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Introduction

In the thesis we study mathematical models of incompressible, homogeneous viscoelastic
second grade fluid flows in certain two- and three-dimensional unbounded domains II.

More precisely, we assume that the domain II is either the infinite channel IT = {z € R? :

(x1,m9) € 0 X R}, where 0 = [—g, g] with d > 0 denoting the width of the channel, or
the infinite cylinder IT = {z = (2/,23) € R® : (2/,23) € 0 x R}, where 2/ = (21, z2) and
o denotes the constant cross-section of the tube, i.e., o is bounded, connected subset of
R? independent of x3. We assume that the boundary 0o is C*-smooth. We are looking
for a solution to the second grade fluid flow problem having a prescribed time dependent
flux. Such problems are reduced to inverse problems with an unknown right-hand side
corresponding to the pressure drop along the axis of the cylinder.

In the two dimensional case and in the case of axially symmetric cylinder we prove
the global existence of a unique unidirectional flow and find the relationship between the
flux and the gradient of the pressure.

In a general three-dimensional pipe (without axial symmetry) we prove the existence
of a unique global solution for small data. We also prove that in the case of unidirectional
data the velocity components perpendicular to the axis of the cylinder are secondary.

Time-periodic problem for the second grade fluid flow in a channel is also studied.
For this problem we prove the existence of the unique solution and find the relationship

between the flux and the gradient of the pressure.

Actuality and history of the problem

The mechanical behavior of fluids are specified by constitutive equations. For long time
Navier-Stokes equation seemed to be most useful to describe non-Newtonian fluids mo-
tion. However, in many fields, such as food industry or bio-engineering, the fluids are

mixtures and cannot be described by the Navier-Stokes equations. Examples of such



combined fluids are gels, paints, oils, slurries, geological fluids, food products, blood, etc.
These liquids have strong non-Newtonian characteristics. It is difficult to suggest a single
model which would exhibit all properties of viscoelastic fluids. One of models to account
for the rheological effects of viscoelastic fluid is the second grade fluid flow model. It
belongs to the class of non-Newtonian Rivlin-Ericksen fluids of differential type (see [40],
|86]). This model describes a large class of viscous fluids with polymer additives and
viscoelastic liquids with "short memory". The equations governing the flow of the second
grade fluid are one order higher than the Navier-Stokes equations.

The stress tensor for the second grade fluid is given by [74]
T=pl+vA; + oAy + OZQA%

where

A, =Vu+ (Vu)l,

d
A2 = EAI + A1Vu + (VH)TAl,

p and u are the pressure and the velocity field, v is the coefficient of viscosity and aq, as

are coefficients of the material (usually called normal stress moduli). Considerations on

the stability of the rest state require v and oy to be nonnegative ([18], [21], [32], [41]).
For fluids of the second grade, we express the divergence of the stress tensor T as

follows

0
V-T=-Vp+vAu+ a;(=Au+u-VAu) + N;j(u) + Ny(u) + N3(u) (0.1)

ot
where
Nl('l].) = Oél(V'll)T . VAl,
Ng(u) = qu : (A1W - WA1>,
N3(u) = (a1 + )V - A}
with

W = %(Vu — (Vu)™).

The flow of the fluid can be expressed by linear momentum

p%u — V.- T = pf, (0.2)

where f denotes the external force, and, for simplicity, the constant density of the fluid p

is taken equal to 1. Substituting expression (0.1) into equation (0.2) and assuming that



the motion is incompressible we obtain the following system of equations

%(u —ajAu)+u-V(u—a;Au) — vAu+ Vp — Ny (u)
—Ny(u) — Nj(u) = f, (0.3)
diva = 0.

We consider the problem in the space-time region IT7 = II x (0,7), where II is
sufficiently smooth, bounded two- or three-dimensional domain, and 7" > 0. We assume
that the fluid adheres to the walls OII of the fixed container II:

u(z,t) =0, (x,t)€ 0l x (0,7T). (0.4)
Finally, we append the initial condition
u(z,0) =up(z), =e€ll (0.5)

Special cases of problem (0.3), (0.4), (0.5) have been considered by many authors.
Oskolkov has investigated the case when all N; = 0 (see [57], [58], [59]). Using “vanishing
viscosity” method he proved the existence and uniqueness of a global weak solution. In
1974, Dunn and Fosdick [21] showed that, in oder to make the fluid model consistent

with thermodynamics, the material constants must be taken to satisfy
v>0, a1 >0, ai+ay=0.

Moreover, they showed that the rest state is asymptotically stable just when previous
inequalities are strict. Instability results for a; < 0 have been found in some special
flow situations (see [18], [82]). In the thesis we recall the thermodynamical restriction
o1 + ap = 0 and take

] = —Q9 1= (.

Therefore, we can rewrite problem (0.3), (0.4), (0.5) as

%(u —aAu)+u-V(u—aAu) — vAu — Ni(u) — Ny(u) + Vp =1,

divu = 0,

ulgr =0, u(z,0) =uy(z),

where ST = 91T x (0,7).



However, in this work we refer another formulation of the problem obtained by ob-

serving that
1
curlAu x u =u-VAu+ V- ((Vu)TA)) - V(u-Au + Z|A1|2)'
Then the second grade fluid flow problem takes the form

%(u — aAu) — vAu + curl(u — cAu) x u+ Vp =,
divu = 0, (0.6)

ulgr =0, u(z,0) =ug(x)

with the modified pressure

~ 1 1
p:a(u-Au+ZA:A)—§(u-u)+p.

Let us remark, that in the two-dimensional case we understand curl and the vector
product as usually in R?® assuming that vectors have zero third component and do not
depend on 3.

The first who have used equation (0.6) were Dunn and Fosdick [21]. Since then it has
been the most usual of the equations considering the second grade fluids (see 6], [11], [13],
[14], [20], [21], [33], [34], [39], [40], [60], [65], [66], [82], [86], and others). Cioranescu and
Quazar in [15] (see also [13], [14]) have proved the existence of a unique global solution
in two-dimensional bounded domains, and of a local solution in three-dimensional case.

In this thesis we are looking for the solution of system (0.6) in the cylinder IT = {x €

R" : 2/ € 0 x R} which has the prescribed flux F(t) over the cross-section o'

[ un (2, xy, t)da' = F(t). (0.7)

For the two-dimensional channel and the three-dimensional axially symmetric pipe

we assume that the initial data and the external force have only the last component and

are independent of the coordinate x,. We look for an unidirectional (having just the last

component) solution, which satisfies the flux condition. Such solution we call Poiseuille

type solution. Different types of such exact solutions were computed numericaly in [4],
[10], [16], |22], [31], [35], [43], [45], [51], [54], [70], [71], [77], [78], [79] etc.

d d
lo = (75,5), if n=2,and o = {2/ = (z1,22) € R? : |2'| < 1}, if n = 3.

10



For o = 0 the system (0.6) coincide with the Navier-Stokes system. For the non-
stationary Navier-Stokes system Poiseuille type solutions with prescribed time dependent
flux are found and investigated in [36], [37], [61]-[64]. The time periodic Navier-Stokes
problem with given flux was considered in [9], [37].

Note that equations (0.6) describing the motion of fluids of second grade are of higher
order than the Navier-Stokes equations. A significant difference between the Navier-
Stokes system and equations (0.6) is that the nonlinear terms in Navier-Stokes equations
are of lower order than the linear ones, while in (0.6) the nonlinear terms are of higher
order. Therefore, in the three-dimensional pipe (without axial symmetry) the unidirec-
tional solution for the second grade fluid flow problem is impossible, and the Poiseuille
type solution has all three components. However, in this case the velocity components
U,, U, are secondary in comparison with the axial velocity Us. The analogous results for
the steady second grade fluid motion are obtained in [65], [66].

Notice that in the case of the three-dimensional pipe the most essential were the ideas
proposed by Cioranescu, Quazar and Girault in [13]-[15]. As in these papers, we find the
solutions by the Galerkin method using the special basis constructed in [13],[15]. Notice,
that unlike |13]-[15], in oder to satisfy the flux condition, we have to solve the inverse
problem with the unknown right-hand side corresponding to the pressure drop (gradient

of the pressure).

Aims and problems

The aim of this thesis is to investigate the solvability and uniqueness of the solution to

the second grade fluid flow problem with prescribed flux condition in the following cases:

the initial boundary problem in the two-dimensional channel,

the initial boundary value problem in the three-dimensional pipe with rotational

symmetry,

the time-periodic problem in the two-dimensional channel,

the initial boundary value problem in the three-dimensional pipe.

11



Methods

In the thesis we apply the methods of functional analysis, properties of Sobolev spaces.

To construct an approximate solution we use Galerkin method with the special bases.

Novelty

All results presented in this doctoral thesis are new. The Poiseuille type solution for
the non-stationary second grade fluid flow problem with prescribed flux condition earlier

were not studied. The existence results and estimates obtained for the solutions are new.

Structure of the thesis

The thesis consists of Introduction, 5 chapters, conclusions and bibliography. Introduc-
tion contains a short review about the history of the problem and describes shortly ob-
tained results. In Chapter 1 we present basic notations and auxiliary propositions which
are used in the work. The initial boundary value problem for the second grade fluid flow
in the two-dimensional channel is studied in Chapter 2. In this chapter we construct
the solution using the Galerkin method and prove that there exists the unique global
solution. In Chapter 3 we obtain the analogous results in the three-dimensional cylinder
with axial symmetry, assuming that the data are also axially symmetric. Chapter 4 is
devoted to the study of the time periodic problem in the two dimensional channel. The
last Chapter 5 deals with the second grade fluid flow problem in the three-dimensional
pipe. For sufficiently small data we prove the existence of the unique solution having the
prescribed flux. The existence is proved by the Galerkin method using the special basis

constructed by Cioranescu and Quazar in [14], [15].
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Chapter 1

Preliminaries

1.1 Notation

1,7, k,l,n,p,r - natural numbers.

R™ - n-dimensional Euclidean space.

x = (x1,...,T,) - point in R™.

2 - domain (open connected set) in R".
0f) - boundary of the domain Q.

Q) - closure of the domain .
Q' =Qx(0,7).
| - ||x - the norm in the Banach space X.

The vector-valued function u = (uy,...,u,) belongs to the space V, if u; € V)i =
n 1/2
1,...,n, and HuHV: (ZIH’LQH%/) .
1=

a=(ag,..,a,),q; >0, - multi-index, |a] = a; + ... + a,.
0%

D> = D{*...D% - a differential operator of order ||, where D% = P
L

C* - the space, consisting of k-times continuously differentiable functions.

C>*(9) - the set of all infinitely differentiable functions defined on (.

16



C5°(R2) - the subset of all functions from C*°(2) with compact support in €.

We say, that the boundary 0 of the domain Q) is C*, if for each point xy € 9 there
exists r > 0 and a C* - function f : R*! — R such that in local coordinates we have
QN B(xg,r) ={x € B(xo,7) : xyy = f(21, ..., Tn_1)}, where B(xg,r) denotes a ball with

the center in xy and the radial r.

L,(©Q) - the Banach space, consisting of functions, whose p™ powers are integrable
over 2. The norm in L,(Q) is given by ||f]|2,) = ([ |f|pd$)1/p.
Q

Lo (€2) - the Banach space of functions with the norm || f||._ o) =esssup |[f(z).
e

W(Q2) - the Sobolev space which consists of functions such that D*f € L,(Q) for
all week partial derivatives of order |a|, 0 < |a| < I. The norm in W(Q) is given by

flwie = ( Z J 1D f(x) \pdx)l/p.

|a|=0Q
Wé - the Sobolev space which is obtained as a closure of the set C§°(€2) in the norm

1/ w2

W2H(QT) - the Hilbert space (I > 0), consisting of functions, whose derivatives D} D f
belong to LQ(QT) 2r + |a\ < 21. The norm of W;"(Q) is

Il = (5 J folDED2 G0 Fdrat)

J=02r+|a|=5 0

W, (QT) - the space with the norm

M\H

T
hwzsan = ([ USEC R0+ 1760 )0
0

W, () - the space with the norm 1f 200 (f (-, Wl(Q )5.

WEOQT), WH(QT) - subsets of spaces I/I/Qlo(QT),VVQ1 1(QT) consisting of functions
such that f(xz,t)]sqx 0, = 0.

W, () - the dual space to W2(Q).

o o
oxy " Oz,

Vf=( ) - gradient of the function f.

17



\\

Laplacian operator of the function f.

QJ
Sw

n
v-u =) v, - scalar product for functions v and u.
i=1

VX U = (VgUg — V3lg, U3l — V1 Uz, U1Us — Uty ) if v and u are three-dimensional vectors,

v xu = (0,0,v1u9 — vouy) if v and u are two-dimensional vectors.

curlu=V xu= ((9u3 Ouy Ouy B Ous Ous B Ouy

81’2 8x3’ 8x3 8901’ 81’1 81’2 ’

The operator curl in the two-dimensional case u = (uy,us) we understand as usu-

ally in R? assuming that vector-field has zero third component and the components are

0 0
independent of z5: curlu = (0,0, — . ﬂ)

8 T 61‘2

n
A :B = ) A,;B;; where A and B are n x n matrices with elements A;;, B;;
ij=1

We use letters ¢, C,cj, j = 1,2,..., to denote constants whose numerical values or
whose dependence on parameters is unessential to our considerations. In such case ¢ may

have different values in a single computation.

1.2 Auxiliary results

Theorem 1.1. (Young Inequality with ) For all a,b € R the following inequality

lab| < 2|a\q + Ve >0

1 1
holds, where —+ — = 1. If ¢ = 2 we get, so called, Cauchy inequality with &:
q g

3 1
bl < =la|* + =—|b? Ve > 0.
bl < Slaf? + o7, Ve
Theorem 1.2. (Minkowski Inequality) Assume 1 <p < oo and u,v € L,(2). Then

v+ vllL,@ < llullz,@ + vlL,@

18



Theorem 1.3. (Holder Inequality) (see [26]) Let ¢ > 1, f € L,(Q), g € Ly(2), where

1 1
-+ — =1, then
q g

|| s@atyis) < ([ 15 o[ Lot ) = il llolle, o

Q Q

If ¢ = ¢’ = 2, the previous inequality is called Cauchy-Schwarz inequality and takes the

form

| / f(2)g(x)dz] < ( / () Pd) V3 ( / 19(0)2d0)2 = || fll a9 ot
Q Q Q

Theorem 1.4. (Poincaré-Friedrichs Inequality) (see [26]) Let Q C R™ is a bounded
domain, then for all u € WJ(Q) the following inequality

[utwras £ [1wuras

holds, where A\ is the smallest eigenvalue of the Dirichlet boundary problem for Laplace

Au = \u,
u|aQ =0.

Theorem 1.5. (Sobolev Embedding) (see [1]) Let Q C R™ be a bounded domain.

operator in €):

e Ifl>1,q>1,
qn
n—ql’

then the space WL(Q) is embedded into L,(Q) and

n>ql, r<

lullz, (@) < ellullwie)-

e Ifn <ql, then Wé(Q) is embedded into C"(Q), where h < (¢l —n)/q, and

ullen@y < cllullweq)-

Theorem 1.6. (see [52]) If u € W™ (QT), then D} D% with 2r + |a| < 21 — 1 belong to

19



the space Wi~ ‘O"*l(Q) and there holds the inequality
||D;D§U;(',t>||W22l—2r7\a|71(Q) S C||u||W221,l(QT)

with the constant c independent of t € [0,T.

Theorem 1.7. (Parseval Equality) (see [88]) Let f € Ly(0,27), then the following
equality holds

1T 2 &
= 1@ =2 + >k + )
7 k=1

where ag, ay, by, are the Fourier coefficients of the function f, e.i. ag = [ f(z)dz, ap =
2 2

[ f(z)cos(kx)dz, [ f(z)sin(kz)dz.

0 0

Theorem 1.8. (Necas Inequality) (see [56]) Let Q be a bounded domain. If u €
W,y H(), Vu € Ly(Q), then u € Ly(Q) and the following inequality

lullzage) < e Nullus @) + 190l o))

holds.

Theorem 1.9. (Gronwall’s inequality) (see [26]) Let n be a nonnegative, absolutely

continuous function on [0,T] which satisfies for all t the differential inequality

n'(t) < o(t)n(t) + (1),

where ¢(t) and (t) are nonnegative, summable functions on [0,T]. Then

) < eap] / o (s ds} / b(s ds)

forall0 <t <T.
In particular, if
n'(t) < ¢()n(t) on [0,T] and n(0) =0,

then
n(t) =0 on [0,T].

20



Chapter 2
Channel flow

In this chapter we study the second grade fluid flow problem

0 _
a(u — aAu) — vAu + curl(u — cAu) x u+ Vp = f,
divu = 0, (2.1)
ulgr =0, u(z,0) =uy(z),
with the prescribed flux condition
/2
f Uz(l’l,IQ,t)dxl = F(t) (22)
—d/2

d d
in the channel IT = {z € R? : (71, 29) € 0 X R}, where 0 = (—5, 5) We assume that the

initial velocity ug(x) and the external force f(x,t) are independent of the coordinate x,

and have the forms

ug () = (0,uo(z1)),  f(z,1) = (0, f(21,1)).

Suppose that the following necessary compatibility condition
/2
—d/2

holds.

21



Deffinition. The solution (u(z,t),p(x,t)) of problem (2.1), (2.2) such that

u(z,t) = (0,U(x1,1)),
0 0?U(y,t)

Plart) =at)ea = | Ul )5 (V) =a™5 5= ) di-+m(0).

(2.4)

where po(t) is an arbitrary function, is called the Poiseuille type solution.

Substituting expressions (2.4) into system (2.1), (2.2) we get, that the first equation in
(2.1;) and the divergence equation (2.13) are satisfied identically, while from (2.15) and the

initial and boundary conditions we get the following inverse problem on o7 = o x (0,T):

0 0*U 0*U
E(Ud— aa—x%)d— T =q(t) + f,
U(_§7 t) = U(§7t) = 07 U($17 O) = uO(xl)a (25)
d/2
\ —d/2

Notice that in (2.5) functions ug(z1), f(x1,t) and F(t) are given, while U(z1,t) and ¢(t)
are unknown and have to be found.
0%u

Denote by M(cT) the space of functions u such that u € W, "' (¢7) and vl
T

LQ(O'T).

Deffinition. By a weak solution of problem (2.5) we understand a couple of functions
(U,q) € M(c") x Ly(0,T) satisfying for all t € [0,T] the integral identity

¢ aU (x4, x1,7) On(xq,
Off L) n(zy, 7 )da:ld7+osz 87(69151 7) 77(8:1:1 T)dl‘ldT
¢
fo x;, g )dxldT = fq fr] x1, T)dx1dT (2.6)
0o 1 0

t o
+ff L1, T :Ula )dxldT vn € WQLO(O—T)?
0o

the initial condition U(xy,0) = ug(z1) and the flur condition (2.53).

22



2.1 Construction of an approximate solution

We will argue similarly to the case of the Navier-Stokes equations (see [62]).

k> 2 k d
Let A\, = WT and vg(z1) = \/;sin %(m + 5) be eigenvalues and eigenfunctions of

the Sturm-Liouville problem

—vvp(x1) = Apog(1),
4 = =0 20
Vk 9 = Vg 9 = U.
It is well known that the eigenfunctions vy form a basis in Ly(c), Wi(o) and W2(o);

moreover,

d/2 d/2

[ v(@)v(z1)dey =0, [ v (x1)v)(z1)day =0, Kk #1, (2.8)
—d/2 —d/2
d/2
v [ (@) Pdey = A, (2.9)
—d/2

where 6§y - is the Kroneker delta.
The constant function h(x;) = 1 belongs to the space Ls(o) and therefore, it can be

expressed as the Fourier series:
o
1= 3" Brvr(r),
k=1

d/2 9 %)
where B, = [ wv(z1)dr = \7/r__kd(1 + (—1>k+1),l€ =1,2,..., and kz_:lﬁ,% =d If f e

—d)2
Ly(cT), ug € Wy (o), then

fmﬁzénwwm uol1) = 3 axvi ()

k=1
d/2 d/2

with fi.(t) = f fo(zy, t)ve(z1)day, a = f g (1) vg(21)dy.
—d/2 —d/2

An approximate solutions (U™ (x1,t), ¢"™(t)) of problem (2.5) are found as solutions

of the following problems
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(O azU(N) 62U(N) N N

(W) _ _ — qV)

E)t(U o )—v o ¢ (t)gﬁkvk(ﬂﬁl)Jrglfk(t)Uk(xl)a

N

U0 = UM (E =0, UM (1,0)= 5 ayvi(en), (2.10)
d/2 k=t

[ UM (zy,t)dz, = F(t).

—d/2

We look for UN)(zy,t) in the form

U (1) = i Mty (a).

Substituting U™) into equation (2.10) we easily find that

t

e% () T))dT
o D (5™ (7) + filr))d .

14

N
U(N)(xlvt) - Z (
k=1 V

_%t
+e el ak)vk(xl).

Now, we find ¢/¥)(¢), in order to satisfy the flux condition (2.103). We have

d/2 A AV ) VR d/2
[ UM (zy,t)dz, = Z [ e 5T gW(ydr [ v () day
—d/2 SVt a g /2
N ¢ —At d/2
+Z ( feymk’“ fk( YT + e TeNay) [ op(ay)dey = F(t).

v+ adg g —d/2

Thus, the function ¢™)(¢) is the solution of the Volterra integral equation of the first
kind:

N By b 2 oy
le/—ka)\kfeyﬂw ¢ (m)dr = F(t)

-3 (2

Differentiating equation (2.12) we get the Volterra integral equation of the second kind

, (2.12)

fe%“_t)f (T)dT—F@_%ta Br)
V—l—a)\k ) k KPk)

¢ @) — [ KN(t,7)g™M(1)dr = @ (1), (2.13)

o, o

where the kernel K™(t,7) is given by
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2y 2 .
KM(t, 1) S g: U G
’ XN k=1 (V4 adg)? ’
N 2 (2.14)
=5
w =V

and
1 t N /Bky d t l/)\k

u+a)\ d
XN IVt a\ dt - fk( Jdr+

N g (2.15)
Z e v+aXg ak‘)
=1 V + Oé)\k
It is well known that (2.13) admits a unique solution ¢¥) € Ly(0,T) and
la™ I 20m) < en @™ 20,1 (2.16)

A priori we do not know if the constant cy is independent of N. Below we will prove

that ¢y can be taken independently of N.

2.2 A priori estimates

Let us consider a "sufficiently smooth" solution U(x1,t) of the following initial boundary

value problem
0 0*U 0*U

ol
d d
U(_§vt) - U(§>

Lemma 2.1. Suppose that M € Ly(oT),¢ € Wi(o) N W2(o), and let U € W2 (o7)

aO—)—v—s =M,
01’%) O] (2.17)
t) = Oa U(xb 0) = QO(.Tl)

ou
be a solution of problem (2.17) such that o e Wi(oT), 5t 1o =0. Then the following
estimates o 20
U 2 U -
max I0C Do) + 1030 0m) + || 55 - (218)
< (M2, r) + H<PHW1(U ).
oU |2
U 2 2 U 2 2,1 a,
H%(?? H ( )HW (o) _'_H H 7(aT)+ ot W2(oT) (2.19)
< c(IMII7, oy + llellyz(0)
hold.

d d
Proof. Multiply equation (2.17) by U(xzy,t), integrate by parts on the interval (—5 5)
and then integrate with respect to t. Using Cauchy, Cauchy-Schwarz and Poincaré-
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Friedrichs inequalities we get

d/2 U (x 7 t d/2
/ (|U($1,t)|2+oz’—a(xl ‘ )d 1—|—I/f i | 8 ‘ dzdT
—d/2 1 —d/2 9,90
t d/2 d/2 W( ) ( . )
<cf [ MGy r)Pdndr+ [ (lp(e)P+a| ) doy.
0—d/2 —d/2 2
t
Analogously, multiplying (2.17) by %, integrating by parts on the interval
d d
(— 5 2) and then with respect to time yield the estimate
LA U (zy, T O*U (z1,7) |2 429U (1, 1)
f f( al )’ +20z‘—a(81 )‘)dx1d7+yf —81 ‘dl
t d/2 d/2 agp T ( : )
S 2f f |M([E1,T)|2d$1d7+ 14 f ! ‘ dx xXq.
0—d/2 —d/2 O
27 3
t
Finally, multiplying (2.17) by —%;1’) and by —%%2) we derive
d/2 oU U (x t d/2
Ik (‘—(xl’ )‘ —|—oz‘—( )‘ )dx 1+Vf Ik ‘ (21 ‘ dz,dr
_ 8x1 81‘ a 1
d/2 —d/2 2.22)
t d/2 /2 8@(&) ( ) ( :
<cf [ |M(xy,7)Pdeidr + [ (‘— —|—Oc) | )da
0 —d/2 _ap L On day
and
t d/2 (21,7) a|PU(xq,7)|2 42 520 (1,
Uz, )2, a|0U(z1,7) devdr + 2 —" de
) (‘ 91,07 R e DL | o
—d/2 1 —d/2 (2.23)
t d/2 v d/2 82g0($1) 2 ’
<c[ [ |M(zy,7)?deidr + = [ 5 ‘ dxq
0 —d/2 2 —d/2 Oy

Estimate (2.18) follows from (2.20), (2.21), while estimate (2.19) - from (2.18), (2.22),
(2.23). O

Consider now the approximate solution U™)(z,,t) of problem (2.5) constructed in
Section 2.1. Since U™ (7, ) is expressed as a finite sum (2.11), it satisfies assumptions
of Lemma 2.1 and, therefore, considering ¢/™)(t) as a given right-hand side, we get the
following
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Lemma 2.2. For the approzimate solution UN)(zy,t) of problem (2.5) the following

estimates
OBy + 0O s+ | 222
m
te[(?gfi] W; (o) 2 (oT) Wl(oT) (2.24)
demﬁwq+meWbeWUIm%Q
and )
oU
Uz + 10 H |
mase U0y + IV . 05

< c(IlF ™M, oy + g RNT, ooy + ||u HWz ()

N
hold. Here f™(x1,1) = ZhUWWDh (1) = zmm@o ug" (@) = 3 axoelan)
k=1
and the constants in (2. 24) and (2.25) do not depend on N.

Next, we have to estimate the right-hand sides of inequalities (2.24), (2.25). Obviously,
N
PO, oy + 106 [y 0y < UL omy + 01330
and, if ug € Wi(0) N W2(o), then
N
16 300 < cllollfz -

Constants in the last two inequalities are independent of N.
Let us consider the kernel K™ (¢,7) of the integral equation (2.13). Denote Q7 =
(0,7) x (0, 7). Then

B%AkVQ e%(r—t)H
( + a2 L>(QT)

emrats 0 gt r) 2

N
XNHK(N)(M)HLQ @) < 2 ||

N 2y \/ —2Tu), 2Tv),
— v4a v+ai, __
=2 erteth +eretk —2 (2.26)

IA
M=

e
Il
—_

IN
M=

e
Il
—



i ’ i I%
mce hm =
N—o0 XN k=1 1% + Oé)\k

the norm of Ly(Qr) to

= X. < 00, the truncated kernels K")(¢,7) converge in

&0 ﬁ%/\kl/Q L Sy
K(t,7)=x;1Y —F———evox ",
BT =X 2
From (2.26) it follows that the constant ¢y in inequality (2.16) could be chosen inde-
pendent of N. Notice that for the Navier-Stokes equations the trancated kernels converge
only in the norm of Ly (Qr) (see [63], [36]).

The norm of the function @) (see (2.15)) can be estimated as follows:

Brv

N
XN a0y < NF oo,y + Z

T an | frll £ac07)
B/
+Z(U_T_ak)\ 2ery+m’“ fk dTHL(OT
N 5k>\kakV -k
Zotamle i HLzOT) (2.27)

<oy + z 82)"*( 2 12, 0m)

N N
42 (2@)”2(2||fk||L20T)”2+\/ggﬁ,%)”@ai)”
<

k=1
c(1F | ooy + 1 | 2aory + ol 2oy ) -

Now (2.16), (2.26), (2.27) yield

g™ a0y < (1F | ooy + 1 Loy + N0l o)) - (2.28)

Applying estimate (2.28) together with inequalities (2.24), (2.25) we prove the follow-

ing

Lemma 2.3. Suppose that f € Ly(oT),ug € Wi(o),F € WXO0,T). Then for the ap-
proximate solution (U(N)<£L‘1,t),q(N)(t)) of problem (2.5) the following estimate

max |[|[UW)
t€[0,T] | < Wi (oT (2.29)

Hlg™ a0y < e(IFI1Z,0m) +HF’||L2(0T +HUOIIW1(U)

+ UG

D21

holds. If, in addition ug € W (o) N W2(0), then
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U 2 U(N) 2 aU(N)
Dlfize + ol
trerf(?}T(] I ( )||W2(g | ||W22,1 + W2 (2.30)

Ha ™l a0y < (171 + HF'\|L2(0,T) T Huouavg(g)).

Let g € L3(0,T) be a unique solution of the integral equation

t
— fK(t,T)q(T)dT = d(t), (2.31)
0
where
1 o Bkl/ d t ‘”‘7k(7__t) oS ﬂk)\kV Ak
@ t — v+aA d v4+a X
() X*( (> Z:: —I—Oé)\kdtfe * fk(T) T+kz::1v+a)\ke kak)
Then
|| zo0.1) < €l @ ooy S (N F N oo,y + 11 Laory + 60l £o(o)) - (2.32)

Subtracting the integral equation (2.31) from (2.13) we get
t

¢ (t) —q(t) - Of EW(t,7)(q™(7) - q(7))dr

= j(K(N) (t,7) — K(t,7))q(T)dr + ®N(t) — d(t).

Applying to the difference (¢%) — ¢) estimate (2.16) yields

||q(N) - QHLQ(O,T)
T

< C(” f<K(N)(t’T) - K(t7 T))Q(T)dTHLQ(QT) + ||(I)(N) - q)HLQ(O,T)) (233)
0

< (1K™ = Kl p,0my gl oo,y + 125 — @] Ly0.19)-

Obviously, ®V) — @ in Ly(0,T). Therefore, we can pass in (2.33) to the limit as N — oo
and we get that

; (N) _ —
]}13})0 g 4|20,y = 0. (2.34)

Remark 2.1. Notice that the integral equation (2.28) gives the relation between the flux
F(t) and the pressure drop ¢(t) (for the Navier-Stokes case see [36].
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2.3 Decay of the approximate solution as t — oo

For simplicity we assume that f(xy,t) = 0. Let Wé,u(()’ o0),pu > 0, be the space of

exponentially vanishing functions with the finite norm
Il 0,00 = Il exp(ut) F () w3 0,00)-

Lemma 2.4. Let f(z1,t) = 0, ug € Wi(o) and F € Ws ,(0,00) with o > 0. Then
for sufficiently large N the solution (U(N)(:cl,t),q(N)(t)) of problem (2.10) satisfies the

estimate 4o "
UM (z,t) 2
exp(v*t) [ (|U(N)([E1,t)|2+‘#‘ )d:vl

—d/2 1

_|_f cffz exp(v*T)()aU(Né(Tth) ’2

0 —d/2

t
+ [exp(rn)la™ (s < e(IF Iy o) + Nl )

277 (N) 2
0 Uax E(;_l’T)‘ )dxldT (2.35)
1

where )
VT

min (1 QM), tf min (1,2,u) < R
Ve = 2 2

— =6 if min(1,2) > ”diZ,

d > 0 is arbitrary small number. The constant c in (2.35) is independent of t.

d d
Proof. Multiplying equations (2.10) by U™)(z',t), integrating over (—5 2) and using

Cauchy inequality with ¢ we derive

1d d/2 8U (1’1 ) 2 d/2 8U (1’1 ) 2
—— U(N) :1:' 2—!—04‘—’ dri +v — "l dx
2 dt C£ (’ 1, >| 81}1 ) 1 Ldf/2 8{[}1 1
d/2 dj2
= q(N)(t) f U(N)(xl,t)datl + q(N)(t) f (h(N)(xl) - 1)U(N)(x1,t)dx1 (2.36)
—d/2 —d/2
1 1 d/2
<elg™MO)P + = |FO)P + 5=6(N) [ UM (@, 1) Pday,
2e 2e a2

N
where 06(N) = ||p™V) — 1“%2(0) — 0, kM (z1) = 3 Brow(xy).
k=1
(N) (!
Analogously, multiplying (2.10) by 8[]8—7555,75)

d
8U(N)(i§,t)

construction —=— = 0):
ot )

, we get the inequality (notice that by
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(Pt PO,

vd U2 81)(1\7) (1,1 1. d
’ dr; < 2 —F()]?
2d1§7d/2 0xq ‘ 1:1 €|q ()| 2¢ ' dt ®

1 d/2 OUWN) (x4,
R T,
€ —d/2

—d/2

d2 d/2 d3
(= —2a1), ko= [ wo(z1)dz; = —. Then
—d/2 12

a/2 GQU(N)(ﬁl t) d/2 62U0($1)
— ——— L vg(xy)dx; = — U(N)(m,t)—
J e wlnddn == [ U0
/2
= [ UWN(zy,t)dx, = F(t).
—d/2

Therefore, multiplying (2.10) by vo(z1) and integrating by parts we obtain

d/2 aU : d
f % 0(x1>d~T1 + OéaF(t) + VF(t) = q(N)(t)K;O
—d/2
/2
+gM(t) [ (BN (1) = 1)vo(1)das.
—d/2

Thus,
d
™ (1) k3 <C(IF(t)\QJr!—F(lf)l2
/2 aU(N) $1,

+ J
—d/2

Woaw, + @RI 117,

Taking in (2.38) N so that 6(N) < k2/2 yields the estimate

d/2

A < e(FOR+ 1 SFOR+ [

—d/2

aU (ID )
ot

Now, inequalities (2.36), (2.37) and (2.39) give

1d 42 OUMN) (21, 1) 2 d/2
il W) )12 R S A
2dt_;!;2 (l (3317 )| "‘(Oé"‘V)‘ 8x1 | ) ZL‘1—|—V_;£2
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(2.38)

(2.39)

0U (x
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42 OUMN) (24, 1) 12 PUWN) (,1) |2 , . d )
<] (=] + o =] o < (IFOF +1 5 FOP)

/2 8U(N) .171
+ci€ —’
—d/2

1 d/2 oU N)(l'l t) 2
Loy T [P0,
+2€ ( )_df/2 ot T

/2
\ dz 1+—5( ) [ UM @y, 1) day
/2

—d

1

1
Taking in the last inequality ¢ = v and N so large that 2¢;0(N) < 1 ve obtain
C1

1d 42 OU M) (z,1) |2
Lta N) (20, )] + ‘—1’ ‘
5% df/2 (|U (1, )] + (a +v) o
420 9UMN) (24, 1) |2 42 11 0UWM) (2,
v [ |+ [ —’}d'
—d/2 Oy —d/2 (4
UM (1, 1) 2
— 2 )y < F(t)|? —F(t)]?
S| ) < (1) +|dt (1)2)
/2 )
+2¢106(N) [ ’U xl,t)| dx.
—d/2

)de’l

(2.40)

+a

Because of the Poincaré-Friedrichs inequality

d/2 2 d/2
f ‘U .Il, ‘ d(l}l < —_— f
—d/2 vm? —d/2

8U Il'l, ‘ dxh

from (2.40) follows (for sufficiently large N) the estimate

d d/2

8U(N) (iL‘l, t) 2
81‘1 ) )dxl

d/2 oUW (x4,
+* £(|U(N)(x1,t)|2+(a+y)‘%
—d/2
d/2 1‘8(]( ) (a1, )‘2 O*UW (:vl,t)‘2
&L’l@t

_|_
o

< c(FO + 1 5 F O,

(U (1, ) + (o + )|

2
)dIl

(2.41)

Oé‘ ) T1

where 7* is defined in the formulation of the lemma. Multiplying (2.41) by exp(y*t) and

integrating with respect to ¢ we receive the inequality
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4/2 8U (xla ) 2

exp(v*t) [ (|U(N)(m1,t)]2+(a+y)‘ ’ )day
—d/2 O,
¢ d/2 L OUN) (51, 7))2 OPUWMN) (z,7) 2
(v*t & T ———— 2| )dxid
+/ df/zexp G Geor | )dmdr (2.42)
o0 d
<c[exp(vT)(IF@F + [ ZF(0)?)dt + clluoliyy
0
< eIy (0.00) + 10l o))
Finally, estimates (2.39) and (2.42) give
t
[ exp(r g™ (P < c(1F g o) + 0l ) (2.43)

Estimate (2.35) follows from (2.42) and (2.43). O

2.4 Existence and uniqueness of the solution

Theorem 2.1. Suppose that f € Ly(o7),ug € Wi(o),F € W(0,T). Then problem
(2.5) admits a unique week solution (U, q) € M(cT)x Ly(0,T) and the following estimate

Mg + W0 + 7
e UG Oy o) + 10 Wi + llall o) (2.44)
< (I1F Py 0y + 171 o) + H@mllwl(a )
holds. 50
If, in addition vy € W2(o)NW2(0), then U € W' (o7), 5 € W3(oT), the equations

T

(2.5) are satisfied almost everywhere in o', and

2 2
0 10C Ol 10z ry + | 5

< (IF Iy + I o + Huonz(a )

Proof. Multiplying equations (2.10) by arbitrary n € W;’O(JT) and integrating by parts
we get the following integral identity
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t d/2 t d/2 52
ff o ag-xl’T) (21, 7)dxrdT +of [ PV @) (977(581,7')dx1d7

0— d/Q aTaxl 81'1
td/2o (N (xl, T) On(zq, T)
—l—l/f | o e dx,dr

(2.46)
g™ (1) |/ RN () (21, 7)d2 dT

FN (2, (21, T)dz dT VnEW ( Ty, vt e[0,T].

From estimates (2.29) and (2.34) it follows that there is a subsequence
{(U(Nl), q(Nl))} such that

UND(. t) — U(-,t) in W)(o) VYt €[0,T),
(N1) (1) 277(Ny) 2
Uy _ oU _/8U oU _/8U 0°U _ 0°U
T 0x ox, Ot ot’' 0Ox,0t Ox10t

q™) — ¢ in Ly(0,7).

in Ly(ol).

Passing to a limit in (2.46) we get for U and ¢ integral identity (2.6). Obviously, U
satisfies the flux condition (2.53) and the initial condition. Moreover, from inequality
(2.29) we get for (U, q) estimate (2.44).
Let ug € Wi(o) N W2(o). Then, because of inequality (2.30), the subsequence
{(U(Nl), q(Nl))} could be chosen so that in addition
27 7(IV, 2
ad ;%( Y — il ax( ) in W) (o) Vt €[0,T),
PUN)  prr UM U
022 T 022’ 0zt Ozt

in Ly(ol),

and, obviously, for (U, q) estimate (2.45) holds. Integrating by parts we get the identity

T4z 0*U *U 210, 1
Of£2<E<U—aax%)—ua$%—q(t)—f)ndxldT—O Ve Wy (o).

Therefore, (U, q) satisfy equations (2.5) almost everywhere in o7,

Let us prove the uniqueness. Let (UM(zy,t),q"(t)) and (U®(z1,t), ¢ (t)) be two
weak solutions of problem (2.5). The difference (V,s) = (UM — UB, ¢ — ¢P) satisfies
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the integral identity

T A2 9V (xy, T ) T A2 92V (xy,7) On(x1, T)
: dxyd ’ —=dxyd
{!/2 or (33'1, ) T 7'+Oéf 652 axlaT 8.731 xr1aT
T d/2 T d/2 i
+1/f i V(7). an(xl’T)dxldT = [s(t) [ n(x1, 7)dxrdr ¥V € Wy (aT).
—d/2 O O 0 —d/2
d/2
Take n(x1,t) = V(21,t). Since [ V(x1,t)dz; = 0 and V(21,0) = 0, we obtain
—d/2
d/2 d/2 av T d/2 av
[ V(1 O)Pdei +a [ )—] doy+20 [ [ a“””’“ ‘ dz1dr = 0.
—d/2 —d/2 0 —d/2 1

Therefore, V(x1,t) = 0. Taking in the identity (2.6) n(z',t) such that [ n(a/,¢)dz’

t
we get [ |q(7)]*dr = 0. Hence, ¢(t) = 0. O
0

= q(t)

From the estimate (2.35) for the approximate solution (U™, ¢™) (see Lemma 2.4)

follows the following result.

Theorem 2.2. Let f(x1,t) =0, ug € Wi(0) and F € W;,,(0,00) with > 0. Then the

solution (U, q) of problem (2.5) satisfies the estimate

/2

U ( 2
exp(7*t) f/(\U(xl, \2+)$’)‘ )da:
—d/2
t d/2 oU ’ 2 92U ’ 2
e e e = T

0 —d/2

t
el nla™ @ < e(IFly oo+ Toliye):

where )
VT

min (1 Q,u), of min (1,2,u) < R
T = vm? . . vr’
?—5 if min (1,2,u) > 2

0 > 0 is an arbitrary small number.
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Chapter 3
Rotational pipe flow

Analogous results, as in Chapter 2 for the flow in channels, can be obtained in the three-
dimensional case when the flow domain is an infinite pype II = {z = (2/,23) € R? :
(', x3) € 0 x R} with the circular cross-section o = {z’ : |2/| < 1}. Consider in the pipe

IT the second grade fluid flow problem

2(u — aAu) — vAu + curl(u — cAu) x u+ Vp =f{,

ot
divu = 0, (3.1)
ulgr =0, u(z,0) =uy(z),
with additionally prescribed flux condition
[ us(a!, s, t)da’ = F(t). (3.2)

[

Suppose that the initial velocity ug(z) and the right-hand side f(z,t) are axially

symmetric, independent of the coordinate z and have the forms

ug(x) = (0,0, u0(r)), £z, t) = (0,0, f.(r 1)), (3.3)

where (r, ¢, z) are cylindrical coordinates in R3. Moreover, suppose that there holds the
compatibility condition:

27 fruzo(r)dr = F(0). (3.4)
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We look for a axially symmetric solution of problem (3.1), (3.2) such that

u(r,p, z,t) = (0,0,U(r,t)),

plr, ¢, 2,t) = p(r, 2, 1). (3.5)

Substituting expressions (3.5) into (3.1), (3.2) yields

WW28_U ( 8U 10U, Op

P _
E(U_ (87“2 +r87“ ) - (87“2 TW>+&_JCZ’
U(0,t) =U(R,t) =0, U(r,0) = uy(r),

( 2
L UPU 1 (9U)2+8p
0

o)

R
2r [rU(r,t)dr = F(t).

From (3.6) it follows that

0 U (y,t)\2
a_(y( (y,t)

p(r,z,t) = —q(t)z + ozofr i ; 9y ) )dy + po(t), (3.7)

and we get for (U, q) the inverse problem on the cross-section o

2 2
0 &Y 1 PU 10U

i CM(W—F;E))—V(W—F;E) =q(t)+f27
U(O>t) = U<R7 t) =0, U(?", 0) = UZO(T)a (3.8)

R
21 [rU(r,t)dr = F(t).

Deffinition. The solution (u(r,, z,t),p(r, ¢, z,t)) of problem (3.1), (3.2) having the
form (3.5), (3.7) is called the Poiseuille type solution.

Problem (3.8) could be studied just in the same way as the two-dimensional problem
(2.5). The only difference is that as the basis in Ly(c) we take the eigenvalues vy, € W;(O’)
9 10

of the Laplace operator A/ = — + ——:
b b or?2  ror

—vAN\'v, = Mug,, 7' € o,
Uk‘ao = 0.

R
Note, that vi(r) = Jo(%)/(frjg(%)dr)%, g = (%)2, where Jy is the Bessel func-
0
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tion and py, are the roots of the equation Jy(u) = 0 (see, for example, [5]).

Deffinition. The pair (U,q) € M(o") x Ly(0,T) is called the week solution of
problem (3.8) if it satisfies the integral identity

t R@U(r, 7') ERO2U(r, 7)), On(r,T)
Ofbft ) n(r,r d:dT;—aofbf 878r ( ?r ;;n(r,T))drdT
8U (ry7) ,On(r,T 1
+1/0fbf By ( 5 (T,T))drdT—qu bfnTTdrdT
t R
+ [ [ f(r,)n(r,7)drdr Vi € W210( ),
00

the initial condition U(r,0) = u,o(r) and the flux condition (3.83).

There holds the following theorems.

Theorem 3.1. Suppose that f, € Ly(07),u € Wi(o),F € WX0,T). Then problem
(3.8) admits a unique week solution (U, q) € M(cT)x Ly(0,T) and the following estimate

33 10Ol )+ 108+ [ o+ il
Scmﬂmwn+wmmwr+mmmwg
holds.
If, in addition u,, € Wi(o) N W2(0), then U € Wi'(o7), %—Z e Wi(oT), the
equations (3.8) are satisfied almost everywhere in o’ and
3 10 Mg + 108, + [ o+ il

sﬂm%mwwmhﬂ+mm%@)

Theorem 3.2. Let f.(r,t) =0, ug € Wi(o) and F € W;,,(0,00) with ju > 0. Then the
solution (U, q) of problem (3.8) satisfies the estimate

8Urt)‘

R
exp(v*t) [(|U(r,t) ]24—‘ ) rdr
0

t R oU(r,7) 12  |0*U(r,7)2 t e A LAN) (2
+Ofbf (‘ 57 ‘ + ‘W‘ )rdrdeLbfeXp(v )|qg™N () |2dr
< C(HFH ooy T 0l )
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where
~f min(1,24), if min(1,20) < pd,
T p2 =6, if min(1,2u) > p,

1 s the first positive root of the equation Jo(p) =0, § > 0 is an arbitrary small number.
The proofs of these theorems are exactly the same as for the two-dimensional case.

Remark 3.1. In Chapter 4 we study the three-dimensional problem for a non-symmetri-
cal case (i.e., when the cross-section o is an arbitrary bounded domain). In this case
problem (3.1), (3.2) does not have the unidirectional solution and the velocity field has

all three components.
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Chapter 4

Time periodic channel flow

d d
In the infinite channel 1T = {z € R? : (z1,7,) € (—5, 5) x R} we consider time-periodic

(without loss of generality we assume that the period is equal to 27) second grade fluid

flow problem

%(u — aAu) — vAu + curl(u — cAu) x u+ Vp =,
divu = 0, (4.1)
u|8H><(O,27r) =0, u(z,0)=u(z,2n),
with the prescribed periodic flux
d/2
/ ws(z,t) = F(t),  F(0) = F(2m). (4.2)
—d/2

We look for the Poiseuille type solution (u(x,t),p(z,t)) of system (4.1), (4.2) in the form

u(z,t) = (0,U(xy,1)),

plx,t)=—q(t)xe— Ifl Uly, t){% (U(y, t) —a%)dy—i-m(t),

—d/2

(4.3)

where po(t) is an arbitrary function, while U(xy,t) and ¢(t) are time-periodic functions
U(z1,0) = U(z1,27),  q(0) = q(27).

As in Chapter 2, the first equation in (4.1;) and the divergence equation (4.13) are sat-
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isfied identically, while from (4.15) and the boundary conditions we receive the following

inverse problem on the interval (—g, g)
(0 0*U 0*U
(U — a2 — v — g(t
d
U(—a,t):U(g,t):O, U(I’l,O) :U($1,27T), (44)
d/2
L —d/2

4.1 Direct problem

First, we assume, that the function ¢(t) is known and we study the following direct

problem
0 0*U 0*U
(U — a—2) — 2= — (t
8t(Ud “ou? )d Va2~ 10 (4.5)
U(—=,t) =U(=,t) =0, U(x1,0) =U(zy,2m).

2 2’
Theorem 4.1. Let g € Ly(0,27) is 2m-periodic function. Then problem (4.5) admits the

unique 2m-periodic solution U € Wf’l((—g, ) x (0,2m)) and the following estimate

1O w2 4,4)x 0200 Haxl

U
+Hm\

Wyt ((—4,4)x(0,2m))

<c -
LQ((_%7%)X(072T{')) = ||q||L2(O,2 )

holds.

Proof. Any 27-periodic function from Ly (0, 27) can be expressed by a Fourier series,

therefore,

a(t) = 2+ 37 (49 cos(nt) + ¢ sin(nt)). (4.7)

We look for the approximate solution U™)(zy,¢) in the form

U (2, 1) = 2070 3 (pular) cos(nt) + (1) sin(nt)), (4.8)

where coefficients ¢, (1) and 9, (x1), n=0,1,..., N, are found from the equations
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(V2 + a®*n?)! — an’p, —nvi, = ang —vg?, z €0

(2 4+ a*n® ! — an*Y, + nvy, = —ngf) — omqﬁf), T E0 (4.9)
g0n|80 = 07 ¢n|8a = O)

(c)
q
n=12,....,N, gy = E?—V(d2 — 4x?).

Obviously, (4.9) is a strongly elliptic system. Let us show that it has only one solution.
Let (¢n, 1) be the solution of the homogeneous system (4.9). Multiply the first equality
of system (4.9) by ¥, (x1), the second one by ¢, (x;) and then integrate them by parts on

o. Summing these equations yields
v [ Voo Pde v [ o) P = 0.

Thus, ¢, (z1) =0, 1, (z1) = 0 and from the theory of elliptic systems (see, for example,
[17], [26]) we conclude, that for all n > 1 there exist just one solution (¢,,%,) € Wi(o)N
W} (o) of the non-homogeneous problem (4.9).

Denote

MO
¢M(t) = % ; cos(nt) + ¢ sin(nt)). (4.10)

It is easy to calculate that the approximate solution (U®) ¢™) (see (4.8), (4.9)) is a

solution of the following problem:

Q. N 0?UW) 0?UW)
E(U( o o2 '~ "o T
1 1 (4.11)

d d
UM (—5.6) =UN(G.6) =0, UM (21,0) = UN(ay, 2m).

d d
Multiplying equality (4.11;) by U®™)(z,,t) and integrating by parts on (—5, 5) yield

1d 42 ad Y2 0UMN) (1,
[ U™ (@, 8)2day + S5 | —‘ di,
2dt 3, 28 e
d/2 aU
+v [ ’ﬁ‘ dzy = qWN f UN) (xq,t)dx, .
—d/2 —d/2

Integrate the latter identity with respect to t from 0 to 27. Using the periodicity condition

(4.115), Cauchy-Schwarz and Poincaré-Friedrichs inequalities we obtain
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2 d/2 (N X1 or d/2
Vf / ‘—" dx,dt = f [ a™ @)U (zy,t)dz dt
d/2 d/2
27 2
f f ‘q(N 2dZE dt) 1/2 f f |U N) (1, )|2dx1dt)1/2
0 —d/2 0 —d/2

o d/2 U(N) 531,
< el Nrsoan([ | |20y aryir
0 —d/2
2 d/2 8U(N) xy,
< C||Q||L2(O,27r)(f f 8—‘ dxydt) 1/2,
0 —d/2
Thus,
8U (1‘1 )
— < - 4.12
H O HL (4, 9)x(02m) — c||q]| 2o 0,2m) (4.12)

O2UM) (21, 1)

d d
Multiply now equality (4.111) by and integrate by parts on (——, —).

Or? 22
Using (4.115) we get
1d 2 oUW 2 d 421920 (g, 1) 2
- (xla ) d.f(]l—f—g— (21'1 )‘ dz,
d/2 U(N d/2 82U(N)($1 t)
v ‘da: :_q(N)(t) f ————dy.
Zlf/z 8351 p or?
This equality yields
27r a2 1 9211 2m d/2 92U @) "
‘—xl” dx,dt = f S q“”@)%dmldt
d/2 —d/2
2 d/2 2 d/2 o2l
<([ [ 1a™@)2dwdt)( f I —9"’17‘ dirdt)!/?
0 —d/2 —d/2 Or?
2m d/2 82U( x1,
< el llozn ([ | [T 0 oy
0 —d/2
27 d/2 82 T,
< C||Q||L2(O,27r)<f f T‘ dx dt 1/2
0 —dj2
Thus, the following estimate
62U(N)(5131 t)
’ < . 413
= s oy < llzaon (1.13)

holds.
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The next step is to estimate W, (o) - norm of U™ (x1,0). Let us multiply equation

d d
(4.11;) by tU™)(x1,t) and integrate by parts on (—5 —). Using the boundary condition
(4.115) and the following identities

W)
Qtaa_m,)w)w) = 2 (U, ) ~ [V, B
tﬁ @U(N (ZL’l, ) 2 o 2 t‘aU(N)(l’l,t) 2) _ ‘8U(N)(x1,t) 2 ’
ot 31:1 a ot 8(131 8.771
we get
1d 2 ad Y2 oUN) (21,1))2
t‘U N)<.§C1, )‘Qdﬂfl + —— t _— dl’l
th 652 2 dt ;52 8x1
/2 /2
+ut f ’M‘ dxl—th) f UWw :1:1, )dxy
—d/2 —d/2
1 d/2 d/2 oU 1) 12
+= [ UM (a4, )Pdazl—i—— f ﬁ dx.

Integrating the last equality by t from 0 to 27 and using Poincaré-Friedrichs and

(4.12) inequalities we derive

/2 (N) o) 12
7 f UM (3, 270)|2dzy + o [ ‘M

—d/2 —d/2 Jxq
Woft g; Oz, ! ‘ drydt = ftq(N) df/ UM (2q, t)dx,dt
2 —d/2
1 27 d/2 a27rd/2 HUM (11,12
+5 f j; ‘U x1, ‘2d£€1dt+ f f/ % (4.14)
—d/2 3
<2l o e 22
fige | e c
4" 11L2(0,27) Ox1 NLa((—4,4)x(0,2m)) O0xy lLa((—2,4)x(0,2))

2

< cllqlf,0.2x)

LQ((_grg)X(()vQﬂ-))

8U(N) (i[)l, t)

d d
Further, multiplying equation (4.11;) by ¢ , integrating by parts on (—5, 5)

ot
and over ¢ from 0 to 27 yields
27 d/2 N) 27 d/2 2 2
[ [t ‘M’ d.iEldt—l—Oéf [t M dx,dt
0 —d/2 —d/2 Otdxy
W2 oU 2 2 d/2 U™
+7v f #‘ dry = f f tq™N %dwldt
—d/2 —d/2
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2 d/2 8U Ty,
—ff\—————%dmﬁ<dm M2, 0m
—d/2
120 42 oUW (g, t QUMW) (x4, 1) 112
TRk OV (1) 2 xldt+cH—1) N (4.15)
—d/2 ot La2((—5,5)x(0,2m))
120 42 oUW (g,
<Nﬂmow+'f‘f‘————Lﬂdmﬁ

—d/2

From (4.14) and (4.15) we obtain that
HU(N)(',QW)H%/V;(_%@ < CHCIH%Q(O,%)-
32U(N)(x1, t)

ox?
the boundary condition (4.115) and the identity

d d
Multiplying equation (4.11y) by ¢ , integrating by parts on (—5, 5), using

2t

mmmmhwwwmwbw_é?‘fz_ﬁaﬁ

( 2 . (92U(N)(ac1,t))2
otoz? 03 Ot 03

)= ( o3

Y

we get
1d 2 1 oUMN) (4, ad Y% 9PUWN) (zy,
N e T
Cf//‘Q 82 (xh) d/2 a2U(N (xlat)
—d/2 (9x% —d/2 Ox

d/2 82U(N)(l'1,t) 1 d/2 ‘8U(N) Ty, ‘

[an

2
X1

= —tq™M(t) [ dry+ = [

dz;.
—d/2 &c% 2 —d/2

From the last inequality it follows that

4/2 ‘(9U(N)(x1,27r) 2
//'r —

—d/2 Oy —d/2
o 2r d/2 92U o d/2 92U (N)
) \—“\ drydt+v [t [ |20
29 —d/2 0 —d/2 duy

a2 9217 2r d/2 | HrT(N) 2
:—fthV)(t) I 88—(29517’5) daydt + lf | oUT (1, 1)
0 T 2

—d/2 —d/2
92U W)
0x? ’

d/2 (92U(N 1'1,27T>

o3

‘ daydt

(4.16)

< 27r0||q(N)||Lz(0,27r) Lo((—£,2)x(0,2m))
2’2
2

+

||Q||L2 (0,2m)"

0$1 ‘

L2((—%a%)><(0 27’1’))
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Hence,
2

H oUW (-, 27)
oxy

Because of the periodicity condition, the following two inequalities are valid

< 2 .
Wi(—d,d) = CHQHLQ(O,%)

1T 0) g .0y < ellalf0,0m; (4.17)
82U(N)(70) 2 9
Hﬁ—x% LQ(,%’%) < CHqHLz(O,Qﬂ')' (4.18)

Now, U )(:cl, t) can be interpretated as a solution of the initial-boundary value prob-
lem (4.11;) with the initial condition U™ (z,#)],—g = U™ (21,0):

277(N) 277(N)
9 i _ U U
; 0x? ; O0z3 (4.19)
U(N)(—E;t) = U(N)(§>t) =0, UM (z1,t)}iz0 = UM (21,0).

d d
Multiply equation (4.19;) by U™)(z,t) and integrate by parts on (—5, 5) and by 7
from O to ¢:

/2 a2 U<N> L2 ) 2
= f UM (1, )| dacl—l—— Ik ‘ (21,1 ‘ dx1+l/f f U, 7) dw,dr
2 _ap ~d/2 4/ O,
1 d/2 d/2 3U T 70 t d/2
= LT W a0 + S 4 o+ [ g @U o, dinds
7d/2 2 —d/2 Oy —d/2
1 a | OUMN) (z1,0) 2
< ZUM™ (2, 012 _H—
SV Ol Y 5™ T s
t d/2 y t 42 OUWN) (1, 7) 2
g™ o02m ([ [ UM (@1, 7)dardr)? < ellqllF,00m) t5 ) | || dndr
0 —d/2 0 —d/2 1
Therefore,
UM (- )12
sup U012, 4 g+ sup [ZED
t[0,2n) 27202 te[0,27] dxy L2 (-%.9) 490
ikl ol "
—|—V’ < c|lq -
Ory N La((—4,4)x(0,2m)) L2(0,2m)
L : d _n . :
In the same way, multiplying equation (4.191) by EU( )(x1,t), integrating by parts
d d
on (—=, =) and by 7 from 0 to ¢, we obtain
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t d/2 oUW t d/2 UM
‘$‘ dx1d7+a ‘ (21,7 ) drydr
—d/2 /2 01011
/2 527 (N) 2 t d/2 oUW
z PUD @) 2y g 200 n) o
2 4/ 01011 _a/2 or
d/2 82U(N)( 2 1 td/2 o N)
v X1, T ’ 9 ) xl, ‘
—ras. | dE1= ——— L d,d
5 /\ 5rom, |0 <ellllEoanty ) S r1dr.
Hence,
OUWM (- 1) 2 OUW) 12
v sup ||—————— +H
t€[027r] 0xy La(—4,4) Ot NLa((—2,4)%(0,27)) (4.21)
2 .
< 2 .
+a” 8:c1 ‘Lz((—g,g)X(O,ZW))_CHqHI@(OvQﬂ')

82U(N) (1131, t)
ox?
by 7 from 0 to ¢, using the boundary condition and the inequalities (4.17), (4.18) we

d d
Now, multiplying equation (4.19;) by , integrating by parts on (—5, 5) and

derive
1 d/2 8U (71, 420 RPUWN) (g4,
> 1 ‘ doy + f D2 1 ‘ 421
—d/2 —d/2
¢ d/2 82 x ¢ 42 R2UWN) (g, 1
—H/f Ik —1” deydr = — [q(r) [ #dmlcﬁ
d/2 Ox? 0 —d/2 Oxy
d/2 U™ (2 d/2 | 52 UM (x
+ f 17 ‘ d f 17 ‘ dr T
—d/2 d/2 Ox?
1% ¢ d/2 62 Z’l,
< C||Q||L2(0 om t 5 f / a2 ‘ dwydr.
20 _a0
Thus, the following inequality
OUMN (- )12 OPUWN) (11, 1)12
sup ||————— L, tasuwp ||———5—— .
t€[0,2ﬂ'] aa’;l LQ(_§7§) t€[0727T] axl L2(_§7§)) (4 22)
. 82U(N)($1,t)’2 < H2 .
_ c
0x? La((—4,9)x(0.2m)) — ULz (0,2m)
holds. NI
o°U t d
Next, multiply equation (4.19;) by Wx{,), integrate by parts on (—5, 5) and

by 7 from 0 to t. Using the boundary condition and inequalities (4.17), (4.18) we obtain
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A AT ) dnidr +a | Y ‘03[] (1,7 ‘ daydr
—— | 1 1
0 a2 0101, d/2 oT0x3
v Y2020 (2, 1) |2 ¢ 42 PUN (11, 7)
+= ‘—’ — [ q(7) —’da:ldr
Elf/z Ox? bf —d/2 Orox}

d/2 82U(N) -Tl t d/2 aSU(N) -Tl
I N gy < ‘ : ) de,dr.
+5 —J;Q‘ 0a? ‘ T C||Q||L2 02m) T 5 f df/2 91022 L1aT
From the latter inequality it follows that
OPUWMN) (21,112 UM (- 1) 2
‘ _ +v osup ||—sm— H L
Ot Lo((-4.9)x(02m))  te[0,2n] oxi L(-4.9) (4.23)
. Ha?)U(N)(xl’t)‘Q < ||2 .
af|————= c )
otox? Lo((—4,2)x(0,2m)) — A1L2(0,2m)

From inequalities (4.12), (4.23) we conclude that the sequence {U®)} is bounded in

PUM
the space W’ ((—5,5) (0,27)) and {8t62

(0,27)). Therefore, there exists subsequence {U N0} such that

} is bounded in the space Lo((—%,%) x

UN) — U in W' ((—4,2) x (0,2n)),

a3U(N) BU
o  ope, ™ La((=5,8) x (0,2m).

Obviously, the limit function U is the week solution of problem (4.5). Moreover, the
inequality (4.6) remains valid.

Let us prove that the solution is unique. Take ¢(t) = 0. Repeating the proof of
inequality (4.12) we get

2m d/2

//(aU @) 2 dt = 0.

0 —d/2

Hence, U(x,t) = 0.0
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4.2 Relationship between the flux and the gradient of

the pressure

The arguments of this section are similar to that of Galdi and Robertson in [37] for
the Navier-Stokes equations. We show the relationship between the flux F(t) and the
gradient of the pressure ¢(t). Consider the following problems

9 *uy oy

— (U - - = cos(nt

ot Ty ) T e = ) (.24
d d

5.0 = UG =0, UL (1,0) = U (wn, 2m),

(U

0 i U OO

— (U — - = t),

(’)t( d ) Ox? )d ’ Oxt ) (4.25)
| U750 = U (5.0 =0, U (@1,0) = U (@, 27).

The solutions of problems (4.24) and (4.25) are:

(4.26)

where pairs (¢, (z1), ¥, (z1)) are the solutions of the following systems

[ —ngp, —ang — vl = 1
—n, + angl + vl =0
d d
on(=5) = pul5) =0 427

\ @Zjn(_g) = ¢n(§) =0

According to Theorem 4.1, problem (4.27) has the unique solution (¢,, 1,) € WZ(—4,4)n

Wi (—4,2) for all n > 0.

Let us define

a, = /gon(xl)dxl, b, = —/wn(xl)dxl, n=0,1,2,... (4.28)

[

Lemma 4.1. Let (p,,¥,) € Wi(—4,4)n W;(—g, ) be the solutions of systems (4.27).
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Then the inequalities

hold. Moreover, the numbers a,, and b, satisfies the properties

(@) a,>0, VYn=0,1,2,..; by=0,b,>0 VYn=12 ..
d d

b)) ap<—, b, <—, Vn=12
n n

(¢) lim (nb,) =d.

n—oo

d d
Proof. Multiplying (4.27,) by ¢! (z1), (4.272) by 9! (z1), integrating on (—5, 5) and

summing the obtained equations, we get

d/2

f (n¢n(x1)gplri(x1) - n@n(x1)¢x<$1))dxl + V||90Z(I1)||12(_% %)
—d/2 '
/2
Hullgn@)l}, s gy == [ ¢h(@)da.
2:2) —d/2
Integrating by parts yields
/2
I (nn(@1) (1) — nn (1)) (1)) day
—d/2
/2
= [ (= ny,(x1)@(21) + g, (1)), (1)) day = 0.
—d/2
Therefore,
/2
vilen@lL, s o) T IR, a4y =~ I en(@i)dr
2( 2 2 ( ) —d/2
v

v 2
< Zlehn)lZ, g+

Obviously, from the last inequality follows (4.29).

Next, let us multiply (4.271) by ¥, (x1), (4.272) by ¢, (x1) and integrate by parts on
d d
(2.9

272
/2 /2
“olldnlly gy = [ WiPdz v [ wigide b,
—d/2 —d/2

20



/2 /2

ey = [ Pan e [ vddn
—d/2 —d/2

Summing these equations we get
— 2 2 /112 /12
bn - n(HgonylLQ(_gg) + HwnHLQ(_%’%)) + O‘(HwnHLQ(_%’%) + HSO”HLQ(—%%))' (430)

If (4.27,) is multiplied by ¢, (z1) and (4.273) by ¥, (z1), then analogously as for b, we

obtain
ap = V(H%Hi(_g,g) + HSO;LHiQ(_g,%))' (4'31)

Since the solution of problem (4.27) can not be identically to zero, from (4.30) and (4.31)
follows the property (a).
Using Cauchy-Schwarz inequality from (4.28) we get

an <Vd||enllpy o,y ba < V||l aay, n=0,1,2,... (4.32)

The property (b) follows from (4.30) and (4.32).
According to (4.30) and (4.32) we get

nl[nllpyoaay <V, n=1,2,.... (4.33)
From (4.31) and (4.32) we obtain

i 116l sog.g) = 0 Jim (194 L g.g) = O (4.34)

n—oo

d d
Let us multiply (4.271) by x € Cg°(—$%, %) and integrate over (—5, 5)

—n [ Un(e)x(@)de = an [ g (o)X (1)dey
—d/2 —d/2
d/2 d/2

+v [ @ ()X (x)der + [ x(21)dxy.
—d/2 —d/2
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In the last equality passing to the limit and using (4.34) yields

dj2 d/2
T}LIEO(—n / Up(@1)x(z1)dz1) = /X(atl)dxl. (4.35)
—d4/2

—d/2

) is dense in the space Lo(—%,2). Hence, (4.35) remains valid for all

The set Cie(—4, 4
X € La(—4,9). Taking x(z1) = 1 we obtain
d/2 d/2
n—oo n—oo
—d/2 —d/2
O
d/2
The flux F(t) = [ U(xy,t)dz; is a periodic function and F € Ly(0, 27). Therefore
—d/2
it can be expressed by the Fourier series

RO &
2+ Z (F'9 cos(nt) + F sin(nt)). (4.36)
n=1

T2
© ) and (F?gC L EL) ) of the functions q(t) and

Lemma 4.2. Fourier coefficients (qn ,qn

F(t), are related by equalities
F'9 =0, — b, F% =009 4+ a,q¢¥, n=01,2,.., (4.37)
or, equivalently,
W+ b Y — b, Py
g@ =l o) ¢ . (4.38)
az + b2 a? + b2
Proof. Let us define the functions
Uz, t) = U (zy,—t), U (21,t) = U (21,—t), te]0,2n] (4.39)
which are the solutions of the following problems
0~ 02U U
~. Un - — t 3
815( +a o )+ v o cos(nt) (4.40)

o d . )
Ol =0, 01,0 = 09w, 2m),

n

~ d
(C)(_§,t) =
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and

8~ OPUY . 20Y .
i U8 0 g) v = —sin(u) (4.41)
o, d 2 |

(S) (1, 2m).

It is obvious, that
on(z1) cos(nt) + 1, (x1) sin(nt), (1.42)

U (w1, t) =
n(x1) cos(nt) — @, (x1) sin(nt).

T(LS) (‘7;17 t)

77(c . . d .
Multiplying equation (4.4;) by Ul )(xl,t) and integrating by parts on (—5, 5) yields

29U (a1,t) UL (a1, t)

X1

d/2
T
[ MU( (Il, t)dey —a [
a2 ot a2 ot Or?
d/2 9204 (21, 1) o (4.43)
—V f U(l’l, )a—d 1= f q U (:vl,t)d:cl.
—d/2 i —d/2

Using the equalities
N OU (a1, 1)
( —U )=
(x17 ) ot )

oU (x1,t) =, 0 .
W50 (01,1 = £ (U, 00 1.1)

ot
U (z1,t) PUY (x1,t) 0 U (21, 1) BUY (21, 1)
= (U, ) Ty gy, L LY
ot 023 o (U(w11) 023 ) —Ulwnt) 910z
we rewrite (4.43) in the form
d 2 ~ (0 d 2 90U (x1,1)
gy, )y — as [ Uy, )20 g
dt_dj;zU Iy, )U (xl ) T Oédt_;l[/Q ('Il ) ax% I
d/2 ~ PU (w,t) 02U (a,1)
(c) 15 15
- t n ,t d
_df/2 Uz, t) (Un” (z1,1) + o +v o )day
d/2
f q xl? )d‘rl

—d/2
Integrating the last equality by ¢ from 0 to 27, using periodicity condition, the definition

of the functions U\ and (4.28), we obtain
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27 d/2 82[7,(5)(:1:1,t) +V32U (xl,t)

— Uz, x1,1) +« dxdt
‘Of_df/z ! ( ") Ox? 03 )y
T /2 27

=[at)( [ U (21, t)dz,)dt = [ q(t)(a, cos(nt) — b, sin(nt))dt.
0 —d/2 0

It follows from (4.40;) that

2 d/2 2 )
_f f U xla ( (xl,t)—i—aa (xht) +y8 Un (CL’l, )

0 —d/2 Or? Ox3
2T d/2

= [ [ U(x1,t)cos(nt)drdt = fF cos(nt)dt.
0 —d/2

)dxldt

Therefore, the following formula

2

/F(t) cos(nt)dt = /q(t)(an cos(nt) — by, sin(nt))dt (4.44)

0

holds. Substituting series (4.10) and (4.36) into (4.41) we obtain the first formula in

(4.37). The second one can be proved in the same way, taking ﬁés)(:vl,t) instead of
(C) (z1,1).
Since a? + b2 > 0 from (4.37) follows (4.38).0J

Lemma 4.3. Let (FAC), i ) and (qn ,qﬁl)), n=0,1,2,..., satisfy the relations (4.37) or
(4.38). If the Fourier series (4.7) converges in the space Ly(0,2m) to some q € Lo(0,27),
then (4.36) converges to F' € Ly(0,2m). Moreover, the following estimate is valid

| F || 2o0,27) < €1lla]|La0,27)- (4.45)

Opposite, if the Fourier series (4.36) converges to F € W (0,2x), then (4.7) converges
to q € Ly(0,27) and
gl La0.2m) < ol Fllwp0,2m)- (4.46)

Constants ¢1 and co depends only on d.

Proof. In addition to (4.37) and Lemma 4.1 (a), we have the relations

B =aod, |[FOP+[FOP = @ +B)(aOP +1d0F), n>1  (447)
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Using Lemma 4.1 (b) we get

F(C) 2 0 >
| 02| +Z(’F£C)’2+‘F’ES)‘2) 2|q% ’+2d22(\qn \2—|—|q |)
n=1 n=1

If ¢ € Ly(0,27), then series (4.36) converges in Ly(0,27) and inequality (4.45) follows
from Parseval equality.
From (4.47) it follows that

P+ gD P < S (19 + [EPP), n> 1 (4.48)

3Ts| =

By Lemma 4.1 (¢) we obtain, that there exists a number Nj such that

v

d
b, > —, Vn>N,.
2n

Let us take b, = min{bi,...,bn,}. Using Lemma 4.1 (a) we get the inequality b, > 0.
From Lemma 4.1 (b) and inequality (4.48) it follows that

()2 (c)
q NG s L |F
90| +Z(|qT(1)|2+|q7(1)|2)§_|0 |
n=1 Qo 2

pog n? (|2 + [ EYP).

S (B + |FOP)

n=1

%|M
SwlH

If F''€ W4(0,27), then series (4.7) converges in Lo (0, 27). From Parseval equality we get
(4.46).00

4.3 Inverse problem

Theorem 4.2. Let F' € W3 (0,27) be 2m-periodic function. There exists the unique 27 -

periodic solution (U(xy,t),q(t)) € ng((_i’ 2) x (0,27)) x L(0,2m) of problem (4.4).

Moreover, the following estimate

0
PU
otoz?

oo+ 7,

< d|Fllw; 0,2m)

W21 1( g %)x(O,Qﬂ)) (449)

*

LQ((_%’%)X(0727‘—))

holds.
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Proof. Let F\” and F.” be the coefficients of functlon F(t). The function ¢(t) is
determinated by formula (4.7) with coefficients ¢\ and ¢% defined by (4.38). In virtue
of Lemma 4.3, series (4.7) converges in Ly(0,27) and the limit function ¢ € Ly(0, 27).
Moreover, inequality (4.46) is valid. From Theorem 4.1 it follows that problem (4.4) has
the unique solution U € Wf’l((—g, 4) x (0,2m)) and estimate (4.6) is valid. Obviously,
(U(x1,t),q(t)) is the solution of problem (4.4) and from (4.6), (4.46) follows (4.49).

Let F(t) = 0. Multiply (4.41) by U(xzy,t), integrate by parts on (—%l, g) and by t
from 0 to 2m:

27 d/2 aU 27 d/2 27
X
0 —d/2 ' 0 —d/2 0

Therefore, U(xy,t) = 0. From (4.4;) it follows that ¢(¢) = 0.0

Remark 4.1. The solution of problem (4.4) can be expressed by the following series

(©)
Uz, t) = %wo(xl) + Z (65 pn(1) + ¢ 0n(x1)) cos(nt)

0 pn(r) = ¢ (1)) sm(nt)),

where functions @, (1), ¥n(x1), n = 0,1,2, ..., are the solutions of problems (4.27) and

the coeficients qy(f), q,(f) are expressed by formulas (4.38).
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Chapter 5

Flow in a pipe with arbitrary cross

section

In this chapter we study the flow of the incompressible non-Newtonian second grade fluid

flow problem

2(u — aAu) — vAu + curl(u — cAu) x u+ Vp =,

ot
divu = 0, (5.1)
ulgr =0, u(z,0) =uy(z),
with additionally prescribed flux condition
Jus(a!, x3, t)da' = F(t) (5.2)

(e

in the three-dimensional pipe I = {z = (z/,z3) € R : 2/ € ¢ C R? x3 € R}, where the
cross-section o is an arbitrary bounded plane domain with the boundary do of class C*.
First, let us assume (as in the previous chapters) that the initial velocity ug(z) and

the exterior force f(z,t) are independent of the coordinate x3 and have the forms
uo(z) = (0,0,up(z")), £z, t) =(0,0, f(a,t)). (5.3)

Let us try to find the unidirectional solution

u(z,t) = (0,0,U(2', 1)) (5.4)
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Substituting expression (5.4) into system (5.1) we get

( 0 dp

0 dp
a(U—OéAU)—VAU‘i‘a—xg—f,

Ulgpe =0, U(2’,0) = uy.

The vector (—Uaixl(U — aAU), —U%(U — aAU))T cannot be expressed as a gradient
of some function. Therefore, we can not look for a solution of problem (5.1)-(5.2) in form
(5.4), and even in the case of unidirectional data (having the form (5.3)) the velocity field
has all three components.

In this chapter we consider a little bit more general case when data have all three
components. Let us suppose that f and ug do not depend on the coordinate x3 and have

the forms

ug(2) = (uor (), uoa(2"), vo (), £(x,1) = (fi(2', 1), fol@', 1), f(2, 1)),

and look for the Poiseuille type solution (u(x,t),p(z,t)) of system (5.1) having the fol-
lowing form
u(z,t) = (U (2, 1), Us(a', 1), Us(2', 1)),
p(z,t) = p(a', ) — q(t)zs + po(t),

where po(t) is an arbitrary function. Moreover, we look for the solution having the

(5.5)

prescribed flux
f Us(2',t) da’ = F(t). (5.6)

Obviously, in this case the initial velocity has to satisfy the necessary compatibility

condition

Jvo(a")dz" = F(0). (5.7)

Substituting expressions (5.5) into equations (5.1), (5.2) we obtain the following problem

on ol =0 x (0,7T):
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%(U’ — aAU") —vAU’ + curl(U’ — aAU’) x U’

—Ug(V(U3 — OéAUg)) + Vﬁ: f,,
divU’ =0,
Ulge =0, U'(2/,0) = uj(a),

(5.8)

0
a(Ug — (IAUg) — VAUg + (U, . V)(Ug, - OéAUg) = f3 + C](t),
Usloe = 0, Us(2',0) = vo(a'),
JUs(/, t)da’ = F(t),

\ O
where f'(2/,t) = (fi(2', 1), fa(2', 1)), U'(2/,t) = (Uy(2/,t),Us(2',t)). Notice that in (5.8)
functions ug(z’), f(2’,t) and F(t) are given, while U(2’/,t), p(2/,t) and ¢(t) are unknown

and have to be found.
Let us remind that for the two-dimensional vector-fields we understand the operator
curl as the usual operator curl for the three-dimensional vectors with the third component

equal to zero.

5.1 Function spaces and auxiliary results

In this section we define function spaces, which are used in the following calculus. Let

o C R? be a bounded domain. Define the function space
X(0) ={u:ueWko), V(u—alu) € Ly(o)}

with the norm

full, g, = lulBrye, + V(= alw)2,
In the case o € C® the space X (o) is equivalent to Wi(o) N Wi(o). Indeed, if u €
W3(o) N Wl (o) then, obviously, u € X (o) and [ull 20y < cllullwz ). On the other hand,
applying the Necas inequality to Au we get

|80l a0y < (180l + IV AU 1))

(5.9)
< o(IVtllaio) + IV AU () )
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Therefore, considering u as a solution of the Poisson equation
—Au = —Au,
U‘aa - 07
we obtain the estimate

lullwgor < c(I18ul o) + 1V Aul o))

(5.10)
< e(IVullao) + 192Ul 1)) < ellul o)
Denote
V(o) ={u:ue W), curl(u— aAu) € Ly(c),divu = 0}.
The norm in Y(o) is defined by
ull,, = iy ) + leutl(a — adu)l
In the case o € C3 the space V(o) is equivalent to W3(o) N Wi(o) and
Iallwz o) < cllully- (5.11)

The proof of these facts is given in [15].
Let

9, 9,
—u € Ly(a?), V LU € Ly(07), ulgs =0}

W(oD) ={u: D € Ly(c7),|al < 3, T

with the norm

0
lellfyry = 32 NDZullr, o) + 157 UI|L2 o) T IV 5ulli, o)

|a|<3

and

V(oT) = {u:u e W(T), divu = 0}.

Below, by constructing Galerkin approximations for the solution of problem (5.8), we

use, following the ideas from [14] - [15], the special basis in the space Y(o). Let {y;} and
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{wi}k=1 C V(o) be eigenvalues and eigenfunctions® of the following problem

V(wi(z') = aAwi(z')) - V(p(2') — aAp(a’))dz’

e — 1) [(wip(a') + aVwy(a) - Vp(z'))dx' ¥ p € V(o).

|| Q —

(5.12)

Theorem 5.1. (see [13], Lemma 4.1) Let o C R? be a bounded simply connected domain
with the boundary do € C*. Then

e (5.12) defines a countable set of eigenvalues py, > 1, k =1,2,...; the corresponding

eigenfunctions {Wy x>1 constitute basiss in the spaces Y (o), Wi(o) and Ly(0).

e The eigenfunctions wy of (5.12) belong to the space Wi (o).

Analogous basis can be constructed in the space X (o). Let {\} and {wy,}rs1 C X(0)

be eigenvalues and eigenfunctions of the problem

SV (wi(@) = alwi(2') - V(p(a') — alp(a’))da’

= (M — 1) [(wrp(e) + aVuwg(a') - Vp(a'))dz' ¥ p e X(0).

g

(5.13)

Theorem 5.2. Let 0 C R? be a bounded simply connected domain with the boundary
do € C*. Then

e (5.13) defines a countable set of eigenvalues N\, > 1, k =1,2,...; the corresponding

eigenfunctions {wy x1 constitute basiss in X (o), Wl(o) and Ly(o).

e The eigenfunctions wy, can be orthonormalized:

0, k#I
f(wkwl + Oszk . le)dl” = { 17 1 f l7 (514)
Then
0, k#I
V(w0 — aAwy) - V(w — aAw;)dx’ = { )\’k B fé ’k _ (5.15)

o The eigenfunctions wy, of (5.13) belong to the space Wi (o).

li.e., wy, are nontrivial solutions of (5.12).
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Proof. The first property can be proved by standard arguments (see, for example, [17]
Chapter 9.2). The second property follows direct from the integral identity (5.13). To
prove the third property, we denote p — aAp = ¢ and rewrite identity (5.13) in the form

[ V(wg(2") — aAwg(a')) - Vodr' = (A, — 1) [wyedr’.

Obviously, if p € X (o), then ¢ € Wl(s). On the other hand, for any ¢ € Wi(o) there
exists a unique p € X(0) such that p — aAp = ¢. Therefore, wy, — aAw, € Wi(o) can

be interpreted as a weak solution to the following Neumann problem:

—A(wk — ozAwk) = ()\k — l)wk,
O(wy, —alAwy)| 0
on do e

Since wy, € Ly(0), we conclude that wy — aAwy € Wi (o). Consider now wy, as a solution
of the Dirichlet problem:

{ wy — aAwy, = wy, — aAwy,

wk|ag =0.

Since o € C*, it follows (see, for example, [26]) that w;, € Wi(o) N Wi(e). O

5.2 Direct problem in a plane domain

For small data problem (5.8) can be solved by iterations, dividing it into two problems:

(

%(U' — aAU') — vAU' + curl(U" — aAU’) x U' + Vp
diVx/U/ = 0,
U'ls, =0, U'(2,0) =uj(x),

\

with given Us and

0
g(Uﬁg — CVAUg) — VAUg + (U/ . V)(Ug — O[AU3) = f + q(t),
Usloo =0, Us(2",0) = vo(a'), (5.17)

[ Us(a', t)da' = F(t),
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with given U’. Problem (5.16) with the given right-hand side is the standard initial
boundary value problem describing the motion of the second grade fluid in a bounded
plane domain o. Such two- and three-dimensional problems have been studied by several
authors (see [13]-[15], [41]-[39], [60], [86], etc.). Problem (5.17) is an inverse problem (the
function ¢ in the right-hand side is unknown).

By studying the inverse problem (5.17) it is convenient to reduce it to the case of
zero right-hand side f and the homogeneous initial condition. This could be done by

subtracting the solution v of the direct problem

2(v — aAv) —vAv+ (U - V) (v — aAv) = f,

ot (5.18)
Vloe =0, wv(2’,0) = vo(a').
5.2.1 Construction of approximate solutions
In this section we prove the existence of the unique solution to the problem
2(1) — alAv) —vAv+ (W V) (v — alv) = f
ot o (5.19)

U’aa - Oa U(mla O) = UO('IJ)a
assuming, that the function W € )D/(UT) is given and satisfies the following condition
sup HW”X(U) + HWHW(UT) < 607 (520)
t€[0,T]
where dq is a sufficiently small constant.

Deffinition. The function v € W(oT) is called a weak solution of problem (5.19) if
it satisfies for all t € [0,T] the integral identity

o o

t
d-vn+aVow-Vn)dddr +v [ [ Vv Vnda'dr
0o (5.21)

t o
[ Fda'dr 4 [ [(W- V(o — adv)da'dr ¥y € W, (o7)

o 0

J
J

and the initial condition v(z’,0) = vo(z').
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Let f € Ly(oT), vy € Wi(o). Then we can express them by the Fourier series
f@ ) =3 fi@@ui(z'), wvo(2') = > apwy(a’),
k=1 k=1

where fi(t) ffg 2, w(2)dx’, ay, fvo 2)dz' and {w,} C X(o) are the
eigenfunctions of problem (5.13).

We look for the approximate solutions v)(2/,¢) in the form

where the coefficients y,iN) (t) are found from the integral equalities

f( 0 oWy, + avév ) Vuwy)da' + v [ Vo) - Vwda!
or' ot ’ (5.22)
= [ fMNwds’ + [ W - V(oW — aAv™))da!,  k=1,...,N,

and the initial condition v (a/,0) = v{" ('), where

2

(' 1) = Z fr(O)w (2, Z apwy,(z

k=1 k=1

Since the eigenfunctions wy are smooth (w; € Wi (o)), the approximations vV (2, ¢)

are solutions to the following initial boundary value problems

%(U(N)—C(AU(N)>—I/AU(N) (W . V)(U(N)—QAU(N)) — f(N)’

5.23
Moy =0, oM, 0) = of V(). >

Multiplying (5.22) by w;(2) and using (5.14) we derive the Cauchy problem for the

system of linear ordinary differential equations

’ N v
i)+ X mig0) (1) = (), k=1,
]:
N0 =a, k=10,



The last system can be rewritten in the vector form:

Y™ (1) + (I + AM @)Y (1) = £(t), (5.24)
YN (0) = a, '
where
i (t) fi a
YN (¢) = o f=| |, a=| .. |,
yn (t) fu an

JN) = diag(z, ey Z) - diagonal matrix, AM)(¢) is (N x N) - matrix with elements my;(t).
a o

Lemma 5.1. Let f € Ly(o7), vy € Wl(o). Suppose that W € V(o7) is given and
satisfies (5.20). Then there exist a unique solution Y ™) € W1(0,T) of system (5.24).

Proof. Let us prove that elements my;(t) of the matrix AYY)(¢) are bounded. We have

[ (8)] = | [ —gwk(ﬂf/)wj(x’) — (W(@',1) - V)w; (") (wi(2') — aAwy(2'))dz’
< g + | [(W(a' 1) - V) (wi(z!) — alwy(!))w; (') da’

<+ W) Ly |V (wr — adwy) || Lyo) |0 s (0)

v 1/2 1/2
< — + WD VW DI ) IV (0 = a8w0)]| (o) |V | 2o

v Ap — 1\ 1/2 , 1/2 1/2 v
=ut C( a ) sup [[U°C 8)ll ) <o IVW( D20 < -+ cdo-

t€[0,T]

Here we have used equalities (5.14), (5.15), the well known inequality
ull7, 0y < cllullZ,om IVullZ, o) < cllVullz, e

which holds for any function u € Wi (o) (see, for example, |52]) and the condition (5.20).
Thus, all elements of the matrix AV (¢) are bounded functions and, therefore, the ex-
istence of the unique solution to problem (5.24) follows from standard results for linear

ordinary differential equations (see, for example, |83]). O

5.2.2 A priori estimates

Lemma 5.2. Let W e V(oT) satisfies condition (5.20) with sufficiently small 6y (8¢ is
subject to inequalities (5.35), (5.37), (5.40) below). Suppose that do € C*, f € W} (o)
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and vy € W3(0) N Wi(0). Then for the approzimate solution v'™™) the following estimate

N
5 1 i)+ 16 yary < (1 giory + 16 i) 5.25)

holds. Here c does not depend on N.

Proof. Let us multiply equalities (5.22) by y,gN) (t) and sum them by & from 1 to N:

%%f W2 + | VoM |2 da' + v [ |Vo™)|2da’

= f} JoMda! —a [(W - V)Av(;)vw)dm’

< 2_150[ |2da:’+cef Vo) 12da! —|—asup W [[o™ | £, o) VAV 1, 0)
< gif ) 2da + OHVA O+ e | V0P

Here we have applied Cauchy inequality with e, Poincaré-Friedrichs inequality and the

inequality
sup [W/| + sup VW[ < c[Wllws )
v'eo (5.26)
< c<HW|]W21(U) + leuwrl(W = aAW) | ,() ) < e,

which follows from the Sobolev Embedding Theorem, (5.9) and (5.13). Taking ¢ = 21

c
yields
d
(v ™2 + a| Vo) |2)da’ +1/f\Vv ) 12da’
dt (5.27)
< C53||VAU(N)H%2(J) tef |f(N)|2dI/-
Denote

M (2 1) = (W - V) (o™ — aAv™) — pA") — f(V), (5.28)

Since the eigenfunctions wy, € Wi (a), it follows that ®™) € Wi (o).

Let us rewrite equalities (5.22) in the form:

o) 0
f(at (N )w”ava_” ) Vuwy)da' + [ @M wydz’ = 0. (5.29)
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t) € Wi(o) N W3(o) be the solution of the following problem

Let WW)(.,
—a AWM L W) = V),
WM, = 0. (530
Then 1
[(@VWWN 7y + WNp)da! = [&Mpda’ Yy € W,y(o). (5.31)

o

Taking in (5.31) 7 = wy we obtain from (5.29) the relations

f(%v(mwk - aV%v(N) -Vwg)da' + [(W™Nw, + aVWW) - Vg )da' = 0.

g

By the definition of the eigenfunctions wy, (see (5.13)) we can rewrite the last equalities

as follows

0 0 0
—(N) . - -
wk+avatv Vw, + V(atv aAatv

( )) - V(wy, — aAwy))da’
f ( wk +aVIWW) . Vwy + V(W(N) — aAWW

1

Ak
1

+)\_ )) - V(wy, — aAwy))dz’ = 0.

Multiplying these relations by Aky,E;N) (t) and summing from 1 to N yields

1d
§d—f(]U(N)|2+a|VU 12+ V(W™ — aAv®™)2)da’
+ [ (W) 4 oYW Vo)) da!
+ [VWWN) — o AWM. V(0 — aAv™))dz' = 0.
From (5.30), (5.31) it follows that
1d N2 (V)2 ) _ 4 ApM2) do
§Ef( |+MVU|'+W@ — aAvWV)P)dx (5.32)
+ [ DMy g/ 4 f V(o™ — aAv™) . VOMdy' =0, '

Substituting expression (5.28) of the function ®@¥) into (5.32) gives

1d
2] (WVF+alVoMP 4+ [V — ado™)P)de’ +a [W - VoA de

Vf Vol Pda’ + fV( (W- V) (™) — QAU(N))) V(o™ — aAv™))da!

67



—|—Vf ]V(U(N)—QAU(N))PCZ:U’—Zva(N) V(™) —aAv™)
Q g Q g

= ff(N)v(N)dx’+fo(N)-V(U(N

) — aAvWM))da'.

)da!

(5.33)

The right-hand side of (5.33) contains the term with the fourth order derivative.

However, this term can be estimated by the integral containing only derivatives up to

the third order. The operations below are correct because the functions wy belong to the

space Wy (o). Denote for simplicity v¥) — aAv®

= u. We have

[V((W- V) (0™ — aAv™)) - V() — aAv™))dz’

U: f V((W-V)u) - Vudz' = f{VW -V}u - Vudx!

+f (W - V)Vu - Vudz' —f{VW Viu - Vuda!

>—ll\:) >—lq

q

l\D

Q

q

+5 [(W-V)[Vul*da’ —I{VW Viu - Vuda!
—= [V - W|Vu|*d2’ —f{VW Viu - Vudx!'
<c [ |VW|Vu|?da’ < csup\VW|f\Vu\2d;c

< ¢by f|Vu|2dx —c5of|Vv(N —aVAv )|2da’.

Here we have used the notation {VW - V} =
Using (5.34) from (5.33) we get the estimate

V(

0

(5.34)

0
Wy — + Wy——) and applied (5.26).

0x4 0xo

||L2

v o)

%@ [ ([v™ 72+ | VoM 2 4+ |V (0N — aAv™) ) da’ + v [ |V 2da!
+g}|V(v M) — aAv))|2da’ = afW V ANy gy ’
4—2} M.V (v —aAv™))da! —|—fV( (W - V) (0™ —aAv™)) - V(o) — aAv™)da!
+fo:f JwWMda! + [V N (W —aAv Ndx' < as/u€p|W|||VAv
VNV (0 —a e )] R (N4 IV V)
+(§ + ¢cdo) [ V(o™ — aAv™))|2da’ 4 = f|Vv )12da’ ’

Ciﬁ e

< 2L [|IVAYW 2’ + ¢ [ | Vo) |da! —|—gf\Vv

1 1
+(e + cdo) [ V(™) — aAv™)|2da’ + 2—€f | fM)|2da’ + 2—€f |V M) |2da’
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If

01(5

< (T + e+ c2b) f V(™) — aAv™)|2da’ —l—af |V |da!

c(1+62)
il f|V )|da’ —|——f|f )|2da’ —1—2 f]Vf )|2da.

Taking ¢ = min{i, 4—} and assuming that dq is sufficiently small, i.e.,
a

168
1— + 200 <

from the latter inequality we obtain

i) (™2 + a| VoM 2 + |V (0N — aAv™)2) da’
+l/f|Vv )2d2’ + — f\V N — aAvM) 2z

(f(|f<N>|2+f|Vf<N>| )da! + Vo) 2de).

(e

Integrating inequality (5.27) by ¢ gives the estimates

[ (o™ (@ 1) + a| VoV (2, 1)|) da’ —I—l/ff|Vv )2da’dr

7 t

< g [ [IVAY N)\de’d7+cff|f N)\de’dT—i-fﬂvo 2 4 | Vol |2)da:’
0o
t

<cd [ [V —aAv(N))|2d:B’d7'+0352ff|Vv )|2da’dr

0
t
e [ [IfORd'dr + [ (0§ + ol Vg™ ?)de.
0o o

v
6353 S 57

the last inequality yields

o—_ .
Q

t
(VoM 2da’dr < e82 [ [ V(o™ — aAv™)|2dz’dr
0o

¢
+c [ [|f™dadr + [ (|U(()N)\2+a\VvéN)|2)dx’
0 o o

(5.35)

(5.36)

(5.37)

(5.38)

Integrating inequality (5.36) with respect to ¢ and estimating the last term in right-hand
side by (5.38) we obtain
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i (|U(N)(£E/, )2 + a| VoM (2 1) ]2 + V(N (') 1) — aAv(N)(;E’,t))P)dx’

q

t t

+v [ [V U(N)|2dx’d7'+ff\v v — oAV |2da’dr
° 97
(f

<c([[1f™ ]2da;’d7—i—ff\Vf(N 2da’dr) (5.39)

0o

¢

+cs02 [ [V (0™ — aAv®) )|2dx’d7'
0o

—l—cf (\véN > + aleO \2 + ]V( aAv(()N))P)dx’.

Assuming that

1
cs6y < 5 (5.40)
from (5.39) follows the estimate

[ (oM@, ) + o Vo (2, 8)]2 + [V (M (2, 1) — ado®™) (/1)) [?) da’
7 t
+ [ [ VoM + [V — aAv™)2)da'dr

0o (5.41)
<cf[(lf™]?+ |Vf(N)|2)dZL'/dT

0o

+cf( o2+ o VoV 12 4 [V ({7 - aAvéN))P)dx’.

d
Let us multiply equalities (5.22) by Ey,gN) (t) and sum them by k from 1 to N:

2dt
= [(U"-V)(uW) —OéAU(N))%U )da! —i—ff(N)%v(N)dx’

f(|—v(N ]2+&]V%v )?)da’ —|———f]V'U )|2da’

1 0
< 5o [U |90 = aA)Pde’ + & [ [ o e’ + 3 [ |0’

z'co

1
Taking ¢ = 2 integrating with respect to ¢ and applying (5.26), (5.41) we obtain
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¢
v [[VoM (@ ) 2da + [ [(|0-0M + | VO,o W) ) da'dr
0o

g

| /\

t
e [ (|fMNMPda'dr + |V f(N)|2)da:’dT (5.42)
0o
+ef

([0§¥ 2 + ol Vo + 19 (o) — aref™) ?)da'.

Estimate (5.25) follows from (5.41), (5.42) and the definitions of the norms. [

5.2.3 Existence and uniqueness of the solution

Theorem 5.3. Suppose that do € C*, f € Wi(oT),vo € W3(o) N Wi(o) and W €
V(oT) satisfies condition (5.20) with & subject to inequalities (5.35), (5.37), (5.40). Then

problem (5.19) admits a unique week solution v € W(JT) and the following estimate

sup ||U||)°((a) + HUHW(UT) < C(||f||W21(ch) + ||UO||)2(U)) 5.43
t€[0,T

holds.

Proof. Multiplying equations (5.23) by arbitrary function 7 € W;’D(UT) and integrating
by parts on ¢ and by 7 from 0 to t we get the following integral identity

t t
S 2 Np + avgv(m -Vn)da'dr +v [ [ Vo™ . Vnda'dr
0 T 0o

I -
-l

0 (5.44)
[ W ndx’dT—i-ffW Vi) — aAvN)da'dr Yt € [0,T).

From estimates (5.41), (5.42) it follows that there exists a subsequence {v™)} such that
oM (1) — () in X(o) VEe[0,T], v™ — v in W(oT).

Passing in (5.44) to a limit as IV; — oo we obtain for v integral identity (5.21). Obviously,
v satisfies the initial condition. Moreover, from inequality (5.25) follows estimate (5.43).
Let us prove the uniqueness. Let vl and v!? be two weak solutions of problem (5.19).

The difference V = vl — v[? satisfies the integral identity

t
JJ( ;TVTI + Oévg) V- Vn)dz'dr + foVV Vnda'dr
0o

¢
=[[W-Vn(V —aAV)da'dr Vn€W2 (O’ ).
0o
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Taking n =V yields

t t
1
5 [avealwvpias wo [ [1ovpases - —a [ [w.vvavidar

o 0 o 0 o

Integrating by parts the right-hand side term we get

¢ ¢ 2
—affW-VVAde’dT:aff[—%Z W(8$4V)2
2 Ny o0

29

2] d 0
de'dr = — da'd
Zzﬁxz Jaxjva iv} v'dr = ; Waxjvaxiv a'dr
t
= Cfsup|VW’!f\VV|2d:v’dT < CIHW’st ) JIVV[2da'dr.
0 x'€c o
Therefore,
t
/ YV < e / W lhwso / YV 2’ dr (5.45)
0 o
Define

u(s) = eXp(—beHWng(a)dT) [ Wiz [ IVVPda'dr), s € (0,7).

Then
u'(s) = o [Wllws(o) eXp(—OfSCHWng@dT)(Uf [VV[Pda’ — LOfCHWng(U)Uf\VVlzdw'dT)-
From (5.45) it follows that
[IVV|2dz’ — OftcHWHWQs(U)f \VV|2dz'dr <0,

[

and we get u/(s) < 0. Integrating the last inequality from 0 to ¢ and taking into account

that u(0) = 0 we get u(s) < 0. Hence,
t
S 1Wllgo) J 19V Pda'dr < 0.

Substituting this into (5.45) we get [ |VV|3d2’ < 0. Thus, v!!l =0, O
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5.3 Construction of an approximate solution to the in-

verse problem (5.8)

Let us come back to problem (5.8). In this section we construct an approximate solution

and prove an a priori estimates of it.

Definition. By a weak solution of problem (5.8) we understand the pair (U,q) =
(U, Us, q) € V(oT) x W(0T) x Ly(0,T) satisfying the initial condition U(z',0) = ug(z’),

the flux condition

J Us(@', t)da’ = F(t) (5.46)

and the integral identity

;U Vn)dx’dT—l—foVU Vnda'dr

t
+ [ [(U-V)U- ndx’d7+afo V)n - AUdz'dr
0o

t
ofgf 8TU n+aV

(5.47)

—Q

o, o

[(n-V)U- AUdm’dT—ffqngdx’dT—i-fff ndz'dr
Vi = (n,n3) € Wy (cT) with d1v77 =0, Vt € [O,T].

One can derive identity (5.47) multiplying equations (5.8;) by 7', equations (5.8;) by
713, summing the obtained equalities, integrating by parts on ¢ and then integrating by

t. Notice that identity (5.47) is equivalent to the two following identities:

t t
I J( %U’ - +04V§TU’ -V)dod'dr +v [ [ VU - Vn'd'dr
0o 0o

¢ ¢
+ [ ( n’dx’d7+aff (U"-V)n'- AUda'dr
0a (5.48)
—a [ [(n-V)U - AU’dm’dT+ffVU3 n'(Us — aAUs)dx'dr
0o

t
= [ [ -nde'dr Y/ € W, (07) with divey =0,
0o

and
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a a !/ ’ /
(87' EUg - Vns)dx'dr +v of Uf VUs - Visda'dr

U/ V?’]g U3 - CkAUg)dl’/dT (549)

o
%

O%Ho%wq

U3773 + aV

+

!
R

qnsda’dT + fffgngdx’dT Vns € W;’()(O'T).
0 o

For the Galerkin approximations U™ (z/,t) = (U'™)(2' 1), UéN) («',t)) of the weak

solution U(a’,t) we look in the form

U™, 1) = 5 ¥ twale’), U 1) = 5 60 (o).

k=1 k=1

Here the coefficient cgl)(t) is found from the equation

d L
g O +va’ @) [IVwifda’ = £i0), - 67(0) = upy, (5.50)
while c(N) (1), b,gN) (t), k =1,...,N, are found recurrently as the solutions of the Cauchy

problems for the following systems of ordinary differential equations

d
Eb( )+ v [ VUM - Vugda! + [(UN) V) (U — oAU )da!

b (0) = vor, k=1,...,N, N >1,

and
( jt,i )+ v f VUW) . Vwida' + f (U™ . v)UW™ - wida!
—|—an (Ut V)W - AU WMy’ —agf wy, - V)U'WM) . AU W) dy! (552)
+ [ VU wi (U — aAUSN ) da' = £ (1),
\ c,(j%(()):ugk, k=1,...,N, N>2
As usual,

— / / !/ _ /! /
= [ wida!, up, = [uf - wida,

o

fSk(t> = ff:swkd:v', Vok = fvowkdx’.

(e
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The functions ¢™(¢) in (5.51) are chosen in order to satisfy the flux condition

[UM (@ tyda! = FN(@) Ve e [0,T), (5.53)

where F™) — F in W2(0,T) (F™ will be defined later).

First of all we prove an a priori estimates for U'Y) assuming that U3N Yy

is known.

Lemma 5.3. Suppose that UéN_l) e W(o7T) is given. Let f' € Ly(o7), curlf € Ly(oT)
and u)y € W3(o) NWi(o). Then for UN) e W(aT) the following estimates

s U+ IOy < O o, + w1 +10615,). (5.5

sup [[UV)5, + U o) < CoIFN17, 0y + lewd €17, o)

te[0,T] Ny N1 4 (5.55)
2 > '
+t2[%pT UMV, |+ 11U ISyory + I1615,,), N =2,

hold. Here Cy is independent of N.

X (o)

Proof. Estimate (5.54) follows from the equation (5.50) and the properties of the basis

In order to prove (5.55), we use results obtained (see [13], [14]) for the two dimensional

equations of the second grate fluid flow

%(U/ — aAU") = vAU’ + curl(U’' — aAU") x U' + Vp ={/,
div U’ = 0, (5.56)

Ulss =0, U'(2/,0) = ug(2).

It was proved in [13], [14] that if f' € Ly(o7), curlf’ € Ly(oT) and ufy € W3 (o), then
problem (5.56) has the unique weak solution U’ € V(67 and the following estimate

o , ’ / /12
S 1Oy + 10 gy < (1 o + Herd £ oy + 1)

holds. In [13], [14] the solution was found by Galerkin method. Repeating literally the

arguments from [13] one gets the following estimate for U’(Y)
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sup [[U™S L+ (U3 . < (Hf’llL2 oT)

te[0,T)
—|—||curl f/||L2(UT) + ||U?EN—1)V(U?E - AU:gN )HL2(O—T) (557)
+||curl (U?EN_I)V(U?EN_I) - OéAU?E )) HL2 o1y T ||u0||§)(0)).

It is easy to show using Sobolev Embedding Theorem that

N- N-
U IV — adUS D2, 559
gcsupU 4 —|—U(N14 ) ‘
(g IO+ 108 )

Let us estimate the second term in (5.57) containing U?EN_I). We have?
curl(UN IV (U = oAU = UN Vewnl(V(USN Y — aAUNTYY)
+VUN T o v(USNTY — a AUV = VUNTY < V(OINTY — oAU Y)Y,

Therefore,

t
[ [ earl (U IV — aAUN YY) [2datdr
0o
t
= [ [IVUN D x v — a AU D) 2da dr
0o
t
< ¢ [sup |VUSN V2w (U — oAU 12
o{x/@ ’ i ’ Lo 1T (5.59)
< [ IV VI IV U5 — aAUSN ), rd
0

N-1 N-1
< sup U570 05 VN
te[0,T)

Nl
< (sup 1051 + 1081 o)

te[o0,T (@

Estimate (5.55) follows from (5.57), (5.58) and (5.59). O

Remark 5.2. It follovvs from estimate (5.55) that Cauchy problem for system (5.52) has
a unique solution ck ( ),k=1,...,N, (see, for example, [83]), and, thus, functions U'™")

can be uniquely determined from (5.52) if we already know UV,

Let us consider now the approximations (UBEN) (z',t),q™)(t)). Suppose that U™V

2These calculations have sense because the elements wy of the basis belong to the space Wi (o) (see
Theorem 2.2).
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V(oT) in (5.51) is given and

tS[UP o™ Hj)(o) + ||U/(N)||1>(0T) < 0.
€0

Because of (5.11) and Sobolev Embedding Theorem it follows that

sup (sup U] + sup VU M]) < ¢ sup ||U’(N)||W3
t€[0,7] a2'€c z'Eo t€[0,T] (5.60)

< c sup [[UW]y,,
t€[0,T7

Suppose that the vector U'"™) is "sufficiently small":

sup (sup U™ + sup IVU'™[) < Cy sup [U'™) () < do, (5.61)
tel0,T] a'€c z'Eo t€[0,T7] .

where oy will be determined below.
We look for the approximate solution (U?EN) (2',t),q™)(t)) in the form

(UM (@, 1),dM (1) = @M, 1),0) + (VO (@, 1), dM(2)),

N N
where v (/1) = 32 2™ ()wy(a’) and VOV (2, 1) = z ™ () wi ().
k=1
Coefficients Z,EN) (t) are found as solutions of the followmg problem

d

T (N) )+ yva - Vwgdx'
+ [U®Y) Vwk( — aAvWM)dx' = fa.(1), (5.62)
AM0)=vg, k=1,...,N, N>1,

The unique solvability of this Cauchy problem follows from Lemma 5.4 with W = U'®")

Coefficients y,gN) (t) are found as solutions of the following Cauchy problems

jty,iN) () +v [ YV . Tuwyda!

+ [ U™ T (V) — aAV)da! = ¢ fwkdx (5.63)
yM0)y=0, k=1,...,N, N>1.

The functions ¢™(¢) are chosen so that V) (2' t) would satisfy flux condition (5.53),
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ie.,

J VO (@' t)da' = FO() = F(t) = [o™(2, t)da’ — o), (5.64)

g

where o) = [ (v, — v(()N))dx’. We notice, that a¥) — 0 as N — oo, and that there

holds the compatibility condition

FM0)=0 VN >1. (5.65)

The Cauchy problem (5.63) can be rewritten as

d N v N
U @)+ 2+ mig )y (1) = o™ (@),
j=1 &
yl(ﬂN)(O) _07 k: 1a 7N7
where my;(t) = —f(zwkwj — (UM Vw;(wy, — aAwy))da’, B, = [wida’, or in the
g Q loa
vector form 4
DY 1) + 10+ AV @) YD) = g (1) 8™ -
Y™ (0) =0
where N
w0 b
YM(t) = , BN =1 .|,
un (1) By
JN) = diag(z, . Z) - diagonal matrix, A®) is (N x N) matrix with elements my; ().
o

Lemma 5.4. Suppose that ¢™) € Ly(0,T) and UM e V(0T satisfies (5.61) with
sufficiently small 6y and condition (5.65) holds. Then there erist a unique solution

Y™ € Wl(0,T) of Cauchy problem (5.66).
The proof of this lemma literally repeats the proof of Lemma 5.4.
The fundamental matrix Z")(t) of problem (5.66) is the solution of the matrix Cauchy

problem
ZM () + (TN £ AMNZN () =0,  ZWM(0) = EW), (5.67)

where E?Y) is the unit matrix and Q is zero matrix. The solution Y®)(¢) of problem

(5.66) can be represented in the form
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= [ 209 0)@) (7)) BV (7). (5,68

We find the functions ¢ (¢) from flux condition (5.64). Substituting V) (' t) into
(5.64) gives

FO fV(N (o', t)da = Z Mt ) [wp(a)da' = YN (t) - g

Oftz )(Z)(r) 18N ¢ (7).

Thus, ¢™¥)(¢) has to be found as the solution of the Volterra integral equation of the
first kind

[ B9 Z09()(2(7)) 8 () = FO ).
0

Differentiating the last equation and using (5.67), we reduce it to the Volterra integral

equation of the second kind

t @)
- B 00+ A (@ (7)) )
L (5.69)
! 8™ dt
with the kernel
)
KN (1 7) = |§T>|2 LI 4 AN ZO 1) (2 (7)1 BN

For any fixed N the kernel KXV (¢,7) is bounded for all 0 < 7 < t and, hence, K&V) ¢
d ~

Ly(Q1), QT = (0,7) x (0,T). Therefore, for any EF(N) € Ly(0,T) there exists a unique

solution ¢) € Ly(0,T) of integral equation (5.69) and the following estimate

d ~
1a™ || o0y < CNH%F(N)HLQ(QT) (5.70)

holds (see, for example, [84]). The constant Cy in (5.70) depends on the kernel K(M)(t, ),
and we cannot say in advance that Cy stay bounded as N — oo. In the next section we

will prove uniform with respect to N estimates for (V™ (z',t), ¢"™(t)).
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5.4 A priori estimates for inverse problem (5.8)

Lemma 5.5. Suppose that do € C*, U™ e V(o7 is given and satisfies condition
(5.61) with sufficiently small &, F™) € WL(0,T) and satisfies condition (5.65). Then
Jor (VI (2' 1), ¢N)(t)) the following estimate

tg{lé};}”‘/ Ny F IV oy + 11 0y < el EM - (5.71)

holds. Here the constant c is independent of N.

Proof. Multiply equalities (5.63) by yliN)(t) and sum them by k from 1 to N:

1d
2dt ) J
M) [VINdr + o [(UWN . V)V M AV N gy’

< ld ™ OFO @] + asup [TOVVO |10 AV 1

r'eo

(V2 4+ o VVW D) da' + v [ |[VVIV)|2da!

€ 1 ~
< ZlgM(H)12 + | FM) (]2
< SlaV P + o [F ()]

+ TVl (1T (V) = AV L) + 19V P 1a0)
< @M@ + | FO @)

€
+0150HVV(N)“12(0) + oo V (V) — AV(N))HiQ(U)

Here we have applied Cauchy inequality with ¢ > 0, inequalities (5.9), (5.61), and the

fact that d 9
U U3 - Vwy, ) da’

::[( wk—i-()év@

If 100 < g7 then the last inequality yields

d
VN2 4 o VVWM D) da! + v [|[VVI)2dy’
i) (v | )?) f | ) (5.72)
< céoHV(V“V) — AV o+ quw) ()7 + ¢ FM ().
Denote
OWN) (' 1) = (UM . W) (VIN) — AV — yAVIN) — (N (1), (5.73)

Since the eigenfunctions wjy, € Wit (o), it follows that ®™) € Wi (o).
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Let us rewrite equalities (5.63) in the form

0 0
f((‘)t VN, +O‘Va VNV da' + [ @WNMwyda’ = 0. (5.74)

From this point, following the ideas of [13], [15], we will use the specific form of the basis
{wi}r>1. Denote by W (. 1) € Wl(o) N W3(0) the solution of the following problem

—aAWWMN) 4 W) = V),
{ e (5.75)
Then )
[(@VWWMN vy + WNp)da! = [eWMNpda’ Yy € Wy(o). (5.76)

Taking in (5.76) n = wy, from (5.74) we obtain the relations

f(%V(N)wk + QV%V(N).Vwk)dx’ + f(W(N)wk+OéVW(N)-Vwk)dx’:(),

(e

Using the definition of the eigenfunctions wy (see (5.13)) we can rewrite the last equalities

in the form
1 9, 9, 0 0 0 0
- (v (N) . N) _aA e —a\ dz’
v ((%V wk+ava V Vwk—i—V(a V a 0tv )Y - V((%wk a atwk)
1 0 0 0 0
(N) (N). “WWN) g A=W D) —wn—a\ "= 0.
4—! (W +a VW Vwk—i-V(at W g W) V(atwk a 8twk)d:v 0

Multiplying these relations by /\ky,(CN)(t) and summing from 1 to N yields

1
5% S (VIR 4+ VVIM 24 |[V(VI) — oAV 2) da
+ [ (WY 4 oavW W) . V) da!

+ VWD) — o AW . (V) — o AVIM)dz' = 0.

From (5.75), (5.76) it follows that

1
1L e |2+oz|VV(N)|2+|V(V(N)—aAV(N))|2)dx’
2dt ;, (5.77)
+ [Ny W dx+fV N — AV . VoM gy = 0.
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Substituting the expression (5.73) of ®) into (5.77) gives

1d
st ([V]2 + o VVIM 2 4 |[V(VI) — oAV |2) da’

+an’N VVIAV N dy! —l—l/f|VV )|2da’

+ fv[ (UMW) . ) (V™) — aAV N>)} VIV — aAVE))dy! (5.78)

+—f IV(V) — a AVI)|2da!
(0%

Vv g — aAV®)da! = ¢ (1) [ VN
a (o

o

The fourth integral in (5.78) contains the term having fourth order derivatives of V%),
However, it can be estimated by the integral containing derivatives of V) only up to the
third order. The calculations below are correct because elements wy of the basis belong
to the space Wi (o ) Denote for simplicity VIV — aAVY) = RWY) and {VU'W) .V} =

p)
vulh — + vu{"
1

. . Integrating by parts and applying (5.61) we obtain
x

Ers
[V((U™ )YV — aAVI)) . (V) — o AV da!
U: fV((U’(N) . V)R(N)) VRN dy = f{VU’(N) .V}R(N) VRN dy!
+f (UM . V)VRW) . VRMdy' = f{VU’(N) - VIRW) . VRWMdg'!
{
5] (U'N) . V) |[VRWM)|2ds’ = f{VU’(N) VIRW™) . VRW)dy! (5.79)
1 g
—= [V - UMVRM 2z’ = [{VU'WN) . VIRWN) . VRMda!
5V
cf VUMV RWM)|2dg’ Scsup]VU’ ) [IVRM)2da!

r'eo

cdo f IVRM)|2da’ = b f IVVI) — aVAVN|2qy,

Using (5.79) from (5.78) we derive the estimate

1d
i) ([VI)2 4+ o VYV \2+|V( VW) — AV N2 da!
yfyvv M) |2dg’ + — f IV(VIY) — aAVIN))|2dg!

= an/ VAV V(N do’ + —fVV(N) V) — AV g
a(f

82



+qW(t) [V da' < asup [UN[[VAV| 0 [V 1, )

x'eo

v 7 N
TV, IV (V) = aAV ) | 1y0) + g™ () F (1)
by [ [TV = aAVI)Rda’ < (edy+ 5) [IV(VV) = AV dar

1 € 1 ~
S L (M 120" + S g™ ($)12 & — | FN) (4)]2.
Hesdo o 52) JIVV Rda’ 4 Zg™ (@) + | P ()

(e

Taking u = ﬁ and assuming that Jy is sufficiently small: c3dp < ﬁ, e300 < g, from the

latter inequality we obtain

d
" S VIR 4+ o VVIO R 4 |V — oAV 2)da! + v [ |[VV V) [2da

B o (5.80)
id JIVVE) — aAVID) 2de! < e(|[FM(0)]2 + [ |[VVI2da’) + g™ (2)]2.
Oé (o2 g

Integrating inequality (5.72) with respect to ¢ yields

t
J (VNP +a|VVWPR)de! + v [ [|[VVNVPde!dr
0o

o

t ¢ t (5~81)
< by [ [IV(VY) — aAVIM)Pda'dr + e [ ¢ (7)2dr + ¢ [ |[FN)(7)[*dr.
0o 0 0

On the other hand, integrating inequality (5.80) and applying (5.81) we derive

S (VIR 4+ o VVIM 24 |[V(VE) — oAV 2) da/

(e

t t
+v [ [IVVN2da'dr + g [ [IV(VI) — aAVN)|2da’dr (5.82)
0o 0o

¢ t ¢
< ce [|¢g™M(T)2dr +c [ |[FWN) (1) 2dT + csbo [ [ IV(VIV) — aAVI)|2da/dr.
0 0 00

1
If c460 < Y then from (5.82) follows the estimate
[ (V)2 4+ o VVIM 24 |[V(VE) — oAV 2) da!

7 t
+ [ [ W|IVVIPE 4 |[V(VE) — oAV 2)da'dr (5.83)
0o
t

£
< csf |q(N)(T)|2dT+cf \F(N)(T)|2d7.
0 0
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d
Multiply equalities (5.63) by Ey,(ﬁN) (t) and sum them by k from 1 to N:

f( V<N>|2+a|v V |)dm+ |VV ) |2dy!

2 dt f
= [(U™) . v)(VV) — aAV(N))%V Jda' + f g™t g VN gy

1
_ (N (N) _ 2 - v V(2 74
_zsup|U |2 f|V(V aAV W) 2dy! —1—2:7“& N|2dx

r'Eo
15 1. d
+5 1M @) + o

ZEFM@))2,
2¢ ' dt ®)l

Integrating this inequality with respect to ¢ and applying (5.61) and (5.83) we get

uf|VV (M) |2/ +ff( V<N 2 + yvaﬁv(fv)F)dx'dT
T

(5.84)
< e= [l ()Pdcdr + [ 13- FO ()dr
0 0 T

Let w € Wi (o) be the solution of the Dirichlet problem for the Poisson equation on
—Aw(z) =1
w@') =1, (5.85)
w(z’)|ss = 0.
If 0o € C?, then w € W}(0), and w(z') can be expressed by the Fourier series

wla') = 3 pn(e), e = [l ()

g

which converges in the space W3 (o). Multiply (5.63) by v and sum obtained relations

from 1 to N:
9 (N), (N) (1 9 (N) (N) / (N) . (N) .0
f(—tv w (x)+aV—tV -Vw )daz —i—l/fVV Vw\dx

0 (5.86)
+ [(UW) V)YV — o AV WM dg! = g fw(N

N
where W™ (') = Y ypwi(2’). In virtue of (5.85) and the flux condition (5.53) we have
k=1

/ vV . vuWMds = / VVW) . Vwds' + / VvV v (w™) — w)da!

(& o
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=— fV(N)Awd:c’ + fVV(N) V(w0 — w)da!
= FM(#) + fVV -V (w™) — w)da',

and, analogously,

/ V%V(N) - VwWMdz' = F<N> / v (%V — w)dz'.

Therefore, relation (5.86) can be rewritten as

d
Uf%V( )M dy! +adF( —i—osza VIV V(™) — w)da!
+vFM (@) +v [VVI) . V(W) — w)da!
+ [(UWM) )V — oAV M dy! = ¢ () [ w™Mda.

g

Let us estimate the functions ¢®v) (t). From the last equality it follows that

d ~ -

N)da! — ) FW)
kg™ f Gtv da’ + a— (t)+v (1)
—i—osz%V(N) V(W™ —w)da' +v [VVI) . V(W) — w)da!

+ [(U™ V)YV — a AV dg! + g™ (t) [(w — w™))da!,

where ko = [w(z)dz’ > 0. Therefore,

L0 tod ~
w3 [l @dr < e [P’ [ [15 VO Pda'dr +a? [P () Pdr
~ ' P
+V2f|F(N)(T)|2d7+0‘2f]V(w(N) —w)\2d$'ff|a—VV(N)]2dx’
o 0 o T

¢
+12 [ V(™ —w)|2dz’ [ [ |[VV™)]2da!
0o

(e

t
+(sup [w™ (@) ) sup ([ UM Pd’) [ [|VVE) — oAV 2da'dr
0o

z'eq T€(0, t} o

+f|V(w—w )|2dx’ f|q |2d7')
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Since |lw — w(N)|]W21(U) — 0 as N — oo, the last inequality and (5.61) yield

t t
[la™M () Pdr <c( [ [+ 0 V)| 2dx'dr+fy— FN (7)|2dr
0 0y 07 (5.87)

t t
+f( T)dr + [ [|VVY) — AV 2da/drdr).
0 0o
On the other hand, from (5.83), (5.84) we establish
J VP + v+ a)|[VVINP 4 [V — aAVI)12) da!

g

t
+v [ [IVVRda’dr + f f IV(V) — a AV 2da’dr

~+

L7 5 (5.88)
+ [ J( |—V\2+|V —V[*)da'dr

0o
t

cf( |2+|— N())? )dT—I—05f|q 7)|?dr.

0

For sufficiently small e from (5.87) and (5.88) follows the estimate

t to d ~

[1g™M () Pdr < ¢ [ (|JF™(7)> + |d—F(N)(T)|2)dT. (5.89)
0 0 T

Estimate (5.71) is the consequence of (5.83), (5.84), (5.89) and the definitions of the

norms.

From Lemmas 5.1 and 5.2 follows

Lemma 5.6. Suppose that 0o € C*, fs € Wy (oT), vy € Wi (o)NWi(o), F € W(0,T),
uw e f)(aT) are given and U'N) satisfy condition (5 61) with sufficiently small d.

Assume that the necessary compatibility condition F'(0 fvo Ydx' is valid. Then for

the approzimate solution (UéN)(a:’,t),q(N)(t)) the following estzmate

N
up HUSVN, o, + NOSVN2 oy + 1812 o)
X (o) W(oT)
tefo,T (5.90)
< Cs(||f3|\€v21,o(aT) I F Ry 0y + lv0l%)

holds. The constant Cy in (5.90) is independent of N.

Proof. The approximate solution (US" ) ™) has the form (U, ¢™M) = (™), 0) +
(V) gM)) (see Section 5.2), where for (V™) ¢(™) holds estimate (5.71) and for vV) -
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estimate (5.30). Hence, to prove (5.90) we have only to estimate the norm of FOV(¢).
The functions F™)(t) are defined by (5.64). Therefore,

= T 0
HF ”Wl 0,1) = (HFHWl(o T) + { (HU(N)H%Q(U) + ”EU(N)H%Q(U))CZT

+NMWﬂ<MWMwTHmMWrWW&J-

(5.91)

Here we have used (5.25) and the obvious estimate
T

2 N
bf\azv!QdT < Tlay[? = T( [ (vo = v5")da’)" < Tlolllvo — 05" I3, ) < ellvoll?, o

Inequality (5.90) follows from (5.25), (5.71) and (5.91). O

Theorem 5.4. Suppose that do € C*, u), v, € Wi(o) N Wi(o), F € WE(0,T), f' €
Ly(aT), curlf' € Ly(oT), fs € Wy°(67) and that the necessary compatibility condition

0) = [ wo(a)da’
is valid. Assume that the data satisfy the conditions

11012 /1|12 < 2
Hf ||L (oT) + chrlf HL2(O.T) + ||u0Hy(U :u0507 (592)

IF W0 + 1510, + 00y, < 103,

where
1

1
—_— —1
C1C2 2C,C% }’
Coy and &y are constants from inequality (5.61), C1, Cy and Cs are constants from estimates
(5.54), (5.55) and (5.90) respectively, oy is "sufficiently small”, i.e

fto = min { (5.93)

C380 < 1, (5.94)

and such that Lemma 5.3 is valid. Then the approrimate solution (U’(N), UéN), q(N)) €
V(0T) x W(0T) x Ly(0,T) of problem (5.8) satisfies the following estimate
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N
sup (JJUM2  + |US™M)2

t€[0,T]
Hla ™12 07 < 11, ) + llewrl £12, o+ g3,

+ (sl 10 0ry + Ivoll% ) + 1E s 0.m)) >
(1"+‘||fS||2 10(O.T +||U0||2 +||F||W1(0T))

N
U™ UV

X (o) ) W(oT)

)J(O' V(O'T)

(5.95)

Proof. For the approximation U’ (2/,¢) holds inequality (5.54) and from condition
(5.93) we see that U’V (2, t) satisfies inequality (5.61), i.e

Co sup [[UW]5,) < do.

te[0,T]

Therefore, we can find (Uél),q )) and by (5.90)

Ty = (”f3H2 10 (oT) + ”FHW1 0,T) + HUOH?{»(U)) < CS,UO(S(Q]'

0'

sup [[U571%,, + U313,
t€[0,T)

Now, applying successively inequalities (5.55) and (5.90), and using (5.92), (5.93), (5.94)

we obtain the estimates

swnvmn

+ ||U3N)||2 W(eT) = < O3lu058 VN Z 17
te[0,T

X(o)

Cg sup [[UM|2 < GFCGCouo(1+ C3uodg) < 05 VN > 1.
te[0,T] V(o)
Thus, Condition (5.61) is valid for all N > 1. Therefore, Galerkin approximations
(U™ LU N)) are defined VN > 1. Estimate (5.95) follows from (5.55) and (5.90).
[

Remark 5.3. In the case when uj = 0, f' = 0 (i.e., the external force and the initial
velocity are directed along the axis of the cylinder) from inequalities (5.90) and (5.92) we
get

s I gy 4108 Wy 10 ) < oo (5.96)

te[0,T

Substituting (5.96) into inequality (5.55) we obtain

sup [[UM2 4 U™y
s U+ |

N3y < C2C3 305 (5.97)
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Estimates (5.96), (5.97) shows, in particular, that the velocity components Ul(N) and UZ(N)

are secondary in comparison with the axial velocity US(N)

5.5 Existence and uniqueness of the solution to inverse
problem (5.8)

Theorem 5.5. Suppose that do € C*, and the data ug(z'), £(2',t), F(t) satisfy the
condition of Theorem 5.4. Then problem (5.8) admits a unique weak solution (U’ U, q) €
V(oT) x W(oT) x Ly(0,T) and the following estimate

sup. (U5, + 1Usl% ) + 1015 oy + U1 o) + a2 0)

te[0,T
<c(Hf’HL2 ory T el €7, oy + [[ugl5,

(5.98)
+(II sl 1ory 10005 o) + 1y 0T>><
x(1+ ”f?aHa,Qlo + ”UOH2 + HFHW1(0T ).
holds.
Proof. Let n™) = (n’(M),néM)) with
1(M) (.t u / (M) 1 A /
'@ t) = Y d(we(2'),  n3 (@) = Y2 gr(t)wi(a’), (5.99)
k=1 k=1

where dj(t) and gx(t) are arbitrary functions from C*°[0, T'|. Multiplying equalities (5.50),
(5.52) by dg(t) and (5.51) by gx(t), integrating by ¢, summing these relations by k from
1to M (M < N), and then summing the obtained integral identities, we obtain

At

/G

14

U . n) 4 v aa UM . M) dy'dr

o o

T

_|_

vUWM . vnMdz'dr + f SUWM .Y UW) . Mgz dr
0o
t
+a [ [(UN V)M  AUN Az dr — o [ [ - V)U'™) . AUMda'dr — (5.100)
0o

vty DU — o AUSN VY datdr

+

O O C—
Qe Q& 99—

(0%

t
ff(N) "l’](M)dSL’/dT + ffq(N)n:(),M)dQ?,dT.
o 0o
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From inequality (5.95) it follows that the sequence {U’(N)}N>1 is bounded in the space
V(oT), {U:_;EN)}N>1 is bounded in W(o™) and {g™M} o is bounded in Ly(0,T). Moreover,
for almost all £ € (0,T) the sequences {U’(N)(~,t)}N;1 and {UKQEN)(-,t)}N>1 are bounded
in )O/(a) and ?O((J), respectively. Therefore, there exist subsequences {Ij(Nl)}, {UZENZ)}
and {¢*} such that

UW(. ¢) — U'(-,t) inY(o), for almost all t € (0,7),
U?)(Nl)(-,t) — Us(-,t) in X(0) for almost all ¢ € (0,7,
U™ - U inV(eT), UM — Us in W(oT),

¢"(t) — q(t) in Ly(0,T).

Let us fix ™) in (5.100). Using Sobolev Embedding Theorem it is easy to prove that
passing in (5.100) to a limit as IV; — oo we get the following integral identity

L0 0
U .pM) —~U- M) d!
Of([(aTU n —l—onaTU V™M) da'dr

t t

+v [ [VU-VMdz'dr + [ [(U-V)U-nMdz'dr
0,0 0o (5.101)

+a [ [(U-V)p") . AUdz'dr — o [ [(n™) - V)U - AUd2'dr
0o 0o

t t
= fffn(M)d:E’dT+ffqnéM)d:p’dT.
0 o

o 0
The eigenfunctions wy,(2’) constitute basis in V(o) and wy(z') constitute basis in X(o).
Therefore, the linear combinations n'™)(2’,t) and néM)(x’,t) (see (5.99)) are dense in
V(oT) and W(oT), respectively, and we can conclude that the integral identity (5.101) is
valid for arbitrary n = (0,73) € V(67) x W(oT). Moreover, Us satisfies flux condition
(5.46). Hence, by the definition (U,q) is a weak solution of problem (5.8). Obviously,
for the limit functions U’, Us, ¢ estimate (5.95) remains valid, i.e., we get estimate (5.98).

Let us prove the uniqueness. Assume that (UM, ¢M) and (UP, ¢?) are two weak
solutions of problem (5.8). The differences V = Ul — UM S = ¢ — ¢l satisfy the
integral identity
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0 V - Vn)dd'dr + foVV Vndx'dr

t
ff Vn+aV
0o a

I
iy
I

+

(U V)V -+ (V-V)UB . n)da/dr

+

p
((
[ ((V-V)n-AUW + (UP . V)n - AV)dz'dr (5.102)
J

—a [ [((n-V)V-AUWN 4 (n- V)UBR - AV)dz'dr

[

¢
[S(t) [ nsda’dr Vn€W2 ( T) with divny’ = 0.
0

g

Take in (5.102) n =

¢
(VI +a|VV[2)da' + v [ [ |[VV|2de'dr
0o

N | —

o%ﬁ_q —

+[[(V-V)UR .V + U . V)V.AV
o (5.103)
—a(V - V)UPL. AV)da'dr = fs ) [ (U = UPydadr

JS )(F(r) — F(r))dr = 0.

Let us estimate the third integral (which we denote .J) on the left-hand side of the
last equality. We have

t t
| [ [ (V- V)UP. Vda'dr| < f VOB, VN7 oy d7 < € [IVUR Ly [VVIIZ, 0T
0o 0
Further, integrating by part yields

t
a| Of J(UE. V)V - AVdz'dr|

¢ 0 ¢ 0 0
= 2] . / 2] . . /
o ([ [ (0P v) i+ [ (U 9) 2 - )
2 1 8
— oS [ [ (50t-¥) ] < [ VUiV

and
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t 2 t
al [ [(V 4. AV)da'dr| = o 3 (ff( pel v)ull. ade:c’dT
0o i=1 0 o 7
t O ve Lvarir)| < c | |VU[21|| IVVI2, 0
+b[([ (v )&m Ox; ! Co beel@) L)
t
+cbfH@%U2]||L4<a>HVHM(J)HVVHLQ(@dT
t
cof 1020 o) + 1102 OB Ly o)) IV VT, oy dT
Therefore,

[l < e sup (JUR( )1y + 102, 0)]L 5 )fuvvnz

te[0,7)
and from (5.103) follows the estimate

IVVEDIE, 0
t
<c sup (U050 + UL C O] i) Uf IVV ()2, o dr

t€[0,T]

(5.104)

Since (5.98)

2
sup (I[UZ'(, )y + 1US () 50) < comst,
te€[0,7

in virtue of the Gronwall’s inequality, estimate (5.104) implies V(2/,t) = 0 Vt € [0,T]
and, therefore, Ul = UR,
Taking now in (5.102) 1 = (0,73) such that [ nz(z’,t)d2’ = qlt(t) — ¢?!(¢), we obtain

¢
= [ (¢ — ¢)2dr, and ¢MM(t) = ¢P(t). O
0

Remark 5.4. Using the standard arguments (see, for example, [52]) it can be proved
that there exists the unique function p = p(2/,t) such that p € Ly(o fp o' t)dx' =0

and the following integral identity
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t t
S f(gU’ -n + OZVEU/ -V )dd'dr +v [ [ VU - Vn'd'dr
0o OT or 0

t t
+ [ [(U - VU -n/dd'dr +« [ [(U - V)n' - AUd2'dr
0o 0o
t t
—a [ [( -V)U" - AUdz'dr + [ [VUs -0 (Us — aAUs)da'dr
0o 0o

t t .
= [[pdivy'dd'dr + [ [§-n'da/dr V' € Wy°(o7)
0o 0o

is valid. The pressure corresponding to the weak solution of problem (5.8) has the form

p(x,t) = p(a',t) + q(t)xs + po(t), where po(t) is an arbitrary function.
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Conclusions

The second grade fluid flow problem

%(u — aAu) — vAu + curl(u — aAu) x u+ Vp ={,

diva = 0,
ulsr =0, u(z,0) =up(z),
[ updz’ = F(t)

\ O

was studied in three different unbounded domains:

e the two-dimensional channel,
e the three-dimensional axially symmetric pipe,

e the three-dimensional pipe with an arbitrary cross section.

In the first two cases the existence of a unique unidirectional Poiseuille type solution
is proved and the relation between the flux of the velocity field and the pressure drop

(the gradient of the pressure) is found.

The analogous results were obtained for the time periodic problem

(
%(u — aAu) — vAu + curl(u — cAu) x u+ Vp = f,

divu = 0,
ulsr =0, u(z,0)=u(zx,2n)
[ undx’ = F(t), F(0)= F(2m)

\ O

in the two-dimensional channel.
It is shown that in the three-dimensional pipe with an arbitrary cross section the

unidirectional solution does not exists even if data are unidirectional. However, for suf-
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ficiently small data in this case exists a unique solution having all three components
(U1(.T1,fL’Q,t),UQ(x1,$27t),U3(x1,I2,t)) of the velocity field u and the velocity compo-
nents (ul, u2) perpendicular to the x3-axis of the cylinder are secondary comparing with

us.
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