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Introduction

History of the problem and main results

In mathematics, analytic number theory is a branch of number theory that uses methods from
mathematical analysis to solve problems that concern the integers. It is often said to have begun
with Dirichlet’s introduction of Dirichlet L-functions. Let s = σ+ it be a complex variable, then
Dirichlet L-functions are defined by

L(s, χ) =

∞∑
n=1

χ(n)

ns
(σ > 1),

where χ(n) is a Dirichlet character - a completely multiplicative function that obtains values
from a unit circle. Dirichlet L-functions were used to give the first proof of Dirichlet’s theorem
on arithmetic progressions.

Theorem (Dirichlet’s theorem, 1837). Let a and q be positive co-prime (i.e. (a,q)=1) integers.
Then arithmetic progression

a+ qn, n = 0, 1, 2, . . .

contains infinitely many prime numbers.

Analytic number theory can be divided into two main branches. The first branch is additive
number theory that mainly uses Hardy-Littlewood circle and sieve methods. Best known con-
jecture from the field is the Goldbach conjecture that was proposed in the middle of the 18th
century - every even integer grater than two can be written as a sum of two prime numbers.

The second branch of analytic number theory is multiplicative number theory. The key result
in the field is the prime number theorem. Recall prime-counting function

π(x) = #{p|p− prime, p ≤ x} =
∑
p≤x

1.

Theorem (prime number theorem, 1896).

lim
x→∞

π(x)

x/ log x
= 1,

where log x = lnx.

In this thesis we denote lnx by log x. The above result first time was published in 1896
(independently) by J. Hadamard and C. J. de la Vallee Poussin.

The prime number theorem is strongly connected with the Riemann zeta function. In 1859
B. Riemann published a paper that showed a connection between prime numbers and the zeros

8



of the Riemann zeta function. The Riemann zeta function is defined by the Dirichlet series

ζ(s) =

∞∑
n=1

1

ns
(σ > 1).

Moreover the Riemann zeta function can be expressed as the Euler product

ζ(s) =
∏

p−prime

(
1− 1

ps

)−1
(σ > 1). (1)

The Euler product gives that ζ(s) 6= 0, for σ > 1. The Riemann zeta function by analytic
continuation can be extended elsewhere in the complex plane except for a simple pole at s = 1.
It satisfies the functional equation

ζ(s) = ∆(s)ζ(1− s), where ∆(s) := 2sπs−1Γ(1− s) sin(πs2 ). (2)

The zeros that appear from the factor ∆(s) are called the trivial zeros (∆(s) = 0 if and only if
s = −2n, for n = 1, 2, . . .). From the Euler product (1) and the functional equation (2) we can
deduce that the non trivial zeros (we denote them as ρ = β + iγ) must lie in the critical strip,
0 ≤ σ ≤ 1. The line σ = 1

2 is called the critical line and the Riemann hypothesis states that all
non-trivial zeros lie on the critical line. If the Riemann hypothesis is true then the error term
of the asymptotic formula of π(x) is the best possible.

Figure 1: Curve t 7→ ζ( 1
2
+ it), where t varies from 0 to 50.

In Figure we see that the first non-trivial zeros of the Riemann zeta function lie on the
critical line. At the moment it is known that the first 1022 + 104 non-trivial zeros lie on the
critical line.

Next we will introduce some problems that concern the Riemann zeta function and Dirichlet
L-functions and are related to the main results of the thesis.
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The Riemann zeta function

Continuous moments

(a)

(b)

Figure 2: When power of the function increases we see where the Riemann zeta function obtains large
values.

There are many unsolved problems related to the Riemann zeta function. One of them is
the bounds for continuous moments

Ik(T ) =

∫ T

0

∣∣∣ζ(1

2
+ it

)∣∣∣2kdt.
(See Figure 2 (a) plot of |ζ( 1

2 + it)| and (b) plot of |ζ( 1
2 + it)|4) Currently only two asymptotic

formulas for Ik(T ) are known, k = 1 and k = 2. In 1918 Hardy and Littlewood [23] proved the
case k = 1 and in 1928 Ingham [27] published the case k = 2.

On the other hand some of expected order lower and upper bounds are known for Ik(T ). In
1978 Ramachandra [41] under the Riemann hypothesis for any non negative real k showed

Ik(T )� T (log T )k
2

.

In 1981 Heath-Brown [25] proved the above result unconditionally for any non-negative rational
k.

Conditional upper bounds were recently obtained by Soundararajan [44]. He showed that
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under the Riemann Hypothesis for any non negative real k holds

Ik(T )� T (log T )k
2+ε, (3)

where ε is a fixed positive quantity. Further in this thesis by ε we denote a fixed positive quantity.
The upper bounds are connected with a well known hypothesis from the field that is called

the Lindelöf hypothesis. The Lindelöf hypothesis states that |ζ( 1
2 + it)| � tε, t > 1. The

hypothesis is equivalent to the statement Ik(T )� T 1+ε. It is obviously that from the Riemann
hypothesis we can deduce the Lindelöf hypothesis.

Discrete moments

(a)

(b)

Figure 3: (a) Plot of an absolute value of the derivative of the Riemann zeta function. Black dots
indicate values obtained by the function at non-trivial zeros of the Riemann zeta function. In plot we
denote ζ(1, 1

2
+ It) = ζ′( 1

2
+ It). (b) Plot of an absolute value of the Riemann zeta function. Black dots

indicate relative extremas.

Let ρ = β + iγ be a non-trivial zero of the Riemann zeta function. The discrete moments

Sk(T ) =
∑

0<γ≤T

|ζ ′(ρ)|2k

are considered as an important problem and only conditional (under the assumption of the
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Riemann hypothesis) results are known (see Figure 3 (a)). In 1984 (I was born that year)
Gonek [19] under the Riemann hypothesis proved an asymptotic formula for Sk(T ), when k = 1.

On the other hand Ng and Milinovich [34] under the Riemann Hypothesis for any positive
integer k recently found the expected order lower bounds

Sk(T )� T (log T )k
2+2k+1.

Milinovich [35] under the Riemann hypothesis for any positive integer k found upper bounds

Sk(T )� T (log T )k
2+2k+1+ε,

Many authors investigated the following discrete moments. Let γ and γ+ denote consecutive
ordinates of the non-trivial zeros of the Riemann zeta function. Moments of the Riemann zeta
function at its relative extrema on the critical line are defined by

Mk(T ) =
∑

0<γ≤T

max
γ≤τγ≤γ+

∣∣∣∣ζ (1

2
+ iτγ

)∣∣∣∣2k

(see Figure 3 (b)). In 1985 Conrey and Ghosh [6] under the Riemann hypothesis for k = 1

obtained an asymptotic formula

M1(T ) ∼ e2 − 5

2

T

2π
(log T )2.

Recently Milinovich [36] under the Riemann hypothesis for all positive integers k found

T (log T )k
2+1−ε �Mk(T )� T (log T )k

2+1+ε.

Extreme values

Figure 4: Curve t 7→ ζ( 1
2
+ it), where t varies from 0 to 50. The radius of the circle is 2 and the thick

black line has 45◦ angle with the real axis.
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Concerning the growth of the Riemann zeta function on the critical line recently Soundarara-
jan [43] showed that

max
t∈[T,2T ]

∣∣ζ( 1
2 + it)

∣∣� exp

(
(1 + o(1))

√
log T

log log T

)
as T →∞.

This result states that if we draw a circle with the center at the origin and the radius equal to
C exp(

√
log T

log log T ), here C is a fixed positive constant, we will find at least one point out of the
circle and that point belongs to the curve (see Figure 4). However this result as well as all other
Ω-estimates for the Riemann zeta function can not localize the extreme values.

Density

(a) (b)

Figure 5: Curves t 7→ ζ( 1
3
+ it) (a) and t 7→ ζ( 2

3
+ it) (b), where t varies from 0 to 50.

In 1914 Bohr and Courant [2] showed that values of the Riemann zeta function on the
vertical line, which lie in the critical strip 1

2 < Res < 1, are dense in C (see Figure 5 (b)). Under
the Riemann hypothesis Garunkštis and Steuding [17] showed that values of the Riemann zeta
function on the vertical line which lie in the half-plane Res < 1

2 are not dense in C (see Figure
5 (a)). The question whether the values of the Riemann zeta function on the critical line are
dense is open (see Figure 1).

Main results obtained for the Riemann zeta function

In Figure 6 we see that the real part of the curve t 7→ ζ( 1
2 + it) has a tendency to be positive.

That was noticed by H. M. Edwards. In his monograph [12] he writes "...the real part of ζ(s)

has a strong tendency to be positive." ( page 121). The critical line - that separates a curve
t 7→ ζ(σ + it), 1

2 < σ < 1 that is dense in C from a curve t 7→ ζ(σ + it), σ < 1
2 that is not dense

in C (under the Riemann hypothesis) - is very mysterious. It is not known whether the curve
t 7→ ζ( 1

2 + it) is dense in C. Our main result (Corollary 1.5.1) states that the curve t 7→ ζ( 1
2 + it)

expand to all directions in the complex plane, i.e. if we draw a circle on the complex plane
with the center at the origin and we draw a half-line that starts at the center then the curve
t 7→ ζ( 1

2 + it) intersect with the half-line outside the circle infinitely many times (see Figure 4).
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Figure 6: Curve t 7→ ζ( 1
2
+it), where t varies from 0 to 50: (a) black thick dots are generalized Gram’s

points tn(0) and (b) black thick dots are generalized Gram’s point tn( 37π).

As a separate case of our result we can state the Riemann zeta function obtains infinitely many
negative values and they are unbounded. Later we will formulate Corollary (1.5.1).

Recall the functional equation for the Riemann zeta function,

ζ(s) = ∆(s)ζ(1− s), where ∆(s) := 2sπs−1Γ(1− s) sin(πs2 ). (4)

It follows immediately that ∆(s)∆(1− s) = 1, hence ∆( 1
2 + it) lies on the unit circle for real t.

Given an angle φ ∈ [0, π), denote by tn(φ) with n ∈ N the positive roots of the equation

e2iφ = ∆( 1
2 + it)

in ascending order. These roots (we call them Generalized Gram’s points, see Figure 6 (a) tn(0)

and (b) tn( 3
7π)) correspond to intersections of the curve t 7→ ζ( 1

2 + it) with straight lines eiφR
through the origin. Of special interest are intersections with the real line; in this case φ = 0 and
the roots are called Gram’s points (see Figure 6 (a)), after Gram [22] who observed that the
first of those roots separate consecutive zeta zeros on the critical line. The observation is called
Gram’s Law. It was shown by Titchmarsh [47] that Gram’s law is violated infinitely often.

Now recall that e−iφζ( 1
2 + itn(φ)) is real. Hence, we may write t+n (φ) in place of tn(φ) if

e−iφζ( 1
2 + itn(φ)) > 0 and t−n (φ) if e−iφζ( 1

2 + itn(φ)) < 0 (see Figure 7). Now we state the main
result of the thesis.

Corollary (1.5.1). For any φ ∈ [0, π), there are arbitrary large positive and negative values of
e−iφζ( 1

2 + itn(φ)). More precisely,

max
0<t±n (φ)6T

∣∣ζ( 1
2 + it±n (φ))

∣∣� (log T )
5
4 .

If the Riemann hypothesis is assumed then for any arbitrary small δ > 0 we have

max
0<t±n (φ)6T

∣∣ζ( 1
2 + it±n (φ))

∣∣� (log T )
3
2−δ.

The corollary emerges from a combination of theorems concerning lower, upper bounds and
asymptotic formula for the third moment. The approach was introduced by Kalpokas, Korolev

14
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Figure 7: Curve t 7→ ζ( 1
2 + it), where t varies from 0 to 50: (a) black thick dots are values

at generalized Gram’s points t+n ( 3
7π) and (b) black thick dots are values at generalized Gram’s

points t−n ( 3
7π).

and Steuding [32].
Next we formulate a corollary that gives more information about extreme values (check

Figure 4)

Corollary (1.5.2). Let φ 6= π
2 and φ ∈ [0, π), then

max
0<tn(φ)≤T

∣∣ζ( 1
2 + itn(φ))

∣∣� exp

((
1

2
+ o(1)

)√
log T

log log T

)
.

All the theorems that are stated in Chapter 1 are necessary to prove the Corollaries (1.5.1)
and (1.5.2).

The first theorem considers the number of generalized Gram’s points in the interval (0,T].

Theorem (1.2.1). Uniformly for φ ∈ [0, π), as T →∞,

∑
0<tn(φ)6T

1 =
T

2π
log

T

2πe
+O(log T ).

Next we prove asymptotic formulas for the first, the absolute second and the third moments.
We use a contour integration with Cauchy’s theorem along with a saddle point technique. To
obtain simple poles with residues equal to one at generalized Gram’s points we use an idea
introduced by Kalpokas and Steuding [31].

Theorem (1.2.2). Uniformly for φ ∈ [0, π), as T →∞,

∑
0<tn(φ)6T

ζ
(
1
2 + it

)
= 2eiφ cosφ

T

2π
log

T

2πe
+O

(
T

1
2+ε
)
, (5)

and

∑
0<tn(φ)6T

∣∣ζ ( 12 + it
)∣∣2 =

T

2π

(
log

T

2πe

)2

+ (2c+ 2 cos(2φ))
T

2π
log

T

2πe

+
T

2π
+O

(
T

1
2+ε
)
, (6)
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where c := limN→∞( 1
N

∑N
n=1

1
n − logN) = 0.577 . . . is the Euler-Mascheroni constant.

Theorem (1.2.3). Uniformly for φ ∈ [0, π), as T →∞,∑
0<tφn≤T

(
ζ
(
1
2 + it

))3
= 2eiφ cosφ

T

2π
P3

(
log

T

2π

)
+ e2iφ

T

2π
log

T

2πe
+O (T ) ,

where P3(log T ) is a suitable polynomial of degree 3.

Further we investigate sums of the absolute values of the Riemann zeta function (and its
derivatives) over the generalized Gram’s points. The following theorem concerns the lower
bounds. The idea is introduced by Rudnick and Soundararajan [42]. To adopt it we use the
approach introduced by Kalpokas and Steuding [31] and later we use the generalized divisor
function used by Heath-Brown [25].

Theorem (1.3.7). For any rational k > 1 and any non-negative integer l, uniformly for φ ∈
[0, π), as T →∞,

∑
0<tn(φ)6T

∣∣∣ζ(l) ( 12 + itn(φ)
)∣∣∣2k � T (log T )k

2+2kl+1.

Next we investigate the upper bounds. The main approach is introduced by Soundararajan
[44] and a discrete case is developed by Milinovich [35].

Theorem (1.4.1). Assume the Riemann Hypothesis. For any non-negative integers k and l,
uniformly for φ ∈ [0, π), as T →∞

∑
0<tn(φ)6T

∣∣∣ζ(l) ( 12 + itn(φ)
)∣∣∣2k �k,l,ε T (log T )k

2+2kl+1+ε.

Unconditionally for any non-negative real k, uniformly for φ ∈ [0, π), as T →∞∑
0<tn(φ)6T

∣∣ζ ( 12 + itn(φ)
)∣∣2k �k,ε T (log T )k

2+1+ε.

The last three corollaries shows the connection between discrete and continuous moments.
The idea was introduced by Christ and Kalpokas [4, 5].

Corollary (1.5.4). As T →∞∫ T

0

ζ
(
1
2 + it

)
d(θ(t)) =

T

2
log

T

2πe
+O

(
T

1
2+ε
)
,∫ T

0

∣∣ζ ( 12 + it
)∣∣2 d(θ(t)) =

T

2

(
log

T

2πe

)2

+ 2c
T

2
log

T

2πe
+
T

2
+O

(
T

1
2+ε
)
,∫ T

0

ζ
(
1
2 + it

)3
d(θ(t)) =

T

2
log

T

2πe
+O

(
T

1
2+ε
)
,

where θ(t) is defined in formula (1.7).

Using Corollary (1.5.4) we can obtain known lower and upper bounds for continuous moments
(see Figure 2).
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Corollary (1.5.5). For any rational k > 1 and any non-negative integer l, as T →∞,∫ T

1

∣∣∣ζ(l) ( 12 + it
)∣∣∣2k � T (log T )k

2+2kl.

Corollary (1.5.6). Assume the Riemann Hypothesis.
For any non-negative real k, uniformly for φ ∈ [0, π), as T →∞,∫ T

1

∣∣ζ ( 12 + it
)∣∣2k � T (log T )k

2+ε.

For any non-negative integer k and any positive integer l, uniformly for φ ∈ [0, π), as T →∞,∫ T

1

∣∣∣ζ(l) ( 12 + it
)∣∣∣2k � T (log T )k

2+2kl+ε.

Dirichlet L-functions

The Dirichlet L-functions are the generalizations of the Riemann zeta function. It is conjectured
that different primitive Dirichlet L-functions have no common nontrivial zeros (see Fujii [15,
Conjecture 3], Perelli [38]). Towards this hypothesis Fujii [13] unconditionally obtained, that if
χ1 and χ2 are different primitive characters to the same modulus q, then the positive proportion
of zeros of L(s, χ1) and L(s, χ2) are non-coincident. Here a zero ρ is called a coincident zero
of L(s, χ1) and L(s, χ2) if L(ρ, χ1) = L(ρ, χ2) = 0 with the same multiplicity. Assuming the
Riemann Hypothesis for ζ(s) Conrey, Ghosh, and Gonek [8] proved that at most two-thirds of
zeros of ζ(s) are also zeros of L(s, χ), where χ is a non-principle character. Conrey, Ghosh,
and Gonek [8] also note that their method allows to show (under the Generalized Riemann
Hypothesis (GRH)) that any two Dirichlet L-functions with non-equivalent characters have at
most two-thirds of zeros in common. For related results see also Raghunathan [40].

Main results obtained for Dirichlet L-functions

Let s = σ + it denote a complex variable. The Dirichlet L-function is defined by

L(s, χ) =

∞∑
n=1

χ(n)

ns
(σ > 1),

where χ(n) is a Dirichlet character modulo q. For χ mod 1 we get the Riemann zeta function
L(s, χ) = ζ(s). The Generalized Riemann Hypothesis (GRH) states that inside the critical strip
0 < σ < 1 every Dirichlet L-function has zeros only on the critical line σ = 1

2 . Zeros in the
critical strip are called non-trivial and we denote them by ρχ = βχ + iγχ. A Dirichlet character
χ mod q is said to be primitive if it is not induced by any other character of modulus strictly less
than q. The unique principal character modulo q is denoted by χ0. The character χ0 mod 1 is
the only one principal and primitive character. For a Dirichlet character χ mod q the associated
Gauss sum is defined by

G(n, χ) =

q∑
a=1

χ(a) exp

(
2πi

an

q

)
.

If n = 1 we denote τ(χ) = G(1, χ). For a primitive character χ mod q we have |τ(χ)| = √q and
for the principal character χ0 we have τ(χ0) = µ(q), where µ(q) is the Möbius function.

To prove the following theorem we use a contour integration with Cauchy’s theorem along
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with a saddle point technique.

Theorem (2.2.1). Let A and B be positive constants. Let ψ mod Q and χ mod q be primitive
Dirichlet characters and χ 6= ψ. Then, uniformly for Q� logA T and q � logB T , we have

∑
0<γχ≤T

L(ρχ, ψ)L(1− ρχ, ψ) =
φ(Q)

Q

T

2π
log2 T

2π
+ a1

T

2π
log

T

2π
+ a2

T

2π

+O

(
T

1− c

log
3
4
+ε

T

)
,

where real constants a1, a2 depend only on q, Q, and are defined by the formula (2.40) below.
If we assume GRH then the left-hand side of the last equality can be replaced by∑

0<γχ≤T

|L( 1
2 + itχ, ψ)|2

and the error term can be replaced by O(q1+εQεT
1
2+ε + qQ

9
2+εT ε + (QT )

1
2+ε) uniformly for all

Q and q.

Next we investigate the first moments.

Theorem (2.3.1). Let A and B be positive constants. Let ψ mod Q and χ mod q be primitive
Dirichlet characters and χ 6= ψ. Then, uniformly for Q� logA T and q � logB T , we have

∑
0<γχ≤T

L(ρχ, ψ) =
T

2π
log

Tq

2πe
− δ(q,Q)L(1, χψ)ψ(−1)τ(ψ)

τ(χψ0)

φ(Q)

T

2π

+
L′

L
(1, ψχ)

T

2π
+O

(
T exp(−c log

1
4−ε T )

)
,

where δ(q,Q) = 1 if q|Q, δ(q,Q) = 0 otherwise, ψ0 is the principal Dirichlet character modQ

and c is a positive absolute constant.
Under GRH the error term can be replaced by O

(
(TQ)1/2+εqε

)
, which is valid uniformly for

all Q and q.

To deduce the following corollary we use Hölder’s inequality.

Corollary (2.4.1). Assume GRH. Let A be any positive real number. Let ψ mod Q and χ mod q

be primitive Dirichlet characters and χ 6= ψ. Then, uniformly for q � (log T )A and Q �
(log T )2−ε, we have ∑

0<γχ≤T
L(1/2+γχ,ψ)6=0

1� Q

φ(Q)
T.

Actuality

In the thesis we present new results from the theory of the Riemann zeta and Dirichlet L-
functions. We introduce a new kind of discrete moments for the Riemann zeta function, we
show that the curve ζ( 1

2 + it), t > 0 expands to all directions on the complex and we present
a method how to localize extreme values on the critical line. For the moments of Dirichlet
L-functions we find asymptotic formulas. Those formulas give an insight about the distribution
of the zeros of the Dirichlet L-functions.
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Aims and problems

Discrete moments of the Riemann zeta function on the critical line

The first aim of the thesis is to investigate value distribution of the Riemann zeta function on the
critical line. The approach is to investigate discrete moments that emerges from the intersection
points between a straight line crossing the origin and the curve of the Riemann zeta function
on the critical line (see Figure 6)

Sk(T, φ) =
∑

0<tn(φ)≤T

ζ

(
1

2
+ itn(φ)

)k

and

Sk,l(T, φ) =
∑

0<tn(φ)≤T

∣∣∣∣ζ(l)(1

2
+ itn(φ)

)∣∣∣∣2k .
We search solutions for the following problems

1. Asymptotic formulas for S0(T, φ), S1(T, φ), S2(T, φ), S3(T, φ) and S1,0(T, φ).

2. Unconditional lower bounds for Sk,l(T, φ), where k ≥ 1 is a rational number and l is a non
negative integer.

3. Conditional upper bounds for Sk,0(T, φ), where k is a non negative real number.

4. Conditional upper bounds for Sk,l(T, φ), where k and l are positive integers.

Sums of Dirichlet L-function over non-trivial zeros of another Dirichlet
L-function

The second aim of the thesis is to investigate sums of Dirichlet L-function over non-trivial zeros
of another Dirichlet L-function. We search solutions for the problems that concerns asymptotic
formulas for the following sums∑

0<γχ≤T

L(ρχ, ψ),
∑

0<γχ≤T

L(ρχ, ψ)L(1− ρχ, ψ).

Methods

We use recent methods introduced by Rudznik and Soundararajan [42], Soundararajan [43, 44]
and well known methods introduced by Conrey, Gosh and Gonek [7, 8, 9, 10]. Also, elements
of the theory of analytic functions (contour integration, residue theory, approximation theory,
moment estimates) are used. Several new approaches are introduced by the author and his
collaborators [31, 32].

Novelty

All results of the thesis are new.
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Statements presented for the defense

Main statements

• The curve ζ( 1
2 + it), t > 0 expands to all directions on the complex plane.

• We localize extreme values of the Riemann zeta function on the critical line

max
t∈[T,2T ]

∣∣ζ( 1
2 + it)

∣∣� exp

(
(1 + o(1))

√
log T

log log T

)
as T →∞.

• We present a method that show how to transfer discrete moments to continuous moments.

Recall the discrete moments

Sk(T, φ) =
∑

0<tn(φ)≤T

ζ

(
1

2
+ itn(φ)

)k
and Sk,l(T, φ) =

∑
0<tn(φ)≤T

∣∣∣∣ζ(l)(1

2
+ itn(φ)

)∣∣∣∣2k .
We present additional statements necessary to prove the main statements. We found:

1. asymptotic formulas for S0(T, φ), S1(T, φ), S2(T, φ), S3(T, φ) and S1,0(T, φ),

2. unconditional lower bounds for Sk,l(T, φ), where k ≥ 1 is a rational number and l is a non
negative integer,

3. conditional upper bounds for Sk,0(T, φ), where k is a non negative real number,

4. conditional upper bounds for Sk,l(T, φ), where k and l are positive integers,

5. asymptotic formulas for∑
0<γχ≤T

L(ρχ, ψ),
∑

0<γχ≤T

L(ρχ, ψ)L(1− ρχ, ψ).
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Chapter 1

Discrete moments of the Riemann
zeta function on the critical line

Let s = σ + it denote a complex variable. The Riemann zeta function is defined by

ζ(s) =

∞∑
n=1

1

ns
(σ > 1).

We investigate the value-distribution of the Riemann zeta function ζ(s) on the critical line
s = 1

2 + iR. Recall the functional equation for the zeta function,

ζ(s) = ∆(s)ζ(1− s), where ∆(s) := 2sπs−1Γ(1− s) sin(πs2 ). (1.1)

It follows immediately that ∆(s)∆(1− s) = 1, hence ∆( 1
2 + it) lies on the unit circle for real t.

Given an angle φ ∈ [0, π), denote by tn(φ) with n ∈ N the positive roots of the equation

e2iφ = ∆( 1
2 + it)

in ascending order. These roots correspond to intersections of the curve t 7→ ζ( 1
2 + it) with

straight lines eiφR through the origin (see Kalpokas and Steuding [31]).
Recall the function ∆(s) defined in (1.1). It is well-known that

∆(σ + it) =

(
|t|
2π

) 1
2−σ−it

exp(i(t+ π
4 ))(1 +O(|t|−1)) for |t| > 1 (1.2)

uniformly for any σ from a bounded interval. Hence,

1

∆(s)− e2iφ
=

−e−2iφ

1− e−2iφ∆(s)
= −e−2iφ

(
1 +

∞∑
k=1

e−2kiφ∆(s)k

)
(1.3)

for σ > 1
2 . Obviously, ∆( 1

2 + it) is a complex number from the unit circle for t ∈ R. Moreover,
∆′( 1

2 + it) is non-vansishing for sufficiently large t as follows from the asymptotic formula

∆′

∆
(σ + it) = − log

|t|
2π

+O(|t|−1) for |t| > 1. (1.4)
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By (1.1) and (1.2) we can write

∆( 1
2 + it) = e−2θ(t), (1.5)

where
θ(t) = Im log

(
Γ

(
1

4
+ i

t

2

))
− t

2
log π. (1.6)

Using Stirling’s formula for t ≥ 1 we get

θ(t) =
t

2
log

t

2πe
− π

8
+

∞∑
k=1

ak
tk
, (1.7)

where the coefficients ak can be computed explicitly1. The function θ(t) is differentiable and
according to (1.7)

θ′(t) = 1
2 log

t

2πe
+ 1

2 +O(t−2) (1.8)

holds for t ≥ 1. Hence,
1
2 log

t

2πe
< θ′(t) < 1

2 log
t

2πe
+ 1.

This implies that θ(t) is monotonously increasing for t large enough.
Due to (1.5), the solutions of ∆( 1

2 + it)− eiφ = 0 correspond to the solutions of

θ(t) ≡ φ mod π.

Next we introduce certain Dirichlet polynomials

X(s) =
∑
n6X

xn
ns
, Y (s) =

∑
m6Y

ym
ms

, (1.9)

where X,Y 6 T . Moreover, we define the following quantities

X0 = max
n6X

|xn|, Y0 = max
m6Y

|ym|, X1 =
∑
n6X

|xn|
n
, Y1 =

∑
m6Y

|ym|
m

.

and we set
X1(s) =

∑
n6X

xn
ns
, Y1(s) =

∑
m6Y

ym
ms

.

The following estimate will be used during the proofs

ζ(l)(σ + it)�


|t| 12−σ+ε, if σ ≤ 0,
|t| 12 (1−σ)+ε, if 0 < σ ≤ 1,

|t|ε, if σ > 1.

(1.10)

It can be derived from the case l = 0 (check [46]) by applying Cauchy’s estimate for the
derivatives of analytic functions to ζ(s) in a small disc centered at s = σ + it.

1.1 Lemmas

We shall use a variation of Lemma 5.1 from Ng [37]:

1e.g. a1 = 1/48, a2 = 0, a3 = 7/5760,
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Lemma 1.1.1. Suppose the series f(s) =
∑∞
n=1 αnn

−s converges absolutely for Res > 1 and∑∞
n=1 |α|nn−σ � (σ − 1)−γ for some γ ≥ 0 as σ → 1 + 0. Next, let X(s) and Y (s) be

Dirichlet polynomials as defined in (1.9). Then, uniformly for a ∈ (1, 2] and for any α ∈ C with
|Reα| < a− 1,

J =
1

2πi

∫ a+iT

a+i

f(s+ α)X(s+ α)Y (1− s+ α)
∆′(s)

∆(s)
ds

= − T

2π

(
log

T

2πe

) ∑
m6X
mn6Y

αnxmymn
(mn)1+2Reα

+O

(
Y a−Reα(log T )2X0Y0

(a+ Reα− 1)γ+1

)
,

where the implicit constant is absolute.

Proof. Changing the order of summation and the integration, we get

J =

∞∑
n=1

∑
m6X, k6Y

ka−α

(mn)a+α
αnxmyk

k

1

2π

∫ T

1

∆′

∆
(a+ it)

(
k

mn

)it
dt.

Next, the contribution of O - term from (1.4) to J does not exceed in order

X0Y0(log T )

∞∑
n=1

|αn|
na+Reα

∑
m6X

1

ma+Reα

∑
k6Y

ka−Reα−1 � Y a−Reα(log T )2X0Y0
(a+ Reα− 1)γ+1

.

Extracting the diagonal term (when k = mn) in the above expression for J , we get

J =

(
−
∫ T

1

log
t

2π

dt

2π

) ∑
m6X
mn6Y

αnxmymn
(mn)1+2Reα

+O(J1) +O

(
Y a−Reα(log T )2X0Y0

(a+ Reα− 1)γ+1

)
,

where

J1 =

∞∑
n=1

∑
m6X, k6Y
mn6=k

ka−Reα

(mn)a+Reα

|αnxmyk|
k

|jk,mn|

≤ Y a−Reα−1X0Y0
∞∑
n=1

∑
m6X, k6Y
mn 6=k

|αn|
(mn)a+Reα

|jk,mn|

with

jk,r =

∫ T

1

(
log

t

2π

)(
k

r

)it
dt

2π
.

Integrating by parts shows for k 6= r that

|jk,r| =
∣∣∣∣∫ T

1

log(t/(2π))

2π log (k/r)
d

(
k

r

)it∣∣∣∣ ≤ 2

π
log

T

2π

∣∣∣∣log
k

r

∣∣∣∣−1.
Setting r = mn, βr =

∑
n|r |αn| in the expression for J1, we have

J1 � Y a−Reα−1(log T )X0Y0
∑
k6Y

∞∑
r=1

βr
ra+Reα

∣∣∣∣log
k

r

∣∣∣∣−1.
Recall that ζ(s) has a simple pole at s = 1. Thus, the contribution of the terms with r 6 k/2
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and r > 3k/2 does not exceed in order

Y a−Reα−1(log T )X0Y0 · Y
∞∑
r=1

βr
ra+Reα

� Y a−ReαX0Y0(log T )

∞∑
n=1

|αn|
na+Reα

∞∑
m=1

1

ma+Reα

� Y a−Reα(log T )X0Y0
(a+ Reα− 1)γ+1

.

For k/2 < r 6 3k/2, r 6= k we set r = k + ν; since | log(k/r)|−1 � k|ν|−1, the corresponding
part of J1 can be estimated as follows:

Y a−Reα1(log T )X0Y0
∑
k6Y

∑
0<|ν|6k/2

βk+ν
(k + ν)a+Reα

k

|ν|

� Y a−Reα(log T )X0Y0
∑

0<|ν|6Y/2

1

|ν|
∑

2|ν|6k6Y

βk+ν
(k + ν)a+Reα

� Y a−Reα(log T )2X0Y0
∞∑
k=1

βk
ka+Reα

� Y a−Reα(log T )2X0Y0
(a+ Reα− 1)γ+1

.

The lemma is proved.

Next lemma is a variation of Gonek’s lemma:

Lemma 1.1.2. Suppose the series f(s) =
∑∞
n=1 αnn

−s converges absolutely in the half-plane
Res > 1,

∑∞
n=1 |αn|n−σ � (σ − 1)−γ for some γ > 0 as σ → 1 + 0 and αn � nε for any ε > 0.

Then we have, for any fixed integer m > 0 and c > 1 uniformly for a ∈ (1, 2],

1

2πi

∫ a+iT

a+ic

f(s)∆(1− s)
(

∆′

∆
(s)

)m
ds

= (−1)m
∑
n6 T

2π

αn(log n)m +O

(
T a−

1
2

(a− 1)γ
(log T )m + T

1
2+ε

)
.

For the proof we refer to Lemma 5 from [19] (in the original paper the remainder term is not
uniform in a > 1).

We proceed with a modified version of Lemma 6 from [19].

Lemma 1.1.3. Let l be a non-negative integer and 1 ≤ |t| ≤ T . Then uniformly for σ ∈
[− 1

log T , 1 + 1
log T ] we have

ζ(l)(1− s) = (−1)l
l∑

k=0

(
l

k

)
ζ(k)(s)∆(1− s)

(
log

t

2π

)l−k
+O(t

σ
2−1+ε).

Proof. Taking the l-th derivative of (1.1) according to Leibniz’s rule, we find that

ζ(l)(1− s) =

l∑
k=0

(
l

k

)
(−1)kζ(k)(s)∆(l−k)(1− s). (1.11)

Next we will show that

∆(ν)(1− s) = ∆(1− s)
(
− log

t

2π

)ν
+O(tσ−

3
2 (log t)ν−1). (1.12)
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holds uniformly for σ from a bounded interval, |t| ≥ 1 and ν a non-negative integer.
To prove (1.12) we use induction. The case ν = 0 is true. Now suppose the equality (1.12)

is proved for ν = 0, . . . , µ− 1. We differentiate the identity

∆′(1− s) = ∆(1− s)∆′

∆
(1− s)

and obtain

∆(µ)(1− s) =

µ−1∑
ν=0

(
µ− 1

ν

)
∆(ν)(1− s)

(
∆′

∆

)(µ−ν−1)

(1− s).

By (1.4) and Cauchy’s estimate for the derivatives of an analytic function applied to a small
disc centered at s, we find that(

∆′

∆

)(ν)

(1− s)� |t|−1, for ν ≥ 1.

Now this, (1.2) and (1.4) yield the proof of (1.12). The combination of (1.10), (1.11) and (1.12)
finishes the proof of the Lemma.

1.2 Asymptotic formulas

1.2.1 Number of intersection points

In this section we find the asymptotic formula for the number of intersection point between the
straight line crossing the origin and the curve of the Riemann zeta function.

Theorem 1.2.1. Uniformly for φ ∈ [0, π), as T →∞,

∑
0<tn(φ)6T

1 =
T

2π
log

T

2πe
+O(log T ).

Proof. Recall that ∆( 1
2 +it) is a complex number from the unit circle whenever t ∈ R. Moreover,

∆′( 1
2 + it) is non-vansishing, which follows from the asymptotic formula (1.4). Consequently,

∆( 1
2 + it) is spinning on the unit circle around the origin in clockwise direction with increasing

speed as t → ∞. Moreover, it follows that there exists no proper real interval I such that
ζ( 1

2 + it) lies on a straight line eiφR for all t ∈ I. For the first, lets assume that

∆( 1
2 + iT ) = ∆(1

2 ) = 1. (1.13)

Then the number of roots of the equation ∆( 1
2 + it) = e2iφ with 0 ≤ t ≤ T is up to the sign

equal to the winding number of the curve

η : [0, 1]→ C, λ 7→ η(λ) := ∆(1
2 + iλT ).

This yields

−
∑

0<tn(φ)≤T

1 =
1

2πi

∫
η

ds

s
=

T

2π

∫ 1

0

∆′

∆
( 1
2 + iλT )dλ.

In order to use (1.4) we divide the integration interval into two subintervals. Noting that there
are only finitely many roots of ∆( 1

2 + it) − e2iφ for 0 < t ≤ 1, we find for the term with the
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integral on the right-hand side above

T

2π

{∫ 1/T

0

+

∫ 1

1/T

}
∆′

∆
( 1
2 + iλT )dλ

= O(1) +
T

2π

∫ 1

1/T

(
− log

λT

2π
+O((λT )−1)

)
dλ.

Hence, the asymptotic formula of Theorem 1.2.1 follows by integration; however, to get rid of
our assumption (1.13) on T , by (1.4) we may substitute this by any T at the expense of an error
O(log T ). This proves Theorem 1.2.1.

1.2.2 First and second moments

The following theorem gives asymptotic formulas for the associated first and second discrete
moments

Theorem 1.2.2. Uniformly for φ ∈ [0, π), as T →∞,

∑
0<tn(φ)6T

ζ
(
1
2 + itn(φ)

)
= 2eiφ cosφ

T

2π
log

T

2πe
+O

(
T

1
2+ε
)
, (1.14)

and

∑
0<tn(φ)6T

∣∣ζ ( 12 + itn(φ)
)∣∣2 =

T

2π

(
log

T

2πe

)2

+ (2c+ 2 cos(2φ))
T

2π
log

T

2πe

+
T

2π
+O

(
T

1
2+ε
)
, (1.15)

where c := limN→∞( 1
N

∑N
n=1

1
n − logN) = 0.577 . . . is the Euler-Mascheroni constant.

Proof of (1.14). We begin with the estimation

∣∣ζ( 12 + it
)∣∣� T 1/6+ε.

It is a well-known bound from zeta function theory (see [28]). Note that it is sufficient to obtain
(1.2.2) for the sum over the segment c < tn(φ) 6 T , where c > 32π is a large absolute constant
(32π comes from the inequality 2( t

2π )−
1
2 < 1

2 that is used in the proof).
Next, without loss of generality we may set T = 1

2 (tν(φ) + tν+1(φ)). Since the points
s = 1

2 + itn(φ) are the roots of the function ∆(s)− e2iφ and∑
c<tn(φ)6T

ζ( 1
2 + itn(φ)) =

∑
c<tn(φ)6T

ζ( 1
2 − itn(φ))

the sum in question can be rewritten as a contour integral:

∑
c<tn(φ)6T

ζ( 1
2 − itn(φ)) =

1

2πi

∫
�
ζ(1− s) ∆′(s)

∆(s)− e2iφ
ds;

here � stands for the contour clockwise oriented rectangular contour with vertices a + ic, a +

iT, 1−a+ iT, 1−a+ ic, where a = 1 + (log T )−1. Let I1 and I3 be integrals over right and left
sides of contour, and I2 and I4 be the integrals over the top and bottom edges of the contour.
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We may assume the constant c so large that the relations

|∆(a+ it)| =
(
t

2π

)1/2−a(
1 +O(t−1)

)
≤ 2

(
t

2π

)−1/2
<

1

2

hold for any t > c.
In view of (1.3) for I1 we have

I1 = −e−2iφ
∫ a+iT

a+ic

ζ(s)
∆′

∆
(s)

(
1 +

∞∑
k=1

e−2kiφ∆(s)k

)
ds = −e−2iφ(j1 + j2),

where

j1 =

∫ a+iT

a+ic

ζ(s)
∆′

∆
(s)ds,

j2 =

∫ a+iT

a+ic

ζ(s)
∆′

∆
(s)

∞∑
k=1

e−2kiφ∆(s)kds.

Lemma 1.1.1 with X(s) ≡ 1, Y (s) ≡ 1, applied to j1, leads to

j2 = − T

2π
log

T

2πe
+O

(
(log T )6

)
.

Next, by standard arguments we obtain

j3 �
∫ T

c

log t

(a− 1)

dt√
t
� T

1
2+ε.

Hence
I1 = e−2iφ

T

2π
log

T

2π
+O

(
T

1
2+ε
)
.

Further, transforming the integral I3 via s 7→ 1− s we find

I3 = − 1

2πi

∫ a+iT

a+ic

ζ(s)
∆′(1− s) ds

∆(1− s)− e−2iφ

= − 1

2πi

∫ a+iT

a+ic

ζ(s)
∆′

∆
(s)

∞∑
k=0

e−2iφ∆(s)kds.

We notice that I3 = e2iφ(j2 + j3). Hence

I3 =
T

2π

(
log

T

2πe

)
+O

(
(log T )6

)
.

In order to estimate the integral I2 over the top and bottom edges we write

F (s) = ζ(s)∆(1− s) ∆′

∆
(s)

1

∆(s)− e2iφ

= ζ(1− s)∆(s)
∆′

∆
(s)

(
1 +

e2iφ

∆(s)− e2iφ

)
.

Since T = 1
2 (tν(φ) + tν+1(φ)) for some ν, the inequality |∆(s) − e2iφ| > 1

3 from Paragraph
3.1.1 holds over the segment of integration. Using the bound |ζ(σ + it)| � t(1−σ)/3 log t, for
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s = σ + iT , 1
2 6 σ 6 a (see [28]), we get

|F (s)| � (log T )|ζ(s)∆(1− s)| � (log T )T
1
3
(1−σ)Tσ−

1
2 � T

1
2+ε.

In the case 1− a 6 σ 6 1
2 we have

|F (s)| � (log T )|ζ(1− s)∆(s)| � (log T )T
1
3 (1−(1−σ)) log TT

1
2−σ � T

1
2+ε.

Thus, I2 � T
1
2+ε. Finally, the bound I4 = O(1) is obvious.

To loose the condition T = 1
2 (tν(φ) + tν+1(φ)) we note the sum over the intersection points

over a bounded interval is bounded by � T
1
6+ε and is within agreement with the error term of

the asymptotic formula.
We showed ∑

c<tn(φ)6T

ζ( 1
2 + itn(φ)) = (1 + e−2iφ)

T

2π
log

T

2π
+O

(
T

1
2+ε
)
.

Proof of (1.15). We begin with the estimation

∣∣ζ( 12 + it
)∣∣� T 1/6+ε.

It is a well-known bound from zeta function theory (see [28]). Note that it is sufficient to obtain
(1.2.2) for the sum over the segment c < tn(φ) 6 T , where c > 32π is a large absolute constant
(32π comes from the inequality 2( t

2π )−
1
2 < 1

2 that is used in the proof).
Next, without loss of generality we may set T = 1

2 (tν(φ) + tν+1(φ)). Since the points
s = 1

2 + itn(φ) are the roots of the function ∆(s)− e2iφ and∑
c<tn(φ)6T

|ζ( 1
2 + itn(φ))|2 =

∑
c<tn(φ)6T

ζ( 1
2 + itn(φ))ζ( 1

2 + itn(φ))

the sum in question can be rewritten as a contour integral:

∑
c<tn(φ)6T

|ζ( 1
2 + itn(φ))|2 =

1

2πi

∫
�
ζ(1− s)ζ(s)

∆′(s)

∆(s)− e2iφ
ds;

here � stands for the contour clockwise oriented rectangular contour with vertices a + ic, a +

iT, 1−a+ iT, 1−a+ ic, where a = 1 + (log T )−1. Let I1 and I3 be integrals over right and left
sides of contour, and I2 and I4 be the integrals over the top and bottom edges of the contour.
We may assume the constant c so large that the relations

|∆(a+ it)| =
(
t

2π

)1/2−a(
1 +O(t−1)

)
≤ 2

(
t

2π

)−1/2
<

1

2

hold for any t > c.
In view of (1.3) for I1 we have

I1 = −e−2iφ
∫ a+iT

a+ic

ζ2(s)
∆′

∆
(s)

(
1 +

∞∑
k=1

e−2kiφ∆(s)k

)
ds = −e−2iφ(j1 + j2),
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where

j1 =

∫ a+iT

a+ic

ζ2(s)
∆′

∆
(s)ds,

j2 =

∫ a+iT

a+ic

ζ2(s)
∆′

∆
(s)

∞∑
k=1

e−2kiφ∆(s)kds.

Lemma 1.1.1 with X(s) ≡ 1, Y (s) ≡ 1, applied to j1, leads to

j1 = − T

2π

(
log

T

2πe

)
+O

(
(log T )6

)
.

Next, by standard arguments we obtain

j3 �
∫ T

c

log t

(a− 1)2
dt√
t
� T

1
2+ε.

Hence
I1 = e−2iφ

T

2π

(
log

T

2πe

)
+O

(
T

1
2+ε
)
.

Further, transforming the integral I3 via s 7→ 1− s we find

I3 = − 1

2πi

∫ a+iT

a+ic

ζ(s)2∆(1− s) ∆′(1− s) ds
∆(1− s)− e−2iφ

= − 1

2πi

∫ a+iT

a+ic

ζ(s)2∆(1− s)∆′

∆
(s)

∞∑
k=0

e−2iφ∆(s)kds

= −j1 − e−2iφ(j2 + j3),

where

j1 =
1

2πi

∫ a+iT

a+ic

ζ(s)2∆(1− s)∆′

∆
(s)ds,

j2 =
1

2πi

∫ a+iT

a+ic

ζ(s)2
∆′

∆
(s)ds,

j3 =
1

2πi

∫ a+iT

a+ic

ζ(s)2
∆′

∆
(s)

∞∑
k=1

e−2kiφ∆(s)kds.

We notice that I1 = −e−2iφ(j2 + j3) and I3 = j1 + I1. By Lemma 1.1.2 we find

I3 =
∑
n≤ T

2π

d2(n) log n+ e2iφ
T

2π

(
log

T

2πe

)
+O

(
T

1
2+ε
)
.

The sum on the right hand side can be handled using summation by parts, since by standard
bound for the Dirichlet divisor problem we have∑

n≤x

d2(n) = x log x+ (2c− 1)x+O(x
1
2+ε).

Hence

I3 =
T

2π

(
log

T

2π

)2

+ (2c− 2)
T

2π
log

T

2πe
e2iφ

T

2π

(
log

T

2πe

)
+O

(
T

1
2+ε
)
.

To loose the condition T = 1
2 (tν(φ) + tν+1(φ)) we note the sum over the intersection points
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over a bounded interval is bounded by � T
1
6+ε and is within agreement with the error term of

the asymptotic formula.
In order to estimate the integral I2 over the top and bottom edges we write

F (s) = ζ2(s)∆(1− s) ∆′

∆
(s)

1

∆(s)− e2iφ

= ζ2(1− s)∆(s)
∆′

∆
(s)

(
1 +

e2iφ

∆(s)− e2iφ

)
.

Since T = 1
2 (tν(φ) + tν+1(φ)) for some ν, the inequality |∆(s) − e2iφ| > 1

3 from Paragraph
3.1.1 holds over the segment of integration. Using the bound |ζ(σ + it)| � t(1−σ)/3 log t, for
s = σ + iT , 1

2 6 σ 6 a (see [28]), we get

|F (s)| � (log T )|ζ2(s)∆(1− s)| � (log T )
(
T

1
3
(1−σ))2Tσ− 1

2 � T
1
2+ε.

In the case 1− a 6 σ 6 1
2 we have

|F (s)| � (log T )|ζ2(1− s)∆(s)| � (log T )
(
T

1
3 (1−(1−σ)) log T

)2
T

1
2−σ � T

1
2+ε

Thus, I2 � T
1
2+ε. Finally, the bound I4 = O(1) is obvious.

To loose the condition T = 1
2 (tν(φ) + tν+1(φ)) we note the sum over the intersection points

over a bounded interval is bounded by � T
1
6+ε and is within agreement with the error term of

the asymptotic formula.
We showed

∑
0<tn(φ)6T

∣∣ζ ( 12 + itn(φ)
)∣∣2 =

T

2π

(
log

T

2πe

)2

+ (2c+ 2 cos(2φ))
T

2π
log

T

2πe

+
T

2π
+O

(
T

1
2+ε
)
.

1.2.3 Third moment

The following theorem gives the asymptotic formula for the highest moment that is possible to
handle.

Theorem 1.2.3. Uniformly for φ ∈ [0, π), as T →∞,∑
0<tφn≤T

ζ
(
1
2 + itn(φ)

)3
= 2eiφ cosφ

T

2π
P3

(
log

T

2π

)
+ e2iφ

T

2π
log

T

2πe
+O (T ) ,

where P3(log T ) is a suitable polynomial of degree 3.

Proof. The method of proof is along the lines of Kalpokas and Steuding [31]. It suffices to
evaluate

S(T ) =
∑

c<tn(φ)6T

ζ
(
1
2 + itn(φ)

)
ζ2
(
1
2 − itn(φ)

)
,

where c > 32π is an absolute constant and T = 1
2 (tν(φ) + tν+1(φ)) for some ν. Setting a =
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1 + (log T )−1, we find by Cauchy’s theorem

S(T ) =
1

2πi

{∫ a+iT

a+ic

+

∫ 1−a+iT

a+iT

+

∫ 1−a+ic

1−a+iT
+

∫ a+ic

1−a+ic

}
ζ(s)ζ(1− s)2 ∆′(s)

∆(s)− e2iφ
ds

=

4∑
k=1

Ik,

say.
First we consider I1. In view of (1.3) we obtain

I1 = −e
−2iφ

2πi

∫ a+iT

a+ic

ζ3(s)∆(1− s)∆′

∆
(s)

(
1 +

∞∑
k=1

e−2ikφ∆k(s)

)
ds

= −e−2iφ
(
j1 + e−2iφj2 + j3

)
,

where

j1 =
1

2πi

∫ a+iT

a+ic

ζ3(s)∆(1− s)∆′

∆
(s)ds,

j2 =
1

2πi

∫ a+iT

a+ic

ζ3(s)
∆′

∆
(s) ds,

j3 =
1

2πi

∫ a+iT

a+ic

ζ3(s)
∆′

∆
(s)

∞∑
k=1

e−2i(k+1)φ∆k(s)ds.

By Gonek’s Lemma 1.1.2 (with m = 1) and Lemma 1.3.3 we have

j1 = −
∑
n≤ T

2π

d3(n) log n + O
(
T

1
2+ε
)

= − T

2π
P3

(
log

T

2π

)
+ O

(
T

1
2+ε
)
,

where P3(x) is a computable polynomial of degree three.
Next, Lemma 1.1.1 with X(s) ≡ 1, Y (s) ≡ 1, applied to j2, leads to

j2 = − T

2π

(
log

T

2πe

)
+ O

(
(log T )6

)
.

Finally, by standard arguments we obtain

j3 �
∫ T

c

log t

(a− 1)3
dt√
t
�
√
T (log T )4.

Hence,

I1 = e−2iφ
T

2π
P3

(
log

T

2π

)
+ e−4iφ

T

2π

(
log

T

2πe

)
+ O

(
T

1
2+ε
)
.

Further, transforming the integral I3 we find

I3 = − 1

2πi

∫ a+iT

a+ic

ζ(1− s)ζ2(s)
∆′(1− s) ds

∆(1− s)− e−2iφ

= − 1

2πi

∫ a+iT

a+ic

ζ3(s)∆(1− s)∆′

∆
(s)

∞∑
k=0

e−2iφ∆(s)kds.
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The latter expression equals e2iφ I1, hence we may deduce (do not forget to conjugate)

I3 =
T

2π
P3

(
log

T

2π

)
+ e2iφ

T

2π

(
log

T

2πe

)
+ O

(
T

1
2+ε
)
.

In order to estimate the integral I2 over the top and bottom edges we write

F (s) = ζ3(s)∆(1− s) ∆′

∆
(s)

1

∆(s)− e2iφ

= ζ3(1− s)∆(s)
∆′

∆
(s)

(
1 +

e2iφ

∆(s)− e2iφ

)
.

Since T = 1
2 (tν(φ) + tν+1(φ)) for some ν, the inequality |∆(s) − e2iφ| > 1

3 from Paragraph
3.1.1 holds over the segment of integration. Using the bound |ζ(σ + it)| � t(1−σ)/3 log t, for
s = σ + iT , 1

2 6 σ 6 a (see [28]), we get

|F (s)| � (log T )|ζ3(s)∆(1− s)| � (log T )
(
T

1
3
(1−σ))3Tσ− 1

2 �
√
T (log T )4.

In the case 1− a 6 σ 6 1
2 we have

|F (s)| � (log T )|ζ3(1− s)∆(s)| � (log T )
(
T

1
3 (1−(1−σ)) log T

)3
T

1
2−σ �

√
T (log T )4.

Thus, I2 �
√
T (log T )4. Finally, the bound I4 = O(1) is obvious. Collecting together the above

results, we obtain

S(T ) = (1 + e−2iφ)
T

2π
P3

(
log

T

2π

)
+ (e2iφ + e−4iφ)

T

2π

(
log

T

2πe

)
+ O

(
T

1
2+ε
)

Now it remains to note that we must multiply S(T ) by e4iφ to obtain∑
0<tn(φ)6T

ζ3
(
1
2 + itn(φ)

)
= e4iφS(T ) + O(1).

The theorem is proved.

Remark. It is possible to compute the coefficients of the polynomial P3 as follows. Define
the polynomial P2(u) = A2u

2 +A1u+A0 by the relation∑
n6x

d3(n) = xP2(log x) + o(x),

which is a special case of the asymptotic from Lemma 1.3.3 we get

P2(log x) = ress=1

(
xsζ3(s)

s

)
and hence A2 = 1

2 , A1 = 3γ−1, A0 = 1+3(γ2−γ+γ1), where γ, γ1, . . . are the coefficients
of Laurent expansion

ζ(s) =
1

s− 1
+ γ + γ1(s− 1) + . . . .

Thus, using the definition of P3(u) and Abel’s summation formula, we find

P3(u) = uP2(u)− P2(u) + P
′

2(u)− P
′′

2 (u) =

3∑
k=0

Bku
k,
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where B3 = A2 = 1
2 , B2 = A1 − A2 = 3γ − 3

2 , B1 = A0 − A1 + 2A2 = 3
(
γ1 + (1 − γ)2

)
and

B0 = −B1 = −3
(
γ1 + (1− γ)2

)
. For the values of the coefficients γj and P2 we refer to [29].

1.3 Lower bounds

We start with the key proposition. Next we prove several statements about generalized divisor
function and we finish the section with the proof of lower bounds for discrete moments.

1.3.1 The key proposition

We consider the discrete moments

S1(T, φ) =
∑

0<tn(φ)6T

ζ(l)
(
1
2 − itn(φ)

)
X
(
1
2 + itn(φ)

)
Y
(
1
2 − itn(φ)

)
(1.16)

and
S2(T, φ) =

∑
0<tn(φ)6T

∣∣X ( 12 + itn(φ) + α
)∣∣2 (1.17)

with Dirichlet polynomials X(s) and Y (s) defined in (1.9). Our first aim is the following

Proposition 1.3.1. Let X(s) and Y (s) be Dirichlet polynomials as defined in (1.9). Then
uniformly for φ ∈ [0, π), as T →∞,

S1(T, φ) =e−2iφ
l∑

k=0

(−1)l+k
(
l

k

) ∑
m6X
mn6Y

(log n)kxmymn
mn

T

2π
Pl−k+1

(
log

T

2π

)
(1.18)

+ (−1)l
T

2π

(
log

T

2πe

) ∑
m6Y
mn6X

(logm)l ymxmn
mn

+O(R1),

where Pn(x) is a polynomial of degree n and

R1 = (X + Y )(T
1
2+εX1Y1 + T εX0Y0) +X

1
2Y

1
2T

1
6+εX0Y0 + T εX0Y1;

moreover,

S2(T, φ) =
T

2π

(
log

T

2πe

) ∑
n6X

|xn|2

n1+2Reα
+O(R2), (1.19)

where α ∈ C, |Reα| < (log T )−1 and

R2 = X
√
T (log T )2

∑
n6X

|xn|2

n
+X(log T )3X 2

0 .

S2(T, φ) is uniform with respect to α.
All implicit constants are absolute.
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Proof of (1.18). We begin with the estimations

∣∣ζ(l)( 12 + it
)∣∣� T 1/6+ε, (1.20)∣∣X( 12 + it
)∣∣ ≤ ∑

n6X

|xn|√
n

=
∑
n6X

√
n
|xn|
n
≤
√
XX1,

∣∣Y ( 12 + it
)∣∣ ≤ √Y Y1;

the first one is a well-known bound from zeta function theory (see [28]) and application of
Cauchy’s estimate for the derivatives of an analytic function applied to a small disc centered at
s, whereas the second and third one are straightforward. Hence, it is sufficient to obtain (1.18)
for the sum over the segment c < tn(φ) 6 T , where c > 32π is a large absolute constant (32π

comes from the inequality 2( t
2π )−

1
2 < 1

2 that is used in the proof).
Next, without loss of generality we may set T = 1

2 (tν(φ) + tν+1(φ)). Since the points
s = 1

2 + itn(φ) are the roots of the function ∆(s) − e2iφ, the sum in question can be rewritten
as a contour integral: ∑

c<tn(φ)6T

ζ(l)( 1
2 − itn(φ))X( 1

2 + itn(φ))Y ( 1
2 − itn(φ))

=
1

2πi

∫
�
ζ(l)(1− s)X(s)Y (1− s) ∆′(s)

∆(s)− e2iφ
ds;

here � stands for the contourclockwise oriented rectangular contour with vertices a + ic, a +

iT, 1−a+ iT, 1−a+ ic, where a = 1 + (log T )−1. Let I1 and I3 be integrals over right and left
sides of contour, and I2 and I4 be the integrals over the top and bottom edges of the contour.
We may assume the constant c so large that the relations

|∆(a+ it)| =
(
t

2π

)1/2−a(
1 +O(t−1)

)
≤ 2

(
t

2π

)−1/2
<

1

2

hold for any t > c.
Moreover we will use the observations for s = a+ it

|X(a+ it)| ≤
∑
n6X

|xn|
na
6 X1, |Y (1− a− it)| ≤

∑
m6Y

ma|ym|
m

� Y Y1, (1.21)

∣∣∣∣ ∞∑
k=1

e−2ikφ∆(a+ it)k
∣∣∣∣ ≤ 2

(
t

2π

)−1/2 ∞∑
k=0

1

2k
� t−1/2.

In view of (1.3) and Lemma 1.1.3 we have

I1 =e−2iφ(−1)l+1
l∑

k=0

(
l

k

)∫ T

c

(
log

τ

2π

)l−k
× d

(
1

2π

∫ a+iτ

a+ic

ζ(k)(s)X(s)Y (1− s)∆′

∆
(s)

(
1 +

∞∑
k=1

e−2ikφ∆(s)k
)
ds

)
+O(Y T

1
2+εX1Y1),

where the error term comes from the application of (1.3), (1.21), and the error term of Lemma
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1.1.3, i.e.

1

2π

∫ a+iT

a+ic

O(t−
1
2+ε)X(s)Y (1− s)∆′

∆
(s)

(
1 +

∞∑
k=1

e−2ikφ∆(s)k
)
ds

� Y T
1
2+εX1Y1.

Now we evaluate the measure function of I1. We write it as j1 + j2, where

j1 =
1

2πi

∫ a+iτ

a+ic

ζ(k)(s)X(s)Y (1− s)∆′

∆
(s)ds,

j2 =
1

2πi

∫ a+iτ

a+ic

ζ(k)(s)X(s)Y (1− s)∆′

∆
(s)

∞∑
k=1

e−2ikφ∆(s)kds.

By (1.21) we have

|j2| � ζ(k)(a)Y X1Y1
∫ τ

c

log tdt√
t
� Y τ

1
2+εX1Y1.

Applying Lemma 1.1.1 to j1 we get

j1 = (−1)k+1 τ

2π

(
log

τ

2πe

) ∑
m6X
mn6Y

(log n)kxmymn
mn

+O (Y τ εX0Y0) .

Hence

I1 =e−2iφ
l∑

k=0

(−1)l+k
(
l

k

) ∑
m6X
mn6Y

(log n)kxmymn
mn

T

2π
Pl−k+1

(
log

T

2π

)

+O(Y T
1
2+εX1Y1 + Y T εX0Y0 + T εX1Y0),

where
T

2π
Pl−k+1

(
log

T

2π

)
+O(1) =

∫ T

c

(
log

τ

2π

)l−k
d

(
τ

2π

(
log

τ

2πe

))
and Pn(x) is a polynomial of degree n. The additional error term for I1 comes from the bound∣∣∣∣∣∣∣∣e

−2iφ
l∑

k=0

(−1)l+k
(
l

k

) ∑
m6X
mn6Y

(log n)kxmymn
mn

∣∣∣∣∣∣∣∣� T εX1Y0.

In a similar way we may compute I3. We observe

I3 = − 1

2π

∫ T

c

ζ(l)(a− it)X(1− a+ it)Y (a− it) ∆′(1− a+ it)

∆(1− a+ it)− e2iφ
dt.

This in combination with X(s) = X1(s), Y (s) = Y1(s) (check (1.9)) yield

I3 = − 1

2πi

∫ a+iT

a+ic

ζ(l)(s)X1(1− s)Y1(s)
∆′(1− s)

∆(1− s)− e−2iφ
ds.
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In view of (1.3) we find

I3 =− 1

2πi

∫ a+iT

a+ic

ζ(l)(s)X1(1− s)Y1(s)
∆′

∆
(s)

(
1 +

∞∑
k=1

e−2ikφ∆(s)k
)
ds

=− (j3 + j4),

where

j3 =
1

2πi

∫ a+iT

a+ic

ζ(l)(s)X1(1− s)Y1(s)
∆′

∆
(s)ds

j4 =
1

2πi

∫ a+iT

a+ic

ζ(l)(s)X1(1− s)Y1(s)
∆′

∆
(s)

∞∑
k=1

e−2ikφ∆(s)kds.

By (1.21) we get
|j4| � XT

1
2+εX1Y1

and using Lemma 1.1.1 we find

I3 = (−1)l
T

2π

(
log

T

2πe

) ∑
m6Y
mn6X

(logm)l ymxmn
mn

+O
(
XT

1
2+εX1Y1 +XT εX0Y0

)
.

In order to estimate I2 we first note that the following inequalities hold along the line segment
of the integration:

|ζ(l)(1− s)| � T
1
2+ε, |X(s)| ≤

∑
n6X

|xn|
n
n1−σ � X1−σX1,

|Y (1− s)| ≤
∑
n6Y

|yn|
n
nσ � Y σY1,

and, finally,

|ζ(l)(1− s)X(s)Y (1− s)| � T
1
2+εX1Y1X

(
Y

X

)σ
� XT

1
2+εX1Y1

{(
Y

X

)1−a

+

(
Y

X

)a}
� (X + Y )T

1
2+εX1Y1.

Next, by (1.4) we get

∆′(s)

∆(s)− e2iφ
=

∆′(s)

∆(s)

(
1 +

e2iφ

∆(s)− e2iφ

)
� (log T )

(
1 +

1

|∆(s)− e2iφ|

)
.

The second term in the brackets is bounded by an absolute constant. Indeed, in the case
σ > 1

2 + 1
3

(
log T

2π

)−1 by (1.2) we have

|∆(σ + iT )| =
(
T

2π

)1/2−σ(
1 +O(T−1)

)
≤ e−1/3

(
1 +O(T−1)

)
<

1

2
,
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and hence |∆(s)− e2iφ| > 1− |∆(s)| > 1
2 . Similarly, in the case σ 6 1

2 −
1
3

(
log T

2π

)−1 we have

|∆(σ + iT )| ≥ e1/3
(
1 +O(T−1)

)
>

4

3
, |∆(s)− e2iφ| > 4

3
− 1 =

1

3
.

Finally, let
1

2
− 1

3

(
log

T

2π

)−1
< σ <

1

2
+

1

3

(
log

T

2π

)−1
.

Then, using the relations

∆
(
1
2 + iT

)
= e−2iϑ(T ), ∆(σ + iT ) = τe−2iϑ(T )

(
1 +O(T−1)

)
,

where τ =
(
T/(2π)

)1/2−σ and ϑ = ϑ(T ) denotes the increment of any fixed continuous branch
of the argument of π−s/2Γ

(
s/2
)

along the line segment with end-points s = 1
2 and s = 1

2 + iT

(check [12]), we have e−1/3 6 τ 6 e1/3 and

∆(σ + iT )− e2iφ =
(
∆(σ + iT )−∆

(
1
2 + iT

))
+
(
∆
(
1
2 + iT

)
− e2iφ

)
= (τ − 1)e−2iϑ − 2iei(φ−ϑ) sin (φ+ ϑ) +O(T−1)

= e−iϑ
(
(τ − 1) cosϑ+ 2 sin (ϑ+ φ) sinφ−

−i((τ − 1) sinϑ+ 2 sin (ϑ+ φ) cosφ)
)

+O(T−1).

Thus we obtain

∣∣∆(σ + iT )− e2iφ
∣∣2 = (τ − 1)2 + 4τ sin2 (ϑ+ φ) +O(T−1)

> 4τ sin2(ϑ+ φ) +O(T−1).

Using the fact that T = 1
2 (tν(φ) + tν+1(φ)) for some ν, we finally get

sin2(ϑ+ φ) = sin2

(
πν +

π

2
+O(T−1)

)
≥ sin2 π

3
=

3

4

and hence, for sufficiently large T ,

|∆(σ + iT )− e2iφ|2 ≥ 4 · 3

4
e−1/3 +O(T−1) > 2.

Thus, |∆(s)− e2iφ| > 1
3 for any s under consideration, hence

I2 � (X + Y )T
1
2+εX1Y1.

The integral I4 can be estimated in a similar way.
To loose the condition on T (i.e. T = 1

2 (tν(φ) + tν+1(φ))). We choose T0 > T such that
T0 − T � 1. First we notice that the contribution of the sum∑

T<tn(φ)≤T0

ζ(l)( 1
2 − itn(φ))X( 1

2 + itn(φ))Y ( 1
2 − itn(φ))

using (1.20) is bounded by
� X

1
2Y

1
2T

1
6+εX0Y0.
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Next we check the error contribution from I1, i.e.

I1(T0) = I1(T0)− I1(T ) + I1(T ) = I1(T ) + |I1(T0)− I1(T )|.

We have

|I1(T0)− I1(T )| ≤ ||I1(T0)| − |I1(T )|| � T εX1Y0 + Y T
1
2+εX1Y1 + Y T εX0Y0,

since

||I1(T0)| − |I1(T )|| ≤
l∑

k=0

(
l

k

) ∑
m6X
mn6Y

(log n)k|xm||ymn|
mn

∫ T0

T

(
log

τ

2π

)l−k
d

(
τ

2π

(
log

τ

2πe

))

+O(Y T
1
2+εX1Y1 + Y T εX0Y0)

� T εX1Y0 + Y T
1
2+εX1Y1 + Y T εX0Y0.

In the same way we show that the error term contribution from I3 is well controlled.

|I3(T0)− I3(T )| � T εY0X1 +XT
1
2+εX1Y1 +XT εX0Y0.

The relation (1.18) is proved.

Proof of (1.19). In view of the inequalities

∣∣X( 12 + itn(φ) + α
)∣∣2 ≤ (∑

n6X

|xn|
n

1
2+Reα

)2

≤ X
∑
n6X

|xn|2

n1+2Reα

it suffices to consider only the sum over the segment c < tn(φ) 6 T . Next, we may set T =
1
2 (tν(φ) + tν+1(φ)). Then we have∑

c<tn(φ)6T

∣∣X( 12 + itn(φ) + α
)∣∣2 =

∑
c<tn(φ)6T

X
(
1
2 + itn(φ) + α

)
X1

(
1
2 − itn(φ) + α

)
=

1

2πi

∫
�
X(s+ α)X1(1− s+ α)

∆′(s)

∆(s)− e2iφ
ds,

where � stands for the rectangular contour defined in Section before. Denoting the integrals
Ik, 1 6 k 6 4 as in Section 1.3.1, we get

I1 =
1

2πi

∫ a+iT

a+ic

X(s+ α)X1(1− s+ α)
∆′(s)

∆(s)− e2iφ
ds

= − 1

2πi

∫ a+iT

a+ic

X(s+ α)X1(1− s+ α)
∆′(s)

∆(s)

∞∑
k=1

e−2ikφ∆(s)k ds.

Estimating the integrand as in Section 1.3.1 we find

I1 � XX 2
1

∫ T

c

log t dt√
t
� X

√
T (log T )X 2

1 � X
√
T (log T )2

∑
n6X

|xn|2

n
.
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Furthermore,

I3 = − 1

2π

∫ T

c

X(1− a+ it+ α)X1(a− it+ α)
∆′(1− a+ it)

∆(1− a+ it)− e2iφ
dt,

and the relations X(s) = X1(s), X1(s) = X(s) imply

I3 = − 1

2πi

∫ a+iT

a+ic

X(s+ α)X1(1− s+ α)
∆′(1− s)

∆(1− s)− e−2iφ
ds

= − 1

2πi

∫ a+iT

a+ic

X(s+ α)X1(1− s+ α)
∆′

∆
(s)

ds

1− e−2iφ∆(s)
= −j1 + I1,

where
j1 =

1

2πi

∫ a+iT

a+ic

X(s+ α)X1(1− s+ α)
∆′

∆
(s) ds.

Lemma 1.1.1 with f(s) ≡ 1 (that is, α1 = 1, αn = 0 for n > 1), γ = 0 and Y (s) = X1(s),
applied to j1 yields

j1 = − T

2π

(
log

T

2πe

) ∑
n6X

|xn|2

n1+2Reα
+ O

(
X(log T )3X 2

0

)
.

Using the above bound for I1, we derive

I3 =
T

2π

(
log

T

2πe

) ∑
n6X

|xn|2

n1+2Reα
+ O

(
X
√
T (log T )2

∑
n6X

|xn|2

n

)
+ O

(
X(log T )3X 2

0

)
.

Estimating I2 and taking into account the bounds

X(s+ α) � X1−σ−ReαX1, X1(1− s+ α) � Xσ−ReαX1,
∆′(s)

∆(s)− e2iφ
� log T

for s = σ + iT , 1− a ≤ σ 6 a, T = 1
2 (tν(φ) + tν+1(φ)), we get

I2 � X1−2Reα(log T )X 2
1 � X(log T )2

∑
n6X

|xn|2

n
.

The integral I4 can be estimated in a similar way.
To loose the condition on T (i.e. T = 1

2 (tν(φ) + tν+1(φ))). We choose T0 > T such that
T0 − T � 1. First we notice that the contribution of the interval (T, T0] is bounded

∑
T<tn(φ)6T0

∣∣X ( 12 + itn(φ) + α
)∣∣2 � X log T

∑
n6X

|xn|2

n1+2Reα
.

Next we notice that
I1(T0) = I1(T ) + ||I1(T0)| − |I1(T )||

and
||I1(T0)| − |I1(T )|| � X log T

∑
n6X

|xn|2

n
.

For I3 we have
I3(T0) = I3(T ) + ||I3(T0)| − |I3(T )||
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and
||I3(T0)| − |I3(T )|| � X log T

∑
n6X

|xn|2

n
+X(log T )3X 2

0 .

For I2 we have

||I2(T0)| − |I2(T )|| � X(log T )2
∑
n6X

|xn|2

n
.

Thus, formula (1.19) is proved.

1.3.2 Generalized divisor function

The properties of Generalized divisor function is used to prove the lower bounds for the discrete
moments.

In the next four Lemmas, we will gather several properties of the generalized κ-th divisor
function (check [25, Section 2]), which we will use in the sequel. Let κ be a positive real number.
The generalized κ-th divisor function dκ : N→ R is given by the coefficients dκ(n) of

ζ(s)κ =

∞∑
n=1

dκ(n)n−s, σ > 1,

where dκ(n) is multiplicative and on prime powers is defined by

dκ(pj) =
Γ(κ+ j)

Γ(κ)j!
.

If κ is a positive integer the definition above coincides with the definition of the divisor function

dκ(n) =
∑

n1,...,nκ∈N
n1···nκ=n

1.

The generalized κ-th divisor function satiesfies the following properties:

Lemma 1.3.2. Let κ be a positive real number and n a positive integer.

1. For κ ≥ 0 and n ≥ 1 ,we have dκ(n) ≥ 0.

2. For fixed n, dκ(n) increases with respect to κ.

3. For fixed κ ≥ 0 and ε > 0, we have dκ(n)� nε.

4. If j is an integer, then

dκj(n) =
∑

n=n1n2...nj

dκ(n1)dκ(n2) . . . dκ(nj).

For a proof, we refer to [25, Lemma 1].

Lemma 1.3.3. Let λ, µ be fixed positive real numbers. Then,∑
n≤x

dλ(n)dµ(n) �λ,µ x(log x)λµ−1

and, thus, ∑
n≤x

dλ(n)dµ(n)n−1 �λ,µ (log x)λµ.
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The assertions of Lemma 1.3.3 can be established by standard techniques based on Perron’s
formula, contour integration and Abel’s summation.

Next we use Euler totient function that is defined by

ϕ(m) =
∑
n≤m

(n,m)=1

1.

The following Lemma states

Lemma 1.3.4. Let λ, µ be fixed positive real numbers. Then,

∑
m≤x

dλ(m)dµ(m)

(
ϕ(m)

m

)µ
�λ,µ x(log x)λµ−1

and, thus, ∑
m≤x

dλ(m)dµ(m)

(
ϕ(m)

m

)µ
m−1 �λ,µ (log x)λµ.

The assertions of Lemma 1.3.4 can be established by standard techniques based on Perron’s
formula, contour integration and Abel’s summation.

Lemma 1.3.5. For an arbitrary rational k = p
q ≥ 0, m ≤ x

1
2p and x sufficiently large, we have

∑
n≤x

(m,n)=1

dk(n)

n
≥
(

1

p

φ(m)

m
log x

)k
.

Proof. Let k = p
q be a non-negative rational number. We consider the sum

W :=
∑
n≤ξ

(m,n)=1

d 1
q
(n)

n
.

Taking q-th power, we get

W q =
∑
n≤ξq

(m,n)=1

d1(n, ξ)

n
,

where the coefficients d1(n, ξ) are given by

d1(n, ξ) =
∑

n1n2···nq=n
n1,n2,...,nq≤ξ

d 1
q
(n1)d 1

q
(n2) · · · d 1

q
(nq).

Note, that, as q is an integer, we have, according to property (4) of Lemma 1.3.2,∑
n1n2···nq=n

d 1
q
(n1)d 1

q
(n2) · · · d 1

q
(nq) = d 1

j ·j
(n) = d1(n) ≡ 1

for all positve integers n. Hence, we can easily deduce that

d1(n, ξ) = d1(n) = 1 if n ≤ ξ

and
d1(n, ξ) ≤ d1(n) = 1 if n > ξ.
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Thus, we get ∑
n≤ξ

(m,n)=1

1

n
≤W q ≤

∑
n≤ξq

(m,n)=1

1

n
≤ 2q

φ(m)

m
log ξ

Using the inequality
φ(m)

m
log ξ ≤

∑
n≤ξ

(m,n)=1

1

n
≤ 2

φ(m)

m
log ξ,

which is valid for m ≤ ξ
1
2 and ξ sufficiently large and which can be established by standard

techniques. We get
φ(m)

m
log ξ ≤W q ≤ 2q

φ(m)

m
log ξ

for m ≤ ξ 1
2 . Therefore,

(
φ(m)

m
log ξ

) 1
q

≤W ≤
(

2q
φ(m)

m
log ξ

) 1
q

(1.22)

for m ≤ ξ 1
2 . Taking the p-th power of W yields

W p =
∑
n≤ξp

(m,n)=1

d p
q
(n, ξ)

n

with coefficients
d p
q
(n, ξ) =

∑
n1n2···np=n
n1,n2,...,np≤ξ

d 1
q
(n1)d 1

q
(n2) · · · d 1

q
(np).

By the same reasoning as above, we obtain

∑
n≤ξ

(m,n)=1

d p
q
(n)

n
≤W p ≤

∑
n≤ξp

(m,n)=1

d p
q
(n)

n

Using the upper bound for W p from the above inequality and the lower bound for W from
(1.22), we get ∑

n≤ξp
(m,n)=1

dk(n)

n
=

∑
n≤ξp

(m,n)=1

d p
q
(n)

n
≥W p ≥

(
φ(m)

m
log ξ

) p
q

.

for m ≤ ξ 1
2 . Setting x = ξp, yields the assertion of the Lemma for m ≤ x

1
2p .

Lemma 1.3.6. Let l be a non-negative integer, r and k non-negative rational numbers. Then

∑
m6x
mn6x

(logm)ldr(m)dk(mn)

mn
�l,k,r (log x)l+kr+k.

Proof. Let k = p
q ≥ 0 be a rational number. We consider the sum

W :=
∑
m6x
mn6x

(logm)ldr(m)dk(mn)

mn
=
∑
m≤x

(logm)ldr(m)

m

∑
n6 x

m

dk(mn)

n
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Certainly, the following estimates hold

W ≥
∑
m≤x

(logm)ldr(m)dk(m)

m

∑
n6 x

m

(m,n)=1

dk(n)

n

≥
∑

x
1

3p+1≤m≤x
1

2p+1

(logm)ldr(m)dk(m)

m

∑
n6x

2p
2p+1

(m,n)=1

dk(n)

n
.

Now, Lemma 1.3.5 yields

W ≥ (3p+ 1)−l
(
p+ 1

2

)−k
(log x)l+k

∑
x

1
3p+1≤m≤x

1
2+1

dr(m)dk(m)

m

(
φ(m)

m

)k
.

By Lemma 1.3.4, we get
W �k,l,r (log x)l+kr+k

and the Lemma is proved.

1.3.3 Lower bounds

Theorem 1.3.7. For any rational k > 1 and any non-negative integer l, uniformly for φ ∈ [0, π),
as T →∞, ∑

0<tn(φ)6T

∣∣∣ζ(l) ( 12 + itn(φ)
)∣∣∣2k � T (log T )k

2+2kl+1.

Proof. Suppose that k = p
q is a rational number with p > q > 1 and (p, q) = 1. Let l be a non-

negative integer. We set r := p − q and choose ξ := T 1/(4p). First, we define fixed coefficients
for the Dirichlet polynomials X(s) and Y (s) in (1.9) via

X(s) =

(∑
n6ξ

d 1
q
(n)

ns

)p
=
∑
n6ξp

d p
q
(n; ξ)

ns
, Y (s) =

(∑
n6ξ

d 1
q
(n)

ns

)r
=
∑
n6ξr

d r
q
(n; ξ)

ns
,

where dm
q

(n; ξ) is given by

dm
q

(n; ξ) =
∑

n=n1···nm
n1,...,nm6ξ

d 1
q
(n1) . . . d 1

q
(nm).

for m = p, r. From property (5) of Lemma 1.3.2 we can easily deduce that dm
q

(n; ξ) = dm
q

(n)

for m 6 ξ and 0 6 dm
q

(n, ξ) 6 dm
q

(n) for m > ξ. Now, we consider the moment S1(T, ϕ) given
by (1.16) with respect to the above chosen Dirichlet polynomials X(s) and Y (s). By statement
(1.18) in Proposition 1.3.1, we have

S1(T, φ) =

l∑
j=0

(−1)l+j
(
l

j

)
T

2π
Pl−j+1

(
log

T

2π

)
Σ1 +

T

2π

(
log

T

2πe

)
Σ2 +O(R1).
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By Lemma 1.3.3,

Σ1 =
∑

m6ξp,mn6ξr

(log n)jd p
q
(m; ξ)d r

q
(mn; ξ)

mn

≤ (log ξr)j
∑
n≤ξr

d r
q
(n)

n

∑
l|n

d p
q
(l)

= (log ξr)j
∑
n6ξr

d r
q
(n)d p

q+1(n)

n

� (log T )(
p
q )

2−1+j ,

and by Lemma 1.3.6,

Σ2 =
∑

m6ξr,mn6ξp

(logm)ld r
q
(m; ξ)d p

q
(mn; ξ)

mn
≥

∑
m6ξ

(logm)ld r
q
(m)d p

q
(mn)

mn

� (log ξ)(
p
q )

2+l.

The error term of S1(T, φ) is bounded by

R1 � (ξp + ξr)T
1
2+ε

∑
n6ξp

d p
q
(n; ξ)

n

∑
m6ξr

d r
q
(m; ξ)

m
+ ξpξrT

1
6+ε

� T 3/4+ε � T 4/5.

Thus, we obtain
|S1(T, φ)| � T (log T )k

2+l+1.

On the contrary, Hölder’s inequality assures

|S1(T, φ)| ≤
( ∑

0<tn(φ)6T

∣∣ζ(l)( 12 + itn(φ)
)∣∣2k)1/(2k)

×

×
( ∑

0<tn(φ)6T

∣∣X( 12 + itn(φ)
)∣∣2k/(2k−1) · ∣∣Y ( 12 + itn(φ)

)∣∣2k/(2k−1))1−1/(2k)

=

( ∑
0<tn(φ)6T

∣∣ζ(l)( 12 + itn(φ)
)∣∣2k)1/(2k)(

S2(T, φ)
)1−1/(2k)

,

where S2(T, φ) is given by (1.17). By statement (1.19) of Proposition 1.3.1 and Corollary 1.3.3,
we find that

|S2(T, φ)| = T

2π

(
log

T

2πe

) ∑
n6ξp

d2p
q
(n; ξ)

n
+O

(
ξp
√
T (log T )k

2+1
)
� T (log T )k

2+1.

Hence, ∑
0<tn(φ)6T

∣∣ζ( 12 + itn(φ)
)∣∣2k ≥ (

S1(T, φ)
)2k(

S2(T, φ)
)2k−1 � T (log T )k

2+2kl+1.

Theorem 1.3.7 is proved.
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1.4 Upper bounds

The goal of this section is to prove the following theorem

Theorem 1.4.1. Assume the Riemann Hypothesis.
For l = 0 and any non-negative real k, uniformly for φ ∈ [0, π), as T →∞,

∑
0<tn(φ)6T

∣∣∣ζ(l) ( 12 + itn(φ)
)∣∣∣2k � T (log T )k

2+1+ε.

For any non-negative integer k and any positive integer l, uniformly for φ ∈ [0, π), as T →∞,

∑
0<tn(φ)6T

∣∣∣ζ(l) ( 12 + itn(φ)
)∣∣∣2k � T (log T )k

2+2kl+1+ε.

1.4.1 Outline of the proof

To prove the conditional upper bound for the discrete moments Sk,l(T, φ) we follow the ideas
of Milinovich [35]. The latter established, under the assumption of the Riemann hypothesis, an
upper bound for discrete moments connected to the non-trivial zeros ρ = 1

2 + iγ of the Riemann
zeta function: Assuming the Riemann hypothesis, for any positive integers k and l, as T →∞,∑

0<γ≤T

|ζ(l)(ρ)|2k � T (log T )k
2+2kl+ε. (1.23)

As we will refer in big parts of the proof of Theorem 1.4.1 to Milinovich’s work, we will briefly
sketch his approach.

To proof (1.23), Milinovich relies on methods introduced by Soundararajan [44]: Assuming
the Riemann hypothesis, Soundararajan gave upper bounds for meas{t ∈ [0, T ] | log |ζ( 1

2 +

it)| ≥ V } subject to V ∈ (−∞,∞) and, thus, roughly speaking, extended a result due to
Selberg (unpublished) which states that after a suitable normalization the values of log |ζ( 1

2 +

it)| are Gaussian normal distributed (the first published proof is due to Joyner [30]). These
bounds allowed Soundararajan to deduce the conditional upper bound (3) for Ik(T ). Milinovich
adjusted Soundararajan’s approach to a discrete setting: under the assumption of the Riemann
hypothesis, he approximated log+ |ζ(s)| on and to the right of the critical line by rather short
Dirichlet polynomials; here and in the sequel log+ |x| is defined by

log+ |x| =

{
0 if |x| ≤ 1,
log |x| if |x| > 1.

In particular, he proved the following

Lemma 1.4.2 (Milinovich [35], Lemma 3.1). Assume the Riemann Hypothesis. Let τ = |t|+e30

and 2 ≤ x ≤ τ2. Let λ0 = 0.5671 . . . be the unique positive real number satisfying e−λ0 = λ0.
Then, for σ ≥ 1

2 , 2 ≤ x ≤ τ2, and any λ0 ≤ λ ≤ log x
4 the estimate

log+ |ζ(σ + it)| ≤

∣∣∣∣∣∣∣∣
∑
p≤x

p−prime

1

pσ+
λ

log x+it

log(x/p)

log x

∣∣∣∣∣∣∣∣+
(1 + λ)

2

log τ

log x
+O(log log log τ)

holds uniformly for 1
2 ≤ σ ≤ σλ, where σλ = 1

2 + λ
log x .
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By using a result of Gonek [20, 21], Milinovich could estimate high powers of the Dirichlet
polynomial occuring in Lemma 1.4.2, if they were averaged over the non-trivial zeros. By means
of a certain power technique, he was able to derive upper bounds for the cardinality of discrete
sets

Sρ(T, V ) = {ρ+ α ∈ [0, T ] | log |ζ(ρ+ α)| ≥ V }

subject to V ∈ (−∞,∞), for any fixed complex α with |α| < 1 and 0 ≤ Reα ≤ (log T )−1. These
upper bounds for #Sρ(T, V ) allowed him to deduce the following estimate for discrete moments
with respect to shifted zeros ρ + α: Assuming the Riemann hypothesis, for any positive real
number k and any complex α with |α| < 1 and |Reα| ≤ (log T )−1, as T →∞,∑

0<γ≤T

|ζ(ρ+ α)|2k � T (log T )k
2+2k+ε, (1.24)

holds uniformly in α. Relying on Cauchy’s integral formula, Milinovich [35] could immediatelly
deduce (1.23) from (1.24).

We can adopt Milinovich’s method to our case. This is essentially due to the fact that we
get similar bounds for high powers of the Dirichlet polynomial approximating log+ |ζ(s)| if we
do not average over zeros ρ or shifted zeros ρ + α, but if we average over generalized Gram
points 1

2 + itn(φ) or shifted generalized Gram points 1
2 + α + itn(φ). This is natural, in some

sense, as, by comparing Nφ(T ) with the Riemann-von Mangoldt formula, the points 1
2 + itn(φ)

are asymptotically similar distributed on the critical line as the non-trivial zeros 1
2 + iγ under

the assumption of the Riemann hypothesis. However, to obtain these bounds for high powers
of Dirichlet polynomials averaged over the points tn(φ), we will use a method different from the
one Millinovich used in his case.

1.4.2 Frequency of large values

Relying on Proposition 1.3.1 formula (1.19), we are able to measure the frequency of large values
of log |ζ( 1

2 + itn(φ) + α)|. In the sequel we will use the notation log3 x := log log log x.

Lemma 1.4.3. Assume the Riemann Hypothesis. Let T be large, V ≥ 3 a real number, Φ ∈ [0, π)

and α ∈ C with |α| ≤ 1 and 0 ≤ Reα ≤ (log T )−1. Define the set

Sφ(T, V ) := {tn(φ) ∈ [0, T ] : log |ζ( 1
2 + itn(φ) + α)| ≥ V }.

Then, the following bounds for the cardinality #Sφ(T, V ) of the set Sφ(T, V ) hold uniformly in
Φ and α:

(i) If
√

log log T ≤ V ≤ log log T , then

#Sφ(T, V )� T (log T )
V√

log log T
exp

(
− V 2

log log T

(
1− 4

log3 T

))
.

(ii) If log log T < V ≤ 1
2 (log log T ) log3 T , then

#Sφ(T, V )� T (log T )
V√

log log T
exp

(
− V 2

log log T

(
1− 9V

5 log log T log3 T

)2)
.
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(iii) If V ≥ 1
2 log log T log3 T , then

#Sφ(T, V )� T (log T ) exp
(
− V

201 log V
)
.

Note that in the cases (i) and (iii) the bounds for #Sφ(T, V ) are the same as the ones for
#Sρ(T, V ) in Lemma 5.1 of [35]. In case (ii), we have

#Sφ(T, V )� T (log T )
V√

log log T
exp

(
− V 2

log log T

(
1− 9V

5 log log T log3 T

)2)
� T (log T )

V√
log log T

exp
(
− V 2

log log T

(
1− 4V

log log T log3 T

))
.

This second bound is the same as the bound for #Sρ(T, V ) in case (ii) of Lemma 5.1 of [35].
Our motivation to state Lemma 1.4.3 with a stronger bound for case (ii) is that it will help us
to give a straightforward bound for Σ2 in (1.25). Note that Milinovich’s proof of his Lemma 5.1
directly implies this stronger bound.

Proof of Lemma 1.4.3. In the sequel p denotes always a prime number. We set x := T a with
some 0 < a ≤ 1

2 and put z = xb with 1
log log T ≤ b ≤ 1. We define

S(s) =
∑
p≤z

p−prime

1

ps
log(x/p)

log x

Basically, with some smart technical refinements, the result can be derived from Lemma 1.4.2
and the inequality

#N(T, V )V 2k ≤
∑

0<tn(φ)≤T

|S( 1
2 + itn(φ) + λ0

log x )|2k;

here #N(T, V ) measures the cardinality of the set

N(T, V ) = {tn(φ) ∈ [T, 2T ]
∣∣ |S(( 1

2 + itn(φ) + λ0

log x )| ≥ V }.

For details we refer to [35].
We define the sequence αk(n) by

∑
n≤zk

αk(n)

ns
=

∑
p≤z

1

ps
log(x/p)

log p

k

.

It can be easily seen that |αk(n)| ≤ k!. According to Proposition 1.3.1 we get for T large enough,
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for any positive integer k with zk ≤ T , uniformly for φ ∈ [0, π)

∑
0<tn(φ)≤T

|S( 1
2 + itn(φ) + λ0

log x )|2k � T

2π
log

T

2πe

∑
0<n≤zk

|αk(n)|2

n

� T

2π
log

T

2πe
k!

 ∑
0<p≤z

1

p

log(x/p)

log x

k

� T

2π
log

T

2πe
k!

 ∑
0<p≤z

1

p

k

.

Using Stirling’s formula k!� k
1
2 (k/e)k and the estimate

∑
p≤z p

−1 � log log z, we find that

∑
0<tn(φ)≤T

|S( 1
2 + itn(φ) + λ0

log x )|2k � T (log T )k
1
2

(
kb log log T

e

)k
� T (log T ) (kb log log T )

k

holds for T large enough, for any positive integer k with zk ≤ T , uniformly for φ ∈ [0, π). These
are the same bounds which Milinovich [35] uses for S(ρ+ λ0

log x ). Thus, the proof of Lemma 1.4.3
follows exactly the lines of the proof of Lemma 5.1 in [35] by just replacing ρ by 1

2 + itn(φ).

1.4.3 Upper bounds

Using Lemma 1.4.3 we are now able to prove the following Proposition.

Proposition 1.4.4. Assume the Riemann Hypothesis. Let α ∈ C with |α| ≤ 1 and |Re α| ≤
(log T )−1. For any positive real number k, uniformly for φ ∈ [0, π) and uniformly in α, as
T →∞, ∑

0<tn(φ)6T

∣∣ζ ( 12 + itn(φ) + α
)∣∣2k � T (log T )k

2+1+ε.

Proof. We follow the proof of Theorem 1.2 in [35]. First, we consider the case when 0 ≤ Re α ≤
(log T )−1. Then, from this result, the case −(log T )−1 ≤ Re α < 0 can be derived via the
functional equation of the Riemann zeta function.

Let k ∈ R be fixed. We partition the real axis into the intervals I1 = (−∞,
√

log log T ],
I2 = (

√
log log T , 4k log log T ] and I3 = (4k log log T,∞). We set

Σi =
∑

ν∈Ii∩Z
e2kν#Sφ(T, ν) for i = 1, 2, 3.

and observe that∑
0<tφ(n)≤T

∣∣ζ ( 12 + itn(φ) + α
)∣∣2k ≤∑

ν∈Z
e2kν (#Sφ(T, ν − 1)−#Sφ(T, ν)) (1.25)

≤
∑
ν∈Z

e2k(ν+1)#Sφ(T, ν)

� Σ1 + Σ2 + Σ3.

Using the trivial bound #Sφ(T, ν) ≤ Nφ(T ) � T log T (see [31, Theorem 1]) that holds for
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every ν ∈ Z, we find that Σ1 � T (log T )1+ε. To estimate Σ2 we use

#Sφ(T, ν)� T (log T )1+ε exp

(
−ν2

log log T

)
which follows from the first two cases of Lemma 1.4.3 when ν ∈ I2 ∩ Z. We get

Σ2 � T (log T )1+ε
∫ 4k log log T

3

exp

(
2ku− u2

log log T

)
du� T (log T )k

2+1+ε.

Finally, we bound Σ3. If ν ∈ I3 ∩ Z, the three cases of Lemma 1.4.3 give

#S(T, ν)� T (log T )1+εe−4kν .

Thus,

Σ3 � T (log T )1+ε
∫ ∞
4k log log T

e−2kudu� T (log T )1−8k
2+ε.

Hence, collecting the estimates, we get with respect to (1.25)∑
0<tφ(n)≤T

∣∣ζ ( 12 + itn(φ) + α
)∣∣2k � T (log T )k

2+1+ε

for every fixed positive real k when |α| ≤ 1 and 0 ≤ Re α ≤ (log T )−1.
Now, using the functional equation (1.2) and the reflection principle ζ(s) = ζ(s), we get

∣∣ζ ( 12 + itn(φ) + α
)∣∣ =

∣∣∆ ( 12 + itn(φ) + α
)
ζ
(
1
2 + itn(φ)− α

)∣∣ ≤ C ∣∣ζ ( 12 + itn(φ)− α
)∣∣

with some absolute constant C > 0, when |α| ≤ 1 and |Re α| ≤ (log T )−1. For −(log T )−1 ≤
Re α ≤ 0 we have∑

0<tφ(n)≤T

∣∣ζ ( 12 + itn(φ) + α
)∣∣2k ≤ C2k

∑
0<tφ(n)≤T

∣∣ζ ( 12 + itn(φ)− α
)∣∣2k � T (log T )k

2+1+ε.

This finishes the proof.

To deduce Theorem 1.4.1 from Proposition 1.4.4, we will use the following Lemma.

Lemma 1.4.5. Let k and l be positive integers and let R > 0 be arbitrary. Then we have

∑
0<tφ(n)≤T

∣∣∣ζ(l) ( 12 + itn(φ)
)∣∣∣2k ≤ ( l!

Rl

)2k

max
|α|≤R

∑
0<tφ(n)≤T

∣∣ζ ( 12 + itn(φ) + α
)∣∣2k

Proof. The result follows by means of Cauchy’s integral formula. The proof is the same as the
proof of Lemma 7.1 in [35]; we just have to exchange ρ with 1

2 + itn(φ).

We are now ready to prove Theorem 1.4.1.

Proof of Theorem 1.4.1. The assertion of the Theorem for the case l = 0 follows directly from
Proposition 1.4.4 (setting α = 0). Let k and l be positive integers, then the assertion of the
Theorem follows by Proposition 1.4.4 and Lemma 1.4.5 (setting R = (log T )−1).
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1.5 Corollaries

Combining the obtained results we are able to establish the following corollaries.

1.5.1 Expansion of the curve

Recall that e−iφζ( 1
2 + itn(φ)) is real. Hence, we may write t+n (φ) in place of tn(φ) if e−iφζ( 1

2 +

itn(φ)) > 0 and t−n (φ) if e−iφζ( 1
2 + itn(φ)) < 0 (Check Figures 6 and 7).

The corollary states that the curve of the Riemann zeta function on the critical line (see
Figure 4) expands to all direction on the complex plane.

Corollary 1.5.1. For any φ ∈ [0, π), there are arbitrary large positive and negative values of
e−iφζ( 1

2 + itn(φ)). More precisely,

max
0<t±n (φ)6T

∣∣ζ( 1
2 + it±n (φ))

∣∣� (log T )
5
4 .

If the Riemann hypothesis is assumed for any arbitrary small δ > 0 we have

max
0<t±n (φ)6T

∣∣ζ( 1
2 + it±n (φ))

∣∣� (log T )
3
2−δ.

Proof. First we observe for any non-negative integer `∑
t±n (φ)6T

∣∣ζ( 1
2 + it±n (φ))

∣∣2`+1

=
1

2

∑
tn(φ)6T

(∣∣ζ( 1
2 + itn(φ))

∣∣2`+1 ± e−(2`+1)iφζ
(
1
2 + itn(φ)

)2`+1
)

(with the same choice of signs on either side of the equation). In view of Theorem 1.2.3 and
Theorem 1.3.7 with k = 3

2 we get∑
t±n (φ)6T

∣∣ζ( 1
2 + it±n (φ))

∣∣3 � T (log T )
13
4 .

Since the number of intersection points tn(φ) 6 T is bounded by T log T (see Theorem 1.2.1)
and ∑

0<tφn6T

∣∣ζ ( 12 + itn(φ)
)∣∣2 � T (log T )2

(see Theorem 1.15), we find∑
t±n (φ)6T

∣∣ζ( 1
2 + it±n (φ))

∣∣3 � max
t±n (φ)6T

∣∣ζ( 1
2 + it±n (φ))

∣∣ ∑
0<tφn6T

∣∣ζ ( 12 + itn(φ)
)∣∣2

� max
t±n (φ)6T

∣∣ζ( 1
2 + it±n (φ))

∣∣T (log T )2.

Comparing both estimates we arrive at

max
t±n (φ)6T

∣∣ζ( 1
2 + it±n (φ))

∣∣� (log T )
5
4 ,

If we assume Riemann Hypothesis we can use the following estimate (see Theorem 1.4.1)
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that holds for any non-negative real k, uniformly for φ ∈ [0, π), as T →∞,∑
0<tφn6T

∣∣ζ ( 12 + itn(φ)
)∣∣2k � T (log T )k

2+1+ε.

We have

T (log T )
13
4 �

∑
t±n (φ)6T

∣∣ζ( 1
2 + it±n (φ))

∣∣3 � max
t±n (φ)6T

∣∣ζ( 1
2 + it±n (φ))

∣∣α ∑
0<tφn6T

∣∣ζ ( 12 + itn(φ)
)∣∣3−α

� max
t±n (φ)6T

∣∣ζ( 1
2 + it±n (φ))

∣∣α T (log T )(
3
2−

α
2 )2+1+ε.

Comparing both sides we arrive at

max
t±n (φ)6T

∣∣ζ( 1
2 + it±n (φ))

∣∣� (log T )
3
2−

α
4−

ε
α .

After choosing α = 2δ and ε = δ2, where δ is positive and arbitrary small we get

max
t±n (φ)6T

∣∣ζ( 1
2 + it±n (φ))

∣∣� (log T )
3
2−δ.

which proves the corollary.

1.5.2 Extreme values

Corollary 1.5.2. Let φ 6= π
2 and φ ∈ [0, π), then

max
0<tn(φ)≤T

∣∣ζ( 1
2 + itn(φ))

∣∣� exp

((
1

2
+ o(1)

)√
log T

log log T

)
.

Proof. Our argument follows Soundararajan [43]. Taking X = Y , resp. xn = yn in (1.9), we get

S1(T ) =
∑

0<tn(φ)6T

ζ
(
1
2 − itn(φ)

)
|X
(
1
2 + itn(φ)

)
|2

for (1.16). Comparing with (1.17) we find

|S1(T )| ≤ S2(T ) max
0<tn≤T

|ζ( 1
2 + itn(φ))|. (1.26)

Now let L = exp(
√

logX log logX) where X is a sufficiently large parameter which will be
chosen later. Following Soundararajan [43], we define xn = n

1
2 f(n), where f is the multiplicative

function such that f(pk) = 0 for all primes p and positive integers k ≥ 2,

f(p) =
L

√
p log p

for all primes p satisfying L2 ≤ p ≤ exp((logL)2), and f(p) = 0 for all other primes. We observe
that

X0 = max
n≤X

√
nf(n) ≤ Lm

m∏
j=1

1

log pj
,

where p1, . . . , pm are the least distinct m prime numbers in [L2, exp((logL)2] for which n =
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p1 · . . . · pm ≤ X. Since X ≥ n ≥ L2m then Lm ≤ X
1
2 and X0 < Lm ≤ X

1
2 . Moreover, since

f(n) ≤ 1 for any n, we find

X1 =
∑
n≤X

f(n)√
n
≤
∑
n≤X

1√
n
� X

1
2

as well as

X2 =
∑
n≤X

|xn|2

n
=
∑
n≤X

f2(n) =
∑

n=p1...pm≤X
L2<p1...pm≤eL

2

L2m

(p1 log p1 . . . pm log pm)2

≤
∏

L2<p≤eL2

(
1 +

L2

p2 log2 p

)
< exp

(
L2
∑
p>L2

1

p2 log2 p

)
< e.

Inserting these bounds in the asymptotic formulas of Proposition 1.3.1 yields

S1(T ) = (1 + e−2iφ)
T

2π

(
log

T

2πe

) ∑
mn6X

f(m)f(mn)√
n

+O(X2T
1
2 (log T )2)

and
S2(T ) =

T

2π

(
log

T

2πe

) ∑
n6X

|f(n)|2 +O(XT
1
2 (log T )2 +X2(log T )3).

Let X = T
1
4−ε, then the main terms in the latter formulas dominate the error terms and we

may deduce from (1.26) that

max
0<tn≤T

|ζ( 1
2 + itn(φ))| ≥ |S1(T )|

S2(T )
�

 ∑
mn6X

f(m)f(mn)√
n

∑
n6X

|f(n)|2
−1 .

Soundararajan [43] proved that the right hand-side is ≥ exp
(

(1 + o(1))
√

logX
log logX

)
which gives

the desired estimate by letting ε→ 0.

1.5.3 Continuous moments

Proposition 1.5.3. Let k be any non-negative real number and l any non-negative integer.
Then, as T →∞,∫ 2T

T

∣∣∣ζ(l) ( 12 + it
)∣∣∣2k θ′(t)dt =

∫ π

0

∑
T≤tn(φ)≤2T

∣∣∣ζ(l) ( 12 + it
)∣∣∣2k dφ.

Proof. Let Ti := gM+i with i = 0, ..., N denote the generalized Gram’s points that lie in the
interval [T, 2T ]. We define a smooth function [c0/π,∞) 3 x 7→ tx via

θ(tx) = π · x.

Then, tn = gn and tn+φ/π = tn(φ) for every positive integer n and every φ ∈ [0, π). Hence, we
get ∫ tn+1

tn

g(t)dθ(t) =

∫ 1

0

g(tn+u)dθ(tn+u) =

∫ 1

0

g(tn+u)d(π(n+ u)) = (1.27)
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=

∫ 1

0

g(tn+u)πdu =

∫ π

0

g(tn+φ/π)πd(φ/π) =

∫ π

0

g(tn(φ))dφ.

Therefore, ∫ TN

T1

g(t)dθ(t) =
∑

M≤n≤M+N

∫ tn+1

tn

g(t)dθ(t) =

=

∫ π

0

 ∑
M≤n≤M+N

g(tn(φ))

 dφ =

∫ π

0

 ∑
T1≤tn(φ)≤TN

g(t)

 dφ.

Noting that the segements [T, T1] and [TN , 2T ] can be treated in a way analogue to (1.27), the
assertion of the Proposition follows.

Corollary 1.5.4. As T →∞,∫ 2T

T

ζ
(
1
2 + it

)
d(θ(t)) =

T

2
log

T

2πe
+O

(
T

1
2+ε
)
,∫ 2T

T

∣∣ζ ( 12 + it
)∣∣2 d(θ(t)) =

T

2

(
log

T

2πe

)2

+ cT log
T

2πe
+
T

2
+O

(
T

1
2+ε
)
,∫ 2T

T

ζ
(
1
2 + it

)3
d(θ(t)) =

T

2
log

T

2πe
+O

(
T

1
2+ε
)
,

where c is the Euler-Mascheroni constant.

Proof of Corollary 1.5.4. By Theorem 1.2.2 we have for any ε > 0, any φ ∈ [0, π), as T →∞,

∑
0<tn(φ)6T

ζ
(
1
2 + it

)
=2eiφ cos(φ)

T

2π
log

T

2πe
+O

(
T

1
2+ε
)
,

∑
0<tn(φ)6T

∣∣ζ ( 12 + it
)∣∣2 =

T

2π

(
log

T

2πe

)2

+ (2c+ 2 cos(2φ))
T

2π
log

T

2πe

+
T

2π
+O

(
T

1
2+ε
)
,

where c is the Euler-Mascheroni constant. By Theorem 1.2.3 we have for any ε > 0, any
φ ∈ [0, π), as T →∞,

∑
0<tn(φ)6T

ζ
(
1
2 + itn(φ)

)3
=2e3iφ cos(φ)

T

2π
P3

(
log

T

2π

)
+ 2e3iφ cos(3φ)

T

2π
log

T

2πe

+O
(
T

1
2+ε
)
,

where P3(x) is a computable polynomial of degree three. Using the asymptotic formulas above,
we can easily deduce the assertions of Corollary 1.5.4 via Proposition 1.5.3. Note that∫ π

0

eiφ cos(φ)dφ =

∫ π

0

ei3φ cos(3φ)dφ =
π

2
,

∫ π

0

cos(2φ)dφ =

∫ π

0

ei3φ cos(φ)dφ = 0.
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Corollary 1.5.5. For any rational k > 1 and any non-negative integer l, as T →∞,∫ T

1

∣∣∣ζ(l) ( 12 + it
)∣∣∣2k � T (log T )k

2+2kl.

Proof of Corollary 1.5.5. Using the asymptotic extension (1.8) for θ′(t), Proposition 1.5.3 yields
for any rational k ≥ 1 and any non-negative integer l∫ 2T

T

∣∣∣ζ(l) ( 12 + it
)∣∣∣2k dt � 1

log T

∫ π

0

∑
T≤tn(φ)≤2T

∣∣∣ζ(l) ( 12 + it
)∣∣∣2k dφ.

Combining this with Theorem 1.3.7, we get for any rational k ≥ 1 and any non-negative
integer l

∫ T

1

|ζ(l)( 1
2 + it)|2kdt ≥

∞∑
j=0

∫ T/2j

T/2j+1

|ζ(l)( 1
2 + it)|2kdt

�
∞∑
j=0

1

log T

∫ π

0

∑
T

2j+1≤tn(φ)≤ T

2j

|ζ(l)( 1
2 + it)|2kdφ

� T (log T )k
2+2kl.

Thus, Corollary 1.5.5 follows.

Corollary 1.5.6. Assume the Riemann Hypothesis.
For any non-negative real k, uniformly for φ ∈ [0, π), as T →∞,∫ T

1

∣∣ζ ( 12 + it
)∣∣2k � T (log T )k

2+ε.

For any non-negative integer k and any positive integer l, uniformly for φ ∈ [0, π), as T →∞,∫ T

1

∣∣∣ζ(l) ( 12 + it
)∣∣∣2k � T (log T )k

2+2kl+ε.

Proof of Corollary 1.5.6. Using the asymptotic extension (1.8) for θ′(t), Proposition 1.5.3 yields
for any non-negative real k and any non-negative integer l∫ 2T

T

∣∣∣ζ(l) ( 12 + it
)∣∣∣2k dt � 1

log T

∫ π

0

∑
T≤tn(φ)≤2T

∣∣∣ζ(l) ( 12 + it
)∣∣∣2k dφ.

Combining this with Theorem 1.4.1, we prove Corollary 1.5.6.
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Chapter 2

Sums of Dirichlet L-function over
non-trivial zeros of another
Dirichlet L-function

Let s = σ + it denote a complex variable. The Dirichlet L-function is defined by

L(s, χ) =

∞∑
n=1

χ(n)

ns
(σ > 1),

where χ(n) is a Dirichlet character modulo q. For χ mod 1 we get the Riemann zeta function
L(s, χ) = ζ(s). The Generalized Riemann Hypothesis (GRH) states that inside the critical strip
0 < σ < 1 every Dirichlet L-function has zeros only on the critical line σ = 1

2 . Zeros in the
critical strip are called non-trivial and we denote them by ρχ = βχ + iγχ. A Dirichlet character
χ mod q is said to be primitive if it is not induced by any other character of modulus strictly less
than q. The unique principal character modulo q is denoted by χ0. The character χ0 mod 1 is
the only one principal and primitive character. For a Dirichlet character χ mod q the associated
Gauss sum is defined by

G(n, χ) =

q∑
a=1

χ(a) exp

(
2πi

an

q

)
.

If n = 1 we denote τ(χ) = G(1, χ). For a primitive character χ mod q we have |τ(χ)| = √q and
for the principal character χ0 we have τ(χ0) = µ(q), where µ(q) is the Möbius function.

Next we recall several facts about Dirichlet L-functions. Dirichlet L-function to a primitive
character ψ mod Q satisfies the functional equation (Apostol [1, Theorem 12.11])

L(1− s, ψ) = τ(ψ)
1

Q

(
Q

2π

)s
Γ(s)

(
exp

(
−πis

2

)
+ ψ(−1) exp

(
πis

2

))
L(s, ψ). (2.1)

Thus Theorem from Heath-Brown [24] and an application of the Phragmen-Lindelöf principle
yield the estimates

L(s, ψ)� |QT | 3
16+ε for 1

2
≤ σ ≤ 1 +

1

logQT
, |t| ≥ 1, (2.2)

L(s, ψ)� |QT | 12+ε for − 1

logQT
≤ σ < 1

2
, |t| ≥ 1 (2.3)
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uniformly in |t| � T . Under GRH the bound (2.2) can be replaced by

L(s, ψ)� |QT |ε for 1

2
≤ σ ≤ 1 +

1

logQT
, |t| ≥ 1 (2.4)

uniformly in |t| � T . The bound (2.4) can be obtained similarly as in Titchmarsh [47, Theorem
13.5], see also Garunkštis [16, Theorem 4].

We rewrite the functional equation (2.1) as

L(1− s, ψ) = ∆(1− s, ψ)L(s, ψ), (2.5)

where ∆(s, ψ) is a meromorphic function with only real zeros and poles satisfying the functional
equation

∆(s, ψ)∆(1− s, ψ) = 1. (2.6)

Stirling’s formula gives, for t > 1,

∆(σ + it, ψ) =

(
tQ

2π

)σ− 1
2−it

exp
(
i
(
t+

π

4

))(
1 +O

(
1

t

))
(2.7)

and
∆′

∆
(s, ψ) =

∆′

∆
(1− s, ψ) = − log

tQ

2π
+O

(
1

t

)
. (2.8)

Logarithmic differentiation of (2.5) leads to

L′

L
(1− s, χ) =

∆′

∆
(1− s, χ)− L′

L
(s, χ). (2.9)

For the logarithmic derivative we have the partial fraction decomposition (see Prachar [39,
Chapter 7, Theorem 4.1] )

L′

L
(s, χ) =

∑
|t−γχ|≤1

1

s− ρχ
+O(log q(|t|+ 2)) for − 1 ≤ σ ≤ 2, t ≥ 1. (2.10)

For q ≥ 1, χ mod q and t ≥ 0 we have (see Prachar [39, Chapter 7, Theorem 3.3])

Nχ(t+ 1)−Nχ(t) := #{ρχ = βχ + iγχ : t < γχ ≤ t+ 1} � log q(t+ 2). (2.11)

Thus the zeros ρχ cannot lie too dense: for any given t0 ≥ 2 there exists a t = t(χ), t ∈ (t0, t0+1],
such that

min
γχ
|t− γχ| �

1

log qt
. (2.12)

In view of the expression (2.10) we get, for t satisfying (2.12),

L′

L
(σ + it, χ)� (log qt)2 for − 1 ≤ σ ≤ 2, t ≥ 2. (2.13)

2.1 Lemmas

In the proofs of Theorems 2.2.1 and 2.3.1 the following modified Gonek lemma (c.f. Gonek [19,
Lemma 5]) will be important.
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Lemma 2.1.1. Assume that
∑∞
n=1

a(n)
ns converges for σ > 1 and a(n) = O(nε). Let a =

1 + 1
log(QT ) . Then

1

2πi

∫ a+iT

a+i

(m
2π

)s
Γ(s) exp

(
δ
πis

2

) ∞∑
n=1

a(n)

ns
ds

=

{ ∑
n≤Tm2π

a(n) exp
(
−2πi nm

)
+O(maT 1/2+ε) if δ = −1,

O(ma) if δ = +1.

Proof. Because of the absolute convergence we may interchange the order of summation and
integration. For the integral we use Lemma 1 from [10] and for the sum Lemma 4 from [19].

Next three technical lemmas will be useful in the proof of Theorem 2.2.1.

Lemma 2.1.2. Let χ mod q and ψ mod Q be primitive Dirichlet characters and χ 6= ψ with
Q� logA T and q � logB T , where A and B are positive constants. We have

∑
mnl≤TQ2π

Λ(m)χ(m)ψ(n)ψ(l) exp

(
−2πi

mnl

Q

)

= −ψ(−1)τ(ψ)
φ(Q)

Q

L′

L
(1, (χψ))

T

2π

log
TQ

2πe
+ 2γ + 2

∑
p|Q

log p

p− 1
+

(
L′′

L′
− L′

L

)
(1, χψ)


+ δ(q,Q)χ(−1)τ(χψ0)

1

φ(Q)

TQ

2π
L(1, (χψ))2 +O

(
T

1− c

log
3
4
+ε

T

)
.

Under GRH the error term can be replaced by O
(
q Q(log q)2(TQ)

1
2+ε + q Q5 log(TQ)

)
uniformly

for all Q and q.

Proof. By the orthogonality of Dirichlet characters the left-hand side of the formula in Lemma
2.1.2 can be written in the following way.

∑
mnl≤TQ2π

Λ(m)χ(m)ψ(n)ψ(l) exp

(
−2πi

mnl

Q

)

=

[q,Q]∑
a=1

χ(a)

Q∑
b=1

ψ(b)

Q∑
c=1

ψ(c) exp

(
−2πi

abc

Q

) ∑
mnl≤TQ2π

m≡a mod [q,Q]
n≡b mod Q
l≡c mod Q

Λ(m) (2.14)

=
1

φ2(Q)

∑
ω′ mod Q
ω′′ mod Q

[q,Q]∑
a=1

χ(a)

Q∑
b=1

ω′(b)ψ(b)

Q∑
c=1

ω′′(c)ψ(c) exp

(
−2πi

abc

Q

)

×
∑

mnl≤TQ2π
m≡a mod [q,Q]

Λ(m)ω′(n)ω′′(l) = S1 + S2 + S3 + S4,

where Sj , j = 1, 2, 3, 4 correspond to the following cases:

• S1 : ω′ = ω′0 and ω′′ = ω′′0 ,

• S2 : ω′ = ω′0 and ω′′ 6= ω′′0 ,

• S3 : ω′ 6= ω′0 and ω′′ = ω′′0 ,

• S4 : ω′ 6= ω′0 and ω′′ 6= ω′′0 ,
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here ω′0 = ω′′0 is the principle character modulo Q.
First we consider S1. Since ψ is a primitive Dirichlet character, the Gauss sum is separable,

i.e. G(−ab, ψ) = ψ(−ab)τ(ψ) (see Davenport [11, Section 9]). By this and by the orthogonality
of Dirichlet characters we have

S1 =ψ(−1)τ(ψ)
1

φ(Q)

[q,Q]∑
a=1

χ(a)ψ(a)
∑

mnl≤TQ2π
m≡a mod [q,Q]

Λ(m)ω′0(n)ω′′0 (l)

=ψ(−1)τ(ψ)
1

φ([q,Q])

1

φ(Q)

∑
η mod [q,Q]

[q,Q]∑
a=1

η(a)χ(a)ψ(a)
∑

mnl≤TQ2π

Λ(m)η(m)ω′0(n)ω′′0 (l).

In the last formula the sum over a is not equal to zero if and only if η = χψ. Thus

S1 = ψ(−1)τ(ψ)
1

φ(Q)

∑
mnl≤TQ2π

Λ(m)(χψ)(m)ω′0(n)ω′′0 (l). (2.15)

Second we consider S2. In formula (2.1.2) interchanging the summation (over b and c) and
using the equality G(−ac, ψ) = ψ(−ac)τ(ψ) we obtain

S2 =
1

φ2(Q)

∑
ω′′ mod Q
ω′′ 6=ω′′0

[q,Q]∑
a=1

χ(a)

Q∑
c=1

ω′′(c)ψ(c)

Q∑
b=1

ψ(b) exp

(
−2πi

abc

Q

)

×
∑

mnl≤TQ2π
m≡a mod [q,Q]

Λ(m)ω′0(n)ω′′(l)

=ψ(−1)τ(ψ)
1

φ2(Q)

∑
ω′′ mod Q
ω′′ 6=ω′′0

[q,Q]∑
a=1

χ(a)ψ(a)

Q∑
c=1

ω′′(c)
∑

mnl≤TQ2π
m≡a mod [q,Q]

Λ(m)ω′0(n)ω′′(l).

Hence S2 = 0, since the sum over c is equal to zero.
In the same way we obtain S3 = 0.
Finally we consider S4. First we note that, for ω′ 6= ω′0, ω′′ 6= ω′′0 and (a, [q,Q]) > 1,∣∣∣∣∣∣∣∣∣

∑
m≤TQ2π

m≡a mod [q,Q]

Λ(m)
∑

nl≤ TQ
2πm

ω′(n)ω′′(l)

∣∣∣∣∣∣∣∣∣ ≤ φ
2(Q)

∑
m≤TQ2π

m≡a mod [q,Q]

Λ(m) = O(φ2(Q) log(TQ)).

This yields (note that the formula below is split into two lines)

S4 =
1

φ2(Q)

∑
ω′ mod Q
ω′ 6=ω′0

∑
ω′′ mod Q
ω′′ 6=ω′′0

[q,Q]∑
a=1

χ(a)

Q∑
b=1

ω′(b)ψ(b)

Q∑
c=1

ω′′(c)ψ(c) exp

(
−2πi

abc

Q

)
∑

mnl≤TQ2π
m≡a mod [q,Q]

(a,[q,Q])=1

Λ(m)ω′(n)ω′′(l) +O
(
φ4(Q)φ([q,Q]) log(TQ)

)
.

If (ab,Q) = 1, then G(−ab, ω′′ψ) = (ω′′ψ)(−ab)τ(ω′′ψ) (see Davenport [11, Section 9]). Then
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by the orthogonality of Dirichlet characters we have

S4 =
1

φ([q,Q])

1

φ2(Q)

∑
η mod [q,Q]

∑
ω′ mod Q
ω′ 6=ω′0

∑
ω′′ mod Q
ω′′ 6=ω′′0

(ω′′ψ)(−1)τ(ω′′ψ)

[q,Q]∑
a=1

η(a)χ(a)ω′′(a)ψ(a)

Q∑
b=1

ω′(b)ω′′(b)
∑

mnl≤TQ2π

Λ(m)η(m)ω′(n)ω′′(l) +O
(
φ4(Q)φ([q,Q]) log(TQ)

)
.

In the last formula the sum over b does not vanish if and only if ω′ = ω′′. Further we write
S4 = T1 + T2, where T1 and T2 correspond to the following cases:

• T1 : η = η0,

• T2 : η 6= η0.

Let δ(q,Q) = 1 if q|Q and δ(q,Q) = 0 otherwise. Then

T1 =
1

φ([q,Q])

1

φ(Q)

×
∑

ω′ mod Q
ω′ 6=ω′0

(ω′ψ)(−1)τ(ω′ψ)

[q,Q]∑
a=1

η0(a)χ(a)ω′(a)ψ(a)
∑

mnl≤TQ2π

Λ(m)η0(m)ω′(n)ω′′(l) (2.16)

=δ(q,Q)(χψ0)(−1)τ(χψ0)
1

φ(Q)

∑
mnl≤TQ2π

Λ(m)η0(m)(χψ)(n)(χψ)(l),

since the sum over a does not vanish if and only if ω′ = χψ; and this equality happens if and
only if q|Q. By definition of T2 we have

T2 =
1

φ([q,Q])

1

φ(Q)

∑
η mod [q,Q]

η 6=η0

∑
ω′ mod Q
ω′ 6=ω′0

(ω′ψ)(−1)τ(ω′ψ)

[q,Q]∑
a=1

η(a)χ(a)ω′(a)ψ(a)
∑

mnl≤TQ2π

Λ(m)η(m)ω′(n)ω′′(l), (2.17)

where ω′′(l) is a non-principle character mod Q.
In view of the above we can write∑

mnl≤TQ2π

Λ(m)χ(m)ψ(n)ψ(l) exp

(
−2πi

mnl

Q

)
= S1 + T1 + T2 +O

(
φ4(Q)φ([q,Q]) log(TQ)

)
,

where S1, T1, and T2 are given by formulas (2.15), (2.16), and (2.17). We will see that sums S1

and T1 produce the main term, and the sum T2 contributes to the error term.
Next we consider S1. Note that by conditions of the lemma the character χψ is not a

principal character. By Perron’s formula (see Titchmarsh [47, Lemma 3.12])

− φ(Q)

ψ(−1)τ(ψ)
S1 = −

∑
mnl≤TQ2π

Λ(m)(χψ)(m)ω′0(n)ω′′0 (l)

=
1

2πi

∫ a+iU

a−iU

L′

L
(s, (χψ))L(s, ω′0)L(s, ω′′0 )

(
TQ

2π

)s
ds

s
+O

(
TQ log2(TQ)

U

)
, (2.18)
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where a = 1 + 1/ log(TQ).
In Prachar [39, Chapter 8, Theorem 6.2] considering q � logB T with B being any positive

constant we find that
L(s, χ) 6= 0 for σ > 1− c

log
3
4+ε T

,

where c is an absolute positive constant. With regard to this zero-free region for L(s, χ) let
b1 = 1− c/ log

3
4+ε T . Shifting the line of integration and noting that L(s, ω′0) = L(s, ω′′0 ) we get

−
∑

mnl≤TQ2π

Λ(m)(χψ)(m)ω′0(n)ω′′0 (l) = Ress=1
L′

L
(s, χψ)L2(s, ω′0)

(
TQ

2π

)s
1

s

− 1

2πi

{∫ b1+iU

a+iU

+

∫ b1−iU

b1+iU

+

∫ a−iU

b1−iU

}
L′

L
(s, χψ)L2(s, ω′0)

(
TQ

2π

)s
ds

s
(2.19)

+O

(
TQ log2(TQ)

U

)
.

Note that

Ress=1
L′

L
(s, χψ)L2(s, ω′0)

(
TQ

2π

)s
1

s
= lim
s→1

d

ds

(
(s− 1)2

L′

L
(s, χψ)L2(s, ω′0)

(
TQ

2π

)s
1

s

)
.

To calculate this residue we use the following expansion (see Davenport [11, Section 4, formula
(6)] and Titchmarsh [47, formula (2.1.16)])

L2(s, ω′0) =

ζ(s)
∏
p|Q

(
1− p−s

)2

=

(
1

s− 1
+ γ +

∞∑
n=1

γn(s− 1)n

)2∏
p|Q

(
1− p−s

)2
=

(
1

(s− 1)2
+

2γ

(s− 1)
+

∞∑
m=0

am(s− 1)m

)∏
p|Q

(
1− p−s

)2
,

where γ is the Euler constant, γn, n = 1, 2, . . . , and am, m = 0, 1, . . . are absolute real constants.
Then by (see Apostol [1, Theorem 2.4])

∏
p|Q

(
1− p−1

)
=
φ(Q)

Q
, (2.20)

d

ds

∏
p|Q

(
1− p−s

)2

= 2
∏
p|Q

(
1− p−s

)2∑
p|Q

log p

ps − 1
(2.21)

and
d

ds

L′

L
(s, χψ) =

(
L′′L− (L′)2

L2

)
(s, χψ)
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we get

Ress=1
L′

L
(s, χψ)L2(s, ω′0)

(
TQ

2π

)s
1

s

= lim
s→1

d

ds

(1 + 2γ(s− 1))
L′

L
(s, χψ)

(
TQ

2π

)s
1

s

∏
p|Q

(
1− p−s

)2
= (2γ − 1)

L′

L
(1, χψ)

TQ

2π

∏
p|Q

(
1− p−1

)2
+
L′′L− (L′)2

L2
(1, χψ)

TQ

2π

∏
p|Q

(
1− p−1

)2
+
∏
p|Q

(
1− p−1

)2 L′
L

(1, χψ)
TQ

2π
log

TQ

2π
+ 2

L′

L
(1, χψ)

TQ

2π

∏
p|Q

(
1− p−1

)2∑
p|Q

log p

p− 1

=

(
φ(Q)

Q

)2
L′

L
(1, χψ)

TQ

2π

log
TQ

2πe
+ 2γ + 2

∑
p|Q

log p

p− 1
+

(
L′′

L′
− L′

L

)
(1, χψ)

 .

This and formulas (2.19), (2.18) yield

S1 =− ψ(−1)τ(ψ)
φ(Q)

Q

L′

L
(1, (χψ))

T

2π

log
TQ

2πe
+ 2γ + 2

∑
p|Q

log p

p− 1
+

(
L′′

L′
− L′

L

)
(1, χψ)


+ E ,

where

E =− ψ(−1)τ(ψ)

2πiφ(Q)

{∫ b1+iU

a+iU

+

∫ b1−iU

b1+iU

+

∫ a−iU

b1−iU

}
L′

L
(s, (χψ))L(s, ω′0)L(s, ω′′0 )

(
TQ

2π

)s
ds

s

+O

(
|τ(ψ)|
φ(Q)

TQ log2(TQ)

U

)
.

Next we evaluate the integrals in E . In view of inequality φ(Q)� Q1−ε we obtain

|τ(ψ)|
φ(Q)

� Q−
1
2+ε. (2.22)

By this and by formulas (2.2), (2.13) we have that the first and the third integrals in E are
bounded by

� Q−
1
2+ε(log([q,Q]U))2(QU)

3
8+εTQ/U.

Next we consider the second integral in E . We brake it into three parts

− 1

2πi

{∫ b1−i

b1−iU
+

∫ b1+i

b1−i
+

∫ b1+iU

b1+i

}
L′

L
(s, (χψ))L(s, ω′0)L(s, ω′′0 )

(
TQ

2π

)s
ds

s
.

Again, using formulas (2.2) and (2.13) we see that the first and the third integrals in the last
formula are bounded by

� Q−
1
2+ε(log([q,Q]U))2(QU)

3
8+ε(TQ)b1

and the second integral is bounded by

� Q−
1
2+ε(TQ)b1(log([q,Q]))2(Q)

3
8+ε.
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Now we choose U = T 1−b1 . By Q� logA T and q � logB T we obtain that

E � T
1− c

log
3
4
+ε

T .

In the same way we get

T1 = δ(q,Q)χ(−1)τ(χψ0)
1

φ(Q)

TQ

2π
L(1, (χψ))2 +O

(
T

1− c

log
3
4
+ε

T

)
and

T2 � T
1− c

log
3
4
+ε

T .

Under GRH we choose b1 = 1/2 + 1/ logQT , U = QT and make use of the bound (2.4).
This finishes the proof of Lemma 2.1.2.

Lemma 2.1.3. Let ψ mod Q be a primitive Dirichlet character. Then, for x→∞,

∑
mn≤x

ψ(m)ψ(n) exp

(
−2πi

mn

Q

)

= −ψ(−1)τ(ψ)
φ(Q)

Q2
x

log
x

e
+ 2γ + 2

∑
p|Q

log p

p− 1

+O(Q−
1
8+εx

11
16+ε +Q4)

uniformly in Q. Under GRH the error term can be replaced by O(Q−1/2+εx1/2+ε+Q4) uniformly
in Q.

Proof. By the orthogonality of Dirichlet characters the sum in Lemma 2.1.3 can be written as

S =
∑
mn≤x

ψ(m)ψ(n) exp

(
−2πi

mn

Q

)

=
1

φ2(Q)

∑
η mod Q

∑
ω mod Q

Q∑
a=1

η(a)ψ(a)

Q∑
b=1

ω(b)ψ(b) exp

(
−2πi

ab

Q

) ∑
mn≤x

η(m)ω(n)

= ψ(−1)τ(ψ)
1

φ(Q)

∑
mn≤x

η0(m)ω0(n) +O(φ(Q)4).

Perron’s formula yields

∑
mn≤x

η0(n)ω0(l) = − 1

2πi

∫ a+iU

a−iU
L(s, η0)L(s, ω0)xs

ds

s
+O

(
x log2 x

U

)
,

where a = 1/ log x. Let b1 = 1/2 + 1/ log x. Shifting the line of integration we get

∑
mn≤x

η0(n)ω0(l) = −Ress=1 L(s, η0)L(s, ω0)xs
1

s

+
1

2πi

{∫ b1+iU

a+iU

+

∫ b1−iU

b1+iU

+

∫ a−iU

b1−iU

}
L(s, η0)L(s, ω0)xs

ds

s
+O

(
x log2 x

U

)
,
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The definition of residue, formulas (2.20) and (2.21) lead to

Ress=1 L(s, η0)L(s, ω0)xs
1

s
=
φ(Q)2

Q2
x

log
x

e
+ 2γ + 2

∑
p|Q

log p

p− 1

 .

Hence, we have

S =− ψ(−1)τ(ψ)
φ(Q)

Q2
x

log(x/e) + 2

γ +
∑
p|Q

log p

p− 1

+O(φ(Q)4) + E ,

where

E =ψ(−1)τ(ψ)
1

2πiφ(Q)

{∫ b1+iU

a+iU

+

∫ b1−iU

b1+iU

+

∫ a−iU

b1−iU

}
L(s, η0)L(s, ω0)xs

ds

s

+O

(
|τ(ψ)|
φ(Q)

x log2 x

U

)
.

It remains to bound E . By formulas (2.2) and (2.22) we have that the first and the last integrals
in E are bounded by � Q−1/2+ε(QU)3/8+εx/U . The second integral in E we brake into three
parts {∫ b1−i

b1−iU
+

∫ b1+i

b1−i
+

∫ b1+iU

b1+i

}
L(s, η0)L(s, ω0)xs

ds

s
.

In the last formula the first and the third integrals are both bounded by� Q−1/2+ε(QU)3/8+εx1/2

and the second integral is bounded by � Q−1/2+εx1/2. We choose U = x1/2. Then

E � Q−
1
8+εx

11
16+ε.

If we assume GRH then the bound (2.4) gives E � Q−1/2+εx1/2+ε. Lemma 2.1.3 is proved.

The last Lemma will be useful in the proof of Theorem 2.3.1. It is a weaker case of Lemma
2.1.2.

Lemma 2.1.4. Let χ mod q and ψ mod Q be primitive Dirichlet characters and χ 6= ψ with
Q� logA T and q � logB T , where A and B are positive constants. We have

∑
mn≤TQ2π

Λ(m)χ(m)ψ(n) exp

(
−2πi

mn

Q

)

= −ψ(−1)τ(ψ)
L′

L
(1, χψ)

T

2π
+ δ(q,Q)

1

φ(Q)
G(−1, χψ0)L(1, χψ)

TQ

2π
+O

(
T

1− c

log
3
4
+ε

T

)
.

Under GRH the error term can be replaced by O
(
(TQ)1/2+ε

)
uniformly for all Qand q.

Proof. By the orthogonality of Dirichlet characters the left-hand side of the formula in Lemma
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2.1.4 can be written in the following way.

∑
mn≤TQ2π

Λ(m)χ(m)ψ(n) exp

(
−2πi

mn

Q

)

=
1

φ(Q)

∑
ω mod Q

Q∑
a=1

ψ(a)ω(a)

[q,Q]∑
b=1

χ(b) exp

(
−2πi

ab

Q

) ∑
mn≤TQ2π

m≡b mod [q,Q]

Λ(m)ω(n)

=
1

φ(Q)

[q,Q]∑
b=1

χ(b)

Q∑
a=1

ψ(a)ω0(a) exp

(
−2πi

ab

Q

) ∑
mn≤TQ2π

m≡b mod [q,Q]

Λ(m)ω0(n)

+
1

φ(Q)

∑
ω mod Q
ω 6=ω0

Q∑
a=1

ψ(a)ω(a)

[q,Q]∑
b=1

χ(b) exp

(
−2πi

ab

Q

) ∑
mn≤TQ2π

m≡b mod [q,Q]

Λ(m)ω(n)

= S1 + S2.

By ω0 we denote the principal Dirichlet character mod Q.
First we deal with S1. We note that

Q∑
a=1

ψ(a)ω0(a) exp

(
−2πi

ab

Q

)
= G(−b, ψ) = ψ(b)G(−1, ψ).

In view of [1, Thm. 8.10], we obtain S1 = 0 whenever (b, [q,Q]) > 1. We use the orthogonality
of Dirichlet characters one more time and we get

S1 =G(−1, ψ)
1

φ(Q)

[q,Q]∑
b=1

χ(b)ψ(b)
∑

mn≤TQ2π
m≡b mod [q,Q]

Λ(m)ω0(n) (2.23)

=G(−1, ψ)
1

φ(Q)

1

φ([q,Q])

∑
η mod [q,Q]

− ∑
mn≤TQ2π

Λ(m)η(m)ω0(n)


×

[q,Q]∑
b=1

χ(b)ψ(b)ω0(b)η(b).

Now we consider S2. If ω 6= ω0 and (b, [q,Q]) = d, d > 1, then we have

∑
mn≤TQ2π

m≡b mod [q,Q]

Λ(m)ω(n) = O

( ∑
m≤TQ2π

m≡b mod [q,Q]

Λ(m)

)
= O(log(TQ)).

We note

∑
ω mod Q
ω 6=ω0

[q,Q]∑
b=1

χ(b)

Q∑
a=1

ψ(a)ω(a) exp

(
−2πi

ab

Q

)

=
∑

ω mod Q
ω 6=ω0

G(−1, ψω)

[q,Q]∑
b=1

χ(b)ψ(b)ω(b) +O(Q).
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Hence after using the orthogonality of Dirichlet characters we get

S2 =
1

φ(Q)

∑
ω mod Q
ω 6=ω0

Q∑
a=1

ψ(a)ω(a)

[q,Q]∑
b=1

χ(b) exp

(
−2πi

ab

Q

) ∑
mn≤TQ2π

m≡b mod [q,Q]

Λ(m)ω(n) (2.24)

=
1

φ(Q)

1

φ([q,Q])

∑
ω mod Q
ω 6=ω0

G(−1, ψω)
∑

η mod [q,Q]

− ∑
mn≤TQ2π

Λ(m)η(m)ω(n)



×
[q,Q]∑
b=1

χ(b)ψ(b)ω(b)η(b) +O(Qε log(TQ)).

Now combining (2.23) and (2.24) the left-hand side of the formula in Lemma 2.1.4 can be
written in the following way.

1

φ(Q)

1

φ([q,Q])

∑
ω mod Q

G(−1, ψω)
∑

η mod [q,Q]

− ∑
mn≤TQ2π

Λ(m)η(m)ω(n)

 (2.25)

×
[q,Q]∑
b=1

χ(b)ψ(b)ω(b)η(b) +O(Qε log(TQ)).

The sum over b is not equal to zero in the following three cases

[q,Q]∑
b=1

χ(b)ψ(b)ω(b)η(b) = φ([q,Q]) for


ω = ω0, η = ψχ,

q|Q,ω = ψχ, η = η0,

ω 6= ω0, η = χψω.

(2.26)

By Perron’s formula we obtain

−
∑

mn≤TQ2π

Λ(m)η(m)ω(n) =
1

2πi

∫ a+iU

a−iU

L′

L
(s, η)L(s, ω)

(
TQ

2π

)s
ds

s
+O

(
T log2 T

U

)
.

In [39, Chapter 8, Thm. 6.2] considering q � logB T with B being any positive constant we find

L(s, χ) 6= 0 for σ > 1− c

log
3
4+ε T

,

where c is an absolute positive constant. With regard to this zero-free region for L(s, χ) let
b1 = 1− c/ log( 3

4+ε) T . Shifting the line of integration we get

−
∑

mn≤TQ2π

Λ(m)η(m)ω(n)

= Ress=1
L′

L
(s, η)L(s, ω)

(
TQ

2π

)s
1

s

− 1

2πi

{∫ b1+iU

a+iU

+

∫ b1−iU

b1+iU

+

∫ a−iU

b1−iU

}
L′

L
(s, η)L(s, ω)

(
TQ

2π

)s
ds

s
+O

(
T log2 T

U

)
.

(2.27)
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According to (2.26) we calculate the residues. In the first case we have

lim
s→1

d

ds

(
(s− 1)

L′

L
(s, χψ)L(s, ω0)

(
TQ

2π

)s
1

s

)
=
φ(Q)

Q

TQ

2π

L′

L
(1, χψ).

In the second case we find

lim
s→1

d

ds

(
(s− 1)

L′

L
(s, η0)L(s, χψ)

(
TQ

2π

)s
1

s

)
= −TQ

2π
L(1, χψ).

The residue in the third case is equal to zero.
Now combining (2.25), (2.26) and the values of the residues we get that the main terms of

the left-hand side of the formula in Lemma 2.1.4

−ψ(−1)τ(ψ)
L′

L
(1, χψ)

T

2π
+ δ(q,Q)

1

φ(Q)
G(−1, χψ0)L(1, χψ)

TQ

2π
,

where δ(q,Q) = 1 if q|Q and δ(q,Q) = 0 otherwise.
In a standard way we evaluate the integrals in (2.27). We consider

− 1

2πi

{∫ b1+iU

a+iU

+

∫ b1−iU

b1+iU

+

∫ a−iU

b1−iU

}
L′

L
(s, χψ)L(s, ω0)

(
TQ

2π

)s
ds

s
+O

(
T log2 T

U

)
.

According to (2.2) and (2.13) the first integral can be estimated as

∫ b1+iU

a+iU

L′

L
(s, χψ)L(s, ω0)

(
TQ

2π

)s
ds

s
= O

(
(TQ)

a (UQ)
1
2

U
log3([q,Q]U)

)
= O

(
TU−

1
2Q

3
2 log3([q,Q]U)

)
.

We get the same bound for the third integral.
For the second integral we find{∫ b1+i

b1+iU

+

∫ b1−i

b1+i

+

∫ b1−iU

b1−i

}
L′

L
(s, χψ)L(s, ω0)

(
TQ

2π

)s
ds

s

= O
(
T b1U

1
2Q

1
2+b1 log3([q,Q]U)

)
+O

(
(TQ)b1 log

3
2 T
)
,

where the second error term corresponds to the integral on the path [b1 − i, b1 + i].
Now we choose U = T 1−b1 , Q � logA T and q � logB T , where A and B are positive

constants. Then we obtain an error

O

(
T

1− c

log
3
4
+ε

T

)
.

The other cases in (2.25) give the same error term.
Under GRH we choose b1 = 1/2 + 1/ logQT , U = QT and make use of the bound (2.4).

This finishes the proof of Lemma 2.1.4.
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2.2 Second moment

Theorem 2.2.1. Let A and B be positive constants. Let ψ mod Q and χ mod q be primitive
Dirichlet characters and χ 6= ψ. Then, uniformly for Q� logA T and q � logB T , we have

∑
0<γχ≤T

L(ρχ, ψ)L(1− ρχ, ψ) =
φ(Q)

Q

T

2π
log2 T

2π
+ a1

T

2π
log

T

2π
+ a2

T

2π
+ a3

T

2π

+O

(
T

1− c

log
3
4
+ε

T

)
,

where real constants a1, a2, a3 depend only on q, Q, and are defined by the formula (2.40) below.
If we assume GRH then the left-hand side of the last equality can be replaced by∑

0<γχ≤T

|L( 1
2 + itχ, ψ)|2

and the error term can be replaced by O(q1+εQεT
1
2+ε + qQ

9
2+εT ε + (QT )

1
2+ε) uniformly for all

Q and q.

Proof. Let χ mod q and ψ mod Q be primitive Dirichlet characters such that χ 6= ψ. The proof
of the theorem relies on the method of Conrey, Ghosh, and Gonek [9]. The idea is to interpret
the sum in question as a sum of residues, resp. a contour integral

∑
0<γχ≤T

L(ρχ, ψ)L(1− ρχ, ψ) =
1

2πi

∫
C

L′

L
(s, χ)L(s, ψ)L(1− s, ψ)ds, (2.28)

which can be evaluated by the modified Gonek lemma (Lemma 2.1.1). We choose an appropriate
path of integration C. In view of the bound for zeros (2.11) we can choose 1

log q � b ≤ 1 and
T ≥ 2 such that

min
γχ
|b− γχ| �

1

log q
and min

γχ
|T − γχ| �

1

log qT
. (2.29)

Let a = 1 + 1/ log(QT ) and define the contour C to be the rectangle with vertices a + ib,
a+ iT , 1− a+ iT , 1− a+ ib. Then

1

2πi

∫
C

L′

L
(s, χ)L(s, ψ)L(1− s, ψ)ds (2.30)

=
1

2πi

{∫ a+iT

a+ib

+

∫ 1−a+iT

a+iT

+

∫ 1−a+ib

1−a+iT
+

∫ a+ib

1−a+ib

}
L′

L
(s, χ)L(s, ψ)L(1− s, ψ)ds

=:

4∑
j=1

Jj .

First we consider

J1 =
1

2πi

∫ a+iT

a+i

L′

L
(s, χ)L(s, ψ)L(1− s, ψ)ds+O(1).
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By applying the functional equation (2.1) we get

J1 =τ(ψ)
1

Q

1

2πi

∫ a+iT

a+ib

(
Q

2π

)s
Γ(s) exp

(
−πis

2

)
L′

L
(s, χ)L(s, ψ)L(s, ψ)ds

+ τ(ψ)ψ(−1)
1

Q

1

2πi

∫ a+iT

a+ib

(
Q

2π

)s
Γ(s) exp

(
πis

2

)
L′

L
(s, χ)L(s, ψ)L(s, ψ)ds

=J11 + J12.

In view of the modified Gonek lemma (Lemma 2.1.1) we have

J11 =− τ(ψ)
1

Q

∑
mnl≤TQ2π

Λ(m)χ(m)ψ(n)ψ(l) exp

(
−2πi

mnl

Q

)
+O((QT )

1
2+ε)

and J12 = O(Q
1
2 ). By this, Lemma 2.1.2, and the equality

τ(ψ)ψ(−1)τ(ψ) = Q (2.31)

we obtain

J1 =
φ(Q)

Q

L′

L
(1, (χψ))

T

2π

log
TQ

2πe
+ 2γ + 2

∑
p|Q

log p

p− 1
+

(
L′′

L′
− L′

L

)
(1, χψ)


− δ(q,Q)(χψ0)(−1)τ(χψ0)

τ(ψ)

φ(Q)

T

2π
L(1, (χψ))2 +O

(
T

1− c

log
3
4
+ε

T

)
. (2.32)

Under GRH the error term in (2.32) can be replaced byO
(
q1+εQεT

1
2+ε + q Q9/2+εT ε + (QT )1/2+ε

)
.

Second we consider J2 and J4. Using bounds (2.2), (2.3), and (2.13) we get

J2 =
1

2πi

∫ 1−a+iT

a+iT

L′

L
(s, χ)L(s, ψ)L(1− s, ψ)ds = O

(
(QT )11/16+ε log2(qT )

)
. (2.33)

Similarly,
J4 � (Q)11/16+ε log2 q. (2.34)

Under GRH we use (2.4) instead of (2.2) and we obtain J2,J4 � (QT )1/2+ε log2(qT ).
Next we consider J3. A change of variables s 7→ 1− s gives

J3 = − 1

2πi

∫ a+iT

a+ib

L′

L
(1− s, χ)L(1− s, ψ)L(s, ψ)ds.

By complex conjugation we get

J3 = − 1

2πi

∫ a+iT

a+ib

L′

L
(1− s, χ)L(1− s, ψ)L(s, ψ)ds.

The functional equation (2.1) and its logarithmic derivative (2.9) together with the property
(2.8) lead to

L′

L
(1− s, χ)L(1− s, ψ) =

(
∆′

∆
(s, χ)− L′

L
(s, χ)

)
× τ(ψ)

1

Q

(
Q

2π

)s
Γ(s)

(
exp

(
−πis

2

)
+ ψ(−1) exp

(
+
πis

2

))
L(s, ψ).
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Then

J3 =− τ(ψ)
1

2πiQ

∫ a+iT

a+ib

∆′

∆
(s, χ)

(
Q

2π

)s
Γ(s) exp

(
−πis

2

)
L2(s, ψ)ds

− ψ(−1)τ(ψ)
1

2πiQ

∫ a+iT

a+ib

∆′

∆
(s, χ)

(
Q

2π

)s
Γ(s) exp

(
πis

2

)
L2(s, ψ)ds (2.35)

+ τ(ψ)
1

2πiQ

∫ a+iT

a+ib

(
Q

2π

)s
Γ(s) exp

(
−πis

2

)
L′

L
(s, χ)L2(s, ψ)ds

+ ψ(−1)τ(ψ)
1

2πiQ

∫ a+iT

a+ib

(
Q

2π

)s
Γ(s) exp

(
πis

2

)
L′

L
(s, χ)L2(s, ψ)ds

=

4∑
j=1

Fj ,

say.
First we consider F1. We rewrite F1 in the following way.

F1 = − 1

Q
τ(ψ)

∫ T

b

∆′

∆
(a+ iτ, χ)d

(
1

2πi

∫ a+iτ

a+i

(
Q

2π

)s
Γ(s) exp

(
−πis

2

)
L2(s, ψ)ds

)
.

By Lemmas 2.1.1 and 2.1.3 we get

1

2πi

∫ a+iτ

a+i

(
Q

2π

)s
Γ(s) exp

(
−πis

2

)
L2(s, ψ)ds

=
∑

mn≤ τQ2π

ψ(m)ψ(n) exp

(
−2πi

mn

Q

)
+O

(
(Qτ)

1
2+ε
)

= ψ(−1)τ(ψ)
φ(Q)

Q

τ

2π

log
τQ

2πe
+ 2γ + 2

∑
p|Q

log p

p− 1

+O
(
Q−

1
8+ετ

11
16+ε +Q4

)
.

Hence, in view of the asymptotic formula (2.8) for the logarithmic derivative of the delta function
and the property (2.31) of the Gauss sum we obtain

F1 =− φ(Q)

Q

∫ T

b

(
− log

τq

2π
+O

(
1

τ

))

× d

 τ

2π

log
τQ

2πe
+ 2γ + 2

∑
p|Q

log p

p− 1

+O
(
Q−

1
8+ετ

11
16+ε +Q4

) (2.36)

=
φ(Q)

Q

T

2π

log
Tq

2πe
log

TQ

2πe
+ 2 log

Tq

2πe

γ +
∑
p|Q

log p

p− 1

+ 1


+O

(
Q−

1
8+εT

11
16+ε log q +Q4 log(qT )

)
.

Under GRH the error term for F1 can be replaced by O
(
Q−1/2+εT 1/2+ε log q +Q4 log(qT )

)
.

Reasoning similarly to F1 we obtain

F2 =− 1

Q
ψ(−1)τ(ψ)

∫ T

b

∆′

∆
(a+ iτ, χ)

× d
(

1

2πi

∫ a+iτ

a+i

(
Q

2π

)s
Γ(s) exp

(
πis

2

)
L(s, ψ)ds

)
(2.37)

=O(Q
1
2 log(Tq)).
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Under GRH for F2 we use the same bound as in (2.37).
We turn to the integral F3. Using Lemmas 2.1.1 and 2.1.2 we get

F3 =− 1

Q
τ(ψ)

∑
mnl≤TQ2π

Λ(m)χ(m)ψ(n)ψ(l) exp

(
−2πi

mnl

Q

)
+O

(
Q

1
2T

1
2+ε
)

=
φ(Q)

Q

L′

L
(1, (χψ))

T

2π

log
TQ

2πe
+ 2γ + 2

∑
p|Q

log p

p− 1
+

(
L′′

L′
− L′

L

)
(1, χψ)

 (2.38)

− δ(q,Q)(χψ0)(−1)τ(χψ0)
τ(ψ)

φ(Q)

T

2π
L(1, (χψ))2 +O

(
T

1− c

log
3
4
+ε

T

)
.

Under GRH the error term can be replaced by O
(
q1+εQεT

1
2+ε + q Q9/2+εT ε + (QT )1/2+ε

)
.

In a similar way as above we have

F4 � Q
1
2 log(Tq). (2.39)

The last bound we use also under GRH.
Now in view of (2.28), (2.30), (2.32)–(2.39) we obtain∑
0<γχ≤T

L(ρχ, ψ)L(1− ρχ, ψ)

=
φ(Q)

Q

T

2π

log
Tq

2πe
log

TQ

2πe
+ 2 log

Tq

2πe

γ +
∑
p|Q

log p

p− 1

+ 1


+
φ(Q)

Q

T

2π

[log
TQ

2πe
+ 2

γ +
∑
p|Q

log p

p− 1

(L′
L

(1, (χψ)) +
L′

L
(1, (χψ))

)
(2.40)

+
L′

L
·
(
L′′

L′
− L′

L

)(
(1, χψ) + (1, χψ)

)]

− δ(q,Q)
(
τ(χψ0)τ(ψ)L(1, (χψ))2 + τ(χψ0)τ(ψ)L(1, (χψ))2

) (χψ0)(−1)

φ(Q)

T

2π

+O

(
T

1− c

log
3
4
+ε

T

)
.

Accordingly, the notes after each formula (2.28), (2.30), (2.32)–(2.39) give the error term under
GRH. By this Theorem 2.2.1 is proved.

2.3 First moment

Theorem 2.2.1 extends the following theorem

Theorem 2.3.1. Let A and B be positive constants. Let ψ mod Q and χ mod q be primitive
Dirichlet characters and χ 6= ψ. Then, uniformly for Q� logA T and q � logB T , we have

∑
0<γχ≤T

L(ρχ, ψ) =
T

2π
log

Tq

2πe
− δ(q,Q)L(1, χψ)ψ(−1)τ(ψ)

τ(χψ0)

φ(Q)

T

2π

+
L′

L
(1, ψχ)

T

2π
+O

(
T exp(−c log

1
4−ε T )

)
,
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where δ(q,Q) = 1 if q|Q, δ(q,Q) = 0 otherwise, ψ0 is the principal Dirichlet character modQ

and c is a positive absolute constant.
Under GRH the error term can be replaced by O

(
(TQ)1/2+εqε

)
, which is valid uniformly for

all Q and q.

Proof. The proof of the theorem relies on the same idea and the same method which are used
to prove Theorem 2.2.1.

Let χ mod q and ψ mod Q be primitive Dirichlet characters such that χ 6= ψ. Now let
a = 1 + 1/ log(QT ) and define the contour C to be the rectangle with vertices a + ib, a + iT ,
1 − a + iT , 1 − a + ib satisfying the same conditions as in Theorem 2.2.1. Then we sum in
question is equal to a contour integral

1

2πi

∫
C

L′

L
(s, χ)L(s, ψ)ds

=
1

2πi

{∫ a+iT

a+ib

+

∫ 1−a+iT

a+iT

+

∫ 1−a+ib

1−a+iT
+

∫ a+ib

1−a+ib

}
L′

L
(s, χ)L(s, ψ)ds

=

4∑
j=1

Jj .

First we consider

J1 =
1

2πi

∫ a+iT

a+ib

L′

L
(s, χ)L(s, ψ)ds

=
1

2π

∫ T

b

L′

L
(a+ it, χ)L(a+ it, ψ)dt

= −
∞∑
m=2

∞∑
n=1

χ(m)Λ(m)ψ(n)

(mn)a
1

2π

∫ T

b

1

(mn)it
dt

= −
∞∑
m=2

∞∑
n=1

χ(m)Λ(m)ψ(n)

(mn)a
1

2π

(
1

−i log(mn)(mn)it

∣∣∣∣T
b

)

= O

(
L′

L
(a, χ)L(a, ψ)

)
= O

(
ζ ′

ζ
(a)ζ(a)

)
.

By the Laurent expansions at s = 1,

ζ(s) =
1

s− 1
+ γ +O(s− 1),

ζ ′

ζ
(s) =

−1

s− 1
+ γ +O(s− 1),

where γ := limN→∞( 1
N

∑N
n=1

1
n − logN) = 0.577 . . . is the Euler-Mascheroni constant, we get

J1 = O(log2QT ).

Second we consider J2. Using (2.2), (2.3) and (2.13) we get

J2 =
1

2πi

∫ 1−a+iT

a+iT

L′

L
(s, χ)L(s, ψ)ds = O

(
(QT )

1
2+ε log2(qT )

)
.
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Next we consider J4. Similarly as before we get

J4 =
1

2πi

∫ a+ib

1−a+ib

L′

L
(s, χ)L(s, ψ)ds = O

(
Q

1
2+ε log2(q + 1)

)
.

Hence, J1, J2, J4 = O
(

(QT )
1
2+ε log2(qT )

)
. Under GRH we use the same bound.

Now we consider J3. A change of variables s 7→ 1− s gives

J3 = − 1

2πi

∫ a+iT

a+ib

L′

L
(1− s, χ)L(1− s, ψ)ds.

After conjunction we get

J3 = − 1

2πi

∫ a+iT

a+ib

L′

L
(1− s, χ)L(1− s, ψ)ds.

By the functional equation (2.5) and its logarithmic derivative the integrand of J3 can be
rewritten as

L′

L
(1− s, χ)L(1− s, ψ) =

(
∆′

∆
(s, χ)− L′

L
(s, χ)

)
1

Q
G(1, ψ)

(
Q

2π

)s
Γ(s)

×
(

exp

(
−πis

2

)
+ ψ(−1) exp

(
+
πis

2

))
L(s, ψ);

here G(n, χ) denotes the Gauss sum associated with χ mod q, given by

G(n, χ) =

q∑
a=1

χ(a) exp

(
2πi

an

q

)
.

Then

J3 = − 1

Q
G(1, ψ)

1

2πi

∫ a+iT

a+ib

∆′

∆
(s, χ)

(
Q

2π

)s
Γ(s) exp

(
−πis

2

)
L(s, ψ)ds

− 1

Q
G(−1, ψ)

1

2πi

∫ a+iT

a+ib

∆′

∆
(s, χ)

(
Q

2π

)s
Γ(s) exp

(
+
πis

2

)
L(s, ψ)ds

+
1

Q
G(1, ψ)

1

2πi

∫ a+iT

a+ib

(
Q

2π

)s
Γ(s) exp

(
−πis

2

)
L′

L
(s, χ)L(s, ψ)ds

+
1

Q
G(−1, ψ)

1

2πi

∫ a+iT

a+ib

(
Q

2π

)s
Γ(s) exp

(
+
πis

2

)
L′

L
(s, χ)L(s, ψ)ds

=

4∑
j=1

Fj ,

say.
First we consider F1. We rewrite it in the following way

F1 = − 1

Q
G(1, ψ)

∫ T

b

∆′

∆
(a+ iτ, χ) d

(
1

2πi

∫ a+iτ

a+i

(
Q

2π

)s
Γ(s) exp

(
−πis

2

)
L(s, ψ)ds

)
.
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By Lemma 2.1.1 we get

1

2πi

∫ a+iτ

a+i

(
Q

2π

)s
Γ(s) exp

(
−πis

2

)
L(s, ψ)ds

=
∑
n≤ τQ2π

ψ(n) exp

(
−2πi

n

Q

)
+O

(
τ

1
2+ε
)

=

Q∑
a=1

ψ(a) exp

(
−2πi

a

Q

) ∑
n≤ τQ2π

n≡a mod Q

1 +O
(
Qτ

1
2+ε
)

= G(−1, ψ)
τ

2π
+O

(
Qτ

1
2+ε
)
.

According to (2.8) we have

F1 = − 1

Q
G(1, ψ)

∫ T

b

(
− log

τq

2π
+O

(
1

τ

))
d
(
G(−1, ψ)

τ

2π
+O

(
Qτ

1
2+ε
))

=
T

2π
log

Tq

2πe
+O

(
(QT )

1
2+ε log(Tq)

)
,

where we have used that
G(1, ψ)G(−1, ψ) = Q.

Second, we consider

F2 = − 1

Q
G(−1, ψ)

∫ T

b

∆′

∆
(a+ iτ, χ) d

(
1

2πi

∫ a+iτ

a+i

(
Q

2π

)s
Γ(s) exp

(
+
πis

2

)
L(s, ψ)ds

)
.

By (2.8) and Lemma 2.1.1 we have

F2 =
1

Q
G(−1, ψ)

∫ T

b

(
log

tq

2π
+O

(
1

t

))
dO(Q) = O(Q

1
2 log(Tq)).

Now we calculate

F3 =
1

Q
G(1, ψ)

1

2πi

∫ a+iT

a+i

(
Q

2π

)s
Γ(s) exp

(
−πis

2

)
L′

L
(s, χ)L(s, ψ)ds+O(1).

Using Lemma 2.1.1 and Lemma 2.1.4 we get

F3 =
L′

L
(1, χψ)

T

2π
− δ(q,Q)

1

φ(Q)
G(1, ψ)G(−1, χψ0)L(1, χψ)

T

2π
+O

(
T

1− c

log
3
4
+ε

T

)
.

Finaly we consider F4. By Lemma 2.1.1 we have F4 = O(Q
1
2+ε).

Gathering everything together, after conjugation we have

∑
0<γχ≤T

L(ρχ, ψ) =
T

2π
log

Tq

2πe
− δ(q,Q)L(1, χψ)ψ(−1)τ(ψ)

τ(χψ0)

φ(Q)

T

2π
+
L′

L
(1, ψχ)

T

2π

+O

(
T

1− c

log
3
4
+ε

T

)
.

Assuming GRH we get an asymptotic formula with the error term

O
(

(TQ)
1
2+εqε

)
,

76



uniformly for q, Q� T 1−ε.
This proves the theorem.

2.4 Corollary

Theorems 2.2.1 and 2.3.1 lead to the following corollary

Corollary 2.4.1. Assume GRH. Let A be any positive real number. Let ψ mod Q and χ mod q

be primitive Dirichlet characters and χ 6= ψ. Then, uniformly for q � (log T )A and Q �
(log T )2−ε, we have ∑

0<γχ≤T
L(1/2+γχ,ψ)6=0

1� Q

φ(Q)
T.

Proof. Let
S1 :=

∑
0<γχ≤T

L(ρχ, ψ) and S2 :=
∑

0<γχ≤T

|L(ρχ, ψ)|2.

By Hoelder’s inequality we get

∑
0<γχ≤T

L(1/2+γχ,ψ) 6=0

1 ≥ |S1|2

S2
. (2.41)

To evaluate sums S1 and S2 we will use Theorems 2.3.1 and 2.2.1. First we state several
helpful inequalities. From Davenport [11, formulas (11) and (13) of Section 14], for a non-
principal Dirichlet character χ mod q, we have

|L(1, χ)| � log q, |L′(1, χ)| � (log q)2, |L′′(1, χ)| � (log q)3.

By Siegel’s Theorem (see Davenport [11, Section 21] ), for a real primitive Dirichlet character
χ mod q, we have

|L(1, χ)| � q−ε. (2.42)

If χ mod q is a complex primitive character we use the zero free region of L(s, χ) (see Davenport
[11, formula (6) of Section 14]) and follow the proof of Li [33, Corollary 7] to obtain the lower
bound

|L(1, χ)| � q−ε. (2.43)

We will show that the lower bounds (2.42) and (2.43) are valid also for an imprimitive character
χ. Indeed, if χ is the imprimitive character induced by a primitive character χ1 then

L(s, χ) = L(s, χ1)
∏
p|q

(
1− χ1(p)

ps

)
.

Thus for imprimitive character the bounds (2.42) and (2.43) follow by∣∣∣∣∣∣
∏
p|q

(
1− χ1(p)

p

)∣∣∣∣∣∣ ≥
∏
p|q

(
1− 1

p

)
=
φ(q)

q
� q−ε.
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By above we have that

δ(q,Q)L(1, χψ)ψ(−1)τ(ψ)
τ(χψ0)

φ(Q)

T

2π
� Q

1
2 log(Q)T � T (log T )1−ε

and
L′

L
(1, ψχ)

T

2π
� (qQ)εT � T (log T )ε.

This and Theorem 2.3.1 give that
S1 � T log T.

We will find an upper bound for |S2|. We have

∑
p|Q

log p

p− 1
� logQ,

δ(q,Q)
(
τ(χψ0)τ(ψ)L(1, (χψ))2 + τ(χψ0)τ(ψ)L(1, (χψ))2

) (χψ0)(−1)

φ(Q)

T

2π

� φ(Q)Q
1
2 (logQ)2

T

φ(Q)
� T log T,

and
L′′

L
(1, ψχ)

T

2π
� (qQ)εT � T log T.

Then Theorem 2.2.1 and the formula (2.40) lead to

S2 �
φ(Q)

Q
T (log T )2.

Now the corollary folows by formula (2.41).
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Conclusions

In the thesis the following results for the Riemann zeta function and Dirichlet L-functions are
established:

1. The curve t 7→ ζ( 1
2 + it), t > 0 expands to all directions on the complex plane.

2. We can localize extreme values of the Riemann zeta function on the critical line.

3. We can transfer discrete moments to continuous moments.

4. Asymptotic formulas a sum of a Dirichlet L-function over the zeros of another Dirichlet
L-function give us continuous lower bound for the number of non-coincide non-trivial zeros.
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Santrauka

Analizinė skaičių teorija yra skaičių teorijos dalis, kurioje naudojantis matematinės analizės ir
kompleksinio kintamojo funkcijų tyrimo metodais, sprendžiami uždaviniai susiję su sveikaisiais
skaičiais. Manoma, kad analizinės skaičių teorijos pradžią žymi Dirichlet eilučių ir Dirichlet
L-funkcijų taikymai.

-1 1 2 3

-2

-1

1

2

(a)

-1 1 2 3

-2

-1

1

2

(b)

Figure 2.1: Pavaizduota kreivė t 7→ ζ( 1
2
+ it), kai t kinta nuo 0 iki 50: (a) juodi taškai yra Gram’o

taškai tn(0), (b) juodi taškai yra apibendrintieji Gram’o taškai tn( 37π).

Iš paveikslo matyti, kad kreivės t 7→ ζ( 1
2+it) realioji dalis linkusi būti teigiama. Tai pastebėjo

Edwards’as ir savo monografijoje [12] rašė "...the real part of ζ(s) has a strong tendency to be
positive" 1 (p. 121). Kritinė tiesė yra riba, skirianti kreives t 7→ ζ(σ + it), 1

2 < σ < 1, kurios
yra visur tirštos aibėje C, nuo kreivių t 7→ ζ(σ + it), σ < 1

2 , kurios nėra visur tirštos aibėje C
(jeigu galioja Riemann’o hipotezė). Klausimas, ar kreivė t 7→ ζ( 1

2 + it) yra visur tiršta aibėje
C, yra sunkus ir neišspręstas uždavinys. Pagrindinis disertacijos rezultatas yra išvada (1.5.1),
kuri teigia, kad kreivė t 7→ ζ( 1

2 + it) plečiasi į visas puses, t. y. jeigu mes nubrėšime apskritimą,
kurio centras yra koordinačių pradžioje ir spindulys lygus T , bei nubrėšime spindulį einantį iš
apskritimo centro, tai kreivė t 7→ ζ( 1

2+it) kirs nubrėžtą spindulį be galo daug kartų už apskritimo
ribų (žr. 4 pav.). Atskiras išvados (1.5.1) atvejis gali būti formuluojamas taip: Riemann’o dzeta
funkcija ant kritinės tiesės įgyja be galo daug neigiamų reikšmių ir jos yra neaprėžtos.

1"...realioji ζ(s) dalis linkusi būti teigiama".
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Notation

s = σ + it complex variable, where σ, t ∈ R and i =
√
−1

φ real number from the interval [0, π)
tn(φ) generalized Gram’s points
X(s), Y (s), X1(s), Y1(s) Dirichlet polynomials
dκ(n) generalized divisor function for n ∈ N, where κ > 0

and κ ∈ R
Γ(s) Euler gamma-function defined, for σ > 0, by Γ(s) =

∞∫
0

e−xxs−1dx, and by analytic continuation else-

where
ζ(s) Riemann zeta function defined, for σ > 1, by ζ(s) =

∞∑
m=1

m−s, and by analytic continuation elsewhere

χ mod q, ψ mod Q Dirichlet characters, where q,Q ∈ N
χ0, ψ0 principal Dirichlet characters
G(n, χ) Gauss sum
ψ(n) Euler totient function
L(s, χ) Dirichlet L-function defined, for σ > 1, by L(s, χ) =

∞∑
m=1

χ(m)m−s, and by analytic continuation else-

where
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