VILNIUS UNIVERSITY INSTITUTE OF CHEMISTRY

Živilė Stankevičiūtė

STUDIES ON THE SYNTHESIS AND CYCLIZATION REACTIONS OF ALKYLATED 5-CYANO-2-METHYLSULFANYL-4(3*H*)-PYRIMIDINONES

Summary of Doctoral dissertation Physical Sciences, Chemistry (03 P)

Vilnius, 2010

The research has been carried out at the Institute of Chemistry in the period of 2004-2009.

Scientific supervisor:

Prof. habil. dr. Albertas MALINAUSKAS (Institute of Chemistry, Physical sciences, Chemistry – 03P)

Doctoral dissertation is defended at the Evaluation board of Chemistry of Vilnius University:

Chairman:

Habil. dr. Gediminas NIAURA (Institute of Chemistry, Physical sciences, Chemistry – 03P)

Members:

Dr. Žilvinas ANUSEVIČIUS (Institute of Biochemistry, Physical sciences, Biochemistry – 04P)

Doc. dr. Algirdas BRUKŠTUS (Vilnius University, Physical sciences, Chemistry – 03P) Prof. habil. dr. Narimantas ČĖNAS (Institute of Biochemistry, Physical sciences, Biochemistry – 04P)

Dr. Rita BUTKIENĖ (Institute of Chemistry, Physical sciences, Chemistry – 03P)

Official Opponents:

Habil. dr. Linas LABANAUSKAS (Institute of Chemistry, Physical sciences, Chemistry – 03P)

Dr. Jonas ŠARLAUSKAS (Institute of Biochemistry, Physical sciences, Biochemistry – 04P)

The official discussion will be held on May 14, 2010, at the 12 a.m. at the open meeting of the Evaluation board at the Assembly Hall of the Institute of Chemistry.

Adress: A. Goštauto 9, LT-01108, Vilnius, Lithuania

The summary of the doctoral dissertation was mailed on April 13, 2010.

The doctoral dissertation is available at the Library of Institute of Chemistry and at the Library of Vilnius University.

VILNIAUS UNIVERSITETAS CHEMIJOS INSTITUTAS

Živilė Stankevičiūtė

ALKILINTŲ 5-CIAN-2-METILSULFANIL-4(3H)-PIRIMIDINONŲ SINTEZĖS IR CIKLIZACIJOS REAKCIJŲ TYRIMAS

Daktaro disertacijos santrauka

Fiziniai mokslai, chemija (03 P)

Disertacija rengta 2004–2009 metais Chemijos institute

Mokslinis vadovas:

Prof. habil. dr. Albertas MALINAUSKAS (Chemijos institutas, fiziniai mokslai, chemija – 03 P)

Disertacija ginama Vilniaus universiteto Chemijos mokslo krypties taryboje:

Habil. dr. Gediminas NIAURA (Chemijos institutas, fiziniai mokslai, chemija - 03 P) – pirmininkas

Dr. Žilvinas ANUSEVIČIUS (Biochemijos institutas, fiziniai mokslai, biochemija – 04P)

Doc. dr. Algirdas BRUKŠTUS (Vilniaus universitetas, fiziniai mokslai, chemija – 03P) Prof. habil. dr. Narimantas ČĖNAS (Biochemijos institutas, fiziniai mokslai, biochemija – 04P)

Dr. Rita BUTKIENĖ (Chemijos institutas, fiziniai mokslai, chemija - 03 P)

Oficialieji oponentai:

Habil. dr. Linas LABANAUSKAS (Chemijos institutas, fiziniai mokslai, chemija – 03P) Dr. Jonas ŠARLAUSKAS (Biochemijos institutas, fiziniai mokslai, biochemija – 04P)

Disertacija bus ginama viešame Chemijos mokslo krypties tarybos posėdyje 2010 m. gegužės 14 d. 12 val. Chemijos instituto aktų salėje

Adresas: Goštauto 9, LT-2600 Vilnius, Lietuva

Disertacijos santrauka išsiuntinėta 2010 m. balandžio 13 d.

Disertaciją galima peržiūrėti Chemijos instituto ir Vilniaus Universiteto bibliotekose

INTRODUCTION

Pyrimidine derivatives are important group of heterocyclic compounds on theoretical and practical point of view. Heterocyclic systems containing a pyrimidine ring include biological active and for vital functions important compounds. Some of the more important pyrimidine compounds are pyrimidinones. Treatment with alkylating agents, pyrimidinones yielded *N*- and/or *O*-alkylated derivatives. Biological activity and other valuable properties of substituted pyrimidine derivatives stimulated the development of methods for the synthesis of effective and less-toxic substances.

In reactions with electrophilic agents tridentate 4(3H)-pyrimidinone anion compose O-, N_1 - and N_3 -alkylated isomers. Direction and selectivity in the alkylation of tridentate 4(3H)-pyrimidinone anions are influenced by a number of factors such as the nature of anion, the counter-ion, the alkylating agent, the leaving group, the temperature and the solvent. The alkylated 4(3H)-pyrimidinones are valued not only for their chemistry, but also for many important biological properties.

5-Cyano-2-methylsulfanyl-4(3H)-pyrimidinone was chosen for experimental work because of its important substitutes for the further transformation. It was obtained on intramolecular cyclization of ethyl (E)-2-cyano-3-(S-methylisothioureido)-2-propenoate.

We have found that treatment of 5-cyano-2-methylsulfanyl-4(3H)-pyrimidinone with the 4-substituted ω -bromoacetophenones readily gives all three O-, N_1 - and N_3 -alkylated isomers. It has been investigated basic cyclization and functionalisation reactions of O-alkylated derivatives into 5-aminofuro[2,3-d]pyrimidines.

The goal of the work:

To investigate transformation of ethyl (E)-2-cyano-3-(S-methylisothioureido)-2-propenoate in to 5-cyano-2-methylsulfanyl-4(3H)-pyrimidinone, to investigate its O- and N-alkylation with 4-substituted ω -bromoacetophenones, cyclization and functionalisation reactions of O-alkylated derivatives.

The tasks of the work:

1. To synthesize ethyl (*E*)-2-cyano-3-(*S*-methylisothioureido)-2-propenoate and investigate its transformations in acidic and alkaline media and to determine optimal conditions for synthesis of 5-cyano-2-methylsulfanyl-4(3*H*)-pyrimidinone.

- 2. To investigate alkylation of 5-cyano-2-methylsulfanyl-4(3H)-pyrimidinone with 4-substituted ω -bromoacetophenones and to determine conditions and influence of aromatic ring substitute for O-, N_1 and N_3 -alkylated products distribution.
- 3. To investigate cyclization conditions of *O*-alkylated isomers 4-(4'-*R*-phenacyloxy)-2-methylsulfanylpyrimidin-5-carbonitriles for synthesis of furo[2,3-*d*]pyrimidines.
- 4. To investigate functionalization reactions (acetylation, hydrolysis, hydrazinolysis and oxidation) of synthesized 5-amino-6--(4'-*R*-benzoyl)-2-methylsulfanylfuro[2,3-*d*]pyrimidines.

Scientific novelty and practical value of the work.

refilled about transformation of ethyl (E)-2-cyano-3-(S-It was data methylisothioureido)-2-propenoate in acidic and alkaline media. It was found that boiling in glacial acetic acid proceeds selectively and leads to formation of ethyl 4amino-2-methylsulfanylpyrimidine-5-carboxylate, while ring closure in alkaline media gives rise to a mixture of 5-cyano-2-methylsulfanyl-4(3H)-pyrimidinone (major product), small amounts of ethyl 4-amino-2-methylsulfanylpyrimidine-5-carboxylate and uncyclisized products of hydrolysis – ethyl 2-cyano-3-ureido-2-propenoates, separated as individual compounds. It was investigated alkylation of tridentate 5-cyano-2methylsulfanyl-4(3H)-pyrimidinone with 4-substituted ω -bromoacetophenones in the presence of potassium carbonate and catalytic amount of potassium iodide in boiling acetonitrile. It was determined that the proportion of O-, N_1 - and N_3 -alkylated products varied depending on the nature of substitute on the aromatic ring 4-position. For the first time O-, N_I - and N_3 -alkylated isomers were isolated from alkylation mixture. The main reaction product is the O-alkylated isomer with the N_3 - and N_I -alkylation products respectively separated as minor components by fractional crystallization. It has been proposed a novel method for the synthesis of furo[2,3-d]pyrimidines by Thorpe-Ziegler condensation reaction of O-alkylated pyrimidinones. The synthesized compounds could be perspective analogues of the known pharmaceutical and agrochemical agents.

Approbation of the dissertation. Three publications have been published in the international scientific journals on the theme of dissertation. The research results have been presented at 4 Lithuanian national and 1 international scientific conferences.

1. Experimental

IR spectra were taken on a Perkin-Elmer BX II FT-IR spectrophotometer for KBr tablets and ¹H and ¹³C NMR spectra on a Varian INOVA spectrometer (300 and 75 MHz respectively) using residual signals of DMSO-d₆ (2.52 and 40.21 ppm) or CDCl₃ signals (7.29 and 77.30 ppm) as internal standard. Monitoring of the reaction course and the purity of the compounds prepared was carried out by TLC on Sigma-Aldrich Silica Gel 60 F254 glass plates and were revealed using UV light.

2. RESULTS AND DISCUSSION

2.1 Synthesis of 5-cyano-2-methylsulfanyl-4(3H)-pyrimidinone

Ethyl 2-cyano-3-ethoxy-2-propenoate (1) was chosen as the starting compound. This is obtained by condensation of ethyl cyanoacetate with ethylorthoformate in the presence of glacial acetic acid:

Scheme 1

According to the general literature of orthoesters, this reaction, probably, involves a three-step mechanism: the first step is transesterification of ethylorthoformate (I), the second step – interaction of activated diethoxymethylacetate II with enolic form of ethyl cyanoacetate and finally (third step) obtained adduct III transformation to ester 1 (IV) catalysed by glacial acetic acid.

Synthetic ethyl 2-cyano-3-ethoxypropenoate 1 seemed to contain only one (*E*)-isomer 1a, since its NMR spectrum in CDCl₃ or DMSO-d₆ displayed one single H-3 olefinic proton signal at 8.03 (**Fig. 1**) or 8.42 ppm respectively. The downfield shift of H-3 olefinic proton in DMSO-d₆ ($\Delta\delta \approx 0.4$ ppm) is due to the formation of hydrogen bond with the solvent.

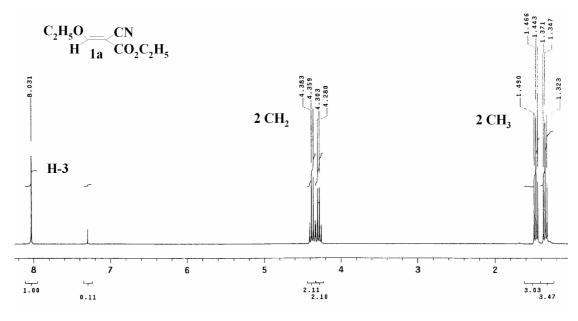


Fig. 1 ¹H NMR spectra of ethyl ester 1a in CDCl₃

(*E*)-Izomer **1a** (olefinic proton signal at 8.00 ppm) is thermodynamically more stable, and (*Z*)-isomer **1b** (olefinic proton signal at 7.40 ppm) could be detected only by NMR spectra after the irradiation of a chloroform solution with a high-pressure mercury arc, because it isomerizes to the more stable **1a** form during the isolation process. The NMR spectrum in CDCl₃ of lower homolog ethyl 2-cyano-3-methoxypropenoate displayed olefinic proton signal at 7.95 ppm, which is close to the one observed for the more stable (*E*)-isomer of the ethoxy-compound **1a**. Unstable isomer of ethyl (*Z*)-2-cyano-3-methoxypropenoate showed an olefinic proton resonance signal at 7.35 ppm.

 β -Alkoxyenoates and related compounds like the 3-(dimethylamino)-2-propenoates and 3-halo-2-propenoates undergo substitution reactions with various anionic and uncharged nucleophiles by an addition-elimination S_N Vin mechanism. Depending upon the nature of the nucleophile, complete stereoconvergence, or complete or partial retention of the configuration of the double bond has been observed. In cases of β -haloenoates elimination of the halogen atom apparently occurred in a rotamer of the

enolate adduct, which would give the more stable product – trans-isomer, although thermodynamic control could be involved as well. In cases of β -alkoxyenoates, the first step is nucleophilic substitution of the alkoxy group, followed by cyclization.

Ethyl (E)-2-cyano-3-(S-methylisothioureido)-2-propenoate ($\mathbf{2a}$), containing isothioureido-moiety, was synthesized from (E)-ethyl 2-cyano-3-ethoxypropenoate ($\mathbf{1a}$) and S-methylisothiuronium bromide or sulfate in moderate yield:

Scheme 2

In this case S_NV in reaction proceeds with complete retention of the configuration. Steric considerations dictate that (E)-isomer 2a should be more stable than (Z)-isomer 2b as the trigonal carbalkoxy group has larger steric requirements than the linear nitrile group. This conclusion is substantiated by chemical-shifts of vinylic H and carboethoxy group: no doubling have been observed in different solvents in the 1H NMR spectrum of ethyl propenoate 2a.

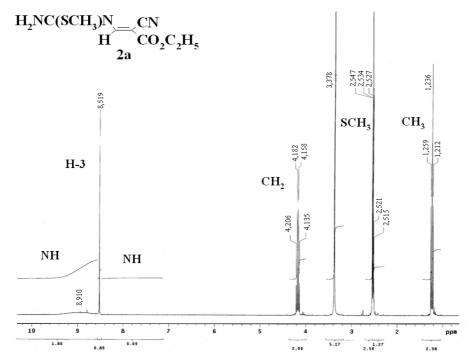


Fig. 2 ¹H NMR spectra of ethyl ester 2a in DMSO-d₆

Such configuration of the prevailing (*E*)-isomer supports data of methyl 3-dimethylamino-2-cyano-2-propenoate (only one =CH signal at 7.70 ppm in CDCl₃) and related compounds.

It was found that cyclization of 3-isothioureido-derivative **2a** is significantly influenced by media of reaction. Cyclization in boiling glacial acetic acid leads to selectively formation of ethyl 4-amino-2-methylsulfanylpyrimidine-5-carboxylate (**3**).

Ring closure in alkaline media (0.5 M NaOH or 0.5 M KOH) give rise to a mixture of 5-cyano-2-methylsulfanyl-4(3*H*)-pyrimidinone (**4c**, major product), small amount of compound **3** and uncyclisized products of hydrolysis (*E*)- and (*Z*)-isomers of ethyl 2-cyano-3-ureido-2-propenoate **5a,b** (data of the product distribution on base–catalyzed cyclization is presented in **table 1**). In case of 5 M NaOH (E method) hydrolysis of 2-cyanogroup of compound **2a** was occured and compound **4d** was formed.

The elemental analyses of compounds $\mathbf{5a,b}$ indicated that they all had the same composition ($C_7H_9N_3O_3$). Their structures were chiefly verified by the following spectral studies: the NMR spectra of the two isomers of $\mathbf{5a,b}$ show the doublet signal due to the vinyl proton coupled with the adjacent NH proton, and the downfield NH signal attributed to an intramolecular hydrogen bonding between the amino and the ester groups was assigned to that of the (Z)-form.

Scheme 3

Table 1. Investigation of cyclization of compound 2a

po		Yield of products, g						
Method	Amount of ester 2a g (mmol)	Amount of 0.5 M NaOH mL	Time of reaction (min)	Temp °C Acid		3	4c	5a. b
A	21.3 (100)	213 NaOH	15	50	1 M HCl	1.66 (8)	9.14 (54)	0.90 (4)
В	1.0 (4.7)	10 NaOH	60	16	1 M HCl	0.06 (6)	0.25 (32)	0.18 (21)
С	1.0 (4.7)	10 NaOH	60	18	conc. CH ₃ COOH	0.06 (6)	0.42 (53)	0.11 (18)
D	29.2 (130)	370 NaOH	15	50-55	1 M HCl	3.57 (12)	8.85 (38)	5.28 (21)
Е	2.13 (10)	20 5M NaOH	10	45–50	1 M HCl	0.16 (16)	0.55 4d	-
F	1.0 (4.7)	10 КОН	10	50-52	1 M HCl	0.04 (4)	0.25 (32)	0.36 (42)
G	1.0 (4.7)	10 KOH	10	50-53	conc. CH₃COOH	0.03 (3)	0.26 (33)	0.22 (26)
Н	2.00 (9.4)	20 NaOH	3	50–55	1 M HCl	0.01 (0.5)	0.09 (6)	0.23 (13)
J	1.0 (4.7)	15 NaOH	120	15	1 M HCl	0.03 (4)	0.29 (45)	0.15 (22)
K	2.00 (9.4)	20 NaOH	140	18	conc. CH ₃ COOH	0.16 (8)	0.48 (30)	0.49 (28)

It is noteworthy that one of isomer or isomeric mixture of ethyl 2-cyano-3-ureido-2-propenoate ($\mathbf{5}$, m. p. 215 °C) was synthesized by C. W. Whitehead and repeated by Ledvina and R.S. Vardanyan et al. from urea, ethyl orthoformate and ethyl cyanoacetate. As noticed (E)-isomer was obtained as the sole product. Another synthesis of mixture $\mathbf{5a}$, \mathbf{b} is presented by treatment of 2-ethoxycarbonyl-3-dimethylaminopropenenitrile with urea. In our work we isolated two isomer $\mathbf{5a}$ and $\mathbf{5b}$, which represent (E)- and (E)-isomers (\mathbf{fig} . $\mathbf{3}$). By our knowledge the fact about isolation of these isomers were not noticed in literature. (E)- and (E)-ethyl 2-cyano-3-ureido-2-propenoates were isolated in different acidity of reaction mixture: (E)-isomer at pH 1 (acidification with hydrochloric acid) and (E)-isomer at pH 2-3 (acidification with acetic acid) is significantly influenced by media of reaction.

In 1 H NMR spectra for (*E*)-isomer **5a** typical is H-3 signal at 8.41 ppm, analogical signal for (*Z*)-isomer **5b** is observed in a stronger field at 8.11 ppm. NH protons doublet shift for (*E*)-isomer **5a** is at 10.34 ppm, for (*Z*)-isomer **5b** at 10.58 ppm.

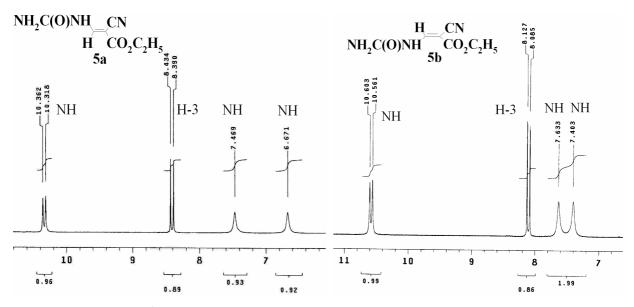


Fig. 3 ¹H NMR spectral fragment of compounds 5a,b in DMSO-d₆

Compounds **3** and **4c** can be converted into corresponding alkali metal salts by treatment with alkali, and substitution products of 2-methylsulfanyl group by hydroxy group or rearrangement products of ethyl pyrimidine-5-carboxylate were not detected. Salt **6** was acidified with HCl acid to give corresponding 4-amino-5-carboxycompound:

Scheme 4

After acidification salts 4a,b were given starting compound 4c.

Scheme 5

Compound 8 was not detected in cyclization mixture, which was synthesized for structure comparison. Treatment pyrimidinone 4c with ethylcarboxylate 3, analogical salt 9 were not formed.

Scheme 6

General transformations of compound 2a are represented in scheme 7.

Scheme 7

2.2 Alkylation of 5-cyano-2-methylsulfanyl-4(3H)-pyrimidinones

Alkylation of 4(3H)-pyrimidinones occurs to give a mixture of N_1 -, N_3 -, and O-alkylation products. Analysis of literature data shows that alkylation with haloacetic esters, chloroacetonitrile, N-benzyl-haloacylamides, 3-bromopropan-1-ol, or ω -bromoacetophenone generally gives just the O- and/or N_3 -alkylation products. To best of our knowledge, N_I -alkylated products were only detected or isolated using alkyl halides or dimethyl sulfate as the alkylating agents. Selectivity in the alkylation of tridentate 4(3H)-pyrimidinone anions is influenced by a number of factors such as the nature of anion, the counter-ion, the alkylating agent, the leaving group, the temperature and the solvent.

We have found that treatment of 5-cyano-2-methylsulfanyl-4(3H)-pyrimidinone (4c) with the 4-substituted ω -bromoacetophenones 10a-f in the presence of potassium carbonate and a catalytic amount of potassium iodide in anhydrous acetonitrile medium readily gives all three O-, N_3 -, and N_1 -alkylation products 11a-f to 13a-f. According to 1 H NMR spectroscopic data for the reaction mixtures side products are not formed under these conditions.

It was noted that the proportion of O-, N_1 - and N_3 -alkylated products varied depending on the nature of substitute on the aromatic ring 4-position.

Scheme 8

The main reaction product is the O-alkylated isomer **11a-f** with the N_3 - and N_1 -alkylation products **12a-f** and **13a-f** respectively separated as minor components by fractional crystallization or by column chromatography (the overall alkylation yield being 44–83 %). Elemental analysis, IR, 1 H and 13 C NMR spectra for the compounds

prepared were fully in agreement with their structures as alkylated derivatives of the 5-cyano-2-methylsulfanyl-4(3H)-pyrimidinone.

¹H and ¹³C NMR spectral characteristics of typical signals of alkylated compounds are presented in **tables 2–3**.

Table 2. ¹H NMR some spectral characteristics of compounds 11-13 a-f

Groups	11a-f(X=O)	12a-f $(X = N_3)$	13a-f $(X = N_1)$
SCH ₃	2,31–2.33	2.63-2.64	2.50-2.51
XCH ₂	5.99–6.11	5.66-5.82	5.69-5.86
6-H	8.93–8.96	8.63-8.69	8.58-8.61

Table 3. ¹³C NMR some spectral characteristics of compounds 11-13 a-f

11a-f(X=O)	12a-f $(X = N_3)$	13a-f $(X = N_1)$
14.4	16.0–16.0	15.1–15.1
70.0–70.5	51.4-52.2	58.9–59.5
162.84–162.91	158.84–158.91	166.65
90.91–90.93	96.60–96.66	94.93–95.02
167.3–167.6	170.6–170.7	163.0-163.1
176	161	155
	14.4 70.0–70.5 162.84–162.91 90.91–90.93 167.3–167.6	14.4 16.0–16.0 70.0–70.5 51.4–52.2 162.84–162.91 158.84–158.91 90.91–90.93 96.60–96.66 167.3–167.6 170.6–170.7

¹H NMR spectral fragments of individual compounds **11–13**, essential for its identification, are represented in **fig. 4–5**.

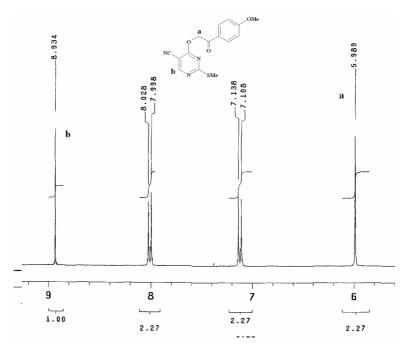


Fig. 4. ¹H NMR spectral fragment of compound 11c in DMSO-d₆

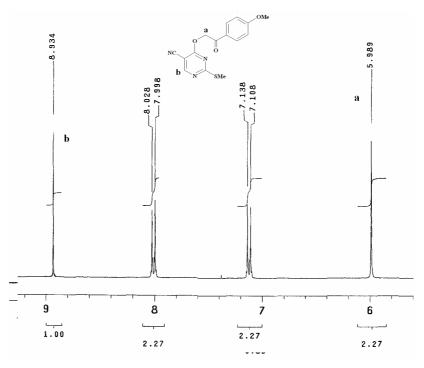


Fig. 5. ¹H NMR spectral fragment of compound **12c** in DMSO-d₆

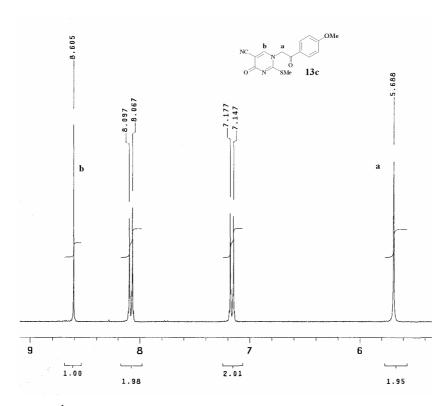


Fig. 6. ¹H NMR spectral fragment of compound 13c in DMSO-d₆

In IR spectrums are observed valence vibrations absorption bands of v_{CN} and v_{CO} groups: 2226–2232 and 1686–1705 for *O*-alkylated isomers, 2224–2234, 1690–1698 and 1678–1685 for N_3 -isomers, 2226–2229, 1684–1692 and 1652–1623 cm⁻¹ for N_I -isomers respectively (**fig. 7–9**).

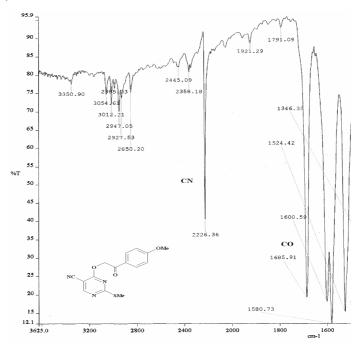


Fig. 7. IR spectral fragment of compound 11c

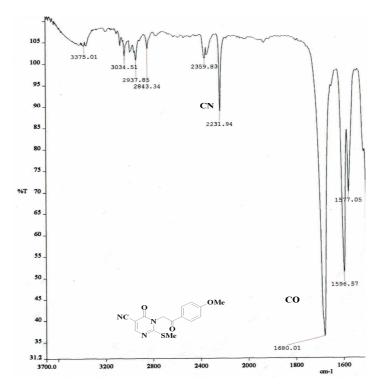


Fig. 8. IR spectral fragment of compound 12c

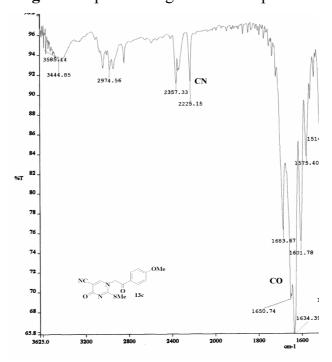


Fig. 9. IR spectral fragment of compound 13c

The distribution of alkylated compounds 11-13 a-f in reaction mixtures was determined by ¹H NMR method (table 4).

Table 4. ¹H NMR spectral data of distribution of alkylated compounds **11-13 a-f** in alkylation mixtures

R	XCH ₂ proton signals						H–6 proton signals					
	11 (X = O)		12 $(X = N_3)$		13 $(X = N_1)$		11		12		13	
	ppm	%	ppm	%	ppm	%	ppm	%	ppm	%	ppm	%
a	6.06	82	5.74	8	5.77	10	8.95	79	8.68	8	8.61	13
b	6.01	79	5.69	9	5.72	12	8.94	76	8.67	9	8.61	15
c	5.99	78	5.66	9	5.69	13	8.94	76	8.67	9	8.61	15
d	6.04	81	5.73	11	5.76	8	8.94	80	8.67	10	8.59	10
e	6.04	76	5.77	15	5.77	9	8.95	75	8.68	16	8.59	10
f	6.11	71	5.82	22	5.87	7	8.96	72	8.69	18	8.59	6

In all cases three alkylated compounds are formed and no side products were observed. Ratio of alkylated isomers were appointed by XCH_2 -group ($X = O, N_1, N_3$) and H-6 peaks integral intensity of pyrimidine ring accordingly in 5.66–6.11 and 8.59–8.96 ppm. By ¹H NMR spectral data, *O*-alkylated isomers **11 a-f** are a major products, N_3 - and N_I -alkylated products proportions varied depending on the nature of substitute on the aromatic ring 4-position: electron-donating substitutes (CH₃, OCH₃) gives more N_1 -isomers **12 a-f**, the electron-withdrawing substitutes (Cl, Br, NO₂) gives more N_3 -isomers **13a-f**.

18 alkylated isomers are obtained in alkylation mixtures, 16 of them have been isolated by fractional crystallization and identificated as the individual compounds. R_f value of compounds 11b and 12b are very similar and compound 13f is unstable on isolation conditions.

The alkylated 4(3H)-pyrimidinones are valued not only for their chemistry, but also for many important biological properties. O-alkylated derivatives display anticancer, antibacterial, antithrombotic, diuretic activities. N_3 -alkylated pyrimidinones have also been extensively investigated for their pharmacological uses — some of them are potential analgesic and antiinflammatory, diuretic, hypotensive, calcilytic, herbicidal compounds.

2.3 Cyclization reactions of O-alkylated compounds 11a-f

In this work was proposed new synthesis method for furo[2,3-d]pyrimidine system synthesis by cyclization of 2-methylsulfanyl-4-[4'-R-phenacyloxy]pyrimidine-5-carbonitriles (11a-f) under Thorpe-Ziegler basic conditions.

Scheme 9

Pyrimidin-5-carbonitriles **11a-f** have been further transformed into 5-aminofuro[2,3-d]pyrimidines by the basic cyclization. While condensations of this sort in pyridine chemistry have been reported previously in the literature, to our knowledge cyclocondensation reaction of 5-cyano-[4(6)-phenacyloxy]pyrimidines to form furo[2,3-d]pyrimidines has not been previously reported.

4-Phenacyloxy-2-methylsulfanylpyrimidin-5-carbonitrile **11a** has been choiced for optimal reaction conditions search, results are represented in **table 5**.

The results show that in aprotic solvents (acetonitrile and benzene) cyclization has been failed. In the system DMF–NaOH are possible hydrolysis reactions, better results obtained in the system C_2H_5OH – C_2H_5ONa .

Table 5. Investigation on cyclization of compound 11a

No	11a (mmol)	Basic agent (mmol)	Solvent	Temp. °C	Time of reaction (h)	Yield of products, g (%)	mp., °C
A	1	10% KOH	DMF-	16	1 h	0.11	216–218
		(5.30)	H ₂ O			(39 %)	
В	1	10% KOH	DMF-	17	2 min	0.07	153-
		(5.30)	H_2O				156/196–201
С	1	10% KOH	DMF-	2–3	1.5 h	0.06	153-
		(5.30)	H_2O				158/204–208
D	1	C ₂ H ₅ ONa	C ₂ H ₅ OH	78	2.5 h	0.08	158-
		(0.43)					160/204–209
Е	1	C ₂ H ₅ ONa	C ₂ H ₅ OH	78	10 h	0.09	224–227
		(0.43)				(32 %)	
F	1	K ₂ CO ₃	CH ₃ CN	80	22 h	0.06	145–148
		(1.00)					
G	1	t-BuOK	C ₂ H ₅ OH	78	2.5 h	0.18	148-150
		(1.00)					
Н	0.35	t-BuOK	CH ₃ OH	17	45 h	0.04	221–223
		(0.35)				(32 %)	
J	1	t-BuOK	t-BuOH	82	2 h	0.05	155/208–212
		(1.00)					
K	1	t-BuOK	C_6H_6	80	4 h	0.28	301–305
		(2.00)					
L	0.36	10%	DMF-	50-60	18 h	0.03	218–
		NaOH	H_2O			$N_1/0.03$	221/215–218
						N_2	
M	0.36	NaH	2-PrOH	50-60	6 h	0.05	135-
		(0.36)					145/195–208
N	0.36	CH ₃ ONa	CH ₃ OH	65	8 h	0.01	238-241
		(1.39)					
О	1	C ₂ H ₅ ONa	C ₂ H ₅ OH	78	5 h	0.12	222–225
		(1.00)				(43 %)	

In reactions with other substitutes (CH₃, OCH₃, Cl, Br, NO₂) different solvents and basic agents have been tested. The influences of solvent and basic agent have been investigated in cyclization reactions with substrates **11b-11f**. Different amount of sodium and various alcohols: methanol, ethanol and 2-propanol have been used. It has been found that with an equivalent amount of sodium some unreacted starting compound observed in reaction mixture. The best yields of 5-amino-6-(4'-*R*-benzoyl)-2-methylsulfanylfuro[2,3-*d*]pyrimidines obtained in ethanol at 1.5 equivalent of sodium ethoxide. The cyclization failed, however, with a substrate **11f**. Cyclization in system CH₃OH–CH₃ONa (2 equivalent or more) leads to displacement reaction of 2-methylsulfanyl- into methoxygroup as byproduct, in this case only product **16** have been isolated.

Scheme 10

The elemental analysis data and spectral characteristics of compounds **15a-f** are in agreement with the proposed structures. In ¹H NMR spectra for compounds **15a-e** are typical singlets at 7.67–7.84 ppm of 5-aminogroups and H-4 signals of pyrimidine ring at 9.26–9.27 ppm, then in the starting compounds **11a-f** H-6 signals of pyrimidine ring are observed at 8.93–8.96 ppm. In starting compounds **11a-f** are observed OCH₂-group

signals which disappeared in cyclisized compounds **15a-e** (**fig. 10**). In ¹³C NMR spectra carbonyl group signal (~131.5 ppm) shifted to the stronger fields in comparison with starting compounds (~90.9 ppm).

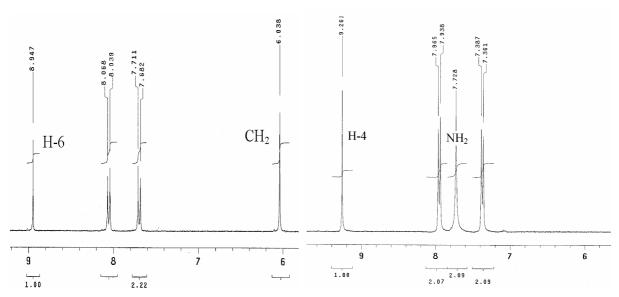


Fig. 10. ¹H NMR spectral fragment of compounds 11c and 15c in DMSO-d₆

Thus, in IR spectra of **11a-f** are observed the strong absorption band of the CN-group (2225–2232 cm⁻¹). In case of the compounds **15a-e** this peak was not observed. Instead we observed the typical absorptions of the NH₂-group (3413–3193 cm⁻¹).

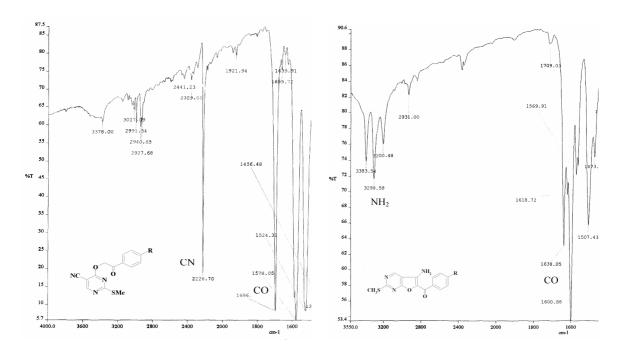


Fig. 11. IR spectral fragment of compounds 11 and 15

2.4 Chemical properties of furo[2,3-d]pyrimidines

Synthesized 5-amino-6-(4'-*R*-benzoyl)-2-methylsulfanylfuro[2,3-*d*]pyrimidines **15a-e** include three functional groups (–NH₂, –C=O and –SCH₃), significant for further transformation reactions. Boiling in acetic anhydride gives monoacetylated compounds **17a-e**:

Scheme 11

Acetylation reaction smoothly proceed with all furo[2,3-d]pirimidines **15a-e**. The elemental analysis data and spectral characteristics of compounds **17a-e** are in agreement with the monosubstituted compound structure.

In ¹H NMR spectra for compounds **17a–e** are observed new COCH₃-group peaks at 2.28–2.31 ppm. In starting compounds **15a–e** NH₂-group signals are observed at 7.66–7.86 ppm and in acetylated compounds NH-group signals resonated at 10.70–10.75 ppm (**fig. 12**).

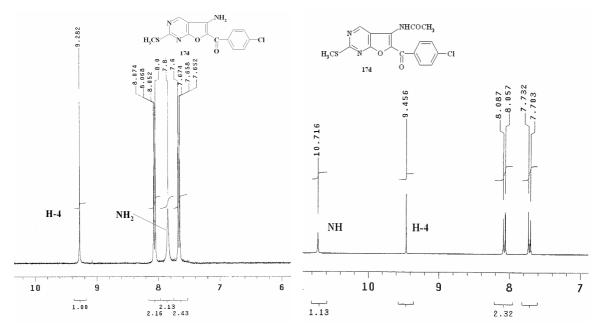


Fig. 12. ¹H NMR spectral fragment of compounds 15d and 17d in DMSO-d₆

Hydrazinolysis of 15b and hydrolysis reactions of 15 b, d was occurred for functionalization possibilities of furo[2,3-d]pirimidines. Required derivatives were not isolated from reaction mixture.

It was found that 5-amino-6-phenacyl-2-methylsulfanylfuro[2,3-d]pyrimidines **15c,e** under oxidative conditions (H₂O₂-acetic acid) cleaved into 5-amino-2,6-dihydroxyfuro[2,3-d]pyrimidine (**22**) and corresponding *p*-substituted carboxylic acid **23c,e**. It seems likely that the SCH₃ and CO groups in the starting compounds **15c,e** are oxidized to the methylsulfonyl and ester groups which then are hydrolyzed under these reaction conditions. Treatment **15c** with *m*-chloroperoxybenzoic acid (*m*-CPBA) in CH₂Cl₂ yielded a mixture of oxidative products, only small amount of compound **24c** was isolated from reaction mixture.

Scheme 12

3. CONCLUSIONS

- 1. Cyclization of ethyl 2-cyano-3-(*S*-methylisothioureido)-2-propenoate under acidic conditions proceeds selectively and leads to formation of ethyl 4-amino-2-methylsulfanylpyrimidine-5-carboxylate while in alkaline media gives rise to a mixture of cyclization and hydrolysis products: 5-cyano-2-methylsulfanyl-4(3*H*)-pyrimidinone, small amounts of 4-amino-2-methylsulfanylpyrimidine-5-carboxylate and (*Z*)- and (*E*)-isomers of ethyl 2-cyano-3-ureido-2-propenoate. Optimal conditions for 5-cyano-2-methylsulfanyl-4(3*H*)-pyrimidinone synthesis is 0.5 M NaOH at 50 °C, reaction in less alkaline media is favourable for formation of 3-ureidocompounds.
- 2. Alkylation of 4(3*H*)-pyrimidinones in the presence of potassium carbonate in boiling acetonitrile readily gives a mixture of O- N_3 -, N_1 -alkylated products (yield of separated components by fractional crystallization respectively: 13–57, 0.3–12 and 3–11 %). By 1 H NMR spectral data, O-alkylated isomer is a major product, N_3 and N_1 -alkylated products proportions varied depending on the nature of the substitute on the aromatic ring 4-position and decreasing in order: $CH_3O > CH_3 > H > Br \ge Cl > NO_2$.
- 3. For N_1 -, N_3 -, and O-alkylated isomers structure estimation are important such spectral characteristics:
 - a) In 1 H NMR spectrums are typical XCH₂ (X=O, N) and H-6 chemical shifts in a field: 5.99–6.11 and 8.93–8.96 for *O*-alkylated isomers, 5.66–5.82 and 8.63–8.69 for N_{3} -isomers, 5.69–5.86 and 8.58–8.61 ppm for N_{I} -isomers respectively.
 - b) In 13 C NMR spectrums are typical chemical shifts of XCH₂ (X=O, N) and pyrimidine ring C-4 position in a field: 70.0–70.5 and 167.3–167.6 for *O*-alkylated isomers, 51.4–52.2 and 170.6–170.7 for N_3 -isomers, 58.9–59.5 and 163.0–163.1 ppm for N_I -isomers respectively.
 - c) In IR spectrum are observed valence vibrations absorption bands of CN and CO groups: 2226–2232 and 1686–1705 for *O*-alkylated isomers, 2224–2234,

- 1690–1698 and 1678–1685 for N_3 -isomers, 2226–2229, 1684–1692 and 1652–1623 cm⁻¹ for N_I -isomers respectively.
- 4. New synthesis method for furo[2,3-d]pyrimidine system was proposed by cyclization of 4-[4'-R-phenacyloxy]-2-methylsulfonylpyrimidin-5-carbonitriles under Thorpe-Ziegler basic conditions. It has been determined that:
 - a) The best yields of 5-amino-6-(4'-*R*-benzoyl)-2-methylsulfanylfuro[2,3-d]pyrimidines obtained in ethanol at 1.5 equivalent of sodium ethoxide.
 - b) Cyclization in system CH₃OH–CH₃ONa (2 equivalents or more) leads to displacement reaction of 2-methylsulfanyl- into methoxygroup as byproduct.
 - c) Cyclization in system KOH–H₂O–DMF occurs with side hydrolysis reaction of ether group.
 - d) In aprotic solvents (CH₃CN, C_6H_6) furo [2,3-d] pyrimidines not formed.
- 5. Acetylation, hydrazinolysis, hydrolysis and oxidation reactions was occurred for functionalization possibilities of 5-amino-6-(4'-*R*-benzoyl)-2-methylsulfanylfuro[2,3-*d*]pirimidines. 5-Acetylaminoderivatives are formed under acetylation in acetic anhydride. Oxidation reaction occurs with formation of 2-methylsulfonylcompound and Baeyer-Villiger oxidation of ketone group.

LIST OF THE PUBLICATIONS

In the journals included in the list of Institute of Scientific Information (ISI)

- 1. V. Gefenas, Z. Stankeviciute, and A. Malinauskas. N(1)-, N(3)-,and O-alkylation of 5-cyano-2-methylsulfanyl-4(3H)-pyrimidinone by 4-substituted ω-bromoacetophenones in the system acetonitrile-K₂CO₃. *Chemistry of Heterocyclic Compounds*, 2009, Vol. 45, No. 11, p. 1413–1415.
- 2. В. Гефенас, Ж. Станкявичюте, А. Малинаускас, С. Тумкявичюс. К вопросу внутримолекулярной циклизации этилового эфира (*E*)-3-(*S*-метилизотиоуреидо)-2-циано-2-пропеновой кислоты. *Химия гетероциклических соединений*, 2010, No. 3, с. 456–460.
- 3. В. Гефенас, Ж. Станкявичюте, А. Малинаускас. Новый метод синтеза фуро[2,3-*d*]пиримидинов путем циклизации 4-(фенацилокси)пиримидин-5-карбонитрилов. *Химия гетероциклических соединений*, 2010, No. 3, с. 464–467.

Conference materials

- 1. Stankevičiūtė Ž., Vaitiulionytė D., Gefenas V., Malinauskas A. 5-Cian-2-metilsulfanil-4(3*H*)-pirimidinono O- ir N-alkilinimo ω-bromacetofenonais produktų ciklizacijos reakcijos. // Mokslinės konferencijos "Organinė chemija" pranešimų medžiaga. Kaunas, 2006 m. Kaunas: Technologija, 2006. p. 66–67. ISBN 9955-25-050-X.
- 2. R. Voronovič, Ž. Stankevičiūtė, V. Gefenas. 3-(S-Alkilizotioureido)-2-cianpropeno rūgščių etilesterių ciklizacijos reakcijos. // Mokslinės konferencijos "Organinė chemija", skirtos Organinės chemijos katedros 85-mečiui paminėti, pranešimų medžiaga. Kaunas, 2007 m. Kaunas: Technologija, 2007. p. 77–78. ISBN 978-9955-25-246-7.
- 3. Ž. Stankevičiūtė, B. Abrutytė, V. Gefenas, A. Malinauskas. 2-Alkilsulfanil-4(3*H*)-pirimidinonų ir ω-bromacetofenonų sąveikos tyrimas ¹H BMR metodu. // Mokslinės konferencijos "Organinė chemija", skirtos Organinės chemijos katedros 85-mečiui paminėti pranešimų medžiaga. Kaunas, 2007 m. Kaunas: Technologija, 2007. p. 79–80. ISBN 978-9955-25-246-7.
- 4. V. Gefenas, Ž. Stankevičiūtė, D. Vaitiulionytė, R. Voronovič and A. Malinauskas. Synthesis and Reactions of New Substituted Furo[2,3-*d*]pyrimidines // International Conference on Organic Synthesis BOS 2008 konferencijos pranešimų medžiaga. Vilnius, 2008 m. Vilnius: Vilniaus universitetas, 2008. p. 80. ISBN 978-9955-33-265-7.
- 5. Gefenas, Ž. Stankevičiūtė, A. Malinauskas. Oxidacion of 5-amino-2-methylsulfanyl-6-phenacylfuro[2,3-*d*]pyrimidines with peroxycarboxylic acids. // 9-osios Lietuvos chemikų konferencijos "Chemija 2009", skirtos akademiko Juozo Matulio 110 metų gimimo sukakčiai pranešimų medžiaga. Vilnius, 2009 m. spalio 16 d. ISBN 978-9986-702-17-7.

ALKILINTŲ 5-CIAN-2-METILSULFANIL-4(3H)-PIRIMIDINONŲ SINTEZĖS IR CIKLIZACIJOS REAKCIJŲ TYRIMAS

REZIUMĖ

Ciklizuojant pradinį (E)-2-cian-3-(S-metilizotioureido)-2-propeno rūgšties etilesteri ledinėje selektyviai susidaro 4-amino-2-metilsulfanilpirimidin-5acto rūgštvie karboksirūgšties etilesteris, o šarminėmis katalizės sąlygomis be ciklizacijos produktų – 5-cian-2-metilsulfanil-4(3*H*)-pirimidinono ir 4-amino-2-metilsulfanil-5-pirimidin-5karboksirūgšties etilesterio, pirmą kartą, kaip individualūs junginiai, išskirti hidrolizės produktai – (E)- ir (Z)-2-cian-3-ureido-2-propeno rūgščių etilesteriai. Ištirta tridentatinio 5-cian-2-metilsulfanil-4(3*H*)-pirimidinono saveika 4-padėtyje pakeistais su ω -bromacetofenonais: alkilinant sistemoje CH₃CN-K₂CO₃-[KI] išskirtos identifikuotos visos trys izomerų serijos – 4-(4'-R-fenaciloksi)-2-metilsulfanil-5pirimidinkarbonitrilai (pagrindinis reakcijos O-alkilproduktas) ir minoriniai N_1 - ir N_3 -alkilinimo produktai. ¹H BMR metodu nustatyta, kad mišiniuose vyrauja Oalkilizomeras, o N_1 - ir N_3 -alkilizomerų santykis priklauso nuo pakaito benzeno žiedo 4oje padėtyje prigimties. Pasiūlytas naujas furo[2,3-d]pirimidino heterociklinės sistemos sintezės būdas 4-(4'-R-fenaciloksi)-2-metilsulfanil-5-pirimidinkarbonitrilų ciklizacija Torpo-Ciglerio bazinėmis salygomis ir ištirtos susintetintų 5-amino-6-(4'-R-benzoil)-2metilsulfanilfuro[2,3-d]pirimidinų acetilinimo, oksidavimo, hidrolizės bei hidrazinolizės reakcijos.

Information about the autor

Name, Surname Živilė Stankevičiūtė

Birth date and place 1977 09 20, Varėna

Education

1983–1995 "A. Ryliškis" secondary school, Senoji Varėna

1995–1999 Vilnius Pedagogical University, bachelor degree in chemistry

and teacher qualification

1999–2001 Vilnius Pedagogical University, master degree in chemistry and

teacher qualification

2004–2009 Doctoral studies at the Institute of Chemistry

Work experience

2001/02–2006/09 Vilnius Pedagogical University, Faculty of Natural Sciences,

Department of Chemistry, laboratory technician

From 2006/10 Vilnius Pedagogical University, Faculty of Natural Sciences,

Department of Chemistry, assistant

Informacija apie autorių

Vardas, Pavardė Živilė Stankevičiūtė

Gimimo vieta ir data 1977 09 20, Varėna

Išsilavinimas

1983–1995 A. Ryliškio vidurinė mokykla, Senoji Varėna

1995–1999 Vilniaus Pedagoginis universitetas, bakalauro laipsnis ir

chemijos mokytojo kvalifikacija

1999–2001 Vilniaus Pedagoginis universitetas, magistro laipsnis ir

chemijos mokytojo kvalifikacija

2004–2009 Doktorantūros studijos Chemijos institute

Darbo patirtis

2001/02–2006/09 Vilniaus Pedagoginis universitetas, gamtos mokslų fakultetas,

chemijos katedra, laborantė

Nuo 2006/10 Vilniaus Pedagoginis universitetas, gamtos mokslų fakultetas,

chemijos katedra, asistentė