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The 14-3-3 proteins are a highly conserved adaptor protein family with
multi-layer functions, abundantly expressed in the brain. The 14-3-3 proteins
modulate phosphorylation, regulate enzymatic activity and can act as
chaperones. Most importantly, they play an important role in various neurode-
generative disorders due to their vast interaction partners. Particularly, the
14-3-3ζ isoform is known to co-localize in aggregation tangles in both Alzhei-
mer’s and Parkinson’s diseases as a result of protein–protein interactions.
These abnormal clumps consist of amyloid fibrils, insoluble aggregates, mainly
formed by the amyloid-β, tau and α-synuclein proteins. However, the molecular
basis of if and how 14-3-3ζ can aggregate into amyloid fibrils is unknown. In this
study, we describe the formation of amyloid fibrils by 14-3-3ζ using a comprehen-
sive approach that combines bioinformatic tools, amyloid-specific dye binding,
secondary structure analysis and atomic force microscopy. The results presented
herein characterize the amyloidogenic properties of 14-3-3ζ and imply that the
well-folded protein undergoes aggregation to β-sheet-rich amyloid fibrils.
1. Introduction
14-3-3 are acidic proteins that first were discovered in bovine brain extracts and
titled after their migration position in two-dimensional electrophoresis [1]. After-
wards, these proteins were identified as a highly conserved protein family that is
found in all eukaryotes [2]. They have been observed to interact with various
kinases and enzymes via recognizing phosphorylation sites [3]. Through the
vast interaction network, 14-3-3 proteins regulate the activity and stability of
proteins, control localization and facilitate protein–protein interactions (PPIs) [4].

There are seven known mammalian isoforms (β, γ, ε, η, ζ, σ and τ/θ) of 14-3-
3 proteins [5,6], all of which are dimeric. Each monomer is composed of nine
anti-parallel α-helices and a disordered C-terminal tail, which is suggested to
have an autoinhibitory role against non-specific interactions [7]. Their overall
structure resembles a clamp shape with a conserved amphipathic grove,
which is used as an accessible binding site for a plethora of proteins [8]. The
different interaction specificity of isoforms comes from individual domain
movements that ensure flexible adaptations of the binding surfaces [9].

14-3-3 proteins are found in various human tissues [10], despite being
expressed most abundantly in the brain tissues [11]. Most prominently, they regu-
late important physiological functions such as cell survival, differentiation,
migration, apoptosis and ion channel regulation [12]. Due to their involvement
in numerous crucial roles in the nervous system, they are also associated with
neurodegeneration disorders [13]. Different 14-3-3 isoforms have been found in
amyloid plaques (neurofibrillary tangles [14] and Lewy bodies [15]), which are
indications of ongoing neurodegenerative diseases [16,17]. Although, they seem
to have conflicting roles, as one report demonstrates their ability to facilitate
the formation of microtubule-associated tau protein fibrils [18], while another
study shows their potential to disrupt tau liquid–liquid phase separation and
thus inhibit amyloid aggregation [19]. The increased chaperone-like activity of
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Figure 1. (a) 14-3-3ζ co-localization sites in various neurogenerative disorders: in cerebrospinal fluid in prion disease [26,27], in aggresomes during amyotrophic
lateral sclerosis [28], in neurofibrillary tangles in Alzheimer’s disease [14] and in Lewy bodies during Parkinson’s disease [29]. (b) Predicted aggregation-prone
regions by FoldAmyloid (blue), AGGRESCAN (red) and PASTA 2.0 (green). An overlap with at least two predictors is shown with a grey bar. The secondary structure
was depicted using Biotite [30]. (c) The predicted aggregation-prone sites are located in α-helices of 14-3-3ζ (PDB Id: 5NAS). The protein structure was visualized
with ChimeraX [31].

royalsocietypublishing.org/journal/rsob
Open

Biol.14:230285

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 M

ay
 2

02
4 
14-3-3 proteins was observed with Parkinson’s disease-related
α-synuclein protein [20]. 14-3-3 inhibited α-synuclein aggrega-
tion in vivo [21] and rerouted its aggregation pathway through
binding to intermediate α-synuclein species [22]. Due to these
important associations with amyloidogenic and other protein
partners, the 14-3-3 family is considered to have a novel
therapeutic potential for neurological diseases [16].

While 14-3-3 proteins play a prominent role in neuro-
degenerative diseases because of their synergy with various
partners, it has never been investigated whether they may
themselves be susceptible to amyloid aggregation. Pre-
viously, there have been several indications that 14-3-3
might be amyloidogenic proteins, since it is known that 14-
3-3 share physical and functional homology with α-synuclein
[23], particularly in relation to its non-amyloid-β component
and C-terminal tail amino acid sequence homology [24]. In
addition, it has recently been shown that the concentration
of the 14-3-3ζ isoform in cerebrospinal fluid increases
during the early stages of Alzheimer’s disease [25], indicating
a potential link with the disorder pathogenesis.

In this study, we investigated whether the 14-3-3ζ isoform
can aggregate into amyloid fibrils. The preliminary compu-
tational data showed that the 14-3-3ζ amino acid sequence
contains six potential aggregation-prone sites. Subsequently, we
monitored protein aggregation using various amyloid-specific
dyes and observed gradual, amyloid aggregation over 7 days.
The secondary structure analysis confirmed that the exclusively
helical protein underwent structural changes and formed
β-sheets, akin to the ones found in amyloid fibrils. Finally,
atomic force microscopy (AFM) imaging confirmed that 14-3-3ζ
aggregates consisted of short, curvy, fibril-like structures.
2. Results and discussion
2.1. 14-3-3ζ contains aggregation-prone regions
14-3-3ζ has been located in various plaques of aggregated
proteins in different neurodegenerative diseases. It is possible
that strong PPI, leads to their co-localization or even
co-aggregation with amyloidogenic proteins (figure 1a). As
14-3-3ζ and other family members share similarities to
α-synuclein [23,24], which is a main aggregated component
of Lewy bodies [20], they can be suspected to be amyloid-
forming proteins. Hence, we analysed the 14-3-3ζ amino
acid sequence to identify whether 14-3-3ζ contains aggrega-
tion-prone regions. We used three different predictors of
aggregation-prone sites: FoldAmyloid [32], AGGRESCAN
[33] and PASTA 2.0 [34]. The aim was to identify whether
14-3-3ζ has potential aggregation regions and not to quantify
them, therefore, each positive site from at least two predictors
was characterized as a hit. Overall, results from AGGRES-
CAN and FoldAmyloid indicated consistent aggregation-
prone regions in six sites, whereas PASTA 2.0 only showed
three (figure 1b). We identified that the six sites, which over-
lap between different algorithms, are found in five α-helices
of 14-3-3ζ (figure 1b,c). These results matched with pre-
viously predicted 14-3-3σ aggregation regions in α2, α3 and
α8 helices by PASTA 2.0 and AMYLPRED2 [24], while also
suggesting the potential involvement of α4 and α6. Since
different predictors indicated that 14-3-3ζ might aggregate,
in order to verify that, we examined 14-3-3ζ aggregation
properties with various biophysical methods.
2.2. 14-3-3ζ aggregates bind amyloid-specific dyes
For an initial aggregation control assay, the incubated 14-3-3ζ
solution was combined with thioflavin-T (ThT) and the
sample fluorescence spectra were scanned as described in
the Material and methods section. The resulting signal was
quite low, which prompted the need for a higher sample con-
centration prior to the dye assays. The 14-3-3ζ aggregates
were pelleted and resuspended into a 10 times lower
volume before being used in the assays. Furthermore, in
order to account for the possibility of non-amyloid fluor-
escence enhancement of ThT, three additional dye
molecules were used, which included 8-anilinonaphthalene-
1-sulfonic acid (ANS) (fluorescence increases in hydrophobic
environments) [35], Congo red (CR) (absorbance spectrum
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Figure 2. (a) The ThT fluorescence spectra of incubated 14-3-3ζ solution at different time points. The ThT fluorescence emission (b) and light scattering intensity
(c) over a 7-day period. The ANS (e), Amytracker630 (e) fluorescence and CR ( f ) absorbance spectra of PBS buffer, initial 14-3-3ζ at 0 h and incubated for 168 h
14-3-3ζ solutions.
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changes upon binding to amyloid fibrils) [36] and a commer-
cial dye, Amytracker 630, which recently has been shown to
have very strong photophysical properties when binding to
amyloid fibrils [37].

When comparing the intensity of ThT in PBS or with the
initial (0 h) 14-3-3ζ solution, there were virtually no differ-
ences between the spectra (figure 2a). Over the 7 days of
incubation, we measured the 14-3-3ζ solution and observed
a significant increase in the fluorescence emission intensity
with a maximum at 485 nm (figure 2a,b). The increase in
sample light scattering also confirmed the formation of
larger structures (figure 2c). In the case of ANS, the aggre-
gated 14-3-3ζ solution had the highest signal value
(figure 2d ); however, the 14-3-3ζ solution at 0 h also dis-
played a considerable level of fluorescence. Similar results
were obtained when using Amytracker630 (figure 2e),
suggesting that 14-3-3ζ was capable of incorporating these
molecules, with most likely them binding in the hydrophobic
patch within the binding groove [4]. When CR was combined
with the aforementioned solutions, only the incubated 14-3-
3ζ sample displayed a significant change in the absorbance
spectra (figure 2f ), with the appearance of a shoulder at
540 nm. Such a shift is usually associated with the interaction
between CR and amyloid fibrils, as is the increase in total
absorbance in the 450–600 nm range [36]. In general, we
used four different fluorescence dyes to confirm the amyloid
nature of 14-3-3ζ aggregates. Both ThT and CR bind cross-β
sheet structures in amyloid fibrils [36,38], which indicates
that there are structural transitions in the 14-3-3ζ protein
during aggregation, which could change 14-3-3ζ function or
interactions with other proteins.
2.3. Formation of β-sheets in 14-3-3ζ aggregates
In the case of monomeric 14-3-3ζ, the Fourier-transform infra-
red spectroscopy (FTIR) spectrum main maximum position
was at 1651 cm−1 (associated with the presence of α-helical
secondary structure [39]) (figure 3a). When 14-3-3ζ was in
its aggregated state, the FTIR spectrum main maximum
position shifted towards 1638 cm−1 and we observed the
appearance of an additional minor band at 1695 cm−1 (poss-
ibly anti-parallel β-sheets). The second derivative of the
monomeric 14-3-3ζ FTIR spectrum had a main minimum at
1654 cm−1. Oppositely, the main minimum of the aggregated
14-3-3ζ FTIR spectrum second derivative was at 1631 cm−1

(associated with β-sheets) and two other clear minima at
1657 cm−1 (α-helices or turns) and 1695 cm−1 (anti-parallel
β-sheets) (figure 3b).

As complementary to FTIR data, we recorded CD spectra
of 14-3-3ζ monomers and aggregates (figure 3c). The mono-
mer spectrum had two minimum peaks at 209 nm and
223 nm, which is typical for α-helical proteins. On the other
hand, the incubated sample spectra had only one unusual
red-shifted minimum at 226 nm, which previously had been
assigned to β-hairpins in other proteins and peptides
[40,41]. This also matches with the observed FTIR band at
1695 cm−1, due to the fact that the anti-parallel β-sheet
structure is a component of β-hairpins [42].
2.4. 14-3-3ζ aggregates resemble amyloid fibrils
As a final confirmation that 14-3-3ζ assembled amyloid
fibrils, we used AFM imaging to observe the structure and
shape of formed aggregates. The initial AFM image showed
short amyloid fibrils evenly distributed over the surface of
the mica (figure 4a). Upon closer inspection, we observed
straight or slightly curved fibrils (figure 4b). The fibril
height distribution was spread between 1 nm and 3 nm,
with the mean being 1.6 ± 0.4 nm. During the aggregation
assay, we were using α-synuclein fibril formation conditions
[43], which included rigorous shaking with glass beads that
also could induce fragmentation of aggregates. As an
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alternative, we tested shaking without glass beads and we
observed an increase in ThT fluorescence intensity, but
AFM images still only displayed mostly oligomers, with few
isolated fibrils (electronic supplementary material, figure S3).
Surprisingly, we did find a small number of longer filaments,
when it was aggregated at higher protein concentration
(200 µM), albeit smaller fibrils still dominated the solution
(electronic supplementary material, figure S4). Considering
protein concentration might affect protein stability, it may
play an important role in determining aggregate length. In
all cases, the small shape of the fibrils resembled previously
detected worm-like fibrils of the pro-inflammatory S100A9
protein [44] and protofibrils of α-synuclein [45]. These
morphological characteristics might be due to large unfolded
or still partially folded parts of the protein, which hamper
aggregation to long and straight filaments. The FTIR aggregate
spectra (figure 3a) partially confirmed this, as there was still
considerably strong intensity at approximately 1650 cm−1,
which corresponds to random-coil or α-helices [39].
2.5. 14-3-3ζ aggregates do not alter α-synuclein
aggregation

Since the 14-3-3 protein shares homologous regions with
α-synuclein [23], we investigated whether 14-3-3 ζ aggregates
can impact α-synuclein aggregation. In the ThT fluorescence
assay (figure 5a) adding 10% of either 14-3-3ζ native protein
or aggregates increased the mean lag time to 10.9 ± 3.4 h and
11.00 ± 0.9 h, respectively, compared to the control 8.5 ± 1.9 h
(figure 5b); however, a one-way ANOVA showed no signifi-
cant differences between different groups (F = 0.47, p = 0.63,
α = 0.05). Furthermore, the addition of 14-3-3ζ did not
change the secondary structure of α-synuclein amyloid fibrils,
which indicates that they do not alter the aggregation path-
way. AFM imaging also revealed no variations between
α-synuclein amyloid fibrils (electronic supplementary
material, figure S5). Subsequently, cell toxicity assays of fibrils
showed that 14-3-3ζ aggregates reduce cell viability to 65% in
the MTT assay (figure 5d ). The α-synuclein with 14-3-3ζ
monomers or aggregates exhibited the same toxicity as the
fibrils alone, consistent with our previous observations that
α-synuclein fibrils incubated with 14-3-3ζ do not differ from
the control.

Overall, we observed that both 14-3-3ζ native protein and
aggregates had a limited impact on α-synuclein aggregation.
These results could be explained by the fact that 14-3-3 iso-
forms vary in specificity, as previously it has been confirmed
that 14-3-3θ had much stronger chaperone activity for α-synu-
clein fibril formation [21]. Another consideration is that the
14-3-3 family interacts with phosphorylated targets [46] and
in our experimental conditions α-synuclein was not phos-
phorylated, making it an incompatible target. Nevertheless,
the more important part is that 14-3-3ζ aggregates alone can
be toxic to the cells and this warrants further experiments to
elucidate 14-3-3ζ potential aggregation inside the cell.
3. Conclusion
In this study, for the first time, we observed the formation of
amyloid fibrils by 14-3-3ζ. The small shape morphology and
relatively weak fluorescence of bound amyloidogenic dyes
indicate that 14-3-3ζ fibrils are not easily detectable but
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exhibit properties that are found in amyloids. Additionally,
they were toxic to neuroblastoma cells, but could not acceler-
ate a α-synuclein aggregation, although they share amino
acid sequence similarity [24]. Since the detection of 14-3-3
proteins is often associated with the onset of neurodegenera-
tive diseases [25,26,47], our study suggests that this might not
only be due to their neuroprotection[48] and chaperone [49]
roles but also due to the formation of 14-3-3 fibrils. Moreover,
with recent studies indicating 14-3-3 involvement in liquid–
liquid phase separation, it is becoming evident that 14-3-3
might have an even larger role in neurodegenerative
disorders than initially thought [50,51]. As it is now, the
revelation of 14-3-3ζ amyloid properties opens up new possi-
bilities for further investigations into other isoforms of 14-3-3
and their relationship to other protein aggregation pathways.
4. Material and methods
4.1. Protein expression and purification
The 6xHis-SUMO-14-3-3ζ construct used in this work (kind
gift of Prof. B.M. Burmann) was derived from GST-14-3-3ζ
(Addgene no. 13278) [46]. The plasmid containing 6xHis-
SUMO-14-3-3ζ was chemically transformed into One Shot
Escherichia coli BL21 Star (DE3) (Fisher Scientific) cells. The
transformed cells were grown at 37°C in LB medium contain-
ing kanamycin (50 mg ml−1) until an optical density at
600 nm≈ 0.7 was reached. Expression was induced by the
addition of 0.4 mM isopropyl-β-D-thiogalactopyranoside
(Fisher Scientific), and the cells were left to grow overnight
at 25°C. Cells were harvested by centrifugation at 6000g for
20 min at 4°C and subsequently resuspended in 50 ml of
lysis buffer (25 mM Hepes/NaOH, 1 M NaCl and 10 mM
imidazole (pH 7.5)). The suspension was lysed with a Sono-
puls (Bandelin) homogenizer (10 s on, 30 s off, 30% power,
total time 30 min). Cell debris was removed by
centrifugation at 18 000g for 45 min at 4°C, and the super-
natant was applied to a Ni2+ Sepharose 6 Fast Flow (GE
Healthcare) loaded gravity column, followed by stepwise
elution with 20 ml of lysis buffer supplemented with 100
and 500 mM imidazole, respectively. Fractions containing
the 6xHis-SUMO-14-3-3ζ protein were dialysed against phos-
phate-buffered saline (PBS, pH 7.4), and the 6xHis-SUMO tag
was removed by enzymatic cleavage using human sentrin-
specific protease 1 (SENP1) catalytic domain (derived from
pET28a-HsSENP1) that was a gift from Jorge Eduardo Aze-
vedo (Addgene plasmid no. 71465) at 4°C overnight [52,53].
The primers used for the isolation of the SENP1 catalytic
domain gene can be found in electronic supplementary
material, table S1. The cleaved proteins were applied again
to an Ni2+ column, and the flow-through was collected. The
proteins were concentrated using Amicon centrifugal filters
(10k molecular weight cut-off (MWCO), Merck Millipore)
and purified further by size exclusion chromatography
(Superdex 75, GE Healthcare) in PBS. The α-synuclein was
purified as described previously [54], concentrated to
600 µM and stored at −20°C.
4.2. Aggregation-prone sequence analysis
Predicted 14-3-3ζ aggregation-prone regions were calculated
using three different predictors: PASTA 2.0 [34],
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FoldAmyloid [32] and AGGRESCAN [33]. The default par-
ameters were used for each prediction. Briefly, in PASTA
2.0 90% sensitivity and −2.8 energy cut-off were used. In Fol-
dAmyloid, aggregation sites were positive, if five successive
amino acids with a score above 21.4 were detected. AGGRES-
CAN identified hot spots of aggregation, whenever the
window of five amino acids had an amino acid aggrega-
tion-propensity value higher than −0.02. The raw data of
predictors results are presented in electronic supplementary
material, figure S1.
rnal/rsob
Open

Biol.14:230285
4.3. 14-3-3ζ and α-synuclein aggregation
The purified 14-3-3ζ or α-synuclein was diluted to 100 µM/
200 µM or 100 µM, respectively, using a PBS pH 7.4 solution
and distributed to 2.0 ml non-binding test tubes (400 µl
volume, each test tube contained two 3 mm glass beads) or
Corning non-binding 96-well plates (Fisher, Waltham, MA,
USA, cat. no. 10438082) (80 µl volume, each well containing
none or one 3 mm glass bead). The samples in tubes were
then incubated at 37°C with constant orbital 600 r.p.m. agita-
tion. Every 24 h, three samples were taken for analysis.
Samples from 14-3-3ζ 200 µM were taken after 3 and 72 h
for AFM imaging. The plates were placed in a ClarioStar
Plus plate reader (BMG Labtech, Ortenberg, Germany). The
ThT fluorescence measurements were taken every 10 min
using 440 nm excitation and 480 nm emission wavelengths
every 10 min with constant orbital shaking (600 r.p.m.)
in-between at 37°C.

The α-synuclein stock solutions were thawed at room
temperature and combined with PBS, 10 mM ThT and mono-
meric or aggregated 14-3-3 samples (100 µM) to a final α-
synuclein concentration of 100 µM, 100 µM ThT and 10 µM
14-3-3. Control solutions contained PBS in place of 14-3-3.
Samples were placed in 96-well non-binding plates (100 µl
solution, each well contained one 3 mm glass bead). For
each condition, six repeats were measured in a ClarioStar
Plus plate reader as described before.
4.4. Fluorescence and absorbance assays
For dye-binding assays, ThT, ANS and CR powders were
dissolved in PBS buffer solutions and filtered using 0.22 µm
syringe filters. The final concentrations of the dye solutions
were set to 20 µM (ThT− ε412 = 23 250 M−1 cm−1, ANS –
ε351 = 5 900 M−1 cm−1, CR – ε486 = 33 300 M−1 cm−1) based
on their specific absorbance spectra, which were scanned
using a Shimadzu UV-1800 spectrophotometer. Amy-
tracker630 stock solution was diluted 40 times using PBS
buffer prior to use. The prepared dye solutions were stored
at 4°C in the dark.

The dye solutions were combined with either PBS, the
14-3-3ζ solution at 0 h or 168 h in a 1 : 1 ratio. The mixtures
were then incubated for 10 min in the dark. The fluorescence
spectra of ThT, ANS and Amytracker630 were scanned using
a Varian Cary Eclipse spectrofluorometer with 10 nm
excitation and emission slits, 1 s averaging time and 1 nm
intervals (ThT—440 nm excitation and 460–540 emission
range, ANS—370 nm excitation and 420–560 emission
range, Amytracker630—480 nm excitation and 580–680 nm
emission range). The absorbance of CR was scanned from
200 nm to 800 nm using a Shimadzu UV-1800
spectrophotometer. All spectra were corrected using control
samples, which did not contain the dye molecules.

4.5. Light scattering assay
Sample right-angle light scattering was scanned with a
Varian Cary Eclipse spectrofluorometer, using 600 nm exci-
tation and emission wavelengths with 2.5 nm slit widths,
1 s averaging time.

4.6. Fourier-transform infrared spectroscopy
experiments

The aggregated 14-3-3ζ samples (2 ml volume, 100 µM initial
protein concentration) and α-synuclein samples (combined
six 100 µM repeats of 100 µl initial protein concentration),
were centrifuged for 15 min at 12 000g. Afterwards, the
supernatant was carefully removed and replaced with
500 µl D2O with 400 mM NaCl (the addition of NaCl
improves aggregate sedimentation). The centrifugation and
resuspension procedure was repeated three times. After the
final centrifugation, the aggregate pellet was resuspended
into 50 µl of D2O with NaCl. The suspension was then
scanned as described previously [55] using a Bruker Invenio
S FTIR spectrometer. Data analysis was carried out with
GRAMS software. D2O and water vapour spectra were
subtracted from the sample spectrum, which was then
normalized between 1700 cm−1 and 1600 cm−1.

To acquire the FTIR spectra of monomeric 14-3-3ζ, the
buffer solution (PBS, pH 7.4) was exchanged into D2O with
400 mM NaCl using a 10 kDa protein concentrator. The
protein solution was diluted to 100 µM using the D2O
solution, placed in the concentrator (400 µl volume) and cen-
trifuged for 10 min at 9000 r.p.m. The concentrated protein
solution (approx. 50 µl) was then diluted to the original
volume with the addition of 350 µl D2O. This centrifugation
and dilution procedure was repeated four times. The final
concentrate was diluted to 100 µl and used for FTIR analysis.
The spectra were obtained and analysed the same as the 14-3-
3ζ aggregate sample.

4.7. Circular dichroism spectroscopy
All measurements were performed on a Jasco J-815 spec-
trometer at room temperature. Briefly, either a freshly
prepared monomeric solution of 100 µM 14-3-3ζ (PBS, pH
7.4) or aggregated sample was transferred to a 0.1 mm
quartz cuvette. Spectra were measured at 1 nm data pitch
from 190 nm to 250 nm with a bandwidth of 2 nm and scan-
ning speed of 50 nm min−1. The final spectra of each sample
were averaged from three scans with the buffer background
subtracted. Analysis and visualization of spectra were done
in Spectragryph software (http://spectragryph.com).

4.8. Atomic force microscopy measurements
AFM imaging was done similarly to that previously described
[56]. In brief, a 40 µl sample of aggregated 14-3-3ζ was placed
on freshly cleaved mica that was functionalized using 40 µl of
APTES ((3-Aminopropyl) triethoxysilane), incubated for
5 min. Then the mica was washed with 2 ml MiliQ water
and dried gently under a stream of air. High-resolution

http://spectragryph.com


royalsocietypublishing.org/journal/rsob
Open

Biol.14:230285

7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 M

ay
 2

02
4 
images (1024 × 1024) were collected using Dimension Icon
(Bruker) AFM operating in tapping mode (Tap300AI-G silicon
cantilever (40 N−1 m−1, Budget Sensors)). AFM image flatten-
ing and fibril analysis were done using Gwyddion v2.57
[57]. The additional AFM images of 14-3-3ζ aggregates can
be found in electronic supplementary material, figure S2.

4.9. Cell culturing
SH-SY5Y human neuroblastoma cells were obtained from the
American Type Culture Collection (ATCC, Manassas, VA,
USA). The cells were grown in Dulbecco’s modified Eagle’s
medium (DMEM) (Gibco, Grand Island, NY, USA), sup-
plemented with 10% fetal bovine serum (FBS) (Sigma-
Aldrich, St Louis, MO, USA), 1% penicillin–streptomycin
(10 000 U ml−1) (Gibco) at 37°C in a humidified, 5% CO2

atmosphere in a CO2 incubator.

4.10. Cytotoxicity of 14-3-3 fibrils
For the MTT assay, SH-SY5Y cells were seeded in a 96-well
plate (approx. 15 000 cells well−1) and cultured overnight.
The 14-3-3ζ, α-synuclein monomers or fibrils in PBS were
diluted to a final concentration of 5 µM with DMEM and
used to replace the cell medium in each well. After 48 h of
incubation, 10 µM of MTT was added to each well and left
to incubate for 2 h. One hundred microlitres of 10% SDS
with 0.01 M HCl solution was added on top to dissolve for-
mazan crystals. Absorbances at 540 nm, 570 nm and 690 nm
(reference wavelength) of each well were measured using a
ClarioStar Plus plate reader (BMG Labtech).

Ethics. This work did not require ethical approval from a human
subject or animal welfare committee.
Data accessibility. The kinetic and FTIR, CD data used for analysis have
been tabulated and are available on Mendeley Data: 10.17632/
564277pjyx.1. All other relevant data are available from the
corresponding author upon reasonable request.

Supplementary material is available online [58].
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