
VILNIUS UNIVERSITY

Povilas Daniušis

FEATURE EXTRACTION VIA DEPENDENCE STRUCTURE OPTIMIZATION

Doctoral dissertation
Physical sciences, informatics (09P)

Vilnius, 2012

The dissertation work was carried out at Vilnius University from 2008 to 2011.

Scientific supervisor:

doc. dr. Pranas Vaitkus (Vilnius University, physical sciences, mathematics- 01P).

VILNIAUS UNIVERSITETAS

Povilas Daniušis

POŽYMIŲ IŠSKYRIMAS OPTIMIZUOJANT PRIKLAUSOMUMO STRUKTŪRĄ

Daktaro disertacija
Fiziniai mokslai, informatika (09P)

Vilnius, 2012

Disertacija rengta 2008 - 2011 metais Vilniaus universitete.

Mokslinis vadovas:

doc. dr. Pranas Vaitkus (Vilniaus universitetas, fiziniai mokslai, matematika - 01P).

Acknowledgements

I am very grateful to my scientific supervisor dr. Pranas Vaitkus for intro-
ducing me into machine learning, and for the freedom he gave me during
the studies. I kindly thank dr. Dominik Janzing, prof. Bernhard Schölkopf,
and other colleagues from Tübingen for allowing to work with them. It was
wonderful experience and great honor to work with you. I sincerely thank
prof. Darius Plikynas and mr. Sigitas Kryžius for freedom and support I ex-
perienced when working with you. My warm thanks go to Indrė Žliobaitė,
for interesting discussions, and for kindly sharing the source code of her
thesis.

Ačiū mamai ir močiutei už visokeriopą pagalbą, kurios niekada nepritrūko.
Ačiū tau Dalia, ne tik už supratingumą ir palaikymą, bet ir už visas akimirkas
praleistas kartu. Ačiū draugams Artūrui, Donatui, Matui, Ugniui už drau-
gystę.

Povilas Daniušis

Contents

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Application examples . 2
1.2 Thesis Focus . 3

1.2.1 Problem statement . 4
1.3 Research Methodology . 5
1.4 The Main Contributions and Scientific Novelty 6
1.5 Statements Presented for the Defence 6
1.6 Structure of the Thesis . 7

2 Mathematical Tools 8
2.1 Kernel methods . 8

2.1.1 Positive definite kernels . 8
2.1.2 RKHS’es and positive definite kernels 9
2.1.3 Kernel trick . 10
2.1.4 Representer theorem . 11

2.2 Dependence Measures . 12
2.2.1 Mutual information and total correlation 12
2.2.2 Distance correlation . 13
2.2.3 Correntropy . 14
2.2.4 Hilbert-Schmidt independence criterion 14

2.3 Laplacian Regularization . 17
2.4 Multilayer Perceptron Neural Networks 18

vi

CONTENTS

3 Feature Extraction Algorithms 21
3.1 Principal Component Analysis . 22

3.1.1 Kernel PCA . 24
3.2 Linear Discriminant Analysis . 25

3.2.1 Kernel LDA . 26
3.3 Autoencoder Neural Network . 27
3.4 Laplacian Eigenmap and Locality Preserving Projections 28

3.4.1 Kernel case . 28
3.5 Locally Linear Embedding . 29
3.6 FOHSIC and BAHSIC . 30
3.7 Conclusion . 31

3.7.1 Practical aspects . 31

4 HBFE and HSCA algorithms 34
4.1 Dependence Structure . 34

4.1.1 Dependence measure . 35
4.2 HSIC-based Feature Extraction . 35

4.2.1 HBFE: biased estimator case 36
4.2.1.1 Linear case . 36
4.2.1.2 Kernel case . 36

4.2.2 HBFE: unbiased estimator case 37
4.2.2.1 Linear case . 37
4.2.2.2 Kernel case . 39

4.3 Hilbert-Schmidt Component Analysis 39
4.3.1 Linear case . 39
4.3.2 Kernel case . 41

4.4 Semi-supervised HBFE and HSCA . 42
4.4.1 Semi-supervised HBFE . 43
4.4.2 Semi-supervised HSCA . 43

4.5 NeuroHBFE and NeuroHSCA . 44
4.5.1 NeuroHBFE . 44
4.5.2 NeuroHSCA . 45

4.6 Conclusions . 45

vii

CONTENTS

5 Computer Experiments 46
5.1 Experiments with Binary Classification Data 47

5.1.1 Linear kernel case . 49
5.1.2 Gaussian kernel case . 54
5.1.3 Semi-supervised case . 59

5.2 Experiments with Multi-label Yahoo Data 63
5.2.1 Multi-label classification . 63
5.2.2 Performance measures . 64
5.2.3 Results for multi-label data sets 65

5.3 Experiments with Structured Data . 73
5.4 Conclusions . 76

6 Conclusions 77

Bibliography 80

viii

List of Figures

2.1 An illustration of MLP neural network structure. 19
2.2 The graph of logistic sigmoid and hyperbolic tangent. 20

3.1 PCA illustration. 25
3.2 LDA illustration. 26
3.3 Graphical representation of autoencoder. 27

5.1 Results for UCI data and linear HBFE. 52
5.2 Results for UCI data and linear HSCA. 53
5.3 Results for UCI data and Gaussian HBFE. 57
5.4 Results for UCI data and Gaussian HSCA. 58
5.5 Results for UCI data and semi-supervised HBFE. 61
5.6 Results for UCI data and semi-supervised HSCA. 62
5.7 Results Yahoo data sets and linear HBFE, part I. 69
5.8 Results Yahoo data sets and linear HBFE, part II. 70
5.9 Results Yahoo data sets and linear HBFE, part III. 71
5.10 Results Yahoo data sets and linear HBFE, part IV. 72
5.11 Results for Promoters data set. 75

ix

List of Tables

5.1 Data set statistics. 47
5.2 Summary of the experiments with linear kernel. 50
5.3 Classification accuracy using linear kernel. 51
5.4 Summary of the experiments with gaussian kernel. 55
5.5 Classification accuracy using Gaussian kernel. 56
5.6 Classification accuracy in the case of semi-supervised scenario. 60
5.7 Yahoo data set statistics. 66
5.8 I: averaged results for individual Yahoo data sets. 67
5.9 II: averaged results for individual Yahoo data sets. 68
5.10 Results for Promoters data. 76

x

Chapter 1

Introduction

Machine learning is a branch of computer science, which focuses on automatically
making decisions from empirical observations. The classification of diseases based on
symptoms or predicting the future stock value from historical data are typical examples
of machine learning problems. Machine learning algorithm is trained by presenting
to it a set of instances, drawn from the usually unknown probability distribution (e.g.
pairs (xi, yi), where xi is a vector of symptoms, and yi is a type of a disease). In the
training process, the algorithm is expected to learn essential characteristics of the data
and to generalize to examples, which were not seen during training. Data sets and the
corresponding learning algorithms can be broadly classified into three categories.

Definition 1 (Unsupervised learning). We call a finite collection of i.i.d. observations
xi ∈ X an unsupervised data set. Learning of the model from such a data set is called
unsupervised learning. The set X is called input space.

Definition 2 (Supervised learning). If every instance of an unsupervised data set is as-
sociated with some yi ∈ Y, where yi depends on xi, such a data set is called a supervised
data set. Supervised learning algorithm estimates the model from such a data set. The
set Y is called output space.

Definition 3 (Semi-supervised learning). If only part of an unsupervised data set is as-
sociated with the dependent variable yi ∈ Y, we have a semi-supervised data set. Corre-
spondingly, in semi-supervised learning, the model is constructed from semi-supervised
data set.

1

1.1. Application examples

In many important real world applications, the initial representation of data is inconve-
nient, or even prohibitive for further analysis. For example, in image analysis, text anal-
ysis and computational genetics, high-dimensional, massive, structural, incomplete,
and noisy data sets are common. Therefore, feature extraction, or the revelation of
informative features from raw data is one of the fundamental machine learning prob-
lems. Efficient feature extraction helps to understand data and the process that generates
it, reduce costs for future measurements and data analysis. The representation of the
structured data as a compact set of informative numeric features allows applying well
studied machine learning techniques instead of developing new ones.

On the other hand, finding a good representation of data is very domain and application
specific. Naturally, a universal and efficient solution does not exist, there is a tradeoff
between generality and efficiency: general feature extraction methods (such as principal
component or discriminant analysis (73)) often sacrifice the efficiency, while efficient
methods are usually not general (e.g. SIFT features in image analysis (54)).

1.1 Application examples

The examples provided below illustrate the practical importance of feature extraction.

Bioinformatics. Computationally, genes are sequences S = {x1, x2, ..., xnS
}, where

xi ∈ {A,C,G, T}. A, C, G and T corresponds for four nucleotides: adenine, cytosine,
guanine and thymine. Proteins can be described by analogous sequence of 20 amino
acids. Bioinformatics focuses on the analysis of such high dimensional sequences with
the aim of revealing the information on diseases, efficiency of drugs, and other proper-
ties of interest. However, dimensionality of such sequences is usually tens of thousands,
exceeding the number of observations many times. Therefore, feature extraction is a
very important step in analysis. Review of feature extraction methods for bioinformat-
ics is provided in article (70).

Finance. In order to predict a future change in the value of some financial instrument
(such as stock or currency), to estimate the probability of bankruptcy, various indicators
are considered. Such data can be highly diverse in structure (e.g. textual news, time

2

1.2. Thesis Focus

series, graphs describing business connections of the company). Determining which of
these factors are important helps to make profitable investments or estimate the relia-
bility of a client.

Image analysis, biometrics and robotics. Image is another example of a high di-
mensional object. However, in recognition problems, training sets are often small,
consisting of only a few images per class. In such cases, feature exctraction is often
application dependent. For example, in fingerprint recognition, the minutiae and ridge
locations are considered as features, SIFT (54) representation of an image is applied
for object recognition tasks. In mobile robot navigation and manipulation problems,
sensor information is used to build a world model and operate within it. However, high
dimensionality and low density of useful information in sensor output requires inten-
sive preprocessing in order to extract useful and interpretable features (e.g. landmarks,
obstacles, objects).

Medicine Determining relevant factors, influencing an outcome of treatment, auto-
mated diagnostics, analysis of ECG, EEG, MRI and x-ray data are the examples of
machine learning problems from medicine, where feature extraction is important.

Internet Most of the information on the web is stored in textual form. Text is an ex-
ample of a highly structured and high dimensional data object, and its analysis requires
specific methods. Web page analysis performed by search engines relies on the link
structure, which results in graphical data sets. Another important application is intru-
sion detection systems, where data are also high dimensional and structured. A review
of related algorithms is provided in the article (13).

1.2 Thesis Focus

The dissertation focuses on supervised and semi-supervised feature extraction methods,
which optimize the dependence structure of features. The following aspects are taken
into consideration:

3

1.2. Thesis Focus

Relevant features. Quantitative characterization of feature relevance poses the first
problem, which should be solved in order to design a feature extraction algorithm. From
a general point of view, the notion of informative features intuitively can be related to
the notion of dependence. In this dissertation we will follow this approach. Therefore,
we need to choose an efficient dependence measure, define a feature relevance func-
tions in terms of this measure, and finally to design an algorithms for feature relevance
optimization. According to our approach, the feature relevance function is described
by a structure of dependencies. In this thesis two types of dependence structures are
analysed: in the first case, we seek features which maximize the dependence on the
dependent variable (Section 4.2.1), and in the second one, we additionally minimize
the mutual dependence of features (Section 4.3).

Universality. In the introduction we overviewed several examples where feature ex-
traction plays important role. We saw that the data sets may be associated with various
machine learning problems (e.g. classification or regression), have complex internal
structure (e.g. texts or genetic sequences), and be otherwise inconvenient to work with.
In practice, there are many situations when labeled data are expensive to get (e.g. medi-
cal and engineering diagnosis, credit scoring etc.). In such a cases, the semi-supervised
(see Definition 3) data analysis, which exploits unlabeled training examples is applied.
Extension of the suggested algorithms so as to handle such situations is another prob-
lem we attempt to solve.

Experimental evaluation. Another issue we focus on is empirical investigation of
the efficiency of the considered feature extraction approaches. It is evident that there is
no universal way to measure the quality of features. In order to do that, it is useful to
assume that the features are the inputs to other machine learning algorithm (e.g. clas-
sifier or regression model), which performance is easy to evaluate. In our experiments,
the extracted features were classified by k nearest neighbor classifier, and their quality
is evaluated by classification performance measures.

1.2.1 Problem statement

Based on the above considerations, we now formulate the problem statement:

4

1.3. Research Methodology

Propose and investigate universal supervised and semi-supervised feature extraction

algorithms, based on an optimization of dependence structure.

The problem statement of this dissertation covers the following research problems:

Research problem RP1: Propose supervised feature extraction algorithms, based on
dependence structure optimization.

Research problem RP2: Construct and experimentally investigate a semi-supervised
versions of the suggested algorithms.

Research problem RP3: Experimentally investigate how the quality of features is af-
fected by the estimation of dependence.

Research problem RP4: Experimentally investigate an efficiency of different depen-
dence structures.

Research problem RP5: Experimentally investigate how the suggested algorithms cope
with structured and non-linear data sets, and compare them with the existing fea-
ture extraction methods.

1.3 Research Methodology

The study of the research problems is conducted using theoretical and empirical re-
search methodology. We will conduct theoretical analysis by reviewing the basic math-
ematical tools and methods, which will be used in our research. Further, we will review
the related work of the other authors, and finally, study the corresponding research prob-
lems. The experimental part of the analysis is performed by discussion of the scenario
of experiments, analyzed data sets, performance measures, repeatability and parameter
selection issues. Afterwards, we provide the empirical results, and analyze how they
contribute to the corresponding research problems. Finally, we conclude the thesis by
discussing the research problems in light of all the achieved results.

5

1.4. The Main Contributions and Scientific Novelty

1.4 The Main Contributions and Scientific Novelty

The main contributions of this thesis to the machine learning field are the following:

1. Two new dependence based supervised feature extraction algorithms (HBFE and
HSCA) have been suggested;

2. Semi-supervised variants of HBFE and HSCA have been derived;

3. Suggested algorithms have been investigated and compared with alternative ones
experimentally, using free access data sets.

This thesis is based on articles (17) and (18). Other related publications by the author
are devoted for regression and classification models for matrix data (19), (15), (16), and
causal inference (20), (42).

1.5 Statements Presented for the Defence

1. Two new feature extraction algorithms (HBFE and HSCA), based on dependence
structure optimization have been suggested;

2. Experiments with binary classification data sets demonstrate that suggested algo-
rithms in certain cases are more efficient than PCA or LDA;

3. Biasedness/unbiasedness of HSIC estimator are essential factor, influencing the
efficiency of HBFE and HSCA. Experiments with multi-label classification data
demonstrate that HBFE1 is more effient than HBFE0;

4. Experiments with binary classification data show that additional feature interde-
pendency minimization (HSCA) improves their discriminative quality;

5. Experiments with semi-supervised data sets show that in certain cases Laplacian
regularization improves the efficiency of HBFE and HSCA.

6

1.6. Structure of the Thesis

1.6 Structure of the Thesis

The thesis is structured in the following way. The Chapter 1 introduces the reader to the
topic of this dissertation. Mathematical techniques, extensively used in our research are
reviewed in Chapter 2. Therein, we briefly restate basic definitions and facts from the
theory of positive definite kernels and reproducing kernel Hilbert spaces (RKHS’s). Af-
terwards, we discuss several dependence measures, and introduce the main ingredient
of our algorithms, the Hilbert-Schmidt independence criterion (HSIC) (28). Laplacian
regularization and multilayer perceptron neural networks are also reviewed therein.
Chapter 3 is devoted to a problem of feature extraction. After formulation of core
concepts we review existing feature extraction algorithms as examples, illustrating the
application of theory from Chapter 2, and discuss practical aspects of performing fea-
ture extraction on real data. In Chapter 4, we suggest and discuss new feature extraction
techniques based on the optimization of the dependence structure. Semi-supervised and
non-linear generalizations using positive definite kernels and artificial neural networks
are constructed. Chapter 5 is devoted to computer experiments with proposed feature
extraction approaches. We compare various configurations of the proposed schemes
and analyze their efficiency on several dozen ordinary and multi-label classification
data sets. The thesis is concluded by Chapter 6.

7

Chapter 2

Mathematical Tools

In this chapter we review mathematical techniques that will be useful in further analysis.
We will start with the introduction of kernel methods in Section 2.1, which are exten-
sively used throughout the thesis. Dependence measures are discussed in Section 2.2.
Laplacian regularizer, which will be used for deriving semi-supervised extensions of
suggested HBFE and HSCA algorithms (Section 4.4), is reviewed in Section 2.3. Fi-
nally, in Section 2.4, we shortly overview multilayer perceptron neural networks, as
alternative functional models, since in certain situations multilayer perceptrons are ad-
vantageous.

2.1 Kernel methods

The theory of positive definite kernels provides a convenient and elegant framework for
extending many linear machine learning techniques into nonlinear ones (73). An even
more important benefit of kernel methods is that they are applicable for structured data.
We will start with the definition of a positive definite kernel.

2.1.1 Positive definite kernels

Definition 4 (Positive definite kernel). Let X be a set. A real valued, symmetric func-
tion k : X× X→ R is called a positive definite kernel if ∀x1, x2, ..., xn ∈ X, ∀c ∈ Rn,

8

2.1. Kernel methods

the inequality cTKc ≥ 0 is valid, where K (Kij = k(xi, xj)) is a kernel (or Gram)
matrix.

Examples of positive definite kernels are:

1. linear k(x, x′) = xTx′,

2. polynomial k(x, x′) = (xTx′ + a)d, d ∈ N and some a ≥ 0,

3. Gaussian k(x, x′) = exp(− ||x−x′||2
2·σ2), σ ∈ R,

4. Laplacian k(x, x′) = c
2
exp(−c||x− x′||), c ∈ (0,∞),

5. inverted multiquadric k(x, x′) = 1√
||x−y||2+c2

,

6. subset kernel k(x, x′) =
∏m

i=1(1 + xix′i), where x, x′ ∈ RD;

7. if (Ω,F, P) is a probability space, random event kernel κ : F×F → R is defined
as κ(A,B) = P (A ∩B)− P (A)P (B), where A,B ∈ F,

and others (see e.g. (25), (9)). The definition of the positive definite kernel does not
specify the structure of the data. This property was exploited by various authors, and
kernel methods for structured data were proposed (e.g. texts (3),(7), graphs (9), strings
(52), tensors (75), etc.). Occasionally, for the sake of brevity, we will refer to positive
definite kernels simply as a kernels.

2.1.2 RKHS’es and positive definite kernels

Positive definite kernels are closely related to the reproducing kernel Hilbert spaces
(RKHS’es). Let H be a Hilbert space of functions f : X → R. Dirac evaluation
functional over H is defined as a linear functional δx : f → f(x).

Definition 5 (Reproducing kernel Hilbert space (33)). H is called the reproducing ker-
nel Hilbert space (RKHS), if all Dirac evaluation functionals are bounded and continu-
ous.

9

2.1. Kernel methods

Theorem 1 (Riesz representation theorem (67)). Suppose H is a Hilbert space. Then

any continuous linear functional φ defined on functions of H admits the following

unique representation of the form φ(f) = 〈f, g〉 of some g ∈ H.

Let us assume, that H is a RKHS. We will apply Riesz representation theorem for
Dirac evaluation functional δx. Hence, for any x ∈ X, and any f ∈ H there exists
unique k(x, .) ∈ H, satisfying f(x) = δx(f) = 〈f, k(x, .)〉H. Since k(x, .) itself is an
element of H and can be evaluated at every point, by the same argument H uniquely
determines a so called reproducing kernel k : X× X→ R by k(x, x′) = δx(k(x′, .)) =

〈k(x′, .), k(x, .)〉H. As an inner product, a reproducing kernel satisfies the definition of
positive definite kernel.

On the other hand, it can be shown, that positive definite kernel also uniquely deter-
mines RKHS.

Theorem 2 (Moore-Aronszajn theorem (1)). Suppose k : X×X→ R is a positive defi-

nite kernel. Then there exists a unique reproducing kernel Hilbert space H of functions

on X, whose reproducing kernel is k.

The so-called universal kernels form an important class of positive kernels.

Definition 6 (Universal kernel). The positive definite kernel function k : X × X → R
is called universal if the span{k(x, .), x ∈ X} is dense in a set of continuous functions,
defined on X.

The Gaussian kernel is an example of such a kernel (82).

2.1.3 Kernel trick

A positive definite kernel maps initial data points x ∈ X into elements of the corre-
sponding RKHS via the feature map x→ φ(x) := k(x, .). According to the properties
of φ(x) mentioned above the inner products between the mappings of any xi, xj ∈ X

can be calculated by evaluating a positive definite kernel (i.e. k(xi, xj) = 〈φ(xi), φ(xj)〉),
which is widely exploited in numerous statistical and machine learning techniques and
is known as the kernel trick.

10

2.1. Kernel methods

Example. Let us consider a quadratic kernel

k(x, x′) = (xTx′ + c)2 =
m∑

i,j=1

xixjx
′
ix
′
j +

m∑
i=1

√
2cxi
√

2cx′i + c2, (2.1)

where x,x′ ∈ RDx , and c ∈ R.

The corresponding feature map is

φ(x) = (x1x1,, x1xDx ,
√

2cx1, ...,
√

2cxDx , c)
T .

It maps Dx-dimensional inputs x to D2
x +Dx + 1-dimensional quadratic feature space.

According to kernel trick, 〈φ(x), φ(x′)〉 = k(x, x′) = (xTx′ + c)2 and therefore only
Dx + 1 multiplications are required to compute inner products in the feature space.

2.1.4 Representer theorem

It is evident from previous considerations that any learning algorithm, which depends
only on inner products in linear space, can be transformed into the one that depends
only on inner products in RKHS, which are given by values of a corresponding posi-
tive definite kernel. The following theorem states that for a wide range of optimization
problems, an optimal solution in possibly infinite dimensional RKHS’es can be repre-
sented as finite weighted sums of kernel functions.

Theorem 3 (Representer theorem (72)). Suppose we are given a non-empty set X, a

positive definite kernel k, X × X → R, a training sample (xi, yi)
m
i=1 ∈ (X × R)m,

a strictly monotonously increasing function g with values in [0,∞], cost function c :

(X ∪ R2)→ R ∪ {∞}, and a class of functions:

F = {f ∈ RX|f(.) =
∞∑
i=1

βik(., zi), βi ∈ R, zi ∈ X, ||f ||Hk
<∞}.

Then any f ∈ F, minimizing the regularized risk functional

c((x1, y1, f(x1)), ..., (xm, ym, f(xm))) + g(||f ||Hk
)

11

2.2. Dependence Measures

admits the following representation:

f(.) =
m∑
i=1

αik(., xi),

where αi ∈ R, xi ∈ X.

2.2 Dependence Measures

It is known from the basic probability theory, that random variables X ∼ FX and
Y ∼ FY , X, Y ∈ Rk are independent if joint cumulative distribution function can
be factored FXY (x, y) = FX(x)FY (y). This property generalizes to more than two
random variables. On the other hand, quantitative characterization of dependence is
much more difficult.

Quantitative characterization of the dependence between two random variables is an
important problem both from theoretical and practical points of view. Several depen-
dence measures have been proposed by various authors (see e.g. thesis (46)). Further
we will review several examples, mainly focusing on kernel-based measures, which we
will use for feature extraction in Chapter 4.

2.2.1 Mutual information and total correlation

Let X and Y be two random variables with densities pX , pY and the joint density
pX,Y . The dependence between them can be characterized by the mutual information,
expressed by

I(X, Y) = DKL(pX,Y ||pXpY), (2.2)

where DKL(p, q) =
∫
p(x) log p(x)

q(x)
dx is Kullback-Leibler divergence (14).

If X and Y are Gaussian, the mutual-information is given by

I(X, Y) =
1

2
log

(
|Cxx||Cyy|
|C|

)
, (2.3)

12

2.2. Dependence Measures

where Cxx, Cxx, C are covariance matrices of X , Y and [X, Y]T , and |.| is a determi-
nant.

Mutual information is equal to zero if and only if X and Y are independent.

In the case of random vector, an analogous measure is often referred to as a total cor-
relation. Let pX1,...,Xn be a joint distribution of n random variables X1, ..., Xn. Then,
the total correlation is given by C(X1, ..., Xn) = DKL(pX1,...,Xn||pX1 , ..., pXn). Despite
popularity of mutual information in broad spectrum of applications, it fails to cope with
structured data, and even in vectorial case a density estimation becomes more difficult
as dimensionality grows.

2.2.2 Distance correlation

Having three i.i.d. pairs of random vectors, (X, Y), (X ′, Y ′) and (X ′′, Y ′′), distance
correlation is defined as (84), (29)

dCorr(X, Y) =
dCov(X, Y)√

dV ar(X) · dV ar(Y)
, (2.4)

where distance covariance and distance variance are given by

dCov(X, Y)2 = E||X−X ′||||Y−Y ′||+E||X−X ′||E||Y−Y ′||−2E||X−X ′||||Y−Y ”||,
(2.5)

and

dV ar(X)2 = E||X −X ′||+ E||X −X ′′|| − 2E||X −X ′||||X −X ′′||. (2.6)

Distance covariance (and distance correlation) also becomes zero if and only if the
random variables are independent (84). Moreover, by construction of the measure X
and Y may have different dimensions.

13

2.2. Dependence Measures

2.2.3 Correntropy

The linear dependence between two scalar random variables X and Y is measured
by the covariance: cov(X, Y) = EXYXY − EXXEY Y , or the correlation coefficient
ρ(X, Y) = cov(X,Y)√

V ar(X)V ar(Y)
, where V ar(X) denotes the variance of X . A non-linear

generalization of covariance can be achieved by centered correntropy (93), (94).

Let k be a positive definite kernel with a feature map φ : X → k(X, .). Since XY is an
inner product, by properties of RKHS (see 2.1), we have XY → 〈k(X, .), k(Y, .)〉 =

k(X, Y). Therefore a covariance may be generalized (93) to the correntropy:

U(X, Y) = Exyk(x, y)− ExExk(x, y). (2.7)

Similarly to ρ(X, Y), a correntropy coefficient is defined as

η(X, Y) =
U(X, Y)√
U(X)U(Y)

. (2.8)

Note, that correntropy is defined only in a scalar case. From the practical viewpoint it
is very important to be able to work with random vectors, and even more with general
data structures.

2.2.4 Hilbert-Schmidt independence criterion

The Hilbert-Schmidt independence criterion (HSIC) is a more general kernel-based
dependence measure proposed and investigated in (28), (77). Thereinafter, we will
briefly re-introduce the basic concepts of the HSIC.

Let us denote by X and Y two sets of arbitrary objects (e.g. real vectors, graphs, strings
etc.), from which observations (x, y) are drawn. Let k : X×X→ R and l : Y×Y→ R
be two positive definite kernels with feature maps φ : X→ F and ψ : Y→ G.

The cross-covariance operator between φ and ψ is defined as a linear operator Cxy :

14

2.2. Dependence Measures

G→ F (see (38), (77)):

Cxy := Exy(φ(x)− Exφ(x))⊗ (ψ(y)− Eyψ(y)), (2.9)

where ⊗ is a tensor product, and expectations Exy, Ex and Ey are taken according to
the joint probability measure Pxy and the marginal probability measures Px and Py.

Assuming that the RKHS’es F and G have orthonormal bases (ui)i≥1 and (vj)j≥1 re-
spectively, let us define the Hilbert-Schmidt norm of the linear operator C : G→ F.

Definition 7 ((28)). Let C : G → F be a linear operator. Then, provided the sum
converges, the Hilbert-Schmidt norm of C, ||C||2HS , is defined as

||C||2HS :=
∑
i,j

〈Cvi, uj〉2F. (2.10)

It is evident that the Hilbert-Schmidt norm extends the notion of the Frobenius norm
on matrices. The existence of orthonormal bases is guaranteed if X and Y are separable
(e.g. Rn), and the corresponding positive definite kernels k and l are continuous (33).
The Hilbert-Schmidt independence criterion is defined as follows ((28), (77)):

HSIC(F,G, Pxy) := ||Cxy||2HS. (2.11)

HSIC can be expressed in an equivalent form by the following formula (28):

HSIC(F,G, Pxy) =

Exx′yy′ [k(x, x′)l(y, y′)] + Exx′ [k(x, x′)]Eyy′ [l(y, y′)]−

−2Exy[Ex′ [k(x, x′)]Ey′ [k(y, y′)]],

where (x′, y′) is an independent copy of (x, y). In the case when both feature maps are
linear, HSIC is equivalent to the Frobenius norm of the cross-covariance matrix, but in
general, when universal kernels (82) are considered, theoretically, HSIC can detect any
nonlinear dependence (28).

15

2.2. Dependence Measures

For the sake of convenience let us further assume that both input and output data is vec-
torial. Let us denote by X = [x1, ..., xm] and Y = [y1, ..., ym] two matrices, consisting
of i.i.d observations (xi, yi) ∈ X×Y drawn according to unknown distribution Pxy. Let
K : Ki,j = k(xi, xj), and L : Li,j = l(yi, yj) (i, j = 1, 2, ...,m) be two corresponding
Gram matrices. Let us define by H = I −m−111T a centering matrix. There are two
empirical estimators of HSIC proposed (see (28), (77)) 1:

HSIC0(X,Y) := (m− 1)−2Tr(KHLH), (2.12)

and

HSIC1(X,Y) :=
1

m(m− 3)

(
TrK̃L̃ +

1T K̃11T L̃1
(m− 1)(m− 2)

− 2

m− 2
1T K̃L̃1)

)
,

(2.13)

where K̃ and L̃ are kernel matrices, with diagonal elements set to 0 (i. e. K̃ = K −
diag(K)).

Both estimators are concentrated in sense of the following theorem (see (28) and (77)).

Theorem 4. Let us assume that k, and l are bounded almost everywhere by 1, and are

non- negative. Then for m > 1 and all δ > 0, with the probability at least 1− δ for all

Pxy

|HSIC0(X,Y)−HSIC(F,G, Pxy)| ≤

√
log(6

δ
)

α2m
+
C

m
,

and

|HSIC1(X,Y)−HSIC(F,G, Pxy)| ≤ 8

√
log(2

δ
)

m
,

where α2 and C are constants.

The (2.12) is biased with an O(m−1) bias, and the (2.13) is an unbiased estimator of
HSIC (28), (77).

1Further if biasedness will not an essential aspect, we also occasionally denote an estimator of HSIC
as ĤSIC

16

2.3. Laplacian Regularization

Note, that HSIC corresponds to a sum of squared singular values of cross-covariance
operator. Another similar dependence measure, COCO (39), corresponds to largest
singular value of cross covariance operator. An interpretation of COCO is maximal
covariance between f(X) and g(Y), f ∈ F, and g ∈ G.

2.3 Laplacian Regularization

In this section we will review the Laplacian regularization, which will be useful in
Section 4.4 for an analysis of RP2. Let T = (xi, yi)

ml
i=1∪(xi)mi=ml+1 be a semi-supervised

data set, where ml denotes a number of labeled instances. We will assume that the
variable of interest (e.g. dependent variable, features of x, etc.) is modeled by the
functional mapping f : x→ f(x).

In semi-supervised learning, some form of dependence between input density p(x) and
f : xi → f(xi) usually is postulated. Cluster assumption is one of most popular. It
states, that inputs of the same cluster are likely to have similar outputs f(xi) (95) . Let
us denote by F = [f(x1), ..., f(xm)]T , and D = diag(W1T). Let Np(xi) be a set of
p-nearest neighbors of xi.

Let us map the input instances xi into the vertices of undirected, weighted graph G =

(V,E,W). The edge between two vertices xi and xj is created if they are considered to
be sufficiently similar (e.g. xi ∈ Np(xj) and vice versa). Additionally, the similarity
scores are assigned to the edges, e.g.

Wi,j = exp(−||xi − xj||2/2σ2), σ > 0, (2.14)

Wi,j =

{
1 if ||xi − xj|| ≤ ε

0 otherwise,
(2.15)

Wi,j =

{
1 if xi ∈ Np(xj) or Xj ∈ Np(xi)
0 otherwise.

(2.16)

Hence, G represents the training instances xi and their similarity structure. Such a

17

2.4. Multilayer Perceptron Neural Networks

representation is referred to as a graph embedding (12). Laplacian regularization relies
on the Laplacian matrix of G by restricting the growth of the regularizers

Ω0(F) =
1

2

m∑
i,j=1

||f(xi)− f(xj)||2Wi,j = Tr(F∆0FT), (2.17)

where ∆0 = D−W, or

Ω1(F) =
1

2

m∑
i,j=1

|| f(xi)√
Di,i

− f(xj)√
Dj,j

||2Wi,j = Tr(F∆1FT), (2.18)

where ∆1 = I− D−
1
2 WD−

1
2 .

∆0 is called a graph Laplacian, and ∆1 - a normalized graph Laplacian. These reg-
ularizers are included in the cost function of some supervised learning algorithm. For
example, in the case of linear regression we minimize

arg min
P

ml∑
i=1

||PTxi − yi||2 + λΩj(PT X̃), (2.19)

where X̃ = [x1, ..., xm] is full matrix of input instances, j ∈ 0, 1, and λ > 0. Hence,
the Laplacian regularizer penalizes the solution P more, if for nearby xi and xj the
corresponding features are far from each other.

Laplacian regularization is used in various classification, regression and feature extrac-
tion algorithms (e.g. (12), (95), (79)) for deriving semi-supervised modifications.

2.4 Multilayer Perceptron Neural Networks

Another functional model, which we will use in this dissertation, belongs to the class
of models known as neural networks. Multilayer perceptron (MLP) is widely applied
for various recognition, forecasting, modeling and other problems (60), (63). It stems
from early attempts to model biological neurone (65), (58). MLP and it’s training
backpropagation algorithm was proposed by (68).

18

2.4. Multilayer Perceptron Neural Networks

Figure 2.1: An illustration of MLP neural network structure.

The graphical structure of the network is shown in Fig. 2.1. The input layer node re-
ceives input vectors x, and passes them into the hidden layer. Each i-th hidden layer
node computes activation σ(〈wi, x〉 + bi), which is further received by output nodes,
where weighted sums of hidden layer activations are computed and returned as MLP
output. Therefore, MLP’s hidden layer can be interpreted as a feature extraction mech-
anism, which produces features, suitable for linear analysis. Mathematically, MLP with
a single hidden layer is defined by the following formula:

MLPj(x) =
N∑
i=1

αi,jσ(〈wi, x〉+ bi), (2.20)

where wi,j ∈ Rk, αi,j, bi,j ∈ R, σ is the so called activation function, 〈., .〉 - an inner
product. Popular activation functions are sigmoid or hyperbolic tangent, defined as

σ1(x) =
1

1 + e−x
, (2.21)

and
σ2(x) =

ex − e−x

ex + e−x
(2.22)

respectively.

MLP’s are the so called universal approximators (61) in the sense that for any con-
tinuous function f , defined on a compact set C ∈ Rn, and for any continuous, non-
polynomial activation function σ, defined on C, it is always possible to find single

19

2.4. Multilayer Perceptron Neural Networks

Figure 2.2: The graph of logistic sigmoid and hyperbolic tangent.

hidden layer MLP, such as

sup
x∈C
||f(x)−MLP(x)|| < ε (2.23)

for any fixed ε > 0. Despite a universal approximation property, MLP’s with two or
even more hidden layers sometimes can be practically useful (e.g. autoencoder neural
networks discussed in Chapter 3). The parameters of MLP’s are usually estimated by
gradient-like optimization (e.g. back-propagation algorithm (68), (31), (35)) minimiz-
ing some error function. In the case of non differentiable error functions, evolutionary
and other biologically inspired algorithms are popular (62), (44). Various MLP modi-
fications are proposed for matrix inputs (15), interval inputs (66), and other structured
data.

In general, MLP neural networks do not have such elegant mathematical interpretation
as kernel methods 2.1, but in some practical situations they are more attractive. For
example, in large-scale learning problems, stochastic gradient updates (31) are very
convenient, while the computation of a large kernel matrix can be prohibitively time
consuming, MLP makes it possible to easily control the complexity of the model and
does not impose any special requirements for the activation function.

20

Chapter 3

Feature Extraction Algorithms

In this chapter we focus on the general feature extraction problem. We start with re-
viewing several existing approaches, which also illustrate the theory discussed in Chap-
ter 2. In Section 3.1 and Section 3.2 we discuss one of the most popular unsupervised
and supervised feature extraction approaches - principal component analysis and linear
discriminant analysis, both in linear and kernel forms. Section 3.3 reviews autoencoder
neural networks. Examples of manifold learning algorithms - Laplacian eigenmaps
and locally linear embedding (LLE) are discussed in Section 3.4 and Section 3.5. Sec-
tion 3.6 deals with FOHSIC/BAHSIC as an example of supervised HSIC-based feature
selection algorithm. Finally, in Section 3.7 finalizing remarks are provided.

In many important applications (see Chapter 1) the data are high-dimensional (curse

of dimensionality (36)), structured, non-numerical or has other inconvenient represen-
tation, which can result in poor generalization or even make a particular problem in-
tractable. In such a cases, feature extraction can increase the efficiency of various ma-
chine learning algorithms, and consequently it is often the first step in computer data
analysis. We will start with the definition.

Definition 8 (Feature extraction). Let X be an input space. A feature extraction is a
mapping Mf,d : x→ Rd, where x ∈ X, d ∈ N, which is learned from the training data
by maximizing an objective function f . Depending on the definition of f , we will call
such an algorithm unsupervised, semi-supervised or supervised.

An objective or cost function f imposes desirable properties of the features M(x). The
cost functions are based on very different heuristics. For example, mutual information

21

3.1. Principal Component Analysis

and information theoretic approaches are analyzed in (4), (8), (87), papers (10), (69)
assumes that the data lie in some low dimensional manifold, (11) extends the manifold
assumption to a discriminative scenario, meanwhile, articles (8), (17), (18), (80), (87),
and (99) focus on approaches related to dependence maximization.

In the case when M only selects a subset of x it is called feature selection. Feature se-
lection and extraction approaches are broadly classified as wrappers, filters and hybrid
ones (30), (21). Wrappers are methods coupled with particular learning algorithm (e.g.
classifier), ant their cost function is associated with its performance. Filters are more
general algorithms that do not rely on any knowledge about learning algorithm to be
used further. Hybrid algorithms, conceptually, are somewhere between them. They use
evaluation criteria from both models. Dimensionality reduction (55) is another term
synonymous to feature extraction, but rather less general, since it emphasizes that the
aim is to reduce data dimensionality.

For the convenience, further we will assume that X and Y consists of real vectors. Let
T = (xi, yi)mi=1 be a supervised training set of i.i.d. observations, (xi, yi) ∈ X× Y.

Let us denote the matrix of input instances X = [x1, x2, ..., xm], the matrix of output
instances Y = [y1, y2, ..., ym], and the matrix of extracted features F = [f1, f2, ..., fm].
Let XS,: be a sub-matrix of X, constructed of the rows of X, which have the indices
from S, 1 ≤ Si ≤ Dx. Similarly, X:,S denotes a sub-matrix of columns.

Thereinafter we will review several examples of existing feature extraction algorithms.
The reader can find quite a comprehensive review in the book (30).

3.1 Principal Component Analysis

Let us assume that zero mean i.i.d. observations xi are drawn from the multivariate
distribution p(x). In principal component analysis (43) we seek an orthogonal Dx×dx,
dx ≤ Dx projection matrix P, which maximizes the variance of projected dx dimen-
sional data (see Fig. 3.1). Having an observation matrix X, the objective function of
PCA is represented by formula

arg max
P

1

2m
Tr(XTPPTX), s.t.PTP = I. (3.1)

22

3.1. Principal Component Analysis

An optimal P can be found by using the Lagrangian method. The Lagrangian function
is given by

L(P) =
1

2m
Tr(XTPPTX−Λ(PTP− I)), (3.2)

where Λ is the diagonal matrix of Lagrange multipliers.

Setting ∇L(P) = 1
m

XXTP − ΛP equal to zero, we obtain that the solution consists
of eigenvectors of the empirical covariance matrix 1

m
XXT , corresponding to dx largest

eigenvalues. Features of PCA, F = PTX, are called principal components. Principal
components can be found iteratively by an Algorithm 1 (22).

Algorithm 1 IterativePCA(X, dx)
Input: Data X, dimensionality dx.
Output: Projection matrix P.

1. Set X1 = X

2. for i ∈ {1, ..., dx}

(a) select pi as a principal eigenvector of XiXT
i

(b) set Xi+1 = (I− pipT
i

pT
i pi

)Xi

3. end;

4. Output projection matrix P =
[
p1, ...,pdx

]
.

Step (a) can be efficiently carried out by using power iteration (26). Step (b) is known
as deflation and performs the projection of the residual matrix Xi onto subspace, or-
thogonal to pi:

Xi+1XT
i+1 = Xi

(
I− pipTi

pTi pi

)(
I− pipTi

pTi pi

)T
XT
i = XiXT

i − λi
pipTi
pTi pi

, (3.3)

and therefore Xi+1XT
i+1pi = 0. For j 6= i due to orthogonality of eigenvectors Xi+1XT

i+1pj =

XiXT
i pj and therefore Algorithm 1 indeed computes eigenvectors and eigenvalues of

XXT .

23

3.1. Principal Component Analysis

3.1.1 Kernel PCA

In kernel PCA (73) input observations xi are mapped into elements of RKHS, and prin-
cipal component analysis is performed there. Let us consider a positive definite kernel
k, with feature mapφ, which maps input observations xi intoφ(xi). Since mapped data
not necessarily have zero mean, additional care must be taken to perform centering in
the feature space. Let us map input instance xi into φ(xi) −m−1

∑m
j=1φ(xj), and let

H = I−m−111T be the centering matrix. Therefore the matrix of input instances X is
mapped into ΦH and the objective of PCA in RKHS becomes

arg max
P

1

2m
Tr(HΦTPPTΦH), s.t.PTP = I. (3.4)

According to Theorem 3 the solution admits the form P = ΦHQ. By kernel trick
ΦTΦ = K, and therefore (3.4) can be solved by maximizing Lagrangian

L(Q) =
1

2m
Tr(HKHQQTHKH− Λ(QTHKHQ− I)), (3.5)

and optimal Q consists of normalized eigenvectors of HKH, and can be determined
incrementally by Algorithm 2.

Algorithm 2 IterativeKPCA(K, dx)
Input: Kernel matrix K, dimensionality dx.
Output: Projection matrix Q.

1. Set K1 = HKH

2. for i = 1, ..., dx

(a) select qi as principal eigenvector of Ki

(b) set Ki+1 = (I−Ki
qiqT

i

qT
i Kiqi

)Ki

3. end;

4. Output projection vectors qi√
qT
i HKHqi

.

Recent studies on PCA includes probablistic PCA (85), sparse kernel PCA (22), ro-
bust PCA (48), (88) and others. Independent component analysis (ICA) (5), (41) is

24

3.2. Linear Discriminant Analysis

2 3 4 5 6 7 8

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Input vectors
First principal component
Second principal component

Figure 3.1: PCA projects data into directions of maximum variance.

another related technique. Instead considering uncorrelatedness it seeks independent
projections of the data.

3.2 Linear Discriminant Analysis

We now assume supervised scenario with discrete dependent variables, which repre-
sents class labels yk ∈ {1, 2, ..., c}. Linear discriminant analysis (LDA) (37), (40)
seeks a directions on which the features with different labels are separated while ones
with the same label to be close to each other, Fig. 3.2.

Let mk be a number of observations with label k, µk = 1
mk

∑
yi=k

xk, µ = 1
m

∑m
i=1 xi

be intra-class and global means respectively. Between-class, within-class and total scat-
ter matrices are defined

Sb =
c∑

k=1

mk(µk − µ)(µk − µ)T , (3.6)

Sw =
c∑

k=1

∑
i:yi=k

(xi − µk)(xi − µk)T , (3.7)

and St = Sb + Sw.

25

3.2. Linear Discriminant Analysis

The directions of LDA are obtained by maximizing the Rayleigh quotient:

J(pi) =
pTi Sbpi
pTi Stpi

. (3.8)

−2 −1 0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

First class
Second class

Figure 3.2: LDA projects the data into a linear subspace so that the observations with
different labels are separated, and ones with the same label are close to each other.

3.2.1 Kernel LDA

Let us consider positive definite kernel k with feature map φ. According to Theorem 3
the solution belongs to linear span of Φ, p = Φq. Let Sφ

b be a map of Sb, and Sφ
t be a

map of St. By the kernel trick, the objective 3.8 in feature space becomes

Jφ(qi) =
qTi K WbKqi
qTi K H Kqi

, (3.9)

where K is Gram matrix, Wb =
∑c

k=1mk(
1
mk

ek− 1
m

1)(1
mk

ek− 1
m

1)T , centering matrix
H = I−m−111T , and binary vectors

eki =

{
1 if yi = k

0 otherwise,
(3.10)

3.8 and 3.9 are maximized by solving generalized eigenproblems Sbpi = λiStpi and
Wbqi = αiWtqi. The number of LDA solutions is bounded by c− 1.

More efficient modifications of LDA were proposed and investigated by several authors.
For example, (12) suggested incremental, semi-supervised, locally sensitive versions

26

3.3. Autoencoder Neural Network

of LDA, sparse LDA was proposed by (71), (22), (79) proposed robust discrimination
algorithm, which exploits the structure of the manifold on which data lies.

3.3 Autoencoder Neural Network

Interesting application of MLP neural network for dimensionality reduction are so
called autoencoders (34), which can be applied both in unsupervised and supervised
scenarios. Let us start with the former. Consider a MLP neural network with three
layers, having N1 = Dx, N2 = dx < Dx, and N3 = Dx neurones respectively (see
Figure 3.3, here Dx = 5, dx = 3). Minimizing least squares error∑

i

||xi −MLP(xi)||2,

the data is compressed into dx numerical features, specified by the outputs of hidden
layer. Intuitively, if one could achieve good reconstruction of inputs xi, the such a
features should carry almost the same information, as xi. In linear case autoencoder is
almost identical to PCA.

Input layer Output layerFeature layer

Figure 3.3: Graphical representation of autoencoder.

Conventional MLP with single hidden layer also can be interpreted as an autoencoder,
which forms non-linear features in the hidden layer, while in the output layer simultane-

27

3.4. Laplacian Eigenmap and Locality Preserving Projections

ously classification or regression model is constructed. Recent results on autoencoders
and related methods include studies of sparse (50), semi-supervised (76), ensemble (89)
models, and restricted Boltzmann machines (34).

3.4 Laplacian Eigenmap and Locality Preserving Pro-
jections

The method of Laplacian eigenmap (10) is an example of so called manifold learning

algorithms. In the cases when the data lie on some non-linear low dimensional mani-
fold embedded into a high dimensional feature space, global techniques such as PCA
are inefficient. Laplacian eigenmap is closely related to the Laplacian regularizer ∆i,
reviewed in 2.3. It seeks a minimizer of

Ωi(F) = Tr(F∆iFT), i ∈ {0, 1}, (3.11)

(see 2.3), with the constraint Tr(FDFT) = I, which removes the scaling factor. The
locality preserving projections is a linear approximation of Laplacian eigenmap, which
assumes that F = PTX, and, therefore, an optimal P can be deduced by solving a
generalized eigenproblem

X∆iXTP = ΛX D XTP, (3.12)

and taking d eigenvectors with smallest eigenvalues. This corresponds to a minimum
of Laplacian regularizer. Here Λ is a diagonal matrix, consisting of the eigenvalues.

3.4.1 Kernel case

Applying the same argument as in kernel PCA and kernel LDA we map the data in-
stances into a feature space defined by some positive definite kernel k. The kernel

28

3.5. Locally Linear Embedding

variant of Laplacian eigenmap minimizes objective function

Ωi(Q) = Tr(QTK∆iK Q−ΛKDK), i ∈ {0, 1}, (3.13)

and the solution is achieved by eigenvectors of the generalized eigenproblem

K∆iKQ = ΛKDKQ, (3.14)

which corresponds to the lowest eigenvalues. The idea of Laplacian eigenmap is effi-
ciently exploited in various feature extraction approaches (see e.g. (79)).

3.5 Locally Linear Embedding

Another manifold learning algorithm, locally linear embedding (LLE, (69)), aims to
approximate each training instance xi by the linear combination of it’s neighbors in such
a way, that the projections of xi are also a well approximated by the linear combination
of the projections of xi’s neighbors.

Mathematically LLE seeks a minimizers of

J0(W) =
m∑
i=1

||xi −
m∑
j=1

Mi,jxj||2, s.t.Wi,i = 0,
∑
j

Wi,j = 1, (3.15)

and

J1(F) =
m∑
i=1

||fi −
m∑
j=1

Mi,jfj||2, s.t.m−1FFT = I. (3.16)

Eq. is a constrained least squares problem. Entries of W can be calculated individually
(64) by the following procedure.

1. Calculate m×m distance matrix ∆.

29

3.6. FOHSIC and BAHSIC

2. For each xi store the indices of k nearest neighbors of xi into a m × k matrix Γ

(i.e. Γi,j contains the index of j-th nearest neighbor of xi).

3. For each xi construct a matrix Q with entries Qj,l = 1
2
(∆i,Γi,j

+ ∆i,Γi,l
−

∆Γi,j ,Γi,l
). CalculateR = (Q + βI)−1, where β is suitably chosen regularization

parameter (64).

4. Set Wi,Γi,j
= γ

∑k
t=1 Rj,m, where γ = (1TR1)−1.

Final embedding of LLE is constructed using the minimizer of Eq. 3.16, which can be
found by solving eigenproblem

(I−W)T (I−W)F = ΛF. (3.17)

and taking eigenvectors, which correspond to smallest eigenvalues. Here Λ is also a
diagonal matrix of eigenvalues. After constructing F it can be embedded into a linear
or non-linear spaces using an appropriate kernel and applying kernel trick.

3.6 FOHSIC and BAHSIC

Forward feature selection procedures start with an empty set and incrementally add
features, which optimize some cost function. Conversely, in backward feature selection
one begins with all the features and progressively eliminated last useful ones. Both
schemes are robust and quite fast. However, they may lead to a different set of features
(30). Further, we will review an example of forward/backward selection (77), which
maximize the estimator of HSIC between selected features and a dependent variable.

BAHSIC starts with all the features and gradually removes irrelevant ones, whereas
FOHSIC starts with an empty set of features and adds those which enhance dependence
most. Since both algorithms are analogous, in Algorithm 3 we provide the pseudo-code
only for BAHSIC.

To maintain a balance between speed and performance authors (77) recommend at each
step consider size of I so that about 10% of current features are removed. In practice
backward procedures tend to perform better than forward ones, possibly due to that
they starts with all the information, contained in a training set.

30

3.7. Conclusion

Algorithm 3 BAHSIC(X,Y,dx)
Input: Data matrices X and Y, feature dimensionality dx.
Output: Ordered set of features S+.

1. S = {1, 2, ..., Dx}.

2. S+ = ∅.

3. repeat

4. I := argmaxI∈SĤSIC(XS/{I},Y).

5. S := S/I.

6. S+ := S+ ∪ I.

7. until |S+| = dx.

3.7 Conclusion

In this section we reviewed several feature extraction algorithms. PCA and LDA were
included as classical examples of unsupervised and supervised feature extraction meth-
ods. Despite that they are among the earliest data analysis methods, many important
applications benefit from both of them. Autoencoders were reviewed as an application
of MLP neural network for supervised-feature extraction. Aforementioned algorithms
are global as they do not rely on the local similarities of the data. On the other side,
Laplacian eigenmap, LPP, and LLE are local algorithms. They aim to reveal low di-
mensional representation of the data, that preserve local similarity structures. Finally,
FOHSIC/BAHSIC algorithms illustrates an application of HSIC for feature selection.
Further we will discuss some practical aspects of feature extraction.

3.7.1 Practical aspects

Determining meta-parameters From practical point of view, the dimension of fea-
tures, the kernel type and it’s parameters (e.g. σ in the case of Gaussian kernel), and
other meta-parameters usually strongly affect the performance of further analysis. One
of most widely used approaches to estimating such parameters is k-fold cross-validation
(31). The idea of k-fold cross validation is to split training data into k folds, train learn-

31

3.7. Conclusion

ing algorithm on k− 1 folds and test on the remaining ones, repeating the process until
the testing of all the training instances has been completed. In the case when k = m−1,
the process is called leave one out cross validation. Although often efficient in prac-
tice, cross validation usually is not computationally cheap procedure. For larger data
sets it may become prohibitive. In the cases when cross validation is not acceptable,
meta-parameters may be determined quite efficiently using the following approaches:

• When Gaussian kernel is used, to start an analysis by setting the width parameter
σ equal to the median of the observation distance (77);

• Several techniques are proposed to estimate the intrinsic dimension of the data
(see e.g. (51)). For example, maximum likelihood approach of (51) is based
on the idea, that in a small sphere Sx(R) around the observation x, the density
f(x) is constant, and treats the observations as a homogeneous Poisson process in
Sx(R). The correlation dimension (27) is estimated by regressing the logarithm
of Cm(r) = 2

m(m−1)

∑m
i=1

∑m
j=i+1 δ(||xi − xj|| < r) against log r over the linear

part (here δ(.) is an indicator function). Despite that cross-validation in many
cases is more efficient, dimensionality estimation methods can be helpful for
reducing the range of cross validation.

• In most cases simple linear kernel is sufficient. However, in the case of structural
or non-linear data sets kernel selection may strongly affect the quality of the
features. The kernel function may be chosen according to practitioners intuition,
or automatically learned form the data. In such a case kernel is expressed as
convex linear combination of different basis kernels, and the weights are learned
from the data (see e.g. (49)). This approach is known as multi-kernel learning.

Sparse solutions Kernel feature extraction problems usually are posed as the eigen-
decomposition of some data dependent m ×m matrix. Such an operation scales cubi-
cally in m. With large m it may become computationally hard, lead to overfitting and
other inconveniences. Large kernel matrix is associated with similar effects for most
kernel methods as well.

Instead of representing a solution as a sum over all the training examples, only a sparse
subset of informative training instances may be analyzed (see Theorem 3). For achiev-
ing this purpose, various techniques are suggested.

32

3.7. Conclusion

For example, the algorithm of (6) greedily selects the training instances, which mini-
mize the distance to the linear span of already selected ones. Let us denote the indices
of selected data instances by I. The solution of some kernel optimization problem is
assumed to admit the form Φ:,IQ.

Similar algorithms are investigated in (24), (92), (74). The approach of (92) gener-
ates an index set I of length d. The entries I are chosen without replacement from
{1, 2, ...,m}. The approximation of kernel matrix is expressed by

K∗ = K:,IK−1
I,I KT

:,I, (3.18)

where K:,I is a sub-matrix of K with unchanged rows, and columns from I, and KI,I

is d × d sub-matrix of K with both columns an rows from I. (74) suggest to greedily
select I, which minimizes Frobenius norm (26) of K − K∗. The article (24) proposes
a generalization of the method of (92), which is based on sampling with replacement
form the columns of K. Thesis (22) is devoted to sparse feature extraction.

33

Chapter 4

HBFE and HSCA algorithms

In this chapter we suggest and discuss several supervised and semi-supervised feature
extraction algorithms based on the optimization of the dependence structure. In Sec-
tion 4.1, we define a dependence structure. In Section 4.2 and Section 4.3, we focus on
feature extraction by optimizing two different dependence structures. In Section 4.4,
we apply the Laplacian regularizer to derive a semi-supervised versions of suggested
algorithms, and in Section 4.5 we discuss non-linear modeling by multilayer perceptron
neural networks. Conclusive remarks are provided in Section 4.6.

The results of this chapter are based on publications by the author (17) and (18). The
results of Section 4.3 and Section 4.4 are new and previously unpublished.

Suppose we have a supervised training set T = (xi, yi)mi=1, where xi ∈ RDx are input
observations, and y ∈ RDy are dependent variables. Let us denote the data matrices
X = [x1, x2, ..., xm], Y = [y1, y2, ..., ym], and feature matrix F = [f1, f2, ..., fm].

4.1 Dependence Structure

Let us denote the input and output spaces by X and Y, and let F = {f : X → RdX}
be a space of feature functions. Let {dF,X}, {dF,F}, {dF,Y} be three sets of depen-
dence measures, defined on the pairs of corresponding sets. Each such a set consists
of the dependence measures, that allow to focus on certain dependencies. A triple
D = {dF,X, dF,F, dF,Y} defines a dependence structure. In order to perform feature

34

4.2. HSIC-based Feature Extraction

extraction we construct parametrized dependence structure and use it to define and
maximize a feature relevance function R : D→ R.

4.1.1 Dependence measure

The idea of using dependence as a criterion of feature relevance is not new. How-
ever, traditionally, dependence-based feature construction relies on information theo-
retic cost functions (4), (8), (86). Measuring and optimizing such a cost functions often
poses serious inconveniences. For example, in mutual information-based algorithms
density estimation is required. For high dimensional or structured data, it becomes
problematic or prohibitive. Even for cost functions based on lower order non-linear
statistics (e.g. quadratic information (87)), the solution is achieved only by numerical
methods, and the problem of local optima and meta-parameter selection persists.

We will use an estimator of HSIC as a dependence measure (see Section 2.2.4). The
choice of HSIC is motivated by its useful theoretical properties (28), (77), and promis-
ing empirical results achieved by various HSIC-based algorithms (e.g. supervised
(17, 18), (99), and unsupervised (80), (90) feature extraction, feature selection (47),
(57), (77), clustering (59), (78). However, later work of (83) points out that since HSIC
is a dependence measure and not conditional dependence measure, it is not capable of
performing sufficient dimensionality reduction (i.e. achieve that the input and output
variable are conditionally independent given the set of features), which statistically is
more well grounded than heuristic approaches.

4.2 HSIC-based Feature Extraction

Further we will analyze a dependence structure, which contains single dependence
dF,Y := ĤSIC(f(X),Y). We will call the corresponding feature extraction method
HSIC-based feature extraction (HBFE).

35

4.2. HSIC-based Feature Extraction

4.2.1 HBFE: biased estimator case

The starting point of our work (17) was the method of (99). It seeks linear projections
which maximize the biased HSIC estimator (2.12) between features and outputs.

4.2.1.1 Linear case

Let us assume, that for the inputs K = XTPPTX, and for outputs, the kernel can be
chosen arbitrarily. The maximum of

Tr(KHLH) = Tr(XTPPTXHLH) =
Dx∑
i=1

pTi XHLHXTpi, s.t.P
TP = I (4.1)

can be achieved by dx ≤ Dx principal eigenvectors of

XM0XTp = λp, (4.2)

where
M0 := HLH. (4.3)

4.2.1.2 Kernel case

Let us now project xi’s onto RKHS defined by positive definite kernel k with a cor-
responding feature map φ : X,→ Φ and maximize 4.1 in the RKHS. According to
Theorem 3, the solution admits the form P = ΦQ. By the kernel trick we obtain
that 4.1 becomes

Tr(K Q QTK HLH)→ max
Q

s.t.QTKQ = I, (4.4)

and the corresponding Lagrangian is equal to

L(Q) = Tr(K Q QTKHLH− ΛQTKQ), (4.5)

where Λ = diag(λ1, λ2, ..., λdx).

36

4.2. HSIC-based Feature Extraction

Having equated ∇QL(Q) to zero, we obtain that optimal Q consists of eigenvectors of
the generalized eigenvalue problem:

KM0Kq = λKq, (4.6)

where M0 is defined in Eq. 4.3. If K is invertible, the solution can be obtained by
solving an ordinary eigenvalue problem M0Kq = λq. The maximal value of HSIC0

is equal to (m− 1)−2
∑dx

i=1 λi.

4.2.2 HBFE: unbiased estimator case

In (17) we extended the work of (99), by analyzing an unbiased (2.13) estimator. We
will call the corresponding method HBFE1.

4.2.2.1 Linear case

As in previous section we will assume that K = XTPPTX, and L = {l(yi, yj}mi,j=1,
where l is an arbitrary positive definite kernel. Let us denote matrices

A = 11T ,H = I−m−1A,

K̃ = K− diag(K),

L̃ = L− diag(L),

and

Z = K̃L̃ +
K̃AL̃A

(m− 1)(m− 2)
− 2K̃L̃A
m− 2

.

We seek a projection matrix P, which projectsDx-dimensional inputs x onto dx-dimensional
space (dx < Dx), and maximizes the unbiased estimator HSIC1 (2.13). Since

HSIC1(X,Y) =
Tr(Z)

m(m− 3)
=

Tr(ZT)

m(m− 3)
=
Tr(Z+ZT

2
)

m(m− 3)
, (4.7)

37

4.2. HSIC-based Feature Extraction

to get an optimal projection matrix, we have to maximize the following constrained
objective function:

Tr

(
Z + ZT

2

)
= Tr

(
(XTPPTX− DK)L̃ +

(XTPPTX− DK)AL̃A
(m− 1)(m− 2)

− (4.8)

(XTPPTX− DK)L̃A + AL̃(XTPPTX− DK)

m− 2

)
=

Dx∑
i=1

Tr
(
XTpip

T
i XL̃ +

(XTpipTi X)AL̃A
(m− 1)(m− 2)

− XTpipTi XL̃A + AL̃XTpipTi X
m− 2

)−

1T L̃1
(m− 1)(m− 2)

Dx∑
i=1

pTi XXTpi +
2

m− 2

Dx∑
i=1

pTi (
m∑
j=1

xjxTj
m∑
k=1

L̃jk)pi =

Dx∑
i=1

pTi X(L̃ +
AL̃A− 1T L̃1I

(m− 1)(m− 2)
− L̃A + AL̃− 2 diag(L̃A)

m− 2
)XTpi

s.t.PTP = I,

where DK = diag(K). Like previously, it can be maximized by the Lagrangian method.
Let us define

M1 := L̃ +
AL̃A− 1T L̃1I

(m− 1)(m− 2)
− L̃A + AL̃− 2 diag(L̃A)

m− 2
. (4.9)

It is evident from 4.8 that the solution to this problem consists of dx eigenvectors of the
eigenproblem

XM1XTp = λp, (4.10)

corresponding to the largest dx eigenvalues. Eq. 4.7 implies that all the eigenvalues are
real. The corresponding optimal value of HSIC1 is equal to 1

m(m−3)

∑dx
i=1 λi, where λi

is i-th largest eigenvalue.

38

4.3. Hilbert-Schmidt Component Analysis

4.2.2.2 Kernel case

To derive a kernelized variant of HBFE, let us map original inputs x to φ(x) in RKHS
associated to some kernel k with feature map φ : X → Φ. Again, according to Theo-
rem 3, P = ΦQ. Therefore, by the kernel trick, the solution can be obtained by solving
generalized eigenvalue problem:

KM1Kq = λKq. (4.11)

In the case when K is non-singular, the solution is equivalent to the solution of ordinary
eigenvalue problem M1Kq = λq.

4.3 Hilbert-Schmidt Component Analysis

Intuitively is clear that good features should be informative and relevant to the variable
of interest. On the other hand, the consideration of all such features comes at a price:
it increases the dimensionality of the features, and thereby an information becomes
coded into a large number of possibly irrelevant, inefficient or redundant patterns. In
most cases, redundant features are less robust, have negative effect on the performance
of further analysis, increases the storage space and have other undesirable properties
(30). Minimum-redundancy maximum-relevance framework (23), (97) encompasses
approaches which seeks the features that are not only relevant, but also non-redundant.

Further we will analyze a sequence of dependences {dF,Y, dtF,F}, where dF,Y := ĤSIC(f(X),Y),
dtF,F = ĤSIC(f(X), [f1(X), ..., ft−1(X)]), and t denotes an iteration. We will call the
corresponding method Hilbert-Schmidt component analysis.

4.3.1 Linear case

Let us first assume that the kernel for inputs is linear. Following the above approach,
we will study another feature extraction scheme, which iteratively seeks dx ≤ Dx linear
projections, maximizing dependence on the dependent variable y, and simultaneously

39

4.3. Hilbert-Schmidt Component Analysis

minimizing dependence on the already computed projections. In other words, for the
t-th feature, we seek a projection vector p, which maximizes the ratio

ηt(p) =
ĤSIC(pTX,Y)

ĤSIC(pTX,PTt X)
, (4.12)

where Pt = [p1, ...,pt−1] are projection vectors extracted in previous t − 1 steps. We
will call this approach Hilbert-Schmidt component analysis (HSCA).

At the first iteration, only ĤSIC(pTX,Y) is maximized. Assuming that the kernel
matrix K is linear and plugging an estimator (2.12) into (4.12), we have to maximize
the following generalized Rayleigh quotient:

ηt(p) =
Tr(XTppTXHLH)

Tr(XTppTXHLfH)
=

pTXHLHXTp
pTXHLfHXTp

, (4.13)

where the kernel matrix of features Lf
i,j = lf (PTt−1xi,PTt−1xj), and lf is arbitrarily cho-

sen positive definite kernel. The maximizer is principal eigenvector of the generalized
eigenproblem

XHLHXTp = λX HLfHXTp. (4.14)

In certain cases to avoid numerical instabilities instead 4.16 may be useful to consider

X HLHXTp = λ(X HLfHXT + αI)p, (4.15)

where α ≥ 0 is the regularization parameter.

Having two matrices A,B, and the vector u of appropriate dimensionality, let us denote
by µ(A,B) the principal eigenvector of the generalized eigenproblem Au = λB u. On
the basis of the observations made above, now we will formulate HSCA algorithm. For
the sake of simplicity of mathematical expression, we consider a biased estimator of
HSIC (2.12), although the case of an unbiased estimator (2.12) is straightforward.

40

4.3. Hilbert-Schmidt Component Analysis

Algorithm 4 HSCA(X,Y, dx)
Input: Data matrices X,Y, dimensionality dx.
Output: Projection matrix P.

1. Construct m×m kernel matrix L : Li,j = l(yi, yj), set M = I, and P = ∅.

2. for t ∈ {1, ..., dx} do

3. Update P := [P, µ(XHLHXT ,M)].

4. Construct m × m kernel matrix of already extracted projections Lf
i,j =

lf (PTxi,PTxj).

5. M := XHLfHXT .

6. end

7. Output the projection matrix P. The features for the input x are PTx.

4.3.2 Kernel case

Let k be a positive definite kernel with a feature map φ which maps the original inputs
x into the RKHS associated with k. Thus, the input data matrix X in the feature space
is Φ = [φ(x1), ...,φ(xm)]. According to Theorem 3, in each iteration the maximizer
admits the form p = Φq. By the kernel trick, Eq. 4.16 becomes

K HLH Kp = λK HLfH Kp, (4.16)

and, therefore, Algorithm 5 can be used to compute projections in the kernel case.

41

4.4. Semi-supervised HBFE and HSCA

Algorithm 5 KHSCA(X,Y, dx)
Input: Data matrices X,Y, dimensionality dx.
Output: Projection matrix P.

1. Construct m ×m kernel matrices K : Ki,j = k(xi, xj), L : Li,j = l(yi, yj), set
M = K, and P = ∅.

2. for t ∈ {1, ..., dx} do

3. Update P := [P, µ(KHLHK,M)]

4. Construct m × m kernel matrix of already extracted projections Lf
i,j =

lf (PTxi,PTxj).

5. M := KHLfHK.

6. end

7. Output the projection matrix P. The features for the input x are
PT [k(x, x1), k(x, x2), ..., k(x, xm)]T .

4.4 Semi-supervised HBFE and HSCA

In the following we will address research problem RP2. Let xm+1,, xm+M be a se-
quence of additional M observations, for which the dependent variables are not avail-
able. Let us denote an extended input matrix by X̃ = [X, xm+1,, xm+M]. Let W be
an (m + M) × (m + M) similarity matrix, defined as Wi,j = w(xi, xj), where w is
some similarity measure (e.g. Gaussian kernel, if xi ∈ RDx), and let D be a diagonal
matrix, Di,i =

∑
j Wi,j .

To derive a semi-supervised extension, we will use graph Laplacian 2.3 approach,
which imposes additional Laplacian regularization for the projection matrix. There-
fore, the aim is to optimize the dependence structure, at the same time preserving the
manifold, on which the data lies. In this section we will consider only the linear ver-
sions of algorithms, since kernel variants can be analyzed in a completely analogous
way as in supervised cases. Let us denote the graph Laplacian by ∆.

42

4.4. Semi-supervised HBFE and HSCA

4.4.1 Semi-supervised HBFE

In semi-supervised HBFE, we seek a projection matrix P, which maximizes

ĤSIC((1− β)PTX,Y)− βΩ(PT X̃), s.t.PTP = I, (4.17)

where Ω and 0 ≤ β ≤ 1 are Laplacian regularizer, and regularization parameter. The
maximum can be achieved by dx leading eigenvectors of

((1− β)XMiXT − βX̃∆X̃
T

)p = λp, (4.18)

where M0 and M1 are matrices ?? or ?? in the case of a biased and unbiased estimator
respectively.

4.4.2 Semi-supervised HSCA

By incorporating Laplacian regularizer into (4.12), for each feature, we seek a maxi-
mizer of

ηt(p) =
(1− β)ĤSIC(pTX,Y)− βΩ(pT X̃)

ĤSIC(pTx,PTt X)
, (4.19)

where Ω and 0 ≤ β ≤ 1 are Laplacian regularizer, and regularization parameter. When
plugging an (2.12) estimator of HSIC, for each feature, we have to maximize

pT ((1− β)X HLHXT − βX̃∆X̃
T

)p
pTX HLfHXTp

, (4.20)

which can be achieved by the principal eigenvector of the generalized eigenproblem:

((1− β)XHLHXT − βX̃∆X̃
T

)p = λX HLfHXTp. (4.21)

Therefore, we now can formulate semi-supervised HSCA (Algorithm 6).

43

4.5. NeuroHBFE and NeuroHSCA

Algorithm 6 SSLHSCA(X,Y, dx, β)

Input: Data matrices X,Y, dimensionality dx.
Output: Projection matrix P.

1. Construct m ×m kernel matrices K : Ki,j = k(xi, xj), L : Li,j = l(yi, yj), the
graph Laplacian ∆, set M = I, and P = ∅.

2. for t ∈ {1, ..., dx} do

3. Update P := [P, µ((1− β)XHLHXT − βX̃∆X̃
T
,M)]

4. Construct m × m kernel matrix of already extracted projections Lf
i,j =

lf (PTxi,PTxj).

5. M := XHLfHXT .

6. end

7. Output the projection matrix P. The features for the input x are PTx.

4.5 NeuroHBFE and NeuroHSCA

In this section we will describe a modifications of HBFE and HSCA, where non-linear
modeling is achieved by using multilayer perceptron neural networks. In article (18)
we suggested and discussed feature extraction schemes, conceptually parallel to HBFE
and HSCA.

4.5.1 NeuroHBFE

Let MLP(.|θ) be a multilayer perceptron neural network with Dx input neurones and
dX output neurones. In NeuroHBFE we maximize

ĤSIC(MLP(X|θ),Y), (4.22)

with respect to parameter the vector θ.

44

4.6. Conclusions

4.5.2 NeuroHSCA

Let MLP(.|θ) be a multilayer perceptron neural network with Dx input neurones and
one output neurones. In NeuroHSCA we iteratively maximize

ηt(θ) =
ĤSIC(MLP(X|θ),Y)

ĤSIC(MLP(X|θ),Ft)
, (4.23)

where Ft = [MLP(X|θ1),,MLP(X|θt−1)] denotes the matrix of previously ex-
tracted features.

In both cases the features are given by the outputs of the corresponding MLP’s. The
optimization of (4.22) and (4.23) rely on numerical methods, which often is problem-
atic due to local optima and meta-parameter selection issues. In (18) we suggested
the optimization algorithm, which combines gradient ascent (as a local optimizer) and
simulated annealing (45) (as the global one), since such an approach can help to avoid
a local optimums. On the other side, in the case of large data sets stochastic gradient
updates may be more convenient. Therefore, NeuroHBFE and NeuroHSCA may have
certain advantages comparing to their kernel analogues.

4.6 Conclusions

In this chapter we suggested HBFE (HSIC-based feature extraction) and HSCA (Hilbert-
Schmidt component analysis) algorithms, which optimize two different dependence
structures of the features and the dependent variable. The dependence is evaluated us-
ing either biased or unbiased estimator of HSIC. Being a kernel-based measure, HSIC
is applicable for non-linear or structural data, it’s estimators are convenient for opti-
mization. HBFE seeks features, which maximize the dependence with the dependent
variable, while HSCA additionally minimizes the interdependence of the features. Both
algorithms are formulated in terms of eigenproblems. We extend HBFE and HSCA for
semi-supervised data sets by using Laplacian regularization. In such a case the cost
functions of HBFE and HSCA are altered so, that features preserve distance similar-
ity (i.e. similar data instances should be mapped to similar features). We additionally
discussed an alternative NeuroHBFE and NeuroHSCA algorithms, where non-linear
modeling is achieved by using multilayer perceptron (MLP) neural networks.

45

Chapter 5

Computer Experiments

This chapter is devoted to computer experiments with feature extraction approaches,
described in Chapter 4. A collection of ordinary and multi-label classification data sets
is analyzed. The experiments involve the statistical analysis of the classification per-
formance when inputs of the classifier are the features, generated by different methods.
The main objective of this chapter is empirical analysis of RP2, RP3, RP4, and RP5:

1. Empirical aspects of RP2 is investigated by conducting the experiments with
semi-supervised variants of HBFE and HSCA,

2. RP3 is investigated by studying how the biasedness of HSIC estimator affects the
efficiency of HBFE and HSCA,

3. RP4 is analyzed by comparing HBFE and HSCA,

4. RP5 is studied by conducting the experiments with kernel variants of HBFE and
HBFE, and by comparing the suggested algorithms with alternative feature ex-
traction methods.

Section 5.1 contributes to the analysis of RP2, RP3, RP4 and RP5 by analyzing the ex-
periments with binary classification data sets obtained from chemistry, finance, medicine,
physics and other fields. Section 5.2 is devoted to the experiments with multi-label clas-
sification data sets, and elucidates certain aspects of RP3. Section 5.3 focuses on the
experiments with feature extraction from structured data using string kernel (52), and
contributes mostly to RP5. Section 5.4 concludes the chapter.

46

5.1. Experiments with Binary Classification Data

Table 5.1: Data set statistics.

Data set statistics: m - sample size, Dx - a dimensionality, p+, p− - class distribution.
Ames 2495 377 0.3523 0.6477

Australian 690 14 0.55507 0.44493
Breast cancer 683 10 0.34993 0.65007

Covertype 581 54 0.45783 0.54217
Derm 358 34 0.31006 0.68994

German 1000 24 0.7 0.3
Heart 270 13 0.55556 0.44444

Ionosphere 351 34 0.64103 0.35897
Sonar 208 60 0.46635 0.53365

Spambase 4601 57 0.39404 0.60596
Specft 80 44 0.5 0.5
Wdbc 569 30 0.62742 0.37258

5.1 Experiments with Binary Classification Data

We will analyze twelve binary classification data sets summarized in Table ??. Eleven
of them are from the UCI machine learning repository (2), and the Ames data set is
from chemometrics. Details about this data set is not available due to agreement with
the provider.

We denote Tr = (xi, yi)
mtrain
i=1 , and Te = (xj, yj)

mtest
j=1 training and testing sets, where

xi, xj ∈ RDx are input variables, and yi ∈ {−1, 1} are categorical variables, corre-
sponding to a class label. A rule f : f(x) → y, which maps the input instance x to
a label y ∈ {−1, 1} is called a classifier. The measure of efficiency we will analyze
therein is accuracy over the testing set:

Accuracy(f) =
1

mtest

mtest∑
i=1

δ(f(xi) = yi), (5.1)

where δ(.) is an indicator function of the predicate π:

δ(π) =

{
1 if π is true,

0 if π is not true.
(5.2)

All the data was standardized by subtracting the mean and dividing them by the stan-

47

5.1. Experiments with Binary Classification Data

dard deviation, given that it is non-zero. Components with zero standard deviation were
removed. For the sake of simplicity we will use the k nearest neighbor (k-NN) classifier
with Euclidean metric

dE(x, x′) =
√

(x− x′)T (x− x′). (5.3)

For the input instance x, the k-NN classifier computes k nearest neighbors from the
training set and assigns the class which corresponds to the most frequent class label.
The parameter k allows to control smoothness of the decision surface: larger k allows
to reduce the effect of noise, but make the boundaries between the classes less distinct:
in degenerate case, when k approaches to infinity, the classifier just assigns the most
frequent class label. In order to avoid ties, we analyze odd number of neighbors k ∈
{1, 3, 5}.

The following feature types were examined:

1. Unmodified inputs (denoted as Full) as a baseline (in such a case first dx features
were selected),

2. HBFE features based on the unbiased HSIC1 estimator (denoted as HBFE1),

3. HBFE features based on the biased HSIC0 estimator (denoted as HBFE0),

4. HSCA features based on the unbiased HSIC1 estimator (denoted as HSCA1),

5. HSCA features based on the biased HSIC0 estimator (denoted as HSCA0),

6. PCA features,

7. LDA features.

The choice of PCA and LDA is motivated by their popularity, existence of kernelized
versions, and in the case of LDA also a semi-supervised variants (see (12)). Since PCA
is an unsupervised technique, it was considered as an indicator how much additional
performance we can achieve using a supervised technique. LDA is another well known
feature extraction algorithm. The performance of LDA was interesting to us, since it is a
supervised technique for classification data sets, and therefore was expected to perform

48

5.1. Experiments with Binary Classification Data

well in our case. On the other hand, HSIC-based approaches HBFE and HSCA does
not exploit categorical nature of the dependent variable, and therefore were expected to
perform between PCA and LDA.

The following procedure was adopted when conducting experiments. Fifty random
partitions of the data set into training and testing sets of equal size was generated,
and feature extraction was performed using all the above-mentioned methods. The
projection matrices of the feature extraction methods were estimated using only the
training data. The features generated from the testing set then were classified using k-
NN classifier. The feature dimensionality was selected using a training data and 3-fold
cross validation. Wilcoxon’s sign rank test (91) with the standard p-value threshold
of 0.05 was applied to the samples of corresponding classification accuracies. The
following methods were compared, indicating the statistical significance in the tables:

1. HBFE1 with HBFE0, and HSCA1 with HSCA0 (better one indicated in bold
text);

2. The most efficient method with the remaining ones (statistically significant cases
are reported in underlined text);

3. HSCA with HBFE (data sets where HSCA was more efficient are indicated with
•, and ◦ means that it turned out to be less efficient);

4. The most efficient HSIC-based algorithm (i.e. HBFE0, HBFE1, HSCA0 or
HSCA1) with the remaining ones (� means that HSIC-based algorithm outper-
formed other ones, and ? means that PCA, LDA or unmodified inputs were more
efficient).

5.1.1 Linear kernel case

We will start the experiments with the linear versions of HBFE and HSCA. In order to
avoid singularities, in the case of HSCA, we will use a constant l2 regularizer equal to
10−5. The results for the feature dimensionalities optimized by 3-fold cross validation
are presented in Table 5.3. Table 5.2 summarizes statistically significant cases presented
in Table 5.3. Fig. 5.1, Fig. 5.2 show how the feature dimensionality of HBFE and

49

5.1. Experiments with Binary Classification Data

Table 5.2: Summary of the experiments with linear kernel.

Number of statistically significant cases versus change in accuracy (derived from Table 5.3)

Indicator k = 1 k = 3 k = 5

• 4 1.4339% 6 2.0554% 6 2.0674%
◦ 0 - 0 - 0 -
� 3 2.1189% 4 3.1537% 5 2.6018%
? 0 - 0 - 0 -

HSIC1 > HSIC0 3 2.0487% 0 - 3 0.8523%
HSIC1 < HSIC0 6 2.1726% 6 2.0896% 6 2.5953%

HSCA influences the accuracy of the classifier (in the case k = 5). Additionally, 0.95-
confidence intervals are provided.

Table 5.2 shows that HSCA algorithm was more efficient than HBFE (•), which con-
tributes to RP4 by demonstrating that feature redundancy minimization improves their
quality. The experiments demonstrated 2% improvement in the classification accuracy.
However HSCA is more computationally demanding, and for large data sets may be
less convenient.

Fig. 5.1, Fig. 5.2, and Table 5.3 contribute to RP3 by revealing, that biasedness of HSIC
estimator may be important for HBFE and HSCA. It is quite surprising, since estima-
tors (2.12) and (2.13) estimate the same (2.11) measure, and differ only by O(m−1)

bias. This difference seems to be important even with quite large training samples. Ta-
ble 5.2 demonstrates, that biasedness/unbiasedness of the HSIC estimator may change
the classification accuracy by 0.8− 2%.

The results of Table 5.3 also contributes to RP5. It demonstrates that either HBFE or
HSCA outperformed other methods by 2% - 3% (�), or their performance was statisti-
cally equal.

Although HBFE and HSCA are general approaches, not optimized for any specific
learning problem (e.g. classification or regression), their performance was generally
better or similar to that of LDA, which maximizes the class separability. PCA was not
as efficient as supervised techniques in most of the cases. Table 5.3 also shows that
classification accuracy tends to be higher with larger values of k.

50

5.1. Experiments with Binary Classification Data

Table 5.3: Classification accuracy using linear kernel.

Dataset Full HBFE1 HBFE0 HSCA1 HSCA0 PCA LDA

1-NN classifier
Ames • � 0.7753 0.7589 0.7765 0.7826 0.8012 0.7786 0.7714
Australian 0.7933 0.7987 0.8045 0.8093 0.8095 0.7868 0.8114
Breastcancer 0.9558 0.9553 0.9543 0.9553 0.9595 0.9566 0.9562
Covertype � 0.6868 0.6956 0.6732 0.7086 0.7014 0.6748 0.6756
Derm 0.9906 0.9973 0.9973 0.9973 0.9971 0.9949 0.9971
German 0.6698 0.6841 0.6730 0.6833 0.6910 0.6700 0.6851
Heart 0.7618 0.7600 0.7677 0.7612 0.7627 0.7520 0.7698
Ionosphere • � 0.8421 0.8555 0.8683 0.8686 0.8773 0.8581 0.8171
Sonar 0.8146 0.7819 0.7538 0.7427 0.8046 0.8146 0.6938
Spambase • 0.8975 0.8993 0.8979 0.9116 0.9056 0.9015 0.8680
Specft 0.6770 0.6690 0.7030 0.6730 0.7020 0.6630 0.5370
Wdbc • 0.9503 0.9355 0.9455 0.9476 0.9570 0.9506 0.9528

3-NN classifier
Ames • � 0.7872 0.7753 0.7852 0.7897 0.8158 0.7878 0.7853
Australian • 0.8328 0.8329 0.8314 0.8431 0.8423 0.8227 0.8393
Breastcancer 0.9618 0.9642 0.9656 0.9661 0.9674 0.9650 0.9660
Covertype 0.6796 0.6720 0.6956 0.7046 0.7063 0.6672 0.7032
Derm 0.9926 0.9973 0.9973 0.9973 0.9973 0.9937 0.9980
German 0.7036 0.7131 0.7078 0.7181 0.7208 0.7031 0.7169
Heart 0.8003 0.7828 0.7959 0.7905 0.7988 0.7876 0.7938
Ionosphere • � 0.8313 0.8542 0.8656 0.8715 0.8763 0.8615 0.8384
Sonar • 0.7908 0.7450 0.7373 0.7542 0.7996 0.7962 0.6923
Spambase • � 0.8993 0.9087 0.9051 0.9158 0.9128 0.9065 0.8930
Specft � 0.6810 0.7350 0.7550 0.6780 0.7130 0.6780 0.5370
Wdbc • 0.9597 0.9482 0.9528 0.9539 0.9628 0.9577 0.9575

5-NN classifier
Ames • � 0.7916 0.7882 0.7819 0.7961 0.8199 0.7900 0.7904
Australian 0.8445 0.8421 0.8463 0.8499 0.8500 0.8322 0.8529
Breastcancer 0.9641 0.9666 0.9646 0.9668 0.9663 0.9653 0.9665
Covertype 0.6661 0.6843 0.7007 0.7157 0.7029 0.6561 0.7113
Derm 0.9911 0.9971 0.9973 0.9971 0.9971 0.9951 0.9984
German • 0.7113 0.7262 0.7209 0.7288 0.7343 0.7127 0.7302
Heart 0.8133 0.8033 0.8068 0.8145 0.8136 0.8062 0.8065
Ionosphere • � 0.8279 0.8571 0.8610 0.8622 0.8763 0.8539 0.8398
Sonar • 0.7512 0.7108 0.7369 0.7488 0.7812 0.7631 0.6912
Spambase • � 0.8970 0.9057 0.9086 0.9186 0.9128 0.9083 0.9003
Specft � 0.6680 0.7340 0.7470 0.6800 0.7240 0.6860 0.5370
Wdbc • � 0.9593 0.9485 0.9528 0.9523 0.9675 0.9577 0.9570

51

5.1. Experiments with Binary Classification Data

−200 0 200 400
0.7

0.72

0.74

0.76

0.78

0.8
Ames

0 5 10 15
0.83

0.84

0.85

0.86

0.87
Australian

0 5 10 15
0.96

0.965

0.97

0.975
Breastcancer

0 20 40 60
0.62

0.64

0.66

0.68

0.7

0.72
Covertype

0 20 40
0.985

0.99

0.995

1
Derm

0 10 20 30
0.7

0.71

0.72

0.73

0.74

0.75

0.76
German

0 5 10 15
0.78

0.79

0.8

0.81

0.82

0.83

0.84
Heart

0 20 40
0.8

0.82

0.84

0.86

0.88
Ionosphere

0 50 100

0.65

0.7

0.75

0.8
Sonar

0 20 40 60
0.88

0.89

0.9

0.91

0.92

0.93
Spambase

0 20 40 60

0.65

0.7

0.75

0.8
Specft

0 20 40
0.91

0.92

0.93

0.94

0.95

0.96

0.97
Wdbc

Figure 5.1: Results for UCI data and linear HBFE.

Dimensionality versus accuracy of HBFE1 (black) and HBFE0 (gray). The number
of neighbors k = 5 in all the cases.

52

5.1. Experiments with Binary Classification Data

−200 0 200 400
0.7

0.75

0.8

0.85

0.9
Ames

0 5 10 15
0.83

0.84

0.85

0.86

0.87

0.88
Australian

0 5 10 15
0.96

0.965

0.97

0.975
Breastcancer

0 20 40 60
0.62

0.64

0.66

0.68

0.7

0.72

0.74
Covertype

0 20 40
0.995

0.996

0.997

0.998

0.999

1

1.001
Derm

0 10 20 30
0.71

0.72

0.73

0.74

0.75

0.76
German

0 5 10 15
0.79

0.8

0.81

0.82

0.83

0.84

0.85
Heart

0 20 40
0.8

0.82

0.84

0.86

0.88

0.9
Ionosphere

0 50 100
0.68

0.7

0.72

0.74

0.76

0.78

0.8
Sonar

0 20 40 60
0.87

0.88

0.89

0.9

0.91

0.92

0.93
Spambase

0 20 40 60
0.66

0.68

0.7

0.72

0.74

0.76
Specft

0 20 40
0.92

0.93

0.94

0.95

0.96

0.97

0.98
Wdbc

Figure 5.2: Results for UCI data and linear HSCA.

Dimensionality versus accuracy of HSCA1 (black) and HSCA0 (gray). The number
of neighbors k = 5 in all the cases.

53

5.1. Experiments with Binary Classification Data

5.1.2 Gaussian kernel case

Further we will look into the non-linear aspects of the data using Gaussian kernel
k(x, x′) = exp(−||xi − xj||2/2σ2). Therefore, input data are embedded into the RKHS
via non-linear feature map, associated with Gaussian kernel. The kernel width param-
eter σ ∈ {(1 + a

10
) ·median(dE(xi, xj)), a ∈ {−2,−1, 0, 1, 2}} was selected by 3-fold

cross validation for each feature extraction method individually. The linear kernel was
selected for the outputs, since the output data are very simple (only binary class labels).
In the case of HSCA, the Gaussian kernel was also used for extracted features. PCA
and LDA were also replaced by their kernel variants with Gaussian kernel.

The experimenting scenario with random splits was basically the same as in the linear
case. Since in kernel case the solution of kernel algorithm is expressed as the weighted
sum of all the training instances, m parameters should be estimated. In order to reduce
the number of parameters, and to shorten computations, we select a subset of training
instances I using basis selection algorithm of (6). The stopping criteria of the basis
selection process is singularity of input kernel matrix KI,I. Using full kernel matrix
often leaded into numerical instabilities, especially in the case of HSCA. We ommit
Ames data set due to prohibitively long computations.

The numeric results are presented in Table 5.5 (as in linear case, the dimensionality
of the features was optimized using 3-fold cross validation), and statistically significant
cases are summarized in Table 5.4. Fig. 5.3 and Fig. 5.4 show how the classification ac-
curacy is influenced by the dimensionality of features, generated by HBFE and HSCA
(in the case k = 5).

Table 5.4 show that biasedness of HSIC estimator may alter the classification accuracy
by up to 5%. Althought the biased estimator appeared to be more efficient in most of
the cases, the determination of conditions when one estimator is more efficient than the
other requires further investigation.

Table 5.4 contributes to RP4 by demonstrating that the tendency of HSCA to be more
efficient than HBFE is preserved (•) with average 2% improvement in classification
accuracy.

Table 5.5 and Table 5.4 show that kernel LDA with Gaussian kernel often was more
efficient than the other methods. We speculate that it may be influenced by the interac-

54

5.1. Experiments with Binary Classification Data

Table 5.4: Summary of the experiments with gaussian kernel.

Number of statistically significant cases versus change in accuracy (derived from Table 5.5)

Indicator k = 1 k = 3 k = 5

• 5 2.1779% 5 2.5181% 3 2.9840%
◦ 0 - 0 - 0 -
� 1 1.5378% 4 2.8429% 2 3.8315%
? 3 3.5171% 3 3.3857% 4 3.3192%

HSIC1 > HSIC0 1 1.1600% 2 0.7960% 2 0.4770%
HSIC1 < HSIC0 6 5.3356% 6 3.7074% 4 3.8270%

tion of LDA cost function and non-linear kernel, since it, being more flexible than linear
one, allows LDA to transform the data into separable clusters, which are suitable for
nearest neighbor classifier. Table 5.5 demonstrates that in certain cases (�) either kernel
HBFE or kernel HSCA allowed to improve the classification accuracy up to 3.8%.

Table 5.5 contributes to RP5 by showing that Gaussian kernel may improve classifi-
cation accuracy up to 5% comparing to the linear kernel (e.g. Ionosphere and Heart

data sets). Although we do not compared Gaussian and linear algorithms explicitly, the
statistical reliability is reflected by Fig. 5.3, Fig. 5.4 and Fig. 5.1, Fig. 5.2.

However, for most data sets Gaussian kernel was not advantageous. This may be influ-
enced by inefficiently selected σ, or structural properties of the data. As in the case of
linear kernel, the classification also tend to be more accurate with larger values of k.

55

5.1. Experiments with Binary Classification Data

Table 5.5: Classification accuracy using Gaussian kernel.

Dataset Full HBFE1 HBFE0 HSCA1 HSCA0 PCA LDA

1-NN classifier
Australian • 0.7924 0.7900 0.7927 0.7878 0.8185 0.7807 0.8110
Breastcancer 0.9508 0.9505 0.9458 0.9472 0.9466 0.9522 0.9487
Covertype • ? 0.6932 0.6480 0.6738 0.6855 0.6860 0.6777 0.7091
Derm 0.9872 0.9985 0.9989 0.9993 0.9989 0.9935 0.9984
German • � 0.6717 0.6668 0.6784 0.6956 0.6797 0.6737 0.6802
Heart 0.7638 0.7689 0.7679 0.7575 0.7669 0.7588 0.7366
Ionosphere 0.8521 0.8895 0.9128 0.9025 0.9158 0.9083 0.8927
Sonar • 0.8358 0.6955 0.7942 0.7204 0.8344 0.8387 0.8258
Spambase • ? 0.8570 0.7994 0.7903 0.8119 0.8129 0.8471 0.8779
Specft 0.6778 0.7283 0.7317 0.7650 0.7400 0.6370 0.7370
Wdbc ? 0.9510 0.9148 0.9425 0.9320 0.9424 0.9510 0.9599

3-NN classifier
Australian • � 0.8362 0.8344 0.8311 0.8233 0.8491 0.8193 0.8275
Breastcancer 0.9607 0.9595 0.9548 0.9554 0.9587 0.9617 0.9558
Covertype • ? 0.6874 0.6522 0.6731 0.6989 0.6752 0.6784 0.7241
Derm 0.9882 0.9993 0.9993 0.9996 0.9996 0.9960 0.9981
German • � 0.7006 0.6987 0.7111 0.7269 0.7120 0.6913 0.6880
Heart 0.8082 0.8104 0.8257 0.8133 0.8188 0.8012 0.7436
Ionosphere � 0.8314 0.8994 0.9261 0.9204 0.9230 0.9013 0.8971
Sonar • 0.8100 0.7256 0.7814 0.7312 0.8093 0.8186 0.8244
Spambase ? 0.8630 0.8189 0.8124 0.8276 0.8266 0.8497 0.8883
Specft • � 0.6722 0.7450 0.7400 0.7867 0.7367 0.6648 0.7370
Wdbc ? 0.9596 0.9200 0.9437 0.9401 0.9465 0.9560 0.9620

5-NN classifier
Australian 0.8514 0.8460 0.8375 0.8399 0.8567 0.8406 0.8351
Breastcancer 0.9643 0.9632 0.9597 0.9543 0.9586 0.9646 0.9565
Covertype • ? 0.6748 0.6703 0.6699 0.7048 0.6768 0.6659 0.7315
Derm 0.9850 0.9993 0.9993 0.9996 0.9996 0.9966 0.9981
German � 0.7123 0.7159 0.7251 0.7360 0.7285 0.7004 0.6948
Heart 0.8169 0.8321 0.8296 0.8212 0.8281 0.8111 0.7403
Ionosphere 0.8216 0.9078 0.9135 0.9204 0.9223 0.9098 0.9003
Sonar ? 0.7878 0.7263 0.7821 0.7369 0.7928 0.7935 0.8215
Spambase • ? 0.8637 0.8223 0.8141 0.8374 0.8355 0.8528 0.8953
Specft • � 0.6833 0.7400 0.7500 0.7900 0.7400 0.6926 0.7370
Wdbc ? 0.9589 0.9242 0.9488 0.9380 0.9481 0.9573 0.9682

56

5.1. Experiments with Binary Classification Data

0 5 10 15
0.82

0.83

0.84

0.85

0.86

0.87
Australian

0 5 10 15
0.945

0.95

0.955

0.96

0.965

0.97

0.975
Breastcancer

0 20 40 60
0.62

0.64

0.66

0.68

0.7
Covertype

0 20 40
0.9975

0.998

0.9985

0.999

0.9995

1

1.0005
Derm

0 10 20 30
0.69

0.7

0.71

0.72

0.73

0.74

0.75
German

0 5 10 15
0.8

0.82

0.84

0.86

0.88
Heart

0 20 40
0.84

0.86

0.88

0.9

0.92

0.94
Ionosphere

0 50 100
0.65

0.7

0.75

0.8

0.85

0.9
Sonar

0 20 40 60
0.76

0.78

0.8

0.82

0.84
Spambase

0 20 40 60
0.68

0.7

0.72

0.74

0.76

0.78

0.8
Specft

0 20 40
0.91

0.92

0.93

0.94

0.95

0.96

0.97
Wdbc

Figure 5.3: Results for UCI data and Gaussian HBFE.

Dimensionality versus accuracy of HBFE1 (black) and HBFE0 (gray). The number
of neighbors k = 5 in all the cases.

57

5.1. Experiments with Binary Classification Data

0 5 10 15
0.83

0.84

0.85

0.86

0.87

0.88
Australian

0 5 10 15
0.945

0.95

0.955

0.96

0.965

0.97

0.975
Breastcancer

0 20 40 60
0.62

0.64

0.66

0.68

0.7

0.72
Covertype

0 20 40
0.9975

0.998

0.9985

0.999

0.9995

1

1.0005
Derm

0 10 20 30
0.7

0.71

0.72

0.73

0.74

0.75

0.76
German

0 5 10 15
0.8

0.81

0.82

0.83

0.84

0.85

0.86
Heart

0 20 40
0.84

0.86

0.88

0.9

0.92

0.94
Ionosphere

0 50 100
0.65

0.7

0.75

0.8

0.85

0.9
Sonar

0 20 40 60
0.76

0.78

0.8

0.82

0.84

0.86
Spambase

0 20 40 60
0.65

0.7

0.75

0.8

0.85

0.9
Specft

0 20 40
0.91

0.92

0.93

0.94

0.95

0.96
Wdbc

Figure 5.4: Results for UCI data and Gaussian HSCA.

Dimensionality versus accuracy of HBFE1 (black) and HBFE0 (gray). The number
of neighbors k = 5 in all the cases.

58

5.1. Experiments with Binary Classification Data

5.1.3 Semi-supervised case

In this section we will conduct empirical investigation of RP2 by analyzing semi-
supervised variants of HBFE and HSCA. Following the same scheme as above, now
we will assume that in each random split 30 percent of training instances are labeled,
and labels for the remaining ones are not known. We will investigate how the classifi-
cation performance is influenced by graph Laplacian regularizer (2.17) with Gaussian
weights

Wi,j = exp(−||xi − xj||2/2σ2). (5.4)

The parameter of Laplacian regularization β ∈ [0, 0.05,, 0.25, 0.3], σ ∈ {(1 + a
10

) ·
median(dE(xi, xj)), a ∈ {−2,−1, 0, 1, 2}}, and feature dimensionality 1 ≤ dx ≤ Dx

were selected by 3-fold cross validation. In this section we will statistically compare
analyzed algorithms when β = 0 (Laplacian regularization was not used), and when the
regularization parameter β was selected by cross-validation. In order to avoid numerical
instabilities we also used

Kernels for inputs, outputs and features (in the case of HSCA) were linear. The Lapla-
cian regularizer was added to the HBFE, HSCA, and LDA (for semi-supervised LDA
see (12)). Since cross validation significantly increased computations, in order to re-
duce computations we omited Ames, and Spambase data sets. Derm data set was ex-
cluded because the classification accuracy already is near to 1. We also ommit PCA
since it is purely unsupervised method, and is out of scope of this section.

Numeric results are provided in Table 5.6. Fig. 5.5 (HBFE) and Fig. 5.6 (HSCA) show
how the change in classification accuracy is influenced by feature dimensionality. Ad-
ditionally, for each dimensionality 0.95-confidence intervals are provided.

Table 5.6 demonstrates that in certain cases it is possible to achieve the improvement in
the classification accuracy of up to 3.8%, if Laplacian regularizer was used. However,
we also observe opposite cases when Laplacial regularization leads into decrease of
classification performance. We speculate that at least to some extent this depends on
whether hypothesis of Laplacian regularization holds. In general, Fig. 5.5 and Fig. 5.6
show the tendency of semi-supervised modifications of HBFE and HSCA to be effi-
cient.

59

5.1. Experiments with Binary Classification Data

Table 5.6: Classification accuracy in the case of semi-supervised scenario.

Dataset Full HBFE1 HBFE0 HSCA1 HSCA0 LDA

1-NN classifier
Australian 0.779 0.791 0.787 0.803 0.801−1.43 0.810
Breastcancer 0.950 0.953 0.951 0.951 0.953 0.950
Covertype 0.629 0.6200.52 0.641 0.645 0.646 0.650−3.40

German 0.664 0.673 0.6601.03 0.685−0.45 0.679 0.680
Heart 0.764 0.755 0.759 0.756 0.765 0.749
Ionosphere 0.802 0.7723.83 0.840−1.79 0.7912.21 0.823 0.774
Sonar 0.720 0.656 0.689 0.674 0.709 0.643
Wdbc 0.938 0.9160.18 0.929 0.924 0.948 0.9192.01

3-NN classifier
Australian 0.819 0.831 0.823 0.839 0.840−1.27 0.838
Breastcancer 0.958 0.962 0.962 0.961 0.961 0.958
Covertype 0.624 0.6260.48 0.6500.18 0.657 0.654 0.668−2.81

German 0.689 0.6960.31 0.6880.99 0.713 0.707 0.707
Heart 0.791 0.787 0.791 0.7830.83 0.793−1.30 0.7583.14

Ionosphere 0.768 0.7841.80 0.832−1.25 0.8012.14 0.812 0.774
Sonar 0.674 0.671 0.685 0.682 0.704 0.643
Specft 0.620 0.660 0.6531.61 0.636 0.640 0.639−2.50

Wdbc 0.941 0.927 0.937 0.930 0.951 0.9221.90

5-NN classifier
Australian 0.835 0.841 0.8350.81 0.848 0.848−0.79 0.850
Breastcancer 0.959 0.964 0.964 0.964 0.963 0.962
Covertype 0.621 0.6270.76 0.6500.96 0.662 0.655 0.668−2.19

German 0.705 0.7080.64 0.7030.95 0.7230.62 0.718 0.716
Heart 0.801 0.802 0.8010.24 0.7941.06 0.802−0.80 0.7691.60

Ionosphere 0.735 0.7872.14 0.818−1.54 0.8021.20 0.8040.77 1.774
Sonar 0.660 0.6770.78 0.6810.51 0.690 0.706 0.643
Specft 0.589 0.665 0.6422.30 0.6141.68 0.635 0.637−2.55

Wdbc 0.941 0.930 0.936 0.9310.21 0.9480.18 0.9231.99

60

5.1. Experiments with Binary Classification Data

0 5 10 15
−0.5

0

0.5

1

1.5

2
Australian

0 5 10 15
−0.4

−0.2

0

0.2

0.4

0.6
Breastcancer

0 20 40 60
−1

0

1

2

3

4
Covertype

0 10 20 30
−1

0

1

2

3

4
German

0 5 10 15
−1

0

1

2

3
Heart

0 20 40
−5

0

5
Ionosphere

0 50 100
−2

−1

0

1

2

3

4
Sonar

0 20 40 60
−4

−2

0

2

4

6

8
Specft

0 20 40
−1

−0.5

0

0.5

1

1.5
Wdbc

Figure 5.5: Results for UCI data and semi-supervised HBFE.

Dimensionality versus change in accuracy (in percent) for semi-supervised HBFE
features based on HBFE1 (black) and HBFE0 (gray). The number of neighbors

k = 5 in all the cases.

61

5.1. Experiments with Binary Classification Data

0 5 10 15
−1.5

−1

−0.5

0

0.5

1
Australian

0 5 10 15
−0.4

−0.2

0

0.2

0.4

0.6
Breastcancer

0 20 40 60
−2

−1

0

1

2
Covertype

0 10 20 30
−1

−0.5

0

0.5

1

1.5
German

0 5 10 15
−2

−1

0

1

2

3
Heart

0 20 40
−1

0

1

2

3

4
Ionosphere

0 50 100
−2

−1

0

1

2

3

4
Sonar

0 20 40 60
−4

−2

0

2

4

6
Specft

0 20 40
−0.5

0

0.5

1
Wdbc

Figure 5.6: Results for UCI data and semi-supervised HSCA.

Dimensionality versus change in accuracy (in percent) for semi-supervised HSCA
features based on HSCA1 (black) and HSCA0 (gray). The number of neighbors

k = 5 in all the cases.

62

5.2. Experiments with Multi-label Yahoo Data

5.2 Experiments with Multi-label Yahoo Data

This section focuses on RP3 and describes the experiments with feature extraction for
multi-label classification data. We will start with brief introduction of basic terminol-
ogy from the topic. A survey on multi-label learning can be found in (81).

5.2.1 Multi-label classification

In multi-label classification problems an object can belong to several classes simulta-
neously. Such a situations arise in many important areas: web page, text, image classi-
fication and other ones. Treating every combination of class labels as a single class and
applying standard classification and feature extraction techniques (e.g. LDA) quickly
becomes prohibitative due to combinatorial explosion. In contrary, HSIC-based meth-
ods does not assume any structure of the dependent variable and therefore are easily
applicable in multi-label case.

Let us assume that the input instances are drawn from a set X = RDx and let Y =

{1, 2, ..., nl} be a set of class labels. In multi-label classification problems, the input xi
is associated with a subset yi ⊆ Y.

The goal of multi-label classification is to learn a function f : X × Y → R, which
measures how likely a label y belongs to a set of true labels of xi, i.e. f(xi, y) >

f(xi, y′) where y ∈ yi and y′ /∈ yi. Based on such a function the ranking function
rankf : X× Y→ {1, 2, ..., nl} is defined (98):

f(xi, y) > f(xi, y′)⇒ rank
f

(xi, y) < rank
f

(xi, y′). (5.5)

The multi-label classifier itself is given by h(xi) = {y ∈ Y : f(xi, y) > θ(xi)}, where
θ(.) ∈ R is a threshold function. In most cases θ(.) is set to zero constant. In further
experiments we use special k-NN classifier for multi-label data (see (98) for details).

63

5.2. Experiments with Multi-label Yahoo Data

5.2.2 Performance measures

Evaluating a performance of multi-label classifier inevitably is harder than in the single
label case, because of the overlapping of the class labels: a result can be completely
correct, partly correct, or completely wrong, and relevant measure of the performance
may depend on the application. Therefore it is useful to take into account several per-
formance measures (100), (53).

Let T = (xi, yi)mi=1 be a supervised training set, consisting of the input variables xi ∈
RDx and corresponding output variables yi, which describe a set of labels, assigned
for the input instance. In the experiments with multi-label classification we use five
performance measures (98).

One-error evaluates how often the top-ranked label was not in the set of ground truth la-
bels. Therefore smaller one-error indicates better performance. The measure is defined
as

One− error(f) =
1

m

m∑
i=1

δ(argy∈Y max f(xi, y) /∈ yi). (5.6)

Alternatively one may consider similar measure, which takes into account more best
ranked labels.

Hamming Loss takes into account how many times the classifier predicts a label not
belonging to an instance, or not predicts one, that belongs to it. Naturally, smaller
Hamming loss also is associated with better classification performance. Having a multi-
label classifier h, the measure is given by

Hamming − loss(h) =
1

nlm

m∑
i=1

∑
y∈Y

δ(y ∈ h(xi) ∧ y /∈ yi) + δ(y /∈ h(xi) ∧ y ∈ yi).

(5.7)

Coverage evaluates how far we need, on the average, to go down the list of the labels

64

5.2. Experiments with Multi-label Yahoo Data

in order to cover all the true labels.

Coverage(f) =
1

m

m∑
i=1

max
y∈yi

rank
f

(xi, y)− 1 (5.8)

Therefore in ideal case the coverage is zero, and smaller coverage also implies better
performance.

Ranking loss evaluates the average fraction of label pairs that are not correctly ordered.
Let y be a complementary set of y in Y. Ranking loss is defined as

Ranking − loss(f) =
1

m

m∑
i=1

|(y, y′) ∈ yi × yi : f(xi, y) ≤ f(xi, y′)|
|yi||yi|

. (5.9)

In perfect case ranking loss also equals to zero.

Average precision evaluates the average fraction of labels ranked above a particular
label y ∈ yi which actually belongs to y:

Average− precission(f) =
1

m

m∑
i=1

1

|yi|
∑
y∈yi

|y′ ∈ yi : rankf (xi, y′) < rankf (xi, y)|
rankf (xi, y)

(5.10)

In worst case it is equal to 0, and in perfect case reaches 1.

5.2.3 Results for multi-label data sets

We now investigate eleven multi-label classification data sets, originating from web
page classification. The input instances are based on statistics, derived from the con-
tent of web page, and the output consists of the set of labels, which were assigned
to a particular page (e.g. commercial, advertisements, computers etc.). The data sets
are available for downloading from1. All the data sets consists of 2000 observations.
The input and output dimensionalities are given in Table 5.7. Since Yahoo data sets

1http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.gz

65

5.2. Experiments with Multi-label Yahoo Data

are quite large in dimensionality and sample size, experiments with non-linear kernels
and HSCA were omitted due to quite high computational demand. We tested feature

Table 5.7: Yahoo data set statistics.

Data set Dx Dy

Arts 462 26
Business 438 30
Computers 681 33
Education 550 33
Entertainment 640 21
Health 612 32
Recreation 606 22
Reference 793 33
Science 743 40
Social 1047 39
Society 636 27

dimensionalities ranging from 2% to 100% in 5% interval following the same random
split scheme as previously. The average results for individual data sets are provided in
Table 5.8 and Table 5.91. Fig. 5.7, Fig. 5.8, Fig. 5.9 and Fig. 5.10 reflects the classifica-
tion performance for different feature dimensionalities. In the figures 0.95-confidence
intervals are provided for each dimensionality. In order to find out whether the results
are statistically significant Wilcoxon signed rank test was used to compare best per-
forming approach with the remaining ones. The best and statistically significant results
(p-value < 0.05) are marked with underlined text.

The results of this section contribute to RP3. They demonstrate that for multi-label
classification unbiased HSIC1 estimator is systematically more efficient, than biased
one. This tendency is observed in Table 5.8 and Table 5.9, and Fig. 5.7, Fig. 5.8 and
Fig. 5.9. Authors of (99) also studied the same data sets and found that HBFE with
biased HSIC0 estimator was more efficient than MRSI (96) and LPP (32). Our results
also suggest that HBFE with unbiased estimator may be more efficient than two later
approaches. In order to compare our results with that of (98), for classification we used
the same k = 10 nearest neighbors.

1↓ indicates, that the smaller value is better, and ↑ that the larger one is better.

66

5.2. Experiments with Multi-label Yahoo Data

Table 5.8: I: averaged results for individual Yahoo data sets.

Dataset Full HBFE1 HBFE0 PCA
Average precision ↑

Arts 0.5187 0.5350 0.5256 0.5175
Business 0.8815 0.8810 0.8807 0.8786
Computers 0.6256 0.6486 0.6418 0.6296
Education 0.5651 0.5700 0.5618 0.5620
Entertainment 0.6044 0.6088 0.6036 0.5981
Health 0.7275 0.7328 0.7314 0.7231
Recreation 0.4786 0.5132 0.5005 0.4902
Reference 0.6175 0.6486 0.6328 0.6208
Science 0.4991 0.5113 0.5022 0.4936
Social 0.7282 0.7258 0.7249 0.7250
Society 0.5865 0.5793 0.5814 0.5819

Coverage ↓
Arts 5.5342 5.4120 5.5244 5.5572
Business 2.2580 2.2864 2.2827 2.3072
Computers 4.3115 4.0565 4.1288 4.2584
Education 3.9407 3.9926 4.0168 4.0069
Entertainment 3.3802 3.3353 3.3857 3.3986
Health 2.9814 2.9518 2.9889 3.0028
Recreation 4.9598 4.6434 4.7830 4.8868
Reference 3.3839 3.1393 3.2749 3.3308
Science 6.7934 6.6753 6.8010 6.8859
Social 3.3135 3.6075 3.5178 3.4239
Society 5.6348 5.6643 5.6802 5.6290

67

5.2. Experiments with Multi-label Yahoo Data

Table 5.9: II: averaged results for individual Yahoo data sets.

Data file Full HBFE1 HBFE0 PCA
Hamming loss ↓

Arts 0.0598 0.0591 0.0592 0.0602
Business 0.0266 0.0266 0.0266 0.0267
Computers 0.0413 0.0391 0.0391 0.0405
Education 0.0408 0.0415 0.0411 0.0413
Entertainment 0.0593 0.0578 0.0583 0.0595
Health 0.0399 0.0388 0.0391 0.0401
Recreation 0.0614 0.0597 0.0597 0.0607
Reference 0.0308 0.0295 0.0300 0.0302
Science 0.0354 0.0360 0.0355 0.0356
Social 0.0226 0.0241 0.0230 0.0227
Society 0.0567 0.0588 0.0572 0.0564

One error ↓
Arts 0.6004 0.5781 0.5876 0.6026
Business 0.1143 0.1130 0.1131 0.1168
Computers 0.4514 0.4301 0.4354 0.4461
Education 0.5675 0.5644 0.5735 0.5721
Entertainment 0.5184 0.5103 0.5169 0.5275
Health 0.3484 0.3401 0.3370 0.3521
Recreation 0.6717 0.6199 0.6398 0.6556
Reference 0.4876 0.4542 0.4693 0.4848
Science 0.6163 0.5994 0.6105 0.6227
Social 0.3521 0.3569 0.3545 0.3557
Society 0.4602 0.4771 0.4678 0.4656

Ranking loss ↓
Arts 0.1527 0.1487 0.1530 0.1532
Business 0.0392 0.0406 0.0402 0.0410
Computers 0.0919 0.0851 0.0873 0.0907
Education 0.0899 0.0911 0.0923 0.0917
Entertainment 0.1237 0.1220 0.1246 0.1245
Health 0.0540 0.0529 0.0538 0.0544
Recreation 0.1865 0.1732 0.1794 0.1832
Reference 0.0892 0.0810 0.0859 0.0878
Science 0.1306 0.1277 0.1303 0.1325
Social 0.0623 0.0679 0.0673 0.0645
Society 0.1407 0.1425 0.1427 0.1423

68

5.2.E
xperim

ents
w

ith
M

ulti-labelYahoo
D

ata

0 50 100
0.5

0.52

0.54

0.56

0.58

0 50 100
5

5.2

5.4

5.6

5.8

0 50 100
0.056

0.057

0.058

0.059

0.06

0.061
Arts

0 50 100
0.52

0.54

0.56

0.58

0.6

0.62

0.64

0 50 100

0.145

0.15

0.155

0.16

0 50 100
0.87

0.875

0.88

0.885

0.89

0.895

0 50 100
2.15

2.2

2.25

2.3

2.35

2.4

0 50 100
0.0255

0.026

0.0265

0.027

0.0275

0.028
Business

0 50 100
0.1

0.105

0.11

0.115

0.12

0.125

0 50 100
0.038

0.039

0.04

0.041

0.042

0.043

0 50 100
0.6

0.62

0.64

0.66

0.68

Average precision
0 50 100

3.8

4

4.2

4.4

4.6

4.8

Coverage
0 50 100

0.036

0.038

0.04

0.042

0.044
Computers

Hamming loss
0 50 100

0.38

0.4

0.42

0.44

0.46

0.48

One error
0 50 100

0.08

0.085

0.09

0.095

Ranking loss

Figure 5.7: Results Yahoo data sets and linear HBFE, part I.

Yahoo data sets, part I. Number of features versus accuracy for the features based on HBFE1 (black) and HBFE0 (gray).

69

5.2.E
xperim

ents
w

ith
M

ulti-labelYahoo
D

ata

0 50 100
0.55

0.56

0.57

0.58

0.59

0.6

0 50 100
3.8

3.9

4

4.1

4.2

0 50 100
0.04

0.0405

0.041

0.0415

0.042

0.0425

0.043
Education

0 50 100
0.52

0.54

0.56

0.58

0.6

0 50 100
0.088

0.09

0.092

0.094

0.096

0.098

0 50 100

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0 50 100
3.1

3.2

3.3

3.4

3.5

3.6

0 50 100
0.055

0.056

0.057

0.058

0.059

0.06

0.061
Entertainment

0 50 100
0.45

0.5

0.55

0.6

0 50 100
0.115

0.12

0.125

0.13

0.135

0.14

0 50 100
0.7

0.72

0.74

0.76

0.78

Average precision
0 50 100

2.7

2.8

2.9

3

3.1

3.2

Coverage
0 50 100

0.034

0.036

0.038

0.04

0.042

0.044

0.046
Health

Hamming loss
0 50 100

0.3

0.32

0.34

0.36

0.38

One error
0 50 100

0.048

0.05

0.052

0.054

0.056

0.058

0.06

Ranking loss

Figure 5.8: Results Yahoo data sets and linear HBFE, part II.

Yahoo data sets, part II. Number of features versus accuracy for the features based on HBFE1 (black) and HBFE0 (gray).

70

5.2.E
xperim

ents
w

ith
M

ulti-labelYahoo
D

ata

0 50 100
0.45

0.5

0.55

0.6

0.65

0 50 100
4

4.5

5

5.5

0 50 100
0.057

0.058

0.059

0.06

0.061

0.062

0.063
Recreation

0 50 100
0.5

0.55

0.6

0.65

0.7

0.75

0 50 100
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0 50 100
0.6

0.62

0.64

0.66

0.68

0 50 100
2.8

3

3.2

3.4

3.6

0 50 100
0.026

0.027

0.028

0.029

0.03

0.031

0.032
Reference

0 50 100
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0 50 100

0.075

0.08

0.085

0.09

0.095

0 50 100
0.46

0.48

0.5

0.52

0.54

0.56

Average precision
0 50 100

6.4

6.6

6.8

7

7.2

Coverage
0 50 100

0.0345

0.035

0.0355

0.036

0.0365

0.037
Science

Hamming loss
0 50 100

0.58

0.6

0.62

0.64

0.66

One error
0 50 100

0.12

0.125

0.13

0.135

0.14

Ranking loss

Figure 5.9: Results Yahoo data sets and linear HBFE, part III.

Yahoo data set 7-9, part III. Number of features versus accuracy for the features based on HBFE1 (black) and HBFE0 (gray).

71

5.2.E
xperim

ents
w

ith
M

ulti-labelYahoo
D

ata

0 50 100
0.7

0.71

0.72

0.73

0.74

0.75

0.76

0 50 100
3.4

3.5

3.6

3.7

3.8

0 50 100
0.022

0.023

0.024

0.025

0.026
Social

0 50 100

0.32

0.34

0.36

0.38

0.4

0 50 100
0.064

0.066

0.068

0.07

0.072

0 50 100

0.57

0.58

0.59

0.6

0.61

Average precision
0 50 100

5.4

5.6

5.8

6

6.2

Coverage
0 50 100

0.056

0.057

0.058

0.059

0.06

0.061
Society

Hamming loss
0 50 100

0.45

0.46

0.47

0.48

0.49

One error
0 50 100

0.135

0.14

0.145

0.15

0.155

Ranking loss

Figure 5.10: Results Yahoo data sets and linear HBFE, part IV.

Yahoo data set, part IV. Number of features versus accuracy for the features based on HBFE1 (black) and HBFE0 (gray).

72

5.3. Experiments with Structured Data

5.3 Experiments with Structured Data

In this section we will investigate the UCI Promoters data set, originating from the
field of bioinformatics. It poses a is binary classification problem, where each input
instance is represented as string of A,C,G and T , corresponding to four nucleotides
and must be classified as a promoter or a non-promoter 1. The data sets consists of
106 57-dimensional instances, half of which are labeled as promoters and the second
one as non-promoters. We investigated numerical (A,G,C,T encoded as 1,2,3,4 and
standard kernels applied) and symbolic representation of the data. When dealing with
the symbolic representation of the data, we analysed the string kernel (52). This choice
was motivated by the intuitive notion that the discriminative information contained in
the input should depend more on various combinations of sub strings, rather than just
on distances of inner products between them, because such regions have a complex
internal structure. Let us start with the definition.

Definition 9 (String kernel). (52). Let Σ be a finite alphabet. A string is a finite se-
quence of characters from Σ, including the empty sequence. We denote by |s| the
length of string s = s1s2...s|s|. Having two strings s and t by st we denote the string
obtained by concatenating the strings s and t. The string s[i : j] is the substring si...sj
of s. We say that u is a subsequence of s, if there exist indices i = (i1, ..., i|u|), with
1 = i1 ≤ ... ≤ i|u| ≤ |s|, such that uj = sij , for j = 1, ..., |u|, or u = s[i] for short. The
length l(i) of the subsequence in s is i|u|− i1 + 1. We denote Σn the set of all strings of
length n, and let Σ∗ =

⋃∞
n=1 Σn. We now define feature spaces Fn = RΣn . The feature

map for a string s is given by defining u coordinate of φu(s) for each u ∈ Σn. Fixing
some 0 ≤ λ ≤ 1 we define:

φu(s) =
∑

i:u=s[i]

λl(i). (5.11)

These features measure the number of occurrences of subsequences in the strings weight-
ing them according to their lengths. Hence, the inner product of the feature vectors for
two strings s and t give a sum over all common subsequences weighted according to

1Promoter is a region of DNA that facilitates gene transcription.

73

5.3. Experiments with Structured Data

their frequency of occurrence and lengths. String kernel is expressed by

Kn,λ(s, t) =
∑
u∈Σn

〈φu(s), φu(t)〉 =
∑
u∈Σn

∑
i:u=s[i]

∑
j:u=t[j]

λ(l(i)+l(j)). (5.12)

In our experiments we will use a normalized string kernel, which is given by

Kn,λ(s, t) =
Kn,λ(s, t)√

Kn,λ(s, s)Kn,λ(t, t)
. (5.13)

Following the same scheme as the one in Section 5.1 for the classification we use a k-
nearest neighbor classifier with Euclidean metric (k ∈ {1, 3, 5}). The meta-parameters
of the kernels were selected by 3-fold cross validation. We consider linear kernel for the
outputs and the same one for the previously extracted features (in the case of HSCA).

The classification accuracies are reported in the Table 5.10 (the dimensionality of fea-
tures was selected by 3-fold cross validation). Fig. 5.11 demonstrates how the accuracy
is influenced by the dimensionality of the features.

Experiments with string kernel confirm our hypothesis, since they demonstrate > 10%

improvement in the classification accuracy as compared to the results of the experi-
ments with linear and Gaussian kernels. Table 5.10 shows that the performance of
LDA also gradually increased with the complexity of the kernel, finally saturating at
the same level as HBFE.

74

5.3. Experiments with Structured Data

0 10 20 30 40 50 60
0.68

0.7

0.72

0.74

0.76

0.78

0.8

HBFE(linear)
0 10 20 30 40 50 60

0.7

0.72

0.74

0.76

0.78

0.8

HSCA(linear)

0 10 20 30 40 50 60
0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

HBFE(gauss)
0 10 20 30 40 50 60

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

HSCA(gauss)

0 10 20 30 40 50 60
0.7

0.75

0.8

0.85

0.9

0.95

HBFE(string)
0 10 20 30 40 50 60

0.84

0.86

0.88

0.9

0.92

0.94

HSCA(string)

Figure 5.11: Results for Promoters data set.

Number of features versus accuracy for the features of HBFE1/HSCA1 (black) and
HBFE0/HSCA0 (gray).

75

5.4. Conclusions

Table 5.10: Results for Promoters data.

Kernel Full HBFE1 HBFE0 HSCA1 HSCA0 PCA LDA
1-NN classifier

Linear
0.7264

0.7484 0.7553 0.6755 0.7264 0.7138 0.6031
Gaussian 0.7711 0.7686 0.7774 0.7862 0.7195 0.7736
String 0.9145 0.9126 0.9145 0.9126 0.8226 0.9176

3-NN classifier
Linear

0.7635
0.7635 0.7566 0.7340 0.7623 0.7623 0.6031

Gaussian � 0.7899 0.7792 0.7843 0.7836 0.7371 0.7736
String 0.9075 0.9082 0.9075 0.9082 0.7421 0.9176

5-NN classifier
Linear �

0.7428
0.7799 0.7642 0.7491 0.7616 0.7415 0.6031

Gaussian � 0.7868 0.7818 0.7887 0.7799 0.7365 0.7736
String 0.9170 0.9182 0.9170 0.9182 0.7459 0.9176

5.4 Conclusions

In this chapter we analyzed a scenario, in which extracted features were used as the
inputs to a k nearest neighbor classifier. Following the random split scheme (see Sec-
tion 5.1) we statistically compared considered feature extraction methods, and used the
classification performance (accuracy, or other measures) as the measure of feature rel-
evance. The results of the conducted experiments demonstrate practical usefulness of
HBFE and HSCA, and contribute to empirical aspects of RP2-RP5.

76

Chapter 6

Conclusions

In this dissertation we addressed the problem of supervised and semi-supervised fea-
ture extraction, when a criteria of feature relevance is based on a dependence structure.
Conceptually such an approach is general, since it allows to focus on various depen-
dencies. In Section 1.2 we formulated the problem statement and decomposed it into
five research problems RP1-RP5.

RP1. In Chapter 2 we reviewed several dependence measures. We choose to use
HSIC as a measure of dependence because of its convenience both from theoretical
and practical points of view. It is able to detect any statistical dependence, has simple
estimators, and is applicable to any structured data, once appropriate positive definite
kernel is known. In Section 4.1, we formalized the concept of dependence structure.
Afterwards, we focused on two particular cases and proposed HBFE and HSCA algo-
rithms. HBFE seeks features which maximize the dependence on the dependent vari-
able, while HSCA additionally minimizes the interdependence of features. A kernel
versions of HBFE and HSCA allow to analyze non-linear or structured data sets. Addi-
tionally, we discussed two feature extraction schemes, NeuroHBFE and NeuroHSCA,
which are parallel to HBFE and HSCA. NeuroHBFE and NeuroHSCA use multilayer
perceptron neural networks for modeling of the non-linear features.

RP2. In Section 2.3 we reviewed Laplacian regularizer, which penalizes the cost
function if for two nearby data instances the corresponding features are distant. In Sec-

77

tion 4.4 we used Laplacian regularization for construction of semi-supervised variants
of HBFE and HSCA. In Section 5.1.3 we investigated semi-supervised modifications
of analyzed feature extraction algorithms. The results from Section 5.1.3 show that the
suggested algorithms may be helpful for semi-supervised learning data sets. The exper-
iments demonstrate slight improvement (up to 3%, but in most cases only a fraction of
percent) in the classification accuracy as compared to the baseline algorithms without
Laplacian regularization. On the other hand, such an improvement may be significant
in certain situations, when the observation of dependent variable is expensive.

RP3. RP3 was analyzed using both theoretical and experimental research methodol-
ogy. In HBFE and HSCA, the dependence is measured either by using the biased or
unbiased estimator of HSIC 2.2.4. In Chapter 4 we derived the variants of HBFE and
HSCA for both estimators. Empirical analysis of RP3 was conducted in Section 5.1,
Section 5.2, and Section 5.3. We observed that biasedness of the estimator may strongly
affect the classification accuracy (up to 5%). The experiments with binary classifica-
tion data sets show that biased estimator of HSIC tends to be more efficient than the
unbiased one. However, the experiments with multi-label classification (Section 5.2)
reveal that in the case of HBFE the tendency is opposite. However, the determination
of conditions for one estimator to be more efficient than the another, requires further
investigation.

RP4. In order to answer to RP4, we compared HBFE and HSCE experimentally, since
they are based on two different dependence structures. In all the cases where HBFE
and HSCA was compared, HSCA either was more efficient, or their performances was
statistically identical. In the former case the experiments demonstrate the average≈ 2%

improvement in the classification accuracy.

RP5. Suggested HBFE and HSCA algorithms were compared to PCA, LDA and un-
modified features as a baseline. Experiments show that in certain data sets 2 − 3%

improvement in the classification accuracy is possible as comparing to the alterna-
tive algorithms. On the other hand, we feel that further experimentations with more
different algorithms, and especially data sets, associated to various machine learning
problems, are needed to support our empirical results.

78

Experimental results from Section 5.1 show that linear kernel often is sufficient. How-
ever, for certain data sets where non-linearities or structural properties were important,
other kernels turned out to be more efficient. The experiments demonstrated that Gaus-
sian or string kernel allowed to achieve 5 − 10% improvement in the classification ac-
curacy as compared to linear algorithms. The experiments with different kernels show
that suggested feature extraction schemes are efficient with non-linear or structural data
sets.

79

Bibliography

[1] Aronszajn, N., 1950. Theory of reproducing kernels. Transactions of the American
Mathematical Society, Vol. 68, pp. 337-404. 10

[2] Asuncion, A. and Newman, D.J., 2007. UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml/]. University of California, School of Information and
Computer Science. 47

[3] Basili, R., Cammisa, M., and Moschitti, A., 2006. A semantic kernel to classify
texts with very few training examples. Informatica, Vol. 30(2), pp. 163-172. 9

[4] Battiti, R., 1994. Using mutual information for selecting features in supervised
neural net learning. Neural Networks, Vol. 5(4), pp. 537-550. 22, 35

[5] Bach, F.R., Jordan, M. Kernel., 2002. Independent component analysis. Journal of
Machine Learnin Research. Vol. 3, pp. 1-48. 24

[6] Baudat, G., and Anouar, F., 2003. Feature vector selection and projection using
kernels. Neurocomputing, Vol. 55, pp. 21-38. 33, 54

[7] Bloehdorn, S., Basili, R., Cammisa, M., and A. Moschitti., 2006. Semantic kernels
for text classification based on topological measures of feature similarity. In Pro-
ceedings of the 6th IEEE International Conference on Data Mining (ICDM 06), pp.
18-22. 9

[8] Bollacker, K.D., and Ghosh, J., 1996. Linear feature extractors based on mutual
information. In Proc. 13th ICPR, pp. 720-724. 22, 35

[9] Borgwardt, K.M., 2007. Graph kernels. Doctoral dissertation. München. 9

80

BIBLIOGRAPHY

[10] Belkin, M. and Niyogi, P., 2002. Laplacian eigenmaps and spectral techniques for
embedding and clustering. Advances in Neural Information Processing System, pp.
585-591. 22, 28

[11] Cai, D., He, X., Zhou, K., Han, J., and Bao, H., 2007. Locality Sensitive Discrim-
inant Analysis. Proc. 20th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 708-713. 22

[12] Cai, D., 2009. Spectral regression: a regression framework for efficient regular-
ized subspace learning. Doctoral dissertation. Urbana, Illinois. 18, 26, 48, 59

[13] Y. Chen, Y. Li, X. Cheng, and L. Guo., 2006. Survey and taxonomy of feature
selection algorithms in intrusion detection system. Inscrypt, pp. 153-167. 3

[14] Cover, TM, Thomas JA. Elements of Information Theory. New York: John Wiley
and Sons. 12

[15] Daniušis, P., Vaitkus, Pr., 2008. Neural network with matrix inputs. Informatica,
Vol. 19(4), pp. 477-486. 6, 20

[16] Daniušis, P., Vaitkus, Pr., 2008. Kernel regression on matrix data. Proceedings of
Lith. mathematical society, Vol. 48-49, pp. 191-195. 6

[17] Daniušis, P., Vaitkus, Pr., 2009. Supervised feature extraction using Hilbert-
Schmidt norms. Lecture Notes In Computer Science, Vol. 5788, pp. 25-33. 6, 22,
34, 35, 36, 37

[18] Daniušis, P., Vaitkus, Pr., 2009. A feature extraction algorithm based on the
Hilbert-Schmidt independence criterion. Šiauliai Mathematical Seminar, Vol. 4(12),
pp. 35-42. 6, 22, 34, 35, 44, 45

[19] Daniušis, P., Vaitkus, Pr., 2009. Matrix-based neural network with linear nodes.
Electronics and Electrical engineering, Vol. 6(94), pp. 39-42. 6

[20] Daniušis P., Janzing D., Mooij J., Zscheischler J., Steudel B., Zhang K.,
and Schölkopf B., 2010. Inferring deterministic causal relations. Proceedings of
UAI2010. 6

[21] S. Das, Filters, Wrappers and a Boosting-Based Hybrid for Feature Selection,
2001. Proc. 18th International Conferenfe of Machine Learning, pp. 74-81. 22

81

BIBLIOGRAPHY

[22] Dhanjal, C., 2008. Sparse kernel feature extraction. Doctoral dissertation. 23, 24,
27, 33

[23] Ding C, Peng H. Minimum redundancy feature selection from microarray gene
expression data., 2003. Proceedings of the IEEE Conference on Computational Sys-
tems Bioinformatics. pp. 523-528. 39

[24] Drineas, P., and Mahoney, M.W., 2005. Approximating a Gram matrix for im-
proved kernel-based learning, in Proceedings of the 18th Annual Conference on
Learning Theory, pp. 323-337. 33

[25] Gärtner, T., 2003. A survey of kernels for structured data. SIGKDD Explorations,
Vol. 5(1), pp. 49-58. 9

[26] Golub, G., and Van Loan, C., 1996. Matrix computations. The Johns Hopkins
University Press, Baltimore, third edition. 23, 33

[27] Grassberger, P. and Procaccia, I. Measuring the strangeness of strange attractors.
Physica D, Vol. 9, pp. 189-208. 32

[28] Gretton, A., Bousquet, O., Smola, A., Schölkopf B., 2005. Measuring statistical
dependence with Hilbert-Schmidt norms. Proceedings of 16th International Confer-
ence on Algorithmic Learning Theory, pp. 63-77. 7, 14, 15, 16, 35

[29] Gretton, A., Fukumizu, K., Sriperumbudu K., B., 2009. Discussion of: Brownian
distance covariance. Annals of Statistics. Vol. 3, No. 4, pp. 1285-1294. 13

[30] Guyon, I., Gunn, S., Nikravesh, M., and Zadeh, L., 2006. Feature Extraction,
Foundations and Applications. Springer. 22, 30, 39

[31] Haykin, S., 1998. Neural Networks: A Comprehensive Foundation (2nd Edition)
Prentice Hall. 20, 31

[32] He, X., and Niyogi, P., 2004. Locality preserving projections. In Advances in
Neural Information Processing Systems, Cambridge, MA. 66

[33] Hein, M., Bousquet, O., 2004. Kernels, associated structures and generalizations.
Technical report. 9, 15

[34] Hinton, G. E., and Salakhutdino R. R., 2006. Reducing the Dimensionality of
Data with Neural Network. Science. Vol. 313 (5786), pp. 504-507. 27, 28

82

BIBLIOGRAPHY

[35] Huang, G.B., Liang, N.Y., Rong H.J., Saratchandran, P. and Sundararajan N.,
2005. On line sequential extreme learning machine. In The IASTED International
Conference on Computational Intelligence. Calgary, Canada. 20

[36] Friedman, J.H., 1997. On bias, variance, 0/1-loss, and the curse-of-
dimensionality. Data Mining and Knowledge Discovery, Vol. 1(1), pp. 55-77. 21

[37] Fisher, R.A., 1936. The use of multiple measurements in taxonomic problems.
Annals of Eugenics, Vol. 7, pp. 179-188. 25

[38] Fukumizu, K., Bach F.R., Jordan, M.I., 2004. Dimensionality reduction for super-
vised learning with reproducing kernel Hilbert spaces. Journal of Machine Learning
Research, Vol. 5, pp. 73-99. 15

[39] Fukumizu, K., Gretton, A., Sun, X., and Schölkopf B. Kernel measures of condi-
tional dependence. NIPS 20, pp. 489-496. 17

[40] Fukunaga, K., 1990. Introduction to Statistical Pattern Recognition. Academic
Press, 2nd edition. 25

[41] Hyväarinen, A., Karhunen, J., and Oja, E., 2001. Independent Component Anal-
ysis. New York: John Wiley and Sons. 24

[42] Janzing, D., Mooij, J., Zhang, K., Lemeire, J., Zscheischler J., Daniušis, P.,
Steudel, B., and Schölkopf B., 2012. Information-geometric approach to inferring
causal directions. Artificial Intelligence, Elsevier. 6

[43] Jolliffe, I. T., 1986. Principal component analysis. Springer, Berlin. 22

[44] Kennedy, J., Eberhart, R. Particle swarm optimization, 1995. IEEE International
Conference on neural networks. Vol. 4. pp. 1942-1948. 20

[45] Kirkpatrick, S., Gelatt, C. D., and Vecchi M. P. Optimization by Simulated An-
nealing., 1983. Science. Vol. 220(4598), pp. 671-680. 45

[46] Klami, A. Modelling of mutual dependencies, 2008. Doctoral dissertation. 12

[47] Kong, X., Yu, P.S., 2010. Multi-Label Feature Selection for Graph Classification.
IEEE International Conference on Data Mining, pp. 274-283. 35

83

BIBLIOGRAPHY

[48] Kriegel, H.P., Kröger, P., Schubert, E., and Zimek, A., 2008. A General Frame-
work for Increasing the Robustness of PCA-based Correlation Clustering Algo-
rithms. Proceedings of 20th Int. Conf. on Scientific and Statistical Database Man-
agement, Vol. 5069, pp. 418-435. 24

[49] Lanckriet, G.R.G., Cristianini, N., Bartlet, P., El Ghaoui, L., Jordan, M.I., 2004.
Learning the Kernel Matrix with Semidefinite Programming. Journal of Machine
Learning Research, Vol. 5, pp. 27-72. 32

[50] Lemme, A., Reinhart, R.F., and Steil J.J., 2010. Efficient online learning of a
non-negative sparse autoencoder. ESANN 2010 proceedings, pp. 1-6. 28

[51] Levina, E., and Bickel, P.J., 2004. Maximum likelihood estimation of intrinsic
dimension. NIPS 17, pp. 777-784. 32

[52] Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., and Watkins C., 2002.
Text classification using string kernels. Journal of Machine Learning Research, Vol.
2, pp. 419-444. 9, 46, 73

[53] Li, T., Zhang, C., and Zhu, S., 2006. Empirical studies on multi-label classifica-
tion. In Proceedings of the 18th IEEE international conference on tools with artificial
intelligence, pp. 86-92. 64

[54] Lowe, D.G., 1999. Object Recognition from Local Scale-Invariant Features. Pro-
ceedings of the International Conference on Computer Vision, Vol. 2, pp. 1150-1157.
2, 3

[55] Maaten, L.J.P., Postma, E.O., and Herik, H.J., 2009. Dimensionality Reduction:
A Comparative Review. Preprint. 22

[56] Mackey, L. 2008. Defation Methods for Sparse PCA. In NIPS 21, pp. 1017-1024.

[57] Masaeli, M., Fung G., Dy J. G., 2010. From Transformation-Based Dimensional-
ity Reduction to Feature Selection. International Conference on Machine Learning
(ICML), Haifa, Israel. 35

[58] Minsky, M. and Papert, S., 1969. Perceptrons: An Introduction to Computational
Geometry. MIT press. Cambridge, US. 18

84

BIBLIOGRAPHY

[59] Niu, D., Dy, J. G, Jordan, M.I., 2011. Dimensionality Reduction for Spectral Clus-
tering. 14th International Conference on Articial Intelligence and Statistics (AIS-
TATS). 35

[60] M. Paliwal and U. A. Kumar., 2009. Neural networks and statistical techniques:
A review of applications. Expert Syst. Appl., Vol. 36(1), pp. 2-17. 18

[61] Pinkus A., 1999. Approximation theory of the MLP model in neural networks.
Acta Numerica, Vol. 8, pp. 143-195. 19

[62] Rajasekaran, S., Vijayalakshmi, P., 2003. Neural networks, fuzzy logic and ge-
netic algorithms. New Delhi: Prentice Hall of India. 20

[63] Raudys, S., 2001. Statistical and Neural Classifiers - An Integrated Approach to
Design. Springer, London. 18

[64] Ridder, D., Kouropteva, O., Okun, O., Pietikäinen, M., Duin, R.P.W., 2003. Super-
vised locally linear embedding. Proceedings of the 2003 joint international confer-
ence on Artificial neural networks and neural information processing, pp. 333-341.
29, 30

[65] Rosenblatt, Frank., 1957. The Perceptron - a perceiving and recognizing automa-
ton. Report 85-460-1, Cornell Aeronautical Laboratory. 18

[66] Rossi, F., Conan-Guez, B., 2002. Multi-layer perceptron on interval data. Classi-
fication, Clustering and Data Analysis (IFCS 2002), pp. 427-434. 20

[67] Rudin, W., 1986. Real and Complex Analysis, Third Edition. McGraw-Hill Sci-
ence/Engineering/Math. 10

[68] Rumelhart, D. E., Hinton, G. E. and Williams, R. J., 1986. Learning representa-
tions by back-propagating errors. Nature, Vol. 323, pp. 533-536. 18, 20

[69] Roweis, S.T., and Saul, L. K., 2000. Nonlinear Dimensionality Reduction by Lo-
cally Linear Embedding. Science, Vol. 290, pp. 2323-2326. 22, 29

[70] Saeys, Y., Inza, I., Larranaga, P., 2007. A review of feature selection techniques
in bioinformatics, Bioinformatics, Vol. 23(19), pp. 2507-2517. 2

[71] Shao, J., Wang, Y., Deng, X., and Wang, S., 2011. Sparse linear discriminant
analysis by thresholding for high dimensional data. The Annals of Statistics, Vol.
39(2), pp. 1241-1265. 27

85

BIBLIOGRAPHY

[72] Schölkopf, B., Herbrich, R., and Smola, A.J., 2001. A generalized representer
theorem. COLT/EuroCOLT. LNAI 2111, pp. 416-426. 11

[73] Schölkopf B. and Smola A.J., 2002. Learning with Kernels. MIT Press. 2, 8, 24

[74] Smola, A. J. and Scholkopf, B., 2000. Sparse greedy matrix approximation for
machine learning. In Proc. Intl. Conf. Machine Learning, pp. 911-918. 33

[75] Signoretto, M., Lathauwerb, L., Suykens, J.A.K., 2011. Kernel-based Framework
to Tensorial Data Analysis. Neural networks, Vol. 24(8), pp. 861-874. 9

[76] Socher, R., Pennington, J., and Huang, E. H., and Ng, A. Y., Manning, C.D., 2011.
Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions.
Proceedings of Conference on Empirical Methods in Natural Language Processing.
pp. 151-161. 28

[77] Song, L., Smola, A., Gretton, A., Borgwardt, K., and Bedo, J., 2007. Supervised
feature selection via dependence estimation. In Proc. Intl. Conf. Machine Learning,
pp. 823-830. 14, 15, 16, 30, 32, 35

[78] Song, L., Smola, A., Gretton, A., Borgwardt, K., 2007. A Dependence Maximiza-
tion View of Clustering. ICML 24, pp. 815-822. 35

[79] Song, Y., Nie, F., Zhang, C., 2008. Semi-supervised sub-manifold discriminant
analysis, Pattern recognition letters, Vol. 29(13), pp. 1806-1813. 18, 27, 29

[80] Song, L., Smola, A., Gretton, A., Borgwardt, K., 2008. Colored Maximum Vari-
ance Unfolding. NIPS 20, pp.1385-1392. 22, 35

[81] Sorower, M.S., 2010. A Literature Survey on Algorithms for Multi-label Learn-
ing. Preprint. 63

[82] Steinwart, I., 2002. On the influence of the kernel on the consistency of svms.
Journal of Machine Learning Research, Vol. 2, pp. 67-93. 10, 15

[83] Suzuki T., Sugiyama, M., 2010. Sufficient Dimension Reduction via Squared-
loss Mutual Information Estimation. Technical Report TR09-0005, Department of
Computer Science, Tokyo Institute of Technology. 35

[84] Szekely, G. J., Rizzo, M.L., and Bakirov, N. K., 2007. Measuring and testing
independence by correlation of distances. Annals of Statistics. Vol. 35, pp. 2769-
2794. 13

86

BIBLIOGRAPHY

[85] Tipping, M. E., and Bishop, C., 1999. Probabilistic Principal Component Analy-
sis. Journal of the Royal Statistical Society, Vol. 61, pp. 611-622. 24

[86] Tishby, N., Pereira, F.C., and Bialek, W. The Information Bottleneck method. The
37th annual Allerton Conference on Communication, Control, and Computing, pp.
368Ű377. 35

[87] Torkkola, K., 2003. Feature Extraction by Non-Parametric Mutual Information
Maximization. Journal of Machine Learning Research, Vol. 3, pp. 1415-1438. 22,
35

[88] Torre, F., and Black, M.J., 2001. Robust principal component analysis for com-
puter vision. In ICCV, pp. 362-369. 24

[89] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. and Manzagol P.A., 2010.
Stacked denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. Journal of Machine Learning Research, Vol. 11, pp.
3371-3408. 28

[90] Wang, M. Sha, F., and Jordan, Michael I., 2010. Unsupervised kernel dimension
reduction. NIPS. Vancouver, Canada. 35

[91] Wilcoxon, F. 1945. Individual comparisons by ranking methods. Biometrics, Vol.
1, pp. 80-83. 49

[92] Williams, C. K. I., and Seeger, M., 2001. Using the Nystrom method to speed
up kernel machines. In Advances in Neural Information Processing Systems 13, pp.
682-688. 33

[93] Xu, J.W., Bakardjian H., Cichocki A., and Principe J.C., 2008. A new nonlinear
similarity measure for multichannel signals. Neural Netowrks, Vol. 21, pp. 222-231.
14

[94] Xu, J. W., Paiva A. R. C., Park I., and Principe J. C., 2008. A reproducing kernel
Hilbert space framework for informationtheoretic learning. IEEE Transactions on
Signal Processing, Vol. 56(12), pp. 5891-5902. 14

[95] Yu, K., Tresp, V., and Zhou, D., 2004. Semi-supervised Induction with Basis
Function. Technical Report No. 141, Max Planck Institute for Biological Cybernet-
ics. Tüubingen, Germany. 17, 18

87

BIBLIOGRAPHY

[96] Yu, K.; Yu, S., and Tresp, V., 2005. Multi-label informed latent semantic indexing.
In SIGIR, pp. 258-265. 66

[97] Yu, L., Liu, H., 2004. Efficient feature selection via analysis of relevance and
redundancy. Journal of Machine Learning Research. Vol. 5, pp. 1205-1224. 39

[98] Zhang, M.L., and Zhou, Z.H., 2007. ML-kNN: A lazy learning approach to multi-
label learning. Pattern Recognition, Vol. 40(7), pp. 2038-2048. 63, 64, 66

[99] Zhang, Y., Zhou, Zhi-Hua., 2008. Multi-label dimensionality reduction via depen-
dence maximization. Proceedings of the Twenty-Third AAAI Conference on Artifi-
cial Intelligence, pp. 1503-1505. 22, 35, 36, 37, 66

[100] Zhang, Y., Zhou, Zhi-Hua., 2010. Multi-Label Dimensionality Reduction via
Dependence Maximization. ACM Transactions on Knowledge Discovery from Data
(TKDD), Vol. 4(3), pp. 1-21. 64

88

	List of Figures
	List of Tables
	1 Introduction
	1.1 Application examples
	1.2 Thesis Focus
	1.2.1 Problem statement

	1.3 Research Methodology
	1.4 The Main Contributions and Scientific Novelty
	1.5 Statements Presented for the Defence
	1.6 Structure of the Thesis

	2 Mathematical Tools
	2.1 Kernel methods
	2.1.1 Positive definite kernels
	2.1.2 RKHS'es and positive definite kernels
	2.1.3 Kernel trick
	2.1.4 Representer theorem

	2.2 Dependence Measures
	2.2.1 Mutual information and total correlation
	2.2.2 Distance correlation
	2.2.3 Correntropy
	2.2.4 Hilbert-Schmidt independence criterion

	2.3 Laplacian Regularization
	2.4 Multilayer Perceptron Neural Networks

	3 Feature Extraction Algorithms
	3.1 Principal Component Analysis
	3.1.1 Kernel PCA

	3.2 Linear Discriminant Analysis
	3.2.1 Kernel LDA

	3.3 Autoencoder Neural Network
	3.4 Laplacian Eigenmap and Locality Preserving Projections
	3.4.1 Kernel case

	3.5 Locally Linear Embedding
	3.6 FOHSIC and BAHSIC
	3.7 Conclusion
	3.7.1 Practical aspects

	4 HBFE and HSCA algorithms
	4.1 Dependence Structure
	4.1.1 Dependence measure

	4.2 HSIC-based Feature Extraction
	4.2.1 HBFE: biased estimator case
	4.2.1.1 Linear case
	4.2.1.2 Kernel case

	4.2.2 HBFE: unbiased estimator case
	4.2.2.1 Linear case
	4.2.2.2 Kernel case

	4.3 Hilbert-Schmidt Component Analysis
	4.3.1 Linear case
	4.3.2 Kernel case

	4.4 Semi-supervised HBFE and HSCA
	4.4.1 Semi-supervised HBFE
	4.4.2 Semi-supervised HSCA

	4.5 NeuroHBFE and NeuroHSCA
	4.5.1 NeuroHBFE
	4.5.2 NeuroHSCA

	4.6 Conclusions

	5 Computer Experiments
	5.1 Experiments with Binary Classification Data
	5.1.1 Linear kernel case
	5.1.2 Gaussian kernel case
	5.1.3 Semi-supervised case

	5.2 Experiments with Multi-label Yahoo Data
	5.2.1 Multi-label classification
	5.2.2 Performance measures
	5.2.3 Results for multi-label data sets

	5.3 Experiments with Structured Data
	5.4 Conclusions

	6 Conclusions
	Bibliography

