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ABSTRACT: We present a scotogenic model, i.e. a one-loop neutrino mass model with dark
right-handed neutrino gauge singlets and one inert dark scalar gauge doublet 7, which
has symmetries that lead to co-bimaximal mixing, i.e. to an atmospheric mixing angle
023 = 45° and to a CP-violating phase 6 = +7/2, while the mixing angle 613 remains
arbitrary. The symmetries consist of softly broken lepton numbers L, (o = e,pu,7), a
non-standard C'P symmetry, and three Zo symmetries. We indicate two possibilities for
extending the model to the quark sector. Since the model has, besides 7, three scalar gauge
doublets, we perform a thorough discussion of its scalar sector. We demonstrate that it can
accommodate a Standard Model-like scalar with mass 125 GeV, with all the other charged
and neutral scalars having much higher masses.
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1 Introduction

With the experimental finding that the lepton mixing angle 6,3 is nonzero, many theoretical
neutrino mass models fell into disfavour. An exception is the model in ref. [1], in which

there is a relation
100

SM,S =M;, where S=|001 (1.1)
010

and M, is the (symmetric) light-neutrino Majorana mass matrix in the basis where the
charged-lepton mass matrix is diag (me, m,, m,). The condition (1.1) leads to sin® fo3=1/2
and (provided sin 613 # 0) cosd = 0, which is in agreement with the phenomenology [2-5];
this situation has recently been dubbed ‘co-bimaximal mixing’ [6].! A relevant point is that
the condition (1.1) does not restrict the neutrino masses; it only restricts lepton mixing.
Actually, as a consequence of the condition (1.1), the lepton mixing matrix has the form [1]

urn u2m2 u3n3
U= | win wanz w3ns (1.2)
Wit win2 Win3

with u; > 0, \ijQ = (1 —u?)/Q, and 77]2- = +1 for j = 1,2,3. It is clear from equa-
tion (1.2) that |Uy;| = |Urj| Vj =1,2,3 [9-11]. Note that the condition (1.1) entails three
restrictions on lepton mixing:

'A different way for obtaining co-bimaximal mixing, not involving the condition (1.1), has been recently
proposed in refs. [7, 8].



1. The atmospheric mixing angle 53 is maximal, i.e. sin (2633) = 1.
2. The CP-violating phase ¢ is /2.
3. The Majorana phase factors in effective neutrinoless 83 decay are +1.

Because the predictions of condition (1.1) do not depend on the neutrino masses, it is
possible that, in some multi-Higgs-doublet models, co-bimaximal mixing is not disturbed
by the one-loop corrections to the neutrino mass matrix [12]. This may, in particular, be
the case in a ‘scotogenic’ model [13]. In such a model, the masses of the light neutrinos
have radiative origin and the particles in the loop that generates them belong to the dark
sector of astrophysics, i.e. they are prevented from mixing with the ordinary particles by
an unbroken (usually Zs) symmetry.

The purpose of this paper is to propose a scotogenic model for the neutrino masses
which predicts co-bimaximal mixing.? This is done in section 2. In section 3 we expose two
possible extensions of that model to the quark sector. An analysis of the scalar potential
of the model and of its compatibility with the recently discovered scalar of mass 125 GeV
is performed in section 4. We summarize our findings in section 5. Appendix A collects
some formulae from ref. [12] which are used in section 2.

2 The model for the lepton sector

Our model is an extension of the Standard Model with gauge symmetry SU(2) x U(1). The
usual fermion multiplets are three D,y and three ar (o = e, u, 7). Besides, we introduce
three right-handed neutrinos v, g; they belong to the dark sector of the model. Our model
has four scalar doublets:

o\ _ nt
b; = o0 (j=1,2,3) and ¢4=n= P (2.1)
J

The doublet ¢; gives mass to the electron, ¢o gives mass to the muon, and ¢3 gives mass

to the 7 lepton; the doublet ¢4 = n belongs to the dark sector. We shall also use the
- T T
conjugate doublets ¢; = ((ﬁ?*, —qu_ ) and 7 = (170*, —77_) .

The symmetries of our model are the following:

dark o
o Zg ark), 7 — =1, VeR — —VeR, VurR — —VuR, and v;p — —vrg. This is an ezact

symmetry that prevents dark matter from mixing with ordinary matter. It is broken
neither softly nor spontaneously, because the vacuum expectation value (VEV) of n

is zero.?

2Recently, another such model, but which employes a completely different mechanism, has been proposed
in ref. [14]. The model of ref. [14] is more complicated than the one presented in this paper for several
reasons: (1) it has two types of dark matter, one of them protected by a U(1) symmetry and the other one
by a Zs symmetry. (2) It has several more fields in the dark sector. (3) The masses of the charged leptons
are of radiative origin, just as those of the neutrinos. (4) The soft breaking of the symmetries occurs in two
steps, with an A4 symmetry in the dimension-four terms being softly broken to Zs through dimension-three
terms and that Zs being softly broken through dimension-two terms.

3Such scalar doublets have been dubbed ‘inert’ in ref. [15].



e The flavour lepton numbers L. They are broken only softly by the Majorana mass
terms of the v, g:
Ver'
VeR> VpRs m) MgC | 78" | +Hec, (2.2)

T
Vrr

1
ﬁMajorana = _5 (

where C is the charge-conjugation matrix in Dirac space and Mp is a symmetric

matrix in flavour space.

o Zgl): $1 — —¢1, €rR — —€R, Zf): ¢2 — —@2, R — —pR, and ng)i 3 — —¢3,
Tr— —Tr. DBecause of these symmetries and of the L., the lepton Yukawa
Lagrangian is

Lovakawa = —Y1 TeR 7 Der, — 2 V;TRﬁTDuL — Y3 R Drr (2.3a)

~942R | Der, — Y5 IR 64 Dyur, — yo TR 93 Dri, + Hec, (2.3D)

The Zgj) (j=1,2,3) are broken spontaneously, through the VEVs <O ‘gb?‘ O> =; /\/ﬁ,
to give mass to the charged leptons:

Y41 Ys5U2 Y63

V2 V2 V2

Besides, the Zéj ) are also broken softly* through quadratic terms in the scalar

y o My =

,  Mr =

e

(2.4)

potential.

e The C'P symmetry

(D1 s inoCSDLL Der o
L — Z.’YO —LT ) Dy = Dur | =1\ pr |,
KR%ZVOCSKR s D, TR
CP: vr — ivC STRY,  where (2.5)
¢ N Sd)* VeRr ¢1
7 VR= | Wur |, ¢=| ¢2
n—=n, .
VrR (Z)S
Because of this symmetry, in equation (2.2)
ryy
Mrp=1vy z w |, (2.6)
y* w 2*

with real x and w, i.e. SMRS = Mj},; moreover, in equation (2.3) y; and y, are real

and y3 = y5, ye = y;. Therefore,
my (%)

: (2.7)

mor (R}

4We recall that in a renormalizable theory a symmetry is said to be broken softly when all the symmetry-
breaking terms have dimension smaller than four. This leaves open two possibilities: either they have both
dimension two and dimension three or they have only dimension two. Soft symmetry breaking is consistent
in quantum field-theoretic terms because, when using it, the dimension-four symmetry-violating terms
generated by loops are finite. The soft breaking of (super)symmetries is extensively used in model-building;
in particular, all supersymmetric models contain soft supersymmetry-breaking terms.



i.e. the small ratio of muon to 7-lepton mass is explained through a small ratio of
VEVs [16]. The symmetry CP is not broken softly® but it is broken spontaneously
through the VEVs v;, especially through |va| # |v3].0

As compared to the model in ref. [1], the present model has an extra doublet 7,
whose vanishing VEV causes neutrino mass generation to occur only at the one-loop level.
However, as we will show below, the very same mechanism that produces co-bimaximal
mixing at the tree level in the model of ref. [1] is effective at the one-loop level in the model
of this paper.

In our model, just as in the original model of Ma [13], dark matter may be either
spin-one half — the lightest particle arising from the mixture of veg, v, and v,z — or
spin-zero — the lightest of the two components ¢1 2 of n° — depending on which of them
is lighter. No other fields are needed in principle to account for the dark matter.

In the scalar potential, a crucial role is played by the C'P-invariant terms

&1 [(éﬂn)z + <77T<Z>1>2} + &2 {(@5;77)2 + (ﬂhf)s)?} + &3 {(@%77)2 + (77“152)2} , (28

where & = £} and &3 = & because of Hermiticity. Let us write

0_ 0 _ iy ¥1 T 1P
=0 = gin LT W2 2.9

where the fields ¢1 and (o are real and the phase v is defined such that
pr=etny g (2.10)

is real and positive. Then, the terms (2.8) generate a mass term

1 (o1 — ¢3) (2.11)

which means that p; and @9 are mass eigenfields with distinct masses. The term (2.11) is
the only one that makes the masses of ¢; and s different; all other terms in the scalar
potential contain ‘770‘2 = (ap% + ga%) /2.

Now we make use of the results in appendix A. In the notation of equation (A.1),
equation (2.3a) means that Ay = Ay = Ag = 0 and Ay = diag (y1,y2,y5); notice that
SA4S = Aj. In the notation of equation (A.2), equation (2.9) reads Vi, = e and
Vip, = ie”. Then, according to equation (A.3), Ay, = VA4 and A, = ie”?Ay. Applying
equation (A.4) we find the one-loop contribution to M,:

2@y m2 m2 m2 m2
My = S A [ 2o Y wia, - At [ 22 Y wia,|, (212)
3272 m ms201 m m?aQ

5We might accept the soft breaking of C'P by quadratic terms in the scalar potential; that soft breaking
by terms of dimension two would not disturb the dimension-three terms in Luajorana. But, for the sake of
simplicity, we shall refrain in this paper from such a soft breaking.

50urs is a model of ‘real C'P violation’, i.e. C'P violation originates in the inequality of two VEVs, even
if those VEVs are real [17, 18].



where the matrices W and m are defined through equation (A.5). Note that there is no
contribution to §M, from a loop with Z° because the VEV of 7 is assumed to vanish;
therefore, the Dirac neutrino mass matrix Mp in line (A.4b) also vanishes.

In the limit u? — 0, the masses of ¢ and ¢y become equal and the contributions of ¢
and @9 to 6 M, exactly cancel each other; the light neutrinos then remain massless at the
one-loop level [13]. This happens in the limit where all the terms in equation (2.8) vanish.
Indeed, in that limit the full Lagrangian is invariant under the U(1) symmetry

Dp — %Dy, lr— eVl n— ey, (2.13)

which forbids light-neutrino masses [13]. We remark that there are, in the scotogenic model
of this paper, several mechanisms for potentially suppressing the light-neutrino masses, viz.

e a large seesaw scale, i.e. large heavy-neutrino masses in m;
e small Yukawa couplings of vg, i.e. small Ay;

e small couplings ;2,3 in equation (2.8), hence my,, and my, very close to each other,

because of an approximate symmetry (2.13);
o the (327r2)71 factor in equation (2.12) from the loop integral.

Let us present a benchmark for all these suppressing factors. Let both &1 23 and y; 2 be of
order 1072, With |v1 23] ~ 100 GeV one then obtains [my, —mgy,| ~ 10 GeV. Assuming
My, , ~ 100GeV, one requires m ~ 1078 GeV in order to obtain M, ~ 0.1eV. One
concludes that the main suppression still originates in the high seesaw scale. However,
with small £1 23 and y; 2, of order 1073 or 1074, the seesaw scale could easily be in the
TeV range and thus accessible to the LHC.

Next we exploit the C'P-invariance properties, viz. SA4S = A} and SMgrS = Mjp,.
Equation (2.12) may be rewritten

322\ m 2

, . R 1 m2 m2 m2 m2
e IS M, = AWHAWTA,  with A = ey N ey ) (9.14)
o) Mipy

Now,
SMpS = M} = (WTSW*>* = (Wisw*) = wisw* = X, (2.15)

where X is a diagonal sign matrix [1]. This is because, according to the assumptions of
the seesaw mechanism, all the diagonal matrix elements of m, i.e. all the heavy-neutrino
masses, are nonzero. Using equation (2.15) we derive

S (A4W*AWTA4) S = (SALS) (SW*) A (WTS) (SALS)
= AJWXAXWTA}
= AWAWTAS
_ (A4w*AWTA4)*, (2.16)



i.e.

S (e726M,) S = (e 26M,)" . (2.17)
Thus, after a physically meaningless rephasing, . M,, displays the defining feature (1.1) of
co-bimaximal mixing.
2.1 Approximation to the Higgs boson

We use the notation of equation (A.2). The matrix V is complex 4 x 8 and, according

to ref. [19],
V= (g) (2.18)

is 8 x 8 orthogonal. The last row of V corresponds to ¢] = 1. For definiteness, we let
the last two columns of V' correspond to 1 and 9, which belong to the dark sector and
do not mix with all the other scalars. Therefore, for practical purposes V is just a 3 x 6
matrix. By definition, SY = G is the Goldstone boson and [19]

Vit =iL forj=1,23 wherev= (2.19)
v
The couplings of S (b=2,...,6) to the gauge bosons are given by [19]
g mZZ zZh 3
- (mWWJW“— ) ZS,, > iV |- (2.20)
j=1

Therefore, a given 5’8 couples to the gauge bosons with exactly the same strength as the
Higgs boson of the Standard Model if

3 *
v
gsvv =R[ DLV | =1 (2.21)

Notice that, because both three-vectors (vi/v, v3/v, vi/v) and (V1p, Vap, Vap) have unit
modulus, |gsyy| < 1. Therefore, equation (2.21) holds in a limit situation.
According to equation (2.3b), the scalars Sl? couple to the 7 lepton through

6

% Vi,

*\[E 7 (Vaby 7R + Vap¥e L) T =—mT§ SpF <3b7 e VL) (2.22)
b=1

where g 1, are the projectors of chirality in Dirac space. In equation (2.22) we have
assumed, without loss of generality, ysvs to be real and positive. Therefore, a given Sl?
couples to the 7 lepton in the same way as the Higgs boson if

V3
U3

= 1. (2.23)



3 Extension of the model to the quark sector

It is non-trivial to extend our model to the quark sector because the C'P symmetry relates
the Yukawa couplings of ¢o to those of ¢3; moreover, some quarks must couple to ¢o —
and, correspondingly, other quarks must couple to ¢3 — in order that C'P violation, which
is generated through vive # v1v3, manifests itself in the CKM matrix V.

We firstly expound some notation. The quark Yukawa Lagrangian is

3 nNR1 ~ PR1
L quark Yukawa = — (QLl, Qr2, QL3> ol | nr2 | +0;4; | pr2 +H.c., (3.1)
J=1 NR3 PR3

where Qr; = (m, @) for j = 1,2,3. The mass matrices are M, = Z;’:l (Uj /\@) L,
and M, = 25:1 (v; / V2 ) Aj. They are diagonalized as

UgTMnU]% = diag (mg, ms, mp) = Ma, (3.2a)
UfTMpU]g = diag (may, me, m¢) = M, (3.2b)

where the matrices Uz’R are unitary. The physical quarks are given by

nR1 dr PRI UR
nr2 | =Ug | sr |, pr2 | =UR| cr | . (3.3)
NR3 br PR3 iR

and analogously for the left-handed fields. The quark mixing matrix is V = U fTUE.

3.1 Extension 1

One may include the quarks in the symmetries Zgj ) as follows:

Zgl) : ¢1, er, and Q1 change sign; (3.4a)
ZgZ) : ¢2, uRr, and Qo change sign; (3.4b)
Zg?’) : ¢3, Tr, and Q3 change sign. (3.4¢)
Then,
R1 O1><3 01><3
I O1x3 |, T2 Ry 3= O1x3 (3.5a)
01x3 01x3 Rs
1 O1x3 O1x3
Ay O1x3 |, A2 ’2 Az = | O1x3 (3.5b)
01><3 01><3 g




where Ry 23 and R} 54 are 1 x 3 row matrices. Notice that both I'; 23 and Aj 93 are in
this extension rank 1 matrices. The quark mass matrices are

Riv; Loy
Mp=—= 1| Rovz |, Mp=—| Ryv3 | . (3.6)
V2 R3vs V2 5U%
We define the 1 x 3 matrices
R; = RjUg, R;=R.U}. (3.7)
Writing
Ry |
Ur=|R |, UP=|R, |, (3.8)
R3 A

where the R; and ]:Z; are 1 x 3 row matrices,” one has, from equations (3.2), (3.6), and (3.7),

p. Y _ p U

(We do not use the summation convention.) The Yukawa couplings of the neutral scalars
— see equation (A.2) — are

T 3 NR1 PR1
-7 DS \mm VisRy | nre | + P55 ViR | pro
b=1 j=1 NR3 PR3
;S8 3 [ dr [ ur
= —72 ZSIE)Z np; VieRj | sr —l—]TjV;bR;- CR
b=1  j=1 br tr
8 3 Vi dr . UR
— oYY 5 2 | on | 7 2 | en
b=1  j=1 Y br J tr
8 \ dr
= =280 | (e 5z, b ) Yo R My | s
b=1 j=1 7 br
3 V%(b L UR
+ (e 7 ) Y L RIRM, | en || (3.10)
=1 % th
Defining the Hermitian matrices
_ AP ‘Uj|2 —1ptp. as—1 1 — prtpr ’%”2 —1pM B -1
Hy = RiR; = S0- My 'RIR MY, H) = RIRG = 1 MR RM, !, (3.10)

"Notice that the quark mixing matrix is V = Z?:1 RIR;.



the Yukawa couplings of a given Sg to the third-generation quarks are given by

3 * *
_ [V Y V. Y

— SIS Iy (Hy) gy b [ =2 g+ —Ln ) b+ my (H]) 7 —Ln + —Lyr | ¢] . (3.12)
j=1 Yj Yj Yj Yj

Thus, Sg couples to the third-generation quarks in the same way as the Higgs boson if

3 3
Vib 1% 1
D H)yy 2= (Hj)yy~ 2 = (3.13)
j=1 =t !
We have not yet specified the way in which the C'P symmetry is to be extended to the
quark sector. This may be chosen to be

T
0L — WOCS@T, Qr = (Qm, Qro2, QLs) ;
. . T
CP: nr — ivC AR, where pp = (pRh PR2, pR3> ’ (3.14)
— i70C PR’ T
PR = VIOV PR, ng = (nm, NR2, nR3> .

The C'P symmetry (3.14) enforces real R; and R} and
Rs =Ry, R, =R, (3.15)
3.2 Extension 2

The extension of our model to the quark sector expounded in the previous subsection
treats the down-type and up-type quarks in similar fashion. It possesses flavour-changing
neutral Yukawa interactions (FCNYI) in both quark sectors. In this subsection we suggest
a different extension, in which FCNYT are restricted to the up-type-quark sector.

Let the quarks be included in the symmetries Zg ) as

Zgl): 1, €r, PR1, MR1, NR2, and nr3 change sign; (3.16a)
Zgz) : ¢9, R, and pro change sign; (3.16Db)
Zgj) :  ¢3, TR, and prg change sign. (3.16¢)

With this extension, the Yukawa-coupling matrices I's and I's vanish outright. In
extension 2, as distinct from extension 1, the matrices I'g 3 are rank 0 while I'; is rank 3.
Without loss of generality, one may rotate the Q7 and the ng so that v1I'y / V2 = M, is
equal to My from the outset. Then, U} = Up = 1343 and the CKM matrix V = UET.

Analogously to equation (2.22), the couplings of the neutral scalars to the down-type
quarks are given by

: % Vi
-39 i b : 3.17
bzqu(vl’erva q (3.17)
b=1 q=d,s,b

A given Sl? couples to the bottom quark in the same way as the Higgs boson if

’L)Vlb .
U1

1. (3.18)



Now,
Ay~ (Cl, O3x1, 03><1) ;
Ag ~ <03x17 Co, 03><1> ;
Ag ~ (03><17 031, CS) ;

where (23 are 3 x 1 column vectors. The up-type-quark mass matrix is
1
V2

We define the 3 x 1 column matrices C;- = U’ZTC]-. Let

M, = == ((Crof, Covs, Cavg ).

Ul = | Ry
R3

where the Ry 23 are 1 x 3 row matrices. We know that

1
UFTM, = == ((Clot, Chus, Choy ) = MUR! = ( MuR}, MyR}, MuR}).

V2

Therefore, C]/' = (ﬂ/vj) MuR;r-.
The couplings of the neutral scalars to the up-type quarks are given by

S

6 3
1

S Vi Aipr + H.c.
L ; 5 7 A

6
1

HMw

fbil ] 1
1 6 3 UR
- _ﬁzsg Zvj*b (UL, CL, tL> UfTCjRj cr | +H.e.
b=1 j=1 tR
1 6 3 UR
b=1 j=1 tr
6 3 P Up
b=1 j=1 "J i

(3.19a)
(3.19D)

(3.19c¢)

(3.20)

(3.21)

(3.22)

(3.23)

Let us define H; = R;Rj. The Hj are three Hermitian matrices; since Uﬁ is unitary,
Hy{ + Hy + Hs = 1343. The couplings of the neutral scalars to the top quark are given by

V* V;
—thSbZ <qgm+$n>t

7=1

,10,

(3.24)



Thus, one given scalar Sl? couples to the top quark in the same way as the Higgs boson if

3
Z vV (Hj)sg -1 (3.25)

0.
j=1 J

For the action of C'P in the quark sector we choose

. —T
QL — 1 C QL ,
CP: ng — iWC TR, (3.26)
PR — i’yoc S}TRT

In this way,
C, =07, Cy=C5. (3.27)

4 The scalar potential
The scalar potential may be separated into three pieces:
V= Vn + ‘/symmetric + Vvsoft- (41)

By definition, all the terms containing 7 belong to V;,, whereas Viymmetric + Vsoft contains

exclusively the ¢; with j = 1,2,3. By definition, V;, + Viymmetric is invariant under all the

symmetries of the Lagrangian, i.e. under both C'P and the Zéj ) for 7 =1,2,3, whereas Vi,

breaks the Zgj ) softly but preserves C'P. Obviously, in any term in V, + Viymmetric only
even numbers of 7’s and of each of the ¢;’s can occur. We have

Vo= pgn'n+ M (n*n)z
+n'n [5\2 Pl + A3 <¢£¢2 + ¢:T),¢3)} + Ao oln + A5 (UT@ oo+ nies ¢§,7l>
+& [(Cf)%f + (ann)Z] + {& {(@5;”)2 + (77%3)1 + H.c.} , (4.2)

where A5 and & are real while & is in general complex. We assume that the real
coefficient p,, is positive, so that the VEV (n°) vanishes. Moreover, p,, must be sufficiently
larger than the Fermi scale squared, so that the terms with coefficients Xo—5 cannot make
oy = oy + (5\2 + 5\4) \v1|2 + (5\3 + 5\5) (|v2|2 + |v3\2) become negative.

Due to the symmetries, Viymmetric is given by

Veymmetric = f1 Pl + po (¢;¢2 + ¢;Tg¢3> + A1 (¢1¢1)2 + Ao [(@@)2 + (¢§¢3> 2]
+ 230101 (0402 + 0}6s) + A (6] 62 6on + olos olo: )
2 2
+ X b2 05 + Ao 6hs dlon + A7 (0hos) + 27 (ole2)
Y [(ﬂ@)z " (¢§¢1)2] T [(¢$¢1)2 " (qﬁ{qbgﬂ , (43)

— 11 —



with real A\; for [ = 1,...,6 and complex A7 and Ag. The soft-breaking potential, which
consists of terms of dimension two and abides by the C'P symmetry, is

Vior = 3 045 + 15 0402 + a (]2 + 0lon ) + i (odor +ols) . (44)

We firstly follow ref. [16] to investigate the minimum of Viymmetric. We write Ay =1\ |eteu

for [ =7,8 and
v] = wlewl, vy = wsinaeiﬁQ, V3 = W COS 0. (4.5)
We require without loss of generality that w; > 0, w > 0, and o is in the first quadrant.

Let F' denote the sum of the terms of (0 |Viymmetric| 0) that have a non-trival o-dependence.
One has

4F = Mw? (sin® o 4 cos® o) + (A5 + Ag) w' sin® o cos® o (4.6a)
+ 2 |\7| w? sin? o cos? & cos (ar — 239) (4.6b)
+ 2| Ag| wiw? [Sin2 o cos (ag + 28y — 261) + cos® o cos (ag + 261)] . (4.6¢)

In line (4.6a) we use sin o + cos* 0 = 1 — 2sin? o cos? 0. We require
—2X 2+ A5+ X¢ — 2| A7 > 0. (4.7)

Then, the minimum of lines (4.6a) and (4.6b) is achieved when sino coso = 0. This may
also be the minimum of line (4.6¢c) because

sin? o cos (ag + 202 — 2B1) + cos® o cos (ag + 261) > —1 (4.8)

and the value —1 can always be obtained, irrespective of the value of o, through suitable
choices of 81 and 2. Thus, assuming sin o = 0 instead of coso = 0, the minimum of F' is
at 0 =0, i.e. v9 =0, and ag+ 25, = w. The latter relation, however, is irrelevant if v = 0,
because then 31 is meaningless. We assume, indeed, that the coefficient j; is positive and
so large that v; = 0. The minimum of Viymmetric then has v1 = vy = 0.

In the limit v; = vo = 0 it is easy to compute the scalar mass spectrum. Writing

iax/2 P1 T 1071 ion /2 P2 T 102 w + p3 + 103
et gy g2t g WML )
we find
m?, =y + i w? (4.10a)
by 2 ’
A3+ A
my, =+ ( 3 5 -+ \)\8|> w?, (4.10b)
A3+ A
my, =+ ( 2 5 - |)‘8|> w?, (4.10c)
A
m, = <—/\2 + 25> w?, (4.10d)
As + A
m?, = <—)\2 + 22 . 64 M) w?, (4.10e)
As + A
mg, = <—>\2 + 5; ° - !>\7!> w?, (4.10f)
m>. =2 uw’. (4.10g)
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Moreover, o3 = G? is the neutral Goldstone boson and qb;: is the charged Goldstone boson,
which are absorbed by the Z° and the W gauge bosons, respectively. The fields qﬁf, Pl,
and o are heavy because of the large 1. The scalar p3 is to be identified with the Higgs
boson. From m,, ~ 125GeV and w ~ 246 GeV one obtains A ~ 0.13. The masses of
qﬁé”, p2, and o9 cannot be very large if one wants to stay in the perturbative regime with
respect to A5 7.
Now we take into account Vg.g. This generates vy 2 # 0 due to the presence of terms
linear in ¢; and ¢9. For sufficiently small v; and o,
- [3v3
(G it % (v + A1) |v3\2 Y 6_21-517)%’ (4.11a)
H3U3

vy 2 — A . (4.11b
p2 + 5 (As + Xe) [vs|” + A7 e 2F103 )

In order to verify whether the scalar potential of equations (4.1)—(4.4) can produce
a vacuum with the desired hierarchy of VEVs and yield acceptable scalar masses and
couplings, we have performed a numerical scan of the parameter space of the potential.
We have taken all the parameters of the scalar potential to be real, and we have also
assumed real VEVs, parameterized as

vmy, sin 3 vm,sin 8

/12 2’ e /m2 2’
my +mz my, +mz

where the angle § may be either in the first or second quadrant. In this way we satisfy

vy =vcosf, vy ==+ (4.12)

equation (2.7). It is desirable to have 3 close to /2 so that |v;| is much smaller than |vg 3],
because m. x v1, cf. equation (2.4); in our scan we have restricted 5 < |tan 8| < 400.

Notice that equation (4.12) is used just as an Ansatz for our numerical study: nothing
guarantees that the global minimum of the potential has real VEVs or, indeed, that it
conserves the U(1) of electromagnetism. We also remind that, since in our model the C'P
transformation effects ¢ <+ @3, a vacuum with vy # v3 will in general lead to C'P violation
even when the VEVs are real — indeed, we shall use equation (4.12) to fit for the observed
C'P violation, cf. equations (4.17) below.

We have made the quartic couplings of the potential comply with certain basic restric-
tions for the model to make sense:

e The scalar potential has to be bounded from below (BFB), i.e. there should be no
directions in field space along which the potential can tend to minus infinity. To find
the BFB conditions one must study the behaviour of the scalar potential for specific
directions along which the fields may tend to infinity and verify which combinations
of parameters ensure that the potential is BEB. The set of necessary conditions® that

8A set of necessary and sufficient BFB conditions was obtained for the two-Higgs-doublet model in
ref. [20], but the procedure described therein cannot be generalized to models with a larger scalar content.
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we have enforced is (see refs. [21, 22])

A1 >0, (4.13a)

A2 > 0, (4.13b)

L1 =2/ M2 + Az 4+ (A — 2] Xs]) © (2] As] — M) > 0, (4.13¢)
Lo=2X\+ A5 + (A6 — 2| A7) © (2| A7] — Ag) > 0, (4.13d)
VA1Ly 4 2/ ALy — 4o/ A + Li/Ly > 0, (4.13¢)

where © denotes the step function of Heaviside.

e The model must respect unitarity and perturbativity. Therefore, the quartic cou-
plings of the potential cannot be arbitrarily large. We have imposed |\;| < 20 VI =
1,...,8; this should guarantee appropriate behaviour.

e The model has to obey the phenomenological constraint on the oblique parameter
T, viz. T = 0.01 = 0.12 [23]. The value of T" was computed through the formulae of
ref. [19].7

In the further discussion of this section, we use the following notation for the ex-
act scalar mass eigenstates: charged scalars H;" (i = 1,2), CP-even neutral scalars h;
(i = 1,2,3), and pseudoscalars A; (i = 1,2).19 There is the correspondence H:r < qu,
h; <> p;, and A; <> 0; between the exact and the approximate mass eigenstates, with the ap-
proximate masses given by equations (4.10). By definition, the mass of A; is larger than the
mass of Ay and the mass of H f is larger than the mass of H;r ; similarly, mp, > mp, > mp,.

With the above restrictions in place, we still have to implement in our numerical scan
a scalar state hg, corresponding to the Higgs boson, with mass 125 + 1 GeV and almost
“aligned”, according to the discussion held in the previous sections, with the ps direction.
Also, since the model does have FCNYI, it is very convenient that all the neutral scalars
other than the lightest one be as heavy as possible. In our scan we have imposed a lower
bound of 600 GeV on the masses of the charged scalars Hfr 5, of the pseudoscalars A; o,
and of the heavier C' P-even scalars h1,2.11 Moreover, since the experimental constraints on
FCNYT in the down-type-quark sector are much stronger than those in the up-type-quark
sector, we have chosen to scan exclusively the extension 2 of our model to the quark sector,
since that extension has no FCNYT in the down sector. Finally, in order to comply with
current LHC experimental results [24], the 125 GeV-mass scalar hg must have couplings to
the gauge bosons and to the heavy fermions close to the SM values. Specifically, in our
scan we have demanded that:

9We have explicitly checked that the bounds on the oblique parameter S never give additional restrictions
to this model.

ONote that, since in our fit we have assumed both the parameters of the potential and the VEVs to
be real, the scalar sector of the model conserves C'P, hence there are well-defined neutral scalars and
pseudoscalars.

1We have also imposed an upper bound of 1500 GeV on all the scalar masses.
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Figure 1. Scatter plot of the mass of the second heaviest C'P-even scalar versus the absolute
value of v.

e The coupling of h3 to the gauge bosons be within 10% of its expected SM value, i.e.

v1 V13 + v2 Va3 + v3V33 <

gsvv = > 0.9, (4.14)

v

with the matrix V defined in equation (A.2). By definition, the third column of that
matrix corresponds to the 125 GeV-mass neutral scalar hs.

e The coupling of h3 to the bottom quarks be within 10% of its expected SM value, i.e.

Vi3

Gspp = =1+0.1. (4.15)

U1
e The coupling of h3 to the tau leptons be within 10% of its expected SM value, i.e.

gsmn =28 1401, (4.16)
U3

In figure 1 we have plotted the mass of the second heaviest C' P-even scalar, ho, against
the value of the VEV v;. There are two features worth mentioning. Firstly, the value of
|v1| may be very small, i.e. the value of |tan 3| may be very large. Secondly, the mass of hsy
is never higher than 1.35TeV. The first feature implies sin 3 ~ 1; therefore, the values of
ve and v3 in equations (4.12) are essentially constant: |va| ~ 14.6 GeV and vg ~ 245.3 GeV.
The second feature arises from the need to keep the magnitudes of the quartic couplings
in the perturbative regime, viz. |\;| < 20 for i = 1,3,4,5,6. The other quartic couplings
retain smaller magnitudes; we obtained —12 < Ay < 13 and —14 < Ag < 2 in our scan,
while the coupling Ay € [0.12, 0.14] as predicted above.

Since we can find regions in the parameter space for which |v1| < |va| < |vs], the
expressions (4.10) constitute good approximations to the exact scalar masses. To illustrate
this, in figure 2 we have plotted the exact mass of H;r against the approximate expression
for that mass in equation (4.10d). As we can appreciate from the plot, the approximate
formula describes quite reasonably the true value, though deviations < 30% occur in some
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Figure 2. Scatter plot of the approximate expression (4.10d) for the mass of the lightest charged
scalar versus the true mass of that particle.
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Figure 3. Scatter plot of the mass of the lightest charged scalar versus the mass of the lightest
pseudoscalar.

cases. Similar results have been obtained for the approximate formulae for the masses of
ho, Ao, hq, A7, and Hf‘

In figure 3 one observes that the mass of As may be smaller than, but may also be
as much as twice, the one of H2+ . This is in spite of our enforcement of the experimental
bound on the oblique parameter T', which might suggest the masses of As, hy, and H; to
be almost degenerate; they are not. In figure 4 one observes the same as in figure 3, but
now for the heaviest charged scalar and the heaviest pseudoscalar. One sees once again
that the masses of the heaviest scalars can differ considerably.

Comparing figures 3 and 4 one sees that the masses of the heaviest and the lightest
scalars are not necessarily much different. This can be confirmed through figure 5, where
the masses of the two heavy neutral scalars are plotted against each other. One sees the
mp, and mp, may be quite close to each other, whatever their average value.
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Figure 4. Scatter plot of the mass of the heaviest charged scalar versus the mass of the heaviest
pseudoscalar.
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Figure 5. Scatter plot of the mass of the heaviest neutral scalar versus the mass of the intermediate-
mass neutral scalar.

At this stage, we have shown that our model can reproduce a boson with mass roughly
125 GeV and couplings to the gauge bosons, to the bottom quarks, and to the tau lep-
tons close to the expected SM values. The Yukawa-coupling matrix 'y, as described in
section 3.2, reproduces the known down-type-quark masses. We now have to show that
the model can also reproduce both the up-type-quark masses and the CKM matrix. We
take the values of the up-type-quark running masses, at the scale my, from ref. [25] and
the values of the CKM-matrix parameters from ref. [23]:

my, = 1.387042 MeV, me = 638 gs MeV, my =172.1+1.2GeV,  (4.17a)
|Vius| = 0.22536 + 0.00061, |V, = 0.04114 4 0.0012, (4.17b)
|Vip| = (355 & 15) x 1075, J=306"% x 107", (4.17¢)

We have used the values of the parameters of the model that had previously been shown to
obey all the constraints hitherto mentioned and we have searched for phenomenologically
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acceptable values for the Yukawa couplings in equations (3.27):

bil fa+ifs fo—ifs
Ci=| fo]l, Co=| fo+ifr |, Cs=| fe—ifr |, (4.18)
/3 fs +ifo f8 —ifo

with real fi,..., fo9. Specifically, we have demanded in our fitting procedure that the
up-type-quark mass matrix in equation (3.20), after being diagonalized as VMpM,],LVJf =

2 m2 m?), gives both the right values for the masses of the up-type quarks and for

diag (m
the moduli of the matrix elements of the CKM matrix V. We moreover require that the

coupling of h3 to top quarks be within 10% of its SM value:

3 U’Ujng (VC]]-LC]'VT>33
=140.1. (4.19)

gstt =
j=1

2m?
We have also verified what constraints might arise from the limits on b — sy observations.
These would arise solely from the charged-scalars interactions, and should be similar in
form to those found in 2HDM type-II, due to bottom and top quarks getting their masses
from two different doublets. Due to the mixing of the two charged scalars, we have verified
that the couplings of the lightest charged state to the fermions are suppressed compared
to those one would obtain in a type-II 2HDM. As a result, the constraints from b — sy
obtained for our model are much less stringent than those found for the 2HDM type-II.
Since we further consider only high masses for the charged scalars (above 600 GeV), the
constraints will be even less relevant.

We have found that, for each and every set of parameters of the scalar potential that
has been used to produce figures 1-5, it is possible to find values for fi,..., fg which lead
to observables satisfying equations (4.17) and (4.19) almost perfectly. Indeed, most of the
observables can be fitted at the 10 level, but at least one of the observables m.., |V,3|, and
J can only be fitted at the 2 ¢ level. Thus, if all the observables except m, are within their
1o allowed domains, then the minimum pull'? of m, is 1.9; if all the observables except
|Vip| have pull smaller than one in modulus, then |V,;| has a pull of at least 2.4; if all the
observables but J are within their 1o boundaries, then J has a pull smaller than —1.8.
Altogether, the best fits that we were able to achieve have a value of x? — for the three
quark masses and the four CKM-matrix observables in equations (4.17) — of 5.1.

An example of one of our best fits is provided in table 1.

5 Conclusions

In this paper we have shown that it is possible to unify the idea of a scotogenic neutrino mass
model [13] with the enforcement of co-bimaximal lepton mixing. The latter is obtained via
softly broken lepton numbers [1] and a non-standard C'P transformation which interchanges
the p and 7 flavours. Such a C'P transformation procures 23 = 45° and § = +7/2 in the

12 A5 usual, we define the ‘pull’ of an observable as the difference between its fitted value and its mean
value divided by the standard deviation.
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parameter value observable value
B (rad) 1.5732963215865827 mp, (GeV) 125.0

A1 17.135112092706517 mp, (GeV) 739.2
A2 0.13092447205288404 mp, (GeV) 951.7
A3 15.624853371379327 ma, (GeV) 1106
VI —11.846787927249578 | my, (GeV) 1281
A5 19.99999999813406 Myt (GeV) 773.0
A6 16.363914697200098 M+ (GeV) 1193
A7 —9.030984509839026 gsvv 0.9925
As —2.6314236783145977 gsbb 1.000

pg (GeV2) | 2140.7424941612453 gsrr 1.000
fi 0.0024483113150037543 T 0.01000
fa —0.03085374618190331 | m,, (MeV) 1.665
f3 —0.20462462612388946 | m. (MeV) 679.1
fa 0.0032554425959401188 | my (GeV) 170.9
f5 0.00697096592835829 |Vius| 0.2259
fe —0.001672825126610988 |Ves| 0.04144
fr —0.040296075343726166 A 0.003694
fs 0.7561059024727611 J 0.00002706
fo —0.6259667363570083 gsit 0.9926

Table 1. The values of the parameters and of the observables for one of our fits. The sign of vy
— see equation (4.12) — is positive for this fit. The values of 111 2 3 were computed by using the
stationarity equations for the vacuum.

lepton mixing matrix, while 613 remains undetermined; this is in good agreement with
the data. In a scotogenic model, the neutrino masses are generated through a one-loop
diagram involving the dark sector, which consists of right-handed neutrinos and a scalar
gauge doublet 17 which has zero VEV. Thus, a scotogenic model combines neutrino-mass
suppression through the seesaw mechanism and through radiative mass generation.

Our model contains three scalar doublets with nonzero VEVs. Therefore, we wanted
to demonstrate that a scalar hg with mass 125 GeV can be accommodated in our model.
We have shown that this scalar can be made to have couplings to the gauge bosons and to
the heavy fermions very close to those of the Higgs particle. Since the non-standard C'P
transformation interchanges, besides the p and 7 flavours, also two of the scalar doublets,
it is non-trivial to make all the scalars other than h3 heavy. Still, we have found that all
of them can be made to have masses above 600 GeV.
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We have also demonstrated that the symmetries of our model may consistently be
extended to the quark sector, correctly reproducing all the quark masses and the CKM
matrix. There are neutral scalar-mediated flavour changing currents; however, it is possible
to choose the model’s symmetries so that they occur only in the up-type-quark sector, for
which the experimental constraints on such currents are much looser. The fit to the quark
sector is at the 2o level, but with many observables falling within their 1o uncertainty
intervals.
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A One-loop neutrino mass corrections

In this appendix we collect some formulae from ref. [12], adapting them to the model in
this paper. In particular, we set n;, = ng = 3 and nyg = 4, where ny, ng, and ny are, in
the notation of ref. [12], the numbers of fermion families, of right-handed neutrino singlets,
and of scalar doublets, respectively. The Yukawa Lagrangian of the right-handed neutrinos
in equation (1) of ref. [12] is given by

4
EVRYukawa = —UR (Z QBL Ak) Dp +H.c. (Al)
k=1

The notation for the physical neutral scalars is best explained in ref. [19]. The neutral
component of the scalar doublet ¢ (k = 1,2,3,4) has VEV <O }qﬁg‘ 0> = v /ﬂ and is
written as .
1
0 0
= — | v+ VipSy |, A2
Dk 7 ( g ; kb b> (A.2)
where the complex matrix V is 4 x 8. The neutral Goldstone boson is S and the remaining

seven Sl? , for b =2,...,8, are physical neutral scalars with masses my. For each physical
neutral scalar we define, following ref. [12], the matrix
4
Ay =D VipAyg. (A.3)
k=1
Then, the final result in equation (53) of ref. [12] is
8 mg T 1 ﬁlZ T
5My = Z 327-(-2 Ab W (ﬁl ln Tnz> W Ab (A4a)
b=2
392 T 1 ffl/z
MAW™ ( =In— | WTMp. A.4b
* 64m2c2 P <m nm2Z b ( )
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The sum in line (A.4a) includes only the physical neutral scalars. Line (A.4b) includes the
contributions from the loop with a Z° and from the loop with a neutral Goldstone boson.
In that line, Mp = Zi:l (vk /\@) Ay is the Dirac neutrino mass matrix; in the model in
this paper that matrix vanishes, because both the matrices A; 2 3 and the VEV vy are null.
Therefore, for this paper only line (A.4a) matters.

In equation (A.4), the 3x 3 unitary matrix W is the one that diagonalizes Mg according
to equation (51) of ref. [12]:

WIMpW* = m = diag (ma, ms, mg) , (A.5)
where my 56 are the masses of the physical heavy neutrinos.
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