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Chapter 1

Introduction

The Navier–Stokes equations are a mathematical model aimed to describe the mo-
tion of an incompressible viscous fluid, for instance, water, glycerine, oil, etc. We
consider the stationary nonhomogeneous boundary value problem for the Navier-
Stokes equations

−ν∆u+
(
u · ∇

)
u+∇p = 0 in Ω,

div u = 0 in Ω,

u = a on ∂Ω.

(1.1)

Here u = u(x) =
(
u1(x), u2(x), u3(x)

)
and p = p(x) are the unknown velocity field

and the pressure of the fluid, while a(x) =
(
a1(x), a2(x), a3(x)

)
is given boundary

value; ν > 0 is the constant coefficient of viscosity.
In the thesis problem (1.1) is studied in domains Ω with noncompact multiply

connected boundaries ∂Ω. We consider domains with two types outlets to infinity:
paraboloidal and layer type. Both of them can expand at infinity. We prove the
existence of solutions to problems (1.1) in the case when the boundary value a
has nonzero fluxes over the connected components of the boundary ∂Ω.

Actuality and literature review

The Navier–Stokes equations are of great importance in the mathematical hydro-
dynamics. The solvability of the boundary and initial-boundary value problems
for the Navier–Stokes equations has been studied in many papers and monographs
(see, for example, [13], [31], [68]). Indeed, such problems are important from both
points of view: applications and theoretically. Concerning the applications, one
could image, for example, a flow of oil in a system of pipelines, blood flow, etc.
The rigorous mathematical analysis of Navier–Stokes equations started at the be-
ginning of the XX century in works of the famous French mathematician prof. J.
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Leray. He had formulated several problems (called Leray’s problem) which remain
open until nowadays.

Bounded domain

In bounded domains Ω with multiply connected boundaries ∂Ω consisting of N
disjoint components Γj problem (1.1) was studied first by prof. J. Leray in his
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Figure 1.1: Domain Ω.

celebrated paper [36] published in 1933, and thereafter by many mathematicians
(see [1], [2], [4], [5], [7]–[14], [23], [24], [27]–[30], [41], [53]–[58], [65] [67], [69],
etc.). Continuity equation (1.12) implies in the case of a bounded domain Ω the
necessary compatibility condition for the boundary value a:

∫
∂Ω

a · n dS =
N∑
j=1

∫
Γj

a · n dS = 0, (1.2)

where n is a unit vector of the outward (with respect to Ω) normal to ∂Ω. However,
for a long time the existence of a weak solution u ∈ W 1,2(Ω) to problem (1.1) was
proved only either under the condition of zero fluxes

Fj =
∫
Γj

a · n dS = 0, j = 1, 2, . . . , N, (1.3)

(see, for example, [30], [31], [36], [69]), or assuming the fluxes Fj to be sufficiently
small (see, for example, [2], [9], [10], [13], [14], [29]), or under certain symmetry
assumptions on the domain Ω and the boundary value a (see, for example, [1],
[11], [12], [28], [41], [53], [54], [58]). Recently problem (1.1) was solved for arbi-
trary large flux F having "correct" sign in a plane domain with two connected
components of the boundary (the fluid flows in through the outer component, and
flows out through the inner component) [27]. Condition (1.3) requires the fluxes
Fj of the boundary value a to be zero separately on each connected component
Γj of the boundary ∂Ω, while the compatibility condition (1.2) means only that
the total flux is zero. Obviously, condition (1.3) is stronger than (1.2), and (1.3)
does not allow the presence of sinks and sources. In [36] J. Leray formulated a
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question whether problem (1.1) is solvable only under the necessary compatibility
condition (1.2). In general case this Leray’s problem still remains open despite of
efforts of many mathematicians (see the above references and, in particular, the
review papers [53], [54]).

Homogeneous boundary value problem in unbounded do-
main

In domains with noncompact boundaries problem (1.1) with homogeneous bound-
ary conditions (below we denote it by (1.10) ) was exhaustively studied during the
last 35 years. After the work of J. Heywood [22] such problems have got a great
progress in a row of papers. Problem (1.10) was investigated in a wide class of
domains Ω having "outlets to infinity", and it was found that for the correct for-
mulation of (1.10) it is necessary to prescribe additional conditions: for example,
fluxes over the cross sections of outlets to infinity (see [22], [25], [32], [33], [59],
[60]). However, any solenoidal vector field v(x) with the finite Dirichlet inte-
gral

∫
Ω

|∇v|2dx < ∞ has necessary zero fluxes over the cross sections of "narrow"

(for example, cilindrical) outlets (see [59]). Therefore, the usual energy estimates
method becomes insufficient in this case, and the Navier–Stokes problem (1.10)

with additionally prescribed fluxes in "narrow" outlets has to be studied in a
class of functions having infinite Dirichlet integrals. The basic results concerning
such problems were obtained by O.A. Ladyzhenskaya and V.A. Solonnikov [34],
[61]–[64]. In [34] the special technique of integral estimates (so–called "techniques
of Saint–Venant’s principle") is developed and the existence of solutions having
prescribed fluxes is proved. The solutions have either finite or infinite Dirich-
let integral over the outlets to infinity depending on geometrical properties of
them. Note that all these results are obtained without any restrictions on data
assuming only that the total flux is equal to zero. There are also many papers
(see, for example, [43], [49], [48]) devoted to the investigation of related questions,
such as regularity, asymptotic behavior and uniqueness of solutions to the steady
Navier–Stokes problem in domains with noncompact boundaries.

Nonhomogeneous boundary value problem in unbounded
domain

However, not much is known about the nonhomogeneous boundary value prob-
lem (1.1) in domain with noncompact boundaries. To the best of our knowl-
edge the first time problem (1.1) with nonhomogeneous boundary condition was
solved without prescribing a "smallness condition" in 1999 by S.A. Nazarov and K.

9



Pileckas [42]. In [42] problem (1.1) was studied in an infinite layer L = {x ∈ R3 :

0 < x3 < 1} under the assumption that on the bottom S0 = {x ∈ R3 : x3 = 0}
there is a compactly supported sink or source of an arbitrary intensity:

supp a ⊂ BR0 = {x :
√

x2
1 + x2

2 < R0, x3 = 0},
∫

BR0

a3(x1, x2)dx1dx2 = F ,

where the flux F is arbitrary large. In [42] the existence of at least one weak
solution is proved. Moreover, in [46], [52] the asymptotic behavior of this solution
is investigated. Notice that the constructed solution has an infinite Dirichlet
integral.

Next, we should mention the series of papers by H. Morimoto, H. Fujita and H.
Morimoto [37]–[40], where problem (1.1) is studied in symmetric two-dimensional
multiply connected domains Ω with channel-like outlets to infinity containing a

Figure 1.2: Domain Ω.

finite number of "holes" (so called, Y-shaped, V-shaped, I-shaped, cross-shaped
channels, or semi-infinite channels). Assuming that the boundary value a is zero
on the "outer" boundary and that a satisfies symmetry assumptions on bounded
connected components of ∂Ω (boundaries of the "holes"), it is proved in [37]–[40]
that problem (1.1) admits at least one solution which tends in every channel to
the corresponding Poiseuille flow. These results are obtained under assumptions
that the total flux is zero (i.e., the sum of fluxes of the Poiseuille flows and of
the fluxes of the boundary value a over the holes is equal to zero), the fluxes of
Poiseuille flows are assumed to be "small", while the fluxes of boundary value a

can be arbitrary large.
Recently, J. Neustupa [44], [45] has studied problem (1.1) in unbounded do-

mains Ω with multiply connected boundaries. He supposed that the fluxes of a
over bounded components of the boundary are "small", but he did not impose any
conditions on fluxes over infinite components of the boundary (of course, the total
flux is equal to zero). Assuming that the boundary value a admits a solenoidal
extension A with A ∈ L3(Ω), ∇A ∈ L2(Ω), J. Neustupa proved the existence of
at least one solution to (1.1). Note that the existence of the solenoidal extension
A with above properties and also the method used in [45] (a priori estimates of

10



the solution are obtained using a contradiction argument) impose restriction on
the domain Ω. The solutions found in [45] have finite Dirichlet integrals and,
therefore, the domain Ω should expand at infinity sufficiently rapidly, in order to
have enough place to transfer a flux of the fluid from a bounded part of ∂Ω to
infinity.

The advanced theory of the Stokes and the stationary Navier–Stokes equations
in exterior domains is presented in the books of G.P. Galdi ([13]). The solvabil-
ity of the Navier–Stokes equations and asymptotics of the solutions in exterior
domains was also studied in many papers [6], [15], [16], [17], [18], [19] and [20].

In the thesis we study the stationary Navier–Stokes equations with nonhomo-
geneous boundary conditions in domains Ω which may have two types of outlets
to infinity: paraboloidal and layer type. The boundary ∂Ω is multiply connected
and consists of connected noncompact components, forming the outer boundary,
and connected compact components, forming the inner boundary. We suppose
that the fluxes over the components of the inner boundary are sufficiently small,
while we do not impose any restrictions on fluxes over the infinite components
of the outer boundary. Note that the total flux of sources and sinks is equal to
zero. Depending on the geometry of outlets to infinity, the Dirichlet integral of
the solution may be either finite or infinite.

Aims and problems

The main aim of the dissertation is the analysis of the stationary Navier–Stokes
equations with nonhomogeneous boundary conditions in unbounded domains with
noncompact multiply connected boundaries. To prove the existence of solutions
of the boundary value problem for the Navier–Stokes equations we need to con-
struct a suitable extension A of boundary value a. Since the construction of the
extension is complicated, we start with two examples. In the first case we con-
sider nonhomogeneous value boundary problem for the stationary Navier–Stokes
equations in the domain with one paraboloidal outlet to infinity, and in the second
case - the domain consists of two connected layers. The next part of the thesis
consists of the generalization of these examples. We study the following problems:

• the solvability of the nonhomogeneous boundary value problem for the sta-
tionary Navier– Stokes equations in the domain with one paraboloidal outlet
to infinity,

• the solvability of the nonhomogeneous boundary value problem for the sta-
tionary Navier– Stokes equations in the domain consisting of two connected
layer type outlets,
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• the construction of special extensions of the boundary value in domains with
finite number of paraboloidal outlets to infinity,

• the construction of special extensions of the boundary value in domains with
finite number of paraboloidal and layer type outlets to infinity.

Methods

In the thesis we apply the methods of functional analysis, fix point theory, proper-
ties of Sobolev spaces, estimates of Saint Venant type and some special techniques
developed by V.A. Solonnikov [61] and O.A. Ladyzhenskaya [30], [31]. The most
important is the Hopf’s cut–off functions techniques which is used to construct
special vector fields satisfying Leray–Hopf inequalities.

Novelty

All results obtained in the thesis are new. The existence of solutions with infinite
Dirichlet integral of the nonhomogeneous boundary value problem for the sta-
tionary Navier–Stokes equations in domains with noncompact multiply connected
boundaries was not known.

Structure of the dissertation and main results

Dissertation consists of six chapters, conclusions and bibliography. The first chap-
ter contains a short review about actuality and history of the problem. It describes
also shortly the main results obtained in the dissertation.

The second chapter provides the reader with some preliminaries such as basic
notations and known auxiliary results used in this thesis.

In the third chapter we formulate the problem in general case and give general
schemes of the proof of its solvability.

In the fourth chapter we consider two examples, i.e., we study the problem in
a domain with one paraboloidal outlet to infinity and in a domain consisting of
two connected layers. For both examples we construct a suitable extension of the
boundary value and prove the existence of a solution.

In the fifth chapter we generalize the first example and consider the problem in
domains with finite number of paraboloidal outlets to infinity for the two and three
dimensional cases. We construct a suitable extension of the boundary value and
formulate the theorem about the existence of a solution (without proof, because
the proof is the same as in the case of one paraboloidal outlet (Subsection 4.1.3)).
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In the sixth chapter we consider the problem in domains with finite number of
paraboloidal and layer type outlets to infinity. We construct an extension of the
boundary value and formulate the existence theorem.
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Chapter 2

Notations and preliminary results

We use c, C, cj, j = 1, 2, ..., to denote constants whose numerical values or whose
dependence on parameters in unessential to our considerations. In such case c

may have different values in a single computation.
Let V be a Banach space. The norm of an element u in the function space V

is denoted by ∥u∥V . Vector-valued functions are denoted by bold letters; spaces of
scalar and vector-valued functions are not distinguished in notations. The vector-
valued function u = (u1, . . . , un) belongs to the space V , if ui ∈ V, i = 1, . . . , n,

and ∥u∥V =
n∑

i=1

∥ui∥V .

Let Ω be an arbitrary domain in Rn. As usual, denote by C∞(Ω) the set of
all infinitely differentiable functions defined on Ω and let C∞

0 (Ω) be the subset of
all functions from C∞(Ω) with compact support in Ω. For a given nonnegative
integer k and q > 1, Lq(Ω) and W k,q(Ω) indicate the usual Lebesgue and Sobolev
spaces with the norms

∥u∥Lq(Ω)∥ =
( ∫
Ω

|u(x)|q dx
)1/q

and ∥u∥Wk,q(Ω) =
( k∑
|α|=0

|Dαu(x)|q dx
)1/q

,

respectively. W k−1/q,q(∂Ω) is the trace space on ∂Ω of functions from W k,q(Ω)

with the norm

∥u∥Wk−1/q,q(∂Ω) = inf{∥û∥Wk,q(Ω) : û = u on ∂Ω}.

W̊ k,q(Ω) is the closure of C∞
0 (Ω) in the norm of W k,q(Ω); we write u ∈ W k,q

loc (Ω) if
u ∈ W k,q(Ω′) for any bounded subdomain Ω′ with Ω′ ⊂ Ω.

Let D(Ω) be the Hilbert space of vector functions formed as the closure of
C∞

0 (Ω) in the Dirichlet norm ∥u∥D(Ω) = ∥∇u∥L2(Ω) generated by the scalar pro -
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duct
(u,v) =

∫
Ω

∇u : ∇v dx,

where ∇u : ∇v =
n∑

j=1

∇uj · ∇vj =
n∑

j=1

n∑
k=1

∂uj

∂xk

∂vj
∂xk

. Denote by J∞
0 (Ω) the set of

all solenoidal (divu = 0) vector fields u from C∞
0 (Ω). By Ĥ(Ω) we indicate the

subspace of D(Ω) consisting of solenoidal vector fields, and by H(Ω) – the space
formed as the closure of J∞

0 (Ω) in the Dirichlet norm. Obviously, H(Ω) ⊂ Ĥ(Ω).
In general, the spaces Ĥ(Ω) and H(Ω) do not coincide (see, for example, [22],
[25], [32], [59], [61]). However, if Ω is a bounded domain with Lipschitz boundary,
then H(Ω) = Ĥ(Ω) (see [32]).

Lemma 2.1. (Cauchy inequality with ε). For any a, b ∈ R the following inequal-
ity

|ab| ≤ ε

2
|a|2 + 1

2ε
|b|2 ∀ε > 0, (2.1)

holds.

Lemma 2.2. (Hölder inequality). Let q > 1,
1

q
+

1

q′
= 1, f ∈ Lq(Ω), g ∈ Lq′(Ω).

Then the following inequality∣∣∣∣ ∫
Ω

f(x)g(x) dx

∣∣∣∣ ≤ (∫
Ω

|f(x)|q dx
)1/q(∫

Ω

|g(x)|q′ dx
)1/q′

= ∥f∥Lq(Ω)∥g∥Lq′ (Ω)

(2.2)

holds. For q = q′ = 2 Hölder inequality∣∣∣∣ ∫
Ω

f(x)g(x) dx

∣∣∣∣ ≤ ∥f∥L2(Ω)∥g∥L2(Ω) (2.3)

is called the Cauchy–Schwarz inequality.

Lemma 2.3. (Poincaré inequality). Let Ω be bounded domain in Rn. Then for
any u ∈ W̊ 1,2(Ω) the inequality∫

Ω

|u(x)|2 dx ≤ c(diam(Ω))2
∫
Ω

|∇u(x)|2 dx, (2.4)

holds, where c is an absolute constant.

Lemma 2.4. (Ladyzhenskaya inequality). Let Ω ∈ R3, u ∈ W̊ 1,2(Ω). Then the
following inequality

∥u∥4L4(Ω) ≤ (4/3)3/2∥u∥L2(Ω)∥∇u∥3L2(Ω)
(2.5)
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holds.

For the proofs of the last two lemmas see, for example, [3] and [31], respectively.

Lemma 2.5. Let Ω be a bounded domain with Lipschitz boundary and f ∈ L2(Ω)

satisfies the condition ∫
Ω

f dx = 0.

Then problem {
div u = f, ∈ Ω,

u = 0, x ∈ ∂Ω.
(2.6)

has a solution u ∈ W̊ 1,2(Ω) and there holds the estimate

∥∇u∥L2(Ω) ≤ c∥∇f∥L2(Ω) (2.7)

with the constant c independent of u and f.

Lemma 2.6. Let Ω be a bounded domain with Lipschitz boundary. If φ ∈
W 1/2,2(∂Ω) and

∫
∂Ω

φ·n dS = 0, then there exists solenoidal extension Φ ∈ W 1,2(Ω)

of function φ: {
div Φ = 0, x ∈ Ω,

Φ = φ, x ∈ ∂Ω.
(2.8)

Morover, the estimate
∥Φ∥W 1,2(Ω) ≤ c∥φ∥W 1/2,2(∂Ω) (2.9)

holds.

For the proofs of the last two lemmas see, for example, [32].

Let us introduce bounded domains

ω
(1)
R = {x : |x′| < g(x3), R < x3 < R +

g(R)

2L
}

and
ω
(2)
R = {x : x3 < h(|x′|), R < |x′| < 2R},

where the function g satisfies the Lipschitz condition

|g(t1)− g(t2)| = L|t1 − t2|, t1, t2 ≥ 1, g(t) ≥ 1 ∀t,

and the function h possess the following properties

µ1h(t) ≤ max
t≤t1≤2t

h(t1) ≤ µ2h(t), h(t) ≥ 1 ∀t ≥ 1,

17



|h(t1)− h(t2)| ≤ L(t)|t1 − t2|, t1, t2 ∈ [t, 2t].

Here µ1, µ2 are certain positive constants and for L(t) holds the inequality

L(t) · t
h(t)

≤ const, L(t) ≤ const ∀t.

Lemma 2.7. Let u ∈ W̊ 1,2(ω
(j)
R ), j = 1, 2. Then the following inequalities∫

ω
(1)
R

|u(x)|2 dx ≤ c g2(R)
∫

ω
(1)
R

|∇u(x)|2 dx, (2.10)

∫
ω
(2)
R

|u(x)|2 dx ≤ c h2(R)
∫

ω
(2)
R

|∇u(x)|2 dx, (2.11)

hold, where the constant c is independent of u and R.

Lemma 2.8. Let u ∈ W̊ 1,2(ω
(j)
R ). Then the following inequalities

∥u∥
L4(ω

(1)
R )

≤ c g1/4(R)∥∇u∥
L2(ω

(1)
R )

, (2.12)

∥u∥
L4(ω

(2)
R )

≤ c h1/4(R)∥∇u∥
L2(ω

(2)
R )

(2.13)

hold, where the constant c is independent of u and R.

The proof of this lemma follows directly from Ladyzenskaya inequality (2.5)
and Poincaré inequalities (2.10), (2.11).

Lemma 2.9. Let f ∈ L2(ω
(1)
R ) and∫

ω
(1)
R

f dx = 0.

Then problem (2.6) admits a solution u ∈ W̊ 1,2(ω
(j)
R ) satisfying the estimate

∥∇u∥
L2(ω

(1)
R )

≤ c∥∇f∥
L2(ω

(1)
R )

(2.14)

with the constant c independent of u, f and R.

Lemma 2.10. Let f ∈ L2(ω
(2)
R ) and∫

ω
(2)
R

f dx = 0.
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Then problem (2.6) admits a solution u ∈ W̊ 1,2(ω
(2)
R ) satisfying the estimate

∥∇u∥
L2(ω

(2)
R )

≤ c
R

h(R)
∥∇f∥

L2(ω
(2)
R )

(2.15)

with the constant c independent of u, f and R.

For the proofs of the last two lemmas see in [32] and [47], respectively.

Lemma 2.11. (Gauss-Ostrogradsky theorem). Let Ω ⊂ Rn, n = 2, 3, be a bounded
domain with Lipschitz boundary ∂Ω. Then the following relation∫

Ω

divF dS =
∫
∂Ω

F · ndS

holds.

Lemma 2.12. (Stokes theorem). Let Ω ⊂ R2 be a bounded domain with Lipschitz
boundary ∂Ω. Then the following relation∫

Ω

curl F dS =
∫
∂Ω

F · dl

holds.

Lemma 2.13. (Leray-Schauder theorem). Let H be a Hilbert space and A : H →
H be a nonlinear compact operator. If norms of all possible solutions of operator
equation

u(λ) = λAu(λ), λ ∈ [0, 1],

are bounded by the same constant c independent of λ, i.e.,

∥u(λ)∥H(Ω) ≤ c ∀λ ∈ [0, 1],

then the operator equation
u = Au

has at least one solution u ∈ H (see, for example, [31]).

Lemma 2.14. Let Ω be a bounded domain with Lipschitz boundary ∂Ω, L ⊆ ∂Ω

and the function h ∈ W 1/2,2(∂Ω) satisfies the conditions
∫
L

h ·n dS = 0, supp h ⊂

L. Then h can be extended inside Ω in the form

b∗
0(x, ε) = curl (χ(x, ε)E(x)), (2.16)

where E ∈ W 2
2 (Ω), curlE|∂Ω = h and χ is a Hopf’s type cut-off function, i.e., χ
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is smooth, χ(x, ε) = 1 on L, suppχ is contained in a small neighborhood of L and

|∇χ(x, ε)| ≤ εc

dist(x,L)
. (2.17)

The constant c is independent of ε.

Lemma 2.15. Let Ω be a bounded domain with Lipschitz boundary ∂Ω, L ⊆ ∂Ω,
u ∈ W 1,2(Ω) and u|L = 0. Then the following estimate

∫
Ω

u2 dx

dist2(x,L)
≤ c

∫
Ω

|∇u|2 dx (2.18)

holds.

For proofs of the last two lemmas see [31].

Lemma 2.16. Let non-negative numbers yk, k = 1, ..., N, satisfy inequalities
yk+1 ≥ yk and

yk ≤ c1(yk+1 − yk) + c2κ
1/2
k (yk+1 − yk)

3/2 +
1

2
Qk, (2.19)

where Qk satisfy

1

2
Qk ≥ c1(Qk+1 −Qk) + c2κ

1/2
k (Qk+1 −Qk)

3/2. (2.20)

If N < ∞ and yN ≤ QN , then yk ≤ Qk ∀k < N.

The proof of this lemma see in [61].

Let M be a closed set in Rn. By ∆M(x) we denote the regularized distance
from the point x to the set M. Notice that ∆M(x) is infinitely differentiable
function in Rn \M and the following inequalities

a1dM(x) ≤ ∆M(x) ≤ a2dM(x), |Dα∆M(x)| ≤ a3d
1−|α|
M (x) (2.21)

hold. Here dM = dist(x,M) is the real distance from x to M, the positive
constants a1, a2 depend only on the dimension n, while a3 depends on n and on
the order of differentiation |α| (see [66]).

Let γ be an infinite 1 smooth simple curve. Define in R3 the vector field b(x),
1Defining an infinite curve we have in mind that the curve is infinite to both sides, so it is

"closed" at infinity.
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corresponding to γ, by the formula

b(x) = 1

4π

∮
γ

x− y

|x− y|3
× dly. (2.22)

Vector field b(x) is a magnetic field generating, upon passage through γ, an electric
flow of unit intensity.

If γ is an x3 axis, then magnetic field b(x) can be rewritten in the form

b(x) = 1

2π

(
− x2

|x′|2
,
x1

|x′|2
, 0
)
. (2.23)

Lemma 2.17. The vector field b is solenoidal in R3 \ γ, curl b = 0, and the
circulation of b along any closed contour, enveloping γ, is equal to −1 if the
direction of integration along this contour and along γ are connected by the gimlet
rule. If this contour does not envelop γ, then the circulation of b along it is equal
to zero. At points whose distance from γ is not less than d0, we have the estimate

|Dα
xb(x)| ≤ c(α, d0)

d
1+|α|
γ (x)

,

where dγ(x) = dist(x, γ), d0 is sufficiently small positive number.

For the proof see in [59].

Below we will use the following cut-off functions. Denote by 0 ≤ Ψ ≤ 1 and ϱ

the smooth monotone functions such that

Ψ(t) =

0, t ≤ 0,

1, t ≥ 1,
(2.24)

ϱ(τ) =


a1
2
d0, for τ ≤ a2

2
d0,

τ, for τ ≤ a2d0,
(2.25)

where a1, a2 are constants from inequality (2.21).
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Chapter 3

Formulation of the problem and
the general scheme

Let Ω ⊂ R3 be an unbounded domain which splits outside the ball BR0(0) = {x ∈
R3 : |x| < R0} into J ≥ 1 noncompact disjoint components, i.e.,

Ω = Ω0

∪
Ω(1)

∪
Ω(2)

∪
...
∪
Ω(J),

where Ω0 = Ω
∩
BR0(0). The unbounded components Ω(j), j = 1, ..., J, are called

"outlets" to infinity. We study two types of outlets to infinity: paraboloidal and
layer type outlets. When the cross section of paraboloidal outlet is constant, we
have a cylinder. Therefore, cylinders are included as well. We denote paraboloidal
outlets by Dj and layer type outlets - by Ej.

The bounded domain Ω0 has the form

G0 \
I∪

i=1

Gi,

where G0 and Gi, i = 1, . . . , I, I ≥ 0, are bounded simply connected domains
such that Gi ⊂ G0, Gi1

∩
Gi2 = ∅ for i1 ̸= i2. Therefore, boundary of the

domain Ω consists of inner and outer boundaries. Let us denote them by Γ and S,

respectively. Both of these boundaries may consist of finite number of components,

i.e., Γ =
I∪

i=1

Γi, Γi = ∂Gi, and S =
M∪

m=1

S(m). Components of inner boundary are

bounded surfaces, and components of outer boundary are unbounded.
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3.1 Formulation of problem

We consider the stationary Navier–Stokes system with nonhomogeneous boundary
condition in a domain Ω with outlets to infinity

−ν∆u+
(
u · ∇

)
u+∇p = 0 in Ω,

divu = 0 in Ω,

u = a on ∂Ω,∫
σj(R)

u · n dS = Fj, j = 1, 2, . . . , J, R ≥ R0,

(3.1)

where Fj, j = 1, ..., J, are the prescribed fluxes of the velocity field over cross
sections σj(R) of the outlets Ω(j), n is the unit vector of the normal to σj.

We assume that the boundary value a ∈ W 1/2,2(∂Ω) has a compact support:

supp a ⊂ ∂Ω
∩
BR1(0) =

(
Γ
∪

S
)∩

BR1(0), R1 ≥ R0. (3.2)

Denote Λm = supp a
∩
S(m) ⊂ S(m)

∩
BR1(0).

Integrating the divergence equation divu = 0 over the domain Ω∩BR(0) with
sufficiently large R we obtain the following necessary compatibility condition for
the fluxes Fj and the boundary value a:

0 =
∫

Ω∩BR(0)

divu dx =
∫

∂(Ω∩BR(0))

u · n dS

=
I∑

i=1

∫
Γi

a · n dS +
M∑

m=1

∫
Λm

a · n dS +
J∑

j=1

∫
σj(R)

u · n dS.

(3.3)

Denote by

F(inn)
i =

∫
Γi

a · n dS, i = 1, ..., I, F
(out)
m =

∫
Λm

a · n dS, m = 1, ...,M,

the fluxes of the boundary value a over connected components of the inner and
the outer boundaries, respectively. Then condition (3.3) can be written as

I∑
i=1

F(inn)
i +

M∑
m=1

F
(out)
m +

J∑
j=1

Fk = 0. (3.4)

Condition (3.4) means that the total flux is equal to zero.
Assumption (3.2) on the boundary value a is made in order to insure that the

fluxes F
(out)
m of a over unbounded parts S(m) of the boundary ∂Ω have sense. In

general, the question to which functional space belongs the trace of the solenoidal
vector field having a finite Dirichlet integral in a domain with noncompact bound-
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ary is rather complicated and the answer essentially depends on the geometry of
outlets to infinity (see [45], Example 3). This question is related to a problem of
the correct functional setting for the divergence operator. It is well known that
for domains Ω with outlets to infinity the problem{

divu = g in Ω,

u = 0 on ∂Ω,

with arbitrary right–hand side g ∈ L2(Ω) is not solvable in a class of functions
u with finite Dirichlet integral, and the inverse of the divergence operator is
well defined on some weighted subspace of L2(Ω) (see [60] for domains with the
"paraboloidal" outlets, and [42] for the infinite layer). The similar weighted sub-
spaces of W 1/2,2(∂Ω) will appear, if we try to describe traces of solenoidal vector
field with finite Dirichlet integrals in noncompact domains (see, for example, [50]).
However, even for elements of these complicated spaces it may not make sense to
speak about the fluxes over infinite parts of the boundary (the integral

∫
S(m)

a ·n dS

could be infinite). Therefore, having in mind that we allow also solutions with
infinite Dirichlet integrals, we suppose, for simplicity, that a has a compact sup-
port.

3.2 Solvability of problem (3.1); general scheme

Definition 3.1. By a weak solution of problem (3.1) we understand a solenoidal
vector field u ∈ W 1,2

loc (Ω) satisfying the boundary condition u
∣∣
∂Ω

= a, the flux
conditions ∫

σj(R)

u · ndS = Fj, j = 1, 2, . . . , J, R ≥ R0, (3.5)

and the integral identity

ν
∫
Ω

∇u : ∇η dx−
∫
Ω

(v · ∇)η · v dx = 0 ∀ η ∈ J∞
0 (Ω). (3.6)

Assume that the necessary compatibility condition (3.3) is valid. Let A ∈
W 1,2

loc (Ω) be a solenoidal extension of the boundary value a satisfying flux condition
(3.5):

divA = 0, A
∣∣
∂Ω

= a,
∫

σj(R)

A · ndS = Fj, j = 1, 2, . . . , J.

We reduce problem (3.6) to the problem with homogeneous boundary condition
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and zero fluxes. We substitute u = v +A into (3.6)

ν
∫
Ω

∇v : ∇η dx−
∫
Ω

(v · ∇)η · v dx−
∫
Ω

(A · ∇)η · v dx−
∫
Ω

(v · ∇)η ·A dx

=
∫
Ω

(A · ∇)η ·A dx− ν
∫
Ω

∇A : ∇η dx ∀η ∈ J∞
0 (Ω),

(3.7)

and look for the new unknown velocity field v ∈ W 1,2
loc (Ω) satisfying (3.7) and such

that
div v = 0, v

∣∣
∂Ω

= 0,
∫

σj(R)

v · ndS = 0, j = 1, 2, . . . , J.

The existence of v satisfying integral identity (3.7) could be proved following
the general scheme proposed by V.A. Solonnikov [61] (see also [34], [62]–[64]). It
is assumed in [61] that there is a sequence of bounded domains {Ω(l), l ≥ 1} such
that Ω(l) ⊂ Ω(l+1) and Ω(l) exhausts Ω as l → ∞. The first step is to prove the
existence of a weak solution v(l) for any bounded domain Ω(l), i.e., to find in every
Ω(l) a vector field v(l) ∈ H(Ω(l)) satisfying the integral identity

ν
∫

Ω(l)

∇v(l) : ∇η dx−
∫

Ω(l)

(v(l) · ∇)η · v(l) dx

−
∫

Ω(l)

(A · ∇)η · v(l) dx−
∫

Ω(l)

(v(l) · ∇)η · A dx

=
∫

Ω(l)

(A · ∇)η · A dx− ν
∫

Ω(l)

∇A : ∇η dx ∀η ∈ H(Ω(l)).

(3.8)

Since Ω(l) is a bounded domain, it is well known (see [31]) that integral identity
(3.8) is equivalent to the operator equation in the space H(Ω(l)):

v(l) = Av(l)

with the compact operator A. Therefore, by Leray–Schauder Theorem (see Lemma
2.13), for the existence of the solution v(l) it is enough to prove that all possible
solutions v(l,λ) of the operator equation

v(l,λ) = λAv(l,λ), λ ∈ [0, 1]

are bounded by the same constant independent of λ. To obtain an a priori estimate
we have to construct a special extension A of the boundary value a satisfying for
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arbitrary solenoidal vector field w ∈ W 1,2
loc (Ω), w

∣∣
∂Ω

= 0, the inequalities

∫
Ω(k)

|A|2|w|2 dx ≤ δ
∫

Ω(k)

|∇w|2 dx,

∫
Ω(k)\Ω(k−1)

|A|2|w|2 dx ≤ δ
∫

Ω(k)\Ω(k−1)

|∇w|2 dx.
(3.9)

Here ε is arbitrary small positive number, which we fix later in order to prove
the estimates. Inequalities (3.9) are usually called Leray–Hopf inequalities. Using
Cauchy–Schwarz (2.3) and Poincaré (2.4) inequalities, from (3.9) we derive that∣∣∣ ∫

Ω(k)

(w · ∇)w · A dx
∣∣∣ ≤ δ

∫
Ω(k)

|∇w|2 dx,

∣∣∣ ∫
Ω(k)\Ω(k−1)

(w · ∇)w · A dx
∣∣∣ ≤ δ

∫
Ω(k)\Ω(k−1)

|∇w|2 dx.
(3.10)

Let A satisfies (3.10). Taking in (3.8) η = v(l) and choosing sufficiently small
ε, we obtain

ν
∫

Ω(l)

|∇v(l)|2 dx = −ν
∫

Ω(l)

∇A : ∇v(l) dx+
∫

Ω(l)

(
A · ∇

)
v(l) ·A dx

+
∫

Ω(l)

(
v(l) · ∇

)
v(l) ·A dx ≤ c

(
∥∇A∥2L2(Ω(l))

+ ∥A∥4L4(Ω(l))

)
+

ν

2

∫
Ω(l)

|∇v(l)|2 dx.

Therefore, ∫
Ω(l)

|∇v(l)|2 dx ≤ c1

(
∥∇A∥2L2(Ω(l))

+ ∥A∥4L4(Ω(l))

)
≡ c1Φ(l),

where c1 is independent of l. Thus, the existence of v(l) follows from the Leray–
Schauder Theorem.

Next, we have to control the Dirichlet integral of v(l) over subdomain Ω(k) ⊂
Ω(l), k ≤ l. If Φ(l) grows "not too fast" as l → ∞, then using the second of
inequalities (3.10) it can be proved that∫

Ω(k)

|∇v(l)|2 dx ≤ c2Φ(k) (3.11)

with c2 independent of k and l.
Since for every bounded domain Ω(k) the embedding W 1,2(Ω(k)) ↪→L4(Ω(k))

is compact, estimate (3.11) guarantees the existence of a subsequence {v(lm)}
which converges weakly in W̊ 1,2(Ω(k)) and strongly in L4(Ω(k)) for ∀k > 0 (such
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subsequence could be constructed by Cantor diagonal process). Taking in integral
identity (3.8) an arbitrary test function η with compact support we can find k

such that suppη ⊂ Ω(k) and, hence η ∈ H(Ω(k)). Extending η by zero into
Ω \ Ω(k), and considering all integrals in (3.8) as integrals over Ω, we can pass
in (3.8) to a limit as lm → ∞. As a result we get for the limit vector function
v integral identity (3.7). Obviously, estimate (3.11) remains valid also for v.
Moreover, the obtained solution has the following property: if the vector field
A has the finite Dirichlet integral over some outlet Ω(j), then the weak solution
v also has finite norm ∥∇v∥L2(Ω(j)). Finally, we mention that the weak solution
is unique in a class of functions that grow at infinity not "too fast" (see [34],
[61]). The above mentioned results were obtained in [34], [61] in the case of the
homogeneous boundary conditions (a(x) = 0).

In this thesis we reduce the nonhomogeneous boundary value problem to ho-
mogeneous one, by constructing a suitable extension of the boundary value a, and
then we apply the above mentioned methods to the reduced problem. Therefore,
the main purpose of the thesis is to construct an appropriate extension of bound-
ary value which gives the possibility to reduce the nonhomogeneous boundary
conditions to the homogeneous ones. This extension is constructed as the sum

A = B(inn) +
M∑

m=1

B
(out)
m +B(flux),

where B(inn) extends the boundary value a from the inner boundary Γ, B
(out)
m

extend a from the connected component S(m) of the noncompact outer boundary
S, and B(flux) has zero boundary value over ∂Ω and removes the fluxes over the
cross sections of outlets to infinity. The vector fields B

(out)
m and B(flux) are con-

structed to satisfy Leray–Hopf’s inequalities (3.10) which allow to obtain a priori
estimates of the solution for arbitrary large fluxes F

(out)
m and Fj. The construc-

tion of the vector fields B
(out)
m and B(flux) is based on methods proposed in [33],

[59], [61]. Notice that the Leray–Hopf’s inequality cannot be true, in general,
for the vector field B(inn). If the fluxes of the boundary value over connected
components of the boundary do not vanish, in [67], [23], [4] there are constructed
counterexamples showing that in bounded domains Leray–Hopf inequality can be
false whatever the choice of the solenoidal extension is taken. Therefore, we have
to suppose that the fluxes F(inn)

i of a over the compact components Γi of the inner
boundary Γ are "sufficiently small".
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3.3 Construction of the extension; general scheme

The first step in the construction of the extension A is to reduce the problem
(3.1) to the case of boundary value with zero fluxes and to "transport" the fluxes
from bounded parts of ∂Ω to infinity, i.e., we have to construct solenoidal vector
fields b

(out)
m ,m = 1, . . . ,M, and b(inn) satisfying the following conditions

(a)
∫
Λm

b
(out)
m · n dS = −

∫
σj∗ (R)

b
(out)
m · n dS = F

(out)
m , m = 1, . . . ,M,∫

Γi

b(inn) · n dS = F(inn)
i , i = 1, . . . , I,∫

σj∗ (R)

b(inn) · n dS = −
I∑

i=1

F(inn)
i = −F(inn), j∗ ∈ {1, . . . , J};

(b) suppb
(out)
m , suppb(inn) ⊂

(
Ω
∩
BR2(0)

)∪
Ω(j∗) for some R2 > R1.

The vector fields b
(out)
m and b(inn) "drain" the fluxes from the outer and inner

boundaries to some outlet to infinity Ω(j∗). Following the terminology of H. Fujita
[11] we call this method by virtual drain method and vector functions b

(out)
m and

b(inn) by virtual drain functions.
By constructing virtual drain functions b

(out)
m and b(inn) we have an arbitrari-

ness in choosing the outlet Ω(j∗) to which we "drain" the fluxes. We choose the
"widest" outlet Ω(j∗), in order to minimize the generated by the drain function dis-
sipation of energy (Dirichlet integral). Choosing different virtual drain functions
we may get, in general, different solutions of problem (3.1) (a solution is known
to be unique only for small data). It is well known (see [31]) that a solenoidal
vector field with a nonzero flux over cross sections of the outlets to infinity can
have finite Dirichlet integral only if this outlet is sufficiently "wide". In order to
explain this, consider the outlet D which has the form

D = {x : |x′| < g(x3), x3 > 1} , x′ = (x1, x2),

and function g satisfies the Lipschitz condition. Take a solenoidal vector field
u with the finite Dirichlet integral over the paraboloidal outlet D and let F be
the flux of u over the cross section σ(t) = {x ∈ R3 : |x′| < g(t), x3 = t}. By
Cauchy–Schwarz (2.3) and Poincaré (2.4) inequalities we have

|F|2 =
∣∣∣ ∫
σ(t)

u3(x
′, t)dx′

∣∣∣2 ≤ πg2(t)
∫

σ(t)

|u3(x
′, t)|2dx′

≤ cg4(t)
∫

σ(t)

|∇′u3(x
′, t)|2dx′,
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Dividing both sides of the last inequality by g4(t) and integrating over t from 1

to R we obtain

|F|2
R∫
1

g−4(t)dt ≤ c
R∫
1

∫
σ(t)

|∇′u3(x
′, t)|2dx′dt

≤ c
∫
D

|∇u|2dx < ∞.

(3.12)

From (3.12) it follows that either F = 0 or
∫∞
1

g−4(t)dt < ∞. The latter condition
means that the outlet to infinity D is sufficiently "wide" (grows at infinity suffi-
ciently rapidly). For example, if D is a cylinder (g(t) ≡ 1), there are no solenoidal
vector fields with the finite Dirichlet integral and nonzero flux (see, for example,
[59]).

After problem (3.1) is reduced (with the help of virtual drain functions) to the
case of a boundary value with zero fluxes over all connected components of the
boundary ∂Ω, we can extend this boundary value from each component Λm, Γi

into Ω using the standard method (see, for example, [31]), and we get solenoidal
extensions b

(out)
0m and b

(inn)
0 , where b

(out)
0m satisfies Leray–Hopf inequalities (3.10).

Finally, as in [59], [61], we construct in Ω a solenoidal vector field B(flux) satisfying
zero boundary conditions and having given fluxes over the cross sections of all
outlets. The vector field

A =
(
b(inn) + b

(inn)
0

)
+

M∑
m=1

(
b
(out)
m + b

(out)
0m

)
+B(flux)

= B(inn) +
M∑

m=1

B
(out)
m +B(flux)

gives the desired extension of the boundary value a, and it satisfies the flux con-
ditions (3.5).
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Chapter 4

Examples

4.1 Domain with one paraboloidal outlet to in-
finity

In this chapter we consider the following problem
−ν∆u+

(
u · ∇

)
u+∇p = 0 in Ω,

divu = 0 in Ω,

u = a on ∂Ω

(4.1)

in the domain Ω ⊂ R3 with one paraboloidal outlet to infinity D1 = {x ∈ Ω :

|x′| < g1(x3), x3 > 1}, i.e., Ω = Ω0

∪
D1, where Ω0 = G0 \ G1, G1 ⊂ G0, G0

and G1 are bounded simply connected domains. Denote ∂G1 = Γ1 = Γ. The
outer boundary S consist of one component S(1). Therefore, ∂Ω = Γ1

∪
S(1). By

the assumption the boundary value a has a compact support (see (3.2)), therefore
Λ1 = supp a

∩
S(1) = S(1)

∩
BR0(0).

0R

1G
1D

1

)1( \ GW¶=S

3x

Figure 4.1: Domain Ω.
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The function g1 satisfies the Lipschitz condition

|g1(t1)− g1(t2)| ≤ L1|t1 − t2|, t1, t2 ≥ 1, g1(t) ≥ 1 ∀t. (4.2)

Below we will use the following notations:

Ω(l) = Ω0 ∪D
(l)
1 , ωl = Ω(l+1) \ Ω(l),

where D
(l)
1 = {x ∈ D1 : x3 < Rl}, R1 = 1, Rl+1 = Rl +

g1(Rl)

2L1

, l ≥ 1.

Let
F(inn)
1 =

∫
Γ1

a · n dS, F
(out)
1 =

∫
Λ1

a · n dS

be the fluxes of the boundary value a over the inner and outer boundaries, re-
spectively. Since the total flux has to be equal to zero, condition (3.3) implies∫

σ1(R)

u · n dS = −
(
F(inn)
1 + F

(out)
1

)
, (4.3)

where σ1(R) = D1

∩
{x : x3 = R} is the cross section of the outlet D1.

We construct a suitable extension A = B(out)
1 +B(inn) and prove the existence

of at least one solution to problem (4.1). Since the domain Ω has only one outlet
to infinity, compatibility condition (3.4) has the form

F(inn)
1 + F

(out)
1 + F1 = 0. (4.4)

Hence, in this case we cannot prescribe additionally the flux F1, i.e.,

F1 = −
(
F(inn)
1 + F

(out)
1

)
and the extension B(flux) can be taken equal to zero.

4.1.1 Construction of the extension B(inn)

We start with the construction of the virtual drain function b(inn). Let us first
define in D1 a solenoidal vector field b

(inn)
1 such that

b
(inn)
1 (x)

∣∣
∂D1∩∂Ω

= 0,
∫

σ1(R)

b
(inn)
1 · n dS = F(inn)

1 .

Let γ+ = {x ∈ D1 : |x′| = 0, x3 > 1}. Define in D1 the cut-off function

ζ1(x) = Ψ
(
ln

(ϱ(δ(x))
∆(x)

))
, (4.5)
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where
δ(x) = ∆γ+(x), ∆(x) = ∆∂D1∩∂Ω(x),

functions Ψ and ϱ are given by formulas (2.24) and (2.25), respectively.

Lemma 4.1. The function ζ1(x) is equal to zero at those points of D1 where
ϱ(δ(x)) ≤ ∆(x), while the d0/2-neighborhood of the line γ+ is contained in this
set; ζ1(x) = 1 at those points of D1 where ∆(x) ≤ e−1ϱ(δ(x)). The following
estimates ∣∣∣∂ζ1(x)

∂xk

∣∣∣ ≤ c

∆(x)
,

∣∣∣∂2ζ1(x)

∂xk∂xl

∣∣∣ ≤ c

∆2(x)

hold.

Proof. The proof of the lemma follows directly from the definition of the functions
ζ1, Ψ and ϱ, properties of the regularized distance (see estimates (2.21)) and the
fact that supp∇ζ1 is contained in the set where ∆(x) ≤ ϱ(δ(x)).

Set

b
(inn)
1 (x) = −F(inn)

1 curl
(
ζ1(x)b(x)

)
= −F(inn)

1 ∇ζ1(x)× b(x), x ∈ D1,

where b(x) is the magnetic field defined by (2.23); properties of b(x) are given in
Lemma 2.17.

Lemma 4.2. The solenoidal vector field b
(inn)
1 is infinitely differentiable, vanishes

near the surface ∂D1 ∩ ∂Ω and the contour γ+, the support of b(inn)
1 is contained

in the set of points x ∈ D1 satisfying the inequalities

ϱ(δ(x))e−1 ≤ ∆(x) ≤ ϱ(δ(x)). (4.6)

Moreover, ∫
σ1(R)

b
(inn)
1 · n dS = F(inn)

1 ,

and the following inequalities

|b(inn)
1 (x)| ≤ c|F(inn)

1 |
d(x)

, (4.7)

|b(inn)
1 (x)| ≤ C|F(inn)

1 |
g21(x3)

, |∇b1(x)| ≤
C|F(inn)

1 |
g31(x3)

, (4.8)

hold. Here d(x)=dist(x, ∂D1 ∩ ∂Ω).

Proof. Relation (4.6) follows from Lemma 4.1. Since ζ1(x) = 1 on ∂D1 ∩ ∂Ω, by
the Stokes Theorem (see Lemma 2.12) and properties of the magnetic field b we
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get∫
σ1(R)

b
(inn)
1 · n dS = −F(inn)

1

∫
σ1(R)

curl
(
ζ1b

)
· n dS = −F(inn)

1

∮
∂σ1(R)

b · dl = F(inn)
1 .

From the definition of b(inn)
1 (x) and Lemma 4.1 follow the estimates

|b(inn)
1 (x)| ≤ |F(inn)

1 ||∇ζ1(x)||b(x)| ≤
c|F(inn)

1 |
∆(x) |x′|

,

|∇b
(inn)
1 (x)| ≤ |F(inn)

1 |
(
|∇(∇ζ1(x))||b(x)|+ |∇ζ1(x)||∇b(x)|

)
≤ c|F(inn)

1 |
( 1

∆2(x)|x′|
+

1

∆(x)|x′|2
)
.

(4.9)

It is easy to see that for points x ∈ suppb
(inn)
1 the inequalities

0 < c1δ(x) ≤ ∆(x) ≤ c2δ(x), c3g1(x3) ≤ |x′| ≤ c4g1(x3) (4.10)

hold. Since dist(x, γ+) = |x′| for x ∈ D1 and dist(x, γ+) ≥ d0/2 for x ∈ suppb
(inn)
1 ,

estimates (4.7), (4.8) follow from (4.9), (4.10).

Lemma 4.3. For any vector field w ∈ W 1,2
loc (D1) with w|∂D1∩∂Ω = 0 the following

inequalities ∫
D

(k)
1

|b(inn)
1 |2|w|2 dx ≤ c|F(inn)

1 |2
∫

D
(k)
1

|∇w|2 dx,∫
D

(k+1)
1 \D(k)

1

|b(inn)
1 |2|w|2 dx ≤ c|F(inn)

1 |2
∫

D
(k+1)
1 \D(k)

1

|∇w|2 dx
(4.11)

hold. The constant c is independent of k.

Proof. Estimates (4.11) follow from (4.7) and the well known inequality

∫
D

(k+1)
1 \D(k)

1

|w(x)|2

d2(x)
dx ≤ c

∫
D

(k+1)
1 \D(k)

1

|∇w(x)|2 dx

(see Lemma 2.15).

Let x(1) ∈ G1, be a point lying inside the "hole" G1. Denote q1(x) = q(x−x(1)),
where

q(x) =
1

4π

1

|x|
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is the fundamental solution of the Laplace operator in R3, and let

b
(inn)
♯ (x) = F(inn)

1 ∇q1(x). (4.12)

Obviously,

divb
(inn)
♯ = F(inn)

1 div∇q1(x) = F(inn)
1 ∆q1(x) = 0, 1

Moreover, we have∫
Γ1

b
(inn)
♯ · n dS = F(inn)

1 ,
∫

∂Ω0

b
(inn)
♯ · n dS = −F(inn)

1 .

Denote

h1 =


0, x ∈ Γ1,

b
(inn)
1 |∂Ω0∩D1

− b
(inn)
♯ |∂Ω0∩D1

, x ∈ ∂Ω0

∩
D1,

−b
(inn)
♯

∣∣
∂Ω0\D1

, x ∈ ∂Ω0 \ (D1

∪
Γ1).

Then∫
∂Ω0

h1 · n dS=
∫

∂Ω0∩D1

b
(inn)
1 · n dS −

∫
∂Ω0

b
(inn)
♯ · n dS=F(inn)

1 −F(inn)
1 =0. (4.13)

Because of (4.13) the function h1 can be extended inside the domain Ω0 as a
solenoidal vector field b

(inn)
01 ∈ W 1,2(Ω0) and

∥b(inn)
01 ∥W 1,2(Ω0) ≤ c∥h1∥W 1/2,2(∂Ω0)

≤ c
(
∥b(inn)

♯ ∥W 1/2,2(∂Ω0) + ∥b(inn)
1 ∥W 1/2,2(∂Ω0∩D1)

)
≤ c|F(inn)

1 |,
(4.14)

where the constant c depends only on the domain Ω0 (see Lemma 2.6). Define

b(inn) =

b
(inn)
♯ + b

(inn)
01 , x ∈ Ω0,

b
(inn)
1 , x ∈ D1.

The vector field b(inn) "removes" the non-zero flux from the component Γ1 and,
as we have mentioned before, we call it a virtual drain function.

1The function v = ∇q is not only solenoidal and harmonic; it satisfies together with the
pressure p = 1

2 |∇q|2 the system of the homogeneous Navier–Stokes equations

−ν∆v + (v · ∇)v +∇p = 0.
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Set

h0 =

a− b
(inn)
♯ |Γ1 , x ∈ Γ1,

0, x ∈ ∂Ω0 \ Γ1.

Obviously,∫
Γ1

h0 · n dS =
∫
Γ1

a · n dS −
∫
Γ1

b
(inn)
♯ · n dS = F(inn)

1 − F(inn)
1 = 0.

Therefore, the function h0 can be extended inside Ω in the form

b
(inn)
0 (x) = curl (χ(x))E(x)),

where E ∈ W 2
2 (Ω0), curlE|∂Ω0 = h0 and χ is a Hopf’s type smooth cut-off function

and χ(x) = 1 on Γ1. Moreover, for any w ∈ W 1,2
loc (Ω) with w|∂Ω = 0 the following

estimate ∫
Ω0

|b(inn)
0 (x)|2|w(x)|2 dx ≤ c|F(inn)

1 |2
∫
Ω0

|∇w(x)|2 dx (4.15)

holds (see Lemma 2.14 with ε = 1 and Lemma 2.15).
Finally, we put

B(inn) = b(inn) + b
(inn)
0 . (4.16)

Lemma 4.4. The vector field B(inn) is solenoidal, B(inn)|Γ1 = a|Γ1, B(inn)|S(1) = 0,
B(inn) ∈ W 1,2

loc (Ω). For any solenoidal w ∈ W 1,2
loc (Ω) with w

∣∣
∂Ω

= 0 the following
estimates ∫

Ω(k)\Ω(k−1)

|B(inn)|2|w|2 dx ≤ c|F(inn)
1 |2

∫
Ω(k)\Ω(k−1)

|∇w|2 dx,

∫
Ω(k)

|B(inn)|2|w|2 dx ≤ c|F(inn)
1 |2

∫
Ω(k)

|∇w|2 dx
(4.17)

hold. Moreover,

|B(inn)(x)| ≤ C|F(inn)
1 |

g21(x3)
, |∇B(inn)(x)| ≤ C|F(inn)

1 |
g31(x3)

, x ∈ D1,

|B(inn)(x)|+ |∇B(inn)(x)| ≤ C|F(inn)
1 |, x ∈ Ω \D1.

(4.18)

Proof. By the construction B(inn) is solenoidal, B(inn)|Γ1 = a, B(inn)|S(1) = 0.
From (4.11), (4.14), (4.15) and definition (4.12) of the vector field b

(inn)
♯ (x) follow
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the estimates ∫
Ω(k)\Ω(k−1)

|B(inn)|2|w|2 dx =
∫

D
(k)
1 \D(k−1)

1

|b(inn)
1 |2|w|2 dx

≤ c|F(inn)
1 |2

∫
Ω(k)\Ω(k−1)

|∇w|2 dx,

∫
Ω(k)

|B(inn)|2|w|2 dx ≤ c
( ∫

Ω0

|b(inn)
♯ |2|w|2 dx+

∫
Ω0

|b(inn)
01 |2|w|2 dx

+
∫
Ω0

|b(inn)
0 |2|w|2 dx

)
+

∫
D

(k)
1

|b(inn)
1 |2|w|2 dx

≤ c
(
∥b(inn)

♯ ∥2L4(Ω0)
+ ∥b(inn)

01 ∥2L4(Ω0)

)
∥w∥2L4(Ω0)

+ c|F(inn)
1 |2

∫
Ω0

|∇w|2 dx

+c|F(inn)
1 |2

∫
D

(k)
1

|∇w|2 dx ≤ c|F(inn)
1 |2

∫
Ω(k)

|∇w|2 dx

for any solenoidal w ∈ W 1,2
loc (Ω) with w

∣∣
∂Ω

= 0. Finally, inequalities (4.18) follow
from (4.16), (4.8).

Remark 4.1. It is easy to see from the above construction that in the case
F(inn)
1 = 0 we have b

(inn)
1 = 0 and, hence, suppB(inn) ⊂ Ω0.

4.1.2 Construction of the extension B
(out)
1

We start with the construction of virtual drain function b
(out)
1 . Take any point

x(1) ∈ Λ1 ⊂ S(1). Let γ11 be a smooth simple curve which intersects ∂Ω at the

1G

1

)1( \ GW¶=S

1R

11g
)1(

x

3x

Figure 4.2: Contour γ11.
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point x(1) and
γ11 = γ̂1

∪
γ̂
(1)
1

∪
l1,

where γ̂1 is a semi-infinite line lying in D1, γ̂(1)
1 ⊂ (Ω ∩ BR1(0)) is a finite simple

curve connecting γ̂1 and the point x(1), and l1 ⊂ R3 \ Ω is a semi-infinite line
starting at the point x(1).

In the domain Ω we introduce the virtual drain function

b(out)(x, ε) = F
(out)
1 curl(ζ11(x, ε) · b(1)

1 (x)) = F
(out)
1 ∇ζ11(x, ε)× b(1)

1 (x), (4.19)

where
ζ11(x, ε) = Ψ

(
ε ln

ϱ(δ(11)(x))

∆∂Ω\Λ1(x)

)
, (4.20)

δ(11)(x) = ∆γ11(x), b(1)
1 (x) is a magnetic field defined by formula (2.22) (the

properties of b(1)
1 (x) are given in Lemma 2.17), functions Ψ and ϱ are defined by

(2.24) and (2.25), respectively.

Lemma 4.5. The vector field b(out)
1 is infinitely differentiable and solenoidal, b(out)

1

vanishes near the surface ∂Ω\Λ1 and in a small neighborhood of the curve γ11∩Ω.
The following estimates

|b(out)
1 (x, ε)| ≤ cε

d∂Ω\Λ1(x)dγ11(x)
,

|∇b(out)
1 (x, ε)| ≤ c

( 1

d2∂Ω\Λ1
(x)dγ11(x)

+
1

d∂Ω\Λ1(x) · d2γ11(x)

)
,

(4.21)

|b(out)
1 (x, ε))| ≤ c(ε)|F(out)

1 |
g21(x3)

, |∇b(out)
1 (x, ε)| ≤ c(ε)|F(out)

1 |
g31(x3)

, x ∈ D1 (4.22)

hold. Here d∂Ω\Λ1(x) and dγ11(x) are distances from the point x to ∂Ω \ Λ1 and
γ11, respectively. The constant c in (4.21) is independent of ε. Finally,∫

Λ1

b(out)
1 · n dS = F

(out)
1 .

Proof. The first statement of the lemma follow from definitions (4.19), (4.20) of
b(out)
1 (x, ε) and ζ11(x, ε) and from the properties of the regularized distance (see

estimates (2.21)). Estimates (4.21), (4.22) can be proved just is the same way as
the analogous inequalities in [59], [61]. Since b(out)

1 (x, ε) = 0 and ζ11(x, ε) = 1 on
∂Ω \ Λ1, the Ostrogradsky–Gauss and the Stokes formulas (see Lemma 2.11 and
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Lemma 2.12, respectively) yield∫
Λ1

b(out)
1 · n dS = −

∫
σ1(R)

b(out)
1 · n dS = −F

(out)
1

∫
σ1(R)

curl(ζ11b(1)
1 ) · n dS

= −F
(out)
1

∫
∂σ1(R)

ζ11b(1)
1 · dl = −F

(out)
1

∫
∂σ1(R)

b(1)
1 · dl = F

(out)
1 .

Let h1(x) = a(x)|Λ1 − b(out)
1 (x, ε)|Λ1 . Then∫

Λ1

h1 · n dS =
∫
Λ1

a · n dS −
∫
Λ1

b(out)
1 · n dS = 0.

Therefore, h1 can be extended inside Ω in the form

b
(out)
01 (x, ε) = curl (χ1(x, ε)E1(x)),

where E1 ∈ W 2
2 (Ω0), curlE1|Λ1 = h1 and χ1 is a Hopf’s type cut-off function such

that χ1(x, ε) = 1 on Λ1, suppχ1 is contained in a small neighborhood of Λ1, and

|∇χ1(x, ε)| ≤
εc

dist(x,Λ1)
(4.23)

(see Lemma 2.14).
Define

B(out)
1 (x, ε) = b

(out)
1 (x, ε) + b

(out)
0 1 (x, ε).

Obviously,
divB(out)

1 = 0, B(out)
1 |Λ1 = a, B(out)

1 |∂Ω\Λ1 = 0.

Lemma 4.6. The following estimates∫
Ω(k)\Ω(k−1)

|B(out)
1 |2|w|2 dx ≤ εc|F(out)

1 |2
∫

Ω(k)\Ω(k−1)

|∇w|2 dx,

∫
Ω(k)

|B(out)
1 |2|w|2 dx ≤ εc|F(out)

1 |2
∫

Ω(k)

|∇w|2 dx,
(4.24)

hold for any solenoidal w ∈ W 1,2
loc (Ω) with w

∣∣
∂Ω

= 0. Moreover,

|B(out)
1 (x, ε)| ≤ C|F(out)

1 |
g21(x3)

, |∇B
(out)
1 (x)| ≤ C|F(out)

1 |
g31(x3)

. (4.25)

The constant c in (4.24) does not depend on ε and k, while C = C(ε) in (4.25)
depends on ε.
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Proof. Inequality (4.21) yields (see Lemma 2.15)

∫
Ω(k)\Ω(k−1)

|B(out)
1 |2|w|2dx ≤ cε|F(out)

1 |2
∫

Ω(k)\Ω(k−1)

|w|2

dist2(x, ∂Ω)
dx

≤ cε|F(out)
1 |2

∫
Ω(k)\Ω(k−1)

|∇w|2dx,

∫
Ω(k)

|B(out)
1 |2|w|2dx ≤ cε|F(out)

1 |2
∫

Ω(k)

|w|2

dist2(x, ∂Ω)
dx ≤ cε|F(out)

1 |2
∫

Ω(k)

|∇w|2dx.

Estimates (4.25) are the consequence of (4.22).

4.1.3 Existence of a solution

We look for the solution u in the form

u(x) = A(x, ε) + v(x), (4.26)

where
A(x, ε) = B(out)

1 (x, ε) + B(inn)(x)

and as it follows from (4.17), (4.24) the following estimates∫
Ω(k)\Ω(k−1)

|A|2|w|2 dx ≤ c(ε|F(out)
1 |2 + |F(inn)

1 |2)
∫

Ω(k)\Ω(k−1)

|∇w|2 dx,

∫
Ω(k)

|A|2|w|2 dx ≤ c(ε|F(out)
1 |2 + |F(inn)

1 |2)
∫

Ω(k)

|∇w|2 dx
(4.27)

holds for any solenoidal w ∈ W 1,2
loc (Ω) with w|∂Ω = 0.

Definition 4.1. By a weak solution of problem (4.1) we understand a solenoidal
vector field u which has representation (4.26) with the solenoidal vector field v ∈
W 1,2

loc (Ω), v|∂Ω = 0 and satisfies the integral identity

ν
∫
Ω

∇v : ∇η dx−
∫
Ω

((A + v) · ∇)η · v dx−
∫
Ω

(v · ∇)η · A dx

= −ν
∫
Ω

∇A : ∇η dx+
∫
Ω

(A · ∇)η · A dx ∀η ∈ J∞
0 (Ω).

(4.28)

Theorem 4.1. Assume that the boundary value a ∈ W 1/2,2(∂Ω) has a compact
support and that the flux F(inn)

1 is sufficiently small. Then there exists at least one
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weak solution u of problem (4.1), (4.4) and there holds the estimate

∫
Ω(l)

|∇u|2 dx ≤ c(data)

(
1 +

Rk∫
1

dx3

g41(x3)

)
, (4.29)

c(data) = c0

(
∥a∥2

W 1/2,2(∂Ω)
+ ∥a∥4

W 1/2,2(∂Ω)

)
,

where c is independent of l.

Proof. In every bounded domain Ω(l) there exists a vector field v(l) ∈ H(Ω(l))

satisfying the integral identity

ν
∫

Ω(l)

∇v(l) :∇η dx−
∫

Ω(l)

((A + v(l))·∇)η ·v(l) dx−
∫

Ω(l)

(v(l) ·∇)η ·A dx

= −ν
∫

Ω(l)

∇A :∇η dx+
∫

Ω(l)

(A·∇)η ·A dx ∀η ∈ H(Ω(l)).

(4.30)

Indeed, this integral identity is equivalent to the operator equation

v(l) = Âv(l), (4.31)

where Â is a compact operator (see [31]). By Leray-Schauder Theorem (see
Lemma 2.13) operator equation (4.31) admits at least one solution if norms of
all possible solutions of the operator equation

v(l,λ) = λÂv(l,λ), λ ∈ [0, 1], (4.32)

are bounded by the same constant independent of λ.
Taking η = v(l)2 in (4.30) and using Leray-Hopf (3.10) and Cauchy–Schwarz (2.3)
inequalities, we obtain

∫
Ω(l)

|∇v(l)|2 dx =
λ

ν

∫
Ω(l)

(v(l) · ∇)v(l) · A dx− λ
∫

Ω(l)

∇A : ∇v(l) dx

+
λ

ν

∫
Ω(l)

(A · ∇)v(l) · A dx ≤ c(ε|F(out)
1 |2 + |F(inn)

1 |2)
∫

Ω(l)

|∇v(l)|2 dx (4.33)

+
( ∫
Ω(l)

|∇A|2 dx
)1/2 · ( ∫

Ω(l)

|∇v(l)|2 dx
)1/2

+
( ∫
Ω(l)

|A|4 dx
)1/2 · ( ∫

Ω(l)

|∇v(l)|2 dx
)1/2

.

2For simplicity, we omit the index λ.
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Using Cauchy inequality with ε (2.1), we recieve

(1− cε|F(out)
1 |2 − c|F(inn)

1 |2)∥∇v(l)∥2L2(Ω(l))

≤ c

ε

(
∥∇A∥2L2(Ω(l))

+ ∥A∥4L4(Ω(l))

)
+ cε∥∇v(l)∥2L2(Ω(l))

.

Taking sufficiently small ε and F(inn)
1 , we have

∥∇v(l)∥2L2(Ω(l))
≤ c

(
∥∇A∥2L2(Ω(l))

+ ∥A∥4L4(Ω(l))

)
. (4.34)

Since
|F(out)

1 |+ |F(inn)
1 | ≤ c∥a∥W 1/2,2(∂Ω),

∥∇A∥2L2(Ω(l))
≤ c∥a∥2

W 1/2,2(∂Ω)

(
1 +

Rl∫
1

dx3

g41(x3)

)
,

∥A∥4L4(Ω(l))
≤ c∥a∥4

W 1/2,2(∂Ω)

(
1 +

Rl∫
1

dx3

g61(x3)

)
≤ c∥a∥4

W 1/2,2(∂Ω)

(
1 +

Rl∫
1

dx3

g41(x3)

)
,

the inequality (4.34) yields

∥∇v(l)∥2L2(Ω(l))
≤ c

(
∥a∥2

W 1/2,2(∂Ω)
+ ∥a∥4

W 1/2,2(∂Ω)

)(
1 +

Rl∫
1

dx3

g41(x3)

)
. (4.35)

Hence the existence of the solution v(l) of operator equation (4.31) follows from
Leray-Schauder Theorem.

Let us estimate the norm ∥∇v(l)∥L2(Ω(k)) for k < l. We introduce the function

U(l)
k (x) =


v(l)(x), x ∈ Ω(k),

θk(x)v(l)(x) + v̂(l)
k (x), x ∈ Ω(k+1) \ Ω(k) = ωk,

0, Ω \ Ω(k+1),

(4.36)

where θk(x) is a smooth cut-off function with the following properties:

θk(x) =

1, x ∈ Ω(k),

0, x ∈ Ω \ Ω(k+1),

|∇θk(x)| ≤
c

g1(Rk)
, (4.37)
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and v̂(l)
k is the solution of the problem

div v̂(l)
k = −∇θk · v(l) in ωk,

v̂(l)
k = 0 on ∂ωk.

(4.38)

Since
∫
ωk

∇θk · v(l) dx =
∫
ωk

div (θv(l)) dx =
∫

∂ωk

θv(l) · n dx =
∫

σ1(k+1)

v3 dx = 0, the

solution v̂(l)
k of problem (4.38) exists and satisfies the estimate

∥∇v̂(l)
k ∥L2(ωk) ≤ c∥∇θk · v(l)∥L2(ωk), (4.39)

where c is independent of k (see Lemma 2.9). Using estimate (4.37) and Poincaré
inequality (2.10), from (4.39) we derive the estimate

∥∇v̂(l)
k ∥L2(ωk)≤c∥∇θk · v(l)∥L2(ωk)≤

c

g1(Rk)
∥v(l)∥L2(ωk)≤c∥∇v(l)∥L2(ωk). (4.40)

Let us take in the integral identity (4.30) η = U(l)
k . Since∫

Ω(k+1)

((v(l) + A) · ∇)U(l)
k · U(l)

k dx = 0,

we obtain

ν
∫

Ω(k)

|∇v(l)|2 dx=
∫
ωk

((v(l)+A)·∇)U(l)
k ·(v(l)−U(l)

k ) dx−ν
∫
ωk

∇v(l):∇U(l)
k dx

+
∫

Ω(k+1)

(v(l)·∇)U(l)
k ·A dx−ν

∫
Ω(k+1)

∇A:∇U(l)
k dx+

∫
Ω(k+1)

(A · ∇)U(l)
k ·A dx.

(4.41)

Using inequalities (4.40), (2.12) and Puancaré inequality (2.10), we obtain

∥v(l)∥L4(ωk) ≤ c g
1/4
1 (Rk)∥∇v(l)∥L2(ωk),

∥v(l) − U(l)
k ∥L4(ωk) ≤ ∥v(l)∥L4(ωk) + ∥v̂(l)

k ∥L4(ωk)

≤ c g
1/4
1 (Rk)∥∇v(l)∥L2(ωk) + c g

1/4
1 (Rk)∥∇v(l)∥L2(ωk) ≤ c g

1/4
1 (Rk)∥∇v(l)∥L2(ωk),

∥∇U(l)
k ∥L2(ωk) ≤ ∥∇(θv(l))∥L2(ωk) + ∥∇v̂(l)

k ∥L2(ωk)

≤ c

g1(Rk)
∥v(l)∥L2(ωk) + c ∥∇v(l)∥L2(ωk) + c∥∇v(l)∥L2(ωk) ≤ c∥∇v(l)∥L2(ωk).

Therefore, using the above estimates and inequalities (4.27) we can estimate the
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right hand side of (4.41) as follows∣∣∣∣ ∫
ωk

((v(l) + A) · ∇)U(l)
k · (v(l) − U(l)

k ) dx

∣∣∣∣
≤ ∥v(l)∥L4(ωk) ∥v(l) − U(l)

k ∥L4(ωk) ∥∇U(l)
k ∥L2(ωk)

+∥∇U(l)
k ∥L2(ωk)

( ∫
ωk

|A|2|v(l) − U(l)
k |2 dx

)1/2 ≤ cg
1/2
1 (Rk)∥∇v(l)∥3L2(ωk)

+c(
√
ε|F(out)

1 |+ |F(inn)
1 |)∥∇v(l)∥L2(ωk)

( ∫
ωk

|∇(v(l) − U(l)
k )|2 dx

)1/2
≤ cg

1/2
1 (Rk)∥∇v(l)∥3L2(ωk)

+ c(
√
ε|F(out)

1 |+ |F(inn)
1 |)∥∇v(l)∥2L2(ωk)

;

ν

∣∣∣∣ ∫
ωk

∇v(l) : ∇U(l)
k dx

∣∣∣∣ ≤ ν∥∇v(l)∥L2(ωk) ∥∇U(l)
k ∥L2(ωk) ≤ νc∥∇v(l)∥2L2(ωk)∣∣∣∣ ∫

Ω(k+1)

(v(l) · ∇)U(l)
k · A dx

∣∣∣∣ ≤ ∥∇U(l)
k ∥L2(Ω(k+1))

( ∫
Ω(k+1)

|v(l)|2|A|2 dx
)1/2

≤ c(
√
ε|F(out)

1 |+ |F(inn)
1 |)∥∇v(l)∥2L2(Ω(k+1))

≤ c(
√
ε|F(out)

1 |+ |F(inn)
1 |)

(
∥∇v(l)∥2L2(Ω(k))

+ ∥∇v(l)∥2L2(ωk)

)
;

ν

∣∣∣∣ ∫
Ω(k+1)

∇A : ∇U(l)
k dx

∣∣∣∣+ ∣∣∣∣ ∫
Ω(k+1)

(A · ∇)U(l)
k · A dx

∣∣∣∣
≤ c

(
∥∇A∥L2(Ω(k+1)) + ∥A∥2L4(Ω(k+1))

)
∥∇U(l)

k ∥L2(Ω(k+1))

≤ c

2
√
ε

(
∥∇A∥L2(Ω(k+1)) + ∥A∥2L4(Ω(k+1))

)2

+
c
√
ε

2
∥∇U(l)

k ∥2L2(Ω(k+1))

≤ c√
ε

(
∥∇A∥2L2(Ω(k+1))

+ ∥A∥4L4(Ω(k+1))

)
+

c
√
ε

2
∥∇v(l)∥2L2(Ω(k+1))

≤ c√
ε

(
∥a∥2

W 1/2,2(∂Ω)
+ ∥a∥4

W 1/2,2(∂Ω)

)(
1 +

Rl∫
1

dx3

g41(x3)

)
+c

√
ε

(
∥∇v(l)∥2L2(Ω(k))

+ ∥∇v(l)∥2L2(ω(k))

)
.

Therefore, from (4.41) it follows that∫
Ω(k)

|∇v(l)|2 dx ≤ cg
1/2
1 (Rk)∥∇v(l)∥3L2(ωk)

+ c(
√
ε|F(out)

1 |+ |F(inn)
1 |)∥∇v(l)∥2L2(ωk)

+c(
√
ε|F(out)

1 |+ |F(inn)
1 |)

(
∥∇v(l)∥2L2(Ω(k))

+ ∥∇v(l)∥2L2(ωk)

)
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+
c√
ε

(
∥a∥2

W 1/2,2(∂Ω)
+ ∥a∥4

W 1/2,2(∂Ω)

)(
1 +

Rl∫
1

dx3

g41(x3)

)
.

Taking F(inn)
1 and ε sufficiently small, we obtain∫

Ω(k)

|∇v(l)|2 dx ≤ c∗∗g
1/2
1 (Rk)∥∇v(l)∥3L2(ωk)

+ c∗∥∇v(l)∥2L2(ωk)

+c0

(
∥a∥2

W 1/2,2(∂Ω)
+ ∥a∥4

W 1/2,2(∂Ω)

)(
1 +

Rk∫
1

dx3

g41(x3)

)
.

Denote yk =
∫

Ω(k)

|∇v(l)|2 dx. Since
∫
ωk

=
∫

Ω(k+1)

−
∫

Ω(k)

, we can rewrite the last in-

equality as

yk ≤ c∗(yk+1 − yk) + c∗∗g
1/2
1 (Rk)(yk+1 − yk)

3/2 +Qk, (4.42)

where

Qk = c(data)

(
1 +

Rk∫
1

dx3

g41(x3)

)
, c(data) = c0

(
∥a∥2

W 1/2,2(∂Ω)
+ ∥a∥4

W 1/2,2(∂Ω)

)
.

We have
c∗(Qk+1 −Qk) + c∗∗g

1/2
1 (Rk)(Qk+1 −Qk)

3/2

= c∗c(data)
Rk+1∫
Rk

dt

g41(t)
+ c∗∗g

1/2
1 (Rk)

(
c(data)

Rk+1∫
Rk

dt

g41(t)

)3/2
.

If
∞∫
1

dt

g41(t)
< ∞, then

Rk+1∫
Rk

dt

g41(t)
→ 0 as k → ∞, and there holds the estimate

c∗c(data)
Rk+1∫
Rk

dt

g41(t)
+c∗∗g

1/2
1 (Rk)

(
c(data)

Rk+1∫
Rk

dt

g41(t)

)3/2≤ c̃c(data)

(
1+

Rk∫
1

dx3

g41(x3)

)

for sufficiently large k. If
∞∫
1

dt

g41(t)
= ∞, then 3

c∗c(data)
Rk+1∫
Rk

dt

g41(t)
+ c∗∗g

1/2
1 (Rk)

(
c(data)

Rk+1∫
Rk

dt

g41(t)

)3/2
≤ c̃∗c(data)g

−3
1 (Rk) + c̃∗∗(c(data))

3/2g−4
1 (Rk)

≤ c̃∗c(data) + c̃∗∗(c(data))
3/2 ≤ c̃c(data)

(
1 +

Rk∫
1

dx3

g41(x3)

)
,

3We have used that Rk+1−Rk =
g1(Rk)

2L1
and 1

2
g1(Rk) ≤ g1(t) ≤

3

2
g1(Rk) for t ∈ (Rk, Rk+1)

(see [59]).
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because
Rk∫
1

dt

g41(t)
→ ∞ as k → ∞.

Since Qk satisfy condition (2.20), by Lemma 2.16 inequality (4.42) together
with (4.35) implies the estimate

yk =
∫

Ω(k)

|∇v(l)|2 dx ≤ c(data)

(
1 +

Rk∫
1

dx3

g41(x3)

)
∀k ≤ l. (4.43)

This estimate guarantees the existence of a subsection {v(lm)} which converges
weakly in W̊ 1,2(Ω(k)) and strongly in L4(Ω(k)) for every k. Therefore, passing to a
limit in the integral identity (4.30) we find that the limiting vector field v satisfies
(4.28) for any η ∈ J∞

0 (Ω) (or for any H(Ω) with compact support). The sum
u = A + v is a weak solution of the problem (4.1). The estimate (4.29) for v
follows from (4.43). Since for A the analogous to (4.29) estimate is obvious, we
obtain (4.29) for the sum u = A + v.

4.2 Domain with two connected layer type out-
lets to infinity

In this section the domain Ω ⊂ R3 consists of two layer type outlets to infinity
E1 = {x ∈ Ω : 1 < x3 < h1(|x′|)} and E2 = {x ∈ Ω : −2 < x3 < −1},
Ω0 = Ω

∩
BR0(0). Let Ω0 = G0 \ G1, G1 ⊂ G0, G0 and G1 are bounded simply

connected domains. Let ∂G1 = Γ1 = Γ be the inner boundary of ∂Ω. The outer
boundary of ∂Ω consists of three components, i.e., S = S(1) ∪ S(2) ∪ S(3):

S(1) = {x ∈ ∂E1 : x3 = h1(x
′|)},

S(2) = {x ∈ ∂E1 : x3 = 1}
∪(

∂H \ (∂E1

∪
∂E2)

)∪
{x ∈ ∂E2 : x3 = −1},

S(3) = {x ∈ ∂E2 : x3 = −2},

where H ⊂ Ω0 is a finite cylinder, containing the origin, which connects the layers
E1 and E2. In the domain Ω we consider the following problem

−ν∆u+
(
u · ∇

)
u+∇p = 0 in Ω,

divu = 0 in Ω,

u = a on ∂Ω,∫
σj(R)

u · n dS = Fj, R ≥ R0, j = 1, 2,

(4.44)
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Figure 4.3: Domain Ω.

where σj(R) = Ej

∩
{x : |x′| = R} are the cross sections of layers Ej, Fj are

prescribed fluxes over σj(R), j = 1, 2.
Function h1(t) possess the following properties

µ1h1(t) ≤ max
t≤t1≤2t

h1(t1) ≤ µ2h1(t), h1(t) ≥ 1 ∀t ≥ 1,

|h1(t1)− h1(t2)| ≤ L1(t)|t1 − t2|, t1, t2 ∈ [t, 2t],

where µ1, µ2 are certain positive constants and for L1(t) holds the inequality

L1(t) · t
h1(t)

≤ const, L1(t) ≤ const ∀t.

Suppose that the boundary value a has a compact support (see (3.2)) and
Λ1 = supp a

∩
S ⊂ S(3).

Below we use the following notations:

Ω(l) = Ω0 ∪ E
(l)
1 ∪ E

(l)
2 , ωjk = Ω(l+1) \ Ω(l),

where E
(l)
j = {x ∈ Ej : |x′| < Rjk}, Rj1 = 1, Rjl+1 = 2Rjl, l ≥ 1, j = 1, 2.

Let
F(inn)
1 =

∫
Γ1

a · n dS, F
(out)
1 =

∫
Λ1

a · n dS

be the fluxes of the boundary value a over the inner and outer boundaries, re-
spectively. Since the total flux has to be equal to zero, condition (3.3) implies

F1 + F2 + F(inn)
1 + F

(out)
1 = 0. (4.45)

We construct the suitable extension A = B(out)
1 + B(inn) + B(flux) and prove

the existence of at least one solution to problem (4.44).
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4.2.1 Construction of the extension B(inn)

Let us start with the construction of the "virtual drain" function b(inn) which
"drains" the flux F(inn)

1 from the inner boundary Γ to infinity. We choose the
"widest" outlet E1, in order to minimize the dissipation of energy generated by
b(inn). Let us first define in E1 a solenoidal vector field b

(inn)
1 such that

b
(inn)
1 (x)

∣∣
∂E1∩∂Ω

= 0,
∫

σ
(E)
1 (R)

b
(inn)
1 · n dS = F(inn)

1 .

Let γ1 = {x ∈ E1 : |x′| = 0}. Define in E1 a cut–off function

ζ1(x) = Ψ
(
ln

(ϱ(δ(x))
∆(x)

))
, (4.46)

where
δ(x) = ∆γ1∪S(1)(x), ∆(x) = ∆∂E1\S(1)(x),

functions Ψ and ϱ are defined by formulas (2.24) and (2.25), respectively.

Lemma 4.7. The function ζ1(x) is equal to zero at those points of E1 \ γ1, where
ϱ(δ(x)) ≤ ∆(x) and ζ1(x) = 1 if ∆(x) ≤ e−1ϱ(δ(x)). The following estimates

∣∣∣∂ζ1(x)
∂xk

∣∣∣ ≤ c

∆(x)
,

∣∣∣∂2ζ1(x)

∂xk∂xl

∣∣∣ ≤ c

∆2(x)
(4.47)

hold.

Proof. The proof of the lemma follows directly from the definition of the functions
ζ1,Ψ and ϱ, properties of the regularized distance (see estimates (2.21)) and the
fact that supp∇ζ1 is contained in the set where ∆(x) ≤ ϱ(δ(x)).

Define

b
(inn)
1 (x) = F(inn)

1 curl
(
ζ1(x)b(x)

)
= F(inn)

1 ∇ζ1(x)× b(x), x ∈ E1,

where b(x) is a magnetic field defined by (2.23) (the properties of b(x) are given
in Lemma 2.17).

Lemma 4.8. The solenoidal vector field b
(inn)
1 is infinitely differentiable for x ∈

E1 \ {x : |x′| = 0}, vanishes near the set ∂E1

∪
{x : |x′| = 0}, and satisfies the

conditions ∫
σ1(R)

b
(inn)
1 · n dS = F(inn)

1 , n =
( x1

|x′|
,
x2

|x′|
, 0
)
, (4.48)

|b(inn)
1 (x)| ≤ c|F(inn)

1 |
d(x)

, (4.49)
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|b(inn)
1 (x)| ≤ C|F(inn)

1 |
h1(|x′|) |x′|

,

|∇b
(inn)
1 (x)| ≤ C|F(inn)

1 |
h2
1(|x′|) |x′|

+
C|F(inn)

1 |
h1(|x′|) |x′|2

, x ∈ E1 \ Ω0.

(4.50)

In (4.49) d(x) = dist(x, ∂E1 ∩ ∂Ω \ S(1)).

Proof. Since
(
∇ζ1 × b

)
· n = − 1

2π
· ∂ζ1
∂x3

· 1

|x′|
, we obtain

∫
σ1(R)

b
(inn)
1 · n dS = F(inn)

1

∫
σ1(R)

(
∇ζ1 × b

)
· n dS

= −F(inn)
1

R

2π

2π∫
0

dϕ
h1(R)∫
1

∂ζ1
∂x3

· 1
R

dx3 = −F(inn)
1

h1(R)∫
1

∂ζ1
∂x3

d x3

= −F(inn)
1

(
ζ1(x1, x2, h1(R))− ζ1(x1, x2, 1)

)
= F(inn)

1 .

From the definition of b(inn)
1 (x) and estimates (4.47) it follows that

|b(inn)
1 (x)| ≤ |F(inn)

1 ||∇ζ1(x)||b(x)| ≤
c|F(inn)

1 |
∆(x) |x′|

,

|∇b
(inn)
1 (x)| ≤ |F(inn)

1 |
(
|∇(∇ζ1(x))||b(x)|+ |∇ζ1(x)||∇b(x)|

)
≤ c|F(inn)

1 |
( 1

∆2(x)|x′|
+

1

∆(x)|x′|2
)
.

(4.51)

It is easy to see that for points x ∈ suppb
(inn)
1 the inequalities

c1h1(|x′|) ≤ ∆(x) ≤ c2h1(|x′|) (4.52)

hold with positive constants c1 and c2. Then estimates (4.49), (4.50) follow from
(4.51), (4.52).

Let us briefly describe the construction of the virtual drain function, which
"removes" nonzero fluxes from the inner boundary Γ1. Let x(1) ∈ G1, be the point
lying inside the "hole" G1. Denote q1(x) = q(x− x(1)), where

q(x) =
1

4π

1

|x|

is the fundamental solution of the Laplace operator in R3, and let

b
(inn)
♯ (x) = F(inn)

1 ∇q1(x).
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Then

divb
(inn)
♯ = 0,

∫
Γ1

b
(inn)
♯ · n dS = F(inn)

1 ,
∫

∂Ω0

b
(inn)
♯ · n dS = −F(inn)

1

(remind that G1 ⊂ Ω0).
Set

h1 =


0, x ∈ Γ1,

b
(inn)
1 |∂Ω0∩E1

− b
(inn)
♯ |∂Ω0∩E1

, x ∈ ∂Ω0 ∩ E1,

−b
(inn)
♯

∣∣
∂Ω0\E1

, x ∈ ∂Ω0 \ (E1 ∪ Γ1).

We have∫
∂Ω0

h1 · n dS =
∫

∂Ω0∩E1

b
(inn)
1 · n dS−

∫
∂Ω0

b
(inn)
♯ · n dS = F(inn)

1 − F(inn)
1 = 0.

Therefore, the function h1 can be extended inside the domain Ω0 as a solenoidal
vector field b

(inn)
01 ∈ W 1,2(Ω0) and

∥b(inn)
01 ∥W 1,2(Ω0) ≤ c∥h1∥W 1/2,2(∂Ω0)

≤ c
(
∥b(inn)

♯ ∥W 1/2,2(∂Ω0) + ∥b(inn)
1 ∥W 1/2,2(∂Ω0∩E1)

)
≤ c|F(inn)

1 |,

where the constant c depends only on the domain Ω0 (see Lemma (2.6)).
As in Subsection 4.1.1, define the virtual drain function by the formula

b(inn) =


b
(inn)
♯ + b

(inn)
01 , x ∈ Ω0,

b
(inn)
1 , x ∈ E1 \ Ω0,

0, x ∈ E2 \ Ω0.

Set

h0 =

a− b
(inn)
♯ |Γ1 , x ∈ Γ1

0, x ∈ ∂Ω0 \ Γ1.

Then ∫
Γ1

h0 · n dS =
∫
Γ1

a · n dS −
∫
Γ1

b
(inn)
♯ · n dS = F(inn)

1 − F(inn)
1 = 0,

and, therefore, the function h0 can be extended inside Ω0 in the form

b
(inn)
0 (x) = curl (χ(x)E(x)),
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where E ∈ W 2
2 (Ω0), curlE|∂Ω0 = h0 and χ is a smooth cut-off function with

χ(x) = 1 on Γ1. Moreover, for any w ∈ W 1,2
loc (Ω) with w|∂Ω = 0 the following

estimate ∫
Ω0

|b(inn)
0 (x)|2|w(x)|2 dx ≤ c|F(inn)

1 |2
∫
Ω0

|∇w(x)|2 dx

holds (see Lemma 2.14 with ε = 1 and Lemma 2.15). Finally, we put

B(inn) = b(inn) + b
(inn)
0 . (4.53)

As in Subsection 4.1.1, the vector field B(inn) satisfies the following lemma.

Lemma 4.9. The vector field B(inn) is solenoidal, B(inn)|Γ1 = a|Γ1, B(inn)|S(m) =

0, m = 1, 2, 3, B(inn) ∈ W 1,2
loc (Ω), B(inn)(x) = 0, x ∈ E2\Ω0. For any w ∈ W 1,2

loc (Ω)

with w
∣∣
∂Ω

= 0 the following estimates

∫
Ω(k)\Ω(k−1)

|B(inn)|2|w|2 dx ≤ c|F(inn)
1 |2

∫
Ω(k)\Ω(k−1)

|∇w|2 dx,

∫
Ω(k)

|B(inn)|2|w|2 dx ≤ c|F(inn)
1 |2

∫
Ω(k)

|∇w|2 dx,
(4.54)

hold. Moreover,

|B(inn)(x)| ≤ C|F(inn)
1 |

h1(|x′|)|x′|
, x ∈ E1 \ Ω0,

|∇B(inn)(x)| ≤
C|F(inn)

|

h2
1(|x′|)|x′|

+
C|F(inn)

1 |
h1(|x′|)|x′|2

, x ∈ E1 \ Ω0,

|B(inn)(x)|+ |∇B(inn)(x)| ≤ C|F(inn)
1 |, x ∈ Ω0.

(4.55)

4.2.2 Construction of the extension B
(out)
1

We start with the construction of virtual drain function b
(out)
1 . Let γ11 = {x :

|x′| = 0} be an infinite line which intersects ∂Ω at the points x(1) ∈ Λ1 ⊂ S(3) and
x(0) ∈ S(1). Define

b(out)
1 (x, ε)=−F

(out)
1 curl(ζ11(x, ε)·b(1)

1 (x))=−F
(out)
1 ∇ζ11(x, ε)× b(1)

1 (x), (4.56)

where
ζ11(x, ε) = Ψ

(
ε ln

δ(11)(x)

∆∂Ω\Λ1(x)

)
, (4.57)
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Figure 4.4: Contour γ11.

δ(11) =


ρ1(x)∆(γ11∪S(1))∩E1

(x) + ρ2(x)|x− x0|

+(1− ρ1(x)− ρ2(x))∆γ11∪S(1)(x), x ∈ ∂Ω \ (γ11 ∪ S(1)), x0 ∈ γ11 ∩ Ω0,

0, x ∈ γ11 ∪ S(1),

ρj(x) =

1, x ∈ Ej \ E(3)
j ,

0, x ∈ (∂Ω \ Ej) ∪ E
(2)
j , j = 1, 2,

b(1)
1 (x) is the magnetic field (2.23) corresponding to the contour γ11 (the properties

of b(1)
1 (x) are given in Lemma 2.17), the function Ψ is defined by formula (2.24).

Lemma 4.10. The vector field b(out)
1 is infinitely differentiable and solenoidal,

b(out)
1 vanishes near the surface ∂Ω \ Λ1, in a small neighborhood of the curve

γ11 ∩ Ω and for x ∈ E2 with |x| ≫ 1. The following estimates

|b(out)
1 (x, ε)| ≤ cε

d∂Ω\(Λ1∪S(1))(x)|x′|
,

|∇b(out)
1 (x, ε)| ≤ c

( 1

d2
∂Ω\(Λ1∪S(1))

(x)|x′|
+

1

d∂Ω\(Λ1∪S(1))(x)|x′|

)
,

(4.58)

|b(out)
1 (x, ε))| ≤ c(ε)|F(out)

1 |
h1(|x′|)|x′|

,

|∇b(out)
1 (x, ε)| ≤ c(ε)|F(out)

1 |
h2
1(|x′|)|x′|

+
c(ε)|F(out)

1 |
h1(|x′|)|x′|2

, x ∈ E1 \ Ω0, (4.59)

|b(out)
1 (x, ε))|+ |∇b(out)

1 (x, ε)| ≤ c(ε)|F(out)
1 |, x ∈ Ω \ E1

hold. Here d∂Ω\(Λ1∪S(1))(x) is the distance from the point x to ∂Ω \ (Λ1 ∪ S(1)).
Finally, ∫

Λ1

b(out)
1 · n dS = F

(out)
1 .
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Proof. The first statement of the lemma follow from definitions (4.56), (4.57) of
b(out)
1 (x, ε) and ζ11(x, ε) and from the properties of the regularized distance (see

estimates (2.21)). Ineqalities (4.58), (4.59) can be proved just is the same way as
the analogous estimates in [59], [61]. Since b(out)

1 (x, ε)|∂Ω\Λ1 = 0, b(out)
1 (x, ε) = 0

for x ∈ E2, |x| ≫ 1 and ζ11(x, ε) = 1 on ∂Ω\ (Λ1∪S(1)), and ζ11(x, ε) = 0 on S(1),

the Ostrogradsky–Gauss and the Stokes formulas (see Lemma 2.11 and Lemma
2.12, respectively) yield∫

Λ1

b
(out)
1 · n dS = −

∫
σ1(R)

b
(out)
1 · n dS = F

(out)
1

∫
σ1(R)

(
∇ζ11 × b

(1)
1

)
· n dS

= −F
(out)
1

R

2π

2π∫
0

dϕ
h1(R)∫
1

∂ζ11
∂x3

· 1
R

dx3 = −F
(out)
1

h1(R)∫
1

∂ζ11
∂x3

d x3

= −F
(out)
1

(
ζ11(x1, x2, h1(R))− ζ11(x1, x2, 1)

)
= F

(out)
1 .

Let h1(x) = a(x)|Λ1 − b(out)
1 (x, ε)|Λ1 . Then∫

Λ1

h1 · n dS =
∫
Λ1

a · n dS −
∫
Λ1

b(out)
1 · n dS = 0.

Therefore, h1 can be extended inside Ω in the form

b
(out)
01 (x, ε) = curl (χ1(x, ε)E1(x)),

where E1 ∈ W 2
2 (Ω0), curlE1|Λ1 = h1 and χ1 is a Hopf’s type cut-off function such

that χ1(x, ε) = 1 on Λ1 (see Lemma 2.14).
Define

B(out)
1 (x, ε) = b

(out)
1 (x, ε) + b

(out)
0 1 (x, ε).

Obviously,

divB(out)
1 = 0, B(out)

1 |Λ1 = a, B(out)
1 |∂Ω\Λ1 = 0, B(out)

1 = 0, x ∈ E2, |x| ≫ 1.

Lemma 4.11. For any solenoidal w ∈ W 1,2
loc (Ω) with w

∣∣
∂Ω

= 0 the following
estimates ∫

Ω(k)\Ω(k−1)

|B(out)
1 |2|w|2 dx ≤ εc|F(out)

1 |2
∫

Ω(k)\Ω(k−1)

|∇w|2 dx,

∫
Ω(k)

|B(out)
1 |2|w|2 dx ≤ εc|F(out)

1 |2
∫

Ω(k)

|∇w|2 dx,
(4.60)
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hold. Moreover,

|B(out)
1 (x, ε)| ≤ C|F(out)

1 |
h1(|x′|)|x′|

, x ∈ E1 \ Ω0,

|∇B
(out)
1 (x)| ≤ C|F(out)

1 |
h2
1(|x′|)|x′|

+
C|F(out)

1 |
h1(|x′|)|x′|2

, x ∈ E1 \ Ω0,

|B(out)
1 (x, ε)|+ |∇B

(out)
1 (x)| ≤ C|F(out)

1 |, x ∈ E2 \ Ω0.

(4.61)

The constant c in (4.60) does not depend on ε and k, while C = C(ε) in (4.61)
depends on ε.

Proof. Inequality (4.58) yields

∫
Ω(k)\Ω(k−1)

|B(out)
1 |2|w|2dx ≤ cε|F(out)

1 |2
∫

Ω(k)\Ω(k−1)

|w|2

dist2(x, ∂Ω)
dx,

≤ cε|F(out)
1 |2

∫
Ω(k)\Ω(k−1)

|∇w|2dx,

∫
Ω(k)

|B(out)
1 |2|w|2dx ≤ cε|F(out)

1 |2
∫

Ω(k)

|w|2

dist2(x, ∂Ω)
dx ≤ cε|F(out)

1 |
∫

Ω(k)

|∇w|2dx

(see Lemma 2.15 and [59] for details). Estimates (4.61) are the consequence of
(4.59).

4.2.3 Construction of the extension B(flux)

Now we need to compensate the fluxes over the cross sections of outlets to infin-
ity, i.e., we have to construct a solenoidal vector field B(flux) satisfying the flux
conditions∫

σ1(R)

B(flux) · n dS = F1 + F(inn)
1 + F

(out)
1 ,

∫
σ2(R)

B(flux) · n dS = F2. (4.62)

Denote

b(flux)
1,2 (x, ε) = curl(ζ1,2(x, ε)b(1,2)(x)) = ∇ζ1,2(x, ε)× b(1,2)(x),

where b(1,2)(x) is the magnetic field (2.23) corresponding to the contour γ11 (the
properties of b(1,2)(x) are given in Lemma 2.17),

ζ1,2(x, ε) = Ψ

(
ε ln

ϱ(∆γ11∪S(2)(x))

∆∂Ω\S(2)(x)

)
,
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the functions Ψ and ϱ are defined by formulas (2.24) and (2.25), respectively. The
vector field b(flux)

1,2 has the following properties (see [59], [61], [47]).

Lemma 4.12. The vector field b(flux)
1,2 (x, ε) is solenoidal, b(flux)

1,2 |∂Ω = 0 and

∫
σ1(R)

b(flux)
1,2 · n dS = −1,

∫
σ2(R)

b(flux)
1,2 · n dS = 1.

For any solenoidal w ∈ W 1,2
loc (Ω) with w

∣∣
∂Ω

= 0 the following estimates

∫
Ω(m)\Ω(m−1)

|b(flux)
1,2 |2|w|2 dx ≤ εc

∫
Ω(m)\Ω(m−1)

|∇w|2 dx,

∫
Ω(m)

|b(flux)
1,2 |2|w|2 dx ≤ εc

∫
Ω(m)

|∇w|2 dx
(4.63)

hold with the constant c independent of ε and m. Moreover,

|b(flux)
1,2 (x, ε)| ≤ C(ε)

hs(|x′|)|x′|
,

|∇b(flux)
1,2 (x, ε))| ≤ C(ε)

h2
s(|x′|)|x′|

+
C(ε)

hs(|x′|)|x′|2
, x ∈ Es \ Ω0, s = 1, 2,

|b(flux)
1,2 (x, ε)|+ |∇b(flux)

1,2 (x, ε))| ≤ C(ε), x ∈ Ω0.

(4.64)

Vector field

B(flux)(x, ε) = −(F1 + F(inn)
1 + F

(out)
1 )b(flux)

1,2 (x, ε)

satisfies the flux conditions (4.62).

4.2.4 Existence of a solution

We look for the solution u in the form

u(x) = A(x, ε) + v(x), (4.65)

where
A(x, ε) = B(out)

1 (x, ε) + B(inn)(x) + B(flux)(x, ε).
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As it follows from (4.54), (4.60), (4.63), for any solenoidal w ∈ W 1,2
loc (Ω) with

w|∂Ω = 0 the following inequalities∫
Ω(k)\Ω(k−1)

|A|2|w|2dx ≤ c(ε|F⃗ |2+ε|F(out)
1 |2+|F(inn)

1 |2)
∫

Ω(k)\Ω(k−1)

|∇w|2dx,

∫
Ω(k)

|A|2|w|2 dx ≤ c(ε|F⃗ |2 + ε|F(out)
1 |2 + |F(inn)

1 |2)
∫

Ω(k)

|∇w|2 dx,
(4.66)

hold, where |F⃗ | =
√
F2

1 + F2
2 , F⃗ = (F1,F2).

Definition 4.2. By a weak solution of problem (4.44) we understand a solenoidal
vector field u which has the representation (4.65) with the solenoidal vector field
v ∈ W 1,2

loc (Ω), v|∂Ω = 0, satisfying the integral identity

ν
∫
Ω

∇v : ∇η dx−
∫
Ω

((A + v) · ∇)η · v dx−
∫
Ω

(v · ∇)η · A dx

= −ν
∫
Ω

∇A : ∇η dx+
∫
Ω

(A · ∇)η · A dx ∀η ∈ J∞
0 (Ω).

(4.67)

Theorem 4.2. Assume that the boundary value a ∈ W 1/2,2(∂Ω) has a compact
support and that the flux F(inn)

1 is sufficiently small. Then there exists at least one
weak solution u of problem (4.44), (4.45) and there holds the estimate

∫
Ω(l)

|∇u|2 dx ≤ c(data)

(
1 +

2k∫
1

dt

th3
1(t)

)
, (4.68)

where c(data) = c0

(
∥a∥2

W 1/2,2(∂Ω)
+ ∥a∥4

W 1/2,2(∂Ω)
+ |F⃗ |2 + |F⃗ |4

)
.

Proof. In every bounded domain Ω(l) there exists a vector field v(l) ∈ H(Ω(l))

satisfying the integral identity

ν
∫

Ω(l)

∇v(l) :∇η dx−
∫

Ω(l)

((A + v(l))·∇)η ·v(l) dx−
∫

Ω(l)

(v(l) ·∇)η ·A dx

= −ν
∫

Ω(l)

∇A :∇η dx+
∫

Ω(l)

(A·∇)η ·A dx ∀η ∈ H(Ω(l)).

(4.69)

Taking η = v(l) in (4.69) and using Leray–Hopf (3.10) and Cauchy–Schwarz (2.3)
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inequalities, we obtain

ν
∫

Ω(l)

|∇v(l)|2 dx

=
∫

Ω(l)

(v(l) · ∇)v(l) · A dx− ν
∫

Ω(l)

∇A : ∇v(l) dx+
∫

Ω(l)

(A · ∇)v(l) · A dx

≤ c(ε|F1|2 + ε|F(out)
1 |2 + |F(inn)

1 |2)
∫

Ω(l)

|∇v(l)|2 dx

+
( ∫
Ω(l)

|∇A|2 dx
)1/2 · ( ∫

Ω(l)

|∇v(l)|2 dx
)1/2

+
( ∫
Ω(l)

|A|4 dx
)1/2 · ( ∫

Ω(l)

|∇v(l)|2 dx
)1/2

.

(4.70)

Using Cauchy inequality with ε (2.1), we obtain

(ν − cε|F1|2 − cε|F(out)
1 |2 − |F(inn)

1 |2)∥∇v(l)∥2L2(Ω(l))

≤ c

ε

(
∥∇A∥2L2(Ω(l))

+ ∥A∥4L4(Ω(l))

)
+ cε∥∇v(l)∥2L2(Ω(l))

.

Taking sufficiently small F(inn)
1 and ε yields

∥∇v(l)∥2L2(Ω(l))
≤ c

(
∥∇A∥2L2(Ω(l))

+ ∥A∥4L4(Ω(l))

)
. (4.71)

Since

∥∇A∥2L2(Ω(l))
+ ∥A∥4L4(Ω(l))

≤ c
(
∥a∥2

W 1/2,2(∂Ω)
+ ∥a∥4

W 1/2,2(∂Ω)
+ |F⃗ |2 + |F⃗ |4

)(
1 +

2l∫
1

dt

th3
1(t)

)
,

from (4.71) it follows that

∥∇v(l)∥2L2(Ω(l))

≤ c
(
∥a∥2

W 1/2,2(∂Ω)
+ ∥a∥4

W 1/2,2(∂Ω)
+ |F⃗ |2 + |F⃗ |4

)(
1 +

2l∫
1

dt

th3
1(t)

)
.

(4.72)
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Let us estimate the norm ∥∇v(l)∥L2(Ω(k)) for k < l. Introduce the function

U(l)
k (x) =


v(l)(x), x ∈ Ω(k),

θk(x)v(l)(x) +
2∑

j=1

v̂(l)
jk (x), x ∈

J∪
j=1

ωjk,

0, Ω \ Ω(k+1),

(4.73)

where θk(x) are smooth cut-off functions with the following properties:

θk(x) =

1, x ∈ Ω(k),

0, x ∈ Ω \ Ω(k+1),

|∇θk(x)| ≤ c 2−k, (4.74)

and v̂(l)
jk ∈ W̊ 1,2(ωjk) are solutions of the problems

div v̂(l)
jk = −∇θk · v(l) in ωjk,

v̂(l)
jk = 0 on ∂ωjk.

(4.75)

Since
∫
ωjk

∇θk · v(l)dx =
∫
ωjk

div(θkv(l)) dx =
∫

∂ωjk

θkv(l) · n dx =
∫

σj(k+1)

v3 dx = 0,

there exists the solutions v̂(l)
jk of problems (4.75) satisfying the estimates

∥∇v̂(l)
jk∥L2(ωjk) ≤ c(k)∥∇θk · v(l)∥L2(ωjk), j = 1, 2, (4.76)

where for j = 1 the constant c(k) can be estimated by c 2k

h1(2k)
, and for j = 2 – by

c 2k, c is independent of k (see Lemma 2.5). Using (4.74) and Poincaré inequality
(2.11), from (4.76) we derive

∥∇v̂(l)
1k∥L2(ω1k) ≤

c 2k

h1(2k)
∥∇θk · v(l)∥L2(ω1k)

≤ c 2k

h1(2k)
2−k∥v(l)∥L2(ω1k)≤c∥∇v(l)∥L2(ω1k),

∥∇v̂(l)
2k∥L2(ω2k)≤c 2k∥∇θk · v(l)∥L2(ω2k)≤c∥v(l)∥L2(ω2k)≤c∥∇v(l)∥L2(ω2k).

(4.77)

Taking in integral identity (4.69) η = U(l)
k and using the fact that∫

Ω(k+1)

((v(l) + A) · ∇)U(l)
k · U(l)

k dx = 0,
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we obtain

ν
∫

Ω(k)

|∇v(l)|2 dx =
∫
ωjk

((v(l) + A) · ∇)U(l)
k · (v(l) − U(l)

k ) dx

−ν
∫
ωjk

∇v(l) : ∇U(l)
k dx+

∫
Ω(k+1)

(v(l) · ∇)U(l)
k · A dx

−ν
∫

Ω(k+1)

∇A : ∇U(l)
k dx+

∫
Ω(k+1)

(A · ∇)U(l)
k · A dx.

(4.78)

Using definition (4.73) of the function U(l)
k and estimates (2.13), (4.77), we obtain

∥v(l)∥L4(ω1k) ≤ c h
1/4
1 (2k)∥∇v(l)∥L2(ω1k),

∥v(l)∥L4(ω2k) ≤ c∥∇v(l)∥L2(ω2k),

∥v(l) − U(l)
k ∥L4(ω1k) ≤ c∥v(l)∥L4(ω1k) + c∥v̂(l)

1k∥L4(ω1k)

≤ c h
1/4
1 (2k)∥∇v(l)∥L2(ω1k) + c h

1/4
1 (2k)∥∇v̂(l)

1k∥L2(ω1k) ≤ c h
1/4
1 (2k)∥∇v(l)∥L2(ω1k),

∥v(l) − U(l)
k ∥L4(ω2k) ≤ c∥v(l)∥L4(ω2k) + c∥v̂(l)

2k∥L4(ω1k) ≤ c∥∇v(l)∥L2(ω2k).

Definition (4.73) of the function U(l)
k , estimate (4.74), inequalities (4.77) and

Poincaré inequality (2.11) yield

∥∇U(l)
k ∥L2(ω1k) ≤ c2−k∥v(l)∥L2(ω1k) + c∥∇v(l)∥L2(ω1k) + ∥∇v̂(l)

1k∥L2(ω1k)

≤ c 2−kh1(2
k)∥∇v(l)∥L2(ω1k) + c∥∇v(l)∥L2(ω1k) ≤ c∥∇v(l)∥L2(ω1k),

∥∇U(l)
k ∥L2(ω2k) ≤ c2−k∥v(l)∥L2(ω2k) + c∥∇v(l)∥L2(ω2k) + ∥∇v̂(l)

1k∥L2(ω2k)

≤ c 2−k∥∇v(l)∥L2(ω2k) + c∥∇v(l)∥L2(ω2k) ≤ c∥∇v(l)∥L2(ω2k),

Therefore, we can estimate the right hand side of (4.78) as follows∣∣∣∣ ∫
ωjk

((v(l) + A) · ∇)U(l)
k · (v(l) − U(l)

k ) dx

∣∣∣∣
≤ ∥v(l)∥L4(ωjk) ∥v(l) − U(l)

k ∥L4(ωjk) ∥∇U(l)
k ∥L2(ωjk)

+∥∇U(l)
k ∥L2(ωjk)

( ∫
ωjk

|A|2|v(l) − U(l)
k |2 dx

)1/2
≤ ch

1/2
1 (2k)∥∇v(l)∥3L2(ωjk)
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+c(
√
ε|F(out)

1 |+
√
ε|F⃗ |+ |F(inn)

1 |)∥∇v(l)∥L2(ωjk)

( ∫
ωjk

|∇(v(l) − U(l)
k )|2 dx

)1/2
≤ ch

1/2
1 (2k)∥∇v(l)∥3L2(ωjk)

+ c(
√
ε|F(out)

1 |+
√
ε|F⃗ |+ |F(inn)

1 |)∥∇v(l)∥2L2(ωjk)
;

ν

∣∣∣∣ ∫
ωjk

∇v(l) : ∇U(l)
k dx

∣∣∣∣ ≤ ν∥∇v(l)∥L2(ωjk) ∥∇U(l)
k ∥L2(ωjk) ≤ νc∥∇v(l)∥2L2(ωjk)

;

∣∣∣∣ ∫
Ω(k+1)

(v(l) · ∇)U(l)
k · A dx

∣∣∣∣ ≤ ∥∇U(l)
k ∥L2(Ω(k+1))

( ∫
Ω(k+1)

|v(l)|2|A|2 dx
)1/2

≤ c(
√
ε|F(out)

1 |+
√
ε|F⃗ |+ |F(inn)

1 |)∥∇v(l)∥2L2(Ω(k+1))

≤ c(
√
ε|F(out)

1 |+
√
ε|F⃗ |+ |F(inn)

1 |)
(
∥∇v(l)∥2L2(Ω(k))

+
2∑

j=1

∥∇v(l)∥2L2(ωjk)

)
;

ν

∣∣∣∣ ∫
Ω(k+1)

∇A : ∇U(l)
k dx

∣∣∣∣+ ∣∣∣∣ ∫
Ω(k+1)

(A · ∇)U(l)
k · A dx

∣∣∣∣
≤ c

(
∥∇A∥L2(Ω(k+1)) + ∥A∥2L4(Ω(k+1))

)
∥∇U(l)

k ∥L2(Ω(k+1))

≤ c

2
√
ε

(
∥∇A∥L2(Ω(k+1)) + ∥A∥2L4(Ω(k+1))

)2

+
c
√
ε

2
∥∇U(l)

k ∥2L2(Ω(k+1))

≤ c√
ε

(
∥∇A∥2L2(Ω(k+1))

+ ∥A∥4L4(Ω(k+1))

)
+

c
√
ε

2
∥∇v(l)∥2L2(Ω(k+1))

≤ c√
ε

(
∥a∥2

W 1/2,2(∂Ω)
+ ∥a∥4

W 1/2,2(∂Ω)
+ |F⃗ |2 + |F⃗ |4

)(
1 +

2l∫
1

dt

t h3
1(t)

)
+c

√
ε

(
∥∇v(l)∥2L2(Ω(k))

+
2∑

j=1

∥∇v(l)∥2L2(ω(jk))

)
.

Hence,

ν
∫

Ω(k)

|∇v(l)|2 dx ≤ c h
1/2
1 (2k)

2∑
j=1

∥∇v(l)∥3L2(ωjk)

+c(
√
ε|F(out)

1 |+
√
ε|F⃗ |+ |F(inn)

1 |)
2∑

j=1

∥∇v(l)∥2L2(ωjk)

+νc
2∑

j=1

∥∇v(l)∥2L2(ωjk)
+ cε

(
∥∇v(l)∥2L2(Ω(k))

+
2∑

j=1

∥∇v(l)∥2L2(ωjk)

)

+
c

ε

(
∥a∥2

W 1/2,2(∂Ω)
+ ∥a∥4

W 1/2,2(∂Ω)
+ |F⃗ |2 + |F⃗ |4

)(
1 +

2l∫
1

dt

t h3
1(t)

)
.

Taking ε and F(inn)
1 sufficiently small, we obtain

ν
∫

Ω(k)

|∇v(l)|2 dx ≤ c∗∗h
1/2
1 (2k)

2∑
j=1

∥∇v(l)∥3L2(ωjk)
+ c∗

2∑
j=1

∥∇v(l)∥2L2(ωjk)
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+c0

(
∥a∥2

W 1/2,2(∂Ω)
+ ∥a∥4

W 1/2,2(∂Ω)
+ |F⃗ |2 + |F⃗ |4

)(
1 +

2k∫
1

dt

t h3
1(t)

)
.

Denote yk =
∫

Ω(k)

|∇v(l)|2 dx. Since
2∑

j=1

∫
ωjk

=
∫

Ω(k+1)

−
∫

Ω(k)

, we can rewrite the last

inequality as

yk ≤ c∗(yk+1 − yk) + c∗∗h
1/2
1 (2k)(yk+1 − yk)

3/2 +Qk, (4.79)

where

Qk = c(data)

(
+

2k∫
1

dt

t h3
1(t)

)
,

c(data) = c0
(
∥a∥2

W 1/2,2(∂Ω)
+ ∥a∥4

W 1/2,2(∂Ω)
+ |F⃗ |2 + |F⃗ |4

)
.

It is easy to see that

c∗(Qk+1 −Qk) + c∗∗h
1/2
1 (2k)(Qk+1 −Qk)

3/2

= c∗c(data)
2k+1∫
2k

dt

th3
1(t)

+ c∗∗h
1/2
1 (2k)

(
c(data)

2k+1∫
2k

dt

th3
1(t)

)3/2
.

If
∞∫
1

dt

th3
1(t)

< ∞, then
2k+1∫
2k

dt

th3
1(t)

→ 0 as k → ∞, and for sufficiently large k there

holds the estimate

c∗c(data)
2k+1∫
2k

dt

th3
1(t)

+ c∗∗h
1/2
1 (2k)

(
c(data)

2k+1∫
2k

dt

th3
1(t)

)3/2 ≤ c̃c(data)

(
1 +

2k∫
1

dt

th3
1(t)

)
.

If
∞∫
1

dt

th3
1(t)

= ∞, then4

c∗c(data)
2k+1∫
2k

dt

th3
1(t)

+ c∗∗h
1/2
1 (2k)

(
c(data)

2k+1∫
2k

dt

th3
1(t)

)3/2

≤ c̃∗c(data)h
−3
1 (2k) + c̃∗∗(c(data))

3/2h−4
1 (2k) ≤ c̃c(data)

(
1 +

2k∫
1

dt

th3
1(t)

)
,

because
2k∫
1

dt

th3
1(t)

→ ∞ as k → ∞. Since Qk satisfy condition (2.20), by Lemma

4We have used that µ1h1(2
k) ≤ h1(t) ≤ µ2h1(2

k) ∀t ∈ (2k, 2k+1), µ1, µ2 are positive con-
stants.
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2.16, inequality (4.79) together with (4.72) implies the estimate

yk =
∫

Ω(k)

|∇v(l)|2 dx ≤ c(data)

(
1 +

2k∫
1

dt

t h3
1(t)

)
∀k ≤ l. (4.80)

This estimate guarantees the existence of a subsection {v(lm)} which converges
weakly in W̊ 1,2(Ω(k)) and strongly in L4(Ω(k)) for every k. Therefore, passing to
a limit in integral identity (4.69) we find that the limiting vector field v satisfies
(4.67) for any η ∈ H(Ω) with compact support. The sum u = A + v is a
weak solution of problem (4.44). Estimate (4.68) for v follows from (4.80). Since
for A the analogous to (4.68) estimate is obvious, we obtain (4.68) for the sum
u = A + v.
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Chapter 5

Domain with finite number of
paraboloidal outlets

In this chapter we generalize the case of the domain Ω with one paraboloidal
outlet to infinity (see Chapter 4, Section 4.1). Let domain Ω ⊂ Rn, n = 2, 3, be a
domain with finite number of paraboloidal outlets to infinity Dj, j = 1, ..., J, i.e.,

Ω = Ω0

∪
D1

∪
D2

∪
...
∪
DJ , Dl

∩
Dj = ∅, l ̸= j,

where Ω0 = Ω ∩BR0(0).
We study the case of outlets to infinity Dj which in some cartesian coordinate

systems z(j) 1 have the form

Dj =
{
z(j) ∈ Rn : z(j)′g−1

j (z
(j)
n ) ∈ σ

(0)
j , z

(j)
n > 1

}
, j = 1, ..., J,

where z(j)′ = (z
(j)
1 , z

(j)
2 ) if n = 3, z(j)′ = z

(j)
1 if n = 2, the functions gj(t) ≥ 1

satisfy the Lipschitz condition

|gj(t1)− gj(t2)| ≤ Lj|t1 − t2| ∀t1, t2 ≥ 1, (5.1)

σ
(0)
j ⊂ Rn−1 are bounded domains (in the two-dimensional case σ

(0)
j are intervals).

Without loss of generality we assume that σj contains the point z(j)′ = 0. In the
three-dimensional case σ

(0)
j ⊂ R2 may be multiply connected. Then

σ
(0)
j = σ

(0)
j0 \

Nj∪
k=1

σ
(0)
jk ,

where σ
(0)
jk , k = 0, 1, . . . , Nj, are bounded simply connected plane domains such

1Notice that z(j) means the local coordinate system in the outlet Dj , while x is the global
coordinate system in Rn.
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that σ
(0)
jk ⊂ σ

(0)
j0 , k = 1, . . . , Nj, and σ

(0)
jk ∩ σ

(0)
jl = ∅ for k ̸= l, k, l ̸= 0.

iG

mL

mL

kL *js
*jD

1R

)(

1

j
z

)(

2

j
z

)(

3

j
z

Figure 5.1: Domain Ω with paraboloidal outlets to infinity.

We assume that:
(i) The boundary ∂Ω is Lipschitz.
(ii) The bounded domain Ω0 has the form

Ω0 = G0 \
I∪

i=1

Gi,

where G0 and Gi, i = 1, . . . , I, I ≥ 0, are bounded simply connected domains such

that Gi ⊂ G0, Gi1

∩
Gi2 = ∅ for i1 ̸= i2. Denote Γ =

I∪
i=1

Γi, Γi = ∂Gi.

(iii) The outer boundary S = ∂Ω \ Γ consists of M ≥ 1 disjoint unbounded
components S(m). We denote by Λm = supp a

∩
S ⊂ S(m).

Below we will use the following notations:

Rj1 = 1, Rjl+1 = Rjl +
gj(Rjl)

2Lj

, l ≥ 1, j = 1, . . . , J,

Ω(l) = Ω0

∪
D

(l)
1

∪
. . .

∪
D

(l)
J , D

(l)
j =

{
z(j) ∈ Dj : z

(j)
3 < Rjl

}
,

σj(R) = Dj

∩
{z(j) : z(j)3 = R}.
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In this chapter we consider the following problem

−ν∆u+
(
u · ∇

)
u+∇p = 0 in Ω,

divu = 0 in Ω,

u = a on ∂Ω,∫
σj(R)

u · n dS = Fj ∀R ≥ R0, j = 1, 2, . . . , J,

(5.2)

with the necessary compatibility condition

I∑
i=1

F(inn)
i +

M∑
m=1

F
(out)
m +

J∑
j=1

Fk = 0, (5.3)

where σj(R) is the cross section of the outlet Dj, n is the unit vector of the normal
to σj. Remind that F(inn)

i and F
(out)
m are the fluxes of the boundary value a over

the components of inner and outer boundaries, respectively.
Constructing virtual drain functions b

(out)
m and b(inn) we choose the "widest"

outlet, say Dj∗ , in order to minimize the generated by the drain function dissipa-
tion of energy (Dirichlet integral).

5.1 Three dimensional case

5.1.1 Construction of the extension B(inn)

The idea of the construction of extension B(inn) is the same as in Subsection 4.1.1.
Therefore, we just formulate the main results and indicate the differences which
appear. As in Subsection 4.1.1, we start with the construction of the virtual drain

function b(inn). We denote F(inn) =
I∑

i=1

F(inn)
i and first, we construct in Dj∗ a

solenoidal vector field b
(inn)
j∗ such that

b
(inn)
1 (x)

∣∣
∂Dj∗∩∂Ω

= 0,
∫

σj∗ (R)

b
(inn)
j∗ · n dS = F(inn).

In order to simplify the notations, we omit the index j∗ in notation of local coor-
dinates z(j∗) and write just z. Let γ+ = {z ∈ Dj∗ : |z′| = 0, z3 > 1}. Define in Dj∗

a cut–off function
ζj∗(x) = Ψ

(
ln

(ϱ(δ(x))
∆(x)

))
, (5.4)

where
δ(x) = ∆γ+(x), ∆(x) = ∆∂Dj∗∩∂Ω(x),

functions Ψ and ϱ are defined by formulas (2.24) and (2.25), respectively.
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As in Chapter 4 (Subsection 4.1), we obtain the following properties of the
function ζj∗(x).

Lemma 5.1. The function ζj∗(x) is equal to zero at those points of Dj∗, where
ϱ(δ(x)) ≤ ∆(x), while the d0/2-neighborhood of the line γ+ is contained in this
set; ζj∗(x) = 1 at those points of Dj∗ where ∆(x) ≤ e−1ϱ(δ(x)). The following
estimates ∣∣∣∂ζj∗(x)

∂xk

∣∣∣ ≤ c

∆(x)
,

∣∣∣∂2ζj∗(x)

∂xk∂xl

∣∣∣ ≤ c

∆2(x)

holds.

Define the vector field

b
(inn)
j∗ (x) = −F(inn)curl

(
ζj∗(x)b(x)

)
= −F(inn)∇ζj∗(x)× b(x), x ∈ Dj∗ ,

where b(x) is a magnetic field defined by (2.23). The properties of b(x) are given
in Lemma 2.17.

Lemma 5.2. The solenoidal vector field b
(inn)
j∗ is infinitely differentiable, vanishes

near the surface ∂Dj∗ ∩ ∂Ω and the contour γ+, and satisfies∫
σj∗ (R)

b
(inn)
j∗ · n dS = F(inn),

|b(inn)
j∗ (x)| ≤ c|F⃗(inn)|

d(x)
, (5.5)

|b(inn)
j∗ (x)| ≤ C|F⃗(inn)

1 |
g2j∗(z3)

, |∇bj∗(x)| ≤
C|F⃗(inn)|
g3j∗(z3)

, (5.6)

where d(x)=dist(x, ∂Dj∗∩∂Ω), |F⃗(inn)|=
√

(F(inn)
i )2, F⃗(inn)=

(
F(inn)
1 ,F(inn)

2 ,...,F(inn)
I

)
.

Proof. Since ζj∗(x) = 1 on ∂Dj∗ ∩ ∂Ω, by the Stokes Theorem (see Lemma 2.12)
and properties of the magnetic field b, we get∫

σj∗ (R)

b
(inn)
j∗ · n dS = −F(inn)

∫
σj∗ (R)

curl
(
ζj∗b

)
· n dS = −F(inn)

∮
∂σj∗ (R)

b · dl

= −F(inn)
( ∮

∂σj∗0

b · dl−
Nj∗∑
k=1

∮
∂σj∗k

b · dl
)
= F(inn).

The rest of the proof is the same as in Lemma 4.2.

Lemma 5.3. For any vector field w ∈ W 1,2
loc (Dj∗) with w|∂Dj∗∩∂Ω = 0 the following
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inequalities ∫
D

(k)
j∗

|b(inn)
j∗ |2|w|2 dx ≤ c|F⃗(inn)|2

∫
D

(k)
j∗

|∇w|2 dx,∫
D

(k+1)
j∗ \D(k)

j∗

|b(inn)
j∗ |2|w|2 dx ≤ c|F⃗(inn)|2

∫
D

(k+1)
j∗ \D(k)

j∗

|∇w|2 dx
(5.7)

hold with the constant c independent of k (see Lemma 2.15).

Let x(i) ∈ Gi, be a point lying inside the "hole" Gi. Denote qi(x) = q(x−x(i)),
where

q(x) =
1

4π

1

|x|

is the fundamental solution of the Laplace operator in R3, and let

b
(inn)
♯ (x) =

I∑
i=1

F(inn)
i ∇qi(x). (5.8)

Then
divb

(inn)
♯ =

I∑
i=1

F(inn)
i div∇qi(x) =

I∑
i=1

F(inn)
i ∆qi(x) = 0,

∫
Γi

b
(inn)
♯ · n dS = F(inn)

i , i = 1, ..., I,∫
∂Ω0

b
(inn)
♯ · n dS = −

I∑
i=1

F(inn)
i = −F(inn).

Denote

h1 =


0, x ∈ Γi, i = 1, ..., I,

b
(inn)
j∗ |∂Ω0∩Dj∗ − b

(inn)
♯ |∂Ω0∩Dj∗ , x ∈ ∂Ω0

∩
Dj∗ ,

−b
(inn)
♯

∣∣
∂Ω0\Dj∗

, x ∈ ∂Ω0 \ (Dj∗

∪
Γ).

We have∫
∂Ω0

h1 · n dS=
∫

∂Ω0∩Dj∗

b
(inn)
1 · n dS −

∫
∂Ω0

b
(inn)
♯ · n dS=F(inn)−F(inn)=0. (5.9)

Because of (5.9) the function h1 can be extended inside the domain Ω0 as a
solenoidal vector field b

(inn)
01 ∈ W 1,2(Ω0) and

∥b(inn)
01 ∥W 1,2(Ω0) ≤ c∥h1∥W 1/2,2(∂Ω0)

≤ c
(
∥b(inn)

♯ ∥W 1/2,2(∂Ω0) + ∥b(inn)
j∗ ∥W 1/2,2(∂Ω0∩Dj∗ )

)
≤ c|F⃗(inn)|,

(5.10)
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where the constant c depends only on the domain Ω0 (see Lemma 2.6). Define

b(inn) =


b
(inn)
♯ + b

(inn)
01 , x ∈ Ω0,

b
(inn)
j∗ , x ∈ Dj∗

0, x ∈ Dj, j ̸= j∗.

Vector field b(inn) "removes" nonzero fluxes from the components Γi. Denote

h0 =

a− b
(inn)
♯ |Γi

, x ∈ Γi, i = 1, ..., I,

0, x ∈ ∂Ω0 \ Γ.

Obviously,∫
Γi

h0 · n dS =
∫
Γi

a · n dS −
∫
Γi

b
(inn)
♯ · n dS = F(inn)

i − F(inn)
i = 0.

Therefore, the function h0 can be extended inside Ω in the form

b
(inn)
0 (x) = curl(χ(x)E(x)),

where E ∈ W 2
2 (Ω0), curl E|∂Ω = h0 and χ is a smooth cut-off function with

χ(x) = 1 on Γ (see Lemma 2.14 with ε = 1). Moreover, for any w ∈ W 1,2
loc (Ω) with

w|∂Ω = 0 the following estimate∫
Ω0

|b(inn)
0 (x)|2|w(x)|2 dx ≤ c|F⃗(inn)|2

∫
Ω0

|∇w(x)|2 dx (5.11)

holds (see Lemma 2.15).
Finally, we put

B(inn) = b(inn) + b
(inn)
0 . (5.12)

Lemma 5.4. The vector field B(inn) is solenoidal, B(inn)|Γi
= a|Γi

, i = 1, ..., I,

B(inn)|S(m) = 0, m = 1, ...,M, B(inn) ∈ W 1,2
loc (Ω) and B(inn) = 0 for x ∈ Dj, j ̸= j∗,

|x| ≫ 1. For any solenoidal w ∈ W 1,2
loc (Ω) with w

∣∣
∂Ω

= 0 the following estimates

∫
Ω(k)\Ω(k−1)

|B(inn)|2|w|2 dx ≤ c|F⃗(inn)|2
∫

Ω(k)\Ω(k−1)

|∇w|2 dx,

∫
Ω(k)

|B(inn)|2|w|2 dx ≤ c|F⃗(inn)|2
∫

Ω(k)

|∇w|2 dx
(5.13)
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hold. Moreover,

|B(inn)(x)| ≤ C|F⃗(inn)|
g2j∗(z3)

, |∇B(inn)(x)| ≤ C|F⃗(inn)|
g3j∗(z3)

, x ∈ Dj∗ ,

|B(inn)(x)|+ |∇B(inn)(x)| ≤ C|F⃗(inn)|, x ∈ Ω \Dj∗ .

(5.14)

Proof is the same as in Chapter 4 (see Subsection 4.1.1, Lemma 4.4).

5.1.2 Construction of the extensions B(out)
m , m = 1, ...,M.

We start by the construction of the virtual drain functions b(out)
m , m = 1, ...,M.

Take any point x(m) ∈ Λm ⊂ S(m). Let γmj∗ be a smooth simple curve which
intersects ∂Ω at the point x(m) and has the form

γmj∗ = γ̂j∗,+ ∪ γ̂
(m)
j∗

∪
lm,

where γ̂j∗ is a semi-infinite line lying in Dj∗ , γ̂
(m)
j∗ ⊂ Ω

∩
BR1(0) is a finite simple

mL

mL

*js
*jD

)(

1

j
z

)(

2

j
z

)(

3

j
z

*mjg

Figure 5.2: Contour γmj∗ .

curve connecting γ̂j∗ and the point x(m) and lm ⊂ R3 \ Ω is a semi-infinite curve
starting at the point x(m) and does not intersecting any Dj, j = 1, ..., J . Assume
that the distance from γmj∗ to S(m) \ Λm is not less than d0 > 0, where d0 is
sufficiently small number, and that the direction of the curve γmj∗ coincides with
the direction of increase of the coordinate z

(j∗)
3 .
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In the domain Ω we introduce the virtual drain functions

b(out)
m (x, ε) = F

(out)
m curl(ζmj∗(x, ε) · b(m)

j∗ (x))

= F
(out)
m ∇ζmj∗(x, ε)× b(m)

j∗ (x), m = 1, . . . ,M,

(5.15)

where b(m)
j∗ (x) is a magnetic field corresponding to the contour γmj∗ (see formula

(2.22) and Lemma 2.17),

ζmj∗(x, ε) = Ψ
(
ε ln

δ(mj∗)(x))

∆∂Ω\Λm(x)

)
, (5.16)

Ψ is defined by formula (2.24),

δ(mj∗)(x) =


ρj∗(x)∆γ̂j∗ (x) +

J∑
j=1,j ̸=j∗

ρj(x)|x− x
(mj∗)
0 |+

+(1−
J∑

j=1

ρj(x))∆γ̂
(m)
j∗

(x), x ∈ Ω \ γmj∗ , x
(mk)
0 ∈ γ̂

(m),
j∗

0, x ∈ γmj∗ ,

ρj(x) =

1, x ∈ Dj \D(3)
j ,

0, x ∈ (Ω \Dj)
∪

D
(2)
j .

Obviously, the function δ(mj∗)(x) is continuous in Ω and infinitely differentiable in
Ω \ γmj∗ , |∇δ(mj∗)(x)| is bounded. Moreover, it is easy to check that

δ(mj∗)(x) =


∆γ̂j∗ (x), x ∈ Dj∗ \D

(3)
j∗ ,

|x− x
(mj∗)
0 |, x ∈ Dj, |x| ≫ 1, j ̸= j∗,

∆
γ̂
(m)
j∗

(x), x ∈ Ω0.

Lemma 5.5. The vector field b(out)
m is infinitely differentiable and solenoidal, b(out)

m

vanishes near the surface ∂Ω \ Λm, for x ∈ Dj, j ̸= j∗, with |x| ≫ 1, and in a
small neighborhood of the curve γmj∗ ∩ Ω. The following estimates

|b(out)
m (x, ε)| ≤ cε

d∂Ω\Λm(x)dγmj∗ (x)
,

|∇b(out)
m (x, ε)| ≤ c

( 1

d2∂Ω\Λm
(x)dγmj∗ (x)

+
1

d∂Ω\Λm(x)d
2
γmj∗

(x)

)
,

(5.17)

|b(out)
m (x, ε))| ≤ c(ε)|F(out)

m |
g2j∗(z

(j∗)
3 )

, |∇b(out)
m (x, ε)| ≤ c(ε)|F(out)

m |
g3j∗(z

(j∗)
3 )

, x ∈ Dj∗ (5.18)
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hold. Here d∂Ω\Λm(x) and dγmj∗ (x) are distances from the point x to ∂Ω \Λm and
γmj∗, respectively. The constant c in (5.17) is independent of ε. Finally,∫

Λm

b(out)
m · n dS = F

(out)
m .

Proof. The first statement of the lemma follow from definitions (5.15), (5.16) of
b(out)
dm (x, ε) and ζmj∗(x, ε) and from the properties of the regularized distance (see

estimates (2.21)). Since b(out)
m (x, ε) = 0 and ζmj∗(x, ε) = 1 on ∂Ω \ Λm, using the

Ostrogradsky–Gauss and the Stokes theorems (see Lemma 2.11 and Lemma 2.12,
respectively), we obtain∫

Λm

b(out)
m · n dS = −

∫
σj∗ (R)

b(out)
m · n dS = −F

(out)
m

∫
σj∗ (R)

curl(ζmj∗b
(m)
j∗ ) · n dS

= −F
(out)
m

∫
∂σj∗ (R)

ζmj∗b
(m)
j∗ · n dl = −F

(out)
m

∫
∂σj∗ (R)

b(m)
j∗ · dl = F

(out)
m .

Let hm(x) = a(x)|Λm − b(out)
dm (x, ε)|Λm . Then∫

Λm

hm · n dS =
∫
Λm

a · n dS −
∫
Λm

b(out)
m · n dS = 0.

Therefore, hm can be extended inside Ω in the form

b
(out)
0m (x, ε) = curl (χm(x, ε)Em(x)),

where Em ∈ W 2
2 (Ω0), curlEm|Λm = hm and χm is a Hopf’s type cut-off function

such that χm(x, ε) = 1 on Λm (see Lemma 2.14). Define

B(out)
m (x, ε) = b

(out)
m (x, ε) + b

(out)
0m (x, ε).

Obviously, B(out)
m has the following properties:

divB(out)
m = 0, B(out)

m |Λm = a, B(out)
m |∂Ω\Λm = 0,

B(out)
m = 0, x ∈ Ω \Dj∗ , |x| ≫ 1.

Lemma 5.6. For any solenoidal w ∈ W 1,2
loc (Ω) with w

∣∣
∂Ω

= 0 the following esti-
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mates ∫
Ω(k)\Ω(k−1)

|B(out)
m |2|w|2 dx ≤ εc|F(out)

m |2
∫

Ω(k)\Ω(k−1)

|∇w|2 dx,

∫
Ω(k)

|B(out)
m |2|w|2 dx ≤ εc|F(out)

m |2
∫

Ω(k)

|∇w|2 dx,
(5.19)

hold. Moreover,

|B(out)
m (x, ε)| ≤ C(ε)|F(out)

m |
g2j∗(z

(j∗)
3 )

, |∇B
(out)
m (x, ε)| ≤ C(ε)|F(out)

m |
g3j∗(z

(j∗)
3 )

, x ∈ Dj∗ ,

|B(out)
m (x, ε)|+ |∇B

(out)
m (x, ε)| ≤ C(ε)|F(out)

m |, x ∈ Ω \Dj∗ .

(5.20)

Proof. The proof of this lemma is analogous to the proof of Lemma 4.24 in sub-
section 4.1.2.

5.1.3 Construction of the extension B(flux)

Now we need to compensate the fluxes over the cross sections of outlets to infin-
ity, i.e., we have to construct a solenoidal vector field B(flux) satisfying the flux
conditions ∫

σj(R)

B(flux) · n dS = F̂j, j = 1, . . . , J, (5.21)

where

F̂j = Fj, j = 1, . . . , J, j ̸= j∗; F̂j∗ = Fj∗ + F(inn) + F(out),

F(out) =
M∑

m=1

F
(out)
m . Note that in virtue of (3.3) the total flux is equal to zero:

J∑
j=1

F̂j = 0.

Such flux carriers were constructed in [59], [61]. However, we briefly describe
the construction. Let γ(jk) be an infinite smooth simple curve consisting of two
semi-infinite lines γ̂(j) ⊂ Dj, γ̂(k) ⊂ Dk and a finite curve γ̂

(k)
j ⊂ Ω

∩
BR1(0)

joining them. We assume that the distance from γ(jk) to ∂Ω is not less than
d0 > 0 and that the direction of the curve γ(jk) coincides with the direction of
increase of the coordinate z

(j)
3 .
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Figure 5.3: Contour γ(jk).

Denote

b(flux)
jk (x, ε) = curl(ζjk(x, ε)b(k)

j (x)) = ∇ζjk(x, ε)× b(k)
j (x),

where b(k)
j (x) is a magnetic field (2.22) corresponding to the contour γ(jk) (the

properties of b(k)
j (x) are given in Lemma 2.17),

ζjk(x, ε) = Ψ

(
ε ln

δ(jk)(x)

∆∂Ω(x)

)
,

Ψ is defined by formula (2.24),

δ(jk)(x) =


ρj(x)∆γ̂(j)(x) + ρk(x)∆γ̂(k)(x) +

∑
i ̸=j,k

ρi(x)|x− x
(jk)
0 |

+(1−
J∑

i=1

ρi(x))∆γ(jk)(x), x
(jk)
0 ∈ γ̂

(k)
j , for x ∈ Ω \ γ(jk),

0, for x ∈ γ(jk),

ρi(x) =

1, x ∈ Di \D(3)
i ,

0, x ∈ (Ω \Di)
∪

D
(2)
i .

As before, the vector fields b(flux)
jk have the following properties (see [59], [61]).

Lemma 5.7. The vector field b(flux)
jk is solenoidal, b(flux)

jk |∂Ω = 0, b(flux)
jk (x, ε)
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= 0 for x ∈ Dl, l ̸= j, k, |x| ≫ 1, and∫
σl(R)

b(flux)
jk · n dS = −δlj + δlk, l = 1, . . . , J,

δlj is the Kronecker’s delta.
For any solenoidal w ∈ W 1,2

loc (Ω) with w
∣∣
∂Ω

= 0 the following estimates

∫
Ω(m)\Ω(m−1)

|b(flux)
jk |2|w|2 dx ≤ εc

∫
Ω(m)\Ω(m−1)

|∇w|2 dx,

∫
Ω(m)

|b(flux)
jk |2|w|2 dx ≤ εc

∫
Ω(m)

|∇w|2 dx
(5.22)

hold with the constant c independent of ε and m. Moreover,

|b(flux)
jk (x, ε)| ≤ C

g2s(z
(s)
3 )

, |∇b(flux)
jk (x, ε))| ≤ C

g3s(z
(s)
3 )

, x ∈ Ds,

|b(flux)
jk (x, ε)|+ |∇b(flux)

jk (x, ε))| ≤ C, x ∈ Ω \ (Dj

∪
Dk),

(5.23)

s = j or s = k.

Let us take the vector fields b(flux)
j,j+1 , j = 1, ..., J − 1, and define

B(flux)(x, ε) =
J−1∑
j=1

αjb(flux)
j,j+1 (x, ε), αj =

j∑
l=i

F̂l, j = 1, . . . , J − 1.

By the construction B(flux) satisfies flux conditions (5.21).

5.1.4 Solvability of problem (5.2)

The vector field
A = B(inn) +

M∑
m=1

B
(out)
m +B(flux) (5.24)

gives the desired extension of the boundary value a. For all w ∈ W 1,2
loc (Ω) with

w
∣∣
∂Ω

= 0 from (5.13), (5.19), (5.22) follow the estimates

∫
Ω(k)\Ω(k−1)

|A|2|w|2dx ≤ c(ε|F⃗(out)|2+ε|F⃗ |2+|F⃗(inn)|2)
∫

Ω(k)\Ω(k−1)

|∇w|2dx,

∫
Ω(k)

|A|2|w|2 dx ≤ c(ε|F⃗(out)|2 + ε|F⃗ |2 + |F⃗(inn)|2)
∫

Ω(k)

|∇w|2 dx,
(5.25)
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where |F⃗ |2 =
J∑

j=1

F2
j , F⃗ = (F1,F2, ...,FJ), |F⃗(out)|2 =

M∑
m=1

(F
(out)
m )2, F⃗

(out)
m =

(F
(out)
1 ,F

(out)
2 , ...,F

(out)
M ). The constant c is independent of ε and k. Moreover,

|A(x)| ≤ C(ε)

g2j (z
(j)
3 )

, |∇A(x)| ≤ C(ε)

g3j (z
(j)
3 )

, x ∈ Dj, j = 1, . . . , J. (5.26)

From (5.26) follows the inequality

∫
Ω(k)

|∇A(x)|2 dx+
∫

Ω(k)

|A(x)|4 dx ≤ c(data)
(
1 +

J∑
j=1

Rjk∫
1

dz
(j)
3

g4j (z
(j)
3 )

)
,

c(data) = c0

(
∥a∥2

W 1/2,2(∂Ω)
+ ∥a∥4

W 1/2,2(∂Ω)
+ |F⃗ |2 + |F⃗ |4

)
.

Since the proof of the existence of the weak solution to problem (5.2) is analo-
gous to the considerations of Chapter 4 (see Subsection 4.1.3), we formulate the
corresponding theorem without the proof.

Theorem 5.1. Assume that the boundary value a ∈ W 1/2,2(∂Ω) has a compact
support and that the fluxes F(inn)

i , i = 1, . . . , I, are sufficiently small. Let the
compatibility condition (5.3) be satisfied. Then problem (5.2) admits at least one
weak solution u = v + A ∈ W 1,2

loc (Ω), where A is the vector field (5.24) and the
following estimate

∫
Ω(k)

|∇u(x)|2 dx ≤ c(data)
(
1 +

J∑
j=1

Rjk∫
1

dz
(j)
3

g4j (z
(j)
3 )

)
,

holds.
In particular, if

∞∫
1

dt

g4j (t)
< ∞, j = 1, . . . , J, then

∫
Dj

|∇u(x)|2 dx < ∞.

5.2 Two dimensional case

In this section we consider problem (5.2) in the two-dimensional domain Ω ⊂ R2.
Remind that for the two-dimensional Ω cross sections σj of outlets to infinity are
open intervals, and we may assume, without loss of generality, that σ(0)

j = (−1, 1).
As above, we look for A in the form

A = B(inn) +
M∑

m=1

B(out)
m +B(flux).

The idea of the construction is the same as in the three-dimensional case. There-
fore, we only briefly indicate the differences arising for two-dimensional domains.
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Constructing the virtual drain function b(inn) we choose, as before, the "widest"
outlet Dj∗ and define in Dj∗ the vector field b

(inn)
j∗ by the formula

b
(inn)
j∗ (x) = −F(inn)

(∂ζ̃j∗(x)
∂x2

, −∂ζ̃j∗(x)

∂x1

)
, x ∈ D+

j∗ .

Here D+
j∗ = {z(j∗) ∈ Dj∗ : z

(j∗)
1 > 0},

ζ̃j∗(x) =

ζj∗(x) = Ψ
(
ln

(ϱ(δ(x))
∆(x)

)
, x ∈ D+

j∗ ,

0, x ∈ R2 \D+
j∗ ,

functions Ψ and ϱ are defined by formulas (2.24) and (2.25), respectively. Notice
that ζj∗(x) = 0 in a small neighborhood of the line γ+ = {z(j∗) : |z(j∗)1 | = 0, z

(j∗)
2 >

1} and ζj∗(x) = 1 near the boundary ∂Dj∗ ∩ ∂Ω, and there holds the following
estimates ∣∣∣∂ζj∗(x)

∂xk

∣∣∣ ≤ c

∆(x)
,

∣∣∣∂2ζj∗(x)

∂xk∂xl

∣∣∣ ≤ c

∆2(x)
. (5.27)

Lemma 5.8. The solenoidal vector field b
(inn)
j∗ (x) is infinitely differentiable, van-

ishes near the boundary ∂Dj∗ ∩ ∂Ω and in the neighborhood of the contour γ+;
the support of b

(inn)
j∗ (x) is contained in the set of points x ∈ D+

j∗ satisfying the
inequalities

ϱ
(
δ(x)

)
e−1 ≤ ∆(x) ≤ ϱ

(
δ(x)

)
. (5.28)

The following estimates

|b(inn)
j∗ (x)| ≤ c|F⃗(inn)|

d(x)
, x ∈ D+

j∗ , (5.29)

|b(inn)
j∗ (x)| ≤ C|F⃗(inn)|

gj∗(z
(j∗)
2 )

, |∇bj∗(x)| ≤
C|F⃗(inn)|
g2j∗(z

(j∗)
2 )

(5.30)

hold. In (5.29) d(x) = dist(x, ∂Dj∗ ∩ ∂Ω). Finally,∫
σj∗ (R)

b
(inn)
j∗ · n dS = F(inn).

Proof. Estimates (5.29) and (5.30) follow from the definition of b(inn)
j∗ (x), (5.27)
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and relations (5.28). By construction

∫
σj∗ (R)

b
(inn)
j∗ · n dS =

gj∗ (R)∫
−gj∗ (R)

b
(inn)
j∗ ·n dS = F(inn)

gj∗ (R)∫
−gj∗ (R)

∂ζ̃j∗

∂z
(j∗)
1

dz
(j∗)
1

= F(inn)
(
ζ̃j∗(gj∗(R), R)− ζ̃j∗(−gj∗(R), R)

)
= F(inn).

The rest of the construction of the virtual drain function b(inn) and the exten-
sion B(inn) is the same as in the three-dimensional case; we only mention that the
fundamental solution of the Laplace operator in R2 has the form q(x) =

1

2π
ln |x|

and that instead of (5.14) we have the following estimates

|B(inn)(x)| ≤ C|F⃗(inn)|
gj∗(z

(j∗)
2 )

, |∇B(inn)(x)| ≤ C|F⃗(inn)|
g2j∗(z

(j∗)
2 )

), x ∈ Dj∗ .

In order to construct the virtual drain functions b(out)
m , we take a point x(m) ∈

Λm ⊂ Sm and a smooth simple curve γmj∗ = γ̂j∗ ∪ γ̂
(m)
j∗ , where γ̂j∗ = {z(j∗) :

z
(j∗)
1 = 0, z

(j∗)
2 > 1} is a semi-infinite line lying in Dj∗ , γ̂

(m)
j∗ ⊂ Ω0 is a finite

simple curve connecting γ̂j∗ and the point x(m). Assuming that the distance from
γmj∗ to Sm \ Λm is not less than d0 > 0 and that the direction of the curve γmj∗

coincide with the direction of increase of the coordinate z
(j∗)
2 , we define, as in the

three-dimensional case, a Hopf’s cut-off function by the formula

ζmj∗(x, ε) = Ψ
(
ε ln

δ(mj∗)(x))

∆∂Ω\Λm(x)

)
, (5.31)

Ψ is given by formula (2.24),

δ(mj∗)(x) =


ρj∗(x)∆γ̂j∗ (x) +

J∑
j=1,j ̸=j∗

ρj(x)|x− x
(mj∗)
0 |+

+(1−
J∑

j=1

ρj(x))∆γ̂
(m)
j∗

(x), x ∈ Ω \ γmj∗ , x
(mk)
0 ∈ γ̂

(m)
j∗ ,

0, x ∈ γmj∗ ,

ρj(x) =

1, x ∈ Dj \D(3)
j ,

0, x ∈ (Ω \Dj)
∪

D
(2)
j .

Further, defining ζ̃mj∗(x, ε) = ζmj∗(x, ε) on the right-hand side of curve γmj∗ and
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ζ̃mj∗(x, ε) = 0 on the left-hand side of γmj∗ , we introduce the vector field

b(out)
m (x, ε) = F

(out)
m

(∂ζ̃mj∗(x, ε)

∂x2

, −∂ζ̃mj∗(x, ε)

∂x1

)
.

Lemma 5.9. The vector field b(out)
m is infinitely differentiable and solenoidal, b(out)

m

vanishes near the boundary ∂Ω \ Λm, for x ∈ Dj, j ̸= j∗, with |x| ≫ 1, and in a
small neighborhood of the curve γmj∗. The following estimates

|b(out)
m (x, ε)| ≤ cε

d∂Ω\Λm(x)
, |∇b(out)

m (x, ε)| ≤ cε

d2∂Ω\Λm
(x)

, (5.32)

|b(out)
m (x, ε))| ≤ c(ε)|F(out)

m |
gj∗(z

(j∗)
2 )

, |∇b(out)
m (x, ε)| ≤ c(ε)|F(out)

m |
g2j∗(z

(j∗)
2 )

, x ∈ Dj∗ , (5.33)

hold. The constant c in (5.32) is independent of ε. Finally,∫
Λm

b(out)
m · n dS = F

(out)
m .

The extensions B(out)
m , m = 1, ...,M, are constructed in the same way as in the

three dimensional case and they have the same properties with the only difference
that instead of (5.20) the following estimates

|B(out)
m (x, ε)| ≤ C|F(out)

m |
gj∗(z

(j∗)
2 )

, |∇B
(out)
m (x, ε)| ≤ C|F(out)

m |
g2j∗(z

(j∗)
2 )

(5.34)

hold.
Finally, the solenoidal vector field B(flux) satisfying the flux conditions∫

σj∗ (R)

B(flux) · n dS = F̂j, j = 1, . . . , J,

where F̂j are defined analogously to in the three dimensional case, can be con-
structed as in [59], [61].

The vector field

A = B(inn) +
M∑

m=1

B
(out)
m +B(flux) (5.35)

has all necessary properties that insure the validity of the following theorem.

Theorem 5.2. Assume that the boundary value a ∈ W 1/2,2(∂Ω) has a compact
support and that the fluxes F(inn)

i , i = 1, . . . , I, are sufficiently small. Let the
compatibility condition (5.3) be satisfied. Then problem (5.2) admits at least one
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weak solution u = v+A ∈ W 1,2
loc (Ω), where A is the vector field (5.35). Moreover,

the following estimate

∫
Ω(k)

|∇u(x)|2 dx ≤ c(data)
(
1 +

J∑
j=1

Rjk∫
1

dz
(j)
2

g3j (z
(j)
2 )

)
,

c(data) = c0

(
∥a∥2

W 1/2,2(∂Ω)
+ ∥a∥4

W 1/2,2(∂Ω)
+ |F⃗ |2 + |F⃗ |4

)
holds.

In particular, if
∞∫
1

dt

g3j (t)
< ∞, j = 1, . . . , J , then

∫
Dj

|∇u(x)|2 dx < ∞.
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Chapter 6

Domain with finite number of
paraboloidal and layer type
outlets to infinity

In this chapter we consider domain Ω ⊂ R3 with two types of outlets to infinity:
paraboloidal and layer type outlets. Layer type outlets we denote by Er, r =

1, ..., P, and paraboloidal ones by Dp, p = P + 1, ..., J ′, J ′ + 1, ..., J. We assume
that outlets Dp, p = P + 1, ..., J ′, are connected to the first layer E1 and outlets
Dp, p = J ′+1, ..., J , are connected to the last layer EP . Paraboloidal outlets with
a constant cross section are cylinders. Notice that layer type outlets also can be
expanding at infinity or not expanding. However, to expand can only the first
and the last layer-type outlets (otherwise, they will intersect other outlets).

In some local coordinate systems z(j) outlets Dp and Er have the forms:

Dp =
{
z(p) : |z(p)′| < gp(z

(p)
3 ), z

(p)
3 > 1

}
, p = P + 1, ..., J ′, J ′ + 1, ..., J,

E1 =
{
z(1) : 0 < z

(1)
3 < h1(|z(1)′|), |z(1)′| > 1

}
,

Er =
{
z(r) : 0 < z

(r)
3 < 1, |z(r)′| > 1

}
, r = 2, ..., P − 1,

EP =
{
z(P ) : 0 < z

(P )
3 < hP (|z(P )′|), |z(P )′| > 1

}
,

where the functions gp(t) satisfy Lipschitz conditions

|gp(t1)− gp(t2)| ≤ Lp|t1 − t2|, t1, t2 ≥ 1, gp(t) ≥ 1 ∀t,

and the functions hr(t), r = 1 and r = P , possess the following properties

µ1hr(t) ≤ max
t≤t1≤2t

hr(t1) ≤ µ2hr(t), hr(t) ≥ 1, ∀t,
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|hr(t1)− hr(t2)| ≤ Lr(t)|t1 − t2|, t1, t2 ∈ [t, 2t]

where µ1, µ2 are certain positive constants and for Lr(t) holds the inequality

Lr(t) · t
hr(t)

≤ const, Lr(t) ≤ const ∀t.

Remark 6.1. Notice that functions h1, hP and gp, p = P + 1, ..., J, can be
constants. In this case outlets to infinity E1, EP and DP+1, . . . , DJ do not expand
at infinity. Instead of layers Er, r = 1, 2, ..., P, one can take also outlets to infinity
of the form {z(r) : h(1)

r (|z(r)′|) < z
(r)
3 < h

(2)
r (|z(r)′|), |z(r)′| > 1}, where

0 < h(0)
r ≤ h(1)

r (t) < h(2)
r (t) ≤ h(∗)

r ∀t ≥ 1,

h
(0)
r , h(∗)

r are constants.

Layers Er are connected to each other by bounded domains which we denote
H

(j,j+1)
l ⊂ Ω0, l = 1, ..., L. Here the upper indices show which two layers are

connected by H
(j,j+1)
l . Number of these connectors can be bigger than number of

layers.
We assume that
(i) The boundary ∂Ω is Lipschitz.
(ii) The bounded domain Ω0 has the form

Ω0 = G0 \
I∪

i=1

Gi,

where G0 and Gi, i = 1, . . . , I, I ≥ 0, are bounded simply connected domains

such that Gi ⊂ G0, Gi1 ∩Gi2 = ∅ for i1 ̸= i2. Denote Γ =
I∪

i=1

Γi, Γi = ∂Gi.

(iii) All connectors H
(j,j+1)
l are contained in Ω0: H

(j,j+1)
l ⊂ Ω0. By ∂H

(j,j+1)
l

we denote the "lateral" surface of H(j,j+1)
l .

(iv) The outer boundary S = ∂Ω \ Γ consists of P + 1 disjoint unbounded
connected components

S(0,1) =
J ′∪

p=P+1

Υp

∪
X(1)

∪
{z(1) ∈ ∂Ω : z

(1)
3 = h1(|z(1)′|), |z(1)′| > 1},

S(m,m+1) = {z(m) ∈ ∂Ω : z
(m)
3 = 0, |z(m)′| > 1}

)∪
X(m)

∪
( L∪
l=1

∂H
(m,m+1)
l \ Γ

)∪
X(m+1)∪

{z(m+1) ∈ ∂Ω : z
(m+1)
3 = 1, |z(m+1)′| > 1}, L ≥ 0, m = 1, ..., P − 1,
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S(P,0) =
J∪

p=J ′+1

Υp

∪
X(P )

∪
{z(P ) ∈ ∂Ω : z

(P )
3 = h2(|z(P )′|), |z(P )′| > 1},

where Υp is a lateral surface of Dp, p = P + 1, ..., J ′, X(1) is a union of surfaces
connecting Υp, p = P + 1, ..., J ′, and {z(1) ∈ ∂Ω : z

(1)
3 = h1(|z(1)′|), |z(1)′| > 1},

X(m) is a union of surfaces connecting {z(m) ∈ ∂Ω : z
(m)
3 = 0, |z(m)′| > 1} and( L∪

l=1

∂H
(m,m+1)
l \ Γ

)
, X(m+1) is a union of surfaces connecting( L∪

l=1

∂H
(m,m+1)
l \ Γ

)
and {z(m+1) ∈ ∂Ω : z

(m+1)
3 = 0, |z(m+1)′| > 1}, X(P ) is

a union of surfaces connecting {z(P ) ∈ ∂Ω : z
(P )
3 = h2(|z(P )′|), |z(P )′| > 1} and

Υp p = J ′ + 1, ..., J.

In order to alleviate the notations, we omit the second index in S(0,1), S(1,2), ...,

S(P−1,P ), S(P,0) and set S(0,1) = S(0), S(1,2) = S(1), ..., S(P−1,P ) = S(P−1), S(P,0) =

S(P ).
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Figure 6.1: Domain Ω.

Below we shall use the following notations:

E
(l)
r =

{
z(r) ∈ Er : |z(r)′| < Rrl

}
,

Rr1 = 1, Rrl+1 = 2Rrl, l ≥ 1, r = 1, . . . , P,

D
(l)
p =

{
z(p) ∈ Dp : z

(p)
3 < Rpl

}
,
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Rp1 = 1, Rpl+1 = Rpl +
gp(Rpl)

2Lp

, l ≥ 1, p = P + 1, . . . , J,

Ω(l) = Ω0 ∪ E
(l)
1 ∪ . . . ∪ E

(l)
P ∪D

(l)
P+1 ∪ . . . ∪D

(l)
J ,

σ(E)
r (R) = Er ∩ {z(r) : |z(r)′| = R}, σ(D)

p (R) = Dp ∩ {z(p) : z(p)3 = R},

i.e., σ(D)
p and σ

(E)
r ⊂ R2 are the cross sections of the outlets Dp and Er, respec-

tively.

Remark 6.2. Without loss of generality we assume that cross sections σ
(D)
p are

bounded simply connected domains. However, all results of this chapter remain
valid in the case when the cross sections of paraboloidal outlets are bounded
multiply connected domains (see Chapter 5).

Consider the following problem

−ν∆u+
(
u · ∇

)
u+∇p = 0 in Ω,

divu = 0 in Ω,

u = a on ∂Ω,∫
σ
(E)
r (R)

u · n dS = F (E)
r ∀R ≥ 1, r = 1, 2, . . . , P,∫

σ
(D)
p (R)

u · n dS = F (D)
p ∀R ≥ 1, p = P + 1, . . . , J,

(6.1)

where n is the unit vector of the normals to σ
(D)
p and σ

(E)
r .

We suppose that the boundary value a ∈ W 1/2,2(∂Ω) has compact support

supp a ⊂ ∂Ω0. (6.2)

Denote by Λm simply connected sets such that supp a∩S(m) ⊂ Λm ⊂ S(m), m =

0, ..., P.1 Let

F(inn)
i =

∫
Γi

a · n dS, i = 1, ..., I, F
(out)
m =

∫
Λm

a · n dS, m = 0, ..., P,

be the fluxes of the boundary value a over inner and outer boundaries, respectively.
Then the necessary flux compatibility condition (3.3) can be written as

I∑
i=1

F(inn)
i +

P∑
m=0

F(out)
m +

P∑
r=1

F (E)
r +

J∑
p=P+1

F (D)
p = 0 (6.3)

(the total flux is equal to zero).
1The sets suppa ∩ S(m), m = 0, ..., P, are not necessary simply connected.
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6.1 Construction of the extension B(inn)

Let us start with the construction of the "virtual drain" function b(inn) which
"drains" the the fluxes F(inn)

i from the bounded parts Γi of the inner boundary Γ

to infinity. Denote F(inn) =
I∑

i=1

F(inn)
i , and, as usual, choose the "widest" outlet

to infinity, in order to minimize the dissipation of energy generated by b(inn) .
Suppose that such outlet is of the layer type, say E1

2.
As in Chapter 4, Subsection 4.2.1 let us construct in E1 a solenoidal vector

field b
(inn)
1 such that

b
(inn)
1 (x)

∣∣
∂E1∩∂Ω

= 0,
∫

σ
(E)
1 (R)

b
(inn)
1 · n dS = F(inn).

Introduce the infinite layer L1 = {y ∈ R3 : 0 < y3 < h1(|y′|), y′ ∈ R2} which for
|y′| > 1 coincides with the outlet E1. Let γ1 = {y ∈ L : |y′| = 0}. Define in L1 a
cut–off function

ζ1(y) = Ψ
(
ln

(ϱ(δ(y))
∆(y)

))
, (6.4)

where
δ(y) = ∆γ1∪{y3=h1(|y′|)}(y), ∆(y) = ∆∂L1\{y3=h1(|y′|)}(y),

functions Ψ and ϱ are defined by formulas (2.24) and (2.25), respectively.

Lemma 6.1. The function ζ1(y) is equal to zero at those points of L1 \ γ1 where
ϱ(δ(y)) ≤ ∆(y) and ζ1(y) = 1 if ∆(y) ≤ e−1ϱ(δ(y)). The following estimates

∣∣∣∂ζ1(y)
∂yk

∣∣∣ ≤ c

∆(y)
,

∣∣∣∂2ζ1(y)

∂yk∂yl

∣∣∣ ≤ c

∆2(y)
(6.5)

hold.

Set

b̂
(inn)
1 (y) = −F(inn)curl

(
ζ1(y)b0(x)

)
= −F(inn)∇ζ1(y)× b0(y), y ∈ L1,

where b0(y) is a magnetic field defined by formula (2.23) with properties given in
Lemma 2.17.

Lemma 6.2. The solenoidal vector field b̂
(inn)
1 is infinitely differentiable for y ∈

2To expand at infinity can only the first and the last layer type outlets E1 and EP . If E1 and
EP are not growing at infinity, then we can "drain" the fluxes to any outlets Er, however, for
the unity of presentation, we choose in this case also the same outlet E1. If we have to "drain"
the fluxes from the bounded parts of ∂Ω to a paraboloidal outlet expanding at infinity, then
extension A can be constructed combining the methods of this and previous chapters.
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L1 \ {y : |y′| = 0}, vanishes near the set ∂L1 ∪ {y : |y′| = 0},∫
σ
(L1)
1

b̂
(inn)
1 · n dS = F(inn), (6.6)

and

|b̂(inn)
1 (y)| ≤ c|F⃗(inn)|

d(y)
, (6.7)

|b̂(inn)
1 (y)| ≤ C|F⃗(inn)|

h1(|y′|) |y′|
,

|∇b̂
(inn)
1 (y)| ≤ C|F⃗(inn)|

h2
1(|y′|) |y′|

+
C|F⃗(inn)|

h1(|y′|) |y′|2
, x ∈ E1,

|b̂(inn)
1 (y)|+ |∇b̂

(inn)
1 (y)| ≤ C|F⃗(inn)|, x ∈ Ω \ E1.

(6.8)

In (6.7) d(y) = dist(y, ∂L1∩∂Ω\{y ∈ ∂Ω : y3 = h1(|y′|)}), |F⃗(inn)| =

√
I∑

i=1

(F(inn)
i )2,

F⃗(inn) = (F(inn)
1 ,F(inn)

2 , ...,F(inn)
I ).

Proof of this lemma is analogous to the proof of Lemma 4.8 (see Subsection
4.2.1).
Define

b
(inn)
1 (z(1)) = b̂

(inn)
1 (z(1))|E1 . (6.9)

Then, we can introduce the virtual drain function

b(inn) =


b
(inn)
♯ + b

(inn)
01 , x ∈ Ω0,

b
(inn)
1 , x ∈ E1,

0, x ∈ Ω \ (E1 ∪ Ω0),

where b
(inn)
♯ and b

(inn)
01 are constructed as in Chapter 4, Subsection 4.2.1.

Since

h0 =

a− b
(inn)
♯ |Γi

, x ∈ Γi, i = 1, . . . , I,

0, x ∈ ∂Ω0 \ Γ

is such that∫
Γi

h0 · n dS =
∫
Γi

a · n dS −
∫
Γi

b
(inn)
♯ · n dS = F(inn)

i − F(inn)
i = 0, i = 1, . . . , I,

we can extend the function h0 in the form

b
(inn)
0 (x) = curl (χ(x)E(x)),
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where E ∈ W 2
2 (Ω0), curlE|∂Ω0 = h0 and χ is a smooth cut-off function with

χ(x) = 1 on Γ (see Lemma 2.14).
Finally, we put

B(inn) = b(inn) + b
(inn)
0 . (6.10)

Lemma 6.3. The vector field B(inn) is solenoidal, B(inn)|Γi
= a|Γi

, i = 1, . . . , I,
B(inn)|S(m) = 0, m = 0, . . . , P , B(inn) ∈ W 1,2

loc (Ω), B(inn)(x) = 0, x ∈ Ω(j), j ̸=
1, |x| ≫ 1. For any w ∈ W 1,2

loc (Ω) with w
∣∣
∂Ω

= 0 the following estimates

∫
Ω(k)\Ω(k−1)

|B(inn)|2|w|2 dx ≤ c|F⃗(inn)|2
∫

Ω(k)\Ω(k−1)

|∇w|2 dx,

∫
Ω(k)

|B(inn)|2|w|2 dx ≤ c|F⃗(inn)|2
∫

Ω(k)

|∇w|2 dx,
(6.11)

hold. Moreover,

|B(inn)(x)| ≤ C|F⃗(inn)|
h1(|z(1)′|)|z(1)′|

, x ∈ E1,

|∇B(inn)(x)| ≤ C|F⃗(inn)|
h2
1(|z(1)′|)|z(1)′|

+
C|F⃗(inn)|

h1(|z(1)′|)|z(1)′|2
, x ∈ E1,

|B(inn)(x)|+ |∇B(inn)(x)| ≤ C|F⃗(inn)|, x ∈ Ω \ E1.

(6.12)

6.2 Construction of the extension B(out)
m

In this section we construct the vector fields B
(out)
m , m = 0, . . . , P, extending the

boundary value a from the outer boundary S. We start with the construction of
the "flux carriers" b(out)

m which "drain" the fluxes F(out)
m , m = 0, ..., P, from bounded

parts of S(m) to infinity. The construction of b(out)
m , m = 0, . . . , P, depends on the

location of Λm, m = 0, ..., P, i.e., there are some differences between the cases
m = 0 and m = 1, ..., P. We submit the details of the construction for both cases
in parallel.

1. Let m = 1, ..., P . Denote by γm1 a smooth simple contours which intersect
∂Ω at the points x(m) ∈ Λm ⊂ S(m) and x(0) ∈ S(0) ∩ ∂E1 and have the forms

γm1 = γ̂1 ∪ l1 ∪ γ̂
(m)
1 ∪ lm,

where γ̂1 is a finite curve lying in E1 and intersecting boundary S(0) ∩ ∂E1 at the
point x(0), γ̂

(m)
1 ⊂ Ω

∩
BR1(0) is a finite curve connecting γ̂1 and the point x(m),

l0, lm ⊂ R3 \ Ω are semi-infinite curves which begin at the points x(0) and x(m),
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respectively.
2. Let m = 0. Denote by γ01 a smooth simple contour which intersects ∂Ω at

the points x(0) ∈ Λ0 ⊂ S(0) and x(1) ∈ S(1) ∩ ∂E1 and has the form:

γ01 = γ̂1 ∪ l1 ∪ γ̂
(0)
1 ∪ l0,

where γ̂1 ⊂ E1 is a finite curve intersecting the boundary S(1) ∩ ∂E1 at x(1),

γ̂
(0)
1 ⊂ Ω

∩
BR1(0) is a finite curve connecting γ̂1 and x(0), l0, l1 ⊂ R3 \ Ω are

semi-infinite curves which begin at x(0) and x(1), respectively.
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Figure 6.2: Contours γ01 and γ21.

Assume that the direction of γm1,m = 0, ..., P, coincides with the direction of
increase of coordinate z

(1)
3 and that the dist(γm1, S(m) \Λm)≥ d0 > 0, where d0 is

sufficiently small number, m = 0, ..., P.

In the domain Ω we introduce the virtual drain functions

b(out)
m (x, ε) = αmF

(out)
m curl(ζm1(x, ε) · b(m)

1 (x))

= αmF
(out)
m ∇ζm1(x, ε)× b(m)

1 (x), m = 0, . . . , P,

(6.13)

where b(m)
1 (x) is a magnetic field (2.22) corresponding to contour γm1 (properties
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of b(m)
1 (x) are given in Lemma 2.17),

αm =

1, m = 1, . . . , P,

−1, m = 0,

ζm1(x, ε) = Ψ
(
ε ln

δ(m1)(x)

∆∂Ω\(Λm∪K)(x)

)
. (6.14)

A function δ(m1)(x) and a set K depend on the location of Λm. If Λm ⊂
S(m), m = 1, ..., P, then K = S(0) and

δ(m1)(x) =



ρ1(x)∆γ̂1∪(K∩E1)(x) +
J∑

j=2
j ̸=P+1,...,J ′

ρj(x)|x− x
(m1)
0 |+

J ′∑
j=P+1

ρj(x)δ0

+(1−
J∑

j=1

ρj(x))∆γm1∪K(x), x ∈ Ω \ (γm1 ∪K), x
(m1)
0 ∈ γ̂

(m)
1 ,

0, x ∈ γm1 ∪K.

If Λ0 ⊂ S(0), then K = S \ S(0) =
P∪

j=1

S(j) and

δ(01)(x) =



ρ1(x)∆γ̂1∪(K∩E1)(x) +
J∑

j=2
j ̸=P+1,...,J ′

ρj(x)δ0 +
J ′∑

j=P+1

ρj(x)|x− x
(01)
0 |

+(1−
J∑

j=1

ρj(x))∆γ01∪K(x), x ∈ Ω \ (γ01 ∪K), x
(01)
0 ∈ γ̂

(0)
1 ,

0, x ∈ γ01 ∪K,

where δ0 is a sufficiently small positive constant,

ρj(x) =

1, x ∈ Dj \D(3)
j or x ∈ Ej \ E(3)

j ,

0, x ∈ (Ω \Dj) ∪D
(2)
j or x ∈ (Ω \ Ej) ∪ E

(2)
j , j = 1, ..., J.

(6.15)

The function δ(m1)(x) is continuous in the domain Ω and infinitely differentiable
in Ω \ (γm1 ∪K), |∇δ(m1)(x)| is bounded. Moreover, it is easy to check that

δ(m1)(x) =



∆γ̂1∪(K∩E1)(x), x ∈ E1 \ E(3)
1 ,

|x− x
(m1)
0 |, |x| ≫ 1, x ∈ Er, r = 2, ..., P,

or x ∈ Dp, p = J ′ + 1, ..., J,

δ0, |x| ≫ 1, x ∈ Dp, p = P + 1, ..., J ′,

∆γm1∪K(x), x ∈ Ω0,
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for m = 1, ..., P, and

δ(01)(x) =



∆γ̂1∪(K∩E1)(x), x ∈ E1 \ E(3)
1 ,

δ0, |x| ≫ 1, x ∈ Er, r = 2, ..., P, or x ∈ Dp, p = J ′ + 1, ..., J,

|x− x
(01)
0 |, |x| ≫ 1, x ∈ Dp, p = P + 1, ..., J ′,

∆γ01∪K(x), x ∈ Ω0.

Lemma 6.4. The vector field b(out)
m is infinitely differentiable and solenoidal, b(out)

m

vanishes near the surface ∂Ω \ Λm, in a small neighborhood of the curve γm1 ∩ Ω

and for x ∈ Ω \ E1 with |x| ≫ 1. The following estimates

|b(out)
m (x, ε)| ≤ cε

d∂Ω\(Λm∪K)(x)dγm1∪K(x)
, x ∈ Ω, (6.16)

|b(out)
m (x, ε))| ≤ c(ε)|F(out)

m |
h1(|z(1)′|) |z(1)′|

, x ∈ E1,

|∇b(out)
m (x, ε)|≤ c(ε)|F(out)

m |
h2
1(|z(1)′|) |z(1)′|

+
c(ε)|F(out)

m |
h1(|z(1)′|) |z(1)′|2

, x ∈ E1,

(6.17)

hold. The constant c in (6.16) is independent of ε. Finally,∫
Λm

b(out)
m · n dS = F

(out)
m .

Proof. The first statement of the lemma follow from definitions (6.13), (6.14) of
b(out)
m and ζm1 and from the properties of the regularized distance (see estimates

(2.21)). Since b(out)
m (x, ε)|∂Ω\Λm = 0, b(out)

m (x, ε) = 0 for x ∈ Ω \ E1, |x| ≫ 1,
ζm1(x, ε) = 1 on ∂Ω \ (Λm ∪K) and ζm1(x, ε) = 0 on K, the Ostrogradsky–Gauss
(see Lemma 2.11) and the Stokes (see Lemma 2.12) formulas yield∫

Λm

b(out)
m · n dS = −

∫
σ
(E)
1 (R)

b(out)
m · n dS

= −αmF
(out)
m

∫
σ
(E)
1 (R)

curl(ζm1b(m)
1 ) · n dS = −αmF

(out)
m

∫
∂σ

(E)
1 (R)

ζm1b(m)
1 · dl

= −αmF
(out)
m

( ∫
l0(R)

ζm1b(m)
1 · dl +

∫
l1(R)

ζm1b(m)
1 · dl

)

=


−F

(out)
m

∫
l0(R)

b(m)
1 · dl, m = 1, ..., P,

F
(out)
m

∫
l1(R)

b(m)
1 · dl, m = 0,

= F
(out)
m ,
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where l0(R) = ∂σ
(E)
1 (R) ∩ S(0), l1(R) = ∂σ

(E)
1 (R) ∩

(
∂E1 \ S(0)

)
.3

Let hm(x) = a(x)|Λm − b(out)
m (x, ε)|Λm . Then∫

Λm

hm · n dS =
∫
Λm

a · n dS −
∫
Λm

b(out)
m · n dS = 0.

Therefore, hm can be extended inside Ω in the form

b
(out)
0m (x, ε) = curl (χm(x, ε)Em(x)),

where Em ∈ W 2
2 (Ω0), curlEm|Λm = hm and χm is a Hopf’s type cut-off function

such that χm(x, ε) = 1 on Λm (see Lemma 2.14).
Define

B(out)
m (x, ε) = b

(out)
m (x, ε) + b

(out)
0m (x, ε).

Obviously,

divB(out)
m = 0, B(out)

m |Λm = a, B(out)
m |∂Ω\Λm = 0,

B(out)
m = 0, x ∈ Ω \ E1, |x| ≫ 1.

Lemma 6.5. For any solenoidal w ∈ W 1,2
loc (Ω) with w

∣∣
∂Ω

= 0 the following esti-
mates ∫

Ω(k)\Ω(k−1)

|B(out)
m |2|w|2 dx ≤ εc|F(out)

m |2
∫

Ω(k)\Ω(k−1)

|∇w|2 dx,

∫
Ω(k)

|B(out)
m |2|w|2 dx ≤ εc|F(out)

m |
∫

Ω(k)

|∇w|2 dx,
(6.18)

hold. The constant c does not depend on ε and k. Moreover,

|B(out)
m (x, ε)| ≤ C(ε)|F(out)

m |
h1(|z(1)′|) |z(1)′|

, x ∈ E1,

|∇B
(out)
m (x, ε)| ≤ C(ε)|F(out)

m |
h2
1(|z(1)′|) |z(1)′|

+
C(ε)|F(out)

m |
h1(|z(1)′|) |z(1)′|2

, x ∈ E1,

|B(out)
m (x, ε)|+ |∇B

(out)
m (x, ε)| ≤ C(ε)|F(out)

m |, x ∈ Ω \ E1.

(6.19)

3Notice that the contours l0(R) and l1(R) have opposite direction.
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Proof. Inequality (6.16) yields (see Lemma 2.15)

∫
Ω(k)\Ω(k−1)

|B(out)
m |2|w|2dx ≤ cε|F(out)

m |2
∫

Ω(k)\Ω(k−1)

|w|2

dist2(x, ∂Ω)
dx

≤ cε|F(out)
m |2

∫
Ω(k)\Ω(k−1)

|∇w|2dx

∫
Ω(k)

|B(out)
m |2|w|2dx ≤ cε|F(out)

m |2
∫

Ω(k)

|w|2

dist2(x, ∂Ω)
dx ≤ cε|F(out)

m |2
∫

Ω(k)

|∇w|2dx.

Estimates (6.19) follow from (6.17).

6.3 Construction of the extension B(flux)

Now, we need to compensate the fluxes over the cross sections of outlets to infin-
ity, i.e., we have to construct a solenoidal vector field B(flux) satisfying the flux
conditions ∫

σ
(E)
r (R)

B(flux) · n dS = F̂ (E)
r , r = 1, . . . , P,

∫
σ
(D)
p (R)

B(flux) · n dS = F (D)
p , p = P + 1, . . . , J,

(6.20)

where

F̂ (E)
r = F (E)

r , r = 2, . . . , P ; F̂ (E)
1 = F (E)

1 + F(inn) + F(out),

F(out) =
P∑

m=0

F
(out)
m . Note that the total flux is equal to zero:

P∑
r=1

F̂ (E)
r +

J∑
p=P+1

F (D)
p = 0. (6.21)

For the construction of the extension B(flux), we use the vector field

b(k,n)(x) =
1

4π

∮
γ(k,n)

x− y

|x− y|3
× dly

which describes a magnetic field corresponding to the contour γ(k,n) (the properties
of b(k,n) are given in Lemma 2.17). However, introducing this contour we have to
distinguish between three different cases.

1. Contour γ(j,j+1), j = P + 1, ..., J ′ − 1, J ′ + 1, ..., J − 1, goes through the
two paraboloidal outlets. In this case γ(j,j+1) is an infinite smooth simple contour,
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consisting of two semi-infinite lines γ̂(j) ⊂ Dj, γ̂(j+1) ⊂ Dj+1 and a finite curve
γ̂
(j+1)
j ⊂ Ω

∩
BR1(0) joining them. The direction of the curve γ(j,j+1) coincides

with the direction of increase of the coordinate z
(j)
3 .

2. Contour γ(k,n) goes through the two outlets, one of which is of paraboloidal
type and another - of layer type. Actually, there are only two possibilities: either
k = J ′, n = 1, or k = P, n = J . Define

γ(J ′,1) = γ̂(J ′) ∪ γ̂(1) ∪ l1 ∪ γ̂
(1)
J ′ ,

γ(P,J) = γ̂(P ) ∪ γ̂(J) ∪ lP ∪ γ̂
(J)
P ,

where γ̂(J ′) ⊂ DJ ′ , γ̂(J) ⊂ DJ are semi-infinite lines, γ̂(1) ⊂ E1, γ̂
(P ) ⊂ EP are finite

curves intersecting ∂Ω at the points x(1) ∈ S(1) ∩ ∂E1 and x(P ) ∈ S(P−1) ∩ ∂EP ,

respectively, γ̂
(1)
J ′ , γ̂

(J)
P ⊂ Ω

∩
BR1(0) are curves joining γ̂(J ′) with γ̂(1) and γ̂(J)

with γ̂(P ), and l1, lP ⊂ R3 \ Ω are semi-infinite curves which start at the points
x(1) and x(P ), respectively. The directions of the curves γ(J ′,1) and γ(P,J) coincide
with the directions of the axis z

(1)
3 and z

(P )
3 in the layer type outlets to infinity.

3. Contour γ(j,j+1), j = 1, ..., P − 1, goes through the two layer type outlets.
Then γ(j,j+1) is an infinite smooth simple contour which intersects ∂Ω at the
points x(j) ∈ S(j−1) ∩ ∂Ej and x(j+1) ∈ S(j+1) ∩ ∂Ej+1. Contour γ(j,j+1) consists
of finite curves γ̂(j) ⊂ Ej, γ̂

(j+1) ⊂ Ej+1 intersecting ∂Ω at the points x(j), x(j+1),

respectively, a finite curve γ̂
(j+1)
j ⊂ Ω

∩
BR1(0) joining them, and semi-infinite

curves lj, lj+1 ⊂ R3 \ Ω that begin at the points x(j), x(j+1):

γ(j,j+1) = γ̂(j) ∪ lj ∪ γ̂(j+1) ∪ lj+1 ∪ γ̂
(j+1)
j .

The direction of the curve γ(j,j+1) coincides with the direction of increase of the
coordinate z

(j+1)
3 . In all three cases we suppose that dist(γ(j,j+1), ∂Ω)≥ d0 > 0,

where d0 is sufficiently small number.
Denote

b(flux)
k,n (x, ε) = curl(ζk,n(x, ε)b(k,n)(x)) = ∇ζk,n(x, ε)× b(k,n)(x),

where
ζk,n(x, ε) = Ψ

(
ε ln

δ(k,n)(x)

∆∂Ω\K(x)

)
.

In the last formula the set K depends on the location of the contour γ(k,n). In
the first case, i.e., when k = j, n = j + 1 and both outlets Dj and Dj+1 are of
paraboloidal type, we take K = ∅ and the construction of ζj,j+1(x, ε) is the same
as in Chapter 5, Subsection 5.1.3. In the second case, when one of the outlets is
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Figure 6.3: Contours γ(1,2), γ(3,8) and γ(4,5).

paraboloidal and another is of the layer type (i.e., we either have the pair DJ ′ and

E1 or the pair DJ and EP ) we set K = K(J ′,1) =
P∪

j=1

S(j) ,

δ(J
′,1)(x) =



ρJ ′(x)∆γ̂(J′)∩DJ′ + ρ1(x)∆(γ̂(1)∪K)∩E1
(x) +

J∑
j=2,

j ̸=J ′+1,...,J

ρj(x)δ0

+
J ′−1∑

j=P+1

ρj(x)|x− x
(J ′,1)
0 |+ (1−

J∑
j=1

ρj(x))∆γ(J′,1)∪K(x),

x ∈ Ω \ (γ(J ′,1) ∪K), x
(J ′,1)
0 ∈ γ̂

(1)
J ′ ,

0, x ∈ γ(J ′,1) ∪K,

and K = K(P,J) =
P−1∪
j=0

S(j) ,

δ(P,J)(x) =



ρJ(x)∆γ̂(J)∩DJ
+ ρP (x)∆(γ̂(P )∪K)∩EP

(x) +
J−1∑

j=J ′+1

ρj(x)|x− x
(P,J)
0 |

+
J∑

j=1,
j ̸=P,J ′+1,...,J

ρj(x)δ0 + (1−
J∑

j=1

ρj(x))∆γ(P,J)∪K(x),

x ∈ Ω \ (γ(P,J) ∪K), x
(P,J)
0 ∈ γ̂

(J)
P ,

0, x ∈ γ(P,J) ∪K,

respectively.
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In the third case, when both outlets Ej and Ej+1, j = 1, . . . , P − 1, are layers,
K = S \ S(j) and

δ(j,j+1)(x) =



ρj(x)∆(γ̂(j)∪K)∩Ej
+ ρj+1(x)∆(γ̂(j+1)∪K)∩Ej+1

+
J∑

k=1
k ̸=j,j+1

ρk(x)δ0

+(1−
J∑

k=1

ρk(x))∆γ(j,j+1)∪K(x), x ∈ Ω \ (γ(j,j+1) ∪K),

0, x ∈ γ(j,j+1) ∪K.

The functions Ψ and ρj are defined by formulas (2.24) and (6.15), respectively.
The vector fields b(flux)

k,n have the following properties (see [59], [61], [47]).

Lemma 6.6. The vector fields b(flux)
k,n (x, ε) are solenoidal, b(flux)

k,n |∂Ω
= 0, b(flux)

k,n (x, ε) = 0 for x ∈ Dm, Es,m, s ̸= k, n, |x| ≫ 1, and

∫
σl(R)

b(flux)
k,n · n dS = −δlk + δln,

where (k, n) = (j, j+1), j = 1, ..., P −1, P +1, ..., J ′−1, J ′+1, ..., J −1, (k, n) =
(J ′, 1) and (k, n) = (P, J), δkn is the Kronecker’s delta, σl(R) stands either for
σ
(E)
l (R) or for σ

(D)
l (R).

For any solenoidal w ∈ W 1,2
loc (Ω) with w

∣∣
∂Ω

= 0 the following estimates

∫
Ω(m)\Ω(m−1)

|b(flux)
k,n |2|w|2 dx ≤ εc

∫
Ω(m)\Ω(m−1)

|∇w|2 dx,

∫
Ω(m)

|b(flux)
k,n |2|w|2 dx ≤ εc

∫
Ω(m)

|∇w|2 dx
(6.22)

hold with the constant c independent of ε and m. Moreover,

|b(flux)
k,n (x, ε)| ≤ C(ε)

g2s(z
(s)
3 )

, |∇b(flux)
k,n (x, ε))| ≤ C(ε)

g3s(z
(s)
3 )

, x ∈ Ds, (6.23)

|b(flux)
k,n (x, ε)| ≤ C(ε)

hs(|z(s)′|)|z(s)′|
,

|∇b(flux)
k,n (x, ε))| ≤ C(ε)

h2
s(|z(s)′|)|z(s)′|

+
C(ε)

hs(|z(s)′|)|z(s)′|2
, x ∈ Es,

|b(flux)
k,n (x, ε)|+ |∇b(flux)

k,n (x, ε))| ≤ C(ε), x∈ Ω \ Ω(k) ∪ Ω(n),

(6.24)

s = k or s = n.
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Let us take b(flux)
j,j+1 , j = 1, ..., J − 1, and define

B(flux)(x, ε) =
J−1∑
j=1

j ̸=P,J ′

βjb(flux)
j,j+1 (x, ε)

+βJ ′b(flux)
J ′,1 (x, ε) + βPb(flux)

P,J (x, ε).

(6.25)

Calculating the fluxes of the vector field B(flux) over the cross section σj, j =

1, . . . , J, and using (6.21), we find the coefficients βj so that B(flux) satisfies flux
conditions (6.20).

6.4 Solvability of problem (6.1)

The vector field
A = B(inn) +

P∑
m=0

B
(out)
m +B(flux) (6.26)

gives the desired extension of the boundary value a. For all w ∈ W 1,2
loc (Ω) with

w
∣∣
∂Ω

= 0 from (6.11), (6.18), (6.22) follow the estimates

∫
Ω(k)\Ω(k−1)

|A|2|w|2dx

≤ c(ε|F⃗(out)|2 + ε|F⃗ (D)|2 + ε|F⃗ (E)|2 + |F⃗(inn)|2)
∫

Ω(k)\Ω(k−1)

|∇w|2dx,∫
Ω(k)

|A|2|w|2 dx

≤ c(ε|F⃗(out)|2 + ε|F⃗ (D)|2 + ε|F⃗ (E)|2 + |F⃗(inn)|2)
∫

Ω(k)

|∇w|2 dx,

(6.27)

where |F⃗ (E)|2 =
P∑

r=1

(F (E)
r )2, F⃗ (E) = (F (E)

1 ,F (E)
2 , ...,F (E)

P ), |F⃗ (D)|2 =
J∑

p=P+1

(F (D)
p )2,

F⃗ (D) = (F (D)
P+1,F

(D)
P+2, ...,F

(D)
J ), |F⃗(out)|2 =

P∑
m=0

(F
(out)
m )2,

F⃗(out) = (F
(out)
0 ,F

(out)
1 , ...,F

(out)
P ). The constant c in (6.27) is independent of ε and

k. Moreover,

|A(x, ε)| ≤ C(ε)

g2p(z
(p)
3 )

, |∇A(x, ε)| ≤ C(ε)

g3p(z
(p)
3 )

, x ∈ Dp,

|A(x, ε)| ≤ C(ε)

hr(|z(r)′|)|z(r)′|
,

|∇A(x, ε)| ≤ C(ε)

h2
r(|z(r)′|)|z(r)′|

+
C(ε)

hr(|z(r)′|)|z(r)′|2
, x ∈ Er,

|A(x, ε)|+ |∇A(x, ε)| ≤ C(ε), x ∈ Ω0,

(6.28)
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where r = 1, . . . , P, p = P + 1, . . . , J.

Estimates (6.28) yield the inequality∫
Ω(k)

|∇A(x, ε)|2 dx+
∫

Ω(k)

|A(x, ε)|4 dx

≤ c(data)
(
1 +

P∑
r=1

Rrk∫
1

dτ

τh3
r(τ)

+
J∑

p=P+1

Rpk∫
1

dt

g4p(t)

)
,

where
c(data) = c0

(
∥a∥2W 1/2,2(∂Ω) + ∥a∥4W 1/2,2(∂Ω) + |F⃗ (D)|2

+|F⃗ (E)|2 + |F⃗ (D)|4 + |F⃗ (E)|4
)
.

Leray–Hopf’s inequalities (3.10) with given δ > 0 follow from (6.27) if we take ε

sufficiently small and assume that the fluxes F(inn)
i , i = 1, . . . , I, are sufficiently

small. Therefore, the proof of the existence of the weak solution to problem (6.1),
(6.3) is analogous to proofs given in Chapter 4, Subsections 4.1.3 and 4.2.4.

Theorem 6.1. Assume that the boundary value a ∈ W 1/2,2(∂Ω) satisfies condition
(6.2) and that the fluxes F(inn)

i , i = 1, . . . , I, are sufficiently small. Then problem
(6.1), (6.3) admits at least one weak solution u = v +A ∈ W 1,2

loc (Ω), where A is
vector field (6.26). The following estimate

∫
Ω(k)

|∇u(x)|2 dx ≤ c(data)
(
1 +

P∑
r=1

Rrk∫
1

dτ

τh3
r(τ)

+
J∑

p=P+1

Rpk∫
1

dt

g4p(t)

)
,

holds. In particular, if either
∞∫
1

dτ

τ h3
r(τ)

< ∞, r = 1, . . . , P, or
∞∫
1

dt

g4p(t)
< ∞, p =

P + 1, . . . , J, then
∫

Ω(j)

|∇u(x)|2 dx < ∞, where Ω(j) is either Ej or Dj.

Remark 6.3. All obtained in the thesis results remain valid for the nonhomoge-
neous Navier–Stokes system if the external force f have an appropriate behavior
at infinity.

Remark 6.4. The extension A of the boundary value a, when we "drain" the
fluxes from the bounded parts of ∂Ω to a paraboloidal outlet to infinity (in order
to "minimize" the dissipation of the energy), can be constructed combining the
methods of this and the previous chapters.
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Conclusions

The main goal of the thesis was to construct a suitable extension of boundary value
which gives the possibility to reduce the nonhomogeneous boundary conditions to
the homogeneous ones. This extension is constructed in the form

A = B(inn) +
M∑

m=1

B
(out)
m +B(flux),

where B(inn) extends the boundary value a from the inner boundary Γ, B
(out)
m

extend a from the connected component S(m) of the noncompact outer boundary
S, and B(flux) has zero boundary value over ∂Ω and removes the fluxes over
the cross sections of outlets to infinity. The vector fields B

(out)
m and B(flux) are

constructed to satisfy Leray–Hopf’s inequalities which allows to obtain a priori
estimates of the solution for arbitrary large fluxes F(out)

m and Fj. However, Leray–
Hopf’s inequality cannot be true, in general, for the vector field B(inn). If the fluxes
of the boundary value over compact connected components of the boundary do
not vanish, there are counterexamples (see [67], [4]) showing that in bounded
domains Leray–Hopf inequality can be false whatever the choice of the solenoidal
extension is taken. Therefore, we assume that the fluxes F(inn)

i of a over the
compact components Γi of the inner boundary Γ are "sufficiently small".

1. If fluxes F(inn)
i are sufficiently small (F(out)

m and Fj are arbitrary), then prob-
lem (3.1) in domains with noncompact multiply connected boundaries ad-
mits at leats one solution, having either finite or infinite Dirichlet integral.

2. If fluxes F(inn)
i are "large", then it is impossible to prove the existence of

solution to problem (3.1) by using the extension method.
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