other algorithms.

3.1 Character Distance Algorithm Implementation

A publicly available working code for the algorithm didn't exist; therefore, it was required to implement the algo-

rithm from scratch for this thesis, which was done using Python 3. Several functions were implemented following

the notes and pseudo code from the original document and posteriorly tested thoroughly using the library Pytest.

Function Description

Search0
Secondary function, it is triggered when there are no instances

of the pivot character in the input pattern.

Search1
Secondary function, similar to Search0 is triggered when there is

only one instance of the pivot character in the pattern.

Search 2+
The main function, it uses the character distances to �nd occurrences

of the pattern in the text.

Table 1: Search functions

In table 1 the three searching functions can be seen; the function Search2+ will be used when

there are at least two pivot characters present in the pattern; otherwise, the other two functions would be called

depending on if there is one or zero occurrences of the pivot character.

Function Description

get_position Gets the original position in the input text.

compute_position_sampling Computes the preprocessing step.

compute_distance_sampling Samples the distances for the pattern.

compute_character_distance_sampling Computes the Characters Distance sampled version of the text.

Verify Veri�es a match.

Table 2: Auxiliary functions.
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In table 2 the auxiliary functions are shown. Some are used to preprocess the text and pattern,

others to sample the positions of the characters where the pivot character is present, to restore the location of

the character in the original text and to verify matches.

Figure 15: Pre processing stage results.

The Preprocessing space required by the Character Distances String-Matching will depend not only

on the size of the document but also on the number of occurrences of pivot character; a typical value for the 1st

ranked pivot would be around 8 percent of the size of the document.

In �gure 15 we can observe an example of a typical output for the preprocessing function com-

putePositionSampling, we can see the array storing the distances between the occurrences of the chosen pivot

character, bounded by the segment constant 'k,' which in this case is 256.

Figure 16: Maximum and average characters distances [10]

The �gure 16 shows the average and maximum distances between two consecutive occurrences,

computed for the most frequent characters in a text. On the x-axis, we have the characters which are ordered

on the base of their rank value; on the y-axis, the searching time. The red line represents the bound k = 256.
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3.2 Concepts

A sensitivity analysis of string matching algorithms allows us to test the robustness of the results of a model

in the presence of input uncertainty. Some important aspects to take into consideration while measuring the

performance of algorithms and that have been applied during the experiments are:

E�ciency measurement: In this case, we need to run the algorithm with the same parameters

multiple times to compute the mean of values obtained over those several running times; we do this to minimize

errors generated while measuring.

Stability Measurement: It refers to the variation that exists from the average of the running

times, is computed as the standard deviation of those evaluated times during the observations. A big number

of string matching algorithms seem to present low stability when encountering short patterns and the opposite

in the presence of really long ones.

Flexibility measurement: Refers to how well the algorithm can adapt when it encounters di�er-

ent kinds of input data, for example, if it can maintain a good performance while dealing with both small and

large texts, di�erent kind of alphabet sizes, input patterns of various lengths, etc. Several algorithms can obtain

excellent performance when dealing with a certain speci�c type of input data, but they underperform in other

situations.

3.3 Experiments

The experiments were executed locally on a PC running Intel Core i7 4790 CPU with a @3.6GHz clock speed and

32 Gb of memory ddr3 3200 MHz. The operating system used was Windows 10, and during the experiments, only

the regular background processes ran to decrease random variation, the time results were averages of 50 runs.

The algorithms presented in the previous section were implemented using the Python programming language.

For the methodology in all tests, a one-factor-at-a-time experimental design was followed [19] to

ensure the accuracy and e�ectiveness of tests and case scenarios testing that aims to simulate realistic user

behavior. Comparisons have been performed in terms of pre-processing times, searching times, and space

consumption; 50 instances of each set of parameters were generated to capture the variation of the algorithm

when induced by the text itself and to be able to summarize the mean performance easily for each combination.

The Python function timeit() was used to obtain the pre-processing and searching times, and the

values of the parameters 'number' and 'repeat' were set to -5 and -10 respectively to have more representative

values and to comply with the principles of e�ciency and stability mentioned before. The number parameter

controls how many executions are done for each timing, and it helps to get representative timings as sometimes,

at the moment of the speci�c measurement, some other application running in the background might a�ect the re-

sults. The 'repeat' argument controls how many timings will be produced, and its use is to get accurate statistics.
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Figure 17: Performance results obtained from the timeit() function

In �gure 17 we can see an example of the results of measuring one combination of input parameters;

the measurement was e�ectuated three times with two loops each one, and the values for the best, worst, average,

and standard deviation were obtained, as well as the individual measuring values. For the experiments, the

average value was taken.

Figure 18: Performance of the Algorithms in the case of long patterns

The �gure 18 shows an example of a search time comparison in the case of a long pattern, the

comparison is done between pivot characters and also with the KMP and Horspool algorithms.

3.4 Parameters

The parameters selected to test the robustness of the algorithm are:

Text length: Measured in number of characters, at �rst look is the variable that will most likely

a�ect the searching time the most. Di�erent text �les of variate sizes have been selected and are explained in

the following subsection.
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Pattern length: Measured in number of characters, processed online by the algorithm to search

for occurrences of the pivot character in it. Several length values are used.

Language: Multiple texts of di�erent genres in 3 di�erent languages are used as input parameters

(English, German and Lithuanian).

Alphabet size: Measured by number of unique characters in the text, medium to large sizes of

alphabets were used. The alphabet was extracted from each text.

The pivot rank: The top 5 most frequent characters in the text are selected as input values and

they are used by the proposed algorithm to calculate de distances between the occurrences of the character in

the text.

The segment size: Parameter 'k' used by the characters distance algorithm has been set to 256

for all the experiments as this is the value recommended by the author of the paper for non trivial analyses as

it allows to store a character distance of up to 256 in one byte and that way resources are optimized.

Figure 19: Dataframe with �xed parameters.

In �gure 20 we can see an example of a dataframe showing performance measurements of the

searching times with a �xed set of parameters repeated several times for two di�erent algorithms.
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3.5 Text Corpora

For this work, two main text repositories were used to obtain the texts from, Project Gutenberg, which is an

online repository of ebooks; this was the source for the English and German texts, and the second repository

used was epaveldas.lt, which was used to obtain the texts in Lithuanian.

Figure 20: Some of the collected Lithuanian texts

In total, 150 texts were collected, 100 from the Project Gutenberg repository and 50 from the

epaveldas.lt repository. Each one of the three languages (English, German, Lithuanian) counts with 50 books.

The �le sizes of the documents vary between 100kb up to 5Mb, and the alphabet size varies from 77 to 153

(Alphabets also include symbols).

The library Markovify was used to create 50 di�erent versions for each book in the three languages;

the goal is to be able to create simulated texts that retain a natural language structure and to produce several

instances of the same set of parameters but with di�erent texts.

The top 10 most frequent words of each document for patterns of lengths that range from 2 to 8

were also stored in an extra �le to be used posteriorly by the text processing script.

A count of the occurrences of each character in the document is also applied to posteriorly calculate

the frequencies for the selection of the pivot characters with higher rank values.

Figure 21: Number of character occurrences in a document.
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3.6 Scripting

To automatize the process 2 Python scripts were coded. The steps are as follow:

Script 1:

� The script loads the 150 documents (50 per language) one by one.

� For each document 50 variations of the same text are created using the library Markovify.

� For patterns of length 8 or less the top 10 most frequent words are retrieved.

� For longer patterns 10 random patterns are extracted from the text.

Script 2:

� A list of all the input variables and its possible values are feed to the script and the library itertools is

used to create a full cross product of all the possible combinations of values.

� The script loads one of the text �les generated by the previous script together with the most frequent

words and random patterns assigned to that text by the previous script.

� The values of all by one parameter are set to �xed values.

� The function timeit() is called to measure the preprocessing and searching time of the algorithm with

respect to the document and the input variables, the values of the parameters 'number' and 'repeat' are

set to -5 and -10 respectively. In this stage the required preprocessing space is also stored.

� the script stores the average of values and generates a data-frame row with the output of the function

timeit().

� The same step is repeated 50 times for each combination of parameters before proceeding to the next

combination.

� The resulting data-frames are merged to �rstly generate the individual datasets for each language and

posteriorly those are also merged to produce the �nal dataset of times for the Character Distance string-

matching algorithm.

Figure 22: The second script in action

The �gure 22 shows the timeit() function measuring the preprocessing and searching times of the most frequent

German 3 character-length patterns with respect to the text.
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3.7 Dataset

After all the steps mentioned in the previous section a dataset was generated from a full cross product of the

available variables and 50 instances of each set of parameter combination were generated to capture the variation

of the algorithm induced by the text.

Table 3: Generated Dataset

3.7.1 Variables

Pivot Rank refers to the position in the rank of frequencies of the speci�c pivot character in the chosen text,

the set of possible values is (1..5)

Pivot Char is the character that represents the before mentioned position in the rank of frequencies.

Text Length is the size of the text measured by the number of characters in it.

Language in this case can be one of three values English, Lithuanian, German.

Alphabet size refers to the unique set of characters in the text.

Pattern Length is the length of the input pattern, the possible lengths are (2..8, 16,32,64).

Case indicates when the function that calculates distances is being used (1) otherwise an auxiliary function is

being used (2).

Pre Space is the extra space required for the algorithm to construct its partial index and is measured by the

number of characters in it.

Pre Time is the preprocessing time required for the algorithm to create its partial index and it is measured in

seconds.

Search Time is the time required for the algorithm to search for the matches of the pattern x in y.
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3.8 Exploratory Data Analysis

In this subsection, a few explorations to the data will be performed to have a better understanding of its nuances,

including plotting the density function, frequency of pivot characters and plots related to preprocessing space,

preprocessing time and searching time in relation to some independent variables.

Figure 23: Density function

�gure 23 shows the density function for the searching time of our dataset where we can notice most

of the values are concentrated in the 0 - 0.2 range, we can also observe some right skewness.

Figure 24: Density function per document

In �gure 24 it can be seen that the density function has 2 peaks per each document, the explanation

for this is that sometimes we cannot use the primary function of the algorithm as there is no presence of the pivot

character in the pattern and therefore we cannot calculate distances so a slower auxiliary function is used instead.
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Table 4: Descriptive statistics for the dataset

Table 4 shows the descriptive statistics of the dataset, some interesting characteristics can be no-

ticed, for instance the broad margin of di�erence between the Min and Max searching times, as well as how the

mean of the preprocessing time is higher than the mean of the searching time. Another interesting aspect seems

to be that the preprocessing memory space needed by the algorithm seems to be of around 7 to 14 percent of

the size of the provided text.

Figure 25: Frequencies of occurrences of the pivot characters by language

In �gure 25 we can observe the number of occurrences of the selected pivot characters per language,

it can be seen that only 9 characters have been used as pivots in English and in most of the cases the same �ve

characters ('a','e','n','o','t') have been used. In the case of the Lithuanian language we can see that 10 characters

have been used, with two of them only been selected in seldom occasions('k' and 'n'). For the German language

8 characters have been used and in most of the occasions it was the same 5 characters ('e','i','n','r','t') .

24



Figure 26: Pre processing time(s) in comparison with the size of the document

In �gure 26 we can see the relationship between the text length by number of characters and the

preprocessing time in seconds, it can be seen a clear linear relationship between the length and time.

Figure 27: Space in number of characters in comparison with the pivot rank and text length

As we can see on �gure 27 , the required space used by the preprocessing step depends mostly

on two factors, the text length and the selection of the pivot character specially its rank as if the frequency of

the pivot character is higher then more distances will be calculated and therefore more memory space will be

required .
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case 1 case 2

Count 196208 178792

Percentage 52.3 47.7

Search Time (avg) 0.0546 0.1496

Table 5: Primary vs Auxiliary function cases

As the proposed algorithm needs to detect more than one instance of the selected pivot character

in the pattern to be able to calculate any distance between occurrences of the pivot, a question arises about

what to do when there are no instances or only one instance of the pivot character in the pattern, in this case

an auxiliary function will be called, this function takes advantage of the preprocessing step but uses a classical

approach [7] for the searching process, therefore in the cases where the secondary function is called, the searching

times will increase. In the table 5 we can see the number of cases in our dataset where the Primary function

(case 1) was used and the number of times when the auxiliary function (case 2) was called. It can be seen that

the number of times when each function is called doesn't di�er by a big margin and observing the averages of

the searching times we can see that the primary function is almost three times as fast as the auxiliary one.

Figure 28: Pre processing space required by pivot character.

In �gure 28 we can see that the selection of the pivot character a�ects the space in memory required

by the algorithm. The highest-ranked pivot character requires more space in memory because it is the most

frequent character, and that means that there are more occurrences of it in both the pattern and the text and

more distances need to be stored.
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Figure 29: Searching time (s) in comparison with the Text size (chars)

In �gure 29 we can observe the searching time in seconds for di�erent text lengths expressed in

number of characters, we can see that as the text length increases the searching time also increases in most of

the cases however there are many exceptions and therefore probably other factors are involved including the

selection of the rank of the pivot character, pattern length, alphabet size, etc.

3.9 Experimental Results

In this section �rstly a model that predicts the searching times of the algorithm is explained and posteriorly

several case scenarios with di�erent combination of input parameters will be shown [14].

As the data seemed to have linear characteristics, a simple linear regression was tried; however,

it was under-�tting; a quadratic polynomial regression was then tried, which �tted quite well to the data; one

possible explanation of this can be that because the algorithm uses two procedures depending on if there are

enough characters to calculate distances or not, the existence of the second procedure seems to a�ect the shape

of the density function.

3.9.1 Polynomial Regression

Polynomial is a form of regression analysis in which the relationship between the independent variable x and

the dependent variable y is modelled as an nth degree polynomial.The formula is as follows:

y(x,w) = w0 + w1x+ w2x
2 + . . .+ wmx

m =

m∑
j=0

wjx
j (1)
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Where m represents the order of the polynomial and xj expresses x raised to the power j. The

coe�cient of the polynomial is represented by w.

In our case the value of the polynomial degree m is speci�ed to be m=2. Then the polynomial

becomes a quadratic polynomial(2).

y(x,w) = w0 + w1x+ w2x
2 =

2∑
j=0

wjx
j (2)

The PolynomialFeatures class of scikit-learn is used to convert the original features into their higher

order terms. Then the training is done using Linear Regression.

Figure 30: Model with Linear Regression Figure 31: Model with Polynomial Regression

In �gure 30 we can see the results from applying linear regression to the data; the model seems

to be under-�tting; the opposite can be said about the polynomial regression of degree 2 (quadratic) seen in

�gure 31 which seems to �t the data quite well and is the model that was chosen.

3.9.2 Metrics

The metrics used to evaluate the model are explained in this section.

MAE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi| (3)

The Mean absolute error or MAE (3) where yi represents the true value, ŷi represents the predicted

value and n represents the number of values. It averages the absolute di�erences between predictions and actual

values. It gives an idea of how wrong the predictions were. The measure gives an idea of the magnitude of the

error, but it does not explain the direction of it (e.g., over or under predicting). The Smaller the value of MAE,

the better the accuracy of the predictive model.
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MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷ)
2

(4)

The Mean Squared Error or MSE (4) is much like the mean absolute error in that it provides a gross

idea of the magnitude of error, yi represents the true value, ŷi represents the predicted value and n represents

the number of values. The Smaller the value of MSE, the better the accuracy of the predictive model.

Taking the square root of the mean squared error converts the units back to the original units of the

output variable and can be meaningful for description and presentation. This is called the Root Mean Squared

Error (or RMSE).

The R2 (or R Squared) metric provides an indication of the goodness of �t of a set of predictions

to the actual values. In statistical literature, this measure is called the coe�cient of determination.

Figure 32: Metrics for the model

In �gure �gure 32 the metric evaluation results are shown, We can see that in the case of the three

metrics the di�erence between the training error and the testing error is minimum. Mean Squared Error, Mean

absolute error and r2 score were applied receiving satisfactory values therefore this model was selected.

3.9.3 Model experiments

After selecting the model it was used to perform the sensitivity analysis of the robustness of the proposed

algorithm, observing how the di�erent input values a�ect the resulting searching time with previously unseen

data.
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3.9.4 Case scenarios

A common approach is used for the sensitivity analysis namely changing one-factor-at-a-time (OAT) [19], to see

the e�ect this change produces on the output, therefore sensitivity is measured by monitoring changes in the

output after �xing all of the input values with the exception of one.

In this section, several case scenarios [16] will be shown, the values of some of the input variables

will be �xed, and the output in terms of the searching time of the algorithm will be observed.

Case scenario 1: Searching time in relation to the rank of the pivot characters with di�erent text

sizes in English. Values: Pivot Rank = (1..5), Alphabet Size = 80, Text Length = (100 di�erent text lengths),

Language = English, Pattern Length = 8

Figure 33: Descriptive statistics for case scenario 1

It can be seen in the �gure �gure 34, and in the summary of �gure �gure 33 that in this case

scenario, there is an apparent di�erence in the mean of the searching times mainly between the highest-ranked

character and the others; the mean was obtained from 100 values of text sizes, and four were selected to be

plotted, in the plot the di�erence in search time is more noticeable in the largest text documents.

Figure 34: Plot for case scenario 1
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Figure 35: Instances of the case scenario 1

Case scenario 2: Searching time in relation to the rank of the pivot characters with di�erent text

sizes in German. Values: Pivot Rank = (1..5), Alphabet Size = 80, Text Length = (100 di�erent text lengths),

Language = German, Pattern Length = 16

Figure 36: Descriptive statistics for case scenario 2

In this case, we switch the language to German, and the pattern length to 16, and the rest of the

variables will have the same values as the previous case. In the summary of means on �gure 36 we can observe

that unlike in the previous case, now the highest-ranked character is the slowest; this would be something

interesting to investigate further as the reason might be the language, longer pattern length, or both. In �gure

�gure 37 we can see that the second and third pivot characters are better candidates than the typical �rst one.
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Figure 37: Plot for case scenario 2

Case scenario 3: Searching time in relation to the rank of the pivot characters with di�erent

text sizes in Lithuanian. Values: Pivot Rank = (1..5), Alphabet Size = 80, Text Length = (100 di�erent text

lengths), Language = Lithuanian, Pattern Length = 2

Figure 38: Descriptive statistics for case scenario 3

In this case, we switch the language to Lithuanian, and the pattern length to 2, and the rest of

the variables will have the same values as the previous case. In the summary of means on �gure 38 we can

observe that in this short-length pattern, the 5th pivot character is the best alternative, and once again, the

highest-ranked character is the slowest; this is also something that can be investigated further. In �gure �gure 39

we can see clearly the lower-ranked pivot characters are better candidates, in this case, so it seems apparent

that a short length pattern prefers a lower-ranked pivot, and this could be a good hypothesis to investigate.
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Figure 39: Plot for case scenario 3

Case scenario 4: Searching time in relation to multiple pattern lengths (2..8,16,32,64) and lan-

guages (English, German, Lithuanian,) Values: Pivot Rank = 1, Alphabet Size = 120, Text Length = 1000000

In �gure 40 we can see clearly how the longer patterns take considerably less time than the shorter

ones; also, there is an apparent minor but semi-constant di�erence between the searching times of the three

languages; therefore, it could be an interesting relationship to investigate further.

Figure 40: Plot for case scenario 4

Case scenario 5: Searching time in relation to Pattern Length per each language and with 2

di�erent text sizes. Values: Pivot Rank = 1, Alphabet size = 80, Text Length = (1000000, 5000000), Language

= (English, German, Lithuanian), Pattern Length = (2..8,16,32,64)
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Figure 41: Search time over a text of 1m chars length Figure 42: Search time over a text of 5m chars length

In both �gure �gure 41 and �gure 42, we can see that when the pattern length is larger, the

searching time is reduced; this is explained by the fact that when we input larger patterns, the chances of having

several instances of the pivot characters in it are increased, as well as the chances to have unique combinations

of pivot distances which means that the algorithm would skip unwanted combinations. When talking about the

language, we can observe that when the text �le is larger, the German �les start to take a longer Searching time.

These were just a few of the possible combinations that can be explored further; many interesting

characteristics were found from the plots and descriptive statistics.
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3.10 Algorithms comparison

In this section, the Characters Distance algorithm will be matched with the two classic algorithms mentioned

in previous sections of this thesis, which are the Knuth-Morris-Pratt algorithm and the Boyer-Moore-Horspool

algorithm. Following the same procedure as with the character distance algorithm, the searching times of both

of these algorithms were recorded from experiments, this way at the end, three datasets in total were generated,

one for the new algorithm, which consists of 375000 rows and two smaller datasets of 75000 rows one for the

Knuth-Morris-Pratt algorithm and one for the Boyer-Moore-Horspool algorithm. The reason for the smaller

dataset is because those two algorithms don't require a pivot character. In �gure 43 we can see a dataframe

with combined instances of the three algorithms.

Figure 43: Search imes for the three algorithms

Continuing with the comparisons started in the previous section, we introduce several case scenarios

where the values of some of the input variables will be �xed, and the output in terms of the searching time of

the algorithm will be observed and compared among the three suggested algorithms.

3.10.1 Case Scenarios

Case scenario 1: Performance of the algorithms in response to the following input values: Text Length =

1212000, Language = English, Pattern Length = 7

Figure 44: Case 1 of algorithm comparisons
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We can observe in �gure 44 that the Character Distance algorithm outperforms the other two

algorithms when using the �rst and third in the rank of the pivots, however when selecting the other pivots the

searching time almost doubles in time.

Figure 45: Plot for the case 1 of algorithm comparisons

Case scenario 2: Performance of the algorithms in response to the following input values: Text

Length = 210000, Language = German, Pattern Length = 3

Figure 46: Case 2 of algorithm comparisons

We can observe in �gure 47 that the Character Distance algorithm is slower with all but one of

the pivot characters, this con�rms the presumption that the new algorithm would perform poorly with short

patterns as it cannot calculate any distances and must relay on a slower auxiliary function for the searching

process.
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Figure 47: Plot for the case 2 of algorithm comparisons

Case scenario 3: Performance of the algorithms in response to the following input values: Text

Length = 700000, Language = Lithuanian, Pattern Length = 10

Figure 48: Case 3 of algorithm comparisons

We can observe in �gure 49 that the Character Distance algorithm is only faster than the other

with the top 2 pivot characters, this seems to a common case with medium length patterns.

Figure 49: Plot for the case 3 of algorithm comparisons

Case scenario 4: Performance of the algorithms in response to the following input values: Text

Length = 860000, Language = English, Pattern Length = 64

We can observe in �gure 51 that the Character Distance algorithm is greatly superior to the other

algorithms when it encounters really long patterns as the positions of distance are so unique that they allow the

algorithm to discard non matching patterns faster.
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Figure 50: Case 4 of algorithm comparisons

Figure 51: Plot for the case 4 of algorithm comparisons

3.10.2 Summary

We can observe that in most cases, the newly proposed algorithm outperforms the classical ones when the

most e�cient pivot character is selected. A classi�er was implemented using logistic regression to compare the

proposed Characters Distance algorithm against the Boyer Moore Horspool algorithm; we took 75000 instances

from each of the algorithms datasets and combined them for a total of 150k instances divided into a training set

of 120k instances and a test set of 30k; the metrics can be seen in �gure 52 and �gure 53. From the metrics,

we can see that the Characters Distance algorithm (True Positive) was of 25010 instances (predicted positive)

+ 1790 (predicted negative) against the BMH algorithm 2449 instances (predicted negative) + 1790 (predicted

positive) of the BMH algorithm. In most cases, the newly proposed algorithm is the recommended option.

Figure 52: Confusion Matrix
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Figure 53: Metrics for the logistic regression model

When the pivot character is not e�ciently selected like in the case of a random selection, then the

classical algorithms can outperform the new one.

It would be of great interest to compare the new algorithm with O�ine string matching algo-

rithms [15] or algorithms that make use of automata for their matchings as those present better-searching speed

performance [12], although with the caveat of having to create a full index of the texts.
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4 Conclusions

Performance analysis of the newly proposed online algorithm was presented in this paper, scanning multiple texts

and measuring its preprocessing time, space required, and searching time, with multiple values and iterations

applied to the parameters text length, pivot character, alphabet size, language, and pattern length. A dataset

was created that was used to �t a linear regression model. Comparison of the Character Distance Sampling

Algorithm was made against two of the most important classical algorithms in the �eld, Knuth�Morris�Pratt

and Boyer�Moore�Horspool.

Several case scenarios were discussed in this thesis that attempt to be a guideline about when to

use di�erent parameter values for the new algorithm depending on the situation and also when to use the new

algorithm in comparison with choosing a classical one.

The pivot character is the parameter that presented the most interesting outcomes as it seems to

be explaining an underlying structure of the languages; in future works, it would be interesting to try di�erent

combinations when selecting the pivot character; in this thesis, the top �ve most frequent characters in the

speci�c text was the strategy used; however, several other options could be tried, for instance merging two

pivots or applying other conditions on the selection besides frequency.

Some important observations are that in cases when the algorithm doesn't encounter any occur-

rences of the pivot character or only encounters one, the performance of the algorithm is a�ected drastically as

it needs to use a secondary function to complete the searching process; on the other hand, we observed that an

ideal setup for the algorithm is when it encounters large patterns with several occurrences of the pivot character

as the distances between the pivot characters will be less common and therefore easier to locate.

Another interesting observation is that the preprocessing time is directly connected with both the

text size as well as with the rank of the pivot character; choosing a low ranked pivot character will produce a

faster pre-processing time as well as occupying less space in memory but will in most cases reduce the searching

speed performance.

The parameter that a�ects the most in relation to searching time is the length of the text as

expected; however, we also observed that other aspects such as pattern length, language, and especially which

pivot character is selected seem to a�ect the outcome greatly.

The newly proposed algorithm presented better searching times than both of the other alternatives

in most of the cases with the exception of when smaller patterns of less than 4 characters were given. This fact

made that the comparisons between the algorithm parameter values itself would be produce more interesting

results than the comparison with the other algorithms.
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4.1 Future Work

Even though interesting results have been obtained, many ideas that are outside the scope of this thesis could

be explored in future works. For instance, more Online String Matching algorithms could be added to the grid

of comparisons to have a bigger spectrum of choices, as well to add further parameter combinations such as

broadening the selection of languages, utilizing really small alphabets, lengthier patterns, and larger corpora.

One of the key parts of the newly proposed online algorithm, which is subsampling the alphabet,

could also be explored further by using a combination of pivot characters to calculate the distances instead of

having the pivot ranking of frequencies as the unique criterion for the subsampling.

Focusing on an o�ine approach could also be another alternative as some of the ideas as subsampling

the alphabets could work both with online and o�ine string matching algorithms. On the other hand, modifying

the algorithm to work not only with exact string matching problems but also with approximate methods could

greatly increase the number of experiments and the use cases proposed in this thesis.

Finally, applying these ideas into a Big Data setting could be considered as well as those applications

could bene�t greatly of faster searching times.
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B Search Time Table for Patterns of length 8 in English
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C Search Time Table for Patterns of length 16 in English
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D Search Time Table for Patterns of length 2 in Lithuanian
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E Search Time Table for Patterns of length 8 in Lithuanian

48



F Search Time Table for Patterns of length 16 in Lithuanian

49



G Search Time Table for Patterns of length 2 in German
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H Search Time Table for Patterns of length 8 in German
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I Search Time Table for Patterns of length 16 in German
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J Plot for Patterns of length 2 in English
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K Plot for Patterns of length 8 in English
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L Plot for Patterns of length 16 in English
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M Plot for Patterns of length 2 in German
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N Plot for Patterns of length 8 in German
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O Plot for Patterns of length 16 in German
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P Plot for Patterns of length 2 in Lithuanian
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Q Plot for Patterns of length 8 in Lithuanian

60



R Plot for Patterns of length 16 in Lithuanian

61



S Plot for Patterns of di�erent lengths, 100k of chars
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T Plot for Patterns of di�erent lengths, 1m of chars
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U Plot for Patterns of di�erent lengths, 5m of chars
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V Plot for Patterns of di�erent lengths, 10m of chars
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W Auxiliary Functions
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X Compute Character Distance Function
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Y Search0 Function
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Z Search1 Function
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