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Introduction

In the thesis we study mathematical models of incompressible, homogeneous viscoelastic

second grade �uid �ows in certain two- and three-dimensional unbounded domains Π.

More precisely, we assume that the domain Π is either the in�nite channel Π = {x ∈ R2 :

(x1, x2) ∈ σ × R}, where σ = [−d
2
,
d

2
] with d > 0 denoting the width of the channel, or

the in�nite cylinder Π = {x = (x′, x3) ∈ R3 : (x′, x3) ∈ σ × R}, where x′ = (x1, x2) and

σ denotes the constant cross-section of the tube, i.e., σ is bounded, connected subset of

R2 independent of x3. We assume that the boundary ∂σ is C4-smooth. We are looking

for a solution to the second grade �uid �ow problem having a prescribed time dependent

�ux. Such problems are reduced to inverse problems with an unknown right-hand side

corresponding to the pressure drop along the axis of the cylinder.

In the two dimensional case and in the case of axially symmetric cylinder we prove

the global existence of a unique unidirectional �ow and �nd the relationship between the

�ux and the gradient of the pressure.

In a general three-dimensional pipe (without axial symmetry) we prove the existence

of a unique global solution for small data. We also prove that in the case of unidirectional

data the velocity components perpendicular to the axis of the cylinder are secondary.

Time-periodic problem for the second grade �uid �ow in a channel is also studied.

For this problem we prove the existence of the unique solution and �nd the relationship

between the �ux and the gradient of the pressure.

Actuality and history of the problem

The mechanical behavior of �uids are speci�ed by constitutive equations. For long time

Navier-Stokes equation seemed to be most useful to describe non-Newtonian �uids mo-

tion. However, in many �elds, such as food industry or bio-engineering, the �uids are

mixtures and cannot be described by the Navier-Stokes equations. Examples of such
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combined �uids are gels, paints, oils, slurries, geological �uids, food products, blood, etc.

These liquids have strong non-Newtonian characteristics. It is di�cult to suggest a single

model which would exhibit all properties of viscoelastic �uids. One of models to account

for the rheological e�ects of viscoelastic �uid is the second grade �uid �ow model. It

belongs to the class of non-Newtonian Rivlin-Ericksen �uids of di�erential type (see [40],

[86]). This model describes a large class of viscous �uids with polymer additives and

viscoelastic liquids with "short memory". The equations governing the �ow of the second

grade �uid are one order higher than the Navier-Stokes equations.

The stress tensor for the second grade �uid is given by [74]

T = pI+ νA1 + α1A2 + α2A
2
1

where
A1 = ∇u+ (∇u)T ,

A2 =
d

dt
A1 +A1∇u+ (∇u)TA1,

p and u are the pressure and the velocity �eld, ν is the coe�cient of viscosity and α1, α2

are coe�cients of the material (usually called normal stress moduli). Considerations on

the stability of the rest state require ν and α1 to be nonnegative ([18], [21], [32], [41]).

For �uids of the second grade, we express the divergence of the stress tensor T as

follows

∇ ·T = −∇p+ ν∆u+ α1(
∂

∂t
∆u+ u · ∇∆u) +N1(u) +N2(u) +N3(u) (0.1)

where
N1(u) = α1(∇u)T : ∇A1,

N2(u) = α1∇ · (A1W−WA1),

N3(u) = (α1 + α2)∇ ·A2
1

with

W =
1

2
(∇u− (∇u)T ).

The �ow of the �uid can be expressed by linear momentum

ρ
∂

∂t
u−∇ ·T = ρf, (0.2)

where f denotes the external force, and, for simplicity, the constant density of the �uid ρ

is taken equal to 1. Substituting expression (0.1) into equation (0.2) and assuming that
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the motion is incompressible we obtain the following system of equations
∂

∂t
(u− α1∆u) + u · ∇(u− α1∆u)− ν∆u+∇p−N1(u)

−N2(u)−N3(u) = f,

divu = 0.

(0.3)

We consider the problem in the space-time region ΠT = Π × (0, T ), where Π is

su�ciently smooth, bounded two- or three-dimensional domain, and T > 0. We assume

that the �uid adheres to the walls ∂Π of the �xed container Π:

u(x, t) = 0, (x, t) ∈ ∂Π× (0, T ). (0.4)

Finally, we append the initial condition

u(x, 0) = u0(x), x ∈ Π. (0.5)

Special cases of problem (0.3), (0.4), (0.5) have been considered by many authors.

Oskolkov has investigated the case when all Ni = 0 (see [57], [58], [59]). Using �vanishing

viscosity� method he proved the existence and uniqueness of a global weak solution. In

1974, Dunn and Fosdick [21] showed that, in oder to make the �uid model consistent

with thermodynamics, the material constants must be taken to satisfy

ν ≥ 0, α1 ≥ 0, α1 + α2 = 0.

Moreover, they showed that the rest state is asymptotically stable just when previous

inequalities are strict. Instability results for α1 < 0 have been found in some special

�ow situations (see [18], [82]). In the thesis we recall the thermodynamical restriction

α1 + α2 = 0 and take

α1 = −α2 := α.

Therefore, we can rewrite problem (0.3), (0.4), (0.5) as
∂

∂t
(u− α∆u) + u · ∇(u− α∆u)− ν∆u−N1(u)−N2(u) +∇p = f,

divu = 0,

u|ST = 0, u(x, 0) = u0(x),

where ST = ∂Π× (0, T ).
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However, in this work we refer another formulation of the problem obtained by ob-

serving that

curl∆u× u = u · ∇∆u+∇ · ((∇u)TA1)−∇(u ·∆u+
1

4
|A1|2).

Then the second grade �uid �ow problem takes the form
∂

∂t
(u− α∆u)− ν∆u+ curl(u− α∆u)× u+∇p̃ = f,

divu = 0,

u|ST = 0, u(x, 0) = u0(x)

(0.6)

with the modi�ed pressure

p̃ = α(u ·∆u+
1

4
A : A)− 1

2
(u · u) + p.

Let us remark, that in the two-dimensional case we understand curl and the vector

product as usually in R3 assuming that vectors have zero third component and do not

depend on x3.

The �rst who have used equation (0.6) were Dunn and Fosdick [21]. Since then it has

been the most usual of the equations considering the second grade �uids (see [6], [11], [13],

[14], [20], [21], [33], [34], [39], [40], [60], [65], [66], [82], [86], and others). Cioranescu and

Quazar in [15] (see also [13], [14]) have proved the existence of a unique global solution

in two-dimensional bounded domains, and of a local solution in three-dimensional case.

In this thesis we are looking for the solution of system (0.6) in the cylinder Π = {x ∈
Rn : x′ ∈ σ × R} which has the prescribed �ux F (t) over the cross-section σ1:∫

σ

un(x′, xn, t)dx
′ = F (t). (0.7)

For the two-dimensional channel and the three-dimensional axially symmetric pipe

we assume that the initial data and the external force have only the last component and

are independent of the coordinate xn. We look for an unidirectional (having just the last

component) solution, which satis�es the �ux condition. Such solution we call Poiseuille

type solution. Di�erent types of such exact solutions were computed numericaly in [4],

[10], [16], [22], [31], [35], [43], [45], [51], [54], [70], [71], [77], [78], [79] etc.

1σ = (−d
2
,
d

2
), if n = 2, and σ = {x′ = (x1, x2) ∈ R2 : |x′| < 1}, if n = 3.
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For α = 0 the system (0.6) coincide with the Navier-Stokes system. For the non-

stationary Navier-Stokes system Poiseuille type solutions with prescribed time dependent

�ux are found and investigated in [36], [37], [61]-[64]. The time periodic Navier-Stokes

problem with given �ux was considered in [9], [37].

Note that equations (0.6) describing the motion of �uids of second grade are of higher

order than the Navier-Stokes equations. A signi�cant di�erence between the Navier-

Stokes system and equations (0.6) is that the nonlinear terms in Navier-Stokes equations

are of lower order than the linear ones, while in (0.6) the nonlinear terms are of higher

order. Therefore, in the three-dimensional pipe (without axial symmetry) the unidirec-

tional solution for the second grade �uid �ow problem is impossible, and the Poiseuille

type solution has all three components. However, in this case the velocity components

U1, U2 are secondary in comparison with the axial velocity U3. The analogous results for

the steady second grade �uid motion are obtained in [65], [66].

Notice that in the case of the three-dimensional pipe the most essential were the ideas

proposed by Cioranescu, Quazar and Girault in [13]-[15]. As in these papers, we �nd the

solutions by the Galerkin method using the special basis constructed in [13],[15]. Notice,

that unlike [13]-[15], in oder to satisfy the �ux condition, we have to solve the inverse

problem with the unknown right-hand side corresponding to the pressure drop (gradient

of the pressure).

Aims and problems

The aim of this thesis is to investigate the solvability and uniqueness of the solution to

the second grade �uid �ow problem with prescribed �ux condition in the following cases:

• the initial boundary problem in the two-dimensional channel,

• the initial boundary value problem in the three-dimensional pipe with rotational

symmetry,

• the time-periodic problem in the two-dimensional channel,

• the initial boundary value problem in the three-dimensional pipe.
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Methods

In the thesis we apply the methods of functional analysis, properties of Sobolev spaces.

To construct an approximate solution we use Galerkin method with the special bases.

Novelty

All results presented in this doctoral thesis are new. The Poiseuille type solution for

the non-stationary second grade �uid �ow problem with prescribed �ux condition earlier

were not studied. The existence results and estimates obtained for the solutions are new.

Structure of the thesis

The thesis consists of Introduction, 5 chapters, conclusions and bibliography. Introduc-

tion contains a short review about the history of the problem and describes shortly ob-

tained results. In Chapter 1 we present basic notations and auxiliary propositions which

are used in the work. The initial boundary value problem for the second grade �uid �ow

in the two-dimensional channel is studied in Chapter 2. In this chapter we construct

the solution using the Galerkin method and prove that there exists the unique global

solution. In Chapter 3 we obtain the analogous results in the three-dimensional cylinder

with axial symmetry, assuming that the data are also axially symmetric. Chapter 4 is

devoted to the study of the time periodic problem in the two dimensional channel. The

last Chapter 5 deals with the second grade �uid �ow problem in the three-dimensional

pipe. For su�ciently small data we prove the existence of the unique solution having the

prescribed �ux. The existence is proved by the Galerkin method using the special basis

constructed by Cioranescu and Quazar in [14], [15].
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Chapter 1

Preliminaries

1.1 Notation

i, j, k, l, n, p, r - natural numbers.

Rn - n-dimensional Euclidean space.

x = (x1, ..., xn) - point in Rn.

Ω - domain (open connected set) in Rn.

∂Ω - boundary of the domain Ω.

Ω̄ - closure of the domain Ω.

ΩT = Ω× (0, T ).

|| · ||X - the norm in the Banach space X.

The vector-valued function u = (u1, . . . , un) belongs to the space V , if ui ∈ V, i =

1, . . . , n, and ‖u‖V =
( n∑
i=1

‖ui‖2
V

)1/2.

α = (α1, ..., αn), αi ≥ 0, - multi-index, |α| = α1 + ...+ αn.

Dα = Dα1
1 ...Dαn

n - a di�erential operator of order |α|, where Dαi =
∂αi

∂xj
.

Ck - the space, consisting of k-times continuously di�erentiable functions.

C∞(Ω) - the set of all in�nitely di�erentiable functions de�ned on Ω.
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C∞0 (Ω) - the subset of all functions from C∞(Ω) with compact support in Ω.

We say, that the boundary ∂Ω of the domain Ω is Ck, if for each point x0 ∈ ∂Ω there

exists r > 0 and a Ck - function f : Rn−1 → R such that in local coordinates we have

∂Ω ∩B(x0, r) = {x ∈ B(x0, r) : xn = f(x1, ..., xn−1)}, where B(x0, r) denotes a ball with

the center in x0 and the radial r.

Lp(Ω) - the Banach space, consisting of functions, whose pth powers are integrable

over Ω. The norm in Lp(Ω) is given by ||f ||Lp(Ω) =
( ∫

Ω

|f |pdx
)1/p.

L∞(Ω) - the Banach space of functions with the norm ‖f‖L∞(Ω) =ess sup
x∈Ω
|f(x)|.

W l
p(Ω) - the Sobolev space which consists of functions such that Dαf ∈ Lp(Ω) for

all week partial derivatives of order |α|, 0 ≤ |α| ≤ l. The norm in W l
p(Ω) is given by

||f ||W l
p(Ω =

( l∑
|α|=0

∫
Ω

|Dαf(x)|pdx
)1/p.

W̊ l
p - the Sobolev space which is obtained as a closure of the set C∞0 (Ω) in the norm

‖f‖W l
p(Ω).

W 2l,l
2 (ΩT ) - the Hilbert space (l > 0), consisting of functions, whose derivativesDr

tD
α
xf

belong to L2(ΩT ), 2r + |α| ≤ 2l. The norm of W 2l,l
2 (Ω) is

||f ||W 2l,l
2 (Ω) =

( 2l∑
j=0

∑
2r+|α|=j

T∫
0

∫
Ω
|Dr

tD
α
xf(x, t)|2dxdt

)1/2.

W 1,1
2 (ΩT ) - the space with the norm

‖f‖W 1,1
2 (ΩT ) =

( T∫
0

(‖∂f
∂t

(·, t)‖2
L2(Ω) + ‖f(·, t)‖2

W 1
2 (Ω))dt

) 1
2 .

W 1,0
2 (Ω) - the space with the norm ‖f‖W 1,0

2 (Ω) =
( T∫

0

‖f(·, t)‖2
W 1

2 (Ω)
dt
) 1

2 .

W̊ 1,0
2 (ΩT ), W̊ 1,1

2 (ΩT ) - subsets of spaces W 1,0
2 (ΩT ),W 1,1

2 (ΩT ) consisting of functions

such that f(x, t)|∂Ω×(0,T ) = 0.

W−1
2 (Ω) - the dual space to W̊ 1

2 (Ω).

∇f = (
∂f

∂x1

, ...,
∂f

∂xn
) - gradient of the function f .
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∆f =
n∑
i=1

∂2f

∂x2
i

- Laplacian operator of the function f .

v · u =
n∑
i=1

viui - scalar product for functions v and u.

v×u = (v2u3−v3u2, v3u1−v1u3, v1u2−v2u1) if v and u are three-dimensional vectors,

v× u = (0, 0, v1u2 − v2u1) if v and u are two-dimensional vectors.

∇ · u = divu =
n∑
i=1

∂ui
∂xi

.

curlu = ∇× u = (
∂u3

∂x2

− ∂u2

∂x3

,
∂u1

∂x3

− ∂u3

∂x1

,
∂u2

∂x1

− ∂u1

∂x2

).

The operator curl in the two-dimensional case u = (u1, u2) we understand as usu-

ally in R3 assuming that vector-�eld has zero third component and the components are

independent of x3: curlu = (0, 0,
∂u2

∂x1

− ∂u1

∂x2

).

A : B =
n∑

ij=1

AijBij where A and B are n× n matrices with elements Aij, Bij.

We use letters c, C, cj, j = 1, 2, ..., to denote constants whose numerical values or

whose dependence on parameters is unessential to our considerations. In such case c may

have di�erent values in a single computation.

1.2 Auxiliary results

Theorem 1.1. (Young Inequality with ε) For all a, b ∈ R the following inequality

|ab| ≤ ε

q
|a|q +

ε−q
′/q

q′
|b|q′ , ∀ε > 0

holds, where
1

q
+

1

q′
= 1. If q = 2 we get, so called, Cauchy inequality with ε:

|ab| ≤ ε

2
|a|2 +

1

2ε
|b|2, ∀ε > 0.

Theorem 1.2. (Minkowski Inequality) Assume 1 ≤ p ≤ ∞ and u, v ∈ Lp(Ω). Then

‖u+ v‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖v‖Lp(Ω).
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Theorem 1.3. (Hölder Inequality) (see [26]) Let q > 1, f ∈ Lq(Ω), g ∈ Lq′(Ω), where
1

q
+

1

q′
= 1, then

|
∫
Ω

f(x)g(x)dx| ≤ (

∫
Ω

|f(x)|qdx)1/q(

∫
Ω

|g(x)|q′dx)1/q′ = ||f ||Lq(Ω)||g||Lq′ (Ω).

If q = q′ = 2, the previous inequality is called Cauchy-Schwarz inequality and takes the

form

|
∫
Ω

f(x)g(x)dx| ≤ (

∫
Ω

|f(x)|2dx)1/2(

∫
Ω

|g(x)|2dx)1/2 = ||f ||L2(Ω)||g||L2(Ω).

Theorem 1.4. (Poincaré-Friedrichs Inequality) (see [26]) Let Ω ⊂ Rn is a bounded

domain, then for all u ∈ W̊ 1
2 (Ω) the following inequality∫

Ω

|u(x)|2d ≤ 1

λ1

∫
Ω

|∇u(x)|2dx,

holds, where λ1 is the smallest eigenvalue of the Dirichlet boundary problem for Laplace

operator in Ω: {
∆u = λu,

u|∂Ω = 0.

Theorem 1.5. (Sobolev Embedding) (see [1]) Let Ω ⊂ Rn be a bounded domain.

• If l ≥ 1, q ≥ 1,

n ≥ ql, r <
qn

n− ql
,

then the space W l
q(Ω) is embedded into Lr(Ω) and

||u||Lr(Ω) ≤ c||u||W l
q(Ω).

• If n < ql, then W l
q(Ω) is embedded into Ch(Ω̄), where h ≤ (ql − n)/q, and

||u||Ch(Ω̄) ≤ c||u||W l
q(Ω).

Theorem 1.6. (see [52]) If u ∈ W 2l,l
2 (ΩT ), then Dr

tD
α
xu with 2r+ |α| < 2l− 1 belong to
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the space W
2l−2r−|α|−1
2 (Ω) and there holds the inequality

||Dr
tD

α
xu(·, t)||

W
2l−2r−|α|−1
2 (Ω)

≤ c||u||W 2l,l
2 (ΩT )

with the constant c independent of t ∈ [0, T ].

Theorem 1.7. (Parseval Equality) (see [88]) Let f ∈ L2(0, 2π), then the following

equality holds

1

π

π∫
−π

|f(x)|2dx =
a2

0

2
+
∞∑
k=1

(a2
k + b2

k),

where a0, ak, bk are the Fourier coe�cients of the function f, e.i. a0 =
2π∫
0

f(x)dx, ak =

2π∫
0

f(x) cos(kx)dx,
2π∫
0

f(x) sin(kx)dx.

Theorem 1.8. (Ne£as Inequality) (see [56]) Let Ω be a bounded domain. If u ∈
W−1

2 (Ω), ∇u ∈ L2(Ω), then u ∈ L2(Ω) and the following inequality

‖u‖L2(Ω) ≤ c
(
‖u‖W−1

2 (Ω) + ‖∇u‖L2(Ω)

)
holds.

Theorem 1.9. (Gronwall's inequality) (see [26]) Let η be a nonnegative, absolutely

continuous function on [0, T ] which satis�es for all t the di�erential inequality

η′(t) ≤ φ(t)η(t) + ψ(t),

where φ(t) and ψ(t) are nonnegative, summable functions on [0, T ]. Then

η(t) ≤ exp{
t∫

0

φ(s)ds}
(
η(0) +

t∫
0

ψ(s)ds
)

for all 0 ≤ t ≤ T .

In particular, if

η′(t) ≤ φ(t)η(t) on [0, T ] and η(0) = 0,

then

η(t) ≡ 0 on [0, T ].
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Chapter 2

Channel �ow

In this chapter we study the second grade �uid �ow problem
∂

∂t
(u− α∆u)− ν∆u+ curl(u− α∆u)× u+∇p̃ = f,

divu = 0,

u|ST = 0, u(x, 0) = u0(x),

(2.1)

with the prescribed �ux condition

d/2∫
−d/2

u2(x1, x2, t)dx1 = F (t). (2.2)

in the channel Π = {x ∈ R2 : (x1, x2) ∈ σ×R}, where σ = (−d
2
,
d

2
). We assume that the

initial velocity u0(x) and the external force f(x, t) are independent of the coordinate x2

and have the forms

u0(x) = (0, u0(x1)), f(x, t) = (0, f(x1, t)).

Suppose that the following necessary compatibility condition

d/2∫
−d/2

u0(x1)dx1 = F (0) (2.3)

holds.
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De�nition. The solution (u(x, t), p̃(x, t)) of problem (2.1), (2.2) such that

u(x, t) = (0, U(x1, t)),

p̃(x, t) =−q(t)x2 −
x1∫
−d/2

U(y, t)
∂

∂y

(
U(y, t)−α∂

2U(y, t)

∂y2

)
dy+p0(t),

(2.4)

where p0(t) is an arbitrary function, is called the Poiseuille type solution.

Substituting expressions (2.4) into system (2.1), (2.2) we get, that the �rst equation in

(2.11) and the divergence equation (2.13) are satis�ed identically, while from (2.12) and the

initial and boundary conditions we get the following inverse problem on σT = σ× (0, T ):

∂

∂t
(U − α∂

2U

∂x2
1

)− ν ∂
2U

∂x2
1

= q(t) + f,

U(−d
2
, t) = U(

d

2
, t) = 0, U(x1, 0) = u0(x1),

d/2∫
−d/2

U(x1, t)dx1 = F (t).

(2.5)

Notice that in (2.5) functions u0(x1), f(x1, t) and F (t) are given, while U(x1, t) and q(t)

are unknown and have to be found.

Denote by M(σT ) the space of functions u such that u ∈ W̊ 1,1
2 (σT ) and

∂2u

∂x1∂t
∈

L2(σT ).

De�nition. By a weak solution of problem (2.5) we understand a couple of functions

(U, q) ∈M(σT )× L2(0, T ) satisfying for all t ∈ [0, T ] the integral identity

t∫
0

∫
σ

∂U(x1, τ)

∂τ
η(x1, τ)dx1dτ + α

t∫
0

∫
σ

∂2U(x1, τ)

∂τ∂x1

∂η(x1, τ)

∂x1

dx1dτ

+ν
t∫

0

∫
σ

∂U(x1, τ)

∂x1

∂η(x1, τ)

∂x1

dx1dτ =
t∫

0

q(τ)
∫
σ

η(x1, τ)dx1dτ

+
t∫

0

∫
σ

f(x1, τ)η(x1, τ)dx1dτ ∀η ∈ W̊ 1,0
2 (σT ),

(2.6)

the initial condition U(x1, 0) = u0(x1) and the �ux condition (2.53).
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2.1 Construction of an approximate solution

We will argue similarly to the case of the Navier-Stokes equations (see [62]).

Let λk =
νπ2k2

d2
and vk(x1) =

√
2

d
sin

πk

d
(x+

d

2
) be eigenvalues and eigenfunctions of

the Sturm-Liouville problem  −νv
′′
k(x1) = λkvk(x1),

vk(−
d

2
) = vk(

d

2
) = 0.

(2.7)

It is well known that the eigenfunctions vk form a basis in L2(σ), W̊ 1
2 (σ) and W 2

2 (σ);

moreover,

d/2∫
−d/2

vk(x1)vl(x1)dx1 = δkl,
d/2∫
−d/2

v′k(x1)v′l(x1)dx1 = 0, k 6= l, (2.8)

ν
d/2∫
−d/2
|v′k(x1)|2dx1 = λk, (2.9)

where δkl - is the Kroneker delta.

The constant function h(x1) ≡ 1 belongs to the space L2(σ) and therefore, it can be

expressed as the Fourier series:

1 =
∞∑
k=1

βkvk(x1),

where βk =
d/2∫
−d/2

vk(x1)dx1 =

√
2d

πk

(
1 + (−1)k+1

)
, k = 1, 2, ..., and

∞∑
k=1

β2
k = d. If f ∈

L2(σT ), u0 ∈ W̊ 1
2 (σ), then

f(x1, t) =
∞∑
k=1

fk(t)vk(x1), u0(x1) =
∞∑
k=1

akvk(x1)

with fk(t) =
d/2∫
−d/2

f2(x1, t)vk(x1)dx1, ak =
d/2∫
−d/2

u0(x1)vk(x1)dx1.

An approximate solutions (U (N)(x1, t), q
(N)(t)) of problem (2.5) are found as solutions

of the following problems
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∂

∂t

(
U (N)−α∂

2U (N)

∂x2
1

)
−ν ∂

2U (N)

∂x2
1

= q(N)(t)
N∑
k=1

βkvk(x1)+
N∑
k=1

fk(t)vk(x1),

U (N)(−d
2
, t) = U (N)(

d

2
, t) = 0, U (N)(x1, 0) =

N∑
k=1

akvk(x1),

d/2∫
−d/2

U (N)(x1, t)dx1 = F (t).

(2.10)

We look for U (N)(x1, t) in the form

U (N)(x1, t) =
N∑
k=1

w
(N)
k (t)vk(x1).

Substituting U (N) into equation (2.10) we easily �nd that

U (N)(x1, t) =
N∑
k=1

( ν

ν + αλk

t∫
0

e
νλk

ν+αλk
(τ−t)(

βkq
(N)(τ) + fk(τ)

)
dτ

+e
− νλk
ν+αλk

t
ak
)
vk(x1).

(2.11)

Now, we �nd q(N)(t), in order to satisfy the �ux condition (2.103). We have

d/2∫
−d/2

U (N)(x1, t)dx1 =
N∑
k=1

βkν

ν + αλk

t∫
0

e
νλk

ν+αλk
(τ−t)

q(N)(τ)dτ
d/2∫
−d/2

vk(x1)dx1

+
N∑
k=1

( ν

ν + αλk

t∫
0

e
νλk

ν+αλk
(τ−t)

fk(τ)dτ + e
− νλk
ν+αλk

t
ak
) d/2∫
−d/2

vk(x1)dx1 = F (t).

Thus, the function q(N)(t) is the solution of the Volterra integral equation of the �rst

kind:
N∑
k=1

β2
kν

ν + αλk

t∫
0

e
νλk

ν+αλk
(τ−t)

q(N)(τ)dτ = F (t)

−
N∑
k=1

( βkν

ν + αλk

t∫
0

e
νλk

ν+αλk
(τ−t)

fk(τ)dτ + e
− νλk
ν+αλk

t
akβk

)
.

(2.12)

Di�erentiating equation (2.12) we get the Volterra integral equation of the second kind

q(N)(t)−
t∫

0

K(N)(t, τ)q(N)(τ)dτ = Φ(N)(t), (2.13)

where the kernel K(N)(t, τ) is given by
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K(N)(t, τ) =
1

χN

N∑
k=1

β2
kλkν

2

(ν + αλk)2
e

νλk
ν+αλk

(τ−t)
,

χN =
N∑
k=1

β2
kν

ν + αλk
,

(2.14)

and

Φ(N)(t) =
1

χN

(
F ′(t)−

N∑
k=1

βkν

ν + αλk

d

dt

t∫
0

e
νλk

ν+αλk
(τ−t)

fk(τ)dτ+

+
N∑
k=1

βkλkν

ν + αλk
e
− νλk
ν+αλk

t
ak

)
.

(2.15)

It is well known that (2.13) admits a unique solution q(N) ∈ L2(0, T ) and

‖q(N)‖L2(0,T ) ≤ cN‖Φ(N)‖L2(0,T ). (2.16)

A priori we do not know if the constant cN is independent of N . Below we will prove

that cN can be taken independently of N .

2.2 A priori estimates

Let us consider a "su�ciently smooth" solution U(x1, t) of the following initial boundary

value problem 
∂

∂t
(U − α∂

2U

∂x2
1

)− ν ∂
2U

∂x2
1

= M,

U(−d
2
, t) = U(

d

2
, t) = 0, U(x1, 0) = ϕ(x1).

(2.17)

Lemma 2.1. Suppose that M ∈ L2(σT ), ϕ ∈ W̊ 1
2 (σ) ∩ W 2

2 (σ), and let U ∈ W 2,1
2 (σT )

be a solution of problem (2.17) such that
∂U

∂t
∈W 2

2 (σT ),
∂U

∂t

∣∣∣
∂σ

= 0. Then the following

estimates

max
t∈[0,T ]

‖U(·, t)‖2
W 1

2 (σ)
+ ‖U‖2

W 1,1
2 (σT )

+
∥∥∥∂U
∂t

∥∥∥2

W 1
2 (σT )

≤ c
(
‖M‖2

L2(σT ) + ‖ϕ‖2
W 1

2 (σ)

)
,

(2.18)

max
t∈[0,T ]

‖U(·, t)‖2
W 2

2 (σ)
+ ‖U‖2

W 2,1
2 (σT )

+
∥∥∥∂U
∂t

∥∥∥2

W 2
2 (σT )

≤ c
(
‖M‖2

L2(σT ) + ‖ϕ‖2
W 2

2 (σ)

) (2.19)

hold.

Proof. Multiply equation (2.17) by U(x1, t), integrate by parts on the interval (−d
2
,
d

2
)

and then integrate with respect to t. Using Cauchy, Cauchy-Schwarz and Poincaré-
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Friedrichs inequalities we get

d/2∫
−d/2

(
|U(x1, t)|2+α

∣∣∣∂U(x1, t)

∂x1

∣∣∣2)dx1+ν
t∫

0

d/2∫
−d/2

∣∣∂U(x1, τ)

∂x1

∣∣2dx1dτ

≤ c
t∫

0

d/2∫
−d/2
|M(x1, τ)|2dx1dτ+

d/2∫
−d/2

(
|ϕ(x1)|2+α

∣∣∣∂ϕ(x1)

∂x1

∣∣∣2)dx1.

(2.20)

Analogously, multiplying (2.17) by
∂U(x1, t)

∂t
, integrating by parts on the interval

(−d
2
,
d

2
) and then with respect to time yield the estimate

t∫
0

d/2∫
−d/2

(∣∣∣∂U(x1, τ)

∂τ

∣∣∣2 + 2α
∣∣∣∂2U(x1, τ)

∂x1∂τ

∣∣∣2)dx1dτ + ν
d/2∫
−d/2

∣∣∣∂U(x1, t)

∂x1

∣∣∣2dx1

≤ 2
t∫

0

d/2∫
−d/2
|M(x1, τ)|2dx1dτ + ν

d/2∫
−d/2

∣∣∣∂ϕ(x1)

∂x1

∣∣∣2dx1.

(2.21)

Finally, multiplying (2.17) by −∂
2U(x1, t)

∂x2
1

and by −∂
3U(x1, t)

∂x2
1∂t

we derive

d/2∫
−d/2

(∣∣∣∂U(x1, t)

∂x1

∣∣∣2 + α
∣∣∣∂2U(x1, t)

∂x2
1

∣∣∣2)dx1 + ν
t∫

0

d/2∫
−d/2

∣∣∣∂2U(x1, τ)

∂x2
1

∣∣∣2dx1dτ

≤ c
t∫

0

d/2∫
−d/2
|M(x1, τ)|2dx1dτ +

d/2∫
−d/2

(∣∣∣∂ϕ(x1)

∂x1

∣∣∣2 + α
∣∣∣∂2ϕ(x1)

∂x2
1

∣∣∣2)dx1

(2.22)

and

t∫
0

d/2∫
−d/2

(∣∣∣∂2U(x1, τ)

∂x1∂τ

∣∣∣2 +
α

2

∣∣∣∂3U(x1, τ)

∂x2
1∂τ

∣∣∣2)dx1dτ +
ν

2

d/2∫
−d/2

∣∣∣∂2U(x1, t)

∂x2
1

∣∣∣2dx1

≤ c
t∫

0

d/2∫
−d/2
|M(x1, τ)|2dx1dτ +

ν

2

d/2∫
−d/2

∣∣∣∂2ϕ(x1)

∂x2
1

∣∣∣2dx1.

(2.23)

Estimate (2.18) follows from (2.20), (2.21), while estimate (2.19) - from (2.18), (2.22),

(2.23). �

Consider now the approximate solution U (N)(x1, t) of problem (2.5) constructed in

Section 2.1. Since U (N)(x1, t) is expressed as a �nite sum (2.11), it satis�es assumptions

of Lemma 2.1 and, therefore, considering q(N)(t) as a given right-hand side, we get the

following
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Lemma 2.2. For the approximate solution U (N)(x1, t) of problem (2.5) the following

estimates

max
t∈[0,T ]

‖U (N)(·, t)‖2
W 1

2 (σ)
+ ‖U (N)‖2

W 1,1
2 (σT )

+
∥∥∥∂U (N)

∂t

∥∥∥2

W 1
2 (σT )

≤ c
(
‖f (N)‖2

L2(σT ) + ‖q(N)h(N)‖2
L2(σT ) + ‖u(N)

0 ‖2
W 1

2 (σ)

)
,

(2.24)

and

max
t∈[0,T ]

‖U (N)(·, t)‖2
W 2

2 (σ)
+ ‖U (N)‖2

W 2,1
2 (σT )

+
∥∥∥∂U (N)

∂t

∥∥∥2

W 2
2 (σT )

≤ c
(
‖f (N)‖2

L2(σT ) + ‖q(N)h(N)‖2
L2(σT ) + ‖u(N)

0 ‖2
W 2

2 (σ)

) (2.25)

hold. Here f (N)(x1, t) =
N∑
k=1

fk(t)vk(x1), h(N)(x1) =
N∑
k=1

βkvk(x1), u
(N)
0 (x1) =

N∑
k=1

akvk(x1)

and the constants in (2.24) and (2.25) do not depend on N .

Next, we have to estimate the right-hand sides of inequalities (2.24), (2.25). Obviously,

‖f (N)‖2
L2(σT ) + ‖u(N)

0 ‖2
W 1

2 (σ)
≤ c
(
‖f‖2

L2(σT ) + ‖u0‖2
W 1

2 (σ)

)
,

and, if u0 ∈ W̊ 1
2 (σ) ∩W 2

2 (σ), then

‖u(N)
0 ‖2

W 2
2 (σ) ≤ c‖u0‖2

W 2
2 (σ).

Constants in the last two inequalities are independent of N .

Let us consider the kernel K(N)(t, τ) of the integral equation (2.13). Denote QT =

(0, T )× (0, T ). Then

χN‖K(N)(t, τ)‖L2(QT ) ≤
N∑
k=1

∥∥ β2
kλkν

2

(ν + αλk)2
e

νλk
ν+αλk

(τ−t)∥∥
L2(QT )

=
N∑
k=1

( T∫
0

T∫
0

β4
kλ

2
kν

4

(ν + αλk)4
e

2νλk
ν+αλk

(τ−t)
dtdτ

)1/2

=
N∑
k=1

β2
kν

2(ν + αλk)

√
e
−2Tνλk
ν+αλk + e

2Tνλk
ν+αλk − 2

≤
N∑
k=1

β2
k

2

√√√√1 + e
4Tνλk
ν+αλk

e
2Tνλk
ν+αλk

≤
N∑
k=1

β2
k

2

√√√√2e
4Tνλk
ν+αλk

e
2Tνλk
ν+αλk

≤
N∑
k=1

β2
k√
2
e

νλk
ν+αλk

T

≤
N∑
k=1

β2
k√
2
e
ν
α
T ≤ d√

2
e
ν
α
T .

(2.26)

27



Since lim
N→∞

χN =
∞∑
k=1

β2
kν

ν + αλk
= χ∗ < ∞, the truncated kernels K(N)(t, τ) converge in

the norm of L2(QT ) to

K(t, τ) = χ−1
∗

∞∑
k=1

β2
kλkν

2

(ν + αλk)2
e

νλk
ν+αλk

(τ−t)
.

From (2.26) it follows that the constant cN in inequality (2.16) could be chosen inde-

pendent of N . Notice that for the Navier-Stokes equations the trancated kernels converge

only in the norm of L1(QT ) (see [63], [36]).

The norm of the function Φ(N) (see (2.15)) can be estimated as follows:

χN‖Φ(N)‖L2(0,T ) ≤ ‖F ′‖L2(0,T ) +
N∑
k=1

βkν

ν + αλk
‖fk‖L2(0,T )

+
N∑
k=1

βkλkν
2

(ν + αλk)2

∥∥ t∫
0

e
λkν

ν+αλk
(τ−t)

fk(τ)dτ
∥∥
L2(0,T )

+
N∑
k=1

βkλkakν

(ν + αλk)

∥∥e− λkν

ν+αλk
t∥∥
L2(0,T )

≤ ‖F ′‖L2(0,T ) +
( N∑
k=1

β2
k

)1/2( N∑
k=1

‖fk‖2
L2(0,T )

)1/2

+
ν

α

( N∑
k=1

β2
k

)1/2( N∑
k=1

‖fk‖2
L2(0,T )

)1/2
+

√
ν

α

( N∑
k=1

β2
k

)1/2( N∑
k=1

a2
k

)1/2

≤ c
(
‖F ′‖L2(0,T ) + ‖f‖L2(σT ) + ‖u0‖L2(σ)

)
.

(2.27)

Now (2.16), (2.26), (2.27) yield

‖q(N)‖L2(0,T ) ≤ c
(
‖F ′‖L2(0,T ) + ‖f‖L2(σT ) + ‖u0‖L2(σ)

)
. (2.28)

Applying estimate (2.28) together with inequalities (2.24), (2.25) we prove the follow-

ing

Lemma 2.3. Suppose that f ∈ L2(σT ), u0 ∈ W̊ 1
2 (σ), F ∈ W 1

2 (0, T ). Then for the ap-

proximate solution
(
U (N)(x1, t), q

(N)(t)
)
of problem (2.5) the following estimate

max
t∈[0,T ]

‖U (N)(·, t)‖2
W 1

2 (σ)
+ ‖U (N)‖2

W 1,1
2 (σT )

+
∥∥∥∂U (N)

∂t

∥∥∥2

W 1
2 (σT )

+‖q(N)‖L2(0,T ) ≤ c
(
‖f‖2

L2(σT ) + ‖F ′‖2
L2(0, T ) + ‖u0‖2

W 1
2 (σ)

) (2.29)

holds. If, in addition u0 ∈ W̊ 1
2 (σ) ∩W 2

2 (σ), then
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max
t∈[0,T ]

‖U (N)(·, t)‖2
W 2

2 (σ)
+ ‖U (N)‖2

W 2,1
2 (σT )

+
∥∥∥∂U (N)

∂t

∥∥∥2

W 2
2 (σT )

+‖q(N)‖L2(0,T ) ≤ c
(
‖f‖2

L2(σT ) + ‖F ′‖2
L2(0, T ) + ‖u0‖2

W 2
2 (σ)

)
.

(2.30)

Let q ∈ L2(0, T ) be a unique solution of the integral equation

q(t)−
t∫

0

K(t, τ)q(τ)dτ = Φ(t), (2.31)

where

Φ(t) =
1

χ∗

(
F ′(t)−

∞∑
k=1

βkν

ν + αλk

d

dt

t∫
0

e
νλk

ν+αλk
(τ−t)

fk(τ)dτ +
∞∑
k=1

βkλkν

ν + αλk
e
− νλk
ν+αλk

t
ak
)
.

Then

‖q‖L2(0,T )≤c‖Φ‖L2(0,T )≤c
(
‖F ′‖L2(0,T ) + ‖f‖L2(σT )+‖u0‖L2(σ)

)
. (2.32)

Subtracting the integral equation (2.31) from (2.13) we get

q(N)(t)− q(t)−
t∫

0

K(N)(t, τ)(q(N)(τ)− q(τ))dτ

=
t∫

0

(K(N)(t, τ)−K(t, τ))q(τ)dτ + Φ(N)(t)− Φ(t).

Applying to the di�erence (q(N) − q) estimate (2.16) yields

‖q(N) − q‖L2(0,T )

≤ c
(∥∥ T∫

0

(K(N)(t, τ)−K(t, τ))q(τ)dτ
∥∥
L2(0,T )

+ ‖Φ(N) − Φ‖L2(0,T )

)
≤ c
(
‖K(N) −K‖L2(QT )‖q‖L2(0,T ) + ‖Φ(N) − Φ‖L2(0,T )

)
.

(2.33)

Obviously, Φ(N) → Φ in L2(0, T ). Therefore, we can pass in (2.33) to the limit as N →∞
and we get that

lim
N→∞

‖q(N) − q‖L2(0,T ) = 0. (2.34)

Remark 2.1. Notice that the integral equation (2.28) gives the relation between the �ux

F (t) and the pressure drop q(t) (for the Navier-Stokes case see [36].

29



2.3 Decay of the approximate solution as t→∞

For simplicity we assume that f(x1, t) ≡ 0. Let W l
2,µ(0,∞), µ > 0, be the space of

exponentially vanishing functions with the �nite norm

‖F‖Wl
2,µ(0,∞) = ‖ exp(µt)F (t)‖W l

2(0,∞).

Lemma 2.4. Let f(x1, t) = 0, u0 ∈ W̊ 1
2 (σ) and F ∈ W1

2,µ(0,∞) with µ > 0. Then

for su�ciently large N the solution
(
U (N)(x1, t), q

(N)(t)
)
of problem (2.10) satis�es the

estimate

exp(γ∗t)
d/2∫
−d/2

(
|U (N)(x1, t)|2 +

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2)dx1

+
t∫

0

d/2∫
−d/2

exp(γ∗τ)
(∣∣∣∂U (N)(x1, τ)

∂τ

∣∣∣2 +
∣∣∣∂2U (N)(x1, τ)

∂x1∂τ

∣∣∣2)dx1dτ

+
t∫

0

exp(γ∗τ)|q(N)(τ)|2dτ ≤ c
(
‖F‖2

Wl
2,µ(0,∞)

+ ‖u0‖2
W 1

2 (σ)

)
,

(2.35)

where

γ∗ =


min

(
1, 2µ

)
, if min

(
1, 2µ

)
<
νπ2

d2
,

νπ2

d2
− δ if min

(
1, 2µ

)
≥ νπ2

d2
,

δ > 0 is arbitrary small number. The constant c in (2.35) is independent of t.

Proof. Multiplying equations (2.10) by U (N)(x′, t), integrating over (−d
2
,
d

2
), and using

Cauchy inequality with ε we derive

1

2

d

dt

d/2∫
−d/2

(
|U (N)(x1, t)|2 + α

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2)dx1 + ν
d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1

= q(N)(t)
d/2∫
−d/2

U (N)(x1, t)dx1 + q(N)(t)
d/2∫
−d/2

(h(N)(x1)− 1)U (N)(x1, t)dx1

≤ ε|q(N)(t)|2 +
1

2ε
|F (t)|2 +

1

2ε
δ(N)

d/2∫
−d/2
|U (N)(x1, t)|2dx1,

(2.36)

where δ(N) = ‖h(N) − 1‖2
L2(σ) → 0, h(N)(x1) =

N∑
k=1

βkvk(x1).

Analogously, multiplying (2.10) by
∂U (N)(x′, t)

∂t
, we get the inequality (notice that by

construction
∂U (N)(±d

2
, t)

∂t
= 0):
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d/2∫
−d/2

(∣∣∣∂U (N)(x1, t)

∂t

∣∣∣2 + α
∣∣∣∂2U (N)(x1, t)

∂x1∂t

∣∣∣2)dx1

+
ν

2

d

dt

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1 ≤ ε|q(N)(t)|2 +
1

2ε
| d
dt
F (t)|2

+
1

2ε
δ(N)

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂t

∣∣∣2dx1,

(2.37)

Let v0(x1) =
1

2

(d2

4
− x2

1

)
, κ0 =

d/2∫
−d/2

v0(x1)dx1 =
d3

12
. Then

−
d/2∫
−d/2

∂2U (N)(x1, t)

∂x2
1

v0(x1)dx1 = −
d/2∫
−d/2

U (N)(x1, t)
∂2v0(x1)

∂x2
1

dx1

=
d/2∫
−d/2

U (N)(x1, t)dx1 = F (t).

Therefore, multiplying (2.10) by v0(x1) and integrating by parts we obtain

d/2∫
−d/2

∂U (N)(x1, t)

∂t
v0(x1)dx1 + α

d

dt
F (t) + νF (t) = q(N)(t)κ0

+q(N)(t)
d/2∫
−d/2

(
h(N)(x1)− 1

)
v0(x1)dx1.

Thus,

|q(N)(t)|2κ2
0 ≤ c

(
|F (t)|2 + | d

dt
F (t)|2

+
d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂t

∣∣∣2dx1 + |q(N)(t)|2‖h(N) − 1‖2
L2(σ)

)
.

(2.38)

Taking in (2.38) N so that δ(N) ≤ κ2
0/2 yields the estimate

|q(N)(t)|2 ≤ c
(
|F (t)|2 + | d

dt
F (t)|2 +

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂t

∣∣∣2dx1

)
. (2.39)

Now, inequalities (2.36), (2.37) and (2.39) give

1

2

d

dt

d/2∫
−d/2

(
|U (N)(x1, t)|2 + (α + ν)

∣∣∂U (N)(x1, t)

∂x1

∣∣2)dx1 + ν
d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1
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+
d/2∫
−d/2

(∣∣∣∂U (N)(x1, t)

∂t

∣∣∣2 + α
∣∣∣∂2U (N)(x1, t)

∂x1∂t

∣∣∣2)dx1 ≤ c
(
|F (t)|2 + | d

dt
F (t)|2

)
+c1ε

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂t

∣∣∣2dx1 +
1

2ε
δ(N)

d/2∫
−d/2

∣∣U (N)(x1, t)
∣∣2dx1

+
1

2ε
δ(N)

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂t

∣∣∣2dx1.

Taking in the last inequality ε =
1

4c1

and N so large that 2c1δ(N) ≤ 1

4
, we obtain

1

2

d

dt

d/2∫
−d/2

(
|U (N)(x1, t)|2 + (α + ν)

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2)dx1

+ν
d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1 +
d/2∫
−d/2

(1

4

∣∣∣∂U (N)(x1, t)

∂t

∣∣∣2dx′
+α
∣∣∣∂2U (N)(x1, t)

∂x1∂t

∣∣∣2)dx1 ≤ c
(
|F (t)|2 + | d

dt
F (t)|2

)
+2c1δ(N)

d/2∫
−d/2

∣∣U (N)(x1, t)
∣∣2dx1.

(2.40)

Because of the Poincaré-Friedrichs inequality

d/2∫
−d/2
|U (N)(x1, t)|2dx1 ≤

d2

νπ2

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1,

from (2.40) follows (for su�ciently large N) the estimate

d

dt

d/2∫
−d/2

(
|U (N)(x1, t)|2 + (α + ν)

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2)dx1

+γ∗
d/2∫
−d/2

(
|U (N)(x1, t)|2 + (α + ν)

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2)dx1

+
d/2∫
−d/2

(1

2

∣∣∣∂U (N)(x1, t)

∂t

∣∣∣2 + α
∣∣∣∂2U (N)(x1, t)

∂x1∂t

∣∣∣2)dx1

≤ c
(
|F (t)|2 + | d

dt
F (t)|2

)
,

(2.41)

where γ∗ is de�ned in the formulation of the lemma. Multiplying (2.41) by exp(γ∗t) and

integrating with respect to t we receive the inequality
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exp(γ∗t)
d/2∫
−d/2

(
|U (N)(x1, t)|2 + (α + ν)

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2)dx1

+
t∫

0

d/2∫
−d/2

exp(γ∗t)
(1

2

∣∣∣∂U (N)(x1, τ)

∂τ

∣∣∣2 + α
∣∣∣∂2U (N)(x1, τ)

∂x1∂τ

∣∣∣2)dx1dτ

≤ c
∞∫
0

exp(γ∗τ)
(
|F (t)|2 + | d

dt
F (t)|2

)
dt+ c‖u0‖2

W 1
2 (σ)

≤ c
(
‖F‖2

Wl
2,µ(0,∞)

+ ‖u0‖2
W 1

2 (σ)

)
.

(2.42)

Finally, estimates (2.39) and (2.42) give

t∫
0

exp(γ∗τ)|q(N)(τ)|2dτ ≤ c
(
‖F‖2

Wl
2,µ(0,∞)

+ ‖u0‖2
W 1

2 (σ)

)
. (2.43)

Estimate (2.35) follows from (2.42) and (2.43). �

2.4 Existence and uniqueness of the solution

Theorem 2.1. Suppose that f ∈ L2(σT ), u0 ∈ W̊ 1
2 (σ), F ∈ W 1

2 (0, T ). Then problem

(2.5) admits a unique week solution
(
U, q
)
∈M(σT )×L2(0, T ) and the following estimate

max
t∈[0,T ]

‖U(·, t)‖2
W 1

2 (σ)
+ ‖U‖2

W 1,1
2 (σT )

+
∥∥∥∂U
∂t

∥∥∥2

W 1
2 (σT )

+ ‖q‖L2(0,T )

≤ c
(
‖F‖2

W 1
2 (0,T )

+ ‖f‖2
L2(σT ) + ‖u0‖2

W 1
2 (σ)

) (2.44)

holds.

If, in addition u0 ∈ W̊ 1
2 (σ)∩W 2

2 (σ), then U ∈ W 2,1
2 (σT ),

∂U

∂t
∈ W 2

2 (σT ), the equations

(2.5) are satis�ed almost everywhere in σT , and

max
t∈[0,T ]

‖U(·, t)‖2
W 2

2 (σ)
+ ‖U‖2

W 2,1
2 (σT )

+
∥∥∥∂U
∂t

∥∥∥2

W 2
2 (σT )

+ ‖q‖L2(0,T )

≤ c
(
‖F‖2

W 1
2 (0,T )

+ ‖f‖2
L2(σT ) + ‖u0‖2

W 2
2 (σ)

)
.

(2.45)

Proof. Multiplying equations (2.10) by arbitrary η ∈ W̊
1,0

2 (σT ) and integrating by parts

we get the following integral identity
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t∫
0

d/2∫
−d/2

∂U (N)(x1, τ)

∂τ
η(x1, τ)dx1dτ + α

t∫
0

d/2∫
−d/2

∂2U (N)(x1, τ)

∂τ∂x1

∂η(x1, τ)

∂x1

dx1dτ

+ν
t∫

0

d/2∫
−d/2

∂U (N)(x1, τ)

∂x1

∂η(x1, τ)

∂x1

dx1dτ

=
t∫

0

q(N)(τ)
d/2∫
−d/2

h(N)(x1)η(x1, τ)dx1dτ

+
t∫

0

d/2∫
−d/2

f (N)(x1, τ)η(x1, τ)dx1dτ ∀η ∈ W̊
1,0

2 (σT ), ∀t ∈ [0, T ].

(2.46)

From estimates (2.29) and (2.34) it follows that there is a subsequence{(
U (Nl), q(Nl)

)}
such that

U (Nl)(·, t) ⇁ U(·, t) in W 1
2 (σ) ∀t ∈ [0, T ],

U (Nl) ⇁ U,
∂U (Nl)

∂x1

⇁
∂U

∂x1

,
∂U (Nl)

∂t
⇁

∂U

∂t
,
∂2U (Nl)

∂x1∂t
⇁

∂2U

∂x1∂t
in L2(σT ).

q(Nl) → q in L2(0, T ).

Passing to a limit in (2.46) we get for U and q integral identity (2.6). Obviously, U

satis�es the �ux condition (2.53) and the initial condition. Moreover, from inequality

(2.29) we get for
(
U, q
)
estimate (2.44).

Let u0 ∈ W̊ 1
2 (σ) ∩ W 2

2 (σ). Then, because of inequality (2.30), the subsequence{(
U (Nl), q(Nl)

)}
could be chosen so that in addition

∂2U (Nl)(·, t)
∂x2

1

⇁
∂2U(·, t)
∂x2

1

in W 1
2 (σ) ∀t ∈ [0, T ],

∂2U (Nl)

∂x2
1

⇁
∂2U

∂x2
1

,
∂3U (Nl)

∂x2
1∂t

⇁
∂3U

∂x2
1∂t

in L2(σT ),

and, obviously, for
(
U, q
)
estimate (2.45) holds. Integrating by parts we get the identity

T∫
0

d/2∫
−d/2

( ∂
∂τ

(
U − α∂

2U

∂x2
1

)
− ν ∂

2U

∂x2
1

− q(t)− f
)
ηdx1dτ = 0 ∀η ∈ W̊ 1,0

2 (σT ).

Therefore,
(
U, q
)
satisfy equations (2.5) almost everywhere in σT .

Let us prove the uniqueness. Let
(
U [1](x1, t), q

[1](t)
)
and

(
U [2](x1, t), q

[2](t)
)
be two

weak solutions of problem (2.5). The di�erence
(
V, s
)

=
(
U [1] − U [2], q[1] − q[2]

)
satis�es
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the integral identity

T∫
0

d/2∫
−d/2

∂V (x1, τ)

∂τ
η(x1, τ)dx1dτ + α

T∫
0

d/2∫
−d/2

∂2V (x1, τ)

∂x1∂τ

∂η(x1, τ)

∂x1

dx1dτ

+ν
T∫
0

d/2∫
−d/2

∂V (x1, τ)

∂x1

· ∂η(x1, τ)

∂x1

dx1dτ =
T∫
0

s(t)
d/2∫
−d/2

η(x1, τ)dx1dτ ∀η ∈ W̊ 1,0
2 (σT ).

Take η(x1, t) = V (x1, t). Since
d/2∫
−d/2

V (x1, t)dx1 = 0 and V (x1, 0) = 0, we obtain

d/2∫
−d/2
|V (x1, t)|2dx1 + α

d/2∫
−d/2

∣∣∣∂V (x1, t)

∂x1

∣∣∣2dx1 + 2ν
T∫
0

d/2∫
−d/2

∣∣∣∂V (x1, τ)

∂x1

∣∣∣2dx1dτ = 0.

Therefore, V (x1, t) = 0. Taking in the identity (2.6) η(x′, t) such that
∫
σ

η(x′, t)dx′ = q(t)

we get
t∫

0

|q(τ)|2dτ = 0. Hence, q(t) = 0. �

From the estimate (2.35) for the approximate solution
(
U (N), q(N)

)
(see Lemma 2.4)

follows the following result.

Theorem 2.2. Let f(x1, t) = 0, u0 ∈ W̊ 1
2 (σ) and F ∈ W1

2,µ(0,∞) with µ > 0. Then the

solution
(
U, q
)
of problem (2.5) satis�es the estimate

exp(γ∗t)
d/2∫
−d/2

(
|U(x1, t)|2 +

∣∣∣∂U(x1, t)

∂x1

∣∣∣2)dx1

+
t∫

0

d/2∫
−d/2

exp(γ∗t)
(∣∣∣∂U(x1, τ)

∂τ

∣∣∣2 +
∣∣∣∂2U(x1, τ)

∂x1∂τ

∣∣∣2)dx1dτ

+
t∫

0

exp(γ∗τ)|q(N)(τ)|2dτ ≤ c
(
‖F‖2

Wl
2,µ(0,∞)

+ ‖u0‖2
W 1

2 (σ)

)
,

(2.47)

where

γ∗ =


min

(
1, 2µ

)
, if min

(
1, 2µ

)
<
νπ2

d2
,

νπ2

d2
− δ if min

(
1, 2µ

)
≥ νπ2

d2
,

δ > 0 is an arbitrary small number.
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Chapter 3

Rotational pipe �ow

Analogous results, as in Chapter 2 for the �ow in channels, can be obtained in the three-

dimensional case when the �ow domain is an in�nite pype Π = {x = (x′, x3) ∈ R3 :

(x′, x3) ∈ σ ×R} with the circular cross-section σ = {x′ : |x′| < 1}. Consider in the pipe

Π the second grade �uid �ow problem
∂

∂t
(u− α∆u)− ν∆u+ curl(u− α∆u)× u+∇p̃ = f,

divu = 0,

u|ST = 0, u(x, 0) = u0(x),

(3.1)

with additionally prescribed �ux condition∫
σ

u3(x′, x3, t)dx
′ = F (t). (3.2)

Suppose that the initial velocity u0(x) and the right-hand side f(x, t) are axially

symmetric, independent of the coordinate z and have the forms

u0(x) = (0, 0, uz0(r)), f(x, t) = (0, 0, fz(r, t)), (3.3)

where (r, ϕ, z) are cylindrical coordinates in R3. Moreover, suppose that there holds the

compatibility condition:

2π
R∫
0

ruz0(r)dr = F (0). (3.4)
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We look for a axially symmetric solution of problem (3.1), (3.2) such that

u(r, ϕ, z, t) = (0, 0, U(r, t)),

p̃(r, ϕ, z, t) = p̃(r, z, t).
(3.5)

Substituting expressions (3.5) into (3.1), (3.2) yields

−2α
∂U

∂r

∂2U

∂r2
− α1

r

(∂U
∂r

)2
+
∂p̃

∂r
= 0,

∂

∂t

(
U − α

(∂2U

∂r2
+

1

r

∂U

∂r

))
− ν
(∂2U

∂r2
+

1

r

∂U

∂r

)
+
∂p̃

∂z
= fz,

U(0, t) = U(R, t) = 0, U(r, 0) = uz0(r),

2π
R∫
0

rU(r, t)dr = F (t).

(3.6)

From (3.61) it follows that

p̃(r, z, t) = −q(t)z + α
r∫

0

1

y

∂

∂y

(
y
(∂U(y, t)

∂y

)2)
dy + p0(t), (3.7)

and we get for
(
U, q
)
the inverse problem on the cross-section σ

∂

∂t

(
U − α

(∂2U

∂r2
+

1

r

∂U

∂r

))
− ν
(∂2U

∂r2
+

1

r

∂U

∂r

)
= q(t) + fz,

U(0, t) = U(R, t) = 0, U(r, 0) = uz0(r),

2π
R∫
0

rU(r, t)dr = F (t).

(3.8)

De�nition. The solution (u(r, ϕ, z, t), p̃(r, ϕ, z, t)) of problem (3.1), (3.2) having the

form (3.5), (3.7) is called the Poiseuille type solution.

Problem (3.8) could be studied just in the same way as the two-dimensional problem

(2.5). The only di�erence is that as the basis in L2(σ) we take the eigenvalues vk ∈ W̊
1

2(σ)

of the Laplace operator 4′ = ∂2

∂r2
+

1

r

∂

∂r
:

{
−ν4′vk = λkvk, x′ ∈ σ,
vk|∂σ = 0.

Note, that vk(r) = J0

(µkr
R

)/
( R∫

0

rJ2
0

(µkr
R

)
dr
) 1

2 , λk = (
µk
k

)2, where J0 is the Bessel func-
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tion and µk are the roots of the equation J0(µ) = 0 (see, for example, [5]).

De�nition. The pair
(
U, q
)
∈ M(σT ) × L2(0, T ) is called the week solution of

problem (3.8) if it satis�es the integral identity

t∫
0

R∫
0

∂U(r, τ)

∂τ
η(r, τ)drdτ + α

t∫
0

R∫
0

∂2U(r, τ)

∂τ∂r

(∂η(r, τ)

∂r
− 1

r
η(r, τ)

)
drdτ

+ν
t∫

0

R∫
0

∂U(r, τ)

∂r

(∂η(r, τ)

∂r
− 1

r
η(r, τ)

)
drdτ =

t∫
0

q(τ)
R∫
0

η(r, τ)drdτ

+
t∫

0

R∫
0

fz(r, τ)η(r, τ)drdτ ∀η ∈ W̊ 1,0
2 (σT ),

the initial condition U(r, 0) = uz0(r) and the �ux condition (3.83).

There holds the following theorems.

Theorem 3.1. Suppose that fz ∈ L2(σT ), uz0 ∈ W̊ 1
2 (σ), F ∈ W 1

2 (0, T ). Then problem

(3.8) admits a unique week solution
(
U, q
)
∈M(σT )×L2(0, T ) and the following estimate

max
t∈[0,T ]

‖U(·, t)‖2
W 1

2 (σ)
+ ‖U‖2

W 1,1
2 (σT )

+
∥∥∥∂U
∂t

∥∥∥2

W 1
2 (σT )

+ ‖q‖L2(0,T )

≤ c
(
‖F‖2

W 1
2 (0,T )

+ ‖fz‖2
L2(σT ) + ‖uz0‖2

W 1
2 (σ)

)
holds.

If, in addition uz0 ∈ W̊ 1
2 (σ) ∩ W 2

2 (σ), then U ∈ W 2,1
2 (σT ),

∂U

∂t
∈ W 2

2 (σT ), the

equations (3.8) are satis�ed almost everywhere in σT , and

max
t∈[0,T ]

‖U(·, t)‖2
W 2

2 (σ)
+ ‖U‖2

W 2,1
2 (σT )

+
∥∥∥∂U
∂t

∥∥∥2

W 2
2 (σT )

+ ‖q‖L2(0,T )

≤ c
(
‖F‖2

W 1
2 (0,T )

+ ‖fz‖2
L2(σT ) + ‖uz0‖2

W 2
2 (σ)

)
.

Theorem 3.2. Let fz(r, t) = 0, uz0 ∈ W̊ 1
2 (σ) and F ∈ W1

2,µ(0,∞) with µ > 0. Then the

solution
(
U, q
)
of problem (3.8) satis�es the estimate

exp(γ∗t)
R∫
0

(
|U(r, t)|2 +

∣∣∣∂U(r, t)

∂r

∣∣∣2) rdr
+

t∫
0

R∫
0

exp(γ∗τ)
(∣∣∣∂U(r, τ)

∂τ

∣∣∣2 +
∣∣∣∂2U(r, τ)

∂r∂τ

∣∣∣2) rdrdτ +
t∫

0

exp(γ∗τ)|q(N)(τ)|2dτ

≤ c
(
‖F‖2

Wl
2,µ(0,∞)

+ ‖uz0‖2
W 1

2 (σ)

)
,
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where

γ∗ =

{
min

(
1, 2µ

)
, if min

(
1, 2µ

)
< µ2

1,

µ2
1 − δ, if min

(
1, 2µ

)
≥ µ2

1,

µ1 is the �rst positive root of the equation J0(µ) = 0, δ > 0 is an arbitrary small number.

The proofs of these theorems are exactly the same as for the two-dimensional case.

Remark 3.1. In Chapter 4 we study the three-dimensional problem for a non-symmetri-

cal case (i.e., when the cross-section σ is an arbitrary bounded domain). In this case

problem (3.1), (3.2) does not have the unidirectional solution and the velocity �eld has

all three components.
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Chapter 4

Time periodic channel �ow

In the in�nite channel Π = {x ∈ R2 : (x1, x2) ∈ (−d
2
,
d

2
)× R} we consider time-periodic

(without loss of generality we assume that the period is equal to 2π) second grade �uid

�ow problem 
∂

∂t
(u− α∆u)− ν∆u+ curl(u− α∆u)× u+∇p̃ = f,

divu = 0,

u|∂Π×(0,2π) = 0, u(x, 0) = u(x, 2π),

(4.1)

with the prescribed periodic �ux

d/2∫
−d/2

u2(x, t) = F (t), F (0) = F (2π). (4.2)

We look for the Poiseuille type solution (u(x, t), p̃(x, t)) of system (4.1), (4.2) in the form

u(x, t) = (0, U(x1, t)),

p̃(x, t)=−q(t)x2−
x1∫
−d/2

U(y, t)
∂

∂y

(
U(y, t)−α∂

2U(y, t)

∂y2

)
dy+p0(t),

(4.3)

where p0(t) is an arbitrary function, while U(x1, t) and q(t) are time-periodic functions

U(x1, 0) = U(x1, 2π), q(0) = q(2π).

As in Chapter 2, the �rst equation in (4.11) and the divergence equation (4.13) are sat-
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is�ed identically, while from (4.12) and the boundary conditions we receive the following

inverse problem on the interval (−d
2
,
d

2
):



∂

∂t
(U − α∂

2U

∂x2
1

)− ν ∂
2U

∂x2
1

= q(t),

U(−d
2
, t) = U(

d

2
, t) = 0, U(x1, 0) = U(x1, 2π),

d/2∫
−d/2

U(x1, t)dx1 = F (t).

(4.4)

4.1 Direct problem

First, we assume, that the function q(t) is known and we study the following direct

problem 
∂

∂t
(U − α∂

2U

∂x2
1

)− ν ∂
2U

∂x2
1

= q(t),

U(−d
2
, t) = U(

d

2
, t) = 0, U(x1, 0) = U(x1, 2π).

(4.5)

Theorem 4.1. Let q ∈ L2(0, 2π) is 2π-periodic function. Then problem (4.5) admits the

unique 2π-periodic solution U ∈ W 2,1
2 ((−d

2
, d

2
)× (0, 2π)) and the following estimate

||U ||W 2,1
2 ((− d

2
, d
2

)×(0,2π)) +
∥∥∥ ∂U
∂x1

∥∥∥
W 1,1

2 ((− d
2
, d
2

)×(0,2π))

+
∥∥∥ ∂3U

∂t∂x2
1

∥∥∥
L2((− d

2
, d
2

)×(0,2π))
≤ c||q||L2(0,2π)

(4.6)

holds.

Proof. Any 2π-periodic function from L2(0, 2π) can be expressed by a Fourier series,

therefore,

q(t) =
q

(c)
0

2
+
∞∑
n=1

(q(c)
n cos(nt) + q(s)

n sin(nt)). (4.7)

We look for the approximate solution U (N)(x1, t) in the form

U (N)(x1, t) =
ϕ0(x1)

2
+

N∑
n=1

(ϕn(x1) cos(nt) + ψn(x1) sin(nt)), (4.8)

where coe�cients ϕn(x1) and ψn(x1), n = 0, 1, ..., N , are found from the equations
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(ν2 + α2n2)ϕ′′n − αn2ϕn − nνψn = αnq

(s)
n − νq(c)

n , x1 ∈ σ
(ν2 + α2n2)ψ′′n − αn2ψn + nνϕn = −νq(s)

n − αnq(c)
n , x1 ∈ σ

ϕn|∂σ = 0, ψn|∂σ = 0,

(4.9)

n = 1, 2, ..., N, ϕ0 =
q

(c)
0

8ν
(d2 − 4x2

1).

Obviously, (4.9) is a strongly elliptic system. Let us show that it has only one solution.

Let (ϕn, ψn) be the solution of the homogeneous system (4.9). Multiply the �rst equality

of system (4.9) by ψn(x1), the second one by ϕn(x1) and then integrate them by parts on

σ. Summing these equations yields

ν

∫
σ

|ϕ′n(x1)|2dx1 + ν

∫
σ

|ψ′n(x1)|2dx1 = 0.

Thus, ϕn(x1) = 0, ψn(x1) = 0 and from the theory of elliptic systems (see, for example,

[17], [26]) we conclude, that for all n ≥ 1 there exist just one solution (ϕn, ψn) ∈ W 2
2 (σ)∩

Ẇ 1
2 (σ) of the non-homogeneous problem (4.9).

Denote

q(N)(t) =
q

(c)
0

2
+

N∑
n=1

(q(c)
n cos(nt) + q(s)

n sin(nt)). (4.10)

It is easy to calculate that the approximate solution (U (N), q(N)) (see (4.8), (4.9)) is a

solution of the following problem:
∂

∂t
(U (N) − α∂

2U (N)

∂x2
1

)− ν ∂
2U (N)

∂x2
1

= q(N)(t),

U (N)(−d
2
, t) = U (N)(

d

2
, t) = 0, U (N)(x1, 0) = U (N)(x1, 2π).

(4.11)

Multiplying equality (4.111) by U (N)(x1, t) and integrating by parts on (−d
2
,
d

2
) yield

1

2

d

dt

d/2∫
−d/2
|U (N)(x1, t)|2dx1 +

α

2

d

dt

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1

+ν
d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1 = q(N)(t)
d/2∫
−d/2

U (N)(x1, t)dx1.

Integrate the latter identity with respect to t from 0 to 2π. Using the periodicity condition

(4.112), Cauchy-Schwarz and Poincaré-Friedrichs inequalities we obtain
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ν
2π∫
0

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1dt =
2π∫
0

d/2∫
−d/2

q(N)(t)U (N)(x1, t)dx1dt

≤ (
2π∫
0

d/2∫
−d/2
|q(N)(t)|2dx1dt)

1/2(
2π∫
0

d/2∫
−d/2
|U (N)(x1, t)|2dx1dt)

1/2

≤ c||q(N)||L2(0,2π)(
2π∫
0

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1dt)
1/2

≤ c||q||L2(0,2π)(
2π∫
0

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1dt)
1/2.

Thus,

ν
∥∥∥∂U (N)(x1, t)

∂x1

∥∥∥
L2((− d

2
, d
2

)×(0,2π))
≤ c||q||L2(0,2π). (4.12)

Multiply now equality (4.111) by
∂2U (N)(x1, t)

∂x2
1

and integrate by parts on (−d
2
,
d

2
).

Using (4.112) we get

1

2

d

dt

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1 +
α

2

d

dt

d/2∫
−d/2

∣∣∣∂2U (N)(x1, t)

∂x2
1

∣∣∣2dx1

+ν
d/2∫
−d/2

∣∣∣∂2U (N)(x1, t)

∂x2
1

∣∣∣2dx1 = −q(N)(t)
d/2∫
−d/2

∂2U (N)(x1, t)

∂x2
1

dx1.

This equality yields

ν
2π∫
0

d/2∫
−d/2

∣∣∣∂2U (N)(x1, t)

∂x2
1

∣∣∣2dx1dt =
2π∫
0

d/2∫
−d/2

q(N)(t)
∂2U (N)(x1, t)

∂x2
1

dx1dt

≤ (
2π∫
0

d/2∫
−d/2
|q(N)(t)|2dx1dt)

1/2(
2π∫
0

d/2∫
−d/2

∣∣∣∂2U (N)(x1, t)

∂x2
1

∣∣∣2dx1dt)
1/2

≤ c||q(N)||L2(0,2π)(
2π∫
0

d/2∫
−d/2

∣∣∣∂2U (N)(x1, t)

∂x2
1

∣∣∣2dx1dt)
1/2

≤ c||q||L2(0,2π)(
2π∫
0

d/2∫
−d/2

∣∣∣∂2U (N)(x1, t)

∂x2
1

∣∣∣2dx1dt)
1/2.

Thus, the following estimate

ν
∥∥∥∂2U (N)(x1, t)

∂x2
1

∥∥∥
L2((− d

2
, d
2

)×(0,2π))
≤ c||q||L2(0,2π) (4.13)

holds.
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The next step is to estimate W 1
2 (σ) - norm of U (N)(x1, 0). Let us multiply equation

(4.111) by tU (N)(x1, t) and integrate by parts on (−d
2
,
d

2
). Using the boundary condition

(4.112) and the following identities

2t
∂U (N)(x1, t)

∂t
U (N)(x1, t) =

∂

∂t

(
t|U (N)(x1, t)|2

)
− |U (N)(x1, t)|2,

t
∂

∂t

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2 =
∂

∂t

(
t
∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2)− ∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2 ,

we get
1

2

d

dt

d/2∫
−d/2

t|U (N)(x1, t)|2dx1 +
α

2

d

dt

d/2∫
−d/2

t
∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1

+νt
d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1 = tq(N)(t)
d/2∫
−d/2

U (N)(x1, t)dx1

+
1

2

d/2∫
−d/2
|U (N)(x1, t)|2dx1 +

α

2

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1.

Integrating the last equality by t from 0 to 2π and using Poincaré-Friedrichs and

(4.12) inequalities we derive

π
d/2∫
−d/2
|U (N)(x1, 2π)|2dx1 + απ

d/2∫
−d/2

∣∣∣∂U (N)(x1, 2π)

∂x1

∣∣∣2dx1

+ν
2π∫
0

t
d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1dt =
2π∫
0

tq(N)(t)
d/2∫
−d/2

U (N)(x1, t)dx1dt

+
1

2

2π∫
0

d/2∫
−d/2
|U (N)(x1, t)|2dx1dt+

α

2

2π∫
0

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1dt

≤ 2πc||q(N)||L2(0,2π)

∥∥∥∂U (N)

∂x1

∥∥∥
L2((− d

2
, d
2

)×(0,2π))
+ c
∥∥∥∂U (N)

∂x1

∥∥∥2

L2((− d
2
, d
2

)×(0,2π))

+
α

2

∥∥∥∂U (N)

∂x1

∥∥∥2

L2((− d
2
, d
2

)×(0,2π))
≤ c||q||2L2(0,2π).

(4.14)

Further, multiplying equation (4.111) by t
∂U (N)(x1, t)

∂t
, integrating by parts on (−d

2
,
d

2
)

and over t from 0 to 2π yields

2π∫
0

d/2∫
−d/2

t
∣∣∣∂U (N)(x1, t)

∂t

∣∣∣2dx1dt+ α
2π∫
0

d/2∫
−d/2

t
∣∣∣∂2U (N)(x1, t)

∂t∂x1

∣∣∣2dx1dt

+πν
d/2∫
−d/2

∣∣∣∂U (N)(x1, 2π)

∂x1

∣∣∣2dx1 =
2π∫
0

d/2∫
−d/2

tq(N)(t)
∂U (N)(x1, t)

∂t
dx1dt
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+
ν

2

2π∫
0

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1dt ≤ c||q(N)||2L2(0,2π)

+
1

2

2π∫
0

d/2∫
−d/2

t
∣∣∣∂U (N)(x1, t)

∂t

∣∣∣2dx1dt+ c
∥∥∥∂U (N)(x1, t)

∂x1

∥∥∥2

L2((− d
2
, d
2

)×(0,2π))

≤ c||q||2L2(0,2π) +
1

2

2π∫
0

d/2∫
−d/2

t
∣∣∣∂U (N)(x1, t)

∂t

∣∣∣2dx1dt.

(4.15)

From (4.14) and (4.15) we obtain that

||U (N)(·, 2π)||2
W 1

2 (− d
2
, d
2

)
≤ c||q||2L2(0,2π).

Multiplying equation (4.111) by t
∂2U (N)(x1, t)

∂x2
1

, integrating by parts on (−d
2
,
d

2
), using

the boundary condition (4.112) and the identity

2t
∂3U (N)(x1, t)

∂t∂x2
1

∂2U (N)(x1, t)

∂x2
1

=
∂

∂t

(
t
∣∣∣∂2U (N)(x1, t)

∂x2
1

∣∣∣2)− (∂2U (N)(x1, t)

∂x2
1

)2
,

we get
1

2

d

dt

d/2∫
−d/2

t
∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1 +
α

2

d

dt

d/2∫
−d/2

t
∣∣∣∂2U (N)(x1, t)

∂x2
1

∣∣∣2dx1

+
α

2

d/2∫
−d/2

∣∣∣∂2U (N)(x1, t)

∂x2
1

∣∣∣2dx1 + νt
d/2∫
−d/2

∣∣∣∂2U (N)(x1, t)

∂x2
1

∣∣∣2dx1

= −tq(N)(t)
d/2∫
−d/2

∂2U (N)(x1, t)

∂x2
1

dx1 +
1

2

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1.

From the last inequality it follows that

π
d/2∫
−d/2

∣∣∣∂U (N)(x1, 2π)

∂x1

∣∣∣2dx1 + απ
d/2∫
−d/2

∣∣∣∂2U (N)(x1, 2π)

∂x2
1

∣∣∣2dx1

+
α

2

2π∫
0

d/2∫
−d/2

∣∣∣∂2U (N)(x1, t)

∂x2
1

∣∣∣2dx1dt+ν
2π∫
0

t
d/2∫
−d/2

∣∣∣∂2U (N)(x1, t)

∂x2
1

∣∣∣2dx1dt

= −
2π∫
0

tq(N)(t)
d/2∫
−d/2

∂2U (N)(x1, t)

∂x2
1

dx1dt+
1

2

2π∫
0

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1dt

≤ 2πc||q(N)||L2(0,2π)

∥∥∥∂2U (N)

∂x2
1

∥∥∥
L2((− d

2
, d
2

)×(0,2π))

+c
∥∥∥∂U (N)

∂x1

∥∥∥2

L2((− d
2
, d
2

)×(0,2π))
≤ c||q||2L2(0,2π).

(4.16)
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Hence, ∥∥∥∂U (N)(·, 2π)

∂x1

∥∥∥2

W 1
2 (− d

2
, d
2

)
≤ c||q||2L2(0,2π).

Because of the periodicity condition, the following two inequalities are valid

||U (N)(·, 0)||2
W 1

2 (− d
2
, d
2

)
≤ c||q||2L2(0,2π), (4.17)

∥∥∥∂2U (N)(·, 0)

∂x2
1

∥∥∥2

L2(− d
2
, d
2

)
≤ c||q||2L2(0,2π). (4.18)

Now, U (N)(x1, t) can be interpretated as a solution of the initial-boundary value prob-

lem (4.111) with the initial condition U (N)(x1, t)|t=0 = U (N)(x1, 0):
∂

∂t
(U (N) − α∂

2U (N)

∂x2
1

)− ν ∂
2U (N)

∂x2
1

= q(N)(t),

U (N)(−d
2
, t) = U (N)(

d

2
, t) = 0, U (N)(x1, t)|t=0 = U (N)(x1, 0).

(4.19)

Multiply equation (4.191) by U (N)(x1, t) and integrate by parts on (−d
2
,
d

2
) and by τ

from 0 to t:

1

2

d/2∫
−d/2
|U (N)(x1, t)|2dx1 +

α

2

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1 + ν
t∫

0

d/2∫
−d/2

∣∣∣∂U (N)(x1, τ)

∂x1

∣∣∣2dx1dτ

=
1

2

d/2∫
−d/2
|U (N)(x1, 0)|2dx1 +

α

2

d/2∫
−d/2

∣∣∣∂U (N)(x1, 0)

∂x1

∣∣∣2dx1 +
t∫

0

d/2∫
−d/2

q(N)(τ)U (N)(x1, τ)dx1dτ

≤ 1

2
||U (N)(x1, 0)||2

L2(− d
2
, d
2

)
+
α

2

∥∥∥∂U (N)(x1, 0)

∂x1

∥∥∥2

L2(− d
2
, d
2

)

+||q(N)||L2(0,2π)(
t∫

0

d/2∫
−d/2
|U (N)(x1, τ)dx1dτ)1/2 ≤ c||q||2L2(0,2π) +

ν

2

t∫
0

d/2∫
−d/2

∣∣∣∂U (N)(x1, τ)

∂x1

∣∣∣2dx1dτ.

Therefore,

sup
t∈[0,2π]

||U (N)(·, t)||2
L2(− d

2
, d
2

)
+ α sup

t∈[0,2π]

∥∥∥∂U (N)(·, t)
∂x1

∥∥∥2

L2(− d
2
, d
2

)

+ν
∥∥∥∂U (N)

∂x1

∥∥∥2

L2((− d
2
, d
2

)×(0,2π))
≤ c||q||2L2(0,2π).

(4.20)

In the same way, multiplying equation (4.191) by
∂

∂t
U (N)(x1, t), integrating by parts

on (−d
2
,
d

2
) and by τ from 0 to t, we obtain
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t∫
0

d/2∫
−d/2

∣∣∣∂U (N)(x1, τ)

∂τ

∣∣∣2dx1dτ + α
t∫

0

d/2∫
−d/2

∣∣∣∂2U (N)(x1, τ)

∂τ∂x1

∣∣∣2dx1dτ

+
ν

2

d/2∫
−d/2

∣∣∣∂2U (N)(x1, τ)

∂τ∂x1

∣∣∣2dx1 =
t∫

0

d/2∫
−d/2

q(N)(τ)
∂U (N)(x1, τ)

∂τ
dx1dτ

+
ν

2

d/2∫
−d/2

∣∣∣∂2U (N)(x1, τ)

∂τ∂x1

∣∣∣2dx1≤c||q||2L2(0,2π)+
1

2

t∫
0

d/2∫
−d/2

∣∣∣∂U (N)(x1, τ)

∂τ

∣∣∣2dx1dτ.

Hence,

ν sup
t∈[0,2π]

∥∥∥∂U (N)(·, t)
∂x1

∥∥∥2

L2(− d
2
, d
2

)
+
∥∥∥∂U (N)

∂t

∥∥∥2

L2((− d
2
, d
2

)×(0,2π))

+α
∥∥∥∂U (N)

∂x1

∥∥∥2

L2((− d
2
, d
2

)×(0,2π))
≤ c||q||2L2(0,2π).

(4.21)

Now, multiplying equation (4.191) by
∂2U (N)(x1, t)

∂x2
1

, integrating by parts on (−d
2
,
d

2
) and

by τ from 0 to t, using the boundary condition and the inequalities (4.17), (4.18) we

derive

1

2

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1 +
α

2

d/2∫
−d/2

∣∣∣∂2U (N)(x1, t)

∂x2
1

∣∣∣2dx1

+ν
t∫

0

d/2∫
−d/2

∣∣∣∂2U (N)(x1, τ)

∂x2
1

∣∣∣2dx1dτ = −
t∫

0

q(τ)
d/2∫
−d/2

∂2U (N)(x1, τ)

∂x2
1

dx1dτ

+
1

2

d/2∫
−d/2

∣∣∣∂U (N)(x1, 0)

∂x1

∣∣∣2dx1 +
α

2

d/2∫
−d/2

∣∣∣∂2U (N)(x1, 0)

∂x2
1

∣∣∣2dx1

≤ c||q||2L2(0,2π) +
ν

2

t∫
0

d/2∫
−d/2

∣∣∣∂2U (N)(x1, τ)

∂x2
1

∣∣∣2dx1dτ.

Thus, the following inequality

sup
t∈[0,2π]

∥∥∥∂U (N)(·, t)
∂x1

∥∥∥2

L2(− d
2
, d
2

)
+ α sup

t∈[0,2π]

∥∥∥∂2U (N)(x1, t)

∂x2
1

∥∥∥2

L2(− d
2
, d
2

))

+
∥∥∥∂2U (N)(x1, t)

∂x2
1

∥∥∥2

L2((− d
2
, d
2

)×(0,2π))
≤ c||q||2L2(0,2π)

(4.22)

holds.

Next, multiply equation (4.191) by
∂3U (N)(x1, t)

∂τ∂x2
1

, integrate by parts on (−d
2
,
d

2
) and

by τ from 0 to t. Using the boundary condition and inequalities (4.17), (4.18) we obtain
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t∫
0

d/2∫
−d/2

∣∣∣∂2U (N)(x1, τ)

∂τ∂x1

∣∣∣2dx1dτ + α
t∫

0

d/2∫
−d/2

∣∣∣∂3U (N)(x1, τ)

∂τ∂x2
1

∣∣∣2dx1dτ

+
ν

2

d/2∫
−d/2

∣∣∣∂2U (N)(x1, t)

∂x2
1

∣∣∣2dx1 = −
t∫

0

q(τ)
d/2∫
−d/2

∂3U (N)(x1, τ)

∂τ∂x2
1

dx1dτ

+
ν

2

d/2∫
−d/2

∣∣∣∂2U (N)(x1, 0)

∂x2
1

∣∣∣dx1 ≤ c||q||2L2(0,2π) +
α

2

t∫
0

d/2∫
−d/2

∣∣∣∂3U (N)(x1, τ)

∂τ∂x2
1

∣∣∣2dx1dτ.

From the latter inequality it follows that

∥∥∥∂2U (N)(x1, t)

∂t∂x1

∥∥∥2

L2((− d
2
, d
2

)×(0,2π))
+ ν sup

t∈[0,2π]

∥∥∥∂2U (N)(·, t)
∂x2

1

∥∥∥2

L(− d
2
, d
2

)

+α
∥∥∥∂3U (N)(x1, t)

∂t∂x2
1

∥∥∥2

L2((− d
2
, d
2

)×(0,2π))
≤ c||q||2L2(0,2π).

(4.23)

From inequalities (4.12), (4.23) we conclude that the sequence {U (N)} is bounded in

the space W 2,1
2 ((−d

2
, d

2
) × (0, 2π)) and {∂

3U (N)

∂t∂2x1

} is bounded in the space L2((−d
2
, d

2
) ×

(0, 2π)). Therefore, there exists subsequence {U (Nl)} such that

U (Nl) ⇁ U in W 2,1
2 ((−d

2
, d

2
)× (0, 2π)),

∂3U (N)

∂t∂2x1

⇁
∂3U

∂t∂2x1

in L2((−d
2
, d

2
)× (0, 2π)).

Obviously, the limit function U is the week solution of problem (4.5). Moreover, the

inequality (4.6) remains valid.

Let us prove that the solution is unique. Take q(t) = 0. Repeating the proof of

inequality (4.12) we get

2π∫
0

d/2∫
−d/2

∣∣∣∂U (N)(x1, t)

∂x1

∣∣∣2dx1dt = 0.

Hence, U(x1, t) = 0.�
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4.2 Relationship between the �ux and the gradient of

the pressure

The arguments of this section are similar to that of Galdi and Robertson in [37] for

the Navier-Stokes equations. We show the relationship between the �ux F (t) and the

gradient of the pressure q(t). Consider the following problems
∂

∂t
(U

(c)
n − α

∂2U
(c)
n

∂x2
1

)− ν ∂
2U

(c)
n

∂x2
1

= cos(nt),

U
(c)
n (−d

2
, t) = U

(c)
n (

d

2
, t) = 0, U

(c)
n (x1, 0) = U

(c)
n (x1, 2π),

(4.24)

and 
∂

∂t
(U

(s)
n − α

∂2U
(s)
n

∂x2
1

)− ν ∂
2U

(s)
n

∂x2
1

= sin(nt),

U
(s)
n (−d

2
, t) = U

(s)
n (

d

2
, t) = 0, U

(s)
n (x1, 0) = U

(s)
n (x1, 2π).

(4.25)

The solutions of problems (4.24) and (4.25) are:

U
(c)
n (x1, t) = ϕn(x1) cos(nt)− ψn(x1) sin(nt)

U
(s)
n (x1, t) = ψn(x1) cos(nt) + ϕn(x1) sin(nt),

(4.26)

where pairs (ϕn(x1), ψn(x1)) are the solutions of the following systems

−nψn − αnψ′′n − νϕ′′n = 1

−nϕn + αnϕ′′n + νψ′′n = 0

ϕn(−d
2

) = ϕn(
d

2
) = 0

ψn(−d
2

) = ψn(
d

2
) = 0

(4.27)

According to Theorem 4.1, problem (4.27) has the unique solution (ϕn, ψn) ∈ W 2
2 (−d

2
, d

2
)∩

W̊ 1
2 (−d

2
, d

2
) for all n ≥ 0.

Let us de�ne

an =

∫
σ

ϕn(x1)dx1, bn = −
∫
σ

ψn(x1)dx1, n = 0, 1, 2, ... . (4.28)

Lemma 4.1. Let (ϕn, ψn) ∈ W 2
2 (−d

2
, d

2
) ∩ W̊ 1

2 (−d
2
, d

2
) be the solutions of systems (4.27).
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Then the inequalities

ν||ϕ′′n||2L2(− d
2
, d
2

)
+ ν||ψ′′n||2L2(− d

2
, d
2

)
≤ d

ν
, ∀n = 0, 1, 2, ... (4.29)

hold. Moreover, the numbers an and bn satis�es the properties

(a) an > 0, ∀n = 0, 1, 2, ...; b0 = 0, bn > 0, ∀n = 1, 2, ...;

(b) an ≤
d

n
, bn ≤

d

n
, ∀n = 1, 2, ...;

(c) lim
n→∞

(nbn) = d.

Proof. Multiplying (4.271) by ϕ′′n(x1), (4.272) by ψ′′n(x1), integrating on (−d
2
,
d

2
) and

summing the obtained equations, we get

d/2∫
−d/2

(
nψn(x1)ϕ′′n(x1)− nϕn(x1)ψ′′n(x1)

)
dx1 + ν||ϕ′′n(x1)||2

L2(− d
2
, d
2

)

+ν||ψ′′n(x1)||2
L2(− d

2
, d
2

)
= −

d/2∫
−d/2

ϕ′′n(x1)dx1.

Integrating by parts yields

d/2∫
−d/2

(
nψn(x1)ϕ′′n(x1)− nϕn(x1)ψ′′n(x1)

)
dx1

=
d/2∫
−d/2

(
− nψ′n(x1)ϕ′n(x1) + nϕ′n(x1)ψ′n(x1)

)
dx1 = 0.

Therefore,

ν||ϕ′′n(x1)||2
L2(− d

2
, d
2

)
+ ν||ψ′′n(x1)||2

L2(− d
2
, d
2

)
= −

d/2∫
−d/2

ϕ′′n(x1)dx1

≤ ν

2
||ϕ′′n(x1)||2

L2(− d
2
, d
2

)
+

d

2ν
.

Obviously, from the last inequality follows (4.29).

Next, let us multiply (4.271) by ψn(x1), (4.272) by ϕn(x1) and integrate by parts on

(−d
2
,
d

2
):

−n||ψn||2L2(− d
2
, d
2

)
= α

d/2∫
−d/2

|ψ′n|2dx1 − ν
d/2∫

−d/2

ψ′nϕ
′
ndx1 − bn,
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−n||ϕn||2L2(− d
2
, d
2

)
= α

d/2∫
−d/2

|ϕ′n|2dx1 + ν

d/2∫
−d/2

ψ′nϕ
′
ndx1.

Summing these equations we get

bn = n
(
||ϕn||2L2(− d

2
, d
2

)
+ ||ψn||2L2(− d

2
, d
2

)

)
+ α

(
||ψ′n||2L2(− d

2
, d
2

)
+ ||ϕ′n||2L2(− d

2
, d
2

)

)
. (4.30)

If (4.271) is multiplied by ϕn(x1) and (4.272) by ψn(x1), then analogously as for bn we

obtain

an = ν
(
||ψ′n||2L2(− d

2
, d
2

)
+ ||ϕ′n||2L2(− d

2
, d
2

)

)
. (4.31)

Since the solution of problem (4.27) can not be identically to zero, from (4.30) and (4.31)

follows the property (a).

Using Cauchy-Schwarz inequality from (4.28) we get

an ≤
√
d||ϕn||L2(− d

2
, d
2

), bn ≤
√
d||ψn||L2(− d

2
, d
2

), n = 0, 1, 2, ... . (4.32)

The property (b) follows from (4.30) and (4.32).

According to (4.30) and (4.32) we get

n||ψn||L2(− d
2
, d
2

) ≤
√
d, n = 1, 2, ... . (4.33)

From (4.31) and (4.32) we obtain

lim
n→∞

||ϕ′n||L2(− d
2
, d
2

) = 0, lim
n→∞

||ψ′n||L2(− d
2
, d
2

) = 0. (4.34)

Let us multiply (4.271) by χ ∈ C∞0 (−d
2
, d

2
) and integrate over (−d

2
,
d

2
):

−n
d/2∫
−d/2

ψn(x1)χ(x1)dx1 = αn
d/2∫
−d/2

ψ′n(x1)χ′(x1)dx1

+ν
d/2∫
−d/2

ϕ′n(x1)χ′(x1)dx1 +
d/2∫
−d/2

χ(x1)dx1.
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In the last equality passing to the limit and using (4.34) yields

lim
n→∞

(
− n

d/2∫
−d/2

ψn(x1)χ(x1)dx1

)
=

d/2∫
−d/2

χ(x1)dx1. (4.35)

The set C∞0 (−d
2
, d

2
) is dense in the space L2(−d

2
, d

2
). Hence, (4.35) remains valid for all

χ ∈ L2(−d
2
, d

2
). Taking χ(x1) ≡ 1 we obtain

lim
n→∞

(nbb) = lim
n→∞

(
− n

d/2∫
−d/2

ψn(x1)dx1

)
=

d/2∫
−d/2

dx1 = d.

�

The �ux F (t) =
d/2∫
−d/2

U(x1, t)dx1 is a periodic function and F ∈ L2(0, 2π). Therefore,

it can be expressed by the Fourier series

F (t) =
F

(c)
0

2
+
∞∑
n=1

(
F (c)
n cos(nt) + F (s)

n sin(nt)
)
. (4.36)

Lemma 4.2. Fourier coe�cients (q
(c)
n , q

(s)
n ) and (F

(c)
n , F

(s)
n ) of the functions q(t) and

F (t), are related by equalities

F (c)
n = anq

(c)
n − bnq(s)

n , F (s)
n = bnq

(c)
n + anq

(s)
n , n = 0, 1, 2, ..., (4.37)

or, equivalently,

q(c)
n =

anF
(c)
n + b

(s)
n

a2
n + b2

n

, q(s)
n =

anF
(s)
n − bnF (c)

n

a2
n + b2

n

. (4.38)

Proof. Let us de�ne the functions

Û (c)
n (x1, t) = U (c)

n (x1,−t), Û (s)
n (x1, t) = U (s)

n (x1,−t), t ∈ [0, 2π] (4.39)

which are the solutions of the following problems
∂

∂t
(Û

(c)
n + α

∂2Û
(c)
n

∂x2
1

) + ν
∂2Û

(c)
n

∂x2
1

= − cos(nt),

Û
(c)
n (−d

2
, t) = Û

(c)
n (

d

2
, t) = 0, Û

(c)
n (x1, 0) = Û

(c)
n (x1, 2π),

(4.40)
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and 
∂

∂t
(Û

(s)
n + α

∂2Û
(s)
n

∂x2
1

) + ν
∂2Û

(s)
n

∂x2
1

= − sin(nt),

Û
(s)
n (−d

2
, t) = Û

(s)
n (

d

2
, t) = 0, Û

(s)
n (x1, 0) = Û

(s)
n (x1, 2π).

(4.41)

It is obvious, that

U
(c)
n (x1, t) = ϕn(x1) cos(nt) + ψn(x1) sin(nt),

U
(s)
n (x1, t) = ψn(x1) cos(nt)− ϕn(x1) sin(nt).

(4.42)

Multiplying equation (4.41) by Û (c)
n (x1, t) and integrating by parts on (−d

2
,
d

2
) yields

d/2∫
−d/2

∂U(x1, t)

∂t
Û

(c)
n (x1, t)dx1 − α

d/2∫
−d/2

∂U(x1, t)

∂t

∂2Û
(c)
n (x1, t)

∂x2
1

dx1

−ν
d/2∫
−d/2

U(x1, t)
∂2Û

(c)
n (x1, t)

∂x2
1

dx1 =
d/2∫
−d/2

q(t)Û
(c)
n (x1, t)dx1.

(4.43)

Using the equalities

∂U(x1, t)

∂t
Û (c)
n (x1, t) =

∂

∂t

(
U(x1, t)Û

(c)
n (x1, t)

)
− U(x1, t)

∂Û
(c)
n (x1, t)

∂t
,

∂U(x1, t)

∂t

∂2Û
(c)
n (x1, t)

∂x2
1

=
∂

∂t

(
U(x1, t)

∂2Û
(c)
n (x1, t)

∂x2
1

)
− U(x1, t)

∂3Û
(c)
n (x1, t)

∂t∂x2
1

,

we rewrite (4.43) in the form

d

dt

d/2∫
−d/2

U(x1, t)Û
(c)
n (x1, t)dx1 − α

d

dt

d/2∫
−d/2

U(x1, t)
∂2Û

(c)
n (x1, t)

∂x2
1

dx1

−
d/2∫
−d/2

U(x1, t)
(
Û

(c)
n (x1, t) + α

∂2Û
(c)
nt (x1, t)

∂x2
1

+ ν
∂2Û

(c)
n (x1, t)

∂x2
1

)
dx1

=
d/2∫
−d/2

q(t)Û
(c)
n (x1, t)dx1.

Integrating the last equality by t from 0 to 2π, using periodicity condition, the de�nition

of the functions Û (c)
n and (4.28), we obtain
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−
2π∫
0

d/2∫
−d/2

U(x1, t)
(
Û

(c)
n (x1, t) + α

∂2Û
(c)
nt (x1, t)

∂x2
1

+ ν
∂2Û

(c)
n (x1, t)

∂x2
1

)
dx1dt

=
2π∫
0

q(t)
( d/2∫
−d/2

Û
(c)
n (x1, t)dx1

)
dt =

2π∫
0

q(t)(an cos(nt)− bn sin(nt))dt.

It follows from (4.401) that

−
2π∫
0

d/2∫
−d/2

U(x1, t)
(
Û

(c)
n (x1, t) + α

∂2Û
(c)
nt (x1, t)

∂x2
1

+ ν
∂2Û

(c)
n (x1, t)

∂x2
1

)
dx1dt

=
2π∫
0

d/2∫
−d/2

U(x1, t) cos(nt)dx1dt =
2π∫
0

F (t) cos(nt)dt.

Therefore, the following formula

2π∫
0

F (t) cos(nt)dt =

2π∫
0

q(t)(an cos(nt)− bn sin(nt))dt (4.44)

holds. Substituting series (4.10) and (4.36) into (4.41) we obtain the �rst formula in

(4.37). The second one can be proved in the same way, taking Û
(s)
n (x1, t) instead of

Û
(c)
n (x1, t).

Since a2
n + b2

n > 0 from (4.37) follows (4.38).�

Lemma 4.3. Let (F
(c)
n , F

(s)
n ) and (q

(c)
n , q

(s)
n ), n = 0, 1, 2, ..., satisfy the relations (4.37) or

(4.38). If the Fourier series (4.7) converges in the space L2(0, 2π) to some q ∈ L2(0, 2π),

then (4.36) converges to F ∈ L2(0, 2π). Moreover, the following estimate is valid

||F ||L2(0,2π) ≤ c1||q||L2(0,2π). (4.45)

Opposite, if the Fourier series (4.36) converges to F ∈ W 1
2 (0, 2π), then (4.7) converges

to q ∈ L2(0, 2π) and

||q||L2(0,2π) ≤ c2||F ||W 1
2 (0,2π). (4.46)

Constants c1 and c2 depends only on d.

Proof. In addition to (4.37) and Lemma 4.1 (a), we have the relations

F
(c)
0 = a0q

(c)
0 , |F (c)

n |2 + |F (s)
n |2 = (a2

n + b2
n)(|q(c)

n |2 + |q(s)
n |2), n ≥ 1. (4.47)
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Using Lemma 4.1 (b) we get

|F (c)
0 |2

2
+
∞∑
n=1

(
|F (c)
n |2 + |F (s)

n |2
)
≤ a2

0

|q(c)
0 |
2

+ 2d2

∞∑
n=1

(
|q(c)
n |2 + |q(s)

n |2
)
.

If q ∈ L2(0, 2π), then series (4.36) converges in L2(0, 2π) and inequality (4.45) follows

from Parseval equality.

From (4.47) it follows that

|q(c)
n |2 + |q(s)

n |2 ≤
1

b2
n

(
|F (c)
n |2 + |F (s)

n |2
)
, n ≥ 1. (4.48)

By Lemma 4.1 (c) we obtain, that there exists a number N0 such that

bn ≥
d

2n
, ∀n ≥ N0.

Let us take b∗ = min{b1, ..., bN0}. Using Lemma 4.1 (a) we get the inequality b∗ > 0.

From Lemma 4.1 (b) and inequality (4.48) it follows that

|q(c)
0 |2

2
+
∞∑
n=1

(
|q(c)
n |2 + |q(s)

n |2
)
≤ 1

a0

|F (c)
0 |
2

+
1

b2
∗

∞∑
n=1

(
|F (c)
n |2 + |F (s)

n |2
)

+
4

d2

∞∑
n=1

n2
(
|F (c)
n |2 + |F (s)

n |2
)
.

If F ∈ W 1
2 (0, 2π), then series (4.7) converges in L2(0, 2π). From Parseval equality we get

(4.46).�

4.3 Inverse problem

Theorem 4.2. Let F ∈ W 1
2 (0, 2π) be 2π-periodic function. There exists the unique 2π-

periodic solution (U(x1, t), q(t)) ∈ W 2,1
2 ((−d

2
, d

2
) × (0, 2π)) × L2(0, 2π) of problem (4.4).

Moreover, the following estimate

||U ||W 2,1
2 ((− d

2
, d
2

)×(0,2π)) +
∥∥∥ ∂U
∂x1

∥∥∥
W 1,1

2 ((− d
2
, d
2

)×(0,2π))

+
∥∥∥ ∂3U

∂t∂x2
1

∥∥∥
L2((− d

2
, d
2

)×(0,2π))
≤ c||F ||W 1

2 (0,2π)

(4.49)

holds.
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Proof. Let F (c)
n and F

(s)
n be the coe�cients of function F (t). The function q(t) is

determinated by formula (4.7) with coe�cients q(c)
n and q(s)

n de�ned by (4.38). In virtue

of Lemma 4.3, series (4.7) converges in L2(0, 2π) and the limit function q ∈ L2(0, 2π).

Moreover, inequality (4.46) is valid. From Theorem 4.1 it follows that problem (4.4) has

the unique solution U ∈ W 2,1
2 ((−d

2
, d

2
) × (0, 2π)) and estimate (4.6) is valid. Obviously,

(U(x1, t), q(t)) is the solution of problem (4.4) and from (4.6), (4.46) follows (4.49).

Let F (t) = 0. Multiply (4.41) by U(x1, t), integrate by parts on (−d
2
,
d

2
) and by t

from 0 to 2π:

2π∫
0

d/2∫
−d/2

∣∣∣∂U(x1, t)

∂x1

∣∣∣2dx1dt =

2π∫
0

q(t)

d/2∫
−d/2

U(x1, t)dx1dt =

2π∫
0

q(t)F (t)dt = 0.

Therefore, U(x1, t) = 0. From (4.41) it follows that q(t) = 0.�

Remark 4.1. The solution of problem (4.4) can be expressed by the following series

U(x1, t) =
q

(c)
0

2
ϕ0(x1) +

∞∑
n=1

((
q

(c)
n ϕn(x1) + q

(s)
n ψn(x1)) cos(nt)

+(q
(s)
n ϕn(x1)− q(c)

n ψn(x1)) sin(nt)
)
,

where functions ϕn(x1), ψn(x1), n = 0, 1, 2, ..., are the solutions of problems (4.27) and

the coe�cients q
(c)
n , q

(s)
n are expressed by formulas (4.38).
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Chapter 5

Flow in a pipe with arbitrary cross

section

In this chapter we study the �ow of the incompressible non-Newtonian second grade �uid

�ow problem 
∂

∂t
(u− α∆u)− ν∆u+ curl(u− α∆u)× u+∇p̃ = f,

divu = 0,

u|ST = 0, u(x, 0) = u0(x),

(5.1)

with additionally prescribed �ux condition∫
σ

u3(x′, x3, t)dx
′ = F (t) (5.2)

in the three-dimensional pipe Π = {x = (x′, x3) ∈ R3 : x′ ∈ σ ⊂ R2, x3 ∈ R}, where the
cross-section σ is an arbitrary bounded plane domain with the boundary ∂σ of class C4.

First, let us assume (as in the previous chapters) that the initial velocity u0(x) and

the exterior force f(x, t) are independent of the coordinate x3 and have the forms

u0(x) = (0, 0, u0(x′)), f(x, t) = (0, 0, f(x′, t)). (5.3)

Let us try to �nd the unidirectional solution

u(x, t) = (0, 0, U(x′, t)). (5.4)
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Substituting expression (5.4) into system (5.1) we get

−U ∂

∂x1

(U − α∆U) +
∂p

∂x1

= 0,

−U ∂

∂x2

(U − α∆U) +
∂p

∂x2

= 0,

∂

∂t
(U − α∆U)− ν∆U +

∂p

∂x3

= f,

U |∂σ = 0, U(x′, 0) = u0.

The vector (−U ∂

∂x1

(U − α∆U),−U ∂

∂x2

(U − α∆U))T cannot be expressed as a gradient

of some function. Therefore, we can not look for a solution of problem (5.1)-(5.2) in form

(5.4), and even in the case of unidirectional data (having the form (5.3)) the velocity �eld

has all three components.

In this chapter we consider a little bit more general case when data have all three

components. Let us suppose that f and u0 do not depend on the coordinate x3 and have

the forms

u0(x) = (u01(x′), u02(x′), v0(x′)), f(x, t) = (f1(x′, t), f2(x′, t), f3(x′, t)),

and look for the Poiseuille type solution (u(x, t), p(x, t)) of system (5.1) having the fol-

lowing form
u(x, t) = (U1(x′, t), U2(x′, t), U3(x′, t)),

p(x, t) = p̃(x′, t)− q(t)x3 + p0(t),
(5.5)

where p0(t) is an arbitrary function. Moreover, we look for the solution having the

prescribed �ux ∫
σ

U3(x′, t) dx′ = F (t). (5.6)

Obviously, in this case the initial velocity has to satisfy the necessary compatibility

condition ∫
σ

v0(x′)dx′ = F (0). (5.7)

Substituting expressions (5.5) into equations (5.1), (5.2) we obtain the following problem

on σT = σ × (0, T ):
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∂

∂t
(U′ − α4U′)− ν4U′ + curl(U′ − α4U′)×U′

−U3(∇(U3 − α4U3)) +∇p̃ = f ′,

divU′ = 0,

U′|∂σ = 0, U′(x′, 0) = u′0(x′),

∂

∂t
(U3 − α4U3)− ν4U3 + (U′ · ∇)(U3 − α4U3) = f3 + q(t),

U3|∂σ = 0, U3(x′, 0) = v0(x′),∫
σ

U3(x′, t)dx′ = F (t),

(5.8)

where f ′(x′, t) = (f1(x′, t), f2(x′, t)),U′(x′, t) = (U1(x′, t), U2(x′, t)). Notice that in (5.8)

functions u0(x′), f(x′, t) and F (t) are given, while U(x′, t), p̃(x′, t) and q(t) are unknown

and have to be found.

Let us remind that for the two-dimensional vector-�elds we understand the operator

curl as the usual operator curl for the three-dimensional vectors with the third component

equal to zero.

5.1 Function spaces and auxiliary results

In this section we de�ne function spaces, which are used in the following calculus. Let

σ ⊂ R2 be a bounded domain. De�ne the function space

X̊ (σ) = {u : u ∈ W̊ 1
2 (σ),∇(u− α∆u) ∈ L2(σ)}

with the norm
‖u‖2

X̊ (σ)
= ‖u‖2

W 1
2 (σ)

+ ‖∇(u− α∆u)‖2
L2(σ).

In the case ∂σ ∈ C3 the space X̊ (σ) is equivalent to W 3
2 (σ) ∩ W̊ 1

2 (σ). Indeed, if u ∈
W 3

2 (σ)∩ W̊ 1
2 (σ) then, obviously, u ∈ X̊ (σ) and ‖u‖X̊ (σ) ≤ c‖u‖W 3

2 (σ). On the other hand,

applying the Nečas inequality to ∆u we get

‖∆u‖L2(σ) ≤ c
(
‖∆u‖W−1

2 (σ) + ‖∇∆u‖L2(σ)

)
≤ c
(
‖∇u‖L2(σ) + ‖∇∆u‖L2(σ)

)
.

(5.9)
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Therefore, considering u as a solution of the Poisson equation{
−∆u = −∆u,

u|∂σ = 0,

we obtain the estimate

‖u‖W 3
2 (σ) ≤ c

(
‖∆u‖L2(σ) + ‖∇∆u‖L2(σ)

)
≤ c
(
‖∇u‖L2(σ) + ‖∇∆u‖L2(σ)

)
≤ c‖u‖X̊ (σ).

(5.10)

Denote

Y̊(σ) = {u : u ∈ W̊ 1
2 (σ), curl(u− α∆u) ∈ L2(σ), divu = 0}.

The norm in Y̊(σ) is de�ned by

‖u‖2
Y̊(σ)

= ‖u‖2
W 1

2 (σ)
+ ‖curl(u− α∆u)‖2

L2(σ).

In the case ∂σ ∈ C3 the space Y̊(σ) is equivalent to W 3
2 (σ) ∩ W̊ 1

2 (σ) and

‖u‖W 3
2 (σ) ≤ c‖u‖Y̊(σ). (5.11)

The proof of these facts is given in [15].

Let

W̊(σT)={u : Dα
xu ∈ L2(σT), |α| ≤ 3,

∂

∂t
u ∈ L2(σT),∇ ∂

∂t
u ∈ L2(σT), u|∂σ=0}

with the norm

‖u‖2
W̊(σT )

=
∑
|α|≤3

‖Dα
xu‖2

L2(σT ) + ‖ ∂
∂t
u‖2

L2(σT ) + ‖∇ ∂

∂t
u‖2

L2(σT )

and

V̊(σT ) = {u : u ∈ W̊(σT ), divu = 0}.

Below, by constructing Galerkin approximations for the solution of problem (5.8), we

use, following the ideas from [14] - [15], the special basis in the space Y̊(σ). Let {µk} and
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{wk}k≥1 ⊂ Y̊(σ) be eigenvalues and eigenfunctions1 of the following problem∫
σ

∇(wk(x
′)− α∆wk(x

′)) · ∇(ρ(x′)− α∆ρ(x′))dx′

= (µk − 1)
∫
σ

(wkρ(x′) + α∇wk(x
′) · ∇ρ(x′))dx′ ∀ ρ ∈ Y̊(σ).

(5.12)

Theorem 5.1. (see [13], Lemma 4.1) Let σ ⊂ R2 be a bounded simply connected domain

with the boundary ∂σ ∈ C4. Then

• (5.12) de�nes a countable set of eigenvalues µk > 1, k = 1, 2, . . .; the corresponding

eigenfunctions {wk}k≥1 constitute basiss in the spaces Y̊(σ), W̊ 1
2 (σ) and L2(σ).

• The eigenfunctions wk of (5.12) belong to the space W 4
2 (σ).

Analogous basis can be constructed in the space X̊ (σ). Let {λk} and {wk}k≥1 ⊂ X̊ (σ)

be eigenvalues and eigenfunctions of the problem∫
σ

∇(wk(x
′)− α∆wk(x

′)) · ∇(ρ(x′)− α∆ρ(x′))dx′

= (λk − 1)
∫
σ

(wkρ(x′) + α∇wk(x′) · ∇ρ(x′))dx′ ∀ ρ ∈ X̊ (σ).
(5.13)

Theorem 5.2. Let σ ⊂ R2 be a bounded simply connected domain with the boundary

∂σ ∈ C4. Then

• (5.13) de�nes a countable set of eigenvalues λk > 1, k = 1, 2, . . .; the corresponding

eigenfunctions {wk}k≥1 constitute basiss in X̊ (σ), W̊ 1
2 (σ) and L2(σ).

• The eigenfunctions wk can be orthonormalized:

∫
σ

(wkwl + α∇wk · ∇wl)dx′ =

{
0, k 6= l,

1, k = l.
(5.14)

Then

∫
σ

∇(wk − α∆wk) · ∇(wl − α∆wl)dx
′ =

{
0, k 6= l,

λk − 1, k = l.
(5.15)

• The eigenfunctions wk of (5.13) belong to the space W 4
2 (σ).

1i.e., wk are nontrivial solutions of (5.12).
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Proof. The �rst property can be proved by standard arguments (see, for example, [17]

Chapter 9.2). The second property follows direct from the integral identity (5.13). To

prove the third property, we denote ρ− α∆ρ = ϕ and rewrite identity (5.13) in the form∫
σ

∇(wk(x
′)− α∆wk(x

′)) · ∇ϕdx′ = (λk − 1)
∫
σ

wkϕdx
′.

Obviously, if ρ ∈ X̊ (σ), then ϕ ∈ W 1
2 (σ). On the other hand, for any ϕ ∈ W 1

2 (σ) there

exists a unique ρ ∈ X̊ (σ) such that ρ − α∆ρ = ϕ. Therefore, wk − α∆wk ∈ W 1
2 (σ) can

be interpreted as a weak solution to the following Neumann problem: −∆(wk − α∆wk) = (λk − 1)wk,
∂(wk − α∆wk)

∂n

∣∣∣
∂σ

= 0.

Since wk ∈ L2(σ), we conclude that wk−α∆wk ∈ W 2
2 (σ). Consider now wk as a solution

of the Dirichlet problem: {
wk − α∆wk = wk − α∆wk,

wk|∂σ = 0.

Since σ ∈ C4, it follows (see, for example, [26]) that wk ∈ W 4
2 (σ) ∩ W̊ 1

2 (σ). �

5.2 Direct problem in a plane domain

For small data problem (5.8) can be solved by iterations, dividing it into two problems:

∂

∂t
(U′ − α∆U′)− ν∆U′ + curl(U′ − α∆U′)×U′ +∇p̃

= U3(∇(U3 − α∆U3)) + f′,

divx′U
′ = 0,

U′|∂σ = 0, U′(x′, 0) = u′0(x′),

(5.16)

with given U3 and
∂

∂t
(U3 − α∆U3)− ν∆U3 + (U′ · ∇)(U3 − α∆U3) = f + q(t),

U3|∂σ = 0, U3(x′, 0) = v0(x′),∫
σ

U3(x′, t)dx′ = F (t),

(5.17)

62



with given U′. Problem (5.16) with the given right-hand side is the standard initial

boundary value problem describing the motion of the second grade �uid in a bounded

plane domain σ. Such two- and three-dimensional problems have been studied by several

authors (see [13]-[15], [41]-[39], [60], [86], etc.). Problem (5.17) is an inverse problem (the

function q in the right-hand side is unknown).

By studying the inverse problem (5.17) it is convenient to reduce it to the case of

zero right-hand side f and the homogeneous initial condition. This could be done by

subtracting the solution v of the direct problem
∂

∂t
(v − α∆v)− ν∆v + (U′ · ∇)(v − α∆v) = f,

v|∂σ = 0, v(x′, 0) = v0(x′).
(5.18)

5.2.1 Construction of approximate solutions

In this section we prove the existence of the unique solution to the problem
∂

∂t
(v − α∆v)− ν∆v + (W · ∇)(v − α∆v) = f,

v|∂σ = 0, v(x′, 0) = v0(x′),
(5.19)

assuming, that the function W ∈ V̊(σT ) is given and satis�es the following condition

sup
t∈[0,T ]

‖W‖X̊(σ) + ‖W‖W̊(σT ) ≤ δ0, (5.20)

where δ0 is a su�ciently small constant.

De�nition. The function v ∈ W̊(σT ) is called a weak solution of problem (5.19) if

it satis�es for all t ∈ [0, T ] the integral identity

t∫
0

∫
σ

(∂τv η + α∇∂τv · ∇η) dx′dτ + ν
t∫

0

∫
σ

∇v · ∇ηdx′dτ

=
t∫

0

∫
σ

fη dx′dτ +
t∫

0

∫
σ

(W · ∇)η (v − α∆v) dx′dτ ∀ η ∈ W̊
1,0

2 (σT )

(5.21)

and the initial condition v(x′, 0) = v0(x′).
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Let f ∈ L2(σT ), v0 ∈ W̊ 1
2 (σ). Then we can express them by the Fourier series

f(x′, t) =
∞∑
k=1

fk(t)wk(x
′), v0(x′) =

∞∑
k=1

akwk(x
′),

where fk(t) =
∫
σ

f3(x′, t)wk(x
′)dx′, ak =

∫
σ

v0(x′)wk(x
′)dx′ and {wk} ⊂ X̊ (σ) are the

eigenfunctions of problem (5.13).

We look for the approximate solutions v(N)(x′, t) in the form

v(N)(x′, t) =
N∑
k=1

y
(N)
k (t)wk(x

′),

where the coe�cients y(N)
k (t) are found from the integral equalities

∫
σ

(
∂

∂t
v(N)wk + α∇ ∂

∂t
v(N) · ∇wk)dx′ + ν

∫
σ

∇v(N) · ∇wkdx′

=
∫
σ

f (N)wkdx
′ +
∫
σ

W · ∇wk(v(N) − α∆v(N))dx′, k = 1, ..., N,
(5.22)

and the initial condition v(N)(x′, 0) = v
(N)
0 (x′), where

f (N)(x′, t) =
N∑
k=1

fk(t)wk(x
′), v

(N)
0 (x′) =

N∑
k=1

akwk(x
′).

Since the eigenfunctions wk are smooth (wk ∈ W 4
2 (σ)), the approximations v(N)(x′, t)

are solutions to the following initial boundary value problems
∂

∂t
(v(N)−α∆v(N))−ν∆v(N) +(W · ∇)(v(N)−α∆v(N)) = f (N),

v(N)|∂σ = 0, v(N)(x′, 0) = v
(N)
0 (x′).

(5.23)

Multiplying (5.22) by wj(x′) and using (5.14) we derive the Cauchy problem for the

system of linear ordinary di�erential equations y
(N)
k

′
(t) +

N∑
j=1

(
ν

α
+mkj(t))y

(N)
k (t) = fk(t), k = 1, ..., N,

y
(N)
k (0) = ak, k = 1, ..., N,

where mkj(t) = −
∫
σ

(
ν

α
wkwj − (W · ∇)wj(wk − α∆wk)) dx

′.
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The last system can be rewritten in the vector form:{
Y(N)′(t) + (J(N) + A(N)(t))Y(N)(t) = f(t),

Y(N)(0) = a,
(5.24)

where

Y(N)(t) =

 y
(N)
1 (t)

...

y
(N)
N (t)

 , f =

 f1

...

fN

 , a =

 a1

...

aN

 ,

J(N) = diag(
ν

α
, ...,

ν

α
) - diagonal matrix, A(N)(t) is (N×N) - matrix with elementsmkj(t).

Lemma 5.1. Let f ∈ L2(σT ), v0 ∈ W̊ 1
2 (σ). Suppose that W ∈ V̊(σT ) is given and

satis�es (5.20). Then there exist a unique solution Y (N) ∈ W 1
2 (0, T ) of system (5.24).

Proof. Let us prove that elements mkj(t) of the matrix A(N)(t) are bounded. We have

|mkj(t)| =
∣∣∣ ∫
σ

−ν
α
wk(x

′)wj(x
′)− (W(x′, t) · ∇)wj(x

′)(wk(x
′)− α∆wk(x

′))dx′
∣∣∣

≤ ν

α
+
∣∣∣ ∫
σ

(W(x′, t) · ∇)(wk(x
′)− α∆wk(x

′))wj(x
′)dx′

∣∣∣
≤ ν

α
+ ‖W(·, t)‖L4(σ)‖∇(wk − α∆wk)‖L2(σ)‖wj‖L4(σ)

≤ ν

α
+ c‖W(·, t)‖1/2

L2(σ)‖∇W(·, t)‖1/2
L2(σ)‖∇(wk − α∆wk)‖L2(σ)‖∇wj‖L2(σ)

≤ ν

α
+ c
(λk − 1

α

)1/2

sup
t∈[0,T ]

‖U′(·, t)‖1/2
L2(σ) sup

t∈[0,T ]

‖∇W(·, t)‖1/2
L2(σ) ≤

ν

α
+ cδ0.

Here we have used equalities (5.14), (5.15), the well known inequality

‖u‖4
L4(σ) ≤ c‖u‖2

L2(σ)‖∇u‖2
L2(σ) ≤ c‖∇u‖4

L2(σ)

which holds for any function u ∈ W̊ 1
2 (σ) (see, for example, [52]) and the condition (5.20).

Thus, all elements of the matrix A(N)(t) are bounded functions and, therefore, the ex-

istence of the unique solution to problem (5.24) follows from standard results for linear

ordinary di�erential equations (see, for example, [83]). �

5.2.2 A priori estimates

Lemma 5.2. Let W ∈ V̊(σT ) satis�es condition (5.20) with su�ciently small δ0 (δ0 is

subject to inequalities (5.35), (5.37), (5.40) below). Suppose that ∂σ ∈ C4, f ∈ W 1
2 (σ)
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and v0 ∈ W 3
2 (σ) ∩ W̊ 1

2 (σ). Then for the approximate solution v(N) the following estimate

sup
t∈[0,T ]

‖v(N)‖X̊ (σ) + ‖v(N)‖W̊(σT ) ≤ c
(
‖f (N)‖W 1

2 (σT ) + ‖v(N)
0 ‖X̊ (σ)

)
(5.25)

holds. Here c does not depend on N .

Proof. Let us multiply equalities (5.22) by y(N)
k (t) and sum them by k from 1 to N :

1

2

d

dt

∫
σ

(|v(N)|2 + α|∇v(N)|2)dx′ + ν
∫
σ

|∇v(N)|2dx′

=
∫
σ

f (N)v(N)dx′ − α
∫
σ

(W · ∇)∆v(N)v(N)dx′

≤ 1

2ε

∫
σ

|f (N)|2dx′ + cε
∫
σ

|∇v(N)|2dx′ + α sup
x′∈σ
|W|‖v(N)‖L2(σ)‖∇∆v(N)‖L2(σ)

≤ 1

2ε

∫
σ

|f (N)|2dx′ + cδ2
0

ε
‖∇∆v(N)‖2

L2(σ) + cε
∫
σ

|∇v(N)|2dx′.

Here we have applied Cauchy inequality with ε, Poincaré-Friedrichs inequality and the

inequality
sup
x′∈σ
|W|+ sup

x′∈σ
|∇W| ≤ c‖W‖W 3

2 (σ)

≤ c
(
‖W‖W 1

2 (σ) + ‖curl(W− α∆W)‖L2(σ)

)
≤ cδ0,

(5.26)

which follows from the Sobolev Embedding Theorem, (5.9) and (5.13). Taking ε =
ν

2c
yields

d

dt

∫
σ

(|v(N)|2 + α|∇v(N)|2)dx′ + ν
∫
σ

|∇v(N)|2dx′

≤ cδ2
0‖∇∆v(N)‖2

L2(σ) + c
∫
σ

|f (N)|2dx′.
(5.27)

Denote

Φ(N)(x′, t) = (W · ∇)(v(N) − α∆v(N))− ν∆v(N) − f (N). (5.28)

Since the eigenfunctions wk ∈ W 4
2 (σ), it follows that Φ(N) ∈ W 1

2 (σ).

Let us rewrite equalities (5.22) in the form:

∫
σ

(
∂

∂t
v(N)wk + α∇ ∂

∂t
v(N) · ∇wk)dx′ +

∫
σ

Φ(N)wkdx
′ = 0. (5.29)
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Let W (N)(·, t) ∈ W̊ 1
2 (σ) ∩W 3

2 (σ) be the solution of the following problem{
−α∆W (N) +W (N) = Φ(N),

W (N)|∂σ = 0.
(5.30)

Then ∫
σ

(α∇W (N) · ∇η +W (N)η)dx′ =
∫
σ

Φ(N)ηdx′ ∀η ∈ W̊
1

2(σ). (5.31)

Taking in (5.31) η = wk we obtain from (5.29) the relations

∫
σ

(
∂

∂t
v(N)wk + α∇ ∂

∂t
v(N) · ∇wk)dx′ +

∫
σ

(W (N)wk + α∇W (N) · ∇wk)dx′ = 0.

By the de�nition of the eigenfunctions wk (see (5.13)) we can rewrite the last equalities

as follows

1

λk

∫
σ

( ∂
∂t
v(N)wk + α∇ ∂

∂t
v(N) · ∇wk +∇(

∂

∂t
v(N) − α∆

∂

∂t
v(N)) · ∇(wk − α∆wk)

)
dx′

+
1

λk

∫
σ

(
W (N)wk + α∇W (N) · ∇wk +∇(W (N) − α∆W (N)) · ∇(wk − α∆wk)

)
dx′ = 0.

Multiplying these relations by λky
(N)
k (t) and summing from 1 to N yields

1

2

d

dt

∫
σ

(
|v(N)|2 + α|∇v(N)|2 + |∇(v(N) − α∆v(N))|2

)
dx′

+
∫
σ

(
W (N)v(N) + α∇W (N) · ∇v(N)

)
dx′

+
∫
σ

∇(W (N) − α∆W (N)) · ∇(v(N) − α∆v(N))dx′ = 0.

From (5.30), (5.31) it follows that

1

2

d

dt

∫
σ

(
|v(N)|2 + α|∇v(N)|2 + |∇(v(N) − α∆v(N))|2

)
dx′

+
∫
σ

Φ(N)v(N)dx′ +
∫
σ

∇(v(N) − α∆v(N)) · ∇Φ(N)dx′ = 0.
(5.32)

Substituting expression (5.28) of the function Φ(N) into (5.32) gives

1

2

d

dt

∫
σ

(
|v(N)|2 + α|∇v(N)|2 + |∇(v(N) − α∆v(N))|2

)
dx′ + α

∫
σ

W · ∇v(N)∆v(N)dx′

+ν
∫
σ

|∇v(N)|2dx′ +
∫
σ

∇
(
(W · ∇)(v(N) − α∆v(N))

)
· ∇(v(N) − α∆v(N))dx′
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+
ν

α

∫
σ

|∇(v(N)−α∆v(N))|2dx′− ν
α

∫
σ

∇v(N) · ∇(v(N)−α∆v(N))dx′

=
∫
σ

f (N)v(N)dx′ +
∫
σ

∇f (N) · ∇(v(N) − α∆v(N))dx′.
(5.33)

The right-hand side of (5.33) contains the term with the fourth order derivative.

However, this term can be estimated by the integral containing only derivatives up to

the third order. The operations below are correct because the functions wk belong to the

space W 4
2 (σ). Denote for simplicity v(N) − α∆v(N) = u. We have∫

σ

∇
(
(W · ∇)(v(N) − α∆v(N))

)
· ∇(v(N) − α∆v(N))dx′

=
∫
σ

∇
(
(W · ∇)u

)
· ∇udx′ =

∫
σ

{∇W · ∇}u · ∇udx′

+
∫
σ

(W · ∇)∇u · ∇udx′ =
∫
σ

{∇W · ∇}u · ∇udx′

+
1

2

∫
σ

(W · ∇)|∇u|2dx′ =
∫
σ

{∇W · ∇}u · ∇udx′

−1

2

∫
σ

∇ ·W|∇u|2dx′ =
∫
σ

{∇W · ∇}u · ∇udx′

≤ c
∫
σ

|∇W‖∇u|2dx′ ≤ c sup
x′∈σ
|∇W|

∫
σ

|∇u|2dx′

≤ cδ0

∫
σ

|∇u|2dx′ = cδ0

∫
σ

|∇v(N) − α∇∆v(N)|2dx′.

(5.34)

Here we have used the notation {∇W · ∇} = ∇(W1
∂

∂x1

+ W2
∂

∂x2

) and applied (5.26).

Using (5.34) from (5.33) we get the estimate

1

2

d

dt

∫
σ

(
|v(N)|2 + α|∇v(N)|2 + |∇(v(N) − α∆v(N))|2

)
dx′ + ν

∫
σ

|∇v(N)|2dx′

+
ν

α

∫
σ

|∇(v(N) − α∆v(N))|2dx′ = α
∫
σ

W · ∇∆v(N)v(N)dx′

+
ν

α

∫
σ

∇v(N) ·∇(v(N)−α∆v(N))dx′+
∫
σ

∇
(
(W · ∇)(v(N)−α∆v(N))

)
· ∇(v(N)−α∆v(N))dx′

+
∫
σ

f (N)v(N)dx′ +
∫
σ

∇f (N) · ∇(v(N) − α∆v(N))dx′ ≤ α sup
x′∈σ
|W|‖∇∆v(N)‖L2(σ)‖v(N)‖L2(σ)

+
ν

α
‖∇v(N)‖L2(σ)‖∇(v(N)−α∆v(N))‖L2(σ)+

1

2ε

(∫
σ

|f (N)|2dx′+
∫
σ

|∇f (N)|2dx′
)

+(
ε

2
+ cδ0)

∫
σ

|∇(v(N) − α∆v(N))|2dx′ + ε

2

∫
σ

|∇v(N)|2dx′

≤ cδ2
0

ε

∫
σ

|∇∆v(N)|2dx′ + ε
∫
σ

|∇v(N)|dx′ + c

ε

∫
σ

|∇v(N)|dx′

+(ε+ cδ0)
∫
σ

|∇(v(N) − α∆v(N))|2dx′ + 1

2ε

∫
σ

|f (N)|2dx′ + 1

2ε

∫
σ

|∇f (N)|2dx′
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≤
(c1δ

2
0

ε
+ ε+ c2δ0

) ∫
σ

|∇(v(N) − α∆v(N))|2dx′ + ε
∫
σ

|∇v(N)|dx′

+
c(1 + δ2

0)

ε

∫
σ

|∇v(N)|dx′ + 1

2ε

∫
σ

|f (N)|2dx′ + 1

2ε

∫
σ

|∇f (N)|2dx′.

Taking ε = min{ν
2
,
ν

4α
} and assuming that δ0 is su�ciently small, i.e.,

c1δ
2
0

ε
+ c2δ0 ≤

ν

4α
, (5.35)

from the latter inequality we obtain

d

dt

∫
σ

(
|v(N)|2 + α|∇v(N)|2 + |∇(v(N) − α∆v(N))|2

)
dx′

+ν
∫
σ

|∇v(N)|2dx′ + ν

α

∫
σ

|∇(v(N) − α∆v(N))|2dx′

≤ c
( ∫
σ

(|f (N)|2 +
∫
σ

|∇f (N)|2)dx′ + |∇v(N)|2dx′
)
.

(5.36)

Integrating inequality (5.27) by t gives the estimates

∫
σ

(
|v(N)(x′, t)|2 + α|∇v(N)(x′, t)|2

)
dx′ + ν

t∫
0

∫
σ

|∇v(N)|2dx′dτ

≤ cδ2
0

t∫
0

∫
σ

|∇∆v(N)|2dx′dτ + c
t∫

0

∫
σ

|f (N)|2dx′dτ +
∫
σ

(
|v(N)

0 |2 + α|∇v(N)
0 |2

)
dx′

≤ cδ2
0

t∫
0

∫
σ

|∇(v(N) − α∆v(N))|2dx′dτ + c3δ
2
0

t∫
0

∫
σ

|∇v(N)|2dx′dτ

+c
t∫

0

∫
σ

|f (N)|2dx′dτ +
∫
σ

(
|v(N)

0 |2 + α|∇v(N)
0 |2

)
dx′.

If

c3δ
2
0 ≤

ν

2
, (5.37)

the last inequality yields

t∫
0

∫
σ

|∇v(N)|2dx′dτ ≤ cδ2
0

t∫
0

∫
σ

|∇(v(N) − α∆v(N))|2dx′dτ

+c
t∫

0

∫
σ

|f (N)|2dx′dτ +
∫
σ

(
|v(N)

0 |2 + α|∇v(N)
0 |2

)
dx′.

(5.38)

Integrating inequality (5.36) with respect to t and estimating the last term in right-hand

side by (5.38) we obtain
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∫
σ

(
|v(N)(x′, t)|2 + α|∇v(N)(x′, t)|2 + |∇(v(N)(x′, t)− α∆v(N)(x′, t))|2

)
dx′

+ν
t∫

0

∫
σ

|∇v(N)|2dx′dτ +
t∫

0

∫
σ

|∇(v(N) − α∆v(N))|2dx′dτ

≤ c
( t∫

0

∫
σ

|f (N)|2dx′dτ +
t∫

0

∫
σ

|∇f (N)|2dx′dτ
)

+c4δ
2
0

t∫
0

∫
σ

|∇(v(N) − α∆v(N))|2dx′dτ

+c
∫
σ

(
|v(N)

0 |2 + α|∇v(N)
0 |2 + |∇(v

(N)
0 − α∆v

(N)
0 )|2

)
dx′.

(5.39)

Assuming that

c4δ
2
0 ≤

1

2
, (5.40)

from (5.39) follows the estimate

∫
σ

(
|v(N)(x′, t)|2 + α|∇v(N)(x′, t)|2 + |∇(v(N)(x′, t)− α∆v(N)(x′, t))|2

)
dx′

+
t∫

0

∫
σ

(
ν|∇v(N)|2 + |∇(v(N) − α∆v(N))|2

)
dx′dτ

≤ c
t∫

0

∫
σ

(
|f (N)|2 + |∇f (N)|2

)
dx′dτ

+c
∫
σ

(
|v(N)

0 |2 + α|∇v(N)
0 |2 + |∇(v

(N)
0 − α∆v

(N)
0 )|2

)
dx′.

(5.41)

Let us multiply equalities (5.22) by
d

dt
y

(N)
k (t) and sum them by k from 1 to N :

∫
σ

(
| ∂
∂t
v(N)|2 + α|∇ ∂

∂t
v(N)|2

)
dx′ +

ν

2

d

dt

∫
σ

|∇v(N)|2dx′

=
∫
σ

(U′ · ∇)(v(N) − α∆v(N))
∂

∂t
v(N)dx′ +

∫
σ

f (N) ∂

∂t
v(N)dx′

≤ 1

2ε
sup
x′∈σ
|U′|2

∫
σ

|∇(v(N) − α∆v(N))|2dx′ + ε
∫
σ

| ∂
∂t
v(N)|2dx′ + 1

2ε

∫
σ

|f (N)|2dx′.

Taking ε =
1

2
, integrating with respect to t and applying (5.26), (5.41) we obtain
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ν
∫
σ

|∇v(N)(x′, t)|2dx′ +
t∫

0

∫
σ

(|∂τv(N)|2 + α|∇∂τv(N)|2)dx′dτ

≤ c
t∫

0

∫
σ

(
|f (N)|2dx′dτ + |∇f (N)|2

)
dx′dτ

+c
∫
σ

(
|v(N)

0 |2 + α|∇v(N)
0 |2 + |∇(v

(N)
0 − α∆v

(N)
0 )|2

)
dx′.

(5.42)

Estimate (5.25) follows from (5.41), (5.42) and the de�nitions of the norms. �

5.2.3 Existence and uniqueness of the solution

Theorem 5.3. Suppose that ∂σ ∈ C4, f ∈ W 1
2 (σT ), v0 ∈ W 3

2 (σ) ∩ W̊ 1
2 (σ) and W ∈

V̊(σT ) satis�es condition (5.20) with δ0 subject to inequalities (5.35), (5.37), (5.40). Then

problem (5.19) admits a unique week solution v ∈ W̊(σT ) and the following estimate

sup
t∈[0,T ]

‖v‖X̊(σ) + ‖v‖W̊(σT ) ≤ c
(
‖f‖W 1

2 (σT ) + ‖v0‖X̊(σ)

)
(5.43)

holds.

Proof. Multiplying equations (5.23) by arbitrary function η ∈ W̊
1,0

2 (σT ) and integrating

by parts on σ and by τ from 0 to t we get the following integral identity

t∫
0

∫
σ

(
∂

∂τ
v(N)η + α∇ ∂

∂τ
v(N) · ∇η)dx′dτ + ν

t∫
0

∫
σ

∇v(N) · ∇ηdx′dτ

=
t∫

0

∫
σ

f (N)ηdx′dτ +
t∫

0

∫
σ

W · ∇η(v(N) − α∆v(N))dx′dτ ∀t ∈ [0, T ].

(5.44)

From estimates (5.41), (5.42) it follows that there exists a subsequence {v(Nl)} such that

v(Nl)(·, t) ⇁ v(·, t) in X̊(σ) ∀t ∈ [0, T ], v(Nl) ⇁ v in W̊(σT ).

Passing in (5.44) to a limit as Nl →∞ we obtain for v integral identity (5.21). Obviously,

v satis�es the initial condition. Moreover, from inequality (5.25) follows estimate (5.43).

Let us prove the uniqueness. Let v[1] and v[2] be two weak solutions of problem (5.19).

The di�erence V = v[1] − v[2] satis�es the integral identity

t∫
0

∫
σ

(
∂

∂τ
V η + α∇ ∂

∂τ
V · ∇η)dx′dτ + ν

t∫
0

∫
σ

∇V · ∇ηdx′dτ

=
t∫

0

∫
σ

W · ∇η(V − α∆V )dx′dτ ∀ η ∈ W̊
1,0

2 (σT ).
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Taking η = V yields

1

2

∫
σ

(|V |2 + α|∇V |2)dx′ + ν

t∫
0

∫
σ

|∇V |2dx′dτ = −α
t∫

0

∫
σ

W · ∇V∆V dx′dτ.

Integrating by parts the right-hand side term we get

−α
t∫

0

∫
σ

W · ∇V∆V dx′dτ = α
t∫

0

∫
σ

[
− 1

2

2∑
i=1

∇ ·W(
∂

∂xi
V )2

+
2∑
i=1

2∑
j=1

∂

∂xi
Wj

∂

∂xj
V

∂

∂xi
V
]
dx′dτ =

2∑
i=1

2∑
j=1

∂

∂xi
Wj

∂

∂xj
V

∂

∂xi
V dx′dτ

≤ c
t∫

0

sup
x′∈σ
|∇W′|

∫
σ

|∇V |2dx′dτ ≤ c
t∫

0

‖W′‖W 3
2 (σ)

∫
σ

|∇V |2dx′dτ.

Therefore,

∫
σ

|∇V |2dx′ ≤ c

t∫
0

‖W‖W 3
2 (σ)

∫
σ

|∇V |2dx′dτ. (5.45)

De�ne

u(s) = exp(−
s∫

0

c||W||W 3
2 (σ)dτ)

s∫
0

c||W||W 3
2 (σ)

∫
σ

|∇V |2dx′dτ), s ∈ (0, τ).

Then

u′(s) = c||W||W 3
2 (σ) exp(−

s∫
0

c||W||W 3
2 (σ)dτ)

( ∫
σ

|∇V |2dx′ −
s∫

0

c||W||W 3
2 (σ)

∫
σ

|∇V |2dx′dτ
)
.

From (5.45) it follows that

∫
σ

|∇V |2dx′ −
t∫

0

c||W||W 3
2 (σ)

∫
σ

|∇V |2dx′dτ ≤ 0,

and we get u′(s) ≤ 0. Integrating the last inequality from 0 to t and taking into account

that u(0) = 0 we get u(s) ≤ 0. Hence,

t∫
0

||W||W 3
2 (σ)

∫
σ

|∇V |2dx′dτ ≤ 0.

Substituting this into (5.45) we get
∫
σ

|∇V |2dx′ ≤ 0. Thus, v[1] = v[2]. �
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5.3 Construction of an approximate solution to the in-

verse problem (5.8)

Let us come back to problem (5.8). In this section we construct an approximate solution

and prove an a priori estimates of it.

De�nition. By a weak solution of problem (5.8) we understand the pair (U, q) =

(U′, U3, q) ∈ V̊(σT )×W̊(σT )×L2(0, T ) satisfying the initial condition U(x′, 0) = u0(x′),

the �ux condition

∫
σ

U3(x′, t)dx′ = F (t) (5.46)

and the integral identity

t∫
0

∫
σ

(
∂

∂τ
U · η + α∇ ∂

∂τ
U · ∇η)dx′dτ + ν

t∫
0

∫
σ

∇U · ∇ηdx′dτ

+
t∫

0

∫
σ

(U · ∇)U · ηdx′dτ + α
t∫

0

∫
σ

(U · ∇)η · 4Udx′dτ

−α
t∫

0

∫
σ

(η · ∇)U · 4Udx′dτ =
t∫

0

∫
σ

qη3dx
′dτ +

t∫
0

∫
σ

f · ηdx′dτ

∀η = (η′, η3) ∈ W̊ 1,0
2 (σT ) with divη′ = 0, ∀t ∈ [0,T].

(5.47)

One can derive identity (5.47) multiplying equations (5.81) by η′, equations (5.82) by

η3, summing the obtained equalities, integrating by parts on σ and then integrating by

t. Notice that identity (5.47) is equivalent to the two following identities:

t∫
0

∫
σ

(
∂

∂τ
U′ · η′ + α∇ ∂

∂τ
U′ · ∇η′)dx′dτ + ν

t∫
0

∫
σ

∇U′ · ∇η′dx′dτ

+
t∫

0

∫
σ

(U′ · ∇)U′ · η′dx′dτ + α
t∫

0

∫
σ

(U′ · ∇)η′ · 4U′dx′dτ

−α
t∫

0

∫
σ

(η′ · ∇)U′ · 4U′dx′dτ +
t∫

0

∫
σ

∇U3 · η′(U3 − α4U3)dx′dτ

=
t∫

0

∫
σ

f ′ · η′dx′dτ ∀η′ ∈ W̊ 1,0
2 (σT ) with div η′ = 0,

(5.48)

and
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t∫
0

∫
σ

(
∂

∂τ
U3η3 + α∇ ∂

∂τ
U3 · ∇η3)dx′dτ + ν

t∫
0

∫
σ

∇U3 · ∇η3dx
′dτ

+
t∫

0

∫
σ

U′ · ∇η3(U3 − α4U3)dx′dτ

=
t∫

0

∫
σ

qη3dx
′dτ +

t∫
0

∫
σ

f3η3dx
′dτ ∀η3 ∈ W̊ 1,0

2 (σT ).

(5.49)

For the Galerkin approximations U(N)(x′, t) = (U′(N)(x′, t), U
(N)
3 (x′, t)) of the weak

solution U(x′, t) we look in the form

U′(N)(x′, t) =
N∑
k=1

c
(N)
k (t)wk(x

′), U
(N)
3 (x′, t) =

N∑
k=1

b
(N)
k (t)wk(x

′).

Here the coe�cient c(1)
1 (t) is found from the equation

d

dt
c

(1)
1 (t) + νc

(1)
1 (t)

∫
σ

|∇w1|2dx′ = f ′1(t), c
(1)
1 (0) = u′01, (5.50)

while c(N)
k (t), b

(N)
k (t), k = 1, ..., N , are found recurrently as the solutions of the Cauchy

problems for the following systems of ordinary di�erential equations
d

dt
b

(N)
k (t) + ν

∫
σ

∇U (N)
3 · ∇wkdx′ +

∫
σ

(U′(N) · ∇)wk(U
(N)
3 − α∆U

(N)
3 )dx′

= q(N)(t)
∫
σ

wkdx
′ + f3k(t),

b
(N)
k (0) = v0k, k = 1, . . . , N, N ≥ 1,

(5.51)

and 

d

dt
c

(N)
k (t) + ν

∫
σ

∇U′(N) · ∇wkdx
′ +
∫
σ

(U′(N) · ∇)U′(N) ·wkdx
′

+α
∫
σ

(U′(N) · ∇)wk ·∆U′(N)dx′ − α
∫
σ

(wk · ∇)U′(N) ·∆U′(N)dx′

+
∫
σ

∇U (N−1)
3 ·wk(U

(N−1)
3 − α∆U

(N−1)
3 )dx′ = f ′k(t),

c
(N)
k (0) = u′0k, k = 1, . . . , N, N ≥ 2.

(5.52)

As usual,
f ′k(t) =

∫
σ

f ′ ·wkdx
′, u′0k =

∫
σ

u′0 ·wkdx
′,

f3k(t) =
∫
σ

f3wkdx
′, v0k =

∫
σ

v0wkdx
′.
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The functions q(N)(t) in (5.51) are chosen in order to satisfy the �ux condition∫
σ

U
(N)
3 (x′, t)dx′ = F̃ (N)(t) ∀t ∈ [0, T ], (5.53)

where F̃ (N) → F in W 1
2 (0, T ) (F̃ (N) will be de�ned later).

First of all we prove an a priori estimates for U′(N) assuming that U (N−1)
3 is known.

Lemma 5.3. Suppose that U
(N−1)
3 ∈ W̊(σT ) is given. Let f ′ ∈ L2(σT ), curl f ∈ L2(σT )

and u′0 ∈ W 3
2 (σ) ∩ W̊ 1

2 (σ). Then for U′(N) ∈ W̊(σT ) the following estimates

sup
t∈[0,T ]

‖U′(1)||2Y̊(σ)
+ ‖U′(1)‖2

V̊(σT )
≤ C1

(
‖f ′‖2

L2(σT ) + ‖curl f ′‖2
L2(σT ) + ‖u′0‖2

Y̊(σ)

)
, (5.54)

sup
t∈[0,T ]

‖U′(N)‖2
Y̊(σ)

+ ‖U′(N)‖2
V̊(σT )

≤ C2

(
‖f ′‖2

L2(σT ) + ‖curl f ′‖2
L2(σT )

+ sup
t∈[0,T ]

‖U (N−1)
3 ‖4

X̊ (σ)
+ ‖U (N−1)

3 ‖4
W̊(σT )

+ ‖u′0‖2
Y̊(σ)

)
, N ≥ 2,

(5.55)

hold. Here C2 is independent of N .

Proof. Estimate (5.54) follows from the equation (5.50) and the properties of the basis

{wk}.
In order to prove (5.55), we use results obtained (see [13], [14]) for the two dimensional

equations of the second grate �uid �ow
∂

∂t
(U′ − α∆U′)− ν∆U′ + curl(U′ − α∆U′)×U′ +∇p̃ = f ′,

divU′ = 0,

U′|∂σ = 0, U′(x′, 0) = u′0(x′).

(5.56)

It was proved in [13], [14] that if f ′ ∈ L2(σT ), curlf ′ ∈ L2(σT ) and u′0 ∈ W 3
2 (σ), then

problem (5.56) has the unique weak solution U′ ∈ V̊(σT ) and the following estimate

sup
t∈[0,T ]

‖U′‖2
Y̊(σ)

+ ‖U′‖2
V̊(σT )

≤ c
(
‖f ′‖2

L2(σT ) + ‖curl f ′‖2
L2(σT ) + ‖u′0‖2

Y̊(σ)

)
holds. In [13], [14] the solution was found by Galerkin method. Repeating literally the

arguments from [13] one gets the following estimate for U′(N):
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sup
t∈[0,T ]

‖U′(N)‖2
Y̊(σ)

+ ‖U′(N)‖2
V̊(σT )

≤ c
(
‖f ′‖2

L2(σT )

+‖curl f ′‖2
L2(σT ) + ‖U (N−1)

3 ∇(U
(N−1)
3 − α∆U

(N−1)
3 )‖2

L2(σT )

+‖curl
(
U

(N−1)
3 ∇(U

(N−1)
3 − α∆U

(N−1)
3 )

)
‖2
L2(σT ) + ‖u′0‖2

Y̊(σ)

)
.

(5.57)

It is easy to show using Sobolev Embedding Theorem that

‖U (N−1)
3 ∇(U

(N−1)
3 − α∆U

(N−1)
3 )‖2

L2(σT )

≤ c
(

sup
t∈[0,T ]

‖U (N−1)
3 ‖4

X̊ (σ)
+ ‖U (N−1)

3 ‖4
W̊(σT )

)
. (5.58)

Let us estimate the second term in (5.57) containing U (N−1)
3 . We have2

curl(U
(N−1)
3 ∇(U

(N−1)
3 − α∆U

(N−1)
3 )) = U

(N−1)
3 curl(∇(U

(N−1)
3 − α∆U

(N−1)
3 ))

+∇U (N−1)
3 ×∇(U

(N−1)
3 − α∆U

(N−1)
3 ) = ∇U (N−1)

3 ×∇(U
(N−1)
3 − α∆U

(N−1)
3 ).

Therefore,
t∫

0

∫
σ

|curl
(
U

(N−1)
3 ∇(U

(N−1)
3 − α∆U

(N−1)
3 )

)
|2dx′dτ

=
t∫

0

∫
σ

|∇U (N−1)
3 ×∇(U

(N−1)
3 − α∆U

(N−1)
3 )|2dx′dτ

≤ c
t∫

0

sup
x′∈σ
|∇U (N−1)

3 |2‖∇(U
(N−1)
3 − α∆U

(N−1)
3 )‖2

L2(σT )dτ

≤ c
t∫

0

‖∇U (N−1)
3 ‖2

W 2
2 (σ)
‖∇(U

(N−1)
3 − α∆U

(N−1)
3 )‖2

L2(σT )dτ

≤ c sup
t∈[0,T ]

‖U (N−1)
3 ‖2

X̊ (σ)
‖U (N−1)

3 ‖2
W̊(σT )

≤ c
(

sup
t∈[0,T ]

‖U (N−1)
3 ‖4

X̊ (σ)
+ ‖U (N−1)

3 ‖4
W̊(σT )

)
.

(5.59)

Estimate (5.55) follows from (5.57), (5.58) and (5.59). �

Remark 5.2. It follows from estimate (5.55) that Cauchy problem for system (5.52) has

a unique solution c(N)
k (t), k = 1, . . . , N, (see, for example, [83]), and, thus, functions U′(N)

can be uniquely determined from (5.52) if we already know U
(N−1)
3 .

Let us consider now the approximations (U
(N)
3 (x′, t), q(N)(t)). Suppose that U′(N) ∈

2These calculations have sense because the elements wk of the basis belong to the space W 4
2 (σ) (see

Theorem 2.2).
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V̊(σT ) in (5.51) is given and

sup
t∈[0,T ]

‖U′(N)‖Y̊(σ) + ‖U′(N)‖V̊(σT ) <∞.

Because of (5.11) and Sobolev Embedding Theorem it follows that

sup
t∈[0,T ]

(
sup
x′∈σ
|U′(N)|+ sup

x′∈σ
|∇U′(N)|

)
≤ c sup

t∈[0,T ]

‖U′(N)‖W 3
2 (σ)

≤ c sup
t∈[0,T ]

‖U′(N)‖Y̊(σ).
(5.60)

Suppose that the vector U′(N) is "su�ciently small":

sup
t∈[0,T ]

(
sup
x′∈σ
|U′(N)|+ sup

x′∈σ
|∇U′(N)|

)
≤ C0 sup

t∈[0,T ]

‖U′(N)‖Y̊(σ) ≤ δ0, (5.61)

where δ0 will be determined below.

We look for the approximate solution (U
(N)
3 (x′, t), q(N)(t)) in the form

(U
(N)
3 (x′, t), q(N)(t)) = (v(N)(x′, t), 0) + (V (N)(x′, t), q(N)(t)),

where v(N)(x′, t) =
N∑
k=1

z
(N)
k (t)wk(x

′) and V (N)(x′, t) =
N∑
k=1

y
(N)
k (t)wk(x

′).

Coe�cients z(N)
k (t) are found as solutions of the following problem

d

dt
z

(N)
k (t) + ν

∫
σ

∇v(N) · ∇wkdx′

+
∫
σ

U′(N) · ∇wk(v(N) − α∆v(N))dx′ = f3k(t),

z
(N)
k (0) = v0k, k = 1, . . . , N, N ≥ 1,

(5.62)

The unique solvability of this Cauchy problem follows from Lemma 5.4 with W = U′(N).

Coe�cients y(N)
k (t) are found as solutions of the following Cauchy problems
d

dt
y

(N)
k (t) + ν

∫
σ

∇V (N) · ∇wkdx′

+
∫
σ

U′(N) · ∇wk(V (N) − α∆V (N))dx′ = q(N)(t)
∫
σ

wkdx
′,

y
(N)
k (0) = 0, k = 1, . . . , N, N ≥ 1.

(5.63)

The functions q(N)(t) are chosen so that V (N)(x′, t) would satisfy �ux condition (5.53),

77



i.e., ∫
σ

V (N)(x′, t)dx′ = F̃ (N)(t) = F (t)−
∫
σ

v(N)(x′, t)dx′ − α(N), (5.64)

where α(N) =
∫
σ

(v0 − v
(N)
0 )dx′. We notice, that α(N) → 0 as N → ∞, and that there

holds the compatibility condition

F̃ (N)(0) = 0 ∀N ≥ 1. (5.65)

The Cauchy problem (5.63) can be rewritten as
d

dt
y

(N)
k (t) +

N∑
j=1

(
ν

α
+mkj(t))y

(N)
k (t) = q(N)(t)βk,

y
(N)
k (0) = 0, k = 1, ..., N,

where mkj(t) = −
∫
σ

(
ν

α
wkwj − (U′(N) · ∇)wj(wk − α∆wk))dx

′, βk =
∫
σ

wkdx
′, or in the

vector form 
d

dt
Y(N)(t) + (J(N) + A(N)(t))Y(N)(t) = q(N)(t)β(N),

Y(N)(0) = 0,
(5.66)

where

Y(N)(t) =

 y
(N)
1 (t)

...

y
(N)
N (t)

 , β(N) =

 β1

...

βN

 ,

J(N) = diag(
ν

α
, ...,

ν

α
) - diagonal matrix, A(N) is (N ×N) matrix with elements mkj(t).

Lemma 5.4. Suppose that q(N) ∈ L2(0, T ) and U′(N) ∈ V̊(σT ) satis�es (5.61) with

su�ciently small δ0 and condition (5.65) holds. Then there exist a unique solution

Y(N) ∈ W 1
2 (0, T ) of Cauchy problem (5.66).

The proof of this lemma literally repeats the proof of Lemma 5.4.

The fundamental matrix Z(N)(t) of problem (5.66) is the solution of the matrix Cauchy

problem

Z(N)′(t) + (J(N) + A(N)(t))Z(N)(t) = O, Z(N)(0) = E(N), (5.67)

where E(N) is the unit matrix and O is zero matrix. The solution Y(N)(t) of problem

(5.66) can be represented in the form
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Y(N)(t) =
t∫

0

Z(N)(t)(Z(N)(τ))−1β(N)q(N)(τ)dτ. (5.68)

We �nd the functions q(N)(t) from �ux condition (5.64). Substituting V (N)(x′, t) into

(5.64) gives

F̃ (N)(t) =
∫
σ

V (N)(x′, t)dx′ =
N∑
k=1

y
(N)
k (t)

∫
σ

wk(x
′)dx′ = Y(N)(t) · β(N)

= β(N) ·
t∫

0

Z(N)(t)(Z(N)(τ))−1β(N)q(N)(τ)dτ.

Thus, q(N)(t) has to be found as the solution of the Volterra integral equation of the

�rst kind
t∫

0

β(N) · Z(N)(t)(Z(N)(τ))−1β(N)q(N)(τ)dτ = F̃ (N)(t).

Di�erentiating the last equation and using (5.67), we reduce it to the Volterra integral

equation of the second kind

−
t∫

0

β(N)

|β(N)|2
· (J(N) + A(N)(t))Z(N)(t)(Z(N)(τ))−1β(N)q(N)(τ)dτ

+q(N)(t) =
1

|β(N)|2
d

dt
F̃ (N)(t)

(5.69)

with the kernel

K(N)(t, τ) =
β(N)

|β(N)|2
· (J(N) + A(N)(t))Z(N)(t)(Z(N)(τ))−1β(N).

For any �xed N the kernel K(N)(t, τ) is bounded for all 0 ≤ τ ≤ t and, hence, K(N) ∈
L2(QT ), QT = (0, T )× (0, T ). Therefore, for any

d

dt
F̃ (N) ∈ L2(0, T ) there exists a unique

solution q(N) ∈ L2(0, T ) of integral equation (5.69) and the following estimate

‖q(N)‖L2(0,T ) ≤ CN‖
d

dt
F̃ (N)‖L2(0,T ) (5.70)

holds (see, for example, [84]). The constant CN in (5.70) depends on the kernel K(N)(t, τ),

and we cannot say in advance that CN stay bounded as N →∞. In the next section we

will prove uniform with respect to N estimates for (V (N)(x′, t), q(N)(t)).

79



5.4 A priori estimates for inverse problem (5.8)

Lemma 5.5. Suppose that ∂σ ∈ C4, U′(N) ∈ V̊(σT ) is given and satis�es condition

(5.61) with su�ciently small δ0, F̃
(N) ∈ W 1

2 (0, T ) and satis�es condition (5.65). Then

for (V (N)(x′, t), q(N)(t)) the following estimate

sup
t∈[0,T ]

‖V (N)‖2
X̊ (σ)

+ ‖V (N)‖2
W̊(σT )

+ ‖q(N)‖2
L2(0,T ) ≤ c‖F̃ (N)‖2

W 1
2 (0,T )

. (5.71)

holds. Here the constant c is independent of N .

Proof. Multiply equalities (5.63) by y(N)
k (t) and sum them by k from 1 to N :

1

2

d

dt

∫
σ

(|V (N)|2 + α|∇V (N)|2)dx′ + ν
∫
σ

|∇V (N)|2dx′

= q(N)(t)
∫
σ

V (N)dx′ + α
∫
σ

(U′(N) · ∇)V (N)∆V (N)dx′

≤ |q(N)(t)F̃ (N)(t)|+ α sup
x′∈σ
|U′(N)|‖∇V (N)‖L2(σ)‖∆V (N)‖L2(σ)

≤ ε

2
|q(N)(t)|2 +

1

2ε
|F̃ (N)(t)|2

+cδ0‖∇V (N)‖L2(σ)

(
‖∇(V (N) −∆V (N))‖L2(σ) + ‖∇V (N)‖L2(σ)

)
≤ ε

2
|q(N)(t)|2 +

1

2ε
|F̃ (N)(t)|2

+c1δ0‖∇V (N)‖2
L2(σ) + cδ0‖∇(V (N) −∆V (N))‖2

L2(σ).

Here we have applied Cauchy inequality with ε > 0, inequalities (5.9), (5.61), and the

fact that
d

dt
y

(N)
k (t) =

∫
σ

( ∂
∂t
U

(N)
3 wk + α∇ ∂

∂t
U

(N)
3 · ∇wk

)
dx′.

If c1δ0 ≤
ν

2
, then the last inequality yields

d

dt

∫
σ

(|V (N)|2 + α|∇V (N)|2)dx′ + ν
∫
σ

|∇V (N)|2dx′

≤ cδ0‖∇(V (N) −∆V (N))‖2
L2(σ) + ε|q(N)(t)|2 + c|F̃ (N)(t)|2.

(5.72)

Denote

Φ(N)(x′, t) = (U′(N) · ∇)(V (N) − α∆V (N))− ν∆V (N) − q(N)(t). (5.73)

Since the eigenfunctions wk ∈ W 4
2 (σ), it follows that Φ(N) ∈ W 1

2 (σ).
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Let us rewrite equalities (5.63) in the form

∫
σ

(
∂

∂t
V (N)wk + α∇ ∂

∂t
V (N) · ∇wk)dx′ +

∫
σ

Φ(N)wkdx
′ = 0. (5.74)

From this point, following the ideas of [13], [15], we will use the speci�c form of the basis

{wk}k≥1. Denote by W (N)(·, t) ∈ W̊ 1
2 (σ) ∩W 3

2 (σ) the solution of the following problem{
−α∆W (N) +W (N) = Φ(N),

W (N)|∂σ = 0.
(5.75)

Then ∫
σ

(α∇W (N) · ∇η +W (N)η)dx′ =
∫
σ

Φ(N)ηdx′ ∀ η ∈ W̊
1

2(σ). (5.76)

Taking in (5.76) η = wk, from (5.74) we obtain the relations

∫
σ

(
∂

∂t
V (N)wk + α∇ ∂

∂t
V (N) ·∇wk)dx′ +

∫
σ

(W (N)wk+α∇W (N) ·∇wk)dx′=0.

Using the de�nition of the eigenfunctions wk (see (5.13)) we can rewrite the last equalities

in the form

1

λk

∫
σ

( ∂
∂t
V (N)wk+α∇ ∂

∂t
V (N) · ∇wk+∇(

∂

∂t
V (N)−α∆

∂

∂t
V (N)) · ∇(

∂

∂t
wk−α∆

∂

∂t
wk)dx

′

+
1

λk

∫
σ

(
W (N)wk+α∇W (N) ·∇wk+∇(

∂

∂t
W (N)−α∆

∂

∂t
W (N))·∇(

∂

∂t
wk−α∆

∂

∂t
wk)dx

′ = 0.

Multiplying these relations by λky
(N)
k (t) and summing from 1 to N yields

1

2

d

dt

∫
σ

(
|V (N)|2 + α|∇V (N)|2 + |∇(V (N) − α∆V (N))|2

)
dx′

+
∫
σ

(
W (N)V (N) + α∇W (N) · ∇V (N)

)
dx′

+
∫
σ

∇(W (N) − α∆W (N)) · ∇(V (N) − α∆V (N))dx′ = 0.

From (5.75), (5.76) it follows that

1

2

d

dt

∫
σ

(
|V (N)|2 + α|∇V (N)|2 + |∇(V (N) − α∆V (N))|2

)
dx′

+
∫
σ

Φ(N)V (N)dx′ +
∫
σ

∇(V (N) − α∆V (N)) · ∇Φ(N)dx′ = 0.
(5.77)
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Substituting the expression (5.73) of Φ(N) into (5.77) gives

1

2

d

dt

∫
σ

(
|V (N)|2 + α|∇V (N)|2 + |∇(V (N) − α∆V (N))|2

)
dx′

+α
∫
σ

U′(N) · ∇V (N)∆V (N)dx′ + ν
∫
σ

|∇V (N)|2dx′

+
∫
σ

∇
[
(U′(N) · ∇)(V (N) − α∆V (N))

]
· ∇(V (N) − α∆V (N))dx′

+
ν

α

∫
σ

|∇(V (N) − α∆V (N))|2dx′

−ν
α

∫
σ

∇V (N) · ∇(V (N) − α∆V (N))dx′ = q(N)(t)
∫
σ

V (N)dx′.

(5.78)

The fourth integral in (5.78) contains the term having fourth order derivatives of V (N).

However, it can be estimated by the integral containing derivatives of V (N) only up to the

third order. The calculations below are correct because elements wk of the basis belong

to the space W 4
2 (σ). Denote for simplicity V (N) − α∆V (N) = R(N) and {∇U′(N) · ∇} =

∇U (N)
1

∂

∂x1

+∇U (N)
2

∂

∂x2

. Integrating by parts and applying (5.61) we obtain

∫
σ

∇
(
(U′(N) · ∇)(V (N) − α∆V (N))

)
· ∇(V (N) − α∆V (N))dx′

=
∫
σ

∇
(
(U′(N) · ∇)R(N)

)
· ∇R(N)dx′ =

∫
σ

{∇U′(N) · ∇}R(N) · ∇R(N)dx′

+
∫
σ

(U′(N) · ∇)∇R(N) · ∇R(N)dx′ =
∫
σ

{∇U′(N) · ∇}R(N) · ∇R(N)dx′

+
1

2

∫
σ

(U′(N) · ∇)|∇R(N)|2dx′ =
∫
σ

{∇U′(N) · ∇}R(N) · ∇R(N)dx′

−1

2

∫
σ

∇ ·U′(N)|∇R(N)|2dx′ =
∫
σ

{∇U′(N) · ∇}R(N) · ∇R(N)dx′

≤ c
∫
σ

|∇U′(N)‖∇R(N)|2dx′ ≤ c sup
x′∈σ
|∇U′(N)|

∫
σ

|∇R(N)|2dx′

≤ cδ0

∫
σ

|∇R(N)|2dx′ = cδ0

∫
σ

|∇V (N) − α∇∆V (N)|2dx′.

(5.79)

Using (5.79) from (5.78) we derive the estimate

1

2

d

dt

∫
σ

(
|V (N)|2 + α|∇V (N)|2 + |∇(V (N) − α∆V (N))|2

)
dx′

+ν
∫
σ

|∇V (N)|2dx′ + ν

α

∫
σ
|∇(V (N) − α∆V (N))|2dx′

= α
∫
σ

U′(N) · ∇∆V (N)V (N)dx′ +
ν

α

∫
σ

∇V (N) · ∇(V (N) − α∆V (N))dx′

+
∫
σ

∇
(
(U′(N) · ∇)(V (N) − α∆V (N))

)
· ∇(V (N) − α∆V (N))dx′
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+q(N)(t)
∫
σ

V (N)dx′ ≤ α sup
x′∈σ
|U′(N)|‖∇∆V (N)‖L2(σ)‖V (N)‖L2(σ)

+
ν

α
‖∇V (N)‖L2(σ)‖∇(V (N) − α∆V (N))‖L2(σ) + |q(N)(t)F̃ (N)(t)|

+cδ0

∫
σ

|∇(V (N) − α∆V (N))|2dx′ ≤
(
c2δ0 +

µ

2

) ∫
σ

|∇(V (N) −∆V (N))|2dx′

+
(
c3δ0 +

1

2µ

) ∫
σ

|∇V (N)|2dx′ + ε

2
|q(N)(t)|2 +

1

2ε
|F̃ (N)(t)|2.

Taking µ =
ν

4α
and assuming that δ0 is su�ciently small: c2δ0 ≤

ν

4α
, c3δ0 ≤

ν

2
, from the

latter inequality we obtain

d

dt

∫
σ

(
|V (N)|2 + α|∇V (N)|2 + |∇(V (N) − α∆V (N))|2

)
dx′ + ν

∫
σ

|∇V (N)|2dx′

+
ν

α

∫
σ

|∇(V (N) − α∆V (N))|2dx′ ≤ c
(
|F̃ (N)(t)|2 +

∫
σ

|∇V (N)|2dx′
)

+ ε|q(N)(t)|2.
(5.80)

Integrating inequality (5.72) with respect to t yields

∫
σ

(
|V (N)|2 + α|∇V (N)|2

)
dx′ + ν

t∫
0

∫
σ

|∇V (N)|2dx′dτ

≤ cδ0

t∫
0

∫
σ

|∇(V (N) − α∆V (N))|2dx′dτ + ε
t∫

0

|q(N)(τ)|2dτ + c
t∫

0

|F̃ (N)(τ)|2dτ.
(5.81)

On the other hand, integrating inequality (5.80) and applying (5.81) we derive∫
σ

(
|V (N)|2 + α|∇V (N)|2 + |∇(V (N) − α∆V (N))|2

)
dx′

+ν
t∫

0

∫
σ

|∇V (N)|2dx′dτ +
ν

α

t∫
0

∫
σ

|∇(V (N) − α∆V (N))|2dx′dτ

≤ cε
t∫

0

|q(N)(τ)|2dτ + c
t∫

0

|F̃ (N)(τ)|2dτ + c4δ0

t∫
0

∫
σ

|∇(V (N) − α∆V (N))|2dx′dτ.

(5.82)

If c4δ0 ≤
1

2
, then from (5.82) follows the estimate∫

σ

(
|V (N)|2 + α|∇V (N)|2 + |∇(V (N) − α∆V (N))|2

)
dx′

+
t∫

0

∫
σ

(
ν|∇V (N)|2 + |∇(V (N) − α∆V (N))|2

)
dx′dτ

≤ cε
t∫

0

|q(N)(τ)|2dτ + c
t∫

0

|F̃ (N)(τ)|2dτ.

(5.83)
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Multiply equalities (5.63) by
d

dt
y

(N)
k (t) and sum them by k from 1 to N :

∫
σ

(
| ∂
∂t
V (N)|2 + α|∇ ∂

∂t
V (N)|2

)
dx′ +

ν

2

d

dt

∫
σ
|∇V (N)|2dx′

=
∫
σ

(U′(N) · ∇)(V (N) − α∆V (N))
∂

∂t
V (N)dx′ +

∫
σ

q(N)(t)
∂

∂t
V (N)dx′

≤ 1

2
sup
x′∈σ
|U′(N)|2

∫
σ

|∇(V (N) − α∆V (N))|2dx′ + 1

2

∫
σ

| ∂
∂t
V (N)|2dx′

+
ε

2
|q(N)(t)|2dx′ + 1

2ε
| d
dt
F̃ (N)(t)|2.

Integrating this inequality with respect to t and applying (5.61) and (5.83) we get

ν
∫
σ

|∇V (N)|2dx′ +
t∫

0

∫
σ

(
| ∂
∂τ
V (N)|2 + α|∇ ∂

∂τ
V (N)|2

)
dx′dτ

≤ cε
t∫

0

|q(N)(τ)|2dx′dτ + c
t∫

0

| d
dτ
F̃ (N)(τ)|2dτ.

(5.84)

Let ω ∈ W̊ 1
2 (σ) be the solution of the Dirichlet problem for the Poisson equation on

σ: {
−∆ω(x′) = 1,

ω(x′)|∂σ = 0.
(5.85)

If ∂σ ∈ C2, then ω ∈ W 2
2 (σ), and ω(x′) can be expressed by the Fourier series

ω(x′) =
∞∑
k=1

γkwk(x
′), γk =

∫
σ

ω(x′)wk(x
′)dx′,

which converges in the space W 2
2 (σ). Multiply (5.63) by γk and sum obtained relations

from 1 to N :

∫
σ

( ∂
∂t
V (N)ω(N)(x′) + α∇ ∂

∂t
V (N) · ∇ω(N)

)
dx′ + ν

∫
σ

∇V (N) · ∇ω(N)dx′

+
∫
σ

(U′(N) · ∇)(V (N) − α∆V (N))ω(N)dx′ = q(N)(t)
∫
σ

ω(N)dx′,
(5.86)

where ω(N)(x′) =
N∑
k=1

γkwk(x
′). In virtue of (5.85) and the �ux condition (5.53) we have

∫
σ

∇V (N) · ∇ω(N)dx′ =

∫
σ

∇V (N) · ∇ωdx′ +
∫
σ

∇V (N) · ∇(ω(N) − ω)dx′
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= −
∫
σ

V (N)∆ωdx′ +
∫
σ

∇V (N) · ∇(ω(N) − ω)dx′

= F̃ (N)(t) +
∫
σ

∇V (N) · ∇(ω(N) − ω)dx′,

and, analogously,∫
σ

∇ ∂

∂t
V (N) · ∇ω(N)dx′ =

d

dt
F̃ (N)(t) +

∫
σ

∇ ∂

∂t
V (N) · ∇(ω(N) − ω)dx′.

Therefore, relation (5.86) can be rewritten as

∫
σ

∂

∂t
V (N)ω(N)dx′ + α

d

dt
F̃ (N)(t) + α

∫
σ

∇ ∂

∂t
V (N) · ∇(ω(N) − ω)dx′

+νF̃ (N)(t) + ν
∫
σ

∇V (N) · ∇(ω(N) − ω)dx′

+
∫
σ

(U′(N) · ∇)(V (N) − α∆V (N))ω(N)dx′ = q(N)(t)
∫
σ

ω(N)dx′.

Let us estimate the functions q(N)(t). From the last equality it follows that

κ0q
(N)(t) =

∫
σ

∂

∂t
V (N)ω(N)dx′ + α

d

dt
F̃ (N)(t) + νF̃ (N)(t)

+α
∫
σ

∇ ∂

∂t
V (N) · ∇(ω(N) − ω)dx′ + ν

∫
σ

∇V (N) · ∇(ω(N) − ω)dx′

+
∫
σ

(U′(N) · ∇)(V (N) − α∆V (N))ω(N)dx′ + q(N)(t)
∫
σ

(ω − ω(N))dx′,

where κ0 =
∫
σ

ω(x′)dx′ > 0. Therefore,

κ2
0

t∫
0

|q(N)(τ)|2dτ ≤ c
( ∫
σ

|ω(N)|2dx′
t∫

0

∫
σ

| ∂
∂τ
V (N)|2dx′dτ + α2

t∫
0

| d
dτ
F̃ (N)(τ)|2dτ

+ν2
t∫

0

|F̃ (N)(τ)|2dτ + α2
∫
σ

|∇(ω(N) − ω)|2dx′
t∫

0

∫
σ

| ∂
∂τ
∇V (N)|2dx′

+ν2
∫
σ

|∇(ω(N) − ω)|2dx′
t∫

0

∫
σ

|∇V (N)|2dx′

+
(

sup
x′∈σ̄
|ω(N)(x′)|2

)
sup
τ∈[0,t]

( ∫
σ

|U′(N)|2dx′
) t∫

0

∫
σ

|∇(V (N) − α∆V (N))|2dx′dτ

+
∫
σ

|∇(ω − ω(N))|2dx′
t∫

0

|q(N)(τ)|2dτ.
)
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Since ‖ω − ω(N)‖W 1
2 (σ) → 0 as N →∞, the last inequality and (5.61) yield

t∫
0

|q(N)(τ)|2dτ ≤ c
( t∫

0

∫
σ

| ∂
∂τ
V (N)|2dx′dτ +

t∫
0

| d
dτ
F̃ (N)(τ)|2dτ

+
t∫

0

(
|F̃ (N)(τ)|2dτ +

t∫
0

∫
σ

|∇(V (N) − α∆′V (N))|2dx′dτdτ
)
.

(5.87)

On the other hand, from (5.83), (5.84) we establish∫
σ

(
|V (N)|2 + (ν + α)|∇V (N)|2 + |∇(V (N) − α∆V (N))|2

)
dx′

+ν
t∫

0

∫
σ

|∇V (N)|2dx′dτ +
t∫

0

∫
σ

|∇(V (N) − α∆V (N))|2dx′dτ

+
t∫

0

∫
σ

(| ∂
∂τ
V |2 + |∇ ∂

∂τ
V |2)dx′dτ

≤ c
t∫

0

(
|F̃ (N)(τ)|2 + | d

dτ
F̃ (N)(τ)|2

)
dτ + cε

t∫
0

|q(N)(τ)|2dτ.

(5.88)

For su�ciently small ε from (5.87) and (5.88) follows the estimate

t∫
0

|q(N)(τ)|2dτ ≤ c
t∫

0

(
|F̃ (N)(τ)|2 + | d

dτ
F̃ (N)(τ)|2

)
dτ. (5.89)

Estimate (5.71) is the consequence of (5.83), (5.84), (5.89) and the de�nitions of the

norms. �

From Lemmas 5.1 and 5.2 follows

Lemma 5.6. Suppose that ∂σ ∈ C4, f3 ∈ W 1,0
2 (σT ), v0 ∈ W 3

2 (σ)∩W̊ 1
2 (σ), F ∈ W 1

2 (0, T ),

U′(N) ∈ V̊(σT ) are given and U′(N) satisfy condition (5.61) with su�ciently small δ0.

Assume that the necessary compatibility condition F (0) =
∫
σ

v0(x′)dx′ is valid. Then for

the approximate solution (U
(N)
3 (x′, t), q(N)(t)) the following estimate

sup
t∈[0,T ]

‖U (N)
3 ‖2

X̊ (σ)
+ ‖U (N)

3 ‖2
W̊(σT )

+ ‖q(N)‖2
L2(0,T )

≤ C3

(
‖f3‖2

W 1,0
2 (σT )

+ ‖F‖2
W 1

2 (0,T )
+ ‖v0‖2

X̊ (σ)

) (5.90)

holds. The constant C3 in (5.90) is independent of N .

Proof. The approximate solution (U
(N)
3 , q(N)) has the form (U

(N)
3 , q(N)) = (v(N), 0) +

(V (N), q(N)) (see Section 5.2), where for (V (N), q(N)) holds estimate (5.71) and for v(N) -
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estimate (5.30). Hence, to prove (5.90) we have only to estimate the norm of F̃ (N)(t).

The functions F̃ (N)(t) are de�ned by (5.64). Therefore,

‖F̃ (N)‖2
W 1

2 (0,T )
≤ c
(
‖F‖2

W 1
2 (0,T )

+
T∫
0

(
‖v(N)‖2

L2(σ) + ‖ ∂
∂t
v(N)‖2

L2(σ)

)
dτ

+
T∫
0

|αN |2dτ
)
≤ c
(
‖F‖2

W 1
2 (0,T )

+ ‖f3‖2
W 1

2 (σT )
+ ‖v0‖2

X̊ (σ)

)
.

(5.91)

Here we have used (5.25) and the obvious estimate

T∫
0

|αN |2dτ ≤ T |αN |2 = T
( ∫
σ

(
v0 − v(N)

0

)
dx′
)2 ≤ T |σ|‖v0 − v(N)

0 ‖2
L2(σ) ≤ c‖v0‖2

L2(σ).

Inequality (5.90) follows from (5.25), (5.71) and (5.91). �

Theorem 5.4. Suppose that ∂σ ∈ C4, u′0, v0 ∈ W 3
2 (σ) ∩ W̊ 1

2 (σ), F ∈ W 1
2 (0, T ), f ′ ∈

L2(σT ), curl f ′ ∈ L2(σT ), f3 ∈ W 1,0
2 (σT ) and that the necessary compatibility condition

F (0) =
∫
σ

v0(x′)dx′

is valid. Assume that the data satisfy the conditions

‖f ′‖2
L2(σT ) + ‖curl f ′‖2

L2(σT ) + ‖u′0‖2
Y̊(σ)
≤ µ0δ

2
0,

‖F‖2
W 1

2 (0,T )
+ ‖f3‖2

W 1,0
2 (σT )

+ ‖v0‖2
X̊ (σ)
≤ µ0δ

2
0,

(5.92)

where

µ0 = min
{ 1

C1C2
0

,
1

2C2C2
0

, 1
}
, (5.93)

C0 and δ0 are constants from inequality (5.61), C1, C2 and C3 are constants from estimates

(5.54), (5.55) and (5.90) respectively, δ0 is "su�ciently small", i.e.,

C3δ0 ≤ 1, (5.94)

and such that Lemma 5.3 is valid. Then the approximate solution
(
U′(N), U

(N)
3 , q(N)

)
∈

V̊(σT )× W̊(σT )× L2(0, T ) of problem (5.8) satis�es the following estimate
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sup
t∈[0,T ]

(
‖U′(N)‖2

Y̊(σ)
+ ‖U (N)

3 ‖2
X̊ (σ)

)
+ ‖U′(N)‖2

V̊(σT )
+ ‖U (N)

3 ‖2
W̊(σT )

+‖q(N)‖2
L2(0,T ) ≤ c

(
‖f ′‖2

L2(σT ) + ‖curl f ′‖2
L2(σT ) + ‖u′0‖2

Y̊(σ)

+
(
‖f3‖2

W 1,0
2 (σT )

+ ‖v0‖2
X̊ (σ)

+ ‖F‖2
W 1

2 (0,T )

)
×

×
(
1 + ‖f3‖2

W 1,0
2 (σT )

+ ‖v0‖2
X̊ (σ)

+ ‖F‖2
W 1

2 (0,T )

))
.

(5.95)

Proof. For the approximation U′(1)(x′, t) holds inequality (5.54) and from condition

(5.93) we see that U′(1)(x′, t) satis�es inequality (5.61), i.e.,

C0 sup
t∈[0,T ]

‖U′(1)‖Y̊(σ) ≤ δ0.

Therefore, we can �nd
(
U

(1)
3 , q(1)

)
and by (5.90)

sup
t∈[0,T ]

‖U (1)
3 ‖2

X̊ (σ)
+ ‖U (1)

3 ‖2
W̊(σT )

≤ C3

(
‖f3‖2

W 1,0
2 (σT )

+ ‖F‖2
W 1

2 (0,T )
+ ‖v0‖2

X̊ (σ)

)
≤ C3µ0δ

2
0.

Now, applying successively inequalities (5.55) and (5.90), and using (5.92), (5.93), (5.94)

we obtain the estimates

sup
t∈[0,T ]

‖U (N)
3 ‖2

X̊ (σ)
+ ‖U (N)

3 ‖2
W̊(σT )

≤ C3µ0δ
2
0 ∀N ≥ 1,

C2
0 sup
t∈[0,T ]

‖U′(N)‖2
Y̊(σ)
≤ δ2

0C
2
0C2µ0(1 + C2

3µ0δ
2
0) ≤ δ2

0 ∀N ≥ 1.

Thus, condition (5.61) is valid for all N ≥ 1. Therefore, Galerkin approximations(
U′(N), U

(N)
3 , q(N)

)
are de�ned ∀N ≥ 1. Estimate (5.95) follows from (5.55) and (5.90).

�

Remark 5.3. In the case when u′0 = 0, f ′ = 0 (i.e., the external force and the initial

velocity are directed along the axis of the cylinder) from inequalities (5.90) and (5.92) we

get
sup
t∈[0,T ]

‖U (N)
3 ‖2

X̊ (σ)
+ ‖U (N)

3 ‖2
W̊(σT )

+ ‖q(N)‖2
L2(0,T ) ≤ C3µ0δ

2
0. (5.96)

Substituting (5.96) into inequality (5.55) we obtain

sup
t∈[0,T ]

‖U′(N)‖2
Y̊(σ)

+ ‖U′(N)‖2
V̊(σT )

≤ C2C
2
3µ

2
0δ

4
0. (5.97)
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Estimates (5.96), (5.97) shows, in particular, that the velocity components U (N)
1 and U (N)

2

are secondary in comparison with the axial velocity U (N)
3 .

5.5 Existence and uniqueness of the solution to inverse

problem (5.8)

Theorem 5.5. Suppose that ∂σ ∈ C4, and the data u0(x′), f(x′, t), F (t) satisfy the

condition of Theorem 5.4. Then problem (5.8) admits a unique weak solution (U′, U3, q) ∈
V̊(σT )× W̊(σT )× L2(0, T ) and the following estimate

sup
t∈[0,T ]

(
‖U′‖2

Y̊(σ)
+ ‖U3‖2

X̊ (σ)

)
+ ‖U′‖2

V̊(σT )
+ ‖U3‖2

W̊(σT )
+ ‖q‖2

L2(0,T )

≤ c
(
‖f ′‖2

L2(σT ) + ‖curl f ′‖2
L2(σT ) + ‖u′0‖2

Y̊(σ)

+
(
‖f3‖2

W 1,0
2 (σT )

+ ‖v0‖2
X̊ (σ)

+ ‖F‖2
W 1

2 (0,T )

)
×

×
(
1 + ‖f3‖2

W 1,0
2 (σT )

+ ‖v0‖2
X̊ (σ)

+ ‖F‖2
W 1

2 (0,T )

))
.

(5.98)

holds.

Proof. Let η(M) = (η′(M), η
(M)
3 ) with

η′(M)(x′, t) =
M∑
k=1

dk(t)wk(x
′), η

(M)
3 (x′, t) =

M∑
k=1

gk(t)wk(x
′), (5.99)

where dk(t) and gk(t) are arbitrary functions from C∞[0, T ]. Multiplying equalities (5.50),

(5.52) by dk(t) and (5.51) by gk(t), integrating by t, summing these relations by k from

1 to M (M ≤ N), and then summing the obtained integral identities, we obtain

t∫
0

∫
σ

(
∂

∂τ
U(N) · η(M) + α∇ ∂

∂τ
U(N) · ∇η(M))dx′dτ

+ν
t∫

0

∫
σ

∇U(N) · ∇η(M)dx′dτ +
t∫

0

∫
σ

(U(N) · ∇)U(N) · η(M)dx′dτ

+α
t∫

0

∫
σ

(U(N) · ∇)η(M) ·∆U(N)dx′dτ − α
t∫

0

∫
σ

(η
(M)
3 · ∇)U′(N) ·∆U′(N)dx′dτ

+α
t∫

0

∫
σ

∇U (N−1)
3 · η′(M)(U

(N−1)
3 − α∆U

(N−1)
3 )dx′dτ

=
t∫

0

∫
σ

f (N) · η(M)dx′dτ +
t∫

0

∫
σ

q(N)η
(M)
3 dx′dτ.

(5.100)
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From inequality (5.95) it follows that the sequence
{
U′(N)

}
N≥1

is bounded in the space

V̊(σT ),
{
U

(N)
3

}
N≥1

is bounded in W̊(σT ) and
{
q(N)

}
N≥1

is bounded in L2(0, T ). Moreover,

for almost all t ∈ (0, T ) the sequences
{
U′(N)(·, t)

}
N≥1

and
{
U

(N)
3 (·, t)

}
N≥1

are bounded

in Y̊(σ) and X̊ (σ), respectively. Therefore, there exist subsequences
{
U′(Nl)

}
,
{
U

(Nl)
3

}
and

{
q(Nl)

}
such that

U′(Nl)(·, t) ⇁ U′(·, t) in Y̊(σ), for almost all t ∈ (0, T ),

U
(Nl)
3 (·, t) ⇁ U3(·, t) in X̊ (σ) for almost all t ∈ (0, T ),

U′(Nl) ⇁ U′ in V̊(σT ), U
(Nl)
3 ⇁ U3 in W̊(σT ),

q(Nl)(t) ⇁ q(t) in L2(0, T ).

Let us �x η(M) in (5.100). Using Sobolev Embedding Theorem it is easy to prove that

passing in (5.100) to a limit as Nl →∞ we get the following integral identity

t∫
0

∫
σ

(
∂

∂τ
U · η(M) + α∇ ∂

∂τ
U · ∇η(M))dx′dτ

+ν
t∫

0

∫
σ

∇U · ∇η(M)dx′dτ +
t∫

0

∫
σ

(U · ∇)U · η(M)dx′dτ

+α
t∫

0

∫
σ

(U · ∇)η(M) ·∆Udx′dτ − α
t∫

0

∫
σ

(η(M) · ∇)U ·∆Udx′dτ

=
t∫

0

∫
σ

fη(M)dx′dτ +
t∫

0

∫
σ

qη
(M)
3 dx′dτ.

(5.101)

The eigenfunctions wk(x
′) constitute basis in Y̊(σ) and wk(x′) constitute basis in X̊ (σ).

Therefore, the linear combinations η′(M)(x′, t) and η
(M)
3 (x′, t) (see (5.99)) are dense in

V̊(σT ) and W̊(σT ), respectively, and we can conclude that the integral identity (5.101) is

valid for arbitrary η = (η′, η3) ∈ V̊(σT ) × W̊(σT ). Moreover, U3 satis�es �ux condition

(5.46). Hence, by the de�nition
(
U, q

)
is a weak solution of problem (5.8). Obviously,

for the limit functions U′, U3, q estimate (5.95) remains valid, i.e., we get estimate (5.98).

Let us prove the uniqueness. Assume that
(
U[1], q[1]

)
and

(
U[2], q[2]

)
are two weak

solutions of problem (5.8). The di�erences V = U[2] − U[1], S = q[2] − q[1] satisfy the

integral identity
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t∫
0

∫
σ

(
∂

∂τ
V · η + α∇ ∂

∂τ
V · ∇η)dx′dτ + ν

t∫
0

∫
σ

∇V · ∇ηdx′dτ

+
t∫

0

∫
σ

(
(U[1] · ∇)V · η + (V · ∇)U[2] · η)dx′dτ

+α
t∫

0

∫
σ

(
(V · ∇)η ·∆U[1] + (U[2] · ∇)η ·∆V

)
dx′dτ

−α
t∫

0

∫
σ

(
(η · ∇)V ·∆U[1] + (η · ∇)U[2] ·∆V

)
dx′dτ

=
t∫

0

S(t)
∫
σ

η3dx
′dτ ∀η ∈ W̊

1,0

2 (σT ) with div η′ = 0.

(5.102)

Take in (5.102) η = V:

1

2

∫
σ

(|V|2 + α|∇V|2)dx′ + ν
t∫

0

∫
σ

|∇V|2dx′dτ

+
t∫

0

∫
σ

(
V · ∇)U[2] ·V + α(U[2] · ∇)V ·∆V

−α(V · ∇)U[2] ·∆V
)
dx′dτ =

t∫
0

S(τ)
∫
σ

(
U

[1]
3 − U

[2]
3

)
dx′dτ

=
t∫

0

S(τ)
(
F (τ)− F (τ)

)
dτ = 0.

(5.103)

Let us estimate the third integral (which we denote J) on the left-hand side of the

last equality. We have

∣∣ t∫
0

∫
σ

(
V · ∇)U[2] ·Vdx′dτ

∣∣ ≤ t∫
0

‖∇U[2]‖L2(σ)‖V‖2
L4(σ)dτ ≤ c

t∫
0

‖∇U[2]‖L2(σ)‖∇V‖2
L2(σ)dτ.

Further, integrating by part yields

α
∣∣ t∫

0

∫
σ

(U[2] · ∇)V ·∆Vdx′dτ
∣∣

= α
∣∣ 2∑
i=1

( t∫
0

∫
σ

( ∂
∂xi

U[2] · ∇
)
V · ∂

∂xi
Vdx′dτ +

t∫
0

∫
σ

(
U[2] · ∇

) ∂
∂xi

V · ∂
∂xi

Vdx′dτ
)∣∣

= α
∣∣ 2∑
i=1

t∫
0

∫
σ

( ∂
∂xi

U[2] · ∇
)
V · ∂

∂xi
Vdx′dτ

∣∣ ≤ c
t∫

0

‖∇U[2]‖L∞(σ)‖∇V‖2
L2(σ)dτ

and
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α
∣∣ t∫

0

∫
σ

(V · ∇)U[2] ·∆V
)
dx′dτ

∣∣ = α
∣∣ 2∑
i=1

( t∫
0

∫
σ

( ∂
∂xi

V · ∇
)
U[2] · ∂

∂xi
Vdx′dτ

+
t∫

0

∫
σ

(
V · ∇

) ∂
∂xi

U[2] · ∂
∂xi

Vdx′dτ
)∣∣ ≤ c

t∫
0

‖∇U[2]‖L∞(σ)‖∇V‖2
L2(σ)dτ

+c
t∫

0

‖∂2
x′U

[2]‖L4(σ)‖V‖L4(σ)‖∇V‖L2(σ)dτ

≤ c
t∫

0

(
‖∂2

x′U
[2]‖L∞(σ) + ‖∂2

x′U
[2]‖L4(σ)

)
‖∇V‖2

L2(σ)dτ.

Therefore,

|J | ≤ c sup
t∈[0,T ]

(
‖U[2]′(·, t)‖Y̊(σ) + ‖U [2]

3 (·, t)‖X̊ (σ)

) t∫
0

‖∇V‖2
L2(σ)dτ,

and from (5.103) follows the estimate

‖∇V(·, t)‖2
L2(σ)

≤ c sup
t∈[0,T ]

(
‖U[2]′(·, t)‖Y̊(σ) + ‖U [2]

3 (·, t)‖X̊ (σ)

) t∫
0

‖∇V(·, τ)‖2
L2(σ)dτ.

(5.104)

Since (5.98)

sup
t∈[0,T ]

(
‖U[2]′(·, t)‖Y̊(σ) + ‖U [2]

3 (·, t)‖X̊ (σ)

)
≤ const,

in virtue of the Gronwall's inequality, estimate (5.104) implies V(x′, t) = 0 ∀t ∈ [0, T ]

and, therefore, U[1] = U[2].

Taking now in (5.102) η = (0, η3) such that
∫
σ

η3(x′, t)dx′ = q[1](t)− q[2](t), we obtain

0 =
t∫

0

(q[1] − q[2])2dτ , and q[1](t) = q[2](t). �

Remark 5.4. Using the standard arguments (see, for example, [52]) it can be proved

that there exists the unique function p̃ = p̃(x′, t) such that p̃ ∈ L2(σT ),
∫
σ

p̃(x′, t)dx′ = 0

and the following integral identity
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t∫
0

∫
σ

(
∂

∂τ
U′ · η′ + α∇ ∂

∂τ
U′ · ∇η′)dx′dτ + ν

t∫
0

∫
σ

∇U′ · ∇η′dx′dτ

+
t∫

0

∫
σ

(U′ · ∇)U′ · η′dx′dτ + α
t∫

0

∫
σ

(U′ · ∇)η′ · 4U′dx′dτ

−α
t∫

0

∫
σ

(η′ · ∇)U′ · 4U′dx′dτ +
t∫

0

∫
σ

∇U3 · η′(U3 − α4U3)dx′dτ

=
t∫

0

∫
σ

p̃ div η′dx′dτ +
t∫

0

∫
σ

f ′ · η′dx′dτ ∀η′ ∈ W̊ 1,0
2 (σT )

is valid. The pressure corresponding to the weak solution of problem (5.8) has the form

p(x, t) = p̃(x′, t) + q(t)x3 + p0(t), where p0(t) is an arbitrary function.
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Conclusions

The second grade �uid �ow problem

∂

∂t
(u− α∆u)− ν∆u+ curl(u− α∆u)× u+∇p̃ = f,

divu = 0,

u|ST = 0, u(x, 0) = u0(x),∫
σ

undx
′ = F (t)

was studied in three di�erent unbounded domains:

• the two-dimensional channel,

• the three-dimensional axially symmetric pipe,

• the three-dimensional pipe with an arbitrary cross section.

In the �rst two cases the existence of a unique unidirectional Poiseuille type solution

is proved and the relation between the �ux of the velocity �eld and the pressure drop

(the gradient of the pressure) is found.

The analogous results were obtained for the time periodic problem

∂

∂t
(u− α∆u)− ν∆u+ curl(u− α∆u)× u+∇p̃ = f,

divu = 0,

u|ST = 0, u(x, 0) = u(x, 2π)∫
σ

undx
′ = F (t), F (0) = F (2π)

in the two-dimensional channel.

It is shown that in the three-dimensional pipe with an arbitrary cross section the

unidirectional solution does not exists even if data are unidirectional. However, for suf-
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�ciently small data in this case exists a unique solution having all three components(
u1(x1, x2, t), u2(x1, x2, t), u3(x1, x2, t)

)
of the velocity �eld u and the velocity compo-

nents
(
u1, u2

)
perpendicular to the x3-axis of the cylinder are secondary comparing with

u3.
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