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Notation

F (t) Cumulative distribution function;
f(t) Probability density function;
S(t) Survival function;
n Sample size;
Ti Failure time
x Explanatory variable;
λ(t) Hazard rate function;
Λ(t) Cumulative hazard rate function
T11, ..., T1n1 Failure times of n1 units tested in ”hot”

conditions;
T21, ..., T2n2 Failure times of n2 units tested in

”warm” conditions;
µ Mean failure time;
σ2 Variance;
r Scale parameter;
H0 Hypothesis;
α, β, ν, µ Parameters;
Kj(t) Cumulative distribution function of re-

dundant system;
kj(t) Probability density function of redun-

dant system;
(Kj(t), Kj(t)) Confidence interval;
I Fisher information matrix;
I−1 Inverse of the Fisher information ma-

trix;
L(r, θ) Likelihood function;
l(r, θ) Loglikelihood function;
Z(t) Degradation process;
z0 Critical level;
T (0) Moment of the non-traumatic failure;
T (k) Moment of the traumatic failure of the

kth mode;
S(0) Survival function of the non-traumatic

failure;
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S(k) Survival function of the traumatic fail-
ure of the kth mode;

λ̃(k)(t|Z) Conditional failure rate;
P Probability;
Ci Censoring time of the ith unit .
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Introduction

To warrant high reliability of key components of reliability systems, stand-by units
are used. If any component fails then a stand-by unit operates instead of the failed
component.

If the stand-by units are functioning in the same ”hot” conditions as the main
unit then usually after switching the reliability of the stand-by units does not change.
But ”hot” redundancy has disadvantages because any of stand-by units fails earlier
than the main one with the probability 0.5.

If the stand-by units are not operating until the failure of the main unit (”cold”
reserving), it is possible that during and after commuting the failure rate increases
because the stand-by unit is not ”warmed” enough. So ”warm” reserving is sometimes
used: stand-by units function under lower stress than the main one. In such a case
the probability of the failure of the stand-by unit is smaller than that of the main
unit and it is also possible that switching is fluent, i.e. switching from ”warm” to
”hot” conditions does not do any damage to units.

The definition of ”fluent switching” as statistical hypothesis on the conditional
distribution of the failure time of the system after the switch is given. Well known
survival regression models such as Sedyakin’s and accelerated failure time (AFT)
model are used.

Goodness-of-fit tests for obtained redundant systems reliability models are pro-
posed. Asymptotic properties of proposed test statistics are investigated.

Parametric and non-parametric estimation procedures for the reliability of such
systems are given. Properties of the proposed parameter estimators are obtained.

Failures of highly reliable units are rare. One way of obtaining a complementary
reliability information is to do accelerated life testing (ALT), i.e. to use higher level of
experimental factors, hence to obtain failures quickly. Another way of obtaining com-
plementary reliability information is to measure some parameters which characterize
the aging or degradation of the product in time.

Statistical inference from ALT is possible if failure time regression models relating
failure time distribution with external explanatory variables (covariates, stresses)
influencing the reliability are well chosen. Statistical inference from failure time-
degradation data with covariates needs even more complicated models relating failure
time distribution not only with external but also with internal explanatory variables
(degradation, wear) which explain the state of units before the failures. In the last
case models for degradation process distribution are needed, too.

Hence, the second direction of the work is modelling and statistical estimation of
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the reliability of systems or units in the case when joint failure time and degradation
regression data are available.

The modified maximum likelihood method for estimation of failure process and
degradation process parameters using simultaneous degradation and multi-mode fail-
ure time regression data is introduced.

Estimators of various reliability characteristics of the units related to traumatic
and non-traumatic failures are given.

Examples when the degradation process is modelled by time scaled gamma pro-
cess, path processes, shock processes with the number of shocks modelled by non-
homogenous Poisson process are considered.

Actuality

There are many publications on probabilistic modelling of redundant systems relia-
bility given the reliability of the system components. Applying of these results in real
analysis of system reliability is possible if the probability distribution of the compo-
nents is known. So a very actual problem is the estimation of the redundant system
reliability and the properties of the estimators using estimators the reliability of the
components.

Methods of accelerated life testing and degradation process analysis separately
are well developed but joint modelling and statistical analysis of simultaneous failure
time-degradation data with covariates is very recent research direction. The last
international conferences ”Mathematical methods in reliability ” (2005, 2007, 2009)
show increasing interest in this direction.

Aims and problems

The main problems are the following:
1. to formulate mathematical definition of stand-by unit fluent switching from
”warm” to ”hot” conditions;
2. to construct tests for general ”fluent switching hypothesis” formulated using
Sedyakin’s ”reliability principle” and for particular fluent switching hypothesis for-
mulated using accelerated failure time model;
3. to investigate asymptotic properties of the test statistics;
4. to construct parametric and nonparametric estimators of the cumulative distribu-
tion function of redundant system using reliability data of components tested under
different stresses;
5. to investigate asymptotic properties of the parametric and nonparametric estima-
tors;
6. to construct asymptotic confidential intervals for cumulative distribution function
of redundant system;
7. to investigate finite sample properties of the parametric and nonparametric esti-
mators by simulation;
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8. to formulate general simultaneous failure time and degradation regression data
models;
9. to modify maximum likelihood method for estimation of failure process and degra-
dation process parameters using simultaneous degradation and multi-mode failure
time regression data using predictors of degradation processes;
10. to investigate the structure of modified likelihood function when the degradation
process is modelled by time scaled gamma process, path processes, shock processes
with the number of shocks modelled by non-homogenous Poisson process.

Methods

Counting process techniques, delta method, parametric and non-parametric estima-
tion methods, limit theorems for the sequences of random variables and stochastic
processes, numeric and simulation methods were used.

Novelty

All results of the thesis are new.

Statements presented for the defence

1. Mathematical definition of stand-by unit fluent switching from ”warm” to ”hot”
conditions is formulated.
2. Goodness-of-fit test for a general ”fluent switching hypothesis” based on Sedyakin’s
principle is constructed.
3. Goodness-of-fit test for a ”fluent switching hypothesis” based on accelerated fail-
ure time model is constructed.
4. Asymptotic properties of the two test statistics are investigated ;
5. Parametric and nonparametric estimators of the cumulative distribution function
of redundant system using reliability data of components tested in ”hot” and ”warm”
conditions are constructed;
6. Asymptotic properties of the parametric and nonparametric estimators are inves-
tigated;
7. Asymptotic confidence intervals for cumulative distribution function of redundant
system are constructed.
8. Finite sample properties of the parametric and nonparametric estimators are in-
vestigated by simulation.
9. General simultaneous failure time and degradation regression data models are
formulated.
10. Maximum likelihood method for estimation of failure process and degradation
process parameters using simultaneous degradation and multi-mode failure time re-
gression data is modified using predictors of degradation processes.
11. The structure of modified likelihood function when the degradation process is
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modelled by time scaled gamma process, path processes and shock processes is inves-
tigated.

History of the problem

Traditional life data analysis involves analyzing times-to-failure data (of a product,
of a system or component) obtained under normal operating conditions in order to
quantify the life characteristics of the product, system or component. Failures of
highly reliable units are rare, for example, the lifetime of semiconductors is very
long, and to test devices under usual conditions would require far too much test time
and excessively large sample size. So other information should be used in addition
to failure-time data, which could be censored.

One way of obtaining a complementary reliability information is to use higher
level of experimental factors, stresses or covariates (such as temperature, voltage or
pressure) to increase the number of failures and, hence to obtain reliability informa-
tion quickly. This procedure provides the methods known today as the accelerated
life testing (ALT). These methods were developed by many researchers, see wide sur-
veys of the models and methods in Singpurwalla (also can be found in [6], [26], [28],
[32], [37], [40] ).

The first part of this work is the first attempt in the scientific literature to apply
known models of ALT to the statistical analysis of redundant systems with stand-by
units in ”warm” operating conditions. Stand-by units operate in ”warm” conditions
when the main unit functions and in ”hot” conditions after their switch on after the
failure of the main unit, so the models of ALT can be applied. The problem is that
in ALT the moments of stress level change is usually planned and fixed before the
experiment. In the analysis of redundant systems the moments of stress change are
random and are related with the failure of the main unit. So special goodness-of-
fit tests for the redundant system models are needed. Another particularity is the
following. In ALT identic units are tested in various stress conditions and inference
about the reliability of these units in usual stress conditions is done. In the case of
redundant systems components of the system function in different stress conditions
and the inference about the reliability of the system, not of the components must be
done.

Differently from ALT another way of obtaining complementary reliability infor-
mation is to measure some parameters which characterize the aging or wear of the
product in time. In analysis of longevity of highly reliable complex industrial or
biological systems, the degradation processes provide an important additional infor-
mation about the aging, degradation and deterioration of systems, and from this
point of view these degradation data are really a very rich source of reliability infor-
mation and often offer many advantages over failure time data. Degradation is the
natural response for some tests, and it is natural also that with degradation data it
is possible to make useful reliability and statistical inference , even with no observed
failure.

Statistical inference from ALT is possible if failure time regression models relating
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failure time distribution with external explanatory variables (covariates, stresses)
influencing the reliability are well chosen. Statistical inference from failure time-
degradation data with covariates needs even more complicated models relating failure
time distribution not only with external but also with internal explanatory variables
(degradation, wear) which explain the state of units before the failures. In the last
case models for degradation process distribution are needed, too.

The most applied stochastic processes used as degradation models are general path
models ([7], [8], [27], [29], [30]) and time scaled stochastic processes with stationary
and independent increments such as the gamma process ([5], [21], [34]), compound
Poisson process ([14], [18], [19], [20], [42], [43]), and Wiener process with drift ([11],
[12], [13], [44], [45], [46], [22], [23], [33]). Harlamov [17] discusses inverse gamma-
process as a wear model. Zacks [49] discusses general compound renewal damage
processes.

If joint failure time and degradation data are available models and estimation
methods for analysis of such data are needed. Excellent introductions to failure
time-degradation models is given by Singpurwalla [38], Yashin and Manton [48]. More
recent developments can be found in Bagdonavičius and Nikulin [3], Finkelstein [15],
Lehmann [24], Yashin [47]. Methods of estimation from failure time-degradation
data may be found in Bagdonavičius and Nikulin [5], [6], Lehmann [22], [24], [25],
Bagdonavičius et al [7], [8], Lawless and Crowder [21], Couallier [9].

The second direction of this work is to formulate general simultaneous failure time
and degradation regression data models and give methods of estimation.

Approbation

The results of the thesis were presented at the 6th St. Petersburg Workshop on
Simulation, St. Petersburg, Russia, 28 June - 4 July, 2009; at the Second International
Conference, ALT 2008, Bordeaux, France, 9–11 June 2008; at the Mathematical
Methods in Reliability Conference, Glasgow, Scotland, 1–4 July 2007; as well as at
the conferences of Lithuanian Mathematical Society (2008, 2009).
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4. V. Bagdonavičius, I. Masiulaitytė, M. Nikulin, Asymptotic properties of redundant
systems reliability estimators. In: Advances in Degradation Modelling Applications
to Reliability, Survival Analysis, and Finance. M.S. Limnios, N. Balakrishnan, N.;
Kahle, W.; Huber-Carol, C.(Editors). Birkhauser, 2010, p. 293-310 ISBN: 978-0-
8176-4923-4.
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Structure of the Thesis

The thesis consists from introduction, three chapters and conclusions. In addition,
the notation of the function is presented in the thesis. Volume of work is 97 pages.

In the Chapter 1 the main issues and results which other authors analyzed that
theme are presented.

In the Chapter 2 redundant system with one main unit and m − 1 stand-by
units operating in ”warm” conditions are analysed. Goodness-of-fit tests for a gen-
eral stand-by unit ”fluent switching hypothesis” based on Sedyakin’s principle and
for ”fluent switching hypothesis” based on accelerated failure time model are con-
structed. Parametric and nonparametric estimators and properties of the estimators
of the cumulative distribution function of redundant system using reliability data
of components tested in ”hot” and ”warm” conditions are presented. Asymptotic
confidential intervals for cumulative distribution function of redundant system are
constructed and investigated by simulation.

In the Chapter 3 general simultaneous failure time and degradation regression
data models are presented. Maximum likelihood method for estimation of failure
process and degradation process parameters is given.
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Chapter 1

Accelerated life models

1.1 Introduction

Accelerated life models relate the lifetime distribution to the explanatory variable
(stress, covariate, regressor). This distribution can be defined by the survival, cu-
mulative distribution or probability density functions. Nevertheless, the sense of
accelerated life models is best seen if they are formulated in terms of hazard rate
function.

Suppose at first that the explanatory variable is a deterministic time function:

x(·) = (x1(·), ..., xm(·))T : [0,∞) → B ∈ Rm.

If x(·) is constant in time, we shall write x instead of x(·) in all formulas.
Denote informally by Tx(·) the failure-time under x(·) and by

Sx(·)(t) = P{Tx(·) > t}, Fx(·)(t) = P{Tx(·) ≤ t}, fx(·)(t) = −S ′
x(·)(t),

the survival, cumulative distribution and probability density function, respectively.
The hazard (rate) function under x(·) is

λx(·)(t) = lim
h↓0

1

h
P{Tx(·) ∈ [t, t + h) | Tx(·) ≥ t} = −

S ′
x(·)(t)

Sx(·)(t)
.

Denote by

Λx(·)(t) =

∫ t

0

λx(·)(u)du = −ln{Sx(·)(t)}

the cumulative hazard (function) under x(·).
Each specified accelerated life model relates the hazard rate (or other function)

to the explanatory variable in some particular way.
If the explanatory variable is a stochastic process X(t), t ≥ 0, and TX(·) is the

failure-time under X(·), then denote by

Sx(·)(t) = P{TX(·) > t|X(s) = x(s), 0 ≤ s ≤ t},

14



λx(·)(t) = −S ′
x(·)(t)/Sx(·)(t), Λx(·)(t) = − ln{Sx(·)(t)}

the conditional survival, hazard rate and cumulative hazard rate functions. In this
case the definitions of models should be understood in terms of these conditional
functions.

To be short we shall use the word the stress for the explanatory variable in this
chapter.

Suppose that F1(t) and F2(t) are the c.d.f. of units functionning under accelerated
and usual stresses, respectively.

We suppose that for all positive t the following inequality is valid:

F2(t) < F1(t), (1.1)

and we can find some function g(t) which satisfies the equation:

F2(t) = F1(g(t)). (1.2)

Below the different expression of function g(t) is given. The c.d.f. F1 and F2 are
from the same distribution family.

Example 1.1.1. Exponential distribution
Suppose two cumulative distribution function of exponential distribution have

following form:
F1(t) = 1− e−λ1t, F2(t) = 1− e−λ2t.

Graph 1.1. Cumulative distribution function
The function g(t) which satisfied (1.2) has the following form:

g(t) =
λ2

λ1

t. (1.3)

Example 1.1.2. Weibull distribution Suppose two cumulative distribution
function of weibull distribution have following form:

F1(t) = 1− exp

(
−
(

t

β1

)α1
)

, F1(t) = 1− exp

(
−
(

t

β2

)α2
)

.
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Graph 1.2. Cumulative distribution function
The function g(t) which satisfied (1.2) has the following form:

g(t) =

(
βα1

1

βα2
2

)1/α1

tα2/α1 . (1.4)

If α1 = α2 = 1 then (1.4) has the following form: g(t) =
(

β1

β2

)
t. If α1 = 1 and α2 = 2

then (1.4) has the following form: g(t) =
(

β1

β2
2

)
t2. If α1 = α2 = 2 then (1.4) has the

following form: g(t) =
(

β1

β2

)
t.

Example 1.1.3. Loglogistic distribution Suppose two cumulative distribution
function of loglogistic distribution have following form:

F1(t) =
1

1 +
(

t
µ1

)ν1
, F2(t) =

1

1 +
(

t
µ2

)ν2
.

Graph 1.3. Cumulative distribution function
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The function g(t) which satisfied (1.2) has the following form:

g(t) = µ1

(
t

µ2

)ν2/ν1

. (1.5)

If ν1 = ν2 = 1 then (1.5) equation is

g(t) =
µ1

µ2

t.

In the examples the function g(t) is linear function, which in general can be
defined:

g(t) = r · t. (1.6)

If the function g(t) has the form (1.5) then obtain F2(t) = F1(r · t).
The kth moments are:

α
(k)
1 =

∞∫
0

tkdF1(t), (1.7)

α
(k)
2 =

∞∫
0

tkdF2(t) =

∞∫
0

tkdF1(g(t)) =

∞∫
0

tkdF1(r · t), (1.8)

and the central moments are:

µ
(k)
1 =

∞∫
0

(t− α
(1)
1 )kdF1(t), (1.9)

µ
(k)
2 =

∞∫
0

(t− α
(1)
2 )kdF2(t) =

∞∫
0

(t− α
(1)
2 )kdF1(g(t)) =

∞∫
0

(t− α
(1)
2 )kdF1(r · t). (1.10)

Using property of the moment µ(k)(r · t) = rkµ(k)(t) we obtain:

α
(k)
1

α
(k)
2

=
µ

(k)
1

µ
(k)
2

= rk =

(
g(t)

t

)k

. (1.11)

In this chapter we describe simplest accelerated life models given the literature.

17



1.2 Generalized Sedyakin’s model

1.2.1 Definition of the model

Accelerated life models could be at first formulated for constant explanatory vari-
ables. Nevertheless, before formulating them, let us consider a general method for
generalizing such models to the case of time-varying stresses.

In 1966 N. M. Sedyakin [36] formulated the physical principle in reliability. The
idea is the following. For two identical populations of units functioning under different
stresses x1 and x2, two moments t1 and t2 are equivalent if the probabilities of survival
until these moments are equal:

P{Tx1 > t1} = Sx1(t1) = Sx2(t2) = P{Tx2 > t2}.

If after these equivalent moments the units of both groups are observed under the
same the stress x2 , i.e. the first population is observed under the step-the stress

x(τ) =

{
x1, 0 ≤ τ < t1,
x2, τ ≥ t1,

and the second all time under the constant stress x2, then for all s > 0

λx(·)(t1 + s) = λx2(t2 + s).

Using the idea of Sedyakin, Bagdonavičius [1] generalized the model to the case of
any time-varying stresses by supposing that the hazard rate λx(·)(t) at any moment
t is a function of the value of the stress at this moment and of the probability of
survival until this moment. It is formalized by the following definition.

Definition 1.2.1 The generalized Sedyakin’s (GS) model holds on a set of stresses
E if there exists a positive on E ×R+ function g such that for all x(·) ∈ E

λx(·)(t) = g
(
x(t), Sx(·)(t)

)
. (1.12)

Equivalently, the model can be written in the form

λx(·)(t) = g1

(
x(t), Λx(·)(t)

)
. (1.13)

with g1(x, s) = g(x, exp{−s}).

1.2.2 GS model for step-stresses

The mostly used time-varying stresses in accelerated life testing (ALT) are step-
stresses: units are placed on test at an initial low stress and if they do not fail in a
predetermined time t1, the stress is increased. If they do not fail in a predetermined
time t2 > t1, the stress is increased once more, and so on. Thus, step-stresses have
the form

x(u) =


x1, 0 ≤ u < t1,
x2, t1 ≤ u < t2,
· · · · · ·
xm, tm−1 ≤ u < tm,

(1.14)
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where x1, · · · , xm are constant stresses. If m = 1, the step-stress is called simple.
Sets of step-stresses of the form (1.14) will be usually denoted by Em.
Let us consider the meaning of the rule (1.13) for the step-stresses.
Let E1 be a set of constant stresses and E2 be a set of simple step-stresses of the

form

x(u) =

{
x1, 0 ≤ u < t1,
x2, u ≥ t1,

(1.15)

where x1, x2 ∈ E1.

Proposition 1.2.1 (Bagdonavičius [1]). If the GS model holds on E2 then the
survival function and the hazard rate under the stress x(·) ∈ E2 verify the equalities

Sx(·)(t) =

{
Sx1(t), 0 ≤ t < t1,

Sx2(t− t1 + t∗1), t ≥ t1,
(1.16)

and

λx(·)(t) =

{
αx1(t), 0 ≤ t < t1,

αx2(t− t1 + t∗1), t ≥ t1,
(1.17)

respectively; the moment t∗1 is determined by the equality Sx1(t1) = Sx2(t
∗
1).

Corollary 1.2.1 Under conditions of the Proposition 1.2.1 for all s ≥ 0

λx(·)(t1 + s) = λx2(t
∗
1 + s).

It is the model of Sedyakin [36].
In terms of cumulative distribution functions the model graphically can be pre-

sented by following in the following figures :

Graph 1.4. Cumulative distribution function: Fx2(t) – red, Fx1(t) – blue, Fx(·)(t) – green
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Graph 1.5. Cumulative distribution function: Fx1(t) – red, Fx2(t) – blue, Fx(·)(t) – green
Let us consider a set Em of more general stepwise stresses of the form (1.13). Set

t0 = 0. We shall show that the rule of time-shift holds and for the general step-stress.

Proposition 1.2.2 (Bagdonavičius [4]). If the GS model holds on Em then the
survival function Sx(·)(t) verifies the equalities:

Sx(·)(t) = Sxi
(t− ti−1 + t∗i−1), if t ∈ [ti−1, ti), (i = 1, 2, . . . ,m), (1.18)

where where t∗i verify the equations

Sx1(t1) = Sx2(t
∗
1), . . . , Sxi

(ti − ti−1 + t∗i−1) = Sxi+1
(t∗i ), (i = 1, . . . ,m− 1). (1.19)

N.M. Sedyakin called his model the physical principle in reliability meaning that
this model is very wide. Nevertheless, this model and it’s generalization can be not
appropriate in situations of periodic and quick change of the stress level or when
switch-up’s of the stress from one level to the another can imply failures or shorten
the life.

1.3 Accelerated failure time model

1.3.1 Definition of the model for constant stresses

Suppose that under different constant stresses the survival functions differ only in
scale: for any x ∈ E1

Sx(t) = G{r(x) t}, (1.20)

where the survival function G does not depend on x.
Applicability of this model in accelerated life testing was first noted by Pieruschka

[35]. It is the most simple and the mostly used model in FTR data analysis and ALT.
Under the AFT model the distribution of the random variable

R = r(x)Tx
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does not depend on x ∈ E1 and it’s survival function is G. Denote by m,σ2 and tp
the mean, the variance and the p-quantile of R, respectively.

The AFT model implies that

E(Tx) = m/r(x), Var(Tx) = σ2/r2(x), tx(p) = tp/r(x),

where tx(p) is the p-quantile of Tx.
The coefficient of variation

E(Tx)√
Var(Tx)

=
m

σ

does not depend on x.
The survival functions under any x1, x2 ∈ E1 are related in the following way:

Sx2(t) = Sx1{ρ(x1, x2) t},

where ρ(x1, x2) = r(x2)/r(x1).
Set ε = ln{r(x)}+ ln{Tx}, a(x) = − ln{r(x)}. Then

ln{Tx} = a(x) + ε.

The distribution of the random variable ε does not depend on x. The last equality
implies that

Var(ln Tx) = Var(ε).

The variance of the random variable ln{Tx} does not depend on x.

1.3.2 Definition of the model for time-varying stresses

The model (1.20) is generalized to the case of time-varying stresses by supposing
that the GS model also holds, i.e. the hazard rates under time-varying stresses are
obtained from the hazard rates under constant stresses by the rule (1.13).

Proposition 1.3.1 (Bagdonavičius [4]). The GS model with the survival functions
(1.20) on E1 holds on E ⊃ E1 if there exist a positive on E function r and a positive
on [0,∞) function q such that for all x(·) ∈ E

λx(·)(t) = r{x(t)} q{Sx(·)(t))}. (1.21)

Proposition 1.3.1 suggests the following model.

Definition 1.3.1 The accelerated failure time (AFT) model holds on E if there
exists a positive on E function r and a positive on [0,∞) function q such that for all
x(·) ∈ E the formula (1.21) holds.

Under the AFT model the hazard rate λx(·)(t) at any moment t is proportional to
a function of the stress applied at this moment and to a function of the probability
of survival until t under x(·).
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Let us find the expression of the survival function under time-varying stresses.

Proposition 2.6. (Bagdonavičius [4]). Suppose that the integral∫ x

0

dv

q(v)
(1.22)

converges for all x ≥ 0.
The AFT model holds on a set of stresses E if there exists a survival function G

such that for all x(·) ∈ E

Sx(·)(t) = G

(∫ t

0

r{x(u)} du

)
. (1.23)

If the AFT model holds on E2 then the survival function under any stress x(·) ∈ E2

of the form (1.15) verifies the equality

Sx(·)(t) =

{
Sx1(t), 0 ≤ τ < t1,

Sx2(t− t1 + t∗1), τ ≥ t1,
(1.24)

where

t∗1 =
r(x1)

r(x2)
t1. (1.25)

1.3.3 Relations between the means and the quantiles

Suppose that x(·) is a time-varying stress. Denote by tx(·)(p) the p-quantile of the
random variable Tx(·), and by xτ = x(τ)1{t≥0} a constant stress equal to the value of
time-varying stress x(·) at the moment τ .

Proposition 1.3.3 (Bagdonavičius [4]). Suppose that the AFT model holds on E
and x(·), xt ∈ E for all t ≥ 0. Then∫ tx(·)(p)

0

dτ

txτ (p)
= 1. (1.26)

If the means E(Tx(·)), E(Txτ ) exist then

E

(∫ Tx(·)

0

dτ

E(Txτ )

)
= 1. (1.27)

The model (1.27) is the model of Miner .
Corollary 1.3.1 For the stress of the form (1.14) the formula (1.27) implies the

equality
m∑

k=1

E(Tk)

E(Txk
)

= 1, (1.28)
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where

Tk =


0, Tx(·) < tk−1,

Tx(·) − tk−1, tk−1 ≤ Tx(·) < tk,
tk − tk−1, Tx(·) ≥ tk,

is the life in the interval [tk−1, tk) for the unit tested under the stress x(·).
The formula (1.26) implies that for tx(·)(p) ∈ [tk−1, tk) the following equality holds:

k−1∑
i=1

ti − ti−1

txi
(p)

+
tx(·)(p)− tk−1

txk
(p)

= 1. (1.29)

In the case m = 2, the formula (1.28) can be written in the form

E(T1)

E(Tx1)
+

E(T2)

E(Tx2)
= 1, (1.30)

and the formula (1.29) can be written in the form

t1
tx1(p)

+
tx(·)(p)− t1

tx2(p)
= 1. (1.31)

So

E(Tx1) =
E(T1)

1− E(T2)
E(Tx2 )

, (1.32)

and

tx1(p) =
t1

1− tx(·)(p)−t1
tx2 (p)

, if tx(·)(p) ≥ t1. (1.33)

Thus, if the AFT model holds on E2 then E(T1), E(T2) and E(Tx2) determine E(Tx1),
and tx(·)(p) and tx2(p) determine tx1(p).

1.4 Proportional hazards model

1.4.1 Definition of the model for constant stresses

In survival analysis the mostly used model describing the influence of covariates on
the lifetime distribution is the proportional hazards (PH) or Cox model, introduced
by D. Cox [10].

Suppose that under different constant stresses x ∈ E1 the hazard rates are pro-
portional to a baseline hazard rate:

λx(t) = r(x) λ(t). (1.34)

For x ∈ E1 the survival functions have the form

Sx(t) = Sr(x)(t) = exp{−r(x)Λ(t)}, (1.35)

where

S(t) = exp

{
−
∫ t

0

λ(u)du

}
, Λ(t) =

∫ t

0

λ(u)du = − ln S(t).
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1.4.2 Definition of the model for time-varying stresses

In the statistical literature the following formal generalization of the PH model to
the case of time-varying stresses is used.

Definition 1.4.1 The proportional hazards (PH) model holds on a set of stresses
E if for all x(·) ∈ E

λx(·)(t) = r{x(t)} λ(t), (1.36)

This definition implies that

Λx(·)(t) =

∫ t

0

r{x(u)}dΛ(u). (1.37)

In terms of survival functions the PH model is written :

Sx(·)(t) = exp

{
−
∫ t

0

r{x(u)}dΛ(u)

}
. (1.38)

The AFT, PH a are rather restrictive. More given in Bagdonavičius and Nikulin
(2002).

1.5 Wiener process

A Wiener process (or Brownian motion; notation Wt or W ) is a time-continuous
process with the properties

1. W0 = 0.

2. Wt ∼ N(0, t) for all t ≥ 0. That is, for each t the random variable Wt is
distributed normally with mean E(Wt) = 0and variance Var(Wt) = E(W 2

t ) = t.

3. All increments ∆Wt := Wt+∆t−Wt on the nonoverlapping time intervals are in-
dependent. That is, the displacements Wt2−Wt1 and Wt4−Wt3 are independent
for all 0 ≤ t1 < t2 ≤ t3 < t4.

4. Wt depends continuously on t.

Generally for 0 ≤ s < t the property Wt −Ws ∼ N(0, t− s)holds, in particular

E(Wt −Ws) = 0, Var(Wt −Ws) = E((Wt −Ws)
2) = t− s. (1.39)

1.6 Wiener process with drift

A stochastic process {W (t), t ≥ 0} is called a Wiener-process with drift if it has the
following properties:

1. W (0) = 0;
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2. {W (t), t ≥ 0} has stationary, independent increments,

3. Every increment W (t) − W (s) has a normal distribution with expected value
µ(t− s) and variance σ2|t− s|.

Equivalently, {W (t), t ≥ 0} is a Winer process with drift if

W (t) = µt + X(t),

where {X(t), t ≥ 0} is a Wiener process with σ2 = V ar(X(1)). The constant µ is
called drift parameter.

1.7 Gamma process

Stochastic process is a gamma process with the shape parameter ν and the scale
parameter σ, denoted by Z(t) inG(ν(t), 1/σ), if

1. Z(0) = 0;

2. Z(t) has independent increments, i. e. for any 0 < t1 < ... < tm the random
variables Z(t1), Z(t2)− Z(t1), ..., Z(tm)− Z(tt−1) are independent;

3. the distribution of Z(t)− Z(s) is gamma with density

pZ(t)−Z(s)(x) =
1

Γ(ν(t)− ν(s)
xν(t)−ν(s)−1σ−(ν(t)−ν(s))e−x/σ, x ≥ 0.

The gamma process is non-decreasing and its increments ∆Z(t) = Z(t + ∆t)− Z(t)
are from the same family of gamma distributions.
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Chapter 2

Statistical analysis of redundant
systems

2.1 Redundant system with one main and one stand-

by unit

Consider a redundant system with one operating and one stand-by unit. If the main
unit fails then the stand-by unit (if it is not failed yet) is commuted and operates
instead of the main one. We suppose that commuting is momentary and there are
no repairs.

If the stand-by unit is not functioning until the failure of the main unit (”cold”
reserving), it is possible that during and after commuting the failure rate increases
because the stand-by unit is not ”warmed” enough [39]. The probability density
function of the main element presented in the graph.

If the stand-by unit is functioning in the same ”hot” conditions as the main unit
then usually after commuting the reliability of the stand-by unit does not change.
But ”hot” redundancy has disadvantages because the stand-by unit fails earlier than
the main one with the probability 0.5. So ”warm” reserving is sometimes used [41]:
the stand by unit functions under lower stress than the main one. In such a case the
probability of the failure of the stand-by unit is smaller than that of the main unit
and it is also possible that commuting is fluent. So the main problem is to verify the
hypothesis that the switch on from ”warm” to ”hot” conditions does not do some
damage to units.

Let us formulate the hypothesis strictly.
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2.1.1 The models

Suppose that in ”hot” conditions the failure times of the main and the stand-by units
are absolutely continuous and have the same c.d.f. F1 and the probability density
function f1 (see Graph 2.1.), the failure time T2 of the stand-by element has the c.d.f.
F2 and the probability density f2. Similarly, in ”warm” conditions the c.d.f. is F2

and the p.d.f is f2.

Graph 2.1. Density function of the main element

The failure time of the system is T = max(T1, T2).
Denote by

f
(y)
2 (x) = fT2|T1=y(x)

the conditional p.d.f. of T2 given that the main unit fails at the moment y. If x ≤ y
then f

(y)
2 (x) = f2(x).

The c.d.f. of the system failure time T is

F (t) = P (T1 ≤ t, T2 ≤ t) =

∫ t

0

P (T2 ≤ t|T1 = y)f1(y)dy =

=

∫ t

0

{∫ y

0

f2(x)dx +

∫ t

y

f
(y)
2 (x)dx

}
f1(y)dy. (2.1)

When stand-by is ”cold” then f2(x) = 0 for x ≤ y and f
(y)
2 (x) = f1(x − y) for

x > y, so

F (t) =

∫ t

0

{∫ t

y

f1(x− y)dx

}
f1(y)dy =

∫ t

0

F1(t− y)dF1(y).
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Graph 2.2. Density function of the stand-by unit in ”cold” reserving

When stand-by is ”hot” then f
(y)
2 (x) = f2(x) = f1(x),

so

F (t) =

t∫
0

∫ y

0

f2(x)dx +

t∫
y

f2(x)dx

 f1(y)dy = [F1(t)]
2.

Graph 2.3. Density function of the stand-by unit in ”hot” reserving

In the case of ”warm” reserving the following hypothesis is assumed:

H0 : f
(y)
2 (x) = f1(x + g(y)− y), for all x ≥ y ≥ 0, (2.2)

where g(y) is the moment which in ”hot” conditions corresponds to the moment y in
”warm” conditions in the sense that

F1(g(y)) = P (T1 ≤ g(y)) = P (T2 ≤ y) = F2(y).

We suppose that the c.d.f. Fi are continuous and increasing on (0,∞). In such a case

g(y) = F−1
1 (F2(y)).
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Conditionally (given T1 = y) the hypothesis corresponds to the Sediakin’s model [36].
In [2] a goodness-of-fit test of logrank-type for Sediakin’s model using experiments
with fixed switch off moments is proposed (see also [6]). In the situation considered
here the switch off moments are random. So we need a goodness-of-fit test for the
model (2.2).

The formula (2.1) implies that under the hypothesis H0

F (t) =

∫ t

0

{
F2(y) +

∫ t

y

f1(x + g(y)− y)dx

}
f1(y)dy =

=

∫ t

0

{F2(y) + F1(t + g(y)− y)− F1(g(y))} f1(y)dy =

∫ t

0

F1(t + g(y)− y)dF1(y),

so

F (t) =

∫ t

0

F1(t + g(y)− y)dF1(y). (2.3)

In particular, if we suppose that the distribution of the units functioning in ”warm”
and ”hot” conditions differ only in scale, i.e.

F2(t) = F1(rt), (2.4)

for some r > 0, then g(y) = ry.
In such a case instead of the hypothesis H0 narrower hypothesis

H∗
0 : ∃ r > 0 : f

(y)
2 (x) = f1(x + ry − y), for all x ≥ y ≥ 0, (2.5)

is to be verified. Conditionally (given T1 = y) the hypothesis corresponds to the
accelerated failure time (AFT) model [1], [31]. In [4] a goodness-of-fit test for AFT
model using experiments with fixed switch moments is proposed (see also [6]). So we
need a test for the hypothesis H∗

0 .

2.1.2 Goodness-of-fit test for the hypothesis H∗
0

Suppose that the following data are available :
a) the failure times T11, . . . , T1n1 of n1 units tested in ”hot” conditions;
b) the failure times T21, . . . , T2n2 of n2 units tested in ”warm” conditions;
c) the failure times T1, . . . , Tn of n redundant systems (with ”warm” stand-by

units).
The tests are based on the difference of two estimators of the c.d.f. F (t) of

the system. The first is the empirical distribution function obtained from the data
T1, . . . , Tn:

F̂ (1)(t) =
1

n

n∑
i=1

1{Ti≤t}. (2.6)

The second uses the data T11, . . . , T1n1 and T21, . . . , T2n2 and is based on the
formula (2.3):

F̂ (2)(t) =

∫ t

0

F̂1(t + ĝ(y)− y)dF̂1(y),
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where (if we test the hypothesis H0)

ĝ(y) = F̂−1
1 (F̂2(y)), F̂j(t) =

1

nj

nj∑
i=1

1{Tji≤t}, F̂−1
1 (y) = inf{s : F̂1(s) ≥ t}, (2.7)

or (if we test the hypothesis H∗
0 )

ĝ(y) = r̂y, r̂ =
µ̂1

µ̂2

, µ̂j =
1

nj

nj∑
i=1

Tji. (2.8)

The tests are based on the statistic

X =
√

n

∫ ∞

0

(F̂ (1)(t)− F̂ (2)(t))dt. (2.9)

In the following sense it is analogous to the Student’s t-test for comparing the
means of two populations. Indeed, the mean failure time of the system with c.d.f. F
is

µ =

∫ ∞

0

[1− F (s)]ds,

so the statistic (2.9) is the normed difference of two estimators (the second being
not the empirical mean) of the mean µ. Student’s t-test is based on the difference of
empirical means of two populations.

It will be shown that in the case of both hypothesis H0 and H∗
0 the limit distri-

bution (as ni/n → li ∈ (0,∞), n →∞) of the statistic X is normal with zero mean
and finite variance σ2.

Let us find the asymptotic distribution of the statistic (2.9).

Theorem 2.1.1 Suppose that ni/n → li ∈ (0,∞), n → ∞ and the densities fi(x),
i = 1, 2 are continuous and positive on (0,∞). Then under H∗

0 the statistic (2.9)
converges in distribution to the normal law N(0, σ2), where

σ2 = Var(Ti) +
1

l1
Var(H(T1i)) +

c2r2

l2
Var(T2i), (2.10)

H(x) = x[c + r − 1− F1(x/r)− rF2(x)] + rE(1{T1i≤x/r}T1i) + rE(1{T2i≤x}T2i),

c =
1

µ2

∫ ∞

0

y[1− F2(y)]dF1(y).

Proof. The limit distribution of the empirical distribution functions is well known:

√
n(F̂i − Fi)

D→ Ui,
√

n(F̂ (1) − F )
D→ U (2.11)

on D[0,∞), where
D→ means weak convergence, U1, U2 and U are independent Gaus-

sian martingales with Ui(0) = U(0) = 0 and the covariances

cov(Ui(s1), Ui(s2)) =
1

li
Fi(s1 ∧ s2)(1− Fi(s1 ∨ s2)),
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cov(U(s1), U(s2)) = F (s1 ∧ s2)(1− F (s1 ∨ s2)).

The Glivenko-Cantelli theorem states that the empirical distribution functions con-
verge in probability two the c.d.f. uniformly on R:

sup
x∈R

|(F̂i(x)− Fi(x)| P→ 0, sup
x∈R

|(F̂ (x)− F (x)| P→ 0.

Under the hypothesis H∗
0 the difference of the two estimators of the distribution

function F can be written as follows:

F̂ (1)(t)− F̂ (2)(t) = F̂ (1)(t)−F (t)−
∫ t

0

F̂1(t + ĝ(y)− y)dF̂1(y) +

∫ t

0

F1(t + g(y)− y)×

×dF1(y) = F̂ (1)(t)− F (t)−
∫ t

0

[F1(t + ĝ(y)− y)− F1(t + g(y)− y)]dF1(y)−

−
∫ t

0

[(F̂1(t+ ĝ(y)−y)−F̂1(t+g(y)−y))−(F1(t+ ĝ(y)−y)−F1(t+g(y)−y))]dF1(y)−

−
∫ t

0

[F̂1(t + ĝ(y)− y)− F̂1(t + g(y)− y)](dF̂1(y)− dF1(y))−

−
∫ t

0

[F̂1(t + g(y)− y)− F1(t + g(y)− y)]dF1(y)−

−
∫ t

0

[F̂1(t + g(y)− y)− F1(t + g(y)− y)](dF̂1(y)− dF1(y))−

−
∫ t

0

F1(t + g(y)− y)(dF̂1(y)− dF1(y)).

The statistic (2.9) can be written

X =

∫ ∞

0

√
n[F̂ (1)(t)− F (t)]dt−

−
∫ ∞

0

dt

∫ t

0

√
n[F1(t + ĝ(y)− y)− F1(t + g(y)− y)] dF1(y)−

−
∫ ∞

0

dt

∫ t

0

√
n[F̂1(t + g(y)− y)− F1(t + g(y)− y)] dF1(y)−

−
∫ ∞

0

dt

∫ t

0

F1(t + g(y)− y)d{
√

n[F̂1(y)− F1(y)]}+ oP (1); (2.12)

here oP (1) denote a random variable which converges in probability to zero: oP (1)
P→

0.
Set σ2

j = Var(Tji), j = 1, 2. The convergence

√
n(µ̂j − µj) = −

√
n

∫ ∞

0

[F̂j(y)− Fj(y)]dy
D→ Yj = −

∫ ∞

0

Uj(y)dy ∼ N(0, σ2
j /li)
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implies the convergence

√
n(r̂ − r)

D→ Y =
1

µ2

(Y1 − rY2) ∼ N(0,
σ2

1(l1 + l2)

l1l2µ2
2

). (2.13)

The formulas (2.11)-(2.13) imply∫ ∞

0

√
n[F̂ (1)(t)− F (t)]dt

D→
∫ ∞

0

U(t)dt,

∫ ∞

0

dt

∫ t

0

√
n[F1(t + r̂y − y)− F1(t + ry − y)] dF1(y)

D→

D→ Y

∫ ∞

0

dt

∫ t

0

yf1(t + ry − y) dF1(y) = Y

∫ ∞

0

y dF1(y)

∫ ∞

y

f1(t + ry − y) dt =

= Y

∫ ∞

0

y[1− F1(ry)] dF1(y) = cY1 − rcY2 = −c

∫ ∞

0

U1(y)dy + rc

∫ ∞

0

U2(y)dy,∫ ∞

0

dt

∫ t

0

√
n[F̂1(t + ry − y)− F1(t + ry − y)] dF1(y)

D→

D→
∫ ∞

0

dt

∫ t

0

U1(t + ry − y)dF1(y) =

∫ ∞

0

dF1(y)

∫ ∞

ry

U1(u)du =

=

∫ ∞

0

U1(u)F1(u/r)du,∫ ∞

0

dt

∫ t

0

F1(t + ry − y)d{
√

n[F̂1(y)− F1(y)]} D→

D→
∫ ∞

0

dt

∫ t

0

F1(t + ry − y)dU1(y) =

=

∫ ∞

0

[F1(rt)U1(t)−
∫ t

0

U1(y) dF1(t + ry − y)]dt =

∫ ∞

0

F2(t)U1(t) dt−

−
∫ ∞

0

dt

∫ rt

t

U1((v − t)/(r − 1))dF1(v) =

∫ ∞

0

F2(t)U1(t) dt+

+

∫ ∞

0

dF1(v)

∫ v/r

t

U1((v − t)/(r − 1))dt =

∫ ∞

0

F2(t)U1(t) dt+

+(1− r)

∫ ∞

0

dF1(v)

∫ v/r

0

U1(u))du =

∫ ∞

0

F2(t)U1(t) dt+

+(r − 1)

∫ ∞

0

[1− F1(ru)]U1(u))du =

∫ ∞

0

U1(y)[rF2(y)− r + 1]dy.

We obtained
X

D→ V1 + V2 + V3,
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where

V1 =

∫ ∞

0

U(y)dy, V2 =

∫ ∞

0

h(y)U1(y)dy,

h(y) = c + r − 1− F1(y/r)− rF2(y), V3 = −rc

∫ ∞

0

U2(y)dy.

We shall show that if G(x) =
∫ t

0
g(u)du then

Var(G(Ti)) = Var(

∫ ∞

0

U(y)dG(y)). (2.14)

Indeed, set S(x) = 1− F (x).

Var(G(Ti)) = −
∫ ∞

0

G2(x)dS(x)− (

∫ ∞

0

G(x)dS(x))2 = 2

∫ ∞

0

G(x)S(x)dG(x)−

−(

∫ ∞

0

S(x)dG(x))2 = 2

∫ ∞

0

S(x)dG(x)

∫ x

0

dG(y)−

−2

∫ ∞

0

S(x)dG(x)

∫ x

0

S(y)dG(y) = 2

∫ ∞

0

S(x)dG(x)

∫ x

0

F (y)dG(y) =

= 2

∫ ∞

0

∫ x

0

EU(x)U(y)dG(x)dG(y) = Var(

∫ ∞

0

U(y)dG(y)).

Analogous to (2.14) equalities are true replacing the r.v. Ti by Tji and the random
processes U by Uj, j = 1, 2. These equalities imply that the variances of the random
variables Vi are:

Var(V1) = Var(Ti), Var(V3) =
c2r2

l2
Var(T2i)

Var(V2) =
2

l1

∫ ∞

0

[1− F1(y)]h(y)dy

∫ y

0

F1(z)h(z)dz =
1

l1
Var(H(T1i)),

where

H(x) =

∫ x

0

h(y)dy = x[c + r − 1− F1(x/r)− rF2(x)] +

∫ x

0

ydF1(y/r)+

+r

∫ x

0

ydF2(y) = x[c + r − 1− F1(x/r)− rF2(x)]+

+rE(1{T1i≤x/r}T1i) + rE(1{T2i≤x}T2i).

The proof is complete.

A consistent estimator of the variance σ2 is

σ̂2 =
1

n

n∑
i=1

(Ti − µ̂)2 +
n

n2
1

n1∑
i=1

[Ĥ(T1i)− ˆ̄H]2 +
ĉ2r̂2n

n2
2

n2∑
i=1

(T2i − µ̂2)
2,
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where

µ̂ =
1

n

n∑
i=1

Ti, ĉ =
1

µ̂2

∫ ∞

0

y[1− F̂2(y)]dF̂1(y) =
1

µ̂2n1

n1∑
i=1

T1i[1− F̂2(T1i)],

Ĥ(x) = x[ĉ + r̂ − 1− F̂1(x/r̂)− r̂F̂2(x)] +
r̂

n1

n1∑
i=1

1{T1i≤x/r̂}T1i +
r̂

n2

n2∑
i=1

1{T2i≤x}T2i,

ˆ̄H =
1

n1

n1∑
i=1

Ĥ(T1i).

The statistic

X =
√

n

∫ ∞

0

(F̂ (1)(t)− F̂ (2)(t))dt

can be written

X = −
√

n

∫ ∞

0

t d(F̂ (1)(t)− F̂ (2)(t)).

Note that

F̂ (2)(t) =

∫ t

0

F̂1(t + r̂y − y)dF̂1(y) =
1

n1

n1∑
i=1

F̂1(t + r̂T1i − T1i)1{T1i≤t} =

=
1

n2
1

n1∑
i=1

n1∑
j=1

1{T1j≤t+r̂T1i−T1i}1{T1i≤t} =
1

n2
1

n1∑
i=1

n1∑
j=1

1{max(T1i,T1j−r̂T1i+T1i)≤t}.

So

X = −
√

nµ̂ +

√
n

n2
1

n1∑
i=1

n1∑
j=1

max(T1i, T1j − r̂T1i + T1i).

The test statistic has the form

T =
X

σ̂
,

where σ̂. The distribution of the statistic T is approximated by the standard normal
distribution.

The test. The hypothesis H∗
0 is rejected with the asymptotic significance value α if

| T |> zα/2, where zα/2 is the α/2-critical value of the standard normal distribution.

2.1.3 Goodness-of-fit test for the hypothesis H0

As in the case of the hypothesis H∗
0 the test for the hypothesis H0 is based on the

statistic (2.9). Let us find the asymptotic distribution of this statistic under the
hypothesis H0.
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Theorem 2.1.2 Suppose that ni/n → li ∈ (0,∞), n → ∞ and the densities fi(x),
i = 1, 2 are continuous and positive on (0,∞). Then under H0 the statistic (2.9)
converges in distribution to the normal law N(0, σ2), where

σ2 = Var(Ti) +
1

l1
Var(H(T1i)) +

1

l2
Var(Q(T2i))

where

H(x) = Q(x)− xF1(g
−1(x)) + g(x)[1− F2(x)] + E(1{g(T1i)≤x}g(T1i))+

+E(1{T2i≤x}g(T2i))− x, Q(x) = E{1{T1i≤x}[1− F2(T1i)]/f1(g(T1i))}.

Proof. Similarly as in Theorem 2.1.1 we obtain∫ ∞

0

√
n[F̂ (1)(t)− F (t)]dt

D→
∫ ∞

0

U(t)dt,

∫ ∞

0

dt

∫ t

0

√
n[F1(t + ĝ(y)− y)− F1(t + g(y)− y)] dF1(y)

D→

D→ −
∫ ∞

0

U1(g(y))− U2(y)

f1(g(y))
f1(y)[1− F2(y)]dy,∫ ∞

0

dt

∫ t

0

√
n[F̂1(t + g(y)− y)− F1(t + g(y)− y)] dF1(y)

D→

D→
∫ ∞

0

U1(u)F1(g
−1(u))du,∫ ∞

0

dt

∫ t

0

F1(t + g(y)− y)d{
√

n[F̂1(y)− F1(y)]} D→

D→
∫ ∞

0

dt

∫ t

0

F1(t + g(y)− y)dU1(y) =

∫ ∞

0

F2(t)U1(t)dt−

−
∫ ∞

0

U1(y)[1− F2(y)]d(g(y)− y) =

∫ ∞

0

U1(y)dy −
∫ ∞

0

U1(y)[1− F2(y)]dg(y).

We obtained
X

D→ V1 + V2 + V3,

where

V1 =

∫ ∞

0

U(y)dy, V2 =

∫ ∞

0

h(y)U1(y)dy,

h(y) =
f1(y)

f1(g(y))
[1− F2(y)]− F1(g

−1(y))− 1 + g′(y)[1− F2(y)].

V3 = −
∫ ∞

0

U2(y)

f1(g(y))
[1− F2(y)]dF1(y).
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The variances of the random variables V1 and V3 are

Var(V1) = Var(Ti), Var(V3) =
1

l2
Var(Q(T2i));

here

Q(x) =

∫ ∞

0

1− F2(y)

f1(g(y))
dF1(y) = E{1{T1i≤x}[1− F2(T1i)]/f1(g(T1i))}.

The variance of the random variable V2 is

Var(V2) =
1

l1
Var(H(T1i)),

where

H(x) =

∫ x

0

[1− F2(y)]

f1(g(y))
dF1(y)−

∫ x

0

F1(g
−1(y))dy − x +

∫ x

0

[1− F2(y)]dg(y) =

= Q(x)− xF1(g
−1(x)) +

∫ x

0

y dF1(g
−1(y))− x + [1− F2(x)]g(x) +

∫ x

0

g(y)dF2(y) =

= Q(x)−xF1(g
−1(x))+ g(x)[1−F2(x)]−x+E(1{g(T1i)≤x}g(T1i))+E(1{T2i≤x}g(T2i)).

The proof is complete.
A consistent estimator of the variance σ2 is

σ̂2 =
1

n

n∑
i=1

(Ti − µ̂)2 +
n

n2
1

n1∑
i=1

[Ĥ(T1i)− ˆ̄H]2 +
n

n2
2

n2∑
i=1

[Q̂(T2i)− ˆ̄Q]2,

where

Ĥ(x) = Q̂(x)− xF̂1(ĝ
−1(x)) + ĝ(x)[1− F̂2(x)]− x +

1

n1

n1∑
i=1

1{ĝ(T1i)≤x}ĝ(T1i)+

+
1

n2

n2∑
i=1

1{T2i≤x}ĝ(T2i), Q̂(x) =
1

n1

n1∑
i=1

1{T1i≤x}[1− F̂2(T1i)]/f̂1(ĝ(T1i)),

ĝ−1(x) = F̂−1
2 (F̂1(x)), ˆ̄H =

1

n1

n1∑
i=1

Ĥ(T1i),
ˆ̄Q =

1

n2

n2∑
i=1

Q̂(T2i),

the density f1 is estimated by the kernel estimator

f̂1(x) =
1

n

n∑
i=1

1

h
K

(
x−X1i

h

)
,

X = −
√

nµ̂ +

√
n

n2
1

n1∑
i=1

n1∑
j=1

max(T1i, T1j − ĝ(T1i) + T1i).
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The test statistic has the form

T =
X

σ̂
,

where σ̂. The distribution of the statistic T is approximated by the standard normal
distribution.

The test. The hypothesis H0 is rejected with the asymptotic significance value α if
| T |> zα/2, where zα/2 is the α/2-critical value of the standard normal distribution.

2.1.4 Simulations: power of the tests

We investigated the power of the proposed goodness-of-fit tests when the distribution
of the units in ”warm” and ”hot” conditions is exponential, Weibull and loglogistic.

Let us consider the following alternative hypothesis H̃∗
0 :

f
(y)
2 (x) = f1[x + F−1

1 (F2(y) + p(1− F2(y))− y], 0 < p < 1.

It means that at the switching time y the c.d.f. of the stand-by unit has a jump of
size p(1− F2(y)).

Set
gp(y) = F−1

1 (F2(y) + p(1− F2(y)).

Under the alternative the c.d.f. of the stand-by system is

F (t) =

∫ t

0

F1(t + gp(y)− y)dF1(y) = F1(t)−
∫ t

0

S1(t + gp(y)− y)dF1(y). (2.15)

Example 2.1.1. Simulated exponential distribution:

T1j ∼ E(λ1), T2j ∼ E(λ2), λ2 = rλ1.

The c.d.f. of Tij for all t ≥ 0 is Fi(t) = 1− e−λit.
In this case the hypotheses H0 and H∗

0 coincide and under these hypotheses the
c.d.f. of the redundant system is

F (t) = 1− λ2 + λ1

λ2

e−λ1t +
λ1

λ2

e−(λ1+λ2)t.

Under the exponential distribution and under the alternative hypothesis H̃∗
0 we

have

gp(y) =
λ2

λ1

y − 1

λ1

ln(1− p),

and the c.d.f. of the redundant system is

F (t) = 1− e−λ1t − λ1(1− p)e−λ1t

∫ t

0

e−λ2ydy =
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= 1− e−λ1t − (1− p)
λ1

λ2

e−λ1t(1− e−λ2t).

In this example the test for the hypothesis H∗
0 is considered, so the following values

of the parameters were used:

λ1 = 1/100, λ2 = 1/300, r = 1/3.

The distribution function of a redundant system in this case is

F (t) = 1− 4e−t/100 + 3e−(4/300)t.

The hypothesis H∗
0 was tested using α = 0.05 asymptotic significance level and several

values of the sample size n, n = n1 = n2. The number of replications was 3000.

Table 2.1. Significance level of the test

Sample size Significance level (%)

50 7.5
100 5.3
200 5.1

Under the Exponential distribution and under the alternative hypothesis H̃∗
0 we

have

F (t) = 1− e−t/100 − (1− p)3e−t/100(1− e−t/300).

Table 2.2. Power of the test

Sample size \ Constant 0.1 0.25 0.5 0.75 0.9

50 5 8 24 45 79
100 6 12 32 85 100
200 15 39 88 100 100

Example 2.1.2. Simulated distribution: Weibull:

T1j ∼ W(α1, β1), T2j ∼ W(α2, β2),

The c.d.f. of Tij for all t ≥ 0 is Fi(t) = 1− e−(t/βi)
αi .

Under the hypothesis H0 the function g is g(t) = β1(t/β2)
α2/α1 and the c.d.f. of

the redundant system is

F (t) = F1(t)−
α1

βα1
1

∫ t

0

yα1−1e−(y/β1)α1−[(t−y)/β1+(y/β2)α2/α1 ]α1dy.

The hypothesis H0 coincides with the hypothesis H∗
0 if α1 = α2. In such a case

g(t) = rt and r = β1/β2.
Under the Weibull distribution and under the alternative hypothesis H̃∗

0 we have

gp(y) = β1[− ln(1− p) + (y/β2)
α2 ]1/α1 ,
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and the c.d.f. of the redundant system is

F (t) = F1(t)−

− α1

βα1
1

∫ t

0

yα1−1e−(y/β1)α1e−[(t−y)/β1+(− ln(1−p)+(y/β2)α2 )1/α1 ]α1dy.

In this example the test for the hypothesis H∗
0 is considered, so the following values

of the parameters were used:

α1 = α2 = 2, β1 = 100, β2 = 300.

The distribution function of a redundant system in this case is

F (t) = 1− e−t2/β2
1 − 2

β2
1

t∫
0

ye−1/β2
1(t2− 4

3
ty+ 13

9
y2)dy.

The hypothesis H∗
0 was tested using α = 0.05 asymptotic significance level and several

values of the sample size n, n = n1 = n2. The number of replications was 3000.

Table 2.3. Significance level of the test

Sample size Significance level (%)

50 4.7
100 5.3
200 5.0

Under the alternative hypothesis H̃∗
0 the c.d.f. of the redundant system is

F (t) = 1− e−t2/β2
1 − 2

β2
1

t∫
0

ye−y2/β2
1e

−
(

(t−y)/β1+

√
− log(1−p)+ y2

9β2
1

)2

dy.

Table 2.4. Power of the test

Sample size \ Constant 0.1 0.25 0.5 0.75 0.9

50 9 21 30 71 88
100 14 35 45 76 95
200 25 58 74 100 100

Example 2.1.3. Continuing Example 2.1.2, instead of the hypothesis H∗
0 we

considered the hypothesis H0, taking different values of αi :

α1 = 1, α2 = 2, β1 = 100, β2 = 300.

Since the Gauss error function is

erf(x) =
2√
π

x∫
0

e−t2dt
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and relation between the Gauss error function erf and the c.d.f. of the standard nor-
mal distribution Φ is erf(x) = 2Φ(x

√
2)−1, the distribution function of a redundant

system is

F (t) = 1− e
− t

β1 − 1

β1

e
− t

β1

∫ t

0

e−y2/(9β2
1)dy =

= 1− e−t/β1 [1 + 3
√

π(Φ(t
√

2/(3β1))− 0.5)].

The hypothesis H0 was tested using 5 per cent significance level and several values
of the sample size n, n = n1 = n2. Number of replications was 3000.

Table 2.5. Significance level of the test

Sample size Significance level (%)

50 5.6
100 5.2
200 5.1

Taking into account that

F−1
1 (u) = −β1 ln(1− u), gp(y) = −β1 ln(1− p) +

y2

9β1

,

we obtain that the c.d.f. of the redundant system under the alternative hypothesis
H0 is

F (t) = 1− e−t/β1 − (1− p)e−t/β1
1

β1

∫ t

0

e
− y2

9β2
1 dy =

= 1− e−t/β1 [1 + 3(1− p)
√

π(Φ(t
√

2/(3β1))− 0.5)].

Table 2.6. Power of the test

Sample size \ Constant 0.1 0.25 0.5 0.75 0.9

50 7 11 45 79 93
100 15 33 56 92 100
200 24 45 77 100 100

Example 2.1.4. Simulated distribution: loglogistic:

T1j ∼ L(α1, β1), T2j ∼ L(α2, β2),

The c.d.f. of Tij for all t ≥ 0 is Fi(t) = 1− 1
(1+(t/βi)αi )

.

Under the hypothesis H0 the function g is g(t) = β1(t/β2)
α2/α1 and the c.d.f. of

the redundant system is

F (t) = F1(t)−−
α1

βα1
1

∫ t

0

yα1−1

(1 + (y/β1)α1)2
∗ dy

1 + [(t− y)/β1 + (y/β2)α2/α1 ]α1
.
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Under the loglogistic distribution and under the alternative hypothesis H̃∗
0 we have

gp(y) = β1

(
p + (y/β2)

α2

1− p

)1/α1

,

and the c.d.f. of the redundant system is

F (t) = F1(t)−

α1

βα1
1

∫ t

0

yα1−1

(1 + (y/β1)α1)2

1

1 +

(
t−y
β1

+
(

p+(y/β2)α2

1−p

)1/α1
)α1

dy.

In this example the test for the hypothesis H∗
0 is considered, so the following values

of the parameters were used:

α1 = α2 = 2, β1 = 100, β2 = 300.

The distribution function of a redundant system in this case is

F (t) = 1− 1

1 + t2

β2
1

− 2

β2
1

∫ t

0

1

1 +
(

t
β1
− 2y

3β1

)2 ∗
y(

1 + y2

β2
1

)2dy.

The hypothesis H∗
0 is tested using 5 per cent significance level and several values of

the sample size n, n = n1 = n2. Number of replication was 3000.

Table 2.7. Significance level of the test

Sample size Significance level (%)

50 8.1
100 6.3
200 5.2

Under the alternative hypothesis H∗
0 the c.d.f. of the redundant system is

F (t) = 1− 1

1 +
(

y
β1

)2−

− 2

β2
1

∫ t

0

y(
1 +

(
y
β1

)2
)2

1

1 +

(
t−y
β1

+
[

p+(y/β2)2

1−p

]1/2
)2dy.

Table 2.8. Power of the test

Sample size \ Constant 0.1 0.25 0.5 0.75 0.9

50 14 42 60 100 100
100 21 57 73 100 100
200 29 62 100 100 100
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Example 2.1.5. Continuing Example 2.1.4., instead of the hypothesis H∗
0 we

considered the hypothesis H0, taking different values of αi :

α1 = 1, α2 = 2, β1 = 100, β2 = 300.

The distribution function of a redundant system in this case is

F (t) = 1− 1

1 + t
β1

− 1

β1

∫ t

0

1

1 +

(
t−y
β1

+
(

y
3β1

)2
) ∗ 1(

1 + y
β1

)2dy.

The hypothesis H0 is tested using 5 per cent significance level and several values of
the sample size n, n = n1 = n2. Number of replication was 3000.

Table 2.9. Significance level of the test

Sample size Significance level (%)

50 7.7
100 6.5
200 5.4

Under the alternative hypothesis H0 the c.d.f. of the redundant system is

F (t) = 1− 1

1 + y
β1

− 1

β1

∫ t

0

y(
1 + y

β1

)2

1

1 +
(

t−y
β1

+
[

p+(y/β2)2

1−p

])dy.

Table 2.10. Power of the test

Sample size \ Constant 0.1 0.25 0.5 0.75 0.9

50 9 27 39 64 75
100 15 41 52 71 85
200 23 49 79 97 100
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2.2 Redundant system with one main and (m− 1)

stand-by units

Let us consider a system of m units: one main unit and m − 1 stand-by units. We
shall use notation S(1, m− 1) for such systems.

Denote by T1, F1 and f1 the failure time, the c.d.f. and the probability density
function of the main unit. The failure times of the stand-by units are denoted by
T2, . . . , Tm. In ”hot” conditions their distribution functions are also F1. In ”warm”
conditions the c.d.f. of Ti is F2 and the p.d.f is f2, i = 2, . . . ,m. If a stand-by unit is
switched from ”warm” to ”hot” conditions, its c.d.f. is different from F1 and F2.

The failure time of the system S(1, m − 1) is T (m) = T1 ∨ T2 ∨ · · · ∨ Tm. As
T (m) = (T1 ∨ T2 ∨ · · · ∨ Tm−1) ∨ Tm, we can consider this system as a system S(1, 1)
with one main element (which itself is a system S(1, m−2)) and one stand-by element.

Denote by Kj and kj the c.d.f. and the p.d.f. of T (j), respectively, (j = 2, . . . ,m),
K1 = F1, k1 = f1. The c.d.f Kj can be written in terms of the c.d.f Kj−1 and F1:

Kj(t) = P(T (j) ≤ t) = P(T (j−1) ≤ t, Tj ≤ t) =

∫ t

0

P(Tj ≤ t|T (j−1) = y)dKj−1(y).

(2.16)
We generalize (2.2) modelling the conditional distribution P(Tj ≤ t|T (j−1) = y) and
define the following hypothesis.

Hypothesis H0:

fTj |T (j−1)=y(t) =

{
f2(t) if t ≤ y,
f1(t + g(y)− y) if t > y;

(2.17)

here (as in the case of the hypothesis (2.2))

g(y) = F−1
1 (F2(y)).

The formulas (2.16) and (2.17) imply the equality

Kj(t) =

∫ t

0

F1(t + g(y)− y)dKj−1(y). (2.18)

So the cumulative distribution function of the system with m − 1 stand-by units is
defined recurrently using formula (2.18) (j = 2, . . . ,m).

In particular, if we suppose that the hypothesis H0 is true and the distribution of
units functioning in ”warm” and ”hot” conditions differ only in scale, i.e.

F2(t) = F1(rt), (2.19)

for all t ≥ 0 and some r > 0, then g(y) = ry. So we define the following hypothesis.

Hypothesis H∗
0 :

fTj |T (j−1)=y(t) =

{
f2(t) if t ≤ y,
f1(t + ry − y) if t > y.

(2.20)
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Under the model (2.20) the cumulative distribution function of the system is obtained
using recurrent formulas

Kj(t) =

∫ t

0

F1(t + ry − y)dKj−1(y). (2.21)

If switching from ”warm” to ”hot” conditions does not damage units in the system
S(1, 1) then it is natural that this is true for the system S(1, m − 1), m > 2. So it
is sufficient to use goodness-of-fit tests for the hypotheses H0 and H∗

0 when only one
stand-by unit is used. Such tests were given in Chapter 2.1.

In what follows we suppose that one of the hypothesis H0 or H∗
0 is verified and

we shall consider nonparametric and parametric estimation methods for redundant
systems reliability estimation using data from units reliability trials.

2.2.1 Nonparametric estimation

Suppose that the hypothesis H∗
0 is true and the following data are available:

a) complete ordered sample T11, . . . , T1n1 of the failure times of n1 units tested in
”hot” conditions;

b) the ordered first m2 failure times T21, . . . , T2m2 obtained by testing of n2 units
up to the time t1 in ”warm” conditions.

The second sample is censored because the time to obtain complete data in
”warm” conditions may be long.

Set

N1(t) =

n1∑
i=1

1{T1i≤t}, N2(t) =

n2∑
i=1

1{T2i≤t,t≤t1},

Y1(t) =

n1∑
i=1

1{T1i≥t}, Y2(t) =

n2∑
i=1

1{T2i≥t,t≤t1}.

Note that the random variables T1i/r and T2i can be interpreted as order statistics
from samples of size n1 and n2, respectively, from the population having the c.d.f F2.
So if we denote

Ñ1(t) =

n1∑
i=1

1{T1i/r≤t} = N1(rt), Ñ2(t) = N2(t),

Ỹ1(t) =

n1∑
i=1

1{T1i/r≥t} = Y1(rt), Ỹ2(t) = Y2(t),

then the following Nelson-Aalen type estimator (still depending on r) of the cumula-
tive hazard function Λ2 = − ln S2 can be considered:

Λ̃2(t, r) =

∫ t

0

dÑ1(u) + dÑ2(u)

Ỹ1(u) + Ỹ2(u)
=

∫ t

0

dN1(ru) + dN2(u)

Y1(ru) + Y2(u)
. (2.22)
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Taking into consideration the fact that the difference

M2(t) = N2(t)−
∫ t

0

Y2(u)dΛ2(u)

is a martingale on [0, t1] with respect to the filtration generated by the data, and
EM2(t1) = 0, the parameter r can be estimated using the estimating function

Ũ(r) = N2(t1)−
∫ t1

0

Y2(u)dΛ̃2(u, r) = (2.23)

= N2(t1)−
∫ rt1

0

Y2(v/r)dN1(v)

Y1(v) + Y2(v/r)
−
∫ t1

0

Y2(u)dN2(u)

Y1(ru) + Y2(u)
.

Ũ(r) is a non-increasing step function,

Ũ(0+) = N2(t1)−
∫ t1

0

Y2(u)dN2(u)

n1 + Y2(u)
> 0, Ũ(+∞) = −

∫ ∞

0

n2dN1(v)

Y1(v) + n2

< 0,

so the parameter r is estimated by the statistic

r̂ = Ũ−1(0) = sup{r : Ũ(r) > 0}. (2.24)

The c.d.f. Km of the redundant system is estimated using the following recurrent
equations (j = 2, . . . ,m):

K̂1(t) = F̂1(t),

K̂j(t) = K̂j−1(t)−
∫ t

0

Ŝ1(t + r̂y − y)dK̂j−1(y) =

= K̂j−1(t)−
∑

i:T1i≤t

Ŝ1(t + r̂T1i − T1i)(K̂j−1(T1i)− K̂j−1(T1,i−1));

here Ŝ1 = 1− F̂1. The estimator of the mean failure time µ of the system is

µ̂ =

∫ ∞

0

tdK̂m(t) =

n1∑
i=1

T1i [K̂m(T1i)− K̂m(T1,i−1)].

The following alternative estimators of the c.d.f. Fi may be considered.
The estimators of the cumulative hazards Λ1 and Λ2 are

Λ∗
1(t) = Λ∗

2(t/r̂, r̂) =

∫ t

0

dN1(u)

Y1(u) + Y2(u/r̂)
+

∫ t/r̂

0

dN2(u)

Y1(r̂u) + Y2(u)
=

=
∑
T1i≤t

1

Y1(T1i) + Y2(T1i/r̂)
+
∑

T2i≤t/r̂

1

Y1(r̂T2i) + Y2(T2i)
,

Λ∗
2(t) = Λ∗

1(r̂t).
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The estimators of the c.d.f. Si = 1 − Fi are the product integrals of the estimators
Λ∗

1(t) and Λ∗
2(t), so

F ∗
1 (t) = 1−π0≤s≤t(1− dΛ̂1(s)) =

= 1−
∏

T1i≤t

(
1− 1

Y1(T1i) + Y2(T1i/r̂)

) ∏
T2i≤t/r̂

(
1− 1

Y1(r̂T2i) + Y2(T2i)

)
,

F ∗
2 (t) = F ∗

1 (r̂t).

Mixing all moments T1i and r̂T2j and ordering them, we obtain the sequence of
random variables T1 ≤ · · · ≤ Tn1+m2 . The estimators F ∗

1 (t) and F ∗
2 (t) can be written:

F ∗
1 (t) = 1−

∏
Ti≤t

(
1− 1

Y1(Ti) + Y2(Ti/r̂)

)
, F ∗

2 (t) = F ∗
1 (r̂t).

The c.d.f. Km of the redundant system is estimated using the following recurrent
equations (j = 2, . . . ,m):

K∗
j (t) = K∗

j−1(t)−
∫ t

0

Ŝ1(t + r̂y − y)dK∗
j−1(y) =

= K∗
j−1(t)−

∑
i:Ti≤t

S∗
1(t + r̂Ti − Ti)(K

∗
j−1(Ti)−K∗

j−1(Ti−1));

here S∗
1 = 1− F ∗

1 . The estimator of the mean failure time µ of the system is

µ∗ =

∫ ∞

0

tdK∗
m(t) =

n1+m2∑
i=1

Ti [K
∗
m(Ti)−K∗

m(Ti−1)].

The graphs of the trajectories of the estimators of the c.d.f. F1 and Km (m = 2, 3, 4),
in the case of complete samples and different distributions are presented in Graph
2.4, 2.5 and 2.6. Increasing the number of stand-by units increases the reliability of
the redundant system.
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Graph 2.4. Graphs of the trajectories of the nonparametric
estimators F̂1, K̂i (Exponential distribution)

Graph 2.5. Graphs of the trajectories of the nonparametric
estimators F̂1, K̂i (Weibull distribution)

Graph 2.6. Graphs of the trajectories of the nonparametric
estimators F̂1, K̂i (Loglogistic distribution)
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2.2.2 Parametric estimation

Suppose that in hot conditions the c.d.f. F1(t; θ) is absolutely continuous and depends
on finite dimensional parameter θ ∈ Θ ⊂ Rk. Set γ = (r, θT )T .

The maximum likelihood estimator γ∗ = (r∗, (θ∗)T )T of the parameter γ maxi-
mizes the loglikelihood function

`(γ) =

n1∑
i=1

ln f1(T1i; θ) + m2 ln r +

m2∑
i=1

ln f1(rT2i; θ) + (n2 −m2) ln S1(rt1; θ). (2.25)

Under H∗
0 for any t ≥ 0 and j ≥ 2 the c.d.f. Kj(t) is estimated recurrently:

K̂j(t) =

∫ t

0

F1(t + r∗y − y; θ∗)dK̂j−1(y), K̂1(t) = F1(t; θ
∗). (2.26)

2.3 Asymptotic distribution of K̂j and confidence

intervals for Kj(t)

We need for an asymptotic distribution of the estimator of the c.d.f Km(t) of the
redundant system to construct confidential intervals for Km(t). Suppose that

ni

n
= li + O(

1

n
), li ∈ (0, 1), as n = n1 + n2 →∞.

2.3.1 Nonparametric case

The limit distribution of the empirical distribution functions is well known:

√
n(F̂i − Fi)

D→ Ui (2.27)

on D(Ai), where D(Ai) is the space of cadlag functions with supremum norm met-

ric,
D→ means weak convergence, A1 = [0,∞), A2 = [0, t1], U1, U2 are independent

Gaussian martingales with Ui(0) = 0 and the covariances

cov(Ui(u), Ui(v)) =
1

li
Fi(u ∧ v)Si(u ∨ v). (2.28)

Using (2.27) we get
√

n(Ŝi − Si)
D→ −Ui (2.29)

Let us find the asymptotic distribution of the estimator r̂ defined by (2.24). Denote
by r0 ∈ (0, 1) the true value of r. Under the hypothesis H∗

0 it is the ratio of the
mean failure times µ1 and µ2 of units functioning in ”hot” and ”warm” conditions,
respectively.
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Lemma 2.3.1 Suppose that the c.d.f. F1 is absolutely continuous with positive p.d.f.
f1 on (0,∞) and the equality F2(t) = F1(r0t) is true for all t ≥ 0. If

A = − 1

r0

∫ r0t1

0

uf1(u)dΛ1(u)− t1f1(r0t1) 6= 0, (2.30)

then
√

n(r̂ − r0)
d→ Y = −W (r0)

A
, (2.31)

where

W (r0) = −
t1∫

0

[U1(r0u)− U2(u)]dΛ2(u)− U1(r0t1) + U2(t1), (2.32)

Proof. Set Û(r) = n
n1n2

Ũ(r), Ŝi = 1 − F̂i, where Ũ(r) is defined by (2.23). For
any r > 0

Û(r) =
n

n1n2

− t1∫
0

Y2(u)dN1(ru)

Y1(ru) + Y2(u)
+

t1∫
0

(
1− Y2(u)

Y1(ru) + Y2(u)

)
dN2(u)

 =

=

∫ t1

0

Ŝ2(u−)dŜ1(ru)
n1

n
Ŝ1(ru−) + n2

n
Ŝ2(u−)

−
∫ t1

0

Ŝ1(ru−)dŜ2(u)
n1

n
Ŝ1(ru−) + n2

n
Ŝ2(u−)

=:

=

∫ t1

0

Ẑ2(u, r)dŜ1(ru)−
∫ t1

0

Ẑ1(u, r)dŜ2(u),

Ẑ2(u, r) =
n

n2

(1− n1

n
Ẑ1(u, r)).

The convergence sup
u∈Ai

|Ŝi(u) − Si(u)| P→ 0, sup
u∈Ai

|Ŝi(u−) − Si(u)| P→ 0 implies that

Û(r)
P→ U(r), where

U(r) =

t1∫
0

S2(u)dS1(ru)

l1S1(ru) + l2S2(u)
−

t1∫
0

S1(ru)dS2(u)

l1S1(ru) + l2S2(u)
=:

=:

∫ t1

0

Z2(u, r)dS1(ru)−
∫ t1

0

Z1(u, r)dS2(u), (2.33)

Z2(u, r) =
1

l2
(1− l1Z1(u, r)).

Using the equality S1(r0u) = S2(u), we obtain U(r0) = 0.

Using the convergence
√

n(Ŝi − Si)
D→ −Ui and the functional delta method we

obtain

√
n(Ẑ1 − Z1)(u, r) =

√
n

(
Ŝ1(ru)

l1Ŝ1(ru) + l2Ŝ2(u)
− S1(ru)

l1S1(ru) + l2S2(u)

)
d→
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d→ l2

(
−U1(ru)S2(u) + U2(u)S1(ru)

(l1S1(ru) + l2S2(u))2

)
=: U∗

1 (u, r) (2.34)

and

√
n(Ẑ2 − Z2)(u, r) =

√
n

(
Ŝ2(u)

l1Ŝ1(ru) + l2Ŝ2(u)
− S2(u)

l1S1(ru) + l2S2(u)

)
d→

d→ l1

(
U1(ru)S2(u)− U2(u)S1(ru)

(l1S1(ru) + l2S2(u))2

)
= − l1

l2
U∗

1 (u, r) =: U∗
2 (v, r) (2.35)

on D([0, t1]× [0, 1]). Note that

U∗
1 (u, r0) = l2

(
−U1(r0u)S2(u) + U2(u)S1(r0u)

(l1S1(r0u) + l2S2(u))2

)
=

= l2

(
U2(u)S2(u)− U1(r0u)S2(u)

(l1S2(u) + l2S2(u))2

)
= l2

U2(u)− U1(r0u)

S2(u)
,

Z1(u, r0) =
S1(r0u)

l1S1(r0u) + l2S2(u)
=

S2(u)

l1S2(u) + l2S2(u)
≡ 1,

Z2(u, r0) =
S2(ru)

l1S1(r0u) + l2S2(u)
=

S2(u)

l1S2(u) + l2S2(u)
≡ 1.

By the functional delta method for stochastic integrals (see Theorem A.0.2) and using
(2.34), (2.35), (2.29) we have

√
n(Û(r)− U(r)) =

√
n

 t1∫
0

Ẑ2dŜ1(ru)−
t1∫

0

Ẑ1dŜ2(u)−
t1∫

0

Z2dS1(ru) +

t1∫
0

Z1dS2(u)

 d→

d→ W (r) :=

t1∫
0

(U∗
2 (u, r)dS1(ru)− Z2(u, r)dU1(ru))−

−
t1∫

0

(U∗
1 (u, r)dS2(u)− Z1(u, r)dU2(u)) (2.36)

on [0, 1].
By the functional delta method (see Theorem A.0.3) and using (2.24), (2.36)we

get √
n(r̂ − r0) =

√
n(Ũ−1(r)− Ũ−1(r0)) =

=
√

n
(n1n2

n
Û−1(r)− n1n2

n
Û−1(r0)

)
d→

d→ Y = −W (r0)

U ′(r0)
= −W (r0)

A
;
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here

W (r0) = −
t1∫

0

[U1(r0u)− U2(u)]dΛ2(u)− U1(r0t1) + U2(t1).

Using the equality

U(r) =

rt1∫
0

S2(v/r)dS1(v)

l1S1(v) + l2S2(v/r)
−

t1∫
0

S1(ru)dS2(u)

l1S1(ru) + l2S2(u)
,

we obtain the derivative

U ′(r) = −t1
S2(t1)f1(rt1)

l1S1(rt1) + l2S2(t1)
+

rt1∫
0

l1vf2(v/r)S1(v)dS1(v)

r2(l1S1(v) + l2S2(v/r))2
+

+

t1∫
0

l2uf1(ru)S2(u)dS2(u)

(l1S1(v) + l2S2(v/r))2
, U ′(r0) = −t1f1(t1)−

1

r0

r0t1∫
0

vf1(v)dΛ1(v).

The proof is complete.
Remark 2.3.1. If samples are complete and tf1(t) → 0 as t →∞ then

W (r0) = −
∞∫

0

[U1(r0u)− U2(u)]dΛ2(u), A = − 1

r0

∫ ∞

0

uf1(u)dΛ1(u), (2.37)

and
√

n(r̂ − r0)
D→ Y = −W

A
∼ N

(
0,

1

l1l2A2

)
. (2.38)

Proof. By (2.27) Ui(v) ∼ N(0, 1
l1
F1(v)S1(v)) and S1(v) → 0 as v → ∞. So

Ui(v)
P→ 0 as v →∞ and the formula (2.31) implies the first formula in (2.36). The

condition tf1(t) → 0 and the formula (2.29) imply the second formula in (2.36).
Using the equality cov(Ui(s1), Ui(s2)) = 1

`i
Fi(s1 ∧ s2)(1 − Fi(s1 ∨ s2)), i = 1, 2,

we obtain the variance

V (W (r0)) = E

(∫ ∞

0

(U1(r0u)− U2(u))dΛ2(u)

)2

=

=

∫ ∞

0

dΛ2(u)

∫ ∞

0

E ((U1(r0u)− U2(u)(U1(r0v)− U2(v)) dΛ2(v) =

=

∫ ∞

0

dΛ2(u)

∫ ∞

0

(EU1(r0u)U1(r0v) + EU2(u)U2(v)) dΛ2(v) =

= 2

∫ ∞

0

dΛ2(u)

∫ u

0

(
S1(r0u)F1(r0v)

`1

+
S2(u)F2(v)

`2

)
dΛ2(v) =
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= 2

∫ ∞

0

dΛ2(u)

∫ u

0

(
S2(u)F2(v)

`1

+
S2(u)F2(v)

`2

)
dΛ2(v) =

=
2

`1`2

∫ ∞

0

S2(u)dΛ2(u)

∫ u

0

F2(v)dΛ2(v) =

=
2

`1`2

∫ ∞

0

S2(u)dS2(u)

S2(u)

∫ u

0

F2(v)dS2(v)

S2(v)
=

=
2

`1`2

∫ ∞

0

dS2(u)

∫ u

0

[1− S2(v)]dS2(v)

S2(v)
=

= − 2

`1`2

∫ ∞

0

(lnS2(u)− S2(u) + 1)dS2(u) =
∣∣S2(u) = x

∣∣ =
1

`1`2

.

The proof is complete.

Theorem 2.3.2 If F1 is continuously differentiable on [0,∞) then under H∗
0 for any

t > 0 and any natural j ≥ 2

√
n(K̂j(s)−Kj(s))

D→

Wj(s) =

∫ s

0

U1(s+r0y−y)dKj−1(y)+µ(j−1)(s)Y +

∫ s

0

F1(s+r0y−y)dWj−1(y) (2.39)

on D[0, t], where W1(s) = U1(s), µ(j−1)(s) =
∫ s

0
yf1(s + r0y − y)dKj−1(y).

Proof. Let us prove that under conditions of Lemma 2.3.1 for any t ≥ 0

√
n(F̂1(t + r̂y − y)− F1(t + r0y − y))

d→ U1(t + r0y − y) + yf1(t + r0y − y)Y (2.40)

on D[0, t]. It is sufficient to verify the conditions of the Theorem A.0.4.
Fix ε : 0 < ε < min(r0, r0t) and τ : t < τ < t + ε. Then
1) x = F1 is continuously differentiable on [0, τ ];
2) ϕ(y, r) = t + ry − y is continuous on [0, τ ] × Uε(r0), non-increasing in y and

ϕ(0, r0) = t < τ , ϕ(τ, r0) = t + r0τ − τ > −ε + r0τ > 0;
3) Xn = F̂1 ∈ D[0, τ ] is a sequence of stochastic processes such that

√
n(Xn − x)

D→ Z = U1

on D[0, τ ], where Z = U1 is a continuous on [0, τ ] stochastic process;
4) r̂ is a sequence of random variables such that

√
n(r̂ − r0)

D→ Y.

So all conditions of the Theorem A.0.4 are verified. This theorem implies the con-
vergence (2.39) on D[0, τ ] and consequently on D[0, t] because x′(ϕ(y, r)) = f1(t +
r0y − y), ϕ′

r(y, r0) = y.
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We prove the theorem by induction. If j = 2 then using (2.26), (2.40), the
functional delta method for integrals and the estimator of (2.18)

K̂2(s) =

∫ s

0

F̂1(s + r̂y − y)dK̂1(y), K̂1(y) = F̂1(y)

we obtain √
n(K̂2(s)−K2(s)) =

√
n

(∫ s

0

F̂1(s + r̂y − y)dF̂1(y)−
∫ s

0

F1(s + r0y − y)dF1(y)

)
D→

D→
∫ s

0

U1(s+r0y−y)dF1(y)+

∫ s

0

yf1(s+r0y−y)Y dF1(y)+

∫ s

0

F1(s+r0y−y)dU1(y) =

=

∫ s

0

U1(s + r0y − y)dF1(y) + µ(1)(s)Y +

∫ s

0

F1(s + r0y − y)dU1(y) = W2(s) (2.41)

on D[0, t]. So (2.39) is true for j = 2.
If j = 3 then by the functional delta method for integrals and using the estimator

K̂3(s) =

∫ s

0

F̂1(s + r̂y − y)dK̂2(y),

we obtain √
n(K̂3(s)−K3(s)) =

=
√

n

(∫ s

0

F̂1(s + r̂y − y)dK̂2(y)−
∫ s

0

F1(s + r0y − y)dK2(y)

)
D→

D→
∫ s

0

U1(s+r0y−y)dK2(y)+

∫ s

0

yf1(s+r0y−y)Y dK2(y)+

∫ s

0

F1(s+r0y−y)dW2(y) =

=

∫ s

0

U1(s + r0y− y)dK2(y) + µ(2)(s)Y +

∫ s

0

F1(s + r0y− y)dW2(y) = W3(s) (2.42)

on D[0, t]. So (2.39) is true for j = 3.
Supposing that (2.38) is true for j = l and using the functional delta method for

integrals we obtain the result for j = l + 1:

√
n(K̂l+1(s)−Kl+1(s)) =

√
n

(∫ s

0

F̂1(s + r̂y − y)dK̂l(y)−
∫ s

0

F1(s + r0y − y)dKl(y)

)
D→

D→
∫ s

0

U1(s+r0y−y)dKl(y)+

∫ s

0

yf1(s+r0y−y)Y dKl(y)+

∫ s

0

F1(s+r0y−y)dWl(y) =

=

∫ s

0

U1(s + r0y − y)dKl(y) + µ(l)(s)Y +

∫ s

0

F1(s + r0y − y)dWl(y) (2.43)

on D[0, t].
The proof is complete.
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The asymptotic variance of
√

n(K̂j(t)−Kj(t)), j ≥ 2 might be estimated recur-
rently, using the equation (2.39): the covariances

Cov(Wj(s), Wj(t)) = E(Wj(s), Wj(t))

can be written in terms of the covariances

E(Wj−1(u)Wj−1(v)), E(Wj−1(u)U1(v)), E(Wj−1(u)U2(v)),

E(U1(u)U1(v)), E(U2(u)U2(v)).

Note that for j = 2 these covariances are

E(W1(u)W1(v)) = E(W1(u)U1(v)) = E(U1(u)U1(v)) =
1

l1
F1(u ∧ v)S1(u ∨ v),

E(W1(u)V2(v)) = E(U1(u)U2(v)) = 0, E(U2(u)U2(v)) =
1

l2
F2(u ∧ v)S2(u ∨ v).

Let us find the asymptotic variance of
√

n(K̂2(t) −K2(t)) which coincides with the
variance of W2(t).

Suppose first that samples are complete. In the following we skip the index in r0

.
Using (2.37) we get

W2(t) =

∫ t

0

U1(t + ry − y)dF1(y) + µ(1)(t)Y +

∫ t

0

F1(t + ry − y)dU1(y) =

= F2(t)U1(t) +

∫ t

0

U1(t + ry − y)dF1(y)−
∫ t

0

U1(y)dF1(t + ry − y)+

+
µ(t)

A

(∫ ∞

0

U1(ry)dΛ2(y)−
∫ ∞

0

U2(y)dΛ2(y)

)
= (V1 + V2 + V3 + V4)(t). (2.44)

µ(t) = µ(1)(t) =

∫ t

0

yf1(t + ry − y)dF1(y), A = −1

r

∫ ∞

0

uf1(u)dΛ1(u). (2.45)

The random variable W2(t) has zero mean. Set

ν(t) =

∫ t

0

F1(t + ry − y) dF1(y).

Taking into account that 0 < r < 1 and using the equality (2.27) for any t ≥ 0
we obtain the variances and the covariances of the random variables Vi(t) multiplied
by l1:

l1EV 2
1 (t) = F 2

2 (t)F1(t)S1(t),

l1EV 2
2 (t) = l1

∫ t

0

∫ t

0

EU1(t + ry − y)U1(t + rz − z)dF1(y)dF1(z) =

= 2

∫ t

0

(∫ y

0

S1(t + rz − z)dF1(z)

)
F1(t + ry − y)dF1(y) =
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= 2

∫ t

0

F1(z)F1(t + rz − z)dF1(z)−
(∫ t

0

F1(t + rz − z)dF1(z)

)2

=

= 2

∫ t

0

F1(z)F1(t + rz − z)dF1(z)− ν2(t),

l1EV 2
3 (t) = l1

∫ t

0

∫ t

0

EU1(y)U1(z)dF1(t + ry − y)dF1(t + rz − z) =

= 2

∫ t

0

(∫ y

0

F1(z)dF1(t + rz − z)

)
S1(y)dF1(t + ry − y) =

= 2F2(t)

∫ t

0

F1(z)dF1(t + rz − z)− 2

∫ t

0

F1(z)F1(t + rz − z)dF1(t + rz − z)−

−
(∫ t

0

F1(z)dF1(t + rz − z)

)2

= 2F2(t)(F1(t)F2(t)−

−ν(t))− 2

∫ t

0

F1(z)F1(t + rz − z)dF1(t + rz − z)− (F1(t)F2(t)− ν(t))2 ,

l1EV 2
4 (t) = l1µ

2(t)EY 2 =
µ2(t)

l2A2
,

l1EV1(t)V2(t) = l1F2(t)

∫ t

0

EU1(t + ry − y)U1(t)dF1(y) =

= S1(t)F2(t)

∫ t

0

F1(t + ry − y)dF1(y) = S1(t)F2(t)ν(t),

l1EV1(t)V3(t) = −l1F2(t)

∫ t

0

EU1(y)U1(t)dF1(t + ry − y) =

= −S1(t)F2(t)

∫ t

0

F1(y)dF1(t + ry − y) = −S1(t)F2(t)(F1(t)F2(t)− ν(t)),

l1EV1(t)V4(t) = l1
F2(t)µ(t)

A
[

t/r∫
0

EU1(ry)U1(t)dΛ2(y) +

∞∫
t/r

EU1(ry)U1(t)dΛ2(y)] =

=
F2(t)µ(t)

A
[S1(t)

t/r∫
0

F1(ry)dΛ2(y) + F1(t)

∞∫
t/r

S1(ry)dΛ2(y)] =

= −F2(t)µ(t)

A
[S1(t)

t/r∫
0

[
1

S2(y)
− 1]dS2(y) + F1(t)

∞∫
t/r

dS2(y)] =

= −F2(t)
µ(t)

A
S1(t) ln S1(t),
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−l1EV2(t)V3(t) = l1

∫ t

0

∫ t

0

EU1(t + ry − y)U1(z)dF1(y)dF1(t + rz − z) =

=

∫ t

0

(
S1(t + ry − y)

∫ t+ry−y

0

F1(z)dF1(t + rz − z)+

+F1(t + ry − y)

∫ t

t+ry−y

S1(z)dF1(t + rz − z)

)
dF1(y) =

=

∫ t

0

(∫ t+ry−y

0

F1(z)dF1(t + rz − z)

)
dF1(y)−

−
∫ t

0

(∫ t+ry−y

0

F1(z)dF1(t + rz − z)

)
F1(t + ry − y)dF1(y)+

+

∫ t

0

(∫ t

t+ry−y

dF1(t + rz − z)

)
F1(t + ry − y)dF1(y)−

−
∫ t

0

(∫ t

t+ry−y

F1(z)dF1(t + rz − z)

)
F1(t + ry − y)dF1(y) =

= −
∫ t

rt

(∫ u

0

F1(z)dF1(t + rz − z)

)
dF1((t− u)/(1− r))+

+

∫ t

0

(F1(rt)− F1(t + (r − 1)(t + ry − y))) F1(t + ry − y)dF1(y)−

−
∫ t

0

(∫ t

0

F1(z)dF1(t + rz − z)

)
F1(t + ry − y)dF1(y) =

= −
∫ rt

0

(∫ t

rt

dF1((t− u)/(1− r))

)
F1(z)dF1(t + rz − z)−

−
∫ t

rt

(∫ t

z

dF1((t− u)/(1− r))

)
F1(z)dF1(t + rz − z)+

+

∫ t

0

(F1(rt)− F1(t + (r − 1)(t + ry − y))) F1(t + ry − y)dF1(y)−

−
∫ t

0

F1(t + ry − y)dF1(y)

∫ t

0

F1(z)dF1(t + rz − z) =

= F1(t)

∫ rt

0

F1(z)dF1(t + rz − z)+

+

∫ t

rt

F1((t− z)/(1− r))F1(z)dF1(t + rz − z) + F2(t)

∫ t

0

F1(t + ry − y)dF1(y)−

−
∫ t

0

F1(t + (r − 1)(t + ry − y))F1(t + ry − y)dF1(y)−

−
∫ t

0

F1(t + ry − y)dF1(y)

∫ t

0

F1(z)dF1(t + rz − z) =
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= F1(t)

∫ rt

0

F1(z)dF1(t + rz − z)+

+

∫ t

rt

F1((t− y)/(1− r))F1(y)dF1(t + ry − y) + F2(t)ν(t)+

+

∫ t

rt

F1(t + rz − z))F1(z)dF1((t− z)/(1− r))− ν(t)(F1(t)F2(t)− ν(t),

l1EV2(t)V4(t) = l1
µ(t)

A

t∫
0

∞∫
0

EU1(t + ry − y)U1(rz)dF1(y)dΛ2(z) =

= −µ(t)

A

 t∫
0

S1(t + ry − y)dF1(y)

(t+ry−y)/r∫
0

[
1

S2(y)
− 1

]
dS2(y)+

+

t∫
0

F1(t + ry − y)dF1(y)

∞∫
(t+ry−y)/r

dS2(y)

 =

= −µ(t)

A

 t∫
0

S1(t + ry − y) [ln S1(t + ry − y)− S1(t + ry − y) + 1] dF1(y)−

−
t∫

0

F1(t + ry − y)S1(t + ry − y)dF1(y)

 =

= −µ(t)

A

∫ t

0

S1(t + ry − y) ln S1(t + ry − y)dF1(y),

l1EV3(t)V4(t) = −l1
µ(t)

A
E

t∫
0

U1(y)dF1(t + ry − y)

 y/r∫
0

+

∞∫
y/r

U1(rz)dΛ2(z) =

=
µ(t)

A

 t∫
0

S1(y)dF1(t + ry − y)

y/r∫
0

[
1

S2(z)
− 1

]
dS2(z)+

+

t∫
0

F1(y)dF1(t + ry − y)

∞∫
y/r

dS2(z)

 =
µ(t)

A

∫ t

0

S1(y) ln S1(y)dF1(t + ry − y).

So the variance Var(W2(t)) is defined by the following formula:

l1Var(W2(t)) = −F1(t)F
2
2 (t)−4ν2(t)+

∫ t

0

F1(t+ry−y)[F1(t+ry−y)+2F1(y)] dF1(y)+
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+2F1(t)ν(rt) + 2

∫ t

rt

F1(t + ry − y)F1((t− y)/(1− r)) dF1(y) +
µ2(t)

l2A2
+

+
2µ(t)

A

[
ν(t) +

∫ t

0

[F1(t + ry − y) ln S1(y)−

− S1(t + ry − y) ln S1(t + ry − y)]dF1(y))] .

Set

Z1i = F̂1(t + (r̂ − 1)T1i−), F̂1(t−) =
1

n1

n1∑
i=1

1{T1i<t}, Z2i = F̂1(
t− T1i

1− r̂
−),

Z3i = F̂1(T1i−), Z4i = f̂1(t+(r̂−1)T1i−), µ̂(t) =
1

n1

∑
T1i≤t

T1iZ4i, Z5i = f̂1(T1i−).

The variance Var(W2(t)) is estimated using the statistic

n1

n
V̂ar(W2(t)) = −F̂1(t)F̂

2
2 (t)− 4φ̂2

1(t) + φ̂2(t) +
nµ̂2(t)

n2Â2
+

2µ̂(t)

Â
φ̂3(t);

here

φ̂1(t) =
1

n1

∑
T1i≤t

Z1i, Â = − 1

r̂n1

n1∑
i=1

T1iZ5i

1− Z3i

,

φ̂2(t) =
1

n1

∑
T1i≤t

Z1i[Z1i + 2Z3i + 2F̂1(t)1{T1i≤r̂t} + 2Z2i1{T1i>r̂t}],

φ̂3(t) =
1

n1

∑
T1i≤t

[Z1i(1 + ln(1− Z3i))− (1− Z1i) ln(1− Z1i)].

So the variance σ2
K̂2

of the estimator K̂2(t) is estimated by

σ̂2
K̂2

=
1

n
V̂ar(W2(t)) =

1

n1

(n1

n
V̂ar(W2(t))

)
.

The asymptotic 1− α confidence interval for K2(t) is

K̂2(t)± σ̂K̂2
z1−α/2. (2.46)

Alternative asymptotic confidence interval of the form (K2(t), K2(t)), where

K2(t) =

1 +
1− K̂2(t)

K̂2(t)
exp

 σ̂K̂2
z1−α/2√

K̂2(t)(1− K̂2(t))


−1

,

K2(t) =

1 +
1− K̂2(t)

K̂2(t)
exp

− σ̂K̂2
z1−α/2√

K̂2(t)(1− K̂2(t))


−1

, (2.47)
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can be considered.
Remark 2.3.2. In the case of censoring the expression in parenthesis of the term

V4 in (2.44) is replaced by
t1∫
0

[U1(ru)−U2(u)dΛ2(u) + U1(rt1) + U2(t1), so only minor

modifications are needed.

Example 2.3.1. Exponential distribution : S1(t) = e−λt. We investigated finite
sample confidence level of the proposed asymptotic confidence intervals. The failure
times T1j and T2j were simulated from exponential distribution:

T1j ∼ E(λ1), T2j ∼ E(λ2), λ1 =
1

100
, λ2 =

1

300
, t1 = 500.

The number of replications was 2000. For various values of t the proportions of
confidence interval realizations covering the true value of the distributional function
K2(t) are given below:

Table 2.11. Confidence level for finite samples (n1 = n2 = 100)

Time, t 50 100 200 300 400 500

K2(t) 0.114 0.319 0.667 0.856 0.941 0.977
Confidence level (%) 94.5 91.9 91.8 90.4 90.7 89.2

Example 2.3.2. Weibull distribution : S1(t) = e−(t/β)α
. The failure times T1j

and T2j were simulated from exponential distribution:

T1j ∼ W (α1, β1), T2j ∼ W (α1, β1),

α1 = α2 = 2, β1 = 100, β2 = 300, t1 = 500.

The number of replications was 2000. For various values of t the proportions of
confidence interval realizations covering the true value of the distributional function
K2(t) are given below:

Table 2.12. Confidence level for finite samples (n1 = n2 = 100)

Time, t 50 100 200 300 400 500

K2(t) 0.018 0.194 0.822 0.992 0.999 1.000
Confidence level (%) 88.9 91.7 90.7 90.0 89.4 89.9

Example 2.3.3. Loglogistic distribution : S1(t) = 1
1+(t/β)α . The failure times

T1j and T2j were simulated from exponential distribution:

T1j ∼ L(α1, β1), T2j ∼ L(α1, β1),

α1 = α2 = 2, β1 = 100, β2 = 300, t1 = 500.
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The number of replications was 2000. For various values of t the proportions of
confidence interval realizations covering the true value of the distributional function
K2(t) are given below:

Table 2.13. Confidence level for finite samples (n1 = n2 = 100)

Time, t 50 100 200 300 400 500

K2(t) 0.016 0.138 0.517 0.743 0.851 0.905
Confidence level (%) 92.1 91.7 91.3 89.2 90.5 91.5

2.3.2 Parametric case

Let us consider the parametric estimator (2.25). Denote by In(γ) = −E῭(γ) the
Fisher information matrix and suppose that 1

n
In(γ) → i(γ). Under classical assump-

tions on the family of distributions f1(t, θ) the maximum likelihood estimator γ∗ is
asymptotically normal:

√
n(γ∗ − γ)

d→ Y = (Y1, Y
T
2 )T ∼ Nk+1(0, i

−1(γ)).

Y1 is one-dimensional, Y2 – k-dimensional.
Using delta method we obtain:

√
n(K̂2(t)−K2(t))

D→ W2(t) = Y T C2(t; γ),

where

C2(t; γ) = (C21(t; γ), CT
22(t; γ))T , C21(t; γ) =

∫ t

0

∂

∂r
F1(t + ry − y; θ)dF1(y; θ),

C22(t; γ) =

∫ t

0

∂

∂θ
F1(t + ry − y; θ)dF1(y; θ) + F1(t + ry − y; θ)d(

∂

∂θ
F1(y; θ)).

The random variable W2(t) is linear function of Y.
If j ≥ 2 then √

n(K̂j(t)−Kj(t))
D→ Wj(t).

Let us prove by recurrence that the random variable Wj(t), j ≥ 2, is also linear
function of Y:

Wj(t) = Y T Cj(t; γ), Cj(t; γ) ∈ (C[0, t])k+1.

We showed that it is true for k = 2. By functional delta method for integrals
(Theorem 1.3.2) and using the assumption that the statement is true for Wj−1 we
obtain

Wj(t) = Y T (

∫ t

0

∂

∂γ
F1(t + ry − y; θ)dKj−1(y; γ) + F1(t + ry − y; θ)dCj−1(t; γ)).

So the variance

Var(Wj(t)) = Var(Cj(t; γ)T Y ) = CT
j (t; γ)i−1(γ)Cj(t; γ)
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is estimated by nCT
2 (t; γ̂)I−1(γ̂)Cj(t; γ̂), and the variance σ2

K̂j(t)
of the estimator K̂j(t)

is estimated by
σ̂2

K̂j(t)
= CT

j (t; γ̂)I−1(γ̂)Cj(t; γ̂).

The matrix I(γ̂) may be replaced by −῭(γ̂).
The asymptotic 1− α confidence interval for Kj(t) is

K̂j(t)± σ̂K̂j(t)
z1−α/2, (2.48)

or, alternatively, (Kj(t), Kj(t)), where

Kj(t) =

1 +
1− K̂j(t)

K̂j(t)
exp

 σ̂K̂j
z1−α/2√

K̂j(t)(1− K̂j(t))


−1

,

Kj(t) =

1 +
1− K̂j(t)

K̂j(t)
exp

− σ̂K̂j
z1−α/2√

K̂j(t)(1− K̂j(t))


−1

. (2.49)

Example 2.3.4. Exponential distribution : S1(t) = e−λt.

Let us consider the case of complete samples. By (2.25) the loglikelihood function
has the form

l(r; θ) =

n1∑
i=1

ln f1(T1i; θ) + n2 ln r +

n2∑
j=1

ln f1(rT2j; θ).

In the case of exponential distribution

f1(t; λ) = λe−λt; ln f1(t; λ) = ln λ− λt,

so

l(r; λ) = n1 ln λ− λ

n1∑
i=1

T1i + n2 ln r + n2 ln λ− λr

n2∑
j=1

T2j =

= n ln λ + n2 ln r − λ(

n1∑
i=1

T1i + r

n2∑
j=1

T2j).

Equating the score function to zero we obtain the system of equations

˙̀
r =

∂l

∂r
=

n2

r
− λ

n2∑
j=1

T2j = 0, ˙̀
λ =

∂l

∂λ
=

n

λ
−

n1∑
i=1

T1i − r

n2∑
j=1

T2j = 0.

So the estimators of the parameters r and λ are:

r̂ =
T1

T2

; λ̂ =
1

r̂T2

=
1

T1

.
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Second partial derivatives are

∂2l

∂r2
= −n2

r2
;

∂2l

∂λ2
= − n

λ2
;

∂2l

∂λ∂r
= −

n2∑
j=1

T2j,

so the Fisher information matrix and the inverse of the Fisher matrix are

I(r; λ) =

(
n2

r2
n2

λr
n2

λr
n
λ2

)
; I−1(r; λ) =

(
nr̂2

n1n2
− λ̂r̂

n1

− λ̂r̂
n1

λ̂2

n1

)
.

If n1 and n2 are large then the distribution of the estimator (r̂, λ̂) is approximated
by the normal N((r, λ), I−1(r, λ)).

Taking into consideration the equality

Kj(t) =

j−1∏
i=1

(
1 +

1

ir

) j−1∑
i=0

(−1)iCi
j−1

1− e−λ(1+ir)t

1 + ir
.

the weights Cj = (Cj1, Cj2)
T can be computed:

Cj1(t; r, λ) =
∂Kj(t)

∂r
=

j−1∏
i=1

(
1 +

1

ir

)[
−1

r

j−1∑
i=1

1

1 + ir

j−1∑
i=0

(−1)iCi
j−1

1− e−λ(1+ir)t

1 + ir
+

+

j−1∑
i=0

(−1)iCi
j−1

e−λ(1+ir)t[iλt(1 + ir) + i]− i

(1 + ir)2

]
,

Cj2(t; r, λ) =
∂Kj(t)

∂λ
= t

j−1∏
i=1

(
1 +

1

ir

) j−1∑
i=0

(−1)iCi
j−1e

−λ(1+ir)t.

The estimator of variance of the estimator K̂j(t) is

σ̂2
K̂j(t)

= CT
j (t; r̂, λ̂)I−1(r̂, λ̂)Cj(t; r̂, λ̂).

and the asymptotic 1− α confidence interval for Kj(t) has the form (2.48) or, alter-
natively, (2.49).

In the case j = 2 the estimator of the function

K2(t) = 1− e−λt +
1

r
(e−λ(1+r)t − e−λt) = F1(t)−

S1(t)F2(t)

r
;

is

K̂2(t) = F̂1(t)−
Ŝ1(t)F̂2(t)

r̂
= 1− e−λ̂t +

1

r̂
(e−λ̂(1+r̂)t − e−λ̂t).

So

C21(t; r, λ) =
S1(t)

r2
(F2(t)− rλtS2(t)), C22(t; r, λ) =

(1 + r)t

r
S1(t)F2(t).
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So we obtained
C2(t; r, λ) = (C21(t; r, λ), C22(t; r, λ))T =

=

(
S1(t)

r2
(F2(t)− rλtS2(t)),

(1 + r)t

r
S1(t)F2(t)

)
.

V K̂2(t) ≈
(

∂K2

∂r
,
∂K2

∂λ

)
I−1(λ, r)

(
∂K2

r
∂K2

λ

)
The estimator of the variance of the estimator K̂2(t) is

σ̂2
K̂2(t)

= CT
2 (t; r̂, λ̂)I−1(r̂, λ̂)C2(t; r̂, λ̂) =

=
Ŝ2

1(t)

nl̂1l̂2r2

(
l̂1

[
F̂2(t)− λ̂r̂tŜ2(t)

]2
+ l̂2

[
(1− λ̂t)F̂2(t)− λ̂r̂t

]2)
;

here l̂i = ni/n.
We found by simulation finite sample confidence levels of the intervals obtained

using asymptotic formulas with 1 − α = 0.9. The failure times T1j and T2j were
simulated from exponential distribution with following parameters:

T1j ∼ E(λ1), T2j ∼ E(λ2),

λ1 =
1

100
, λ2 =

1

300
.

The number of replications was 2000. For various values of t the proportions of
confidence interval realizations covering the true value of the distributional function
K2(t) are given below:

Table 2.14. Confidence level for finite samples (n1 = n2 = 100)

Time, t 50 100 200 300 400 500

K2(t) 0.114 0.319 0.667 0.856 0.941 0.977
Confidence level (%) 89.9 89.4 88.9 90.2 90.0 91.5

For various values of t the proportions of confidence interval realizations covering
the true value of the distributional function K3(t) are given in Table 2.15.

Table 2.15. Confidence level for finite samples (n1 = n2 = 100)

Time, t 50 100 200 300 400 500

K3(t) 0.018 0.092 0.309 0.479 0.573 0.617
Confidence level (%) 88.6 91.8 92.8 90.8 89.9 90.3
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Graph 2.7. Graphs of the trajectories of the parametric
estimators F̂1, K̂2, K̂3, K̂4, (Exponential distribution)

Example 2.3.5. Weibull distribution : S1(t) = e−(t/µ)ν
. Let us consider the

case of complete samples. By (2.25) the loglikelihood function has the form

l(r; θ) = ln L(r, θ) =

n1∑
i=1

ln f1(T1i; θ) + n2 ln r +

n2∑
j=1

ln f1(rT2j; θ);

here

f1(t; ν, µ) =
ν

µ

(
t

µ

)ν−1

e−( t
µ)

ν

;

ln f1(t; ν, µ) = ln ν − ln µ + (ν − 1)(ln t− ln µ)−
(

t

µ

)ν

=

= ln ν − ν ln µ + (ν − 1) ln t−
(

t

µ

)ν

;

n1∑
i=1

ln f1(T1i; ν, µ) =

n1∑
i=1

(
ln ν − ν ln µ + (ν − 1) ln T1i −

(
T1i

µ

)ν)
=

= n1 ln ν − n1ν ln µ + (ν − 1)

n1∑
i=1

ln T1i −
n1∑
i=1

(
T1i

µ

)ν

;

So in the case of Weibull distribution the loglikelihood function is

l(r; θ) = n(ln ν − ν ln µ) + νn2 ln r + (ν − 1)

(
n1∑
i=1

ln T1i +

n2∑
j=1

ln T2j

)
−

− 1

µν

(
n1∑
i=1

T ν
1i + rν

n2∑
j=1

T ν
2j

)
.
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Equating the score function to zero the following system of equations is obtained:

˙̀
r =

∂l

∂r
=

n2ν

r
− νrν−1

µν

n2∑
j=1

T ν
2j = 0;

˙̀
ν =

∂l

∂ν
=

n

ν
− n ln µ + n2 ln r +

(
n1∑
i=1

ln T1i +

n2∑
j=1

ln T2j

)
+

+
ln µ

µν

(
n1∑
i=1

T ν
1i + rν

n2∑
j=1

T ν
2j

)
− 1

µν

(
n1∑
i=1

T ν
1i ln T1i + rν ln r

n2∑
j=1

T ν
2j+

+rν

n2∑
j=1

T ν
2j ln T2j

)
=

n

ν
− n ln µ + n2 ln r +

n1∑
i=1

ln T1i +

n2∑
j=1

ln T2j+

+
1

µν

(
ln µ

(
n1∑
i=1

T ν
1i + rν

n2∑
j=1

T ν
2j

)
−

n1∑
i=1

T ν
1i ln T1i − rν ln r

n2∑
j=1

T ν
2j−

−rν

n2∑
j=1

T ν
2j ln T2j

)
= 0;

˙̀
µ =

∂l

∂µ
= −nν

µ
+

ν

µν+1

(
n1∑
i=1

T ν
1i + rν

n2∑
j=1

T ν
2j

)
= 0.

Resolving this system of equations we obtain that the estimators µ̂ and r̂ are explicit
functions of the estimator ν̂:

µ̂ =


n1∑
i=1

T ν̂
1i

n1


1/ν̂

, r =

n2

n1

n1∑
i=1

T ν̂
1i

n2∑
j=1

T ν̂
2j


1/ν̂

.

The estimator ν satisfied the equation:

n

ν̂
+

n1∑
i=1

ln T1i +

n2∑
j=1

ln T2j − n1

∑n1

i=1 T ν
1i ln T1i∑n1

i=1 T1i

− n2

∑n2

j=1 T ν
2j ln T2j∑n2

j=1 T2j

.

Second partial derivatives of the loglikelihood function are

῭
r2 =

∂2l

∂r2
= −n2ν

r2
− ν(ν − 1)rν−2

µν

n2∑
j=1

T ν
2j;

῭
rν =

∂2l

∂r∂ν
=

n2

r
− rν−1 + νrν−1 ln r − νrν−1 ln µ

µν

n2∑
j=1

T ν
2j −

νrν−1

µν

n2∑
j=1

T ν
2j ln T2j;
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῭
rµ =

∂2l

∂r∂µ
=

ν2rν−1

µν+1

n2∑
j=1

T ν
2j;

῭
ν2 =

∂2l

∂ν2
= − n

ν2
− 1

µν
ln µ

(
ln µ

(
n1∑
i=1

T ν
1i + rν

n2∑
j=1

T ν
2j

)
−

−
n1∑
i=1

T ν
1i ln T1i − rν ln r

n2∑
j=1

T ν
2j − rν

n2∑
j=1

T ν
2j ln T2j

)
+

+
1

µν

(
ln µ

(
n1∑
i=1

T ν
1i ln T1i + rν ln r

n2∑
j=1

T ν
2j + rν

n2∑
j=1

T ν
2j ln T2j

)
−

−
n1∑
i=1

T ν
1i ln

2 T1i − rν ln2 r

n2∑
j=1

T ν
2j − rν ln r

n2∑
j=1

T ν
2j ln T2j−

−rν ln r

n2∑
j=1

T ν
2j ln T2j − rν

n2∑
j=1

T ν
2j ln2 T2j

)
;

῭
µν =

∂2l

∂µ∂ν
= −n

µ
+

µν+1 − νµν+1 ln µ

µ2(ν+1)

(
n1∑
i=1

T ν
1i + rν

n2∑
j=1

T ν
2j

)
+

+
ν

µν+1

(
n1∑
i=1

T ν
1i ln T1i + rν ln r

n2∑
j=1

T ν
2j + rν

n2∑
j=1

T ν
2j ln T2j

)
;

῭
µ2 =

nν

µ2
− ν(ν + 1)

µν+2

(
n1∑
i=1

T ν
1i + rν

n2∑
j=1

T ν
2j

)
.

The random variables X1i =
(

T1i

µ

)ν

have the standard exponential distribution, i.e.

X1i ∼ E(1) . We obtain

T1i = µX
1/ν
1i , T ν

1i = µνX1i,

T ν
1i ln T1i = µνX1i(ln µ +

1

ν
ln X1i) = µν ln µ X1i +

µν

ν
X1i ln X1i;

T ν
1i ln

2 T1i = µν ln2 µ X1i +
2µν

ν
ln µ X1i ln X1i +

µν

ν2
X1i ln

2 X1i;

Taking into account that X1i ∼ ε(1) we have

EX1i = 1, EX1i ln X1i =

∞∫
0

x ln xe−xdx = Γ′(2),

EXν
1i ln

2 X1i =

∞∫
0

xe−x ln2 xdx = Γ′′(2);
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because

Γ(a) =

∞∫
0

xa−1e−xdx; Γ(k)(a) =

∞∫
0

xa−1e−x lnk xdx.

So
ET ν

1i = µν ,

ET ν
1i ln T1i = E

(
µν

ν
X1i ln X1i + µν ln µX1i

)
=

=
µν

ν
[Γ′(2) + ν ln µ] ;

ET ν
1i ln

2 T1i =
µν

ν2

[
Γ′′(2) + 2νΓ′(2) ln µ + ν2 ln2 µ

]
.

The random variables rT2j and T1i have the same distribution, so

ET ν
2i = E

1

rν
(rT2i)

ν =
(µ

r

)ν

,

T ν
2j ln T2j =

1

rν
(rT2j)

ν [ln(rT2j)− ln r] =
1

rν
((rT2j)

ν ln(rT2j)− ln r(rT2j)
ν) ;

ET ν
2j ln T2j =

1

rν

(
µν

ν
(Γ′(2) + ν ln µ)− µν ln r

)
=

µν

rνν

(
Γ′(2) + ν ln

µ

r

)
.

ET ν
2j ln2 T2j =

1

ν2

(µ

r

)ν [
Γ′′(2) + 2νΓ′(2) ln

µ

r
+ ν2 ln2 µ

r

]
.

Using the obtained means we compute the second partial derivatives of the loglikeli-
hood function:

E῭
r2 = −E

[
n2ν

r2
+

ν(ν − 1)rν−2

µν

n2∑
j=1

T ν
2j

]
=

= −
[
n2ν

r2
+

ν(ν − 1)rν−2

µν
n2

(µ

r

)ν
]

= −ν2n2

r2
;

E῭
rµ = E

[
ν2rν−1

µν+1

n2∑
j=1

T ν
2j

]
=

ν2rν−1n2

µν+1

(µ

r

)ν

=
n2ν

2

rµ
;

E῭
rν = E

[
n2

r
−
(

rν−1 + νrν−1 ln r − νrν−1 ln µ

µν

) n2∑
j=1

T ν
2j −

νrν−1

µν

n2∑
j=1

T ν
2j ln T2j

]
=

=
n2

r
− rν−1 + νrν−1 ln r − νrν−1 ln µ

µν
n2

(µ

r

)ν

− νrν−1

µν

n2

ν

(µ

r

)ν

[Γ′(2) + ν ln
µ

r
] =

=
n2

r
− (1 + ν ln r − ν ln µ)n2

r
−

(Γ′(2) + ν ln µ
r
)n2

r
= −n2

r
Γ′(2);

E῭
µ2 = E

[
nν

µ2
− ν(ν + 1)

µν+2

(
n1∑
i=1

T ν
1i + rν

n2∑
j=1

T ν
2j

)]
=
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=
nν

µ2
− ν(ν + 1)

µν+2

(
n1µ

ν + rνn2

(µ

r

)ν)
=

nν

µ2
− nν(ν + 1)

µ2
= −nν2

µ2
;

E῭
µν = E

[
−n

µ
+

1− ν ln µ

µν+1

(
n1∑
i=1

T ν
1i + rν

n2∑
j=1

T ν
2j

)
+

+
ν

µν+1

(
n1∑
i=1

T ν
1i ln T1i + rν ln r

n2∑
j=1

T ν
2j + rν

n2∑
j=1

T ν
2j ln T2j

)]
=

= −n

µ
+

1− ν ln µ

µν+1
(nµν)+

+
ν

µν+1

(
n1µ

ν

ν
[Γ′(2) + ν ln µ] + rν ln rn2

(µ

r

)ν

+ rν n2

ν

(µ

r

)ν

[Γ′(2) + ν ln
µ

r
]

)
=

= −n

µ
+

n(1− ν ln µ)

µ
+

1

µ

(
n1[Γ

′(2) + ν ln µ] + νn2 ln r + n2[Γ
′(2) + ν ln

µ

r
]
)

=

=
nΓ′(2)

µ
;

E῭
ν2 = E

[
− n

ν2
− 1

µν
ln µ

(
ln µ (

n1∑
i=1

T ν
1i + rν

n2∑
j=1

T ν
2j )−

n1∑
i=1

T ν
1i ln T1i−

rν ln r

n2∑
j=1

T ν
2j − rν

n2∑
j=1

T ν
2j ln T2j

)
+

+
1

µν

(
ln µ (

n1∑
i=1

T ν
1i ln T1i + rν ln r

n2∑
j=1

T ν
2j + rν

n2∑
j=1

T ν
2j ln T2j )−

−
n1∑
i=1

T ν
1i ln

2 T1i − rν ln2 r

n2∑
j=1

T ν
2j − rν ln r

n2∑
j=1

T ν
2j ln T2j−

−rν ln r

n2∑
j=1

T ν
2j ln T2j − rν

n2∑
j=1

T ν
2j ln2 T2j

)]
= − n

ν2
(1 + Γ′′(2)).

Then the Fisher information matrix is

I(r; µ, ν) =


n2ν2

r2 −n2ν2

rµ
n2

r
Γ′(2)

−n2ν2

rµ
nν2

µ2 −n
µ
Γ′(2)

n2

r
Γ′(2) −n

µ
Γ′(2) n

ν2 (1 + Γ′′(2))

 .

|I| = n2ν
2

r2

nν2

µ2

n

ν2
(1 + Γ′′(2)) +

n2ν
2

rµ

n

µ
Γ′(2)

n2

r
Γ′(2) +

n2ν
2

rµ

n

µ
Γ′(2)

n2

r
Γ′(2)−

−n2

r
Γ′(2)

nν2

µ2

n2

r
Γ′(2)− n2ν

2

rµ

n2ν
2

rµ

n

ν2
(1 + Γ′′(2))− n2ν

2

r2

n

µ
Γ′(2)

n

µ
Γ′(2) =
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=
n2ν

2

r2

n2

µ2
(1 + Γ′′(2)) +

n2
2nν2

µ2r2
(Γ′(2))

2
+

n2
2ν

2n

r2µ2
(Γ′(2))

2−

−n2
2nν2

r2µ2
(Γ′(2))

2 − n2
2ν

2n

r2µ2
(1 + Γ′′(2))− n2n

2ν2

r2µ2
(Γ′(2))

2
=

=
n1n2nν2

r2µ2

(
1 + Γ′′(2)− [Γ′(2)]

2
)

,

The inverse of the Fisher information matrix is

I−1 =


nr2

n1n2ν2
rµ

n1ν2 0
rµ

n1ν2

µ2n[1+Γ′′(2)]−µ2n2[Γ′(2)]2

n1nν2(1+Γ′′(2)−[Γ′(2)]2)
µΓ′(2)

n(1+Γ′′(2)−[Γ′(2)]2)
0 µΓ′(2)

n(1+Γ′′(2)−[Γ′(2)]2)
ν2

n(1+Γ′′(2)−[Γ′(2)]2)

 .

The c.d.f. K2 has the form

K2(t) = F1(t)−
∫ t

0

S1(t + ry − y)dF1(y) =

= 1− e−( t
µ)

ν

− ν

µ

∫ t

0

(
y

µ

)ν−1

e−( t+ry−y
µ )

ν
−( y

µ)
ν

dy,

and the functions C2i are

C21(t) =
∂K2(t)

∂r
=

ν2

µ

∫ t

0

(
y

µ

)ν (
t + ry − y

µ

)ν−1

e−( t+ry−y
µ )

ν
−( y

µ)
ν

dy,

C22(t) =
∂K2(t)

∂µ
= −ν

µ

(
t

µ

)ν

e−( t
µ)

ν

+

+
ν2

µ2

∫ t

0

(
y

µ

)ν−1 [
1−

(
y

µ

)ν

−
(

t + ry − y

µ

)ν]
e−( t+ry−y

µ )
ν
−( y

µ)
ν

dy,

C23(t) =
∂K2(t)

∂ν
=

(
t

µ

)ν

e−( t
µ)

ν

ln

(
t

µ

)
− 1

µ

∫ t

0

(
y

µ

)ν−1

e−( t+ry−y
µ )

ν
−( y

µ)
ν

dy+

+
ν

µ

∫ t

0

(
y

µ

)ν−1 [(
y

µ

)ν

ln

(
y

µ

)
+

(
t + ry − y

µ

)ν

ln

(
t + ry − y

µ

)]
×

×e−( t+ry−y
µ )

ν
−( y

µ)
ν

dy − ν

µ

∫ t

0

(
y

µ

)ν−1

ln

(
y

µ

)
e−( t+ry−y

µ )
ν
−( y

µ)
ν

dy,

We have
σ̂2

K̂2(t)
= CT

2 (t; r̂, µ̂, ν̂)I−1(r̂, µ̂, ν̂)C2(t; r̂, µ̂, ν̂),

C2(t; r̂, µ̂, ν̂) = (C21(t; r̂, µ̂, ν̂), C22(t; r̂, µ̂, ν̂), C23(t; r̂, µ̂, ν̂))T .

The asymptotic 1−α confidence interval for Kj(t) has the form (2.48) or, alternatively,
(2.49) then j = 2.
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We found by simulation finite sample confidence levels of the intervals obtained
using asymptotic formulas with 1− α = 0.9. We simulating failure times T1j and T2j

from Weibull distribution with following parameters:

T1j ∼ W (α1, β1), T2j ∼ W (α1, β1),

α1 = α2 = 2, β1 = 100, β2 = 300.

Graph 2.8. Graphs of the trajectories of the parametric
estimators F̂1, K̂2 (Weibull distribution)

The number of replications was 2000. For various values of t the proportions of
confidence interval realizations covering the true value of the distributional function
K2(t) are given below:

Table 2.16. Confidence level for finite samples (n1 = n2 = 100)

Time, t 50 100 200 300 400 500

K2(t) 0.018 0.194 0.822 0.992 0.999 1.000
Confidence level (%) 89.4 89.2 89.2 89.5 89.5 90.2

Example 2.3.6. Loglogistic distribution : S1(t) = 1
1+(t/µ)ν . Let us consider the

case of complete samples. By (2.25) the loglikelihood function has the form

l(r; θ) = ln L(r, θ) =

n1∑
i=1

ln f1(T1i; θ) + n2 ln r +

n2∑
j=1

ln f1(rT2j; θ).

In the case of loglogistic distribution

f1(t; µ, ν) =
νtν−1

µν
(
1 +

(
t
µ

)ν)2 ;

ln f1(t; µ, ν) = ln ν + (ν − 1) ln t− ν ln µ− 2 ln

(
1 +

(
t

µ

)ν)
,
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n1∑
i=1

ln f1(t; µ, ν) = n1 ln ν + (ν − 1)

n1∑
i=1

ln T1i − νn1 ln µ− 2

n1∑
i=1

ln

(
1 +

(
T1i

µ

)ν)
,

ln f1(rt; µ, ν) = ln ν + (ν − 1)(ln r + ln t)− ν ln µ− 2 ln

(
1 +

(
rt

µ

)ν)
.

So the loglikelihood function has the form

l(r; µ, ν) = n ln ν − νn ln µ + νn2 ln r + (ν − 1)

(
n1∑
i=1

ln T1i +

n2∑
j=1

ln T2j

)
−

−2

n1∑
i=1

ln

(
1 +

(
T1i

µ

)ν)
− 2

n2∑
j=1

ln

(
1 +

(
rT2i

µ

)ν)
.

Partial derivatives are

˙̀
r =

∂l

∂r
=

νn2

r
− 2ν

r

n2∑
j=1

(
rT2j

µ

)ν

1 +
(

rT2j

µ

)ν = 0;

˙̀
µ =

∂l

∂µ
= −νn

µ
+

2ν

µ

n1∑
i=1

(
T1i

µ

)ν

1 +
(

T1i

µ

)ν +
2ν

µ

n2∑
j=1

(
rT2j

µ

)ν

1 +
(

rT2j

µ

)ν = 0;

˙̀
ν =

∂l

∂ν
=

n

ν
− n ln µ + n2 ln r +

n1∑
i=1

ln T1i +

n2∑
j=1

ln T2j−

−2

n1∑
i=1

(
T1i

µ

)ν

log
(

T1i

µ

)
1 +

(
T1i

µ

)ν − 2

n2∑
j=1

(
rT2j

µ

)ν

log
(

rT2j

µ

)
1 +

(
rT2j

µ

)ν = 0.

Set

Xi =

(
T1i

µ

)ν

Yj =

(
,
rT2i

µ

)ν

.

Second partial derivatives of the loglikelihood function are

῭
r2 = −νn2

r2
+

2ν

r2

n2∑
j=1

Yj

1 + Yj

− 2ν2

r2

n2∑
i=1

Yj

(1 + Yj)2
, ῭

rµ =
2ν2

rµ

n2∑
j=1

Yj

(1 + Yj)2
,

῭
rν =

n2

r
− 2

r

n2∑
j=1

Yj

1 + Yj

− 2ν

r

1

ν

n2∑
j=1

Yj ln Yj

(1 + Yj)2
,

῭
µ2 =

nν

µ2
− 2ν

µ2

(
n1∑
i=1

Xi

1 + Xi

+

n2∑
j=1

Yi

1 + Yi

)
− 2ν2

µ2

(
n1∑
i=1

Xi

(1 + Xi)2
+

n2∑
j=1

Yi

(1 + Yi)2
;

)
,

῭
µν = −n

µ
+

2

µ

(
n1∑
i=1

Xi

1 + Xi

+

n2∑
j=1

Yj

1 + Yj

)
+

2

µ

(
n1∑
i=1

Xi ln Xi

(1 + Xi)2
+

n2∑
j=1

Yi ln Yi

(1 + Yi)2

)
,
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῭
ν2 = − n

ν2
− 2

ν2

(
n1∑
i=1

Xi ln
2 Xi

(1 + Xi)2
+

n2∑
j=1

Yi ln
2 Yi

(1 + Yi)2

)
.

The random variables Xi and Yj are identically distributed with the probability
density function of the standard loglogistic distribution: fXi

(x) = fYj
(x) = 1/(1+x)2.

It implies that for any k > −2 and a ∈ (−1, k + 1)

g(a) = E
Xa

i

(1 + Xi)k
=

∞∫
0

xa

(1 + x)k+2
dx = |y =

1

1 + x
; x =

1

y
− 1; dx = −dy

y2
| =

=

1∫
0

(
1

y
− 1

)a

ykdy =

1∫
0

yk−a(1− y)ady =
Γ(k − a + 1)Γ(a + 1)

Γ(k + 2)
.

g′(a) = E
Xa

i ln Xi

(1 + Xi)k
=

∫ ∞

0

xa

(1 + x)k+2
ln xdx =

=
(Γ(k − a + 1)Γ(a + 1))′a

Γ(k + 2)
=
−Γ′(k − a + 1)Γ(a + 1) + Γ(k − a + 1)Γ′(a + 1)

Γ(k + 2)
;

g′′(a) = E
Xa

i ln2 Xi

(1 + Xi)k
=

∫ ∞

0

xa

(1 + x)k+2
ln2 xdx =

=
Γ′′(k − a + 1)Γ(a + 1)− 2Γ′(k − a + 1)Γ′(a + 1) + Γ(k − a + 1)Γ′′(a + 1)

Γ(k + 2)
.

If a = 1 and k = 1, then

E
Xi

1 + Xi

=
Γ(1)Γ(2)

Γ(3)
=

1

2
, E

Xi ln Xi

1 + Xi

=
−Γ′(1) + Γ′(2)

2
;

if a = 1 and k = 2, then

E
Xi

(1 + Xi)2
=

Γ(2)Γ(2)

Γ(4)
=

1

6
,

E
Xi ln Xi

(1 + Xi)2
= 0, E

Xi ln
2 Xi

(1 + Xi)2
=

Γ′′(2)− [Γ′(2)]2

3
,

if a = 2 and k = 2, then

E
X2

i

(1 + Xi)2
=

Γ(1)Γ(3)

Γ(4)
=

1

3
, E

X2
i ln Xi

(1 + Xi)2
=
−2Γ′(1) + Γ′(3)

6
.

Now we are able to compute the means of the second partial derivatives of the log-
likelihood function:

E῭
r2 =

−νn2

r2
+

2ν

r2

n2

2
− 2ν2

r2

n2

6
= −n2ν

2

3r2
,
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E῭
rµ =

2νn2

r

ν

6µ
=

n2ν
2

3rµ
, −E῭

rν =
n2

r
− 2n2

2r
− 2

r
0 = 0;

E῭
µ2 =

nν

µ2
− 2ν

µ2

n1 + n2

2
− 2ν2

µ2

n1 + n2

6
=

nν

µ2
− nν

µ2
− nν2

3µ2
= −nν2

3µ2
,

E῭
µν = −n

µ
+

n

µ
+ 0 = 0,−E῭

ν2 =
n

3ν2
(3 + 2Γ′′(2)− 2(Γ′(2))2);

So the Fisher information matrix is

I(r, λ) =


n2ν2

3r2 −n2ν2

3rµ
0

−n2ν2

3rµ
nν2

3µ2 0

0 0 n{3+2Γ′′(2)−2[Γ′(2)]2}
3ν2


and the inverse of the Fisher information matrix is

I−1 =


3nr2

n1n2ν2
3rµ
n1ν2 0

3rµ
n1ν2

3µ2

n1ν2 0

0 0 3ν2

n{3+2Γ′′(2)−2[Γ′(2)]2}

 ,

and the estimator of σ̂2
K̂j(t)

has the form

σ̂2
K̂j(t)

= CT
j (t; r̂, µ̂, ν̂)I−1(r̂, µ̂, ν̂)Cj(t; r̂, µ̂, ν̂). (2.50)

The asymptotic 1−α confidence interval for Kj(t) has the form (2.48) or, alternatively,
(2.49).

Taking into account that

S1(t) =
1

1 +
(

t
µ

)ν ,

the ML estimator of the reliability function K2 has the form

K̂2(t) = F̂1(t)−
t∫

0

Ŝ1(t + r̂y − y)dF̂1(y) =

= 1− 1

1 +
(

t
µ̂

)ν̂
− ν̂

µ̂

t∫
0

(
y

µ̂

)ν̂−1
1

1 +
(

t+r̂y−y
µ̂

)ν̂

1(
1 +

(
y
µ̂

)ν̂
)2dy.

and the functions C2i are

C21(t) =
∂K2(t)

∂r
=

= ν2

∫ t

0

(
y

µ

)ν (
t + ry − y

µ

)ν−1(
1 +

(
y

µ

)ν)−2(
1 +

(
t + ry − y

µ

)ν)−2

dy,
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C22(t) =
∂K2(t)

∂µ
= −ν

µ

(
t

µ

)ν (
1 +

(
t

µ

)ν)−2

+

+

∫ t

0

ν
(

y
µ

)ν−1

µ2
(
1 +

(
t+ry−y

µ

)ν)(
1 +

(
y
µ

)ν)2 +
ν
(

y
µ

)(ν−1)

(ν − 1)

µ2
(
1 +

(
t+ry−y

µ

)ν)(
1 +

(
y
µ

)ν)2−

−
ν2
(

y
µ

)(ν−1) (
t+ry−y

µ

)ν

µ2
(
1 +

(
t+ry−y

µ

)ν)2 (
1 +

(
y
µ

)ν)2 −
2ν2

(
y
µ

)(ν−1) (
y
µ

)ν

µ2
(
1 +

(
t+ry−y

µ

)ν)(
1 +

(
y
µ

)ν)3dy =

= −ν

µ

(
t

µ

)ν (
1 +

(
t

µ

)ν)−2

−
∫ t

0

ν2
(

y
µ

)ν−1

µ2
(
1 +

(
t+ry−y

µ

)ν)(
1 +

(
y
µ

)ν)2×

×
1−

(
y
µ

)ν

− 2
(

y
µ

)ν (
t+ry−y

µ

)ν

(
1 +

(
t+ry−y

µ

)ν)(
1 +

(
y
µ

)ν)dy,

C23(t) =
∂K2(t)

∂ν
=

(
t

µ

)ν (
1 +

(
t

µ

)ν)−2

ln

(
t

µ

)
−

−
∫ t

0

(
y
µ

)ν−1

µ
(
1 +

(
t+ry−y

µ

)ν)(
1 +

(
y
µ

)ν)2 −
ν
(

y
µ

)ν−1

ln
(

y
µ

)
µ
(
1 +

(
t+ry−y

µ

)ν)(
1 +

(
y
µ

)ν)2 +

+
ν
(

y
µ

)ν−1 (
t+ry−y

µ

)ν

ln
(

t+ry−y
µ

)
µ
(
1 +

(
t+ry−y

µ

)ν)2 (
1 +

(
y
µ

)ν)2 + 2
ν
(

y
µ

)ν−1 (
y
µ

)ν

ln
(

y
µ

)
µ
(
1 +

(
t+ry−y

µ

)ν)(
1 +

(
y
µ

)ν)3dy =

=

(
t

µ

)ν (
1 +

(
t

µ

)ν)−2

ln

(
t

µ

)
−

− 1

µ

∫ t

0

(
y

µ

)ν−1(
1 +

(
y

µ

)ν)−2(
1 +

(
t + ry − y

µ

)ν)−1

×

×

[(
1 +

(
y

µ

)ν

− ν ln

(
y

µ

)(
1−

(
y

µ

)ν))(
1 +

(
y

µ

))−1

−

−ν

(
t + ry − y

µ

)ν (
1 +

(
t + ry − y

µ

)ν)−1

ln

(
t + ry − y

µ

)]
dy,

So the estimator σ̂2
K̂2(t)

has the form (2.50) and the asymptotic 1 − α confidence

interval for K2(t) is of the form (2.48) or, alternatively, (2.49) taking j = 2.
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We found by simulation finite sample confidence levels of the intervals obtained
using asymptotic formulas with 1− α = 0.9. We simulating failure times T1j and T2j

from loglogistic distribution with following parameters:

T1j ∼ L(α1, β1), T2j ∼ L(α1, β1),

α1 = α2 = 2, β1 = 100, β2 = 300.

Graph 2.9. Graphs of the trajectories of the parametric
estimators F̂1, K̂2 (Loglogistic distribution)

The number of replications was 2000. For various values of t the proportions of
confidence interval realizations covering the true value of the distributional function
K2(t) are given below:

Table 2.16. Confidence level for finite samples (n1 = n2 = 100)

Time, t 50 100 200 300 400 500

K2(t) 0.016 0.138 0.517 0.743 0.851 0.905
Confidence level (%) 89.0 88.8 90.4 89.6 89.5 90.5
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Chapter 3

Failure-Time Degradation Models

3.1 Failure Degradation Model with covariates

For reliability characteristics estimation the following data we are going to analyze:
failure times (possibly censored), explanatory variables (covariates, stresses) and the
values of some observable quantity characterizing the degradation of units.

When we analyze the degradation data then the failure can occur non-traumatic
or traumatic. A failure is called non-traumatic when the degradation attains a critical
level z0. Other failures are called traumatic. Traumatic failures may be of different
types: related with production defects, caused by mechanical damages or by fatigue
of components.

Suppose that under fixed constant covariate the degradation is stochastic process
Z(t), t ≥ 0.

Suppose that the degradation process Z(t) is non-decreasing with cadlag trajec-
tories.

Denote by T (k) the moment of the traumatic failure of the kth mode, k = 1, · · · , s.
We suppose that the random variables T (1), · · · , T (s) are conditionally independent

given the degradation Z.
Denote by λ̃(k)(t|Z) = λ̃(k)(t|Z(s), 0 ≤ s ≤ t) the conditional failure rate of the

traumatic failure of the kth mode given the degradation.
Suppose that this conditional failure rate has two additive components: one re-

lated to observed degradation values, other - to non-observable degradation (aging)
and to possible shocks causing sudden traumatic failures. For example, observable
degradation of tires is the wear of the protector. The failure rate of tire explosion
depends on thickness of the protector, on non-measured degradation level of other
tire components and on intensity of possible shocks (hitting a kerb, nail, etc.). So

λ̃(k)(t|Z) = λ(k)(Z(t)) + µ(k)(t). (3.1)

The function λ(k)(z) characterizes the dependence of the rate of traumatic failures
of the kth mode on degradation. The function µ(k) characterizes the dependence of
the rate of traumatic failures of the kth mode on other tire component.

Suppose that external covariates [25] influence degradation rate and traumatic
event intensity.
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Let x(t) =
(
x1(t), . . . , xs(t)

)T
be a vector of possibly time dependent covariates.

We assume in what follows that xi are deterministic or realizations of bounded right
continuous with finite left hand limits stochastic processes.

Denote by Z(t|x) the degradation level at the moment t for units functioning
under the covariate x.

We suppose that the covariates influence locally the scale of the traumatic failure
time distribution component related to aging (non-observable degradation) and to
possible shocks, i.e. the accelerated failure time (AFT) [1] model is true for this
component. Let us explain it in detail. Denote by

S
(k)
1 (t|Z) = exp{−

∫ t

0

λ(k)[Z(u)]du}, S
(k)
2 (t) = exp{−

∫ t

0

µ(k)(u)du}

the survival functions corresponding to the failure rates λ(k)(Z(u)) and µ(k)(u). The
first survival function is conditional given the degradation.

The AFT model defines the following relation of the second survival function and
the covariates:

S
(k)
2 (t|x) = S

(k)
2 (

∫ t

0

eβT
k x(s) ds);

the parameters βk have the same dimension as x. The covariate x may be replaced
by some specified function ϕ(x).

Set

f(t, x, β) =

∫ t

0

eβT x(u) du, (3.2)

and denote by g(t, x, β) the inverse of f(t, x, β) with respect to the first argument. If
x =const then

f(t, x, β) = eβT xt, g(t, x, β) = e−βT xt.

The function f(t, x, β) is time transformation in dependence on x. For units func-
tioning under different covariates x(1) and x(2) two moments t1 and t2, respectively,
are equivalent in the sense of degradation if they verify the equality f(t1, x

(1), β) =
f(t2, x

(2), β), i.e. we consider the following model for degradation process under co-
variates:

Z(t|x) = Z(f(t, x, β)). (3.3)

The covariates have double influence on the distribution of the first traumatic failure
component: via degradation and directly. So we combine the AFT and the propor-
tional hazards models:

S
(k)
1 (t|x, Z) = exp{−

∫ t

0

eβ̃T
k x(u)λ(k)(Z(u|x)du}.

Denote by
S(k)(t|x, Z) = P(T (k) > t|x(u), Z(u|x), 0 ≤ u ≤ t),

λ̃(k)(t|x, Z) = − d

dt
ln S(k)(t|x, Z)
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the conditional distribution function and the failure rate of the traumatic failure of
the kth mode given the covariates and the degradation. So we consider the following
model:

P(T (1) > t, . . . , T (s) > t|x(u), Z(u|x), 0 ≤ u ≤ t) =
s∏

k=1

S(k)(t|x, Z), (3.4)

S(k)(t|x, Z) = exp

{
−
∫ t

0

λ̃(k)(t|x, Z) du

}
=

= exp

{
−
∫ t

0

eβ̃T
k x(u)λ(k)(Z(u|x)) du−H(k)(f(t, x, βk))

}
, (3.5)

where
λ̃(k)(t|x, Z) = eβ̃T

k x(t)λ(k)(Z(t|x)) + eβT
k x(t)µ(k)(f(t, x, βk)), (3.6)

H(k)(t) =

∫ t

0

µ(k)(u)du. (3.7)

Denote by

T (0) = inf{t : Z(t|x) ≥ z0}. (3.8)

and
S(0)(t|x) = P

{
T (0) > t | x(u), 0 ≤ u ≤ t

}
=

= P
{
Z(t|x) < z0 | x(u), 0 ≤ u ≤ t

}
(3.9)

the time to non-traumatic failure and its survival function under the covariate x,
respectively.

The time of the unit failure

T = min(T (0), T (1), . . . , T (s)) (3.10)

may be traumatic or non-traumatic.
Denote by

V = k if T = T (k), k = 0, . . . , s, (3.11)

the indicator of the failure mode. The failure mode 0 is non-traumatic. Others are
traumatic.

Let us consider reliability characteristics which are interesting for applications.
These are:

1) The survival function of the failure time under the covariate x:

S(t|x) = P(T > t|x) = ES(t|x, Z), S(t|x, Z) = 1{Z(t|x)<z0}

s∏
k=1

S(k)(t | x, Z).

(3.12)
2) Mean failure time under the covariate x:

e(x) = E(T |x) = E(E(T |x, Z)), E(T |x, Z) =

T (0)∫
0

s∏
k=1

S(k)(t | x, Z)dt. (3.13)
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3) The probability that under the covariate x the non-traumatic failure is observed
in the interval [0, t]:

P (0)(t|x) = EP (0)(t|x, Z),

P (0)(t|x, Z) = 1{Z(t|x)≥z0}

s∏
k=1

S(k)(T (0) | x, Z). (3.14)

In particular, the probability of observed non-traumatic failure under the covariate
x in the interval [0,∞) is obtained.

4) The probability that under the covariate x a traumatic failure is observed in
the interval [0, t]:

P (tr)(t|x) = EP (tr)(t|x, Z),

P (tr)(t|x, Z) = 1−
s∏

k=1

S(k)(t ∧ T (0) | x, Z). (3.15)

5) The probability that under the covariate x the traumatic failure of the kth
mode, k = 1, . . . , s, is observed in the interval [0, t]:

P (k)(t|x) = EP (k)(t|x, Z),

P (k)(t|x, Z) =

t∧T (0)∫
0

s∏
l=1

S(l)(s | x, Z) λ(k)(s | x, Z) ds. (3.16)

Suppose that the cause of some traumatic failure modes are eliminated. Note that
elimination of a failure mode may increase the number of failures of other modes.
Indeed, a failure of the lth mode is not observed if it is preceded by a failure of
the kth mode but this failure might be observed if the kth failure mode would be
eliminated.

If i1th, ..., iqth (1 ≤ i1 < ... < iq ≤ s) traumatic failure modes are eliminated then
the survival function S(t|x), the mean e(x) and the probabilities P (0)(t|x), P (tr)(t|x),
and P (k)(t|x), (k = 0, 1, . . . , s) are modified taking

∏
l 6=i1,...,iq

instead of
∏s

l=1 in the

formulas (3.12)-(3.16). So an experiment using units with eliminated failure modes is
not needed. The estimators of survival characteristics of units with eliminated failure
modes is useful for planning possible ways of reliability improvement.

Suppose that a unit did not fail to the moment τ and we have some information
about its covariable and degradation processes (x(s), Z(s|x) | s ≤ τ).

Let G denote the σ-algebra generated by the possessed information about the
degradation process and

Ḡτ = σ(G ∪ {T > τ}).

The conditional probabilities of the events considered in the previous section given
the σ-algebra Ḡτ are: for t > τ .

S(t | x, τ,G) =
EG{S(t | x, Z)}
EG{S(τ | x, Z)}

, (3.17)
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P (k)(t | x, τ,G) =
EG{P (k)(t | x, Z)} − EG{P (k)(τ | x, Z)}

EG{S(τ | x, Z)}
, (3.18)

P (tr)(t | τ,G) =
EG{P (tr)(t | x, Z)} − EG{P (tr)(τ | x, Z)}

EG{S(τ | x, Z)}
. (3.19)

Moreover, the mean residual life of the unit is

e(x, τ,G) =
EG{(T − τ)1{T>τ}|x}

EG{S(τ | x, Z)}
. (3.20)

If G = σ(Z) then
EG{S(t | x, Z)}) = E{S(t | x, Z)}, (3.21)

EG{(T − τ)1{T>τ}|x, Z} =

T (0)∫
τ

s∏
l=1

S(l)(t | x, Z)dt− τ1{Z(τ |x)<z0}

s∏
l=1

S(l)(τ | x, Z).

(3.22)

3.2 Estimation of model parameters

3.2.1 The data

Suppose that n units are observed. The ith unit is tested under the vector of ex-
planatory variables x(i), and at the moments

0 < ti1 < ti2 < .... < timi

the values Zij = Zi(tij|x(i)) of the degradation level are supposed to be measured.
The moments tij correspond to the scale of real functioning. For example, in the case
of tire wear, tij mean kilometers done by the i-th tire until the j-th measurement.
The values of covariates are supposed to be observed during the experiment. The
most often they should be constant in time or step-functions.

Denote by Ti = min (T
(0)
i , . . . , T

(s)
i ) the failure time and Vi - the failure mode

indicator. The data may be right censored. Denote by Ci the censoring time of the
ith unit, and set

C̃i = Ci ∧ timi
, Xi = Ti ∧ C̃i, δi = 1{Ti≤C̃i}, δ̃i = 1{Ti≤C̃i,Vi 6=0}. (3.23)

Denote by

µi =

{
j, if Xi ∈ (tij, ti,j+1], j = 0, ...,mi − 1,
mi, if Xi = timi

,
(3.24)

the observed number of measurements of the i-th unit.
The data are the random vectors

(Xi, δi, Vi, µi, Zi1, ..., Ziµi
, x(i)), i = 1, ..., n. (3.25)

If µi = 0 then the degradation values are not observed.
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3.2.2 Likelihood function construction

Suppose that the functions λ(k)(z) and µ(k)(t) is from a class of functions

λ(k)(z) = λ(k)(z, ηk), µ(k)(t) = µ(k)(t, γk), (3.26)

where ηk, γk are possibly multi-dimensional parameters. For example, analysis of
tire failure time and wear data shows that the intensities λ(k)(z) and µ(k)(t) typically
have the form (z/η1k)

η2k and (t/γ1k)
γ2k .

Suppose at first that degradation processes Zi(t) = Zi(t|x(i)) of all units are
continuously observable. In this case conditional likelihood L and loglikelihood l
functions given degradation for the parameters characterizing traumatic failures can
be written as follows:

L =
n∏

i=1

{
s∑

k=1

1{Vi=k}

[
eβ̃T

k x(i)(Xi)λ(k)(Zi(Xi); ηk) +

+eβT
k x(i)(Xi)µ(k)(f(Xi, x

(i), βk); γk)
]}δ̃i

×

× exp

{
−

s∑
k=1

(∫ Xi

0

eβ̃T
k x(i)(u)λ(k)(Zi(u); ηk) du−H(k)(f(Xi, x

(i), βk); γk)

)}
,

l =
n∑

i=1

s∑
k=1

1{Vi=k} ln
[
eβ̃T

k x(i)(Xi)λ(k)(Zi(Xi); ηk) +

+ eβT
k x(i)(Xi)µ(k)(f(Xi, x

(i), βk); γk)
]
−

−
s∑

k=1

(∫ Xi

0

eβ̃T
k x(i)(u)λ(k)(Zi(u); ηk) du−H(k)(f(Xi, x

(i), βk); γk)

)
. (3.27)

If covariants are absent then

l =
n∑

i=1

s∑
k=1

1{Vi=k} ln
[
λ(k)(Zi(Xi); ηk) + µ(k)(Xi; , γk)

]
−

−
s∑

k=1

(∫ Xi

0

λ(k)(Zi(u); ηk) du−H(k)(Xi; γk)

)
. (3.28)

If the values of degradation processes are measured only at discrete times tij then the

conditional likelihood function is modified replacing Zi(u) by their predictors Ẑi(u)
obtained from degradation data. The form of these predictors depends on the form
of the degradation processes.

It was mentioned in introduction that the most applied stochastic processes de-
scribing degradation are general path models and time scaled stochastic processes
with stationary and independent increments such as the gamma process, compound
Poisson process and Wiener process with drift, the last not monotone.

Let us find the predictors for some specified degradation processes.
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3.2.3 Example 1: Time scaled gamma process

Let m be a real time function. The degradation process Z is time scaled (by the scale
function m(t)) gamma process if

1) it has independent increments, i.e. for any 0 < t1 < · · · < tk the random
variables Z(t1), Z(t2)− Z(t1), . . . , Z(tk)− Z(tk−1) are independent;

2) for any t > 0 the random variable Z(t) has the gamma distribution;
3) for any t ≥ 0

E (Z(t)) = m(t), Var (Z(t)) = σ2 m(t).

The definition implies that for any x > 0 the density of the r.v. Z(tj) − Z(tj−1),
j = 1, . . . , k, t0 = 0, is

pZ(tj)−Z(tj−1)(x) =
1

σ2Γ
(∆mj

σ2

) ( x

σ2

)∆mj

σ2 −1

e−
x

σ2 , (3.29)

∆mj = m(tj)−m(tj−1), Γ(a) =

∫ ∞

0

xa−1e−xdx.

The density of Z(tj) is of the same form: ∆mj must be replaced by m(tj) in (3.29).
The degradation and its characteristics under covariate x are

Z(t|x) = Z(f(t, β, x)), m(t|x) = E( Z(t|x)) = m (f(t, β, x)) , (3.30)

σ2(t|x) = Var( Z(t|x) = σ2m(t|x).

m(t|x) is the mean degradation under the covariate x.

a) Parametric form of the mean degradation

The form of the mean degradation m(t) may be suggested by the form of observed
degradation curves. In such a case m(t) is chosen from some parametric class of
functions (power or other time function depending on a finite-dimensional unknown
parameter): m(t) = m(t; ν), ν = (ν1, ..., νq)

T . The data

(Zij, µi), i = 1, n, j = 1, µi, (3.31)

are used for estimation of the parameters θ = (β, ν, σ2)T .
For any z > 0 the density of the increment ∆Zij = Zij − Zi,j−1 has the form

p∆Zij
(z; θ) =

1

σ2Γ
(∆µij(β,ν)

σ2

) ( z

σ2

)∆µij(β,ν)

σ2 −1

e−
z

σ2 ,

where
∆µij(β, ν) = m

(
f(ti,j, β, x(i)); ν

)
−m

(
f(ti,j−1, β, x(i)); ν

)
. (3.32)
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The likelihood function of the degradation data (3.31) is

Ld(θ) =
n∏

i=1

µi∏
j=1

p∆Zij

(
∆Zij; θ

)
, (3.33)

where we set p∆Zij

(
∆Zij; θ

)
= 1, if Xi < ti1, i.e. when a traumatic event occurs

earlier then the first measurement of degradation.
Denote by θ̂ the maximum likelihood estimator. Then for any x the estimator of

the mean degradation m(t|x) under the covariate x is

m̂(t|x) = m
(
f(t, β̂, x); ν̂

)
. (3.34)

In the case of the data (3.25) degradation values are not measured continuously and
the loglikelihood function (3.27) can not be used for estimation of the parameters
βk, β̃k, ηk and γk. For modification of the loglikelihood (3.27) we need predictors of
Zi(t).

Set
Z̃i(t) = E(Zi(t)|Zi(ti1), . . . , Zi(tiµi

)). (3.35)

For j = 1, . . . , µi we have Z̃i(tij) = Zij. For t ∈ (ti,j−1, tij), j = 1, . . . , µi, the
conditional means (3.35) are

Z̃i(t; θ) = Zi,j−1 +
∆mij(t; β, ν)

∆mij(β, ν)
∆Zij,

∆mij(t; β, ν) = m
(
f(t, β, x(i)); ν

)
−m

(
f(ti,j−1, β, x(i)); ν

)
. (3.36)

For any t > ti,µi

Z̃i(t; θ) = Ziµi
Fχ2

κi
(2(z0 − Ziµi

)) + ∆mi,µi+1(t; β, ν)Fχ2
κi+2

(2(z0 − Ziµi
)), (3.37)

where Fχ2
n
(x) is the c.d.f. of the chi square distribution, κi = 2∆mi,µi+1(t; β, ν).

Note that for any t > ti,µi

Z̃i(t; θ) → Ziµi
+ ∆mi,µi+1(t; β, ν), as z0 →∞. (3.38)

The predictors Ẑi of Zi are defined as

Ẑi(t) = Z̃i(t; θ̂). (3.39)

b) Unknown form of mean degradation

If the function m is completely unknown then non-parametric estimator of this func-
tion is used seeking predictors of the stochastic processes Zi.

A piecewise-linear approximation of the process Zi(t) = Z(t|x(i)) on [0, Xi] is

Z∗
i (t) =

µi+1∑
j=1

[
Zi(ti,j−1) +

t− ti,j−1

tij − ti,j−1

(Zi(tij)− Zi(ti,j−1))

]
1[ti,j−1,tij ](t), (3.40)
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ti0 = 0, ti,µi+1 = Xi. We denoted by g(t, x, β) the inverse of f(t, x, β) with respect
to the first argument. The distribution of the stochastic process

Z(t) = Z(g(t, x, β)|x), (3.41)

does not depend on x, so the processes Z∗
i (g(t, x(i), β)) are approximations of the

process Z and can be used constructing an estimator of the mean

m(t) = EZ(t) = EZ(g(t, x, β)|x)). (3.42)

These approximating processes are censored at the points t∗i (β) = g(Xi, x
(i), β). Con-

sider the ordered sequence of distinct moments

t∗(1)(β) < · · · < t∗(d)(β), d ≤ n.

Take the following pseudo-estimator (depending on β) of m(t):

m̃(t, β) =
1

n

n∑
i=1

Z∗
k(g(t, β, x(i))), t ∈ [0, t∗(1)(β)],

m̃(t, β) = m̃(t∗(j−1)(β), β)+

+

∑
i:t∗i (β)>t∗

(j−1)
(β)

(
Z∗

i (g(t, β, x(i)))− Z∗
i (g(t∗(j−1)(β), β, x(i)))

)
∑

i:t∗i (β)>t∗
(j−1)

(β)

1
, (3.43)

t ∈ (t∗(j−1)(β), t∗(j)(β)]. The likelihood function from degradation data (3.31) is written

in the form (3.33) putting

θ = (βT , σ2)T , ∆mij(β) = m̃
(
f(ti,j, β, x(i)), β

)
− m̃

(
f(ti,j−1, β, x(i)), β

)
. (3.44)

Denote by β̂, σ̂2 the maximum likelihood estimators. The function m(t) is estimated
by the statistic m̂(t) = m̃(t, β̂).

Define Z̃i(t; θ) by (3.36) and (3.37) replacing ∆mij(β, ν) by ∆mij(β) given in
(3.44).

The predictors of Zi(t) are Ẑi(t) = Z̃i(t; θ̂).
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3.2.4 Example 2: Shock processes

Assume that degradation results from shocks, each of them leading to an increment of
degradation. Let Tn, (n ≥ 1) be the time of the nth shock and Xn the nth increment
of the degradation level. Denote by N(t) the number of shocks in the interval [0, t].
Set X0 = 0. The degradation process is given by

Z(t) =
∞∑

n=1

1{Tn ≤ t}Xn =

N(t)∑
n=0

Xn.

Kahle and Wendt [20] model Tn as the moments of transition of the doubly stochastic
Poisson process, i.e. they suppose that the distribution of the number of shocks up
to time t is given by

P{N(t) = k} = E

{
(Y η(t))k

k!
exp{−Y η(t)}

}
,

where η(t) is a deterministic function and Y is a nonnegative random variable with
finite expectation. If Y is non-random, N is non-homogenous Poisson process, in
particular, when η(t) = λt, N is homogenous Poisson process. Other models for η
may be used, for example, η(t) = tα, α > 0.

Assume that X1, , X2, · · · are conditionally independent given {Tn} and assume
that the probability density functions of Xn given {Tn} is g.

Let us consider the case when the number of shocks is modelled by non-homogenous
Poisson process:

P{N(t1) = i1, N(t2)−N(t1) = i2, · · · , N(tm)−N(tm−1) = im} =

η(t1)
i1

i1!
e−η(t1) [η(t2)− η(t1)]

i2

i2!
e−[η(t2)−η(t1)] · · · [η(tm)− η(tm−1)]

im

im!
e−[η(tm)−η(tm−1)].

(3.45)
The degradation process Z(t) is a stochastic process with independent increments
and for any z ≥ 0 the density of the r.v. Z(t)− Z(s), 0 ≤ s, t, is

pZ(t)−Z(s)(z) =
∞∑

k=1

gk(z)
[η(t)− η(s)]k

k!
e−[η(t)−η(s)] (3.46)

where gk is the convolution of k densities g. For example, if the sizes of the shocks
Xi have exponential distribution E(ξ): g(u) = ξe−ξu, u ≥ 0, then

gk(u; ξ) =
ξkuk−1

(k − 1)!
e−ξu, u ≥ 0, pZ(t)−Z(s)(z) = ξbe−ξz−b

∞∑
k=0

(ξbz)k

k!(k + 1)!
,

where b = η(t)− η(s).
Denote by a1 = EX1 and a2 = EX2

1 the first two moments of the random variable
X1. The moments of Z(t) are

E(Z(t)) = a1 η(t), Var(Z(t)) = a2 η(t).
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The degradation and its characteristics under covariate x are

Z(t|x) = Z(f(t, β, x)), m(t|x) = E( Z(t|x)) = µ1 η (f(t, β, x)) , (3.47)

σ2(t|x) = Var( Z(t|x) = a2 η (f(t, β, x)) .

a) Parametric form of the mean degradation

Suppose that g and η belong to some parametric classes g(t) = g(t, ξ), ξ = (ξ1, ..., ξp)
T .

and η(t) = η(t; ν), ν = (ν1, ..., νq)
T . Set θ = (βT , νT , ξT )T . The likelihood function of

the degradation data (3.31) is of the form (3.33), where for any z > 0, 0 ≤ s < t, the
density of the increment Z(t)− Z(s) is

pZ(t)−Z(s)(z; θ) =
∞∑

k=1

gk(z; ξ)
[∆η(s, t; β, ν)]k

k!
e−∆η(s,t;β,ν); (3.48)

here
∆η(s, t; β, ν) = η

(
f(t, β, x(i)); ν

)
− η

(
f(s, β, x(i)); ν

)
. (3.49)

Denote by θ̂ the maximum likelihood estimator. Then for any x the estimator of the
mean degradation m(t|x) under the covariate x has the form (3.34).

For t ∈ (ti,j−1, tij), j = 1, . . . , µi, the conditional means (3.35) are

Z̃i(t; θ) =
1

p∆Zi,j
(∆Zi,j; θ)

∫ Zi,j

Zi,j−1

z pZ(t)−Zi,j−1
(z − Zi,j−1; θ)pZi,j−Z(t)(Zi,j − z; θ)dz.

(3.50)
For any t > ti,µi

Z̃i(t; θ) =

∫ z0

Zi,µi

z pZ(t)−Zi,µi
(z − Zi,µi

; θ)dz. (3.51)

The predictors Ẑi of Zi are defined by the formula (3.39).
Note that as in the case of the gamma process (we set σ2 = a2/a1)

Var(Z(t))

E(Z(t))
= σ2, (Z(s), Z(t)) = Var(Z(s ∧ t)),

so in terms of the first two moments the considered shock process and the gamma
process are of identical structure.

b) Unknown form of mean degradation

The predictors of Zi(t) are defined as Ẑi(t) = Z̃i(t; θ̂), and Z̃i(t; θ) are defined by
(3.50) and (3.51) replacing ∆η(s, t; β, ν) (given in (3.49)) by

∆η(s, t; β, ξ) = [m̃
(
f(ti,j, β, x(i)), β

)
− m̃

(
f(ti,j−1, β, x(i)), β

)
]/a1(ξ),

where m̃(t; β) is the pseudoestimator of the mean m(t) = EZ(t) given by (3.43).
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3.2.5 Example 3: Path models

Suppose that the degradation process Z(t) is of the following form:

Z(t) = ϕ(t, A, ν), (3.52)

where ϕ is a deterministic function and A = (A1, . . . , Ap) is a finite dimensional
random vector and ν is a finite dimensional non-random parameter.

The form of the function ϕ may be suggested by the form of individual degradation
curves. The degradation under the covariate x is modelled by

Z(t|x) = ϕ(f(t, x, β), A), m(t|x) = Eϕ(f(t, x, β), A).

Let us consider the following typical example:

Z(t) = (t/A)ν ; (3.53)

here A is a positive random variable with unknown cumulative distribution function
F , ν is a positive parameter. In particular case ν = 1 this model fits well as the tire
wear model [29].

The degradation process under covariate x is

Z(t|x) = Z(f(t, x, β)) = (f(t, x, β)/A)ν . (3.54)

Even in the case ν = 1 it is not necessary linear.
Suppose that n units are on test. The ith unit is tested under explanatory variable

x(i). Denote by Ti, Vi the failure times and the failure modes, respectively. Suppose
that the degradation values Z(i) at the moments Ti are observed. So the data has
the form

(Ti, Vi, Z
(i), x(i)), i = 1, ..., n. (3.55)

The covariates x(i) are observed until the moments Xi.
Taking into account that the random variables

ln Ai = νf(Ti, x
(i), β)− ln Z(i)

are independent identically distributed with the mean, say m, which does not de-
pend on β and ν, so these parameters are estimated by the method of least squares,
minimizing the sum

n∑
i=1

(ν ln f(Ti, x
(i), β)− ln Z(i) −m)2,

which gives the system of equations

n
n∑

i=1

∫ Ti

0
x(i)eβT x(i)(u)du[ν ln f(Ti, x

(i), β)− ln Z(i)]

f(Ti, x(i), β)
−
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−
n∑

i=1

∫ Ti

0
x(i)eβT x(i)(u)du

f(Ti, x(i), β)

n∑
j=1

[ν ln f(Tj, x
(i), β)− ln Z(j)] = 0,

n
n∑

i=1

ln f(Ti, x
(i), β)[ν ln f(Ti, x

(i), β)− ln Z(i)]−

−
n∑

i=1

ln f(Ti, x
(i), β)

n∑
j=1

[ν ln f(Tj, x
(i), β)− ln Z(j)] = 0.

If x(i) are constant then this system is:

n

n∑
i=1

βT x(i)[νβT x(i) + ν ln Ti − ln Z(i)]−
n∑

i=1

βT x(i)

n∑
j=1

[νβT x(i) + ν ln Ti − ln Z(i)] = 0,

n

n∑
i=1

x(i)[νβT x(i) + ν ln Ti − ln Z(i)]−
n∑

i=1

x(i)

n∑
j=1

[νβT x(i) + ν ln Ti − ln Z(i)] = 0.

Denote by β̂ and ν̂ the obtained estimator.
The predictors of Zi(t) are defined as

Ẑi(t) =

(
f(t, x(i), β̂)

f(Ti, x(i), β̂)

)ν̂

Z(i). (3.56)

Note that Ẑi(Ti) = Z(i). If x(i) are constant over time then

Ẑi(t) =

(
t

Ti

)ν̂

Z(i). (3.57)

3.2.6 Modified loglikelihood

The modified loglikelihood function for the parameters βk, β̃k, ηk and γk from the
data (3.25) (and (3.55)) is obtained modifying the loglikelihood function (3.27): the
stochastic processes Zi are replaced by their predictors Ẑi in (3.27) (in the case of
the data (3.55) take Xi = Ti):

l̃ =
n∑

i=1

s∑
k=1

1{Vi=k} ln
[
eβ̃T

k x(i)(Xi)λ(k)(Ẑi(Xi); ηk)+

+ eβT
k x(i)(Xi)µ(k)(f(Xi, x

(i), βk); γk)
]
−

−
s∑

k=1

(∫ Xi

0

eβ̃T
k x(i)(u)λ(k)(Ẑi(u); ηk) du−H(k)(f(Xi, x

(i), βk); γk)

)
. (3.58)

If covariants are absent then

l̃ =
n∑

i=1

s∑
k=1

1{Vi=k} ln
[
λ(k)(Ẑi(Xi); ηk) + µ(k)(Xi; , γk)

]
−
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−
s∑

k=1

(∫ Xi

0

λ(k)(Ẑi(u); ηk) du−H(k)(Xi; γk)

)
, (3.59)

where the predictors Ẑi are defined replacing f(u, β, x(i)) by u in all formulas.
The loglikelihood (3.25) function can be modified and to the case when the two

functions λ(k) (or the functions H(k), but not both) are completely unknown. In the
case of linear path models such modifications and properties of estimators are given
in Bagdonavičius et al ([8]).

Investigating the case of other degradation models is a subject for separate work.

3.3 Estimation of reliability characteristics

Let us consider estimation of reliability characteristics (3.12)-(3.22) when the mean
degradation m(t) is of parametric form. Set

Ẑi(t|x) = Ẑi

(
g(f(t, β̂, x), x(i), β̂)

)
, (3.60)

where Ẑi(t) are the predictors of the discreetly observed processes Zi(t|x(i)), i =
1, . . . , n. We considered construction of the predictors Ẑi(t) in the previous section.

In particular case when x, x(i) are constant over time

Ẑi(t|x) = Ẑi(e
β̂(x−x(i))t). (3.61)

The predictor of the non-traumatic failure of the ith unit under the covariate x is

T̂
(0)
i (x) = inf{t : Ẑi(t|x) ≥ z0}. (3.62)

The formulas (3.12)-(3.16) imply the following estimators:
1) The estimator of the survival function of the failure time under the covariate

x:

Ŝ(t|x) =
1

n

n∑
i=1

1{Ẑi(t|x)<z0}

s∏
k=1

Ŝ(k)(t | x, Ẑi), (3.63)

where

Ŝ(k)(t | x, Ẑi) = exp

{
−
∫ t

0

e
ˆ̃
βT

k x(u)λ(k)(Ẑi(u|x), η̂k) du−H(k)(f(t, x, β̂k), γ̂k)

}
.

(3.64)
2) The estimator of the mean failure time under the covariate x:

ê(x) =
1

n

n∑
i=1

T̂
(0)
i (x)∫
0

s∏
k=1

Ŝ(k)(t | x, Ẑi)dt. (3.65)

3) The estimator of the probability that under the covariate x the non-traumatic
failure is observed in the interval [0, t]:

P̂ (0)(t|x) =
1

n

n∑
i=1

1{Ẑi(t|x)≥z0}

s∏
k=1

Ŝ(k)(T̂
(0)
i (x) | x, Ẑi). (3.66)
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4) The estimator of the probability that under the covariate x a traumatic failure is
observed in the interval [0, t]:

P̂ (tr)(t|x) = 1− 1

n

n∑
i=1

s∏
k=1

Ŝ(k)(t ∧ T̂
(0)
i (x) | x, Ẑi). (3.67)

5) The estimator of the probability that under the covariate x the traumatic failure
of the kth mode, k = 1, . . . , s, is observed in the interval [0, t]:

P̂ (k)(t|x) =
1

n

n∑
i=1

t∧T̂
(0)
i (x)∫

0

s∏
l=1

Ŝ(l)(s | x, Ẑi) λ(k)(s | x, Ẑi) ds. (3.68)

The estimators of survival characteristics of units with eliminated failure modes are
obtained taking

∏
l 6=i1,...,iq

instead of
∏s

l=1 in the formulas (3.63)-(3.68).
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Conclusions

In the thesis, the following results which analysed formulated at the beginning aims
are gained:
1. Mathematical definition of stand-by unit fluent switching from ”warm” to ”hot”
conditions is formulated;
2. Tests for general ”fluent switching hypothesis” formulated using Sedyakin’s ”re-
liability principle” and for particular fluent switching hypothesis formulated using
accelerated failure time model are constructed; Asymptotic properties of the test
statistics are investigated;
3. Parametric and nonparametric estimators of the cumulative distribution func-
tion of redundant system using reliability data of components tested under different
stresses are constructed;
4. Asymptotic properties of the parametric and nonparametric estimators are inves-
tigated;
5. Asymptotic confidence intervals for cumulative distribution function of redundant
system are constructed. Finite sample properties of the parametric and nonparamet-
ric estimators are investigated by simulation;
6. General simultaneous failure time and degradation regression data models are
formulated. Maximum likelihood method for estimation of failure process and degra-
dation process parameters using simultaneous degradation and multi-mode failure
time regression data using predictors of degradation processes is modified;
7. The structure of modified likelihood function when the degradation process is
modelled by time scaled gamma process, path processes, shock processes with the
number of shocks modelled by non-homogenous Poisson process is investigated.
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Appendix A

Delta method

Theorem A.0.1 Let {an} be a sequence of real numbers, g = (g1, ..., gq) : Rp → Rq

be a differentiable vector-function, and

Jg(x) = ||∂gi(x)

∂xj

||q×p

be the Jacobi matrix of partial derivatives of coordinate functions gi. If

an(X(n) − x)
D→ Z as an →∞ on Rp,

then
an(g(X(n))− g(x))

D→ Jg(x)Z as an →∞. (A.1)

Theorem A.0.2 Suppose that
1) {Xn

1 ∈ D[0, τ ]} and {Xn
2 ∈ D[0, τ ]} are sequences of catlag stochastic processes,

the second being of bounded variation and bounded by a positive constant M ;
2) X1, X2 ∈ D[0, τ ] are cadlag stochastic processes of bounded variation the second

being bounded by M such that

(an(Xn
1 −X1), an(Xn

2 −X2))
D→ (Z1, Z2),

on D[0, τ ]×D[0, τ ]; here Z1, Z2 ∈ D[0, τ ]. Then

an

 .∫
0

Xn
1 dXn

2 −
.∫

0

X1dX2

 D→
.∫

0

Z1dX2 +

.∫
0

X1dZ2 (A.2)

on D[0, τ ]. If Z2 is not of bounded variation then the last integral is defined by

t∫
0

X1(u)dZ2(u) = X1(t)Z2(t)−X1(0)Z2(0)−
t∫

0

Z2(u)dX1(u).
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Theorem A.0.3 Suppose that
1) x ∈ D[0, τ ] is a nondecreasing function, differentiable at the point

x−1(p) = inf{t : x(t) ≥ p} ∈ (0, τ),

where p ∈ R is a fixed number.
2) {X(n) ∈ D[0, τ ]} is a sequence of nondecreasing stochastic processes such that

an(Xn − x)
D→ Z

on D[0, τ ]; here Z ∈ D[0, τ ] is a nondecreasing process, continuous at the point
x−1(p).

Then

an

(
(Xn)−1(p)− x−1(p)

) D→ −Z(x−1(p))

x′(x−1(p))
. (A.3)

Theorem A.0.4 Suppose that
1) x is a continuously differentiable function on [0, τ ];
2) ϕ = ϕ(t, θ) : A × Bε(θ0) → R, Bε(θ0) ⊂ Rs, A = [0, τ0] or (0, τ0), is a

continuous non-increasing in t function such that 0 < ϕ(t, θ0) < τ for t ∈ A;
3) {X(n) ∈ D[0, τ ]} is a sequence of stochastic processes such that

√
n(Xn − x)

D→ Z

on D[0, τ ], where Z is a continuous on [0, τ ] stochastic process;
4) {θ̂(n)} is a sequence of random variables such that

√
n(θ̂(n) − θ0)

D→ Y.

Then

√
n(Xn(ϕ(·, θ̂(n)

0 ))− x(ϕ(·, θ0))
D→ Z(ϕ(·, θ0)) + x′(ϕ(·, θ0))ϕ

′
θ(·, θ0)Y

on D(A).
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[1] Bagdonavičius, V. Testing the hyphothesis of the additive accumulation of dam-
ages. Probab. Theory and its Appl., 23, 1978, p. 403–408.
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