Abstract [eng] |
In the thesis is studied the limit distribution of partial sums of certain linear time series models with nonstationary long memory and certain statistics which involve partial sums processes. Philippe, Surgailis, Viano (2006, 2008) introduced time-varying fractionally integrated filters and studied the limit distribution of partial sums processes of these filters under finite variance set-up. In the thesis is studied the limit distribution of partial sums processes of infinite variance time-varying fractionally integrated filters. We assume that the innovations belong to the domain of attraction of an α-stable law (1<α<2) and show that the partial sums process converges to some α-stable self-similar process. In the thesis is studied the limit of the Increment Ratio (IR) statistic for Gaussian observations superimposed on a slowly varying deterministic trend. The IR statistic was introduced in Surgailis, Teyssière, Vaičiulis (2008) and its limit distribution was studied under the assumption of stationarity of observations. The IR statistic can be used for testing nonparametric hypotheses about d-integrated (-1/2 < d <3/2) behavior of the time series, which can be confused with deterministic trends and change-points. This statistic is written in terms of partial sums process and its limit is closely related to the limit of partial sums. In particularly, the consistency of the IR statistic uses asymptotic independence of distant partial sums, the fact is established in the thesis for a wide class of linear processes. |