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SUMMARY
Large-scale biorepositories and databases are essential to generate equitable, effective, and sustainable ad-
vances in cancer prevention, early detection, cancer therapy, cancer care, and surveillance. The Mutographs
project has created a large genomic dataset and biorepository of over 7,800 cancer cases from 30 countries
across five continents with extensive demographic, lifestyle, environmental, and clinical information. Whole-
genome sequencing is being finalized for over 4,000 cases, with the primary goal of understanding the causes
of cancer at eight anatomic sites. Genomic, exposure, and clinical data will be publicly available through the
International Cancer Genome Consortium Accelerating Research in Genomic Oncology platform. The Muto-
graphs sample andmetadata biorepository constitutes a legacy resource for newprojects and collaborations
aiming to increase our current research efforts in cancer genomic epidemiology globally.
INTRODUCTION

Large-scale biomedical databases and resources help to pro-

mote advances in cancer research applications in diverse

areas including cancer prevention, early detection, therapy,
This is an open access article under the CC BY-NC-ND IG
cancer care, and surveillance. The need to diversify the

current knowledge on cancer genomics around the world

requires the development and sustainability of large cancer

biorepositories in different geographical regions with

complete epidemiological data including demographics, lists
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of relevant environmental exposures, and detailed clinical

information.

Whole-genome sequencing (WGS) of tumor-normal matched

pairs is a powerful method to determine the diversity and

complexity of somatic and germline mutations for both under-

standing the etiology and revealing diagnosis and treatment

opportunities in patients with cancer. Despite the large
2 Cell Genomics 4, 100500, March 13, 2024
amounts of publicly available WGS data, generated from pa-

tients with cancer as part of the global PanCancer Analysis

of Whole Genomes (PCAWG) project1 (n = 3,109) of the Inter-

national Cancer Genome Consortium (ICGC), the Hartwig

Foundation (n = 5,520),2 and, more recently, from the Geno-

mics England’s 100,000 Genomes Project (n = 12,222),3 these

efforts have focused almost exclusively on patients from
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Europe, North America, and Australia, with a limited represen-

tation of cancers from Asian and African countries (Figure 1).

Inclusion of more diverse populations of patients from other

geographical regions in cancer genomic studies still lags

behind,4 and emerging findings from comparative studies of

population diversity in cancer genomics5,6 have established

the necessity to expand diverse genetic and epidemiolog-

ical data.

The Mutographs project is a Cancer Grand Challenges part-

nership funded by Cancer Research UK (CRUK: C98/A24032)

with the primary objective of elucidating the causes of major

global geographical and temporal differences in cancer inci-

dence through mutational signature analysis. The project is

generating mutational signatures and additional genomic

descriptive analyses from WGS of thousands of paired (tu-

mor/blood) samples from patients with cancer diagnosed with

selected cancer types in 30 countries across 5 continents

(Figure 2). The Mutographs study also consolidates an interna-

tional research network working on cancer genomic epide-

miology and exemplifies how genomic studies in cancer can

promote scientific inclusion and equity through international

collaboration.

GENOMIC EPIDEMIOLOGY APPROACHES FOR
IDENTIFYING NEW CAUSES OF CANCER GLOBALLY

Differences in cancer incidence between populations cannot be

uniquely attributable to endogenous mutagenic processes. For

instance, evidence from migrant studies7 and recent time

trends8–11 show that genetic susceptibility cannot sufficiently

explain these differences, indicating that lifestyle and environ-

mental factors should also be responsible.

Traditional epidemiological studies mostly based on large

retrospective case-control analysis have exhausted the possibil-

ities of finding or confirming new potential causes of cancer

because data are outdated or non-existent for current and/or

relevant exposures.12,13 The more recently available large pro-

spective, population-based cohorts and cohort consortia have

improved the resolution of cancer etiological findings by

improving study quality for rare exposures, linking data across

sources such as electronic health records, tumor biobanks, can-

cer registries, geospatial data, and mobile data, among others,

and independently validating previous findings.14 However,

these consortia are far from being representative of many

geographical areas and will fail to identify unknown exposures

possibly relevant for certain regions. The inclusion of state-of-

the-art genomic studies complementary to well-defined epi-

demiological study designs and extensive data collection rede-

fines the new era of genomic epidemiology studies in cancer
research and can help to identify unknown causes of cancer

worldwide.15,16

MUTOGRAPHS RATIONALE: ELUCIDATING GLOBAL
DIFFERENCES IN CANCER INCIDENCE USING
GENOMIC EPIDEMIOLOGY

The Mutographs project focused on investigating the causes of

large international differences in incidence and mortality for

several cancers that are still poorly understood. Five initial can-

cer types, esophageal squamous cell carcinoma (ESCC), renal

cell carcinoma (RCC), colorectal cancer (CRC), pancreatic

ductal adenocarcinoma (PDAC), and gastroesophageal junction

adenocarcinoma (GEJ), including both esophageal adenocarci-

noma (EAD) and adenocarcinomas of gastric cardia, were

selected based on the following criteria: (1) cancers with the

highest differences in incidence across geographical regions,

(2) cancers accounting for more than 10% of new cases and

about 20% of deaths, and (3) cancers for which prevalence of

known risk factors (i.e., smoking, alcohol, and obesity) do not

fully explain the large geographical and temporal differences

across regions (Figure 3).

For instance, CRC, RCC, and PDAC cancer cases show a

similar distribution across geographical regions, being most

common in Central Europe (particularly Czech Republic), North

America, and East Asia (especially Japan and South Korea)

and relatively rare in Africa and certain parts of Asia.18 The known

common risk factors for these three cancers are obesity19 and

tobacco smoking, although their effects are modest (�50%

increased risk). Other suspected risk factors include dietary

components such as animal protein, processed meat,20 and

alcohol consumption for CRC21; exposure to trichloroethylene,22

aristolochic acid,23,24 and per- and polyfluoroalkyl substances

for RCC25,26; and clinical conditions such a hypertension and

diabetes for RCC27,28 and PDAC,29 respectively.

Esophageal cancer, in particular ESCC, is an example of a

cancer with differences in incidence within regions or countries.

High ESCC rates are found in localized populations, including

northeastern Iran, north and central China,30 parts of Africa,

and southern Brazil.31 Established risk factors include tobacco,

opium,32 and alcohol,21 but population attributable fractions

vary between regions. Additionally, there is strongly suggestive

evidence for a role of the consumption of very hot beverages32

(tea/coffee/porridge in Africa, tea in Iran, maté in the south of

Brazil) and a nutritionally deficient diet and exposure to polycy-

clic aromatic hydrocarbons fromdiverse sources, such as indoor

biomass combustion.33

There has been a rapid increase of EAD in recent decades

more evident among men and in specific populations,34
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Figure 1. Geographical distribution of Pan-Cancer Analysis of Whole Genomes (PCAWG) study
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particularly in Western Europe, North America, Australia, and in

the Golestan province of Iran. The reasons for this particular

geographical distribution are still unknown.35

Three additional cancer types were subsequently integrated in

the study based on marked regional incidence differences and/

or specific exposures of interest: (1) head and neck cancer

(HNC), including cases identified in high- and intermediate-inci-

dence countries in Europe36 and South America37 and over-

sampled for cases without reported tobacco and/or alcohol con-

sumption; (2) urinary bladder cancer (UBC), with a selection of

cases diagnosed in the Kerman province in Iran with and without

documented consumption of opium,38 recently classified as a

carcinogenic substance (group I)39; and (3) gallbladder cancer

(GBC), a cancer with the highest incidence rates in countries in

South America and India and for which causes are poorly under-

stood. Cases were selected from different regions in India where

GBC is more common in women in the north, northeastern, and

east (e.g., in the Kamrup urban district, incidence of GBC is 6.4

per 100,000 for men and 12.1 per 100,000 for women) compared

to the southern part of India (in Mumbai, incidence is 1.8 per

100,000 for men and 2.8 per 100,000 in women)40 (Figures 2

and 3).

The eight cancer sites included in the Mutographs study are

also covered in the PCAWG study. However, Mutographs pro-

vides a larger number of cases for these cancer sites (4,397

cases already sequenced in Mutographs vs. 794 in PCAWG)

and a broader geographic representation with 17 countries not

explored in PCAWG from additional regions in eastern Europe,

South America, South and East Asia, and Eastern Africa

(Figure 2).
4 Cell Genomics 4, 100500, March 13, 2024
BUILDING UP A GLOBAL BIOREPOSITORY:
CONSIDERING THE LOCAL PERSPECTIVE AND
EXPERIENCE IN GLOBAL MULTICENTER STUDIES

The International Agency for Research on Cancer (IARC/WHO)

promotes global collaboration in cancer research through the

coordination of research across countries and organizations41

and convening multidisciplinary expertise. With this long-stand-

ing track record and extensive international studies and

network of partners, the Mutographs study was in the position

to bring together existing studies as well as initiate de novo

studies. Collaborating centers were selected among academic

institutions, university hospitals, national cancer institutions,

and private and public hospitals with experience in patient

recruitment and sample and data acquisition for representative

samples of patients with cancer. Through this international

network of 50 institutional collaborators in 30 countries, be-

tween 2018 and 2022, the Mutographs team harmonized bio-

specimen and epidemiologic data on 7,808 cancer cases. Of

the 7,808 cases, 3,023 (39%) were newly recruited, and

4,785 (61%) were based upon existing metadata and selected

biorepositories.

A UNIFIED PROTOCOL FOR CASE SELECTION AND
PROSPECTIVE RECRUITMENT WITH EXTENDED
EXPOSURE DATA

Sample/data collection and inclusion criteria
Participant centers were included in the Mutographs project un-

der two different scenarios or a combination of both.
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Figure 2. Geographical distribution of Mutographs cancer studies with complete whole-genome sequencing

Mutographs cases correspond to those that passed the quality controls for eligibility, tissue and blood processing, and sequencing. White circles represent cities

where cases were recruited: Argentina: Buenos Aires; Brazil: Barretos, Goiania, Porto Alegre, Rio de Janeiro, Sao Paulo, and Vitoria; Bulgaria: Sofia; Canada:

Montreal and Toronto; China: Shanxi; Colombia: Bogotá; Croatia: Zagreb; Czech Republic: Brno, Ceske Budejovice, Olomouc, and Prague; Greece: Athens;

Hungary: Budapest; India: Mumbai; Iran: Gonbad, Gorgan, Kerman, and Tehran; Italy: Aviano and Padova; Japan: Tokyo; Kenya: Eldoret; Lithuania: Vilnius;

Malawi: Blantyre; Poland: Lodz and Warsaw; Romania: Bucharest; Russia: Moscow; Serbia: Belgrade; Slovakia: Banska Bystrica; South Africa: Cape Town;

Tanzania: Moshi; Thailand: Bangkok, Chiang Mai, and Hat Yai; Ukraine: Kiev; UK: Cambridge and Leeds; and US: Rochester.
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Scenario 1: ongoing or retrospective studies and biorepository

collections not being previously sequenced/analyzed, pub-

lished, or included in other international genomic initiatives

such as PCAWG.1 31 centers provided patients that fulfilled

the required criteria for inclusion (as described below).

Scenario 2: prospective collection of newly diagnosed pa-

tients. 19 centers prospectively recruited a sample of represen-

tative patients per cancer site. Patients were excluded if they had

any condition that could interfere with their ability to provide

informed consent or if there were no means of obtaining

adequate tissues as per the protocol requirements. Ethical ap-

provals were first obtained from each local research ethics com-

mittee and federal ethics committee when applicable, as well as

from the IARC ethics committee.

Dedicated standard operating procedures (SOPs) were de-

signed by IARC/WHO following guidelines from the ICGC to

harmonize exposure, lifestyle, pathological, and clinical informa-

tion from all cases to be included in the Mutographs project. The

inclusion criteria for patients were that they were at least 18 years

of age; had a confirmed diagnosis of primary tumors from the list

of cancer sites eligible for the study; had no prior treatment; had

an availability of fresh frozen tumor and, if possible, non-tumor

fresh frozen tissue (FFT) and blood samples; had an availability

of core epidemiological and clinical data (retrospectively or pro-

spectively collected); and had ethics approval and consent for
genetic studies and data sharing. For all patients prospectively

included, after informed consent was obtained, anthropometric

measures were taken, together with relevant information

regarding medical and familial history. Blood samples were

drawn, and a 30min questionnaire was administered by a trained

interviewer to collect complementary lifestyle and environmental

information following the Mutographs SOPs.

Large sample collection
Fresh frozen tumor tissue and blood were collected from all

cases as themost suitable samples for genomic studies. Non-tu-

mor adjacent tissue was available for 53% of the cases. Collec-

tion of oral rinses and urine was also included for a subset of the

HNC and UBC cohorts, respectively. Blood collection in EDTA

tubes consisted in 10 mL preserved as whole blood. When

feasible, blood samples were immediately processed into buffy

coat, plasma, and red blood cells, followed by storage at

�80�C. These collections resulted inmore than 85,000 biological

samples currently stored at the IARC/WHO BioBank (https://ibb.

iarc.fr). Tumor and non-tumor tissues were collected before any

treatment and while avoiding routine care disruption. Unless sur-

gery was the first line of treatment, mucosal biopsies were

collected. Tumor and non-tumor tissues were snap frozen in

liquid nitrogen or promptly preserved in RNAlater (RNAprotect

Tissue Tubes, QIAGEN). Laboratory information management
Cell Genomics 4, 100500, March 13, 2024 5
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Figure 3. Summary of cancer subsites included in the Mutographs biorepository by known and suspected risk factors and differences of

incidence by regions

Age-standardized rates (ASRs) retrieved from Cancer Incidence in Five Continents, Vol. XI.17 AA, aristolochic acid; HPV, human papillomavirus. Created with

BioRender.com.
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systems at local recruiting centers were used to keep track of

samples collected and processed before being transferred to

the IARC/WHO BioBank.
Detailed environmental exposure and clinical
questionnaire: Diversifying local and regional exposure
data
The focus on evaluation of exposures associated with recog-

nized and plausible risk factors makes this biorepository a valu-

able source of detailed and comparable epidemiological meta-

data from patients with cancer diagnosed with the same tumor

site but from diverse geographical regions. We compared the

available exposure information among patients from cancer sites

included in both PCAWG andMutographs to estimate the extent

of the project metadata. PCAWG includes information on to-

bacco smoking and alcohol consumption for three cancer sites.

No additional exposure information was publicly accessible

(Table 1). Data for those two exposures are partially available.

History of tobacco smoking consumption is available for 30%

of patients with PDAC from Canada, 20% of patients diagnosed

with oral cavity (HNC) in India, and 80% of patients with EAD

from the UK. History of alcohol consumption is absent in more

than 70% of these cancer sites in PCAWG. In contrast, tobacco

and alcohol consumption is documented in 97% and 81% of the

Mutographs patients for the three cancer sites (Table 1). Muto-

graphs has retrieved information on environmental exposures

and risk factors for up to 90% of patients from all eight cancer

sites using the following methodology.

Data from prospectively recruited patients were collected us-

ing a centralized database developed in the REDCap platform,42

and IARC/WHO harmonized all retrospective data received as
6 Cell Genomics 4, 100500, March 13, 2024
previously described.43,44 The following core epidemiological

and clinical data were required from all participants in the study:

(1) demographic details (age, sex, ethnic origin, city and place of

residence, and educational status); (2) history of tobacco use,

including frequency and intensity; (3) history of alcohol consump-

tion, including frequency and intensity; (4) anthropometric data

(height, weight at diagnosis); (5) medical history of diabetes, hy-

pertension, and acid reflux/heartburn for PDAC, RCC, and GEJ,

respectively; and (6) consumption of hot drinks (for ESCC) or red

and processed meat (for CRC). In addition to the data collected

under the core variables mentioned above, all prospectively and

partially retrospectively recruited patients provided information

on oral health, physical activity, occupational exposures, and

family history of cancer. We also collected information on the

following regional and/or population-specific exposures.

(1) Opium consumption including route of administration, fre-

quency, and intensity for patients with cancer recruited in

Iran.

(2) Consumption of traditional South American maté inclu-

ding frequency, temperature, and intensity for patients

from and/or recruited in the south of Brazil and in

Argentina.

(3) Residential history and consumption of herbal remedies

as possible sources of aristolochic acid exposure for pa-

tients with RCC from Romania, Serbia, Bulgaria, Croatia,

Hungary, Greece, and Ukraine.

Clinical follow-up information up to 3 years after cancer diag-

nosiswas retrieved, if possible, fromclinicalcharts fromretrospec-

tivecollections, andadditional information for up to5years isbeing

collected from the prospectively recruited patients. IARC/WHO

http://BioRender.com


Table 1. Distribution of PCAWG and Mutographs cancer cases with smoking and alcohol consumption information

Characteristic

Esophagus Head and neck (HNC) Pancreas (PDAC)

Mutographs (GEJ) PCAWG (EAD) Mutographs PCAWG Mutographs PCAWG

Total 570 100 315 57 572 330

Countries Brazil, China (Shanxi),

Iran, Japan, Kenya,

Malawi, Tanzania, UK

UK Argentina, Brazil,

Colombia, Czech

Republic, Greece,

Italy, Romania,

Slovakia

India, US Brazil, Canada,

Czech Republic,

Iran, Poland,

Russia, Serbia,

UK, US

Australia,

Canada

Sex assigned at birth

Female (%) 104 (18) 14 (14) 72 (23) 10 (18) 291 (51) 152 (46)

Male (%) 466 (82) 86 (86) 243 (77) 47 (82) 281 (49) 176 (53)

Unknown (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (0.6)

Age at diagnosis

(years), median (IQR)

67 (60.0, 73.0) 70 (62.5, 76.0) 59 (50.0, 68.0) 53 (42.0, 62.0) 66 (59.1, 72.0) 65 (56.0, 73.0)

Unknown (%) 13.0 (2.3) 1.0 (1.0) 0.0 (0.0) 0.0 (0.0) 6.0 (1.0) 1.0 (0.3)

Tobacco status (%)

Current smoker 159 (28) 20 (20) 152 (48) 8 (14) 122 (21) 5 (1.5)

Ever smoker 2 (0.4) 0 (0) 0 (0) 0 (0) 24 (4.2) 0 (0)

Ex-smoker 190 (33) 48 (48) 93 (30) 0 (0) 145 (25) 29 (8.8)

Never 171 (30) 20 (20) 70 (22) 5 (8.8) 280 (49) 61 (18)

Unknown 48 (8.4) 12 (12) 0 (0) 44 (77) 1 (0.2) 235 (71)

Alcohol status (%)

Current drinker 107 (19) 0 (0) 122 (39) 0 (0) 98 (17) 0 (0)

Ever drinker 46 (8.1) 27 (27) 21 (6.7) 6 (11) 166 (29) 30 (9.1)

Ex-drinker 20 (3.5) 0 (0) 99 (31) 0 (0) 28 (4.9) 0 (0)

Never 126 (22) 0 (0) 73 (23) 7 (12) 251 (44) 11 (3.3)

Unknown 271 (48) 73 (73) 0 (0) 44 (77) 29 (5.1) 289 (88)

EAD, esophageal adenocarcinoma; GEJ, gastroesophageal junction adenocarcinoma; HNC, head and neck cancer; PDAC, pancreatic ductal adeno-

carcinoma; PCWAG, the global PanCancer Analysis of Whole Genomes.
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harmonized all retrospective data. All data were de-identified

locally through the use of a dedicated alpha-numerical identifier

system before being transferred to IARC/WHO central database.
Centralized expert pathology review
Diagnostic pathology departments from participating centers

provided diagnostic details on morphology and histology of pa-

tients through standard abstract forms, together with a re-

presentative hematoxylin and eosin (H&E)-stained slide of

formalin-fixed, paraffin-embedded (FFPE) tumor tissues when-

ever possible. For all patients, to reconfirm the original histology,

IARC/WHO centralized the entire pathology workflow on FFT tu-

mors and coordinated their digital pathology examination

included in the study, as well as FFPE sections when available,

via a web-based report completed by a dedicated expert panel

for each cancer site. High-resolution images of FFT tumors were

randomly assigned to panel members, all blind to the original

diagnosis. In addition to diagnosis and confirmation of tumor

type, the percentage of viable cellular elements (tumor, inflam-

matory, and other non-tumor cells) and necrosis were recorded.

17% of randomly selected H&E slides underwent two indepen-

dent pathology evaluations. A minimum of 50% viable tumor

cells were required for eligibility to WGS. The percentage of pro-
cessed cases with less than 50% tumor content was 18% for

UBC, 20% for RCC, 31% for CRC, 36% for GBC, 43% for

HNC, 45% for ESCC, and 49% for GEJ. Tumor enrichment pro-

cedures were applied, when possible, by laser capture microdis-

section (LCM) of the unwanted non-tumoral area. Approximately

half of the GEJ cases and 96% of PDAC cases underwent LCM

to enrich tumor cellularity.

Extraction of DNA and quantification from tumor and paired

blood was centrally conducted at IARC/WHO43 and is stored

for subsequent analyses.

Out of the 7,808 recruited cancer cases, 4,400 were success-

fully processed at IARC/WHO, passed the pathological quality

control metrics, and were sent to the Wellcome Sanger Institute

for paired WGS and primary mutational signature analyses. 655

cases are yet to be processed and will be evaluated through our

pathology pipeline and stored in the study biorepository for

future studies.
SEQUENCING ANALYSES AND CURRENT
PUBLICATIONS

The data sequencing pipeline has been developed and validated

by the Wellcome Sanger Institute as previously described.43
Cell Genomics 4, 100500, March 13, 2024 7
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WGS (150 bp paired end) is performed on the Illumina NovaSeq

6000 platform with target coverage of 403 for tumors and 203

for matched non-tumor tissues. Cases are excluded if coverage

is below 303 for tumors or 153 for non-tumor tissue.

The data analysis workflow focuses on 4 areas: (1) the charac-

terization of the tumor genome for each sample with specific

data generated on driver genes, copy-number profiles, evalua-

tion of tumor mutation burden, structural rearrangements, and

other cancer-specific information such as the presence of viral

and/or bacterial sequences for specific cancer sites; (2) the

extraction and attribution of mutational signatures based on

base substitutions (single and double), insertions/deletions,

copy-number variants, and chromosomal rearrangements; (3)

analyses highlighting possible contributions of germline variants

and ancestry distribution45 to the mutational signature profiles

and associated exposures; and lastly, (4) associations between

somatic genomic profiles and epidemiological data focused

mainly on recognized and plausible risk factors. In 2021, the

analysis on 552 patients with ESCC from eight countries with

varying incidence rates was completed and showed a high prev-

alence of APOBEC signatures in all cases, aswell as specificmu-

tation signatures linked to opium and alcohol consumption, and

homologous DNA repair deficiency.43 Analysis of 962 patients

with clear cell RCC is ongoing, and preliminary results are shed-

ding light on the contribution of environmental causes on the

high risk of this cancer in Central Europe and Japan.44 Most of

the sequencing and analysis efforts are now focused on cases

of HNC, CRC, PDAC, and GEJ. By early 2023, we completed

the sequencing of 2,777 matched-normal cancer genomes,

and these samples are undergoing bioinformatics cancer geno-

mics analysis. Data from these cases have been released to the

Mutographs teams for subsequent combined analysis.

DATA REPOSITORY AND SHARING

A general description of theMutographs project is available on the

project website: https://www.mutographs.org.WGS data and pa-

tient metadata after analyses are being deposited andmade pub-

licly available via the European Genome Phenome Archive (EGA),

currently associated with studies EGAS00001003542 and

EGAS00001002725. All algorithms and codes used for genomic

and epidemiological analysis and figures are publicly available

with repositories noted in the respective publications.43,44

In addition, Mutographs is one of the participating programs

of the ICGC Accelerating Research in Genomic Oncology

(ARGO).46 Therefore, all genomic, exposure, and clinical data

will be publicly available through the ICGC ARGO data platform

after agreement of the participating centers. An online catalog of

the Mutographs biorepository is under development and will

allow the broader research community to propose additional

projects and/or analyses beyond the scope of Mutographs.

ONGOING AND FUTURE INITIATIVES FOR THE
MUTOGRAPHS BIOREPOSITORY

The study of the mutational signatures operative in the genomes

of patients with cancer around the world will generate a compre-

hensive catalog of the mutational processes that cause human
8 Cell Genomics 4, 100500, March 13, 2024
cancer. An increasing number of signatures of different mutation

classes are being reported, and correlations are being drawn to

various exposures and/or endogenous factors. Experimental

validation of signatures linked to specific exposures in human

sample collections adds valuable information to establish cau-

sality.47 Therefore, it is fundamental to gain a mechanistic

understanding of howmutational signatures arise through exper-

imental exploration.

To completely understand the etiology of cancer and to apply

this knowledge to cancer prevention,15 analysis of non-cancer

tissues from patients with cancer and patients with benign or

preneoplastic conditions48 can provide insight into background

mutational processes in healthy cells49 and into the effects of

suspected mutagens and exposures prior to the development

of symptomatic lesions and, eventually, the diagnosis of can-

cer.50–52 PROMINENT (CRUK: CGCATF-2021/100007, NIH:

1OT2CA278681-01) is a recently awarded Cancer Grand Chal-

lenges project aiming to detect and characterize mutagenic

and promoting exposures before cancer develops using human

tissue, mouse, and organoid models. Combined multiomics ap-

proaches are being used to understand the distributions of mu-

tations and early neoplastic clones in non-tumor tissues from pa-

tients with cancer included in the Mutographs biorepository.

Further investigation of mutagenic processes in non-tumor tis-

sues using non-invasive sources of tissue (i.e., blood, urine,

and nasopharyngeal, buccal, cervical, and anal swabs) will allow

us to easily identify and monitor carcinogenic exposures and ul-

timately determine how these influence clinical and epidemiolog-

ical patterns of cancer development. The resources created by

Mutographs should also allow for subsequent studies address-

ing poorly understood cancer-related questions and shed light

on the current and future challenges in cancer research.

BEYOND MUTOGRAPHS: EXPANDING GENOMIC
EPIDEMIOLOGICAL REPOSITORIES AND INCLUSIVE
RESEARCH COLLABORATIONS

TheMutographs study is an example of novel genomic initiatives

needed to expand our understanding of causes and processes

related to cancer onset on a global scale. Some of the key as-

pects that contributed to the successful creation of such a

large-scale cancer biorepository and that we suggest should

be applied to similar initiatives in the future include the following.

Establishing long-lasting research collaborations and stan-

dardized protocols: a fundamental pillar in any international

collaborative project involves complying with a detailed and

unique recruitment protocol for patient selection and sample

collection while adapting to the specific local or regional context

for an effective implementation of the study protocol. Such a bal-

ance was achieved in Mutographs by close communication and

follow up with the different institutions throughout the duration of

the project. The Mutographs study team investigated the local

research needs in terms of available personnel, minimum infra-

structure requirements, and institutional procedures for patient

approach, routes of diagnosis, and treatment. Questionnaires

were revised to include relevant exposures, adapt the questions’

wording, and avoid possible sensitive questions. Center-specific

adjustments were included in the protocols if necessary.

https://www.mutographs.org/
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Research agreements as well as material and data transfer

agreements were better established after close discussions

with collaborators to comply with legal and data protection re-

quirements in each country, the research institutions, and the

funders. Essentially, publication policies and ownership of data

and materials must be clearly stated to guarantee ethical

research conduct and consistent use of the resulting data.

Mitigating difficulties and adapting: the COVID-19 pandemic

had a profound impact on the recruitment of patients with cancer

between 2020 and 2022. However, centers continuously adapt-

ed their protocols to maintain patient inclusion rates and

completeness of interview data and gained experience in new

strategies for patient approach. For instance, the enrollment

phase of patient identification, initial interview, information about

the protocol, signature of informed written consent, lifestyle

questionnaires, and some clinical information was conducted

exclusively via telephone or video calls, and documents were

provided electronically. These are strategies that were success-

fully piloted under these restrictive conditions and will continue

to be used in other research protocols to facilitate patient recruit-

ment and follow up.

Investing in large, geographically and population-diverse bio-

repositories: in the current largest international genomic con-

sortium, PCAWG,1 the overall ancestry distribution was heavily

weighted toward donors of European descent (77% of total) fol-

lowed by East Asians (16%), as expected for large contributions

from European, North American, and Australian projects. Initial

admixture analysis for four cancer sites in Mutographs shows

that the percentages of donors of European, African, East Asian,

and mixed-descent ancestry are, respectively, 25%, 30%, 32%,

and 13% for ESCC; 90%, 1%, 5%, and 4% for RCC; 78%, 1%,

14%, and 7% for CRC; and 72%, 3%, 1%, and 24% for HNC.

This reflects the geographical regions included based on inci-

dence rates and risk exposures as previously discussed. Finan-

cial support is always required for participation in these large

genomic epidemiology studies and should be allocated based

on the contribution and needs of each collaborator. Funding

bodies and cancer research agencies should envision additional

financial and research capacity investment in large genomic

epidemiology studies supporting participation of populations

systematically underrepresented in this field.

Limitations of Mutographs and opportunities for future
studies
There are cancer types not included inMutographs that are high-

ly relevant to understanding the etiology of cancer and should be

considered in additional genomic epidemiology studies. For

instance, high-incident cancers such as lung cancer adenocarci-

noma, particularly prevalent in women, non-smokers, and Asian

populations,53 as well as less-incident, rare but frequently

aggressive cancer types, for which many of the causes are still

unknown. In addition, closer attention should be paid to the inte-

gration of genomics studies evaluating new exposures emerging

as possible cancer risk factors, including air pollution,54 vap-

ing,55 and opioid use.56

The knowledge generated by new large and geographically

diverse biorepositories such as Mutographs have the potential

to reveal previously unknown risk factors and ultimately establish
causality, specifically by linking putative risk factors to specific

genomic features. This, in turn, can guide the tailoring of preven-

tion strategies and aid in the global reduction of the burden of

cancer.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

xgen.2024.100500.
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