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Saulėtekio ave. 3, LT-10222 Vilnius, Lithuania
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1 Introduction

With the experimental finding that the lepton mixing angle θ13 is nonzero, many theoretical

neutrino mass models fell into disfavour. An exception is the model in ref. [1], in which

there is a relation

SMνS = M∗
ν , where S =




1 0 0

0 0 1

0 1 0


 (1.1)

and Mν is the (symmetric) light-neutrino Majorana mass matrix in the basis where the

charged-lepton mass matrix is diag (me,mµ,mτ ). The condition (1.1) leads to sin2 θ23=1/2

and (provided sin θ13 6= 0) cos δ = 0, which is in agreement with the phenomenology [2–5];

this situation has recently been dubbed ‘co-bimaximal mixing’ [6].1 A relevant point is that

the condition (1.1) does not restrict the neutrino masses; it only restricts lepton mixing.

Actually, as a consequence of the condition (1.1), the lepton mixing matrix has the form [1]

U =




u1η1 u2η2 u3η3
w1η1 w2η2 w3η3
w∗
1η1 w∗

2η2 w∗
3η3


 (1.2)

with uj ≥ 0, |wj |2 =
(
1− u2j

)/
2, and η2j = ±1 for j = 1, 2, 3. It is clear from equa-

tion (1.2) that |Uµj | = |Uτj | ∀ j = 1, 2, 3 [9–11]. Note that the condition (1.1) entails three

restrictions on lepton mixing:

1A different way for obtaining co-bimaximal mixing, not involving the condition (1.1), has been recently

proposed in refs. [7, 8].
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1. The atmospheric mixing angle θ23 is maximal, i.e. sin (2θ23) = 1.

2. The CP -violating phase δ is ±π/2.

3. The Majorana phase factors in effective neutrinoless ββ decay are ±1.

Because the predictions of condition (1.1) do not depend on the neutrino masses, it is

possible that, in some multi-Higgs-doublet models, co-bimaximal mixing is not disturbed

by the one-loop corrections to the neutrino mass matrix [12]. This may, in particular, be

the case in a ‘scotogenic’ model [13]. In such a model, the masses of the light neutrinos

have radiative origin and the particles in the loop that generates them belong to the dark

sector of astrophysics, i.e. they are prevented from mixing with the ordinary particles by

an unbroken (usually Z2) symmetry.

The purpose of this paper is to propose a scotogenic model for the neutrino masses

which predicts co-bimaximal mixing.2 This is done in section 2. In section 3 we expose two

possible extensions of that model to the quark sector. An analysis of the scalar potential

of the model and of its compatibility with the recently discovered scalar of mass 125GeV

is performed in section 4. We summarize our findings in section 5. Appendix A collects

some formulae from ref. [12] which are used in section 2.

2 The model for the lepton sector

Our model is an extension of the Standard Model with gauge symmetry SU(2)×U(1). The

usual fermion multiplets are three DαL and three αR (α = e, µ, τ). Besides, we introduce

three right-handed neutrinos ναR; they belong to the dark sector of the model. Our model

has four scalar doublets:

φj =

(
φ+
j

φ0
j

)
(j = 1, 2, 3) and φ4 ≡ η =

(
η+

η0

)
. (2.1)

The doublet φ1 gives mass to the electron, φ2 gives mass to the muon, and φ3 gives mass

to the τ lepton; the doublet φ4 ≡ η belongs to the dark sector. We shall also use the

conjugate doublets φ̃j =
(
φ0
j
∗
, −φ−

j

)T
and η̃ =

(
η0

∗
, −η−

)T
.

The symmetries of our model are the following:

• Z

(dark)
2 : η → −η, νeR → −νeR, νµR → −νµR, and ντR → −ντR. This is an exact

symmetry that prevents dark matter from mixing with ordinary matter. It is broken

neither softly nor spontaneously, because the vacuum expectation value (VEV) of η

is zero.3

2Recently, another such model, but which employes a completely different mechanism, has been proposed

in ref. [14]. The model of ref. [14] is more complicated than the one presented in this paper for several

reasons: (1) it has two types of dark matter, one of them protected by a U(1) symmetry and the other one

by a Z2 symmetry. (2) It has several more fields in the dark sector. (3) The masses of the charged leptons

are of radiative origin, just as those of the neutrinos. (4) The soft breaking of the symmetries occurs in two

steps, with an A4 symmetry in the dimension-four terms being softly broken to Z3 through dimension-three

terms and that Z3 being softly broken through dimension-two terms.
3Such scalar doublets have been dubbed ‘inert’ in ref. [15].
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• The flavour lepton numbers Lα. They are broken only softly by the Majorana mass

terms of the ναR:

LMajorana = −1

2

(
νeR, νµR, ντR

)
MRC




νeR
T

νµR
T

ντR
T


+H.c., (2.2)

where C is the charge-conjugation matrix in Dirac space and MR is a symmetric

matrix in flavour space.

• Z

(1)
2 : φ1 → −φ1, eR → −eR, Z

(2)
2 : φ2 → −φ2, µR → −µR, and Z

(3)
2 : φ3 → −φ3,

τR→−τR. Because of these symmetries and of the Lα, the lepton Yukawa

Lagrangian is

LℓYukawa = −y1 νeR η̃†DeL − y2 νµR η̃†DµL − y3 ντR η̃†DτL (2.3a)

− y4 eR φ†
1DeL − y5 µR φ†

2DµL − y6 τR φ†
3DτL +H.c. (2.3b)

The Z
(j)
2 (j=1, 2, 3) are broken spontaneously, through the VEVs

〈
0
∣∣∣φ0

j

∣∣∣ 0
〉
=vj

/√
2,

to give mass to the charged leptons:

me =

∣∣∣∣
y4v1√

2

∣∣∣∣ , mµ =

∣∣∣∣
y5v2√

2

∣∣∣∣ , mτ =

∣∣∣∣
y6v3√

2

∣∣∣∣ . (2.4)

Besides, the Z

(j)
2 are also broken softly4 through quadratic terms in the scalar

potential.

• The CP symmetry

CP :





DL → iγ0C S DL
T
,

ℓR → iγ0C S ℓR
T
,

νR → iγ0C S νR
T ,

φ → S φ∗,

η → η∗,

where

DL =




DeL

DµL

DτL


 , ℓR =




eR
µR

τR


 ,

νR =




νeR
νµR
ντR


 , φ =




φ1

φ2

φ3


 .

(2.5)

Because of this symmetry, in equation (2.2)

MR =




x y y∗

y z w

y∗ w z∗


 , (2.6)

with real x and w, i.e. SMRS = M∗
R; moreover, in equation (2.3) y1 and y4 are real

and y3 = y∗2, y6 = y∗5. Therefore,

mµ

mτ
=

∣∣∣∣
v2
v3

∣∣∣∣ , (2.7)

4We recall that in a renormalizable theory a symmetry is said to be broken softly when all the symmetry-

breaking terms have dimension smaller than four. This leaves open two possibilities: either they have both

dimension two and dimension three or they have only dimension two. Soft symmetry breaking is consistent

in quantum field-theoretic terms because, when using it, the dimension-four symmetry-violating terms

generated by loops are finite. The soft breaking of (super)symmetries is extensively used in model-building;

in particular, all supersymmetric models contain soft supersymmetry-breaking terms.
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i.e. the small ratio of muon to τ -lepton mass is explained through a small ratio of

VEVs [16]. The symmetry CP is not broken softly5 but it is broken spontaneously

through the VEVs vj , especially through |v2| 6= |v3|.6

As compared to the model in ref. [1], the present model has an extra doublet η,

whose vanishing VEV causes neutrino mass generation to occur only at the one-loop level.

However, as we will show below, the very same mechanism that produces co-bimaximal

mixing at the tree level in the model of ref. [1] is effective at the one-loop level in the model

of this paper.

In our model, just as in the original model of Ma [13], dark matter may be either

spin-one half — the lightest particle arising from the mixture of νeR, νµR, and ντR — or

spin-zero — the lightest of the two components ϕ1,2 of η0 — depending on which of them

is lighter. No other fields are needed in principle to account for the dark matter.

In the scalar potential, a crucial role is played by the CP -invariant terms

ξ1

[(
φ†
1η
)2

+
(
η†φ1

)2
]
+ ξ2

[(
φ†
2η
)2

+
(
η†φ3

)2
]
+ ξ3

[(
φ†
3η
)2

+
(
η†φ2

)2
]
, (2.8)

where ξ1 = ξ∗1 and ξ3 = ξ∗2 because of Hermiticity. Let us write

φ0
4 ≡ η0 = eiγ

ϕ1 + iϕ2√
2

, (2.9)

where the fields ϕ1 and ϕ2 are real and the phase γ is defined such that

µ2 ≡ e2iγ
3∑

j=1

ξj
v∗j

2

2
(2.10)

is real and positive. Then, the terms (2.8) generate a mass term

µ2
(
ϕ2
1 − ϕ2

2

)
, (2.11)

which means that ϕ1 and ϕ2 are mass eigenfields with distinct masses. The term (2.11) is

the only one that makes the masses of ϕ1 and ϕ2 different; all other terms in the scalar

potential contain
∣∣η0

∣∣2 =
(
ϕ2
1 + ϕ2

2

) /
2.

Now we make use of the results in appendix A. In the notation of equation (A.1),

equation (2.3a) means that ∆1 = ∆2 = ∆3 = 0 and ∆4 = diag (y1, y2, y
∗
2); notice that

S∆4S = ∆∗
4. In the notation of equation (A.2), equation (2.9) reads V4ϕ1

= eiγ and

V4ϕ2
= ieiγ . Then, according to equation (A.3), ∆ϕ1

= eiγ∆4 and ∆ϕ2
= ieiγ∆4. Applying

equation (A.4) we find the one-loop contribution to Mν :

δMν =
e2iγ

32π2

[
∆4W

∗

(
m2

ϕ1

m̃
ln

m̃2

m2
ϕ1

)
W †∆4 −∆4W

∗

(
m2

ϕ2

m̃
ln

m̃2

m2
ϕ2

)
W †∆4

]
, (2.12)

5We might accept the soft breaking of CP by quadratic terms in the scalar potential; that soft breaking

by terms of dimension two would not disturb the dimension-three terms in LMajorana. But, for the sake of

simplicity, we shall refrain in this paper from such a soft breaking.
6Ours is a model of ‘real CP violation’, i.e. CP violation originates in the inequality of two VEVs, even

if those VEVs are real [17, 18].
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where the matrices W and m̃ are defined through equation (A.5). Note that there is no

contribution to δMν from a loop with Z0 because the VEV of η is assumed to vanish;

therefore, the Dirac neutrino mass matrix MD in line (A.4b) also vanishes.

In the limit µ2 → 0, the masses of ϕ1 and ϕ2 become equal and the contributions of ϕ1

and ϕ2 to δMν exactly cancel each other; the light neutrinos then remain massless at the

one-loop level [13]. This happens in the limit where all the terms in equation (2.8) vanish.

Indeed, in that limit the full Lagrangian is invariant under the U(1) symmetry

DL → eiψDL, ℓR → eiψℓR, η → e−iψη, (2.13)

which forbids light-neutrino masses [13]. We remark that there are, in the scotogenic model

of this paper, several mechanisms for potentially suppressing the light-neutrino masses, viz.

• a large seesaw scale, i.e. large heavy-neutrino masses in m̃;

• small Yukawa couplings of νR, i.e. small ∆4;

• small couplings ξ1,2,3 in equation (2.8), hence mϕ1
and mϕ2

very close to each other,

because of an approximate symmetry (2.13);

• the
(
32π2

)−1
factor in equation (2.12) from the loop integral.

Let us present a benchmark for all these suppressing factors. Let both ξ1,2,3 and y1,2 be of

order 10−2. With |v1,2,3| ∼ 100GeV one then obtains |mϕ1
−mϕ2

| ∼ 10GeV. Assuming

mϕ1,2
∼ 100GeV, one requires m̃ ∼ 107–8GeV in order to obtain δMν ∼ 0.1 eV. One

concludes that the main suppression still originates in the high seesaw scale. However,

with small ξ1,2,3 and y1,2, of order 10−3 or 10−4, the seesaw scale could easily be in the

TeV range and thus accessible to the LHC.

Next we exploit the CP -invariance properties, viz. S∆4S = ∆∗
4 and SMRS = M∗

R.

Equation (2.12) may be rewritten

e−2iγδMν = ∆4W
∗ÂW †∆4, with Â =

1

32π2

(
m2

ϕ1

m̃
ln

m̃2

m2
ϕ1

−
m2

ϕ2

m̃
ln

m̃2

m2
ϕ2

)
. (2.14)

Now,

SMRS = M∗
R ⇒

(
W †SW ∗

)∗

m̃ = m̃
(
W †SW ∗

)
⇒ W †SW ∗ = X, (2.15)

where X is a diagonal sign matrix [1]. This is because, according to the assumptions of

the seesaw mechanism, all the diagonal matrix elements of m̃, i.e. all the heavy-neutrino

masses, are nonzero. Using equation (2.15) we derive

S
(
∆4W

∗ÂW †∆4

)
S = (S∆4S) (SW

∗) Â
(
W †S

)
(S∆4S)

= ∆∗
4WXÂXW T∆∗

4

= ∆∗
4WÂW T∆∗

4

=
(
∆4W

∗ÂW †∆4

)∗

, (2.16)

– 5 –
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i.e.

S
(
e−2iγδMν

)
S =

(
e−2iγδMν

)∗
. (2.17)

Thus, after a physically meaningless rephasing, δMν displays the defining feature (1.1) of

co-bimaximal mixing.

2.1 Approximation to the Higgs boson

We use the notation of equation (A.2). The matrix V is complex 4 × 8 and, according

to ref. [19],

Ṽ =

(
ℜV
ℑV

)
(2.18)

is 8 × 8 orthogonal. The last row of V corresponds to φ0
4 ≡ η0. For definiteness, we let

the last two columns of V correspond to ϕ1 and ϕ2, which belong to the dark sector and

do not mix with all the other scalars. Therefore, for practical purposes V is just a 3 × 6

matrix. By definition, S0
1 = G0 is the Goldstone boson and [19]

Vj1 = i
vj
v

for j = 1, 2, 3, where v ≡

√√√√
3∑

j=1

|vj |2. (2.19)

The couplings of S0
b (b = 2, . . . , 6) to the gauge bosons are given by [19]

g

v

(
mWW+

µ Wµ− +
mZZµZ

µ

2cw

) 8∑

b=2

S0
b ℜ




3∑

j=1

v∗jVjb


. (2.20)

Therefore, a given S0
b couples to the gauge bosons with exactly the same strength as the

Higgs boson of the Standard Model if

gSV V ≡ ℜ




3∑

j=1

v∗j
v

Vjb


 = 1. (2.21)

Notice that, because both three-vectors (v∗1/v, v∗2/v, v∗3/v) and (V1b, V2b, V3b) have unit

modulus, |gSV V | ≤ 1. Therefore, equation (2.21) holds in a limit situation.

According to equation (2.3b), the scalars S0
b couple to the τ lepton through

− 1√
2

6∑

b=1

S0
b τ (V3by

∗
6γR + V∗

3by6γL) τ = −mτ

6∑

b=1

S0
b τ

(V3b

v3
γR +

V∗
3b

v∗3
γL

)
τ, (2.22)

where γR,L are the projectors of chirality in Dirac space. In equation (2.22) we have

assumed, without loss of generality, y6v
∗
3 to be real and positive. Therefore, a given S0

b

couples to the τ lepton in the same way as the Higgs boson if

vV3b

v3
= 1. (2.23)

– 6 –



J
H
E
P
0
7
(
2
0
1
6
)
0
1
0

3 Extension of the model to the quark sector

It is non-trivial to extend our model to the quark sector because the CP symmetry relates

the Yukawa couplings of φ2 to those of φ3; moreover, some quarks must couple to φ2 —

and, correspondingly, other quarks must couple to φ3 — in order that CP violation, which

is generated through v∗1v2 6= v1v
∗
3, manifests itself in the CKM matrix V .

We firstly expound some notation. The quark Yukawa Lagrangian is

LquarkYukawa = −
(
QL1, QL2, QL3

) 3∑

j=1


φjΓj




nR1

nR2

nR3


+ φ̃j∆j




pR1

pR2

pR3





+H.c., (3.1)

where QLj =
(
pLj , nLj

)
for j = 1, 2, 3. The mass matrices are Mn =

∑3
j=1

(
vj

/√
2
)
Γj

and Mp =
∑3

j=1

(
v∗j

/√
2
)
∆j . They are diagonalized as

Un
L
†MnU

n
R = diag (md,ms,mb) ≡ Md, (3.2a)

Up
L
†
MpU

p
R = diag (mu,mc,mt) ≡ Mu, (3.2b)

where the matrices Un,p
L,R are unitary. The physical quarks are given by




nR1

nR2

nR3


 = Un

R




dR
sR
bR


 ,




pR1

pR2

pR3


 = Up

R




uR
cR
tR


 , (3.3)

and analogously for the left-handed fields. The quark mixing matrix is V = Up
L
†
Un
L .

3.1 Extension 1

One may include the quarks in the symmetries Z
(j)
2 as follows:

Z

(1)
2 : φ1, eR, and QL1 change sign; (3.4a)

Z

(2)
2 : φ2, µR, and QL2 change sign; (3.4b)

Z

(3)
2 : φ3, τR, and QL3 change sign. (3.4c)

Then,

Γ1 =




R1

01×3

01×3


 , Γ2 =




01×3

R2

01×3


 , Γ3 =




01×3

01×3

R3


 , (3.5a)

∆1 =




R′
1

01×3

01×3


 , ∆2 =




01×3

R′
2

01×3


 , ∆3 =




01×3

01×3

R′
3


 , (3.5b)
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where R1,2,3 and R′
1,2,3 are 1 × 3 row matrices. Notice that both Γ1,2,3 and ∆1,2,3 are in

this extension rank 1 matrices. The quark mass matrices are

Mn =
1√
2




R1v1
R2v2
R3v3


 , Mp =

1√
2




R′
1v

∗
1

R′
2v

∗
2

R′
3v

∗
3


 . (3.6)

We define the 1× 3 matrices

R̄j ≡ RjU
n
R, R̄′

j ≡ R′
jU

p
R . (3.7)

Writing

Un
L =




R̂1

R̂2

R̂3


 , Up

L =




R̂′
1

R̂′
2

R̂′
3


 , (3.8)

where the R̂j and R̂′
j are 1×3 row matrices,7 one has, from equations (3.2), (3.6), and (3.7),

R̄j
vj√
2
= R̂jMd, R̄′

j

v∗j√
2
= R̂′

jMu. (3.9)

(We do not use the summation convention.) The Yukawa couplings of the neutral scalars

— see equation (A.2) — are

− 1√
2

8∑

b=1

S0
b

3∑

j=1


nLj VjbRj




nR1

nR2

nR3


+ pLj V∗

jbR
′
j




pR1

pR2

pR3







= − 1√
2

8∑

b=1

S0
b

3∑

j=1


nLj VjbR̄j




dR
sR
bR


+ pLj V∗

jbR̄
′
j




uR
cR
tR







= −
8∑

b=1

S0
b

3∑

j=1


nLj

Vjb

vj
R̂jMd




dR
sR
bR


+ pLj

V∗
jb

v∗j
R̂′

jMu




uR
cR
tR







= −
8∑

b=1

S0
b



(
dL, sL, bL

) 3∑

j=1

Vjb

vj
R̂†

jR̂jMd




dR
sR
bR




+
(
uL, cL, tL

) 3∑

j=1

V∗
jb

v∗j
R̂′†

j R̂
′
jMu




uR
cR
tR





 . (3.10)

Defining the Hermitian matrices

Hj ≡ R̂†
jR̂j =

|vj |2
2

M−1
d R̄†

jR̄jM
−1
d , H ′

j ≡ R̂′†
j R̂

′
j =

|vj |2
2

M−1
u R̄′†

j R̄
′
jM

−1
u , (3.11)

7Notice that the quark mixing matrix is V =
∑3

j=1
R̂

′†
j R̂j .
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the Yukawa couplings of a given S0
b to the third-generation quarks are given by

− S0
b

3∑

j=1

[
mb (Hj)33 b

(
Vjb

vj
γR +

V∗
jb

v∗j
γL

)
b+mt

(
H ′

j

)
33
t

(
Vjb

vj
γL +

V∗
jb

v∗j
γR

)
t

]
. (3.12)

Thus, S0
b couples to the third-generation quarks in the same way as the Higgs boson if

3∑

j=1

(Hj)33
Vjb

vj
=

3∑

j=1

(
H ′

j

)
33

Vjb

vj
=

1

v
. (3.13)

We have not yet specified the way in which the CP symmetry is to be extended to the

quark sector. This may be chosen to be

CP :





QL → iγ0C S QL
T
,

nR → iγ0C nR
T ,

pR → iγ0C pR
T ,

where

QL =
(
QL1, QL2, QL3

)T
,

pR =
(
pR1, pR2, pR3

)T
,

nR =
(
nR1, nR2, nR3

)T
.

(3.14)

The CP symmetry (3.14) enforces real R1 and R′
1 and

R3 = R∗
2, R′

3 = R′
2
∗
. (3.15)

3.2 Extension 2

The extension of our model to the quark sector expounded in the previous subsection

treats the down-type and up-type quarks in similar fashion. It possesses flavour-changing

neutral Yukawa interactions (FCNYI) in both quark sectors. In this subsection we suggest

a different extension, in which FCNYI are restricted to the up-type-quark sector.

Let the quarks be included in the symmetries Z
(j)
2 as

Z

(1)
2 : φ1, eR, pR1, nR1, nR2, and nR3 change sign; (3.16a)

Z

(2)
2 : φ2, µR, and pR2 change sign; (3.16b)

Z

(3)
2 : φ3, τR, and pR3 change sign. (3.16c)

With this extension, the Yukawa-coupling matrices Γ2 and Γ3 vanish outright. In

extension 2, as distinct from extension 1, the matrices Γ2,3 are rank 0 while Γ1 is rank 3.

Without loss of generality, one may rotate the QL and the nR so that v1Γ1

/√
2 = Mn is

equal to Md from the outset. Then, Un
L = Un

R = 13×3 and the CKM matrix V = Up
L
†
.

Analogously to equation (2.22), the couplings of the neutral scalars to the down-type

quarks are given by

−
6∑

b=1

S0
b

∑

q=d,s,b

mq q

(V1b

v1
γR +

V∗
1b

v∗1
γL

)
q. (3.17)

A given S0
b couples to the bottom quark in the same way as the Higgs boson if

vV1b

v1
= 1. (3.18)
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Now,

∆1 ∼
(
C1, 03×1, 03×1

)
, (3.19a)

∆2 ∼
(
03×1, C2, 03×1

)
, (3.19b)

∆3 ∼
(
03×1, 03×1, C3

)
, (3.19c)

where C1,2,3 are 3× 1 column vectors. The up-type-quark mass matrix is

Mp =
1√
2

(
C1v

∗
1, C2v

∗
2, C3v

∗
3

)
. (3.20)

We define the 3× 1 column matrices C ′
j ≡ Up

L
†
Cj . Let

Up
R =




R1

R2

R3


 (3.21)

where the R1,2,3 are 1× 3 row matrices. We know that

Up
L
†
Mp =

1√
2

(
C ′
1v

∗
1, C

′
2v

∗
2, C

′
3v

∗
3

)
= MuU

p
R
†
=

(
MuR

†
1, MuR

†
2, MuR

†
3

)
. (3.22)

Therefore, C ′
j =

(√
2
/
v∗j

)
MuR

†
j .

The couplings of the neutral scalars to the up-type quarks are given by

− 1√
2

6∑

b=1

S0
b

3∑

j=1

V∗
jb pL∆jpR +H.c.

= − 1√
2

6∑

b=1

S0
b

3∑

j=1

V∗
jb pLCjpRj +H.c.

= − 1√
2

6∑

b=1

S0
b

3∑

j=1

V∗
jb

(
uL, cL, tL

)
Up
L
†
CjRj




uR
cR
tR


+H.c.

= − 1√
2

6∑

b=1

S0
b

3∑

j=1

V∗
jb

(
uL, cL, tL

)
C ′
jRj




uR
cR
tR


+H.c.

= −
6∑

b=1

S0
b

3∑

j=1

V∗
jb

v∗j

(
uL, cL, tL

)
MuR

†
jRj




uR
cR
tR


+H.c. (3.23)

Let us define Hj = R†
jRj . The Hj are three Hermitian matrices; since Up

R is unitary,

H1 +H2 +H3 = 13×3. The couplings of the neutral scalars to the top quark are given by

−mt

6∑

b=1

S0
b

3∑

j=1

(Hj)33 t

(
V∗
jb

v∗j
γR +

Vjb

vj
γL

)
t. (3.24)

– 10 –



J
H
E
P
0
7
(
2
0
1
6
)
0
1
0

Thus, one given scalar S0
b couples to the top quark in the same way as the Higgs boson if

3∑

j=1

vVjb (Hj)33
vj

= 1. (3.25)

For the action of CP in the quark sector we choose

CP :





QL → iγ0C QL
T
,

nR → iγ0C nR
T ,

pR → iγ0C S pR
T .

(3.26)

In this way,

C1 = C∗
1 , C2 = C∗

3 . (3.27)

4 The scalar potential

The scalar potential may be separated into three pieces:

V = Vη + Vsymmetric + Vsoft. (4.1)

By definition, all the terms containing η belong to Vη, whereas Vsymmetric + Vsoft contains

exclusively the φj with j = 1, 2, 3. By definition, Vη + Vsymmetric is invariant under all the

symmetries of the Lagrangian, i.e. under both CP and the Z
(j)
2 for j = 1, 2, 3, whereas Vsoft

breaks the Z
(j)
2 softly but preserves CP . Obviously, in any term in Vη + Vsymmetric only

even numbers of η’s and of each of the φj ’s can occur. We have

Vη = µη η
†η + λ̃1

(
η†η

)2

+ η†η
[
λ̃2 φ

†
1φ1 + λ̃3

(
φ†
2φ2 + φ†

3φ3

)]
+ λ̃4 η

†φ1 φ
†
1η + λ̃5

(
η†φ2 φ

†
2η + η†φ3 φ

†
3η
)

+ ξ1

[(
φ†
1η
)2

+
(
η†φ1

)2
]
+

{
ξ2

[(
φ†
2η
)2

+
(
η†φ3

)2
]
+H.c.

}
, (4.2)

where λ̃1–5 and ξ1 are real while ξ2 is in general complex. We assume that the real

coefficient µη is positive, so that the VEV 〈η0〉0 vanishes. Moreover, µη must be sufficiently

larger than the Fermi scale squared, so that the terms with coefficients λ̃2–5 cannot make

µη → µη +
(
λ̃2 + λ̃4

)
|v1|2 +

(
λ̃3 + λ̃5

)(
|v2|2 + |v3|2

)
become negative.

Due to the symmetries, Vsymmetric is given by

Vsymmetric = µ1 φ
†
1φ1 + µ2

(
φ†
2φ2 + φ†

3φ3

)
+ λ1

(
φ†
1φ1

)2
+ λ2

[(
φ†
2φ2

)2
+
(
φ†
3φ3

)2
]

+ λ3 φ
†
1φ1

(
φ†
2φ2 + φ†

3φ3

)
+ λ4

(
φ†
1φ2 φ

†
2φ1 + φ†

1φ3 φ
†
3φ1

)

+ λ5 φ
†
2φ2 φ

†
3φ3 + λ6 φ

†
2φ3 φ

†
3φ2 + λ7

(
φ†
2φ3

)2
+ λ∗

7

(
φ†
3φ2

)2

+ λ8

[(
φ†
1φ2

)2
+
(
φ†
3φ1

)2
]
+ λ∗

8

[(
φ†
2φ1

)2
+
(
φ†
1φ3

)2
]
, (4.3)
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with real λl for l = 1, . . . , 6 and complex λ7 and λ8. The soft-breaking potential, which

consists of terms of dimension two and abides by the CP symmetry, is

Vsoft = µ3 φ
†
2φ3 + µ∗

3 φ
†
3φ2 + µ4

(
φ†
1φ2 + φ†

3φ1

)
+ µ∗

4

(
φ†
2φ1 + φ†

1φ3

)
. (4.4)

We firstly follow ref. [16] to investigate the minimum of Vsymmetric. We write λl= |λl|eiαl

for l = 7, 8 and

v1 = w1e
iβ1 , v2 = w sinσ eiβ2 , v3 = w cosσ. (4.5)

We require without loss of generality that w1 ≥ 0, w ≥ 0, and σ is in the first quadrant.

Let F denote the sum of the terms of 〈0 |Vsymmetric| 0〉 that have a non-trival σ-dependence.

One has

4F = λ2w
4
(
sin4 σ + cos4 σ

)
+ (λ5 + λ6)w

4 sin2 σ cos2 σ (4.6a)

+ 2 |λ7|w4 sin2 σ cos2 σ cos (α7 − 2β2) (4.6b)

+ 2 |λ8|w2
1w

2
[
sin2 σ cos (α8 + 2β2 − 2β1) + cos2 σ cos (α8 + 2β1)

]
. (4.6c)

In line (4.6a) we use sin4 σ + cos4 σ = 1− 2 sin2 σ cos2 σ. We require

− 2λ2 + λ5 + λ6 − 2 |λ7| > 0. (4.7)

Then, the minimum of lines (4.6a) and (4.6b) is achieved when sinσ cosσ = 0. This may

also be the minimum of line (4.6c) because

sin2 σ cos (α8 + 2β2 − 2β1) + cos2 σ cos (α8 + 2β1) ≥ −1 (4.8)

and the value −1 can always be obtained, irrespective of the value of σ, through suitable

choices of β1 and β2. Thus, assuming sinσ = 0 instead of cosσ = 0, the minimum of F is

at σ = 0, i.e. v2 = 0, and α8+2β1 = π. The latter relation, however, is irrelevant if v1 = 0,

because then β1 is meaningless. We assume, indeed, that the coefficient µ1 is positive and

so large that v1 = 0. The minimum of Vsymmetric then has v1 = v2 = 0.

In the limit v1 = v2 = 0 it is easy to compute the scalar mass spectrum. Writing

φ0
1 = e−iα8/2 ρ1 + iσ1√

2
, φ0

2 = eiα7/2 ρ2 + iσ2√
2

, φ0
3 =

w + ρ3 + iσ3√
2

(4.9)

we find

m2
φ+
1

= µ1 +
λ3

2
w2, (4.10a)

m2
ρ1 = µ1 +

(
λ3 + λ4

2
+ |λ8|

)
w2, (4.10b)

m2
σ1

= µ1 +

(
λ3 + λ4

2
− |λ8|

)
w2, (4.10c)

m2
φ+
2

=

(
−λ2 +

λ5

2

)
w2, (4.10d)

m2
ρ2 =

(
−λ2 +

λ5 + λ6

2
+ |λ7|

)
w2, (4.10e)

m2
σ2

=

(
−λ2 +

λ5 + λ6

2
− |λ7|

)
w2, (4.10f)

m2
ρ3 = 2λ2w

2. (4.10g)
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Moreover, σ3 = G0 is the neutral Goldstone boson and φ+
3 is the charged Goldstone boson,

which are absorbed by the Z0 and the W+ gauge bosons, respectively. The fields φ+
1 , ρ1,

and σ1 are heavy because of the large µ1. The scalar ρ3 is to be identified with the Higgs

boson. From mρ3 ≃ 125GeV and w ≃ 246GeV one obtains λ2 ≃ 0.13. The masses of

φ+
2 , ρ2, and σ2 cannot be very large if one wants to stay in the perturbative regime with

respect to λ5,6,7.

Now we take into account Vsoft. This generates v1,2 6= 0 due to the presence of terms

linear in φ1 and φ2. For sufficiently small v1 and v2,

v1 ≃ − µ∗
4v3

µ1 +
1
2 (λ3 + λ4) |v3|2 + λ∗

8 e
−2iβ1v23

, (4.11a)

v2 ≃ − µ3v3

µ2 +
1
2 (λ5 + λ6) |v3|2 + λ7 e−2iβ1v23

. (4.11b)

In order to verify whether the scalar potential of equations (4.1)–(4.4) can produce

a vacuum with the desired hierarchy of VEVs and yield acceptable scalar masses and

couplings, we have performed a numerical scan of the parameter space of the potential.

We have taken all the parameters of the scalar potential to be real, and we have also

assumed real VEVs, parameterized as

v1 = v cosβ, v2 = ± vmµ sinβ√
m2

µ +m2
τ

, v3 =
vmτ sinβ√
m2

µ +m2
τ

, (4.12)

where the angle β may be either in the first or second quadrant. In this way we satisfy

equation (2.7). It is desirable to have β close to π/2 so that |v1| is much smaller than |v2,3|,
because me ∝ v1, cf. equation (2.4); in our scan we have restricted 5 ≤ |tanβ| ≤ 400.

Notice that equation (4.12) is used just as an Ansatz for our numerical study: nothing

guarantees that the global minimum of the potential has real VEVs or, indeed, that it

conserves the U(1) of electromagnetism. We also remind that, since in our model the CP

transformation effects φ2 ↔ φ∗
3, a vacuum with v2 6= v3 will in general lead to CP violation

even when the VEVs are real — indeed, we shall use equation (4.12) to fit for the observed

CP violation, cf. equations (4.17) below.

We have made the quartic couplings of the potential comply with certain basic restric-

tions for the model to make sense:

• The scalar potential has to be bounded from below (BFB), i.e. there should be no

directions in field space along which the potential can tend to minus infinity. To find

the BFB conditions one must study the behaviour of the scalar potential for specific

directions along which the fields may tend to infinity and verify which combinations

of parameters ensure that the potential is BFB. The set of necessary conditions8 that

8A set of necessary and sufficient BFB conditions was obtained for the two-Higgs-doublet model in

ref. [20], but the procedure described therein cannot be generalized to models with a larger scalar content.
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we have enforced is (see refs. [21, 22])

λ1 > 0, (4.13a)

λ2 > 0, (4.13b)

L1 ≡ 2
√
λ1λ2 + λ3 + (λ4 − 2 |λ8|)Θ (2 |λ8| − λ4) > 0, (4.13c)

L2 ≡ 2λ2 + λ5 + (λ6 − 2 |λ7|)Θ (2 |λ7| − λ6) > 0, (4.13d)
√
λ1L2 + 2

√
λ2L1 − 4λ2

√
λ1 + L1

√
L2 > 0, (4.13e)

where Θ denotes the step function of Heaviside.

• The model must respect unitarity and perturbativity. Therefore, the quartic cou-

plings of the potential cannot be arbitrarily large. We have imposed |λl| ≤ 20 ∀l =
1, . . . , 8; this should guarantee appropriate behaviour.

• The model has to obey the phenomenological constraint on the oblique parameter

T , viz. T = 0.01 ± 0.12 [23]. The value of T was computed through the formulae of

ref. [19].9

In the further discussion of this section, we use the following notation for the ex-

act scalar mass eigenstates: charged scalars H+
i (i = 1, 2), CP -even neutral scalars hi

(i = 1, 2, 3), and pseudoscalars Ai (i = 1, 2).10 There is the correspondence H+
i ↔ φ+

i ,

hi ↔ ρi, and Ai ↔ σi between the exact and the approximate mass eigenstates, with the ap-

proximate masses given by equations (4.10). By definition, the mass of A1 is larger than the

mass of A2 and the mass of H+
1 is larger than the mass of H+

2 ; similarly, mh1
> mh2

> mh3
.

With the above restrictions in place, we still have to implement in our numerical scan

a scalar state h3, corresponding to the Higgs boson, with mass 125 ± 1GeV and almost

“aligned”, according to the discussion held in the previous sections, with the ρ3 direction.

Also, since the model does have FCNYI, it is very convenient that all the neutral scalars

other than the lightest one be as heavy as possible. In our scan we have imposed a lower

bound of 600GeV on the masses of the charged scalars H+
1,2, of the pseudoscalars A1,2,

and of the heavier CP -even scalars h1,2.
11 Moreover, since the experimental constraints on

FCNYI in the down-type-quark sector are much stronger than those in the up-type-quark

sector, we have chosen to scan exclusively the extension 2 of our model to the quark sector,

since that extension has no FCNYI in the down sector. Finally, in order to comply with

current LHC experimental results [24], the 125GeV-mass scalar h3 must have couplings to

the gauge bosons and to the heavy fermions close to the SM values. Specifically, in our

scan we have demanded that:

9We have explicitly checked that the bounds on the oblique parameter S never give additional restrictions

to this model.
10Note that, since in our fit we have assumed both the parameters of the potential and the VEVs to

be real, the scalar sector of the model conserves CP , hence there are well-defined neutral scalars and

pseudoscalars.
11We have also imposed an upper bound of 1500GeV on all the scalar masses.
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Figure 1. Scatter plot of the mass of the second heaviest CP -even scalar versus the absolute

value of v1.

• The coupling of h3 to the gauge bosons be within 10% of its expected SM value, i.e.

gSV V =
v1V13 + v2V23 + v3V33

v
≥ 0.9, (4.14)

with the matrix V defined in equation (A.2). By definition, the third column of that

matrix corresponds to the 125GeV-mass neutral scalar h3.

• The coupling of h3 to the bottom quarks be within 10% of its expected SM value, i.e.

gSbb ≡
vV13

v1
= 1± 0.1. (4.15)

• The coupling of h3 to the tau leptons be within 10% of its expected SM value, i.e.

gSττ ≡ vV33

v3
= 1± 0.1. (4.16)

In figure 1 we have plotted the mass of the second heaviest CP -even scalar, h2, against

the value of the VEV v1. There are two features worth mentioning. Firstly, the value of

|v1| may be very small, i.e. the value of |tanβ| may be very large. Secondly, the mass of h2
is never higher than 1.35TeV. The first feature implies sinβ ≃ 1; therefore, the values of

v2 and v3 in equations (4.12) are essentially constant: |v2| ≃ 14.6GeV and v3 ≃ 245.3GeV.

The second feature arises from the need to keep the magnitudes of the quartic couplings

in the perturbative regime, viz. |λi| ≤ 20 for i = 1, 3, 4, 5, 6. The other quartic couplings

retain smaller magnitudes; we obtained −12 < λ7 < 13 and −14 < λ8 < 2 in our scan,

while the coupling λ2 ∈ [0.12, 0.14] as predicted above.

Since we can find regions in the parameter space for which |v1| ≪ |v2| ≪ |v3|, the
expressions (4.10) constitute good approximations to the exact scalar masses. To illustrate

this, in figure 2 we have plotted the exact mass of H+
2 against the approximate expression

for that mass in equation (4.10d). As we can appreciate from the plot, the approximate

formula describes quite reasonably the true value, though deviations . 30% occur in some
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Figure 2. Scatter plot of the approximate expression (4.10d) for the mass of the lightest charged

scalar versus the true mass of that particle.
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Figure 3. Scatter plot of the mass of the lightest charged scalar versus the mass of the lightest

pseudoscalar.

cases. Similar results have been obtained for the approximate formulae for the masses of

h2, A2, h1, A1, and H+
1 .

In figure 3 one observes that the mass of A2 may be smaller than, but may also be

as much as twice, the one of H+
2 . This is in spite of our enforcement of the experimental

bound on the oblique parameter T , which might suggest the masses of A2, h2, and H+
2 to

be almost degenerate; they are not. In figure 4 one observes the same as in figure 3, but

now for the heaviest charged scalar and the heaviest pseudoscalar. One sees once again

that the masses of the heaviest scalars can differ considerably.

Comparing figures 3 and 4 one sees that the masses of the heaviest and the lightest

scalars are not necessarily much different. This can be confirmed through figure 5, where

the masses of the two heavy neutral scalars are plotted against each other. One sees the

mh1
and mh2

may be quite close to each other, whatever their average value.
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Figure 4. Scatter plot of the mass of the heaviest charged scalar versus the mass of the heaviest

pseudoscalar.
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Figure 5. Scatter plot of the mass of the heaviest neutral scalar versus the mass of the intermediate-

mass neutral scalar.

At this stage, we have shown that our model can reproduce a boson with mass roughly

125GeV and couplings to the gauge bosons, to the bottom quarks, and to the tau lep-

tons close to the expected SM values. The Yukawa-coupling matrix Γ1, as described in

section 3.2, reproduces the known down-type-quark masses. We now have to show that

the model can also reproduce both the up-type-quark masses and the CKM matrix. We

take the values of the up-type-quark running masses, at the scale mZ , from ref. [25] and

the values of the CKM-matrix parameters from ref. [23]:

mu = 1.38+0.42
−0.41MeV, mc = 638+43

−84MeV, mt = 172.1± 1.2GeV, (4.17a)

|Vus| = 0.22536± 0.00061, |Vcb| = 0.04114± 0.0012, (4.17b)

|Vub| = (355± 15)× 10−5, J = 306+21
−20 × 10−7. (4.17c)

We have used the values of the parameters of the model that had previously been shown to

obey all the constraints hitherto mentioned and we have searched for phenomenologically
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acceptable values for the Yukawa couplings in equations (3.27):

C1 =




f1
f2
f3


 , C2 =




f4 + if5
f6 + if7
f8 + if9


 , C3 =




f4 − if5
f6 − if7
f8 − if9


 , (4.18)

with real f1, . . . , f9. Specifically, we have demanded in our fitting procedure that the

up-type-quark mass matrix in equation (3.20), after being diagonalized as VMpM
†
pV † =

diag
(
m2

u,m
2
c ,m

2
t

)
, gives both the right values for the masses of the up-type quarks and for

the moduli of the matrix elements of the CKM matrix V . We moreover require that the

coupling of h3 to top quarks be within 10% of its SM value:

gStt ≡
3∑

j=1

vvjVj3

(
V C†

jCjV
†
)

33

2m2
t

= 1± 0.1. (4.19)

We have also verified what constraints might arise from the limits on b → sγ observations.

These would arise solely from the charged-scalars interactions, and should be similar in

form to those found in 2HDM type-II, due to bottom and top quarks getting their masses

from two different doublets. Due to the mixing of the two charged scalars, we have verified

that the couplings of the lightest charged state to the fermions are suppressed compared

to those one would obtain in a type-II 2HDM. As a result, the constraints from b → sγ

obtained for our model are much less stringent than those found for the 2HDM type-II.

Since we further consider only high masses for the charged scalars (above 600GeV), the

constraints will be even less relevant.

We have found that, for each and every set of parameters of the scalar potential that

has been used to produce figures 1–5, it is possible to find values for f1, . . . , f9 which lead

to observables satisfying equations (4.17) and (4.19) almost perfectly. Indeed, most of the

observables can be fitted at the 1σ level, but at least one of the observables mc, |Vub|, and
J can only be fitted at the 2σ level. Thus, if all the observables except mc are within their

1σ allowed domains, then the minimum pull12 of mc is 1.9; if all the observables except

|Vub| have pull smaller than one in modulus, then |Vub| has a pull of at least 2.4; if all the

observables but J are within their 1σ boundaries, then J has a pull smaller than −1.8.

Altogether, the best fits that we were able to achieve have a value of χ2 — for the three

quark masses and the four CKM-matrix observables in equations (4.17) — of 5.1.

An example of one of our best fits is provided in table 1.

5 Conclusions

In this paper we have shown that it is possible to unify the idea of a scotogenic neutrino mass

model [13] with the enforcement of co-bimaximal lepton mixing. The latter is obtained via

softly broken lepton numbers [1] and a non-standard CP transformation which interchanges

the µ and τ flavours. Such a CP transformation procures θ23 = 45◦ and δ = ±π/2 in the

12As usual, we define the ‘pull’ of an observable as the difference between its fitted value and its mean

value divided by the standard deviation.
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parameter value observable value

β (rad) 1.5732963215865827 mh3
(GeV) 125.0

λ1 17.135112092706517 mh2
(GeV) 739.2

λ2 0.13092447205288404 mh1
(GeV) 951.7

λ3 15.624853371379327 mA2
(GeV) 1106

λ4 −11.846787927249578 mA1
(GeV) 1281

λ5 19.99999999813406 mH+
2
(GeV) 773.0

λ6 16.363914697200098 mH+
1
(GeV) 1193

λ7 −9.030984509839026 gSV V 0.9925

λ8 −2.6314236783145977 gSbb 1.000

µ4 (GeV2) 2140.7424941612453 gSττ 1.000

f1 0.0024483113150037543 T 0.01000

f2 −0.03085374618190331 mu (MeV) 1.665

f3 −0.20462462612388946 mc (MeV) 679.1

f4 0.0032554425959401188 mt (GeV) 170.9

f5 0.00697096592835829 |Vus| 0.2259

f6 −0.001672825126610988 |Vcb| 0.04144

f7 −0.040296075343726166 |Vub| 0.003694

f8 0.7561059024727611 J 0.00002706

f9 −0.6259667363570083 gStt 0.9926

Table 1. The values of the parameters and of the observables for one of our fits. The sign of v2
— see equation (4.12) — is positive for this fit. The values of µ1,2,3 were computed by using the

stationarity equations for the vacuum.

lepton mixing matrix, while θ13 remains undetermined; this is in good agreement with

the data. In a scotogenic model, the neutrino masses are generated through a one-loop

diagram involving the dark sector, which consists of right-handed neutrinos and a scalar

gauge doublet η which has zero VEV. Thus, a scotogenic model combines neutrino-mass

suppression through the seesaw mechanism and through radiative mass generation.

Our model contains three scalar doublets with nonzero VEVs. Therefore, we wanted

to demonstrate that a scalar h3 with mass 125GeV can be accommodated in our model.

We have shown that this scalar can be made to have couplings to the gauge bosons and to

the heavy fermions very close to those of the Higgs particle. Since the non-standard CP

transformation interchanges, besides the µ and τ flavours, also two of the scalar doublets,

it is non-trivial to make all the scalars other than h3 heavy. Still, we have found that all

of them can be made to have masses above 600GeV.
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We have also demonstrated that the symmetries of our model may consistently be

extended to the quark sector, correctly reproducing all the quark masses and the CKM

matrix. There are neutral scalar-mediated flavour changing currents; however, it is possible

to choose the model’s symmetries so that they occur only in the up-type-quark sector, for

which the experimental constraints on such currents are much looser. The fit to the quark

sector is at the 2σ level, but with many observables falling within their 1σ uncertainty

intervals.
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A One-loop neutrino mass corrections

In this appendix we collect some formulae from ref. [12], adapting them to the model in

this paper. In particular, we set nL = nR = 3 and nH = 4, where nL, nR, and nH are, in

the notation of ref. [12], the numbers of fermion families, of right-handed neutrino singlets,

and of scalar doublets, respectively. The Yukawa Lagrangian of the right-handed neutrinos

in equation (1) of ref. [12] is given by

LνR Yukawa = −νR

(
4∑

k=1

φ̃†
k ∆k

)
DL +H.c. (A.1)

The notation for the physical neutral scalars is best explained in ref. [19]. The neutral

component of the scalar doublet φk (k = 1, 2, 3, 4) has VEV
〈
0
∣∣φ0

k

∣∣ 0
〉
= vk

/√
2 and is

written as

φ0
k =

1√
2

(
vk +

8∑

b=1

VkbS
0
b

)
, (A.2)

where the complex matrix V is 4×8. The neutral Goldstone boson is S0
1 and the remaining

seven S0
b , for b = 2, . . . , 8, are physical neutral scalars with masses mb. For each physical

neutral scalar we define, following ref. [12], the matrix

∆b ≡
4∑

k=1

Vkb∆k. (A.3)

Then, the final result in equation (53) of ref. [12] is

δMν =
8∑

b=2

m2
b

32π2
∆T

b W
∗

(
1

m̃
ln

m̃2

m2
b

)
W †∆b (A.4a)

+
3g2

64π2c2w
MT

DW
∗

(
1

m̃
ln

m̃2

m2
Z

)
W †MD. (A.4b)
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The sum in line (A.4a) includes only the physical neutral scalars. Line (A.4b) includes the

contributions from the loop with a Z0 and from the loop with a neutral Goldstone boson.

In that line, MD =
∑4

k=1

(
vk

/√
2
)
∆k is the Dirac neutrino mass matrix; in the model in

this paper that matrix vanishes, because both the matrices ∆1,2,3 and the VEV v4 are null.

Therefore, for this paper only line (A.4a) matters.

In equation (A.4), the 3×3 unitary matrixW is the one that diagonalizesMR according

to equation (51) of ref. [12]:

W †MRW
∗ = m̃ ≡ diag (m4,m5,m6) , (A.5)

where m4,5,6 are the masses of the physical heavy neutrinos.
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