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ABSTRACT

Context. In June 2022, Gaia DR3 provided the astronomy community with about one million spectra from the Radial Velocity Spec-
trometer (RVS) covering the CaII triplet region. In the next Gaia data releases, we anticipate the number of RVS spectra to successively
increase from several 10 million spectra to eventually more than 200 million spectra. Thus, stellar spectra are projected to be produced
on an ‘industrial scale’, with numbers well above those for current and anticipated ground-based surveys. However, one-third of the
published spectra have 15 ≤ S/N ≤ 25 per pixel such that they pose problems for classical spectral analysis pipelines, and therefore,
alternative ways to tap into these large datasets need to be devised.
Aims. We aim to leverage the versatility and capabilities of machine learning techniques for supercharged stellar parametrisation by
combining Gaia-RVS spectra with the full set of Gaia products and high-resolution, high-quality ground-based spectroscopic reference
datasets.
Methods. We developed a hybrid convolutional neural network (CNN) that combines the Gaia DR3 RVS spectra, photometry (G,
G_BP, G_RP), parallaxes, and XP coefficients to derive atmospheric parameters (Teff, log(g) as well as overall [M/H]) and chemical
abundances ([Fe/H] and [α/M]). We trained the CNN with a high-quality training sample based on APOGEE DR17 labels.
Results. With this CNN, we derived homogeneous atmospheric parameters and abundances for 886 080 RVS stars that show remark-
able precision and accuracy compared to external datasets (such as GALAH and asteroseismology). The CNN is robust against noise
in the RVS data, and we derive very precise labels down to S/N = 15. We managed to characterise the [α/M]− [M/H] bimodality from
the inner regions to the outer parts of the Milky Way, which has never been done using RVS spectra or similar datasets.
Conclusions. This work is the first to combine machine learning with such diverse datasets and paves the way for large-scale machine
learning analysis of Gaia-RVS spectra from future data releases. Large, high-quality datasets can be optimally combined thanks to the
CNN, thereby realising the full power of spectroscopy, astrometry, and photometry.

Key words. Galaxy: stellar content – stars: abundances – techniques: spectroscopic – methods: data analysis

1. Introduction

Precise stellar chemical abundances are crucial to constrain-
ing the formation and evolution of the Milky Way and its

⋆ Full RVS-CNN catalog described in Table 2 is available via the AIP
Gaia archive at https://doi.org/10.17876/gaia/dr.3/111. The
query is done via the query interface https://gaia.aip.de/query/.

neighbouring galaxies, as they allow stars to be used as fossil
records of past star formation events and enable the disen-
tangling of stellar populations or the tracing of accreted stars
and stellar streams (e.g. Matteucci 2021; Helmi 2020). The
stellar elemental abundances, coupled with astrometry from the
Gaia space mission (e.g. Gaia Collaboration 2016; Lindegren
et al. 2018, 2021), are the chemo-dynamical process that
shaped the Milky Way and its satellites we observe today (e.g.
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Tolstoy et al. 2009; Bergemann et al. 2018; Haywood et al.
2018; Queiroz et al. 2021). The more detailed the stellar
chemistry is, the more we can know about the nucleosynthesis
processes that occurred (e.g. Nomoto et al. 1997; Roederer
et al. 2016; Anders et al. 2018). From an observational point
of view, this translates into the necessity of measuring a large
variety of spectral lines from many different elements in stellar
spectra.

Deriving high-precision chemical abundances for Galactic
Archaeology has become a quest for modern large-scale spec-
troscopic surveys. Surveys use modern spectrographs to observe
stars with different setups and at different spectral resolutions.
For instance, the Gaia-ESO survey (GES; Gilmore et al. 2022;
Randich et al. 2022) used both the ESO UVES and GIRAFFE
high-resolution spectrographs covering large wavelength ranges
(from near-UV to near-IR) and observing at different resolu-
tions (from 16 000 up to 48 000) about 105 stars. Other surveys,
such as LAMOST, have followed the same approach at low and
intermediate resolution (Zhang et al. 2019, 2020; Wang et al.
2020) and targeted almost 8 × 108 stars. Additionally, infrared
spectroscopy is very important for gathering spectra from stars
located in high-extinction regions. The Apache Point Observa-
tory Galactic Evolution Experiment (APOGEE) pursued this
effort (R = 22 500, λ ∈ 1.5−1.7µm; Ahumada et al. 2020;
Abdurro’uf et al. 2022) by observing more than 600 000 stars,
contributing greatly to furthering our understanding of the for-
mation and evolution of the Galactic bulge (e.g. Rojas-Arriagada
et al. 2019; Queiroz et al. 2020). The goal of the WEAVE
(Dalton et al. 2018) and 4MOST (de Jong et al. 2019) surveys
will be to respectively observe the northern and southern hemi-
spheres at both low-(R ∼ 5000) and high-(R ∼ 20 000) resolution
over the optical domain. Those surveys will have to deal with
an unprecedented number of spectra (>107) in their ultimate
goal of measuring numerous (>15 elements) high-quality abun-
dances (Bensby et al. 2019; Chiappini et al. 2019; Christlieb
et al. 2019; Helmi et al. 2019; Cioni et al. 2019; Jin et al.
2024).

Originally, standard spectroscopy was the best way to derive
a large variety of chemical abundances in stellar atmospheres.
Large spectroscopic surveys base their spectral analysis on stan-
dard spectroscopic techniques, which are based on the knowl-
edge of stellar atmospheric properties (such as pressure, tem-
perature, and density; see Gray 2005) and radiative transfer
(emission and absorption mechanisms in the stellar atmosphere).
A detailed knowledge of spectral absorption lines is also needed
(e.g. Guiglion et al. 2018; Heiter et al. 2021; Kordopatis et al.
2023) in order to find the best features for chemical abundance
derivation. Departure from local thermodynamic equilibrium
can influence abundance determination (e.g. Bergemann et al.
2012). Spectral fitting techniques, equivalent width methods, and
differential spectroscopy are usually employed to extract abun-
dances and atmospheric parameters from an observation, for
instance, SME (Valenti & Piskunov 1996), GAUGUIN (Guiglion
et al. 2016); however, Bayesian methods have also been used
(Schönrich & Bergemann 2014; Gent et al. 2022). Notably, this
type of method has been intensively used over the last two
decades, and it still continues to play a crucial role in the analysis
of modern survey data.

New, extremely large spectral surveys have pushed standard
spectroscopic techniques to their limit, requiring a fundamen-
tal shift in the spectral analysis methods. Machine learning
(ML) methods have been used to propagate the knowledge of
standard spectroscopy to large-scale spectroscopic datasets. The

main idea is to build a set of reference stars (training sample)
with atmospheric parameters and chemical abundances (stellar
labels) determined using standard spectroscopy. An ML model
is then built between stellar spectra and stellar labels and prop-
agated to an external set of spectra. Such a method is powerful
because it allows for the simultaneous derivation of many stel-
lar labels for millions of spectra, typically in several minutes.
Meticulous selection of the training sample is the crucial part
of an ML framework, as biased training samples automatically
lead to biases in the label prediction. Several types of ML algo-
rithms have recently been employed in the Galactic Archaeology
community in order to parameterise stellar spectra. Examples
include the Cannon algorithm (Ness et al. 2015), which builds
a generative model between spectra and stellar labels; the Payne
algorithm (Ting et al. 2019), which is based on the same gener-
ative model framework but contains an interpolator based on an
artificial neural network (ANN) that uses synthetic spectra ab-
initio; ANNs (Bailer-Jones et al. 1997), and convolutional neural
networks (CNNs), which build a model between spectra and
labels as well. Notably, CNNs are extremely efficient in learning
from spectral features, for example, AstroNN (Leung & Bovy
2019) and StarNet (Fabbro et al. 2018; Bialek et al. 2020). Con-
cepts and details on CNNs can be found in LeCun et al. (1989)
and LeCun & Bengio (1995).

In Guiglion et al. (2020), we showed that it was possible to
extract precise chemical information from spectra with limited
resolution and wavelength coverage. We derived homogeneous
atmospheric parameters and chemical abundances from the spec-
tra from the sixth data release (DR6) of the RAdial Velocity
Experiment (RAVE; Steinmetz et al. 2020b,a). We used a CNN
approach trained on stellar labels from the 16th Data Release
(DR16) of APOGEE (Ahumada et al. 2020). This helped alle-
viate some of the spectral degeneracies inherent to the RAVE
spectra (R ∼ 7500, λ ∈ 8420−8780 Å) by using complementary
absolute magnitudes computed from 2MASS, ALLWISE, and
Gaia DR2 photometry and parallaxes (Gaia Collaboration 2018;
Lindegren et al. 2018). The uncertainties on the resulting atmo-
spheric parameters and chemical abundances were two to three
times lower than those reported by RAVE DR6. Including such
extra constraints in the form of photometry and parallaxes has
also been done recently in the context of APOGEE for parame-
terising together low- and high-mass stars with a CNN (Sprague
et al. 2022).

Recently, Nepal et al. (2023) and Ambrosch et al. (2023)
achieved major improvements on the use of CNNs for chem-
ical abundances using GES spectra, including more complex
and refined architectures, improved training strategies and uncer-
tainties, and improved reliability and robustness with respect to
radial velocities, rotational velocities, and signal-to-noise. Both
studies showed that CNNs efficiently learn from spectral features
instead of abundance correlations, which is key for detecting
chemically peculiar stars (e.g. lithium-rich giants; Nepal et al.
2023). These two studies represent a major step forward in the
comprehension of CNNs for the exploitation of future surveys,
such as 4MOST and WEAVE.

In June 2022, the Gaia consortium released around 1 mil-
lion epoch-averaged RVS spectra that were originally analysed
during Gaia DR3 (10.17876/gaia/dr.3) by the General Stellar
Parametriser for spectroscopy (GSP-Spec; Recio-Blanco et al.
2023) module of the Astrophysical parameters inference system
(Apsis; Creevey et al. 2023). Among these 1 million spectra,
one-third have 15 ≤ S/N < 25 (see Fig. 1), for which GSP-Spec
did not provide atmospheric parameters nor [α/M] ratios with
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Fig. 1. Signal-to-noise ratio distribution of the RVS sample used in this
study.

‘good’ flags_gspspec1. The main aim of this work is to obtain
precise atmospheric parameters (Teff, log(g), [M/H]) and chem-
ical abundances ([Fe/H], [α/M]) down to S/N = 15 for the Gaia
DR3 RVS spectra so that new science studies can leverage the
larger, higher-quality dataset. To achieve this goal, we combined
a hybrid CNN approach using APOGEE DR17 stellar labels with
RVS spectra, photometry (G, G_BP, G_RP), parallaxes, and XP
coefficients in order to break the spectral degeneracies. For the
first time, the precise chemistry derived with a CNN allowed us
to trace the [α/M] − [M/H] bimodality with Gaia-RVS data.

The paper is divided as follows: In Sect. 2, we present the
dataset used and the creation of the training sample. In Sect. 3,
we detail the CNN method we used. In Sect. 4, we present
the parameterisation of the Gaia-RVS spectra. In Sect. 5, we
provide a way to ensure that a CNN label is within the train-
ing sample limits, while in Sect 6 we validate our CNN labels
with external datasets. In Sect. 7, we trace the [α/M] − [M/H]
bimodality in the Milky Way disc, and we list some caveats and
draw conclusions in Sects. 8 and 9, respectively.

2. Data

The data used in the present study consists of Gaia DR3 RVS
spectra (Gaia Collaboration 2023). We also incorporated Gaia
DR3 photometry (phot_g_mean_mag G; phot_bp_mean_mag
G_BP; and phot_rp_mean_mag G_RP magnitudes; Riello et al.
2021), parallaxes (Lindegren et al. 2021), and XP coefficients
(De Angeli et al. 2023). The labels of the training sample are
from APOGEE DR17 (Abdurro’uf et al. 2022).

2.1. Gaia-RVS spectra

We used the 999 670 time-averaged, normalised, and radial-
velocity corrected Gaia-RVS spectra2 from Gaia DR3 (Seabroke
et al., 2022). The Gaia-RVS spectra contain 2401 pixels along a
scan, with a pixel size of 0.10 Å and covering a spectral range
of 8460–8700 Å (240 Å range). The spectral resolving power

1 By ‘good’, we refer to the first 13 flags of the flags_gspspec chain
equal to ‘zero’ (see Table 2 Recio-Blanco et al. 2023). Such flags
make sure that, for instance, the parameters have an accuracy bet-
ter than 250 K in Teff, 0.5 in log(g), and 0.25 in [M/H] or that no
emission features or negative flux values could hamper the GSP-Spec
parameterisation.
2 https://doi.org/10.17876/gaia/dr.3/54

Fig. 2. Examples of Gaia-RVS spectra for an RC star (top) at [M/H] = 0
(blue) and [M/H] = −0.87 dex (orange). The bottom panel shows a solar
twin with two different metallicities.

reported by the Gaia consortium is R ∼ 11 500 (Katz et al.
2023). Using the flags present in the Gaia DR3 archive, we
removed potential galaxies and quasars (in_galaxy_candidates =
False and in_qso_candidates = False) as well as objects show-
ing variability (phot_variable_flag , ‘VARIABLE’) and binarity
signs (non_single_star = 0). As some of the Gaia-RVS may con-
tain NaN values, we replaced such values by an upper quartile
(Q3) of continuum flux computed in three regions (8475–8495 Å,
8561–8582 Å, and 8627–8648 Å). These regions were selected
to not contain any strong spectral features, but they are not com-
pletely devoid of lines. In Fig. 1, we show a S/N distribution
of the Gaia-RVS sample spectra. One can clearly see that the
sample is dominated by spectra with 15 ≤ S/N ≤ 25, as they
comprise one-third of the sample. Examples of red clump (RC)
stars and solar twin spectra are presented in Fig. 2. In addition
to the strong Ca II triplet, RVS spectra contain a large variety of
smaller features (see Sect. 3.5).

2.2. Gaia DR3 magnitudes and parallaxes

In addition to Gaia-RVS spectra, we adopted Gaia DR3
magnitudes G (330–1050 nm), G_BP (330–680 nm), and
G_RP (630–1050 nm) and parallaxes3. When combined
with magnitudes, parallaxes give information on the lumi-
nosity and thus on the surface gravity and temperature
of stars. We removed spurious magnitudes by applying
phot_[g/bp/rp]_mean_flux_over_error > 500. We removed neg-
ative parallaxes as well. Contrary to Guiglion et al. (2020), we
did not compute absolute magnitudes in order to give the CNN
more flexibility. We also note that we did not apply parallax
corrections as described in Lindegren et al. (2021).

2.3. Gaia DR3 XP coefficients

Gaia DR3 also provides low-resolution (R ∼ 30–100) time-
averaged spectra4 in the blue (BP) and the red (RP) for 220
million stars (De Angeli et al. 2023). These so-called XP spec-
tra have been intensively used within the Gaia collaboration for
deriving among other photometric effective temperatures, sur-
face gravities, and metallicities (GSP-Phot pipeline; Andrae et al.
2023a). The XP are also known to contain metallicity-sensitive

3 https://doi.org/10.17876/gaia/dr.3/1
4 https://doi.org/10.17876/gaia/dr.3/53
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features (Andrae et al. 2023b; Zhang et al. 2023; Yao et al. 2024;
Xylakis-Dornbusch et al. 2022). The XP spectra are given in
the form of a projection onto a set of basis functions (i.e. the
coefficients of the projection; De Angeli et al. 2023) to comple-
ment RVS spectra, parallaxes, and G/G_BP/G_RP photometry.
Gaia provides 55 BP and 55 RP coefficients (i.e. 110 XP coeffi-
cients). The XP coefficients give the CNN more features to learn
the atmospheric parameters and abundances we aim to derive.
We required that a given RVS spectrum has available XP coeffi-
cients (has_xp_continuous=True). To filter emission, we applied
classlabel_espels == NaN (Creevey et al. 2023).

2.4. Labels of the training sample

In this paper, we aim at deriving the main atmospheric parame-
ters Teff, log(g), and overall [M/H] together with the Fe content
[Fe/H] and [α/M]. As stellar labels for the training sample,
we used the high-quality calibrated atmospheric parameters and
individual chemical abundances from the 17th Data Release
(DR17) of APOGEE (Abdurro’uf et al. 2022), which contains
733 901 stars. This dataset is the best suited for our CNN
application, as APOGEE DR17 covers both the northern and
southern hemispheres (as does Gaia), thus maximising the size
of the training sample. We cross-matched APOGEE DR17 and
Gaia-RVS data based on Gaia EDR3 source_id, leading to a
crossmatch of 207 953 stars. We also filtered duplicates based
on Gaia source_id. We extensively used the flags provided by
APOGEE DR17 and followed the recommendations of the sur-
vey to clean up the sample in order to make it the most reliable
it can be. From the APOGEE_ASPCAPFLAG bitmask, we used
the Binary Digits 7 (STAR_WARN) and 23 (STAR_BAD), that
is, removing stars showing potentially bad Teff and log(g), large
CHI2, a large discrepancy between the infrared flux method and
spectroscopic temperatures, systematics due to large rotation,
and S/N < 705. We also selected stars with ASPCAP_CHI2 < 25.
We selected stars with [Fe/H] flag E_H_FLAG = 0. To
remove possible spurious measurements, we performed a cut in
atmospheric parameters and abundances: TEFF_ERR< 100 K,
LOGG_ERR < 0.1 dex, M_H_ERR< 0.2 dex if M_H < −0.5 dex
and M_H_ERR< 0.1 dex if M_H>−0.5 dex (same condi-
tion for [Fe/H]), and ALPHA_M_ERR < 0.1 dex. We note
that APOGEE DR17 [α/M] was derived thanks to a mix-
ture of Ca, Ti, Mg, Si, O, Ne, and S lines in APOGEE
spectra (Abdurro’uf et al. 2022), while RVS spectra has several
Ca, Ti, and Si lines relevant for [α/M] derivation (see Sect 3.5.1
for more details).

2.5. Final training and observed samples

In order to build the training sample, we selected the RVS spec-
tra with the corresponding labels detailed in Sect. 2.4. Tests
have shown that a too low S/N would degrade the learning per-
formances of our CNN method (Guiglion et al. 2020; Nepal
et al. 2023); hence we adopted Gaia DR3 rvs_spec_sig_to_noise
ratios larger than 30 (S/N ≥ 30 pix−1) for the training sam-
ple spectra. We emphasise that rvs_spec_sig_to_noise is defined
as the signal-to-noise ratio of the mean RVS spectrum. For the
training sample only, we limited our sample to have parallax
absolute errors lower than 20% and RUWE < 1.4 (i.e. stars with
a good single star astrometric solution).

Following the series of cuts, we had in hand a training sam-
ple composed of 44 780 Gaia-RVS spectra together with their

5 See Abdurro’uf et al. (2022) and https://www.sdss4.org/dr17/
irspec/apogee-bitmasks/ for more details.

Table 1. Effective range of training sample labels, parallax, and G
magnitude.

Label Effective range

Teff [ 3705 : 6395 ] K
log(g) [ +0.58 : +4.70 ]
[M/H] [ −2.29 : +0.55 ]
[α/M] [ −0.18 : +0.46 ]
[Fe/H] [ −2.20 : +0.54 ]
G [9.01 : 14.21] mag
Parallax [0.05 : 7.00] mas

Fig. 3. Density distribution of Gaia G magnitudes in the training
(44 780 stars, blue) and observed (841 300, orange) samples. Approx-
imately 98% of the observed magnitudes are contained within the
training sample limits.

respective Gaia G, G_BP, and G_RP pass-bands, parallaxes,
XP coefficients, and APOGEE DR17 stellar labels Teff, log(g),
[M/H], [Fe/H], and [α/M].

The rest of the Gaia-RVS spectra (N = 841 300, with no train-
ing sample labels but with parallaxes; G, G_BP, and G_RP pho-
tometry; and XP coefficients) constitute the ‘observed sample’
that we aimed to parameterise with the CNN.

2.6. Dynamical range of the training sample

Table 1 contains the effective range of the training sample. In
Fig. 3, we show the distribution of Gaia DR3 G magnitudes in
the training and observed samples. The training sample ranges
from 7 < G < 14.2, while the observed set includes brighter
(down to G = 3.2) and fainter (up to G = 15) targets. We note
that 98% of the observed sample is included within the magni-
tude range covered by the training sample. In Fig. 4, we show
a Kiel diagram of the training sample. The giants (log(g) <
3.5) represent 70% of the training sample. The metal-poor tail
([M/H] < −1) is composed of 1578 stars, which leads to very
reliable metallicities down to −2.3 dex. We note that in Guiglion
et al. (2020), the training sample was ten times smaller and only
included 70 stars with [M/H] < −1.

In Fig. 5, we show a correlation matrix of labels, photom-
etry, parallaxes, and S/N for the training sample. As expected,
parallaxes correlate very well with Teff and log(g), while S/N
anti-correlates with the apparent magnitude. No correlation was
measured between [M/H] (and [α/M]) and apparent magni-
tudes. We discuss the correlation matrices of the observed
sample in Sect. 4.1. We note that we did not use S/N as an extra
information for the CNN. The S/N is naturally encoded in the
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Fig. 4. Kiel diagram of the APOGEE DR17 input labels of the train-
ing sample (44 780 stars) coloured by [M/H] (top) and in density plot
fashion (bottom). Our training sample is clearly dominated by giants
(77% of the sample has log(g) < 3.5), which is a direct effect of both the
APOGEE and Gaia-RVS selection functions.

spectra, and we show in Sect. 4.5 that the CNN is extremely
stable across all S/N ranges.

3. Convolutional neural network for Gaia-RVS

In the present study, we adopted a hybrid CNN approach that was
first successfully applied in Guiglion et al. (2020) with RAVE
spectra and Gaia DR2 astrometry and photometry. A complete
description of the CNN can be found in Guiglion et al. (2020),
Ambrosch et al. (2023), and Nepal et al. (2023). We built our
CNN models with the open-source deep learning library Keras
(Chollet et al. 2015) using the TENSORFLOW backend (Abadi
et al. 2015).

3.1. Convolutional neural network principles

Following our previous works and what has been largely adopted
in the community when dealing with stellar parametrisation, we
adopted a CNN approach. Convolutional neural networks are
well known for being sensitive to spectral features and learning
from such features, as well as being less sensitive to radial veloc-
ity shifts in the spectra than simple artificial neural networks (see
for instance Nepal et al. 2023 and references therein). The CNN
allows for the building of a high-dimensional non-linear func-
tion that translates spectra plus extra data to stellar labels. The
architecture of the CNN we employed is built on the architec-
ture of the CNN developed by Nepal et al. (2023). We note that

Nepal et al. (2023) and Ambrosch et al. (2023) extensively
improved CNN architectures for spectroscopy compared to
Guiglion et al. (2020). We therefore refer the reader to the for-
mer two papers for more technical details. We used keras_tuner
(O’Malley et al. 2019) to further optimise the CNN architecture
and fix the model and training hyperparameters.

The hybrid CNN model developed in this paper consists of
three input nodes. The core of our approach consists of Gaia-
RVS spectra passed through a block of three 1D convolution
layers (with 32, 16, and 8 filters in each convolution block,
respectively) that focus on extracting the relevant spectral fea-
tures sensitive to the stellar labels. The first convolution block
has 2401 input neurons, corresponding to 2401 pixels of the RVS
spectra (see central node in Fig. 6). After extensive testing, we
adopted a kernel size of 8 pixels for each convolution block,
larger kernels would not have allowed for the detection of small
spectral features. We used 1D Max-Pooling layers (after 1D con-
volution blocks two and three) that help the network focus on
important features, in addition to reducing the number of param-
eters to fit in the CNN. The output of the third convolution layer
was then passed through a block of fully connected layers with
128 neurons.

The second node consists of Gaia DR3 apparent magnitudes
G, G_BP, and G_RP together with the parallax serving as four
input neurons fully connected to a layer of 32 neurons (see left
node in Fig. 6). We adopted LeakyRelu activation functions for
the fully connected layers Xu et al. (2015), which are commonly
adopted in the community as well as in our previous works.

The third input node consists of XP coefficients passed in the
form of 110 input neurons, corresponding to the 110 coefficients,
to a fully connected layer with 64 neurons (see right node in
Fig. 6).

The outputs of these three fully connected layers were then
concatenated (total of 32 + 128 + 64 = 224 neurons), combin-
ing the information from all three sources, and passed into three
fully connected layers with 128, 32, and 5 neurons each. The last
layer with five neurons refers to the output corresponding to the
five labels, namely, Teff, log(g), [M/H], [α/M], and [Fe/H]. To
facilitate a faster and more efficient convergence of the CNN to
the global minimum of the loss function, we scaled the stellar
labels to values between zero and one. Additionally, we applied
the same scaling procedure to the magnitudes and parallax. In the
case of XP coefficients, the 55 BP coefficients were normalised
relative to the first BP coefficient (corresponding to 15th mag-
nitude; Andrae et al. 2023b) and then scaled between zero and
one. Similarly, we performed the same scaling procedure for the
55 RP coefficients.

We adopted the ReduceLROnPlateau callbacks from Keras
in order to reduce the number of training epochs and hence the
computation time. In order to prevent overfitting and to stop the
training when the loss function of the validation set reached
its minimum, we used the early-stop callbacks with a patience
of 20.

3.2. Training an ensemble of convolutional neural networks

As the weights and biases of a CNN model are initialised
stochastically at the beginning of each training phase, the pre-
dicted labels can vary between different models. The training
sample is usually split randomly into a training6 set (seen by

6 Throughout the paper, ‘training sample’ refers to the whole data used
for training and cross-validation purposes; ‘train set’ and ‘validation set’
refer to 75 and 25% of the ‘training sample’, respectively.
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Fig. 5. Correlation matrix of the labels together with photometry (Gaia G, G_BP, and G_RP), parallaxes (p), and S/N. Left: training sample
(44 780 stars). Middle: observed sample within training sample limits (644 287 stars). Right: observed sample outside of the training sample limits
(197 013 stars). The only parameter not fed to the CNN during training was the S/N.

the CNN at each training epoch) and a validation set (used at
each epoch to cross-validate with the training set and optimise
the CNN weights). Usually, the splitting of the training sam-
ple into training and validation sets is only performed once and
frozen to train the CNN. In the present study, we adopted a
new approach: We split the training sample into seven different
training and validation sets with seven random states (keeping
a constant training-validation ratio of 75%). In other words, the
CNN experienced seven representations of the training sample
so that the whole training sample would pass through the CNN.
For each random state, four models were trained, leading to 28
CNN models. The 28 trained CNN models were used to predict
labels (28 times) for the whole training sample (44 780 star) and
the observed sample (841 300 stars). In a given sample, the labels
were averaged over the 28 models, while the standard deviation
provided an estimate of the CNN’s internal uncertainties. Such
a deep-ensemble CNN approach allowed for a more efficient
exploration of the gradient space, which helps with generalis-
ing and reduces the variance and bias (Lee et al. 2015; Bialek
et al. 2020; Ganaie et al. 2022). Deep ensembles are also more
efficient when training on large datasets and improve feature
selection.

The CNN models reached their minimum validation loss
function typically after 80 epochs. The training time of one
model was about 8 min on an Apple M1 Macbook Pro laptop
(with a total time of 4 h for the 28 CNN models), and the pre-
diction time was ∼0.3 milliseconds per star. In other words, the
whole observed sample of 8× 105 RVS stars took about 4 min to
compute (total time of ∼2 h for 28 models).

3.3. Results of the training

In the left column of Fig. 7, we display 2D histograms of the dif-
ference between the CNN-trained labels and (input) APOGEE
labels as a function of (input) APOGEE labels for the training
sample. The dispersion between the input and output labels is
59 K in Teff, 0.11 K in log(g), 0.07 dex in [M/H] and [Fe/H], and
0.04 dex in [α/M], which is remarkable for RVS spectra. We do
not show the [Fe/H] results, as they are almost identical to[M/H]
(APOGEE DR17 [M/H] tracks [Fe/H]; Abdurro’uf et al. 2022).
For the gravities, no significant systematic offset was detected,
and the red clump locus is well reproduced. On the edges of the

training sample range, we measured larger residuals (−200 K for
Teff > 6200 K, –0.13 dex for [α/M] > +0.35) due to the smaller
number of stars in these regions of the training sample. The CNN
was able to measure [M/H] well, even if one can see a slight
residual trend of about –0.04 dex for [M/H] > −0.5 dex and
+0.1/+0.2 dex in the very metal-poor regime ([M/H] < −2, due
to a lack of training stars in this region of the parameter space).
Overall, the tiny mismatch between the input and output labels
tells us that the CNN is not likely to overfit and that the small
residuals are likely to come from the fact that we combine spec-
tra (with a different wavelength coverage and resolving power
compared to APOGEE), Gaia DR3 photometry, parallaxes, and
XP spectra.

We also show how GSP-Spec7 atmospheric parameters and
[α/M] (Recio-Blanco et al. 2023) compare to APOGEE for the
training sample stars. We adopted GSP-Spec Teff and calibrated
log(g), [M/H], and [α/M] from Recio-Blanco et al. (2023). We
note that the authors performed basic polynomial calibration
of log(g) and [M/H] using external parameters from APOGEE
DR17, GALAH DR3, and RAVE DR6, while [α/M] was cal-
ibrated using the local galactic abundance trend. We applied
the recommended GSP-Spec flags, setting the first 13 digits of
flags_gspspec to zero (see Table 2 from Recio-Blanco et al.
2023) and resulting in 2 606 stars in common with our train-
ing set. We show comparison plots in the right panels of Fig. 7.
Overall, the dispersion is two to three times larger compared to
the CNN. One can also see the presence of large outliers in Teff
(>1000 K bias) and log(g) (>1 bias), likely due to the fact that
RVS spectra alone present limited resolution and spectral cover-
age. We elevated the results for the RVS dataset to the level of the
APOGEE survey both in terms of precision and accuracy, signif-
icantly improving the results from GSP-Spec, which did not use
external information as we do with our hybrid CNN. Such sys-
tematics in GSP-Spec results were recently reported by Brandner
et al. (2023).

3.4. Determination of training sample uncertainties

The internal CNN uncertainty of the stellar labels is given by
the standard deviation of the 28 CNN-trained models described

7 https://doi.org/10.17876/gaia/dr.3/43
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Fig. 6. Flow chart of CNN. Gaia-RVS spectra are used as input spectra and passed through the convolution layers for feature extraction. Extra
information is fed to the CNN in the form of Gaia DR3 parallaxes as well as G, G_BP, and G_RP photometry (on the left) and XP coefficients (on
the right). The information is fully connected (FC) to the output labels Teff, log(g), [M/H], [α/M], and [Fe/H].

in Sect. 3.2. Guiglion et al. (2020) and Nepal et al. (2023) have
shown that such an internal model-to-model dispersion may not
be representative of the expected uncertainty at a given spectral
resolution and may be an underestimate of the true uncertainty.
This internal uncertainty may not be representative of the pre-
cision of the CNN, as it does not reflect the precision from
the input labels. In order to provide more realistic uncertain-
ties, we proceeded as in Nepal et al. (2023). Therefore, in the
training sample, we computed the mean dispersion between the
APOGEE input and the CNN output labels as a function of
the APOGEE input labels. Such a dispersion gives an estimate
of the precision with respect to the training sample input labels
that are considered as ground truth.

The results are shown in Fig. 8. The internal dispersion over
the 28 CNN models (red colourmap) is on the order of 30−40 K
in Teff, 0.05 dex in log(g), 0.03/0.05 dex in [M/H] and [Fe/H],

and 0.01 dex in [α/M]. The green line in the figure represents
the running dispersion of the difference between the CNN out-
put and the APOGEE input labels and shows how the training is
precise compared to the ground truth. When quadratically com-
bining the internal dispersion and the running dispersion, the
total uncertainty significantly increases (in blue). We note a 50 K
uncertainty in Teff for the giants and 60−70 K for the dwarfs.
The log(g) is rather constant, around 0.1 dex. The [M/H] and
[Fe/H] precision increase from 0.06/0.08 dex in the intermedi-
ate metallicity domain to 0.15 dex in the very metal-poor regime,
due to the paucity of spectral features. The [α/M] is extremely
precise, with a typical precision on the order of 0.02/0.04 dex.
We note that such a remarkable precision for all labels at RVS
resolution is only achievable when combining external infor-
mation in the form of Gaia DR3 photometry, parallaxes, and
XP coefficients.
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Fig. 7. Two-dimensional density distribution of the residual between trained CNN labels and APOGEE input labels as a function of the APOGEE
input labels for the training sample (44 780 stars, left column). The black dashed line shows a null difference. The mean bias (b) and dispersion
(σ) of the difference is given in the bottom-left corner of the panels. Each panel also contains a histogram of the input label. The right panels show
differences between the calibrated GSP-Spec parameters (with good quality flags; Recio-Blanco et al. 2023) and APOGEE labels.

3.5. Exploring the convolutional neural network gradients

In this section, we provide a comprehensive view of the features
used by the CNN during the training process. We present fea-
ture maps for RVS spectra in Sect. 3.5.1 and XP feature maps in
Sect. 3.5.2.

3.5.1. RVS gradients

As demonstrated in Nepal et al. (2023), Ambrosch et al. (2023),
as well as in Fabbro et al. (2018), CNNs are able to learn each
label from specific spectral features. We computed CNN gradi-
ents for the training sample RVS spectra by performing partial
derivatives of each of the labels with respect to each input neuron
(or pixel), namely, δLabel/δλ. Such gradients provide compre-
hensive maps of the active spectral features during the CNN
training. The RVS gradients are shown in Fig. 9. We present
mean gradients for the solar [M/H] (solid line) and [M/H] ∼
−0.8 dex (dashed line) RC stars. We present some characteristic
features used by the CNN that were taken from various litera-
ture sources (Boeche et al. 2011; Guiglion et al. 2018; Contursi
et al. 2021). Apart from being the strongest feature in the Gaia-
RVS range, the CaII triplet is not the most prominent feature in
the gradient maps. In the blue wing of the Ca II 8544 line, the
Fe I+Ti I blend is active for all labels. We observed that the Cr II
line at 8551Å is active for Teff and log(g), but almost no signal
is present in [M/H] and [α/M] gradients. An Fe I and Fe I+Ti I

blend at ∼8520 Å is mainly active in Teff, log(g), and [M/H]. A
very interesting feature can be seen at λ ∼ 8650 Å: a blend of
Si I, V II, and N. This blend is mainly active in log(g), [M/H],
and [α/M] gradients. The training was done on APOGEE labels

for which we knew the APOGEE C and N features correlate with
mass (Salaris, Maurizio et al. 2015; Martig et al. 2016) and there-
fore also with APOGEE metallicity and [α/M]. This explains
why the N feature is used by the CNN for constraining log(g),
[M/H], and [α/M]. An Fe I blend in the red wing of the Ca II line
at 8664 Å seems to be a very relevant feature for the determina-
tion of the four labels. We note that most of the spectral features
used in the range 8570–8640 Å are composed of Fe I lines. In
the red part of the RVS domain, we observed numerous lines
contributing to gradients: an S I line is active in Teff and log(g)
gradients as well as in Ti I. Such lines are also active in [M/H]
and [α/M], but to a lower extent. From what we observed, the
CNN learns [α/M] from mainly Si I, Ca II, and Ti I lines and
from the blend of Si, V, and N. Overall, the CNN is able to learn
from distinct spectral features for a given label even if the res-
olution is ∼10 000. This bodes well for the future exploitation
of 4MOST low-resolution surveys (Chiappini et al. 2019; Helmi
et al. 2019; Cioni et al. 2019).

3.5.2. XP gradients

We investigated how the network learns from the XP coeffi-
cients. To that end, we first computed correlations between the
labels and the 110 XP coefficients. As presented in Fig. 10, the
correlation matrix tells us that some coefficients are more corre-
lated to labels than others. It is evident from the heatmap in the
figure that XP spectra contain a lot of information on the stellar
atmospheric parameters Teff, log(g), [M/H], and [α/M]. Inter-
estingly, some of the XP coefficients show a good amount of
correlation with the alpha abundance as well. We then expected
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Fig. 8. Convolutional neural network uncertainties of the training sam-
ple as a function of CNN output labels. The 2D density distribution
in the red colourmap corresponds to the internal precision computed
over the 28 CNN models. The green fit corresponds to the running dis-
persion computed from the residual of CNN-APOGEE training labels
(see Fig. 7). The 2D histogram in the blue colourmap corresponds to
the quadratic sum of the internal precision and running dispersion, and
defines our overall uncertainty.

the CNN to learn differently from each XP coefficient. In the
same way we did for the RVS spectra, we computed gradi-
ents for the 110 XP coefficients. We present the XP gradient
(δXP/δlabel) as a function of XP coefficients in the right panel
of Fig. 10. The gradients show a lot of activity, meaning that the

CNN uses and learns from the XP coefficients for the training
sample. The basis functions with high orders in RP (>30) do not
seem to show strong activity, meaning that the CNN may learn
most from the lower-order coefficients. In case of BP, informa-
tion is present even down to coefficient 45. The gradients are
fairly consistent with the correlations observed between XP and
labels. Such plots confirm that XP coefficients are extremely rich
in information (see Andrae et al. 2023b; Zhang et al. 2023) and
can provide additional constraints when measuring Teff, log(g),
[M/H], [Fe/H], and [α/M].

4. Predicting labels for the observed sample

Using the 28 CNN models, we predicted the atmospheric param-
eters Teff, log(g), [M/H] as well as [Fe/H] and [α/M] ratios for
841 300 Gaia-RVS stars, that is, the previously defined observed
sample together with their uncertainties as detailed in Sect. 3.4.
Among these 841 300 stars, we have 644 287 stars within the
training sample limits as defined in Table 1 and Sect 5.1.

4.1. Kiel diagrams of the observed sample

In Fig. 5, we show a correlation matrix of labels, photometry,
parallaxes, and S/N of the RVS spectra classified as within the
training sample limits (middle column). Correlations are con-
sistent with those from the training sample (left column), as
expected. On the other hand, when drawing a correlation matrix
for the rest of the observed sample (outside the training sam-
ple limits), we did not see any strong correlation of Teff with
parallaxes. In fact, G and G_RP are anti-correlated with Teff.
Such a behaviour is discussed in more detail in Sect. 5.3 and
is mainly due to the presence of underrepresented spectral types
in the training sample.

In Fig. 11, we show Kiel diagrams of the observed sample
in bins of S/N (15–25, 25–35, 35–75, and ≥75) colour-coded
with [M/H] (644 287 stars). We observed a very consistent Kiel
diagram with a clear metallicity sequence in the giant branch.
The CNN also does a good job of parameterising the red clump.
We note that the CNN catalogue contains 10 718 RVS stars
with [M/H] < −1. We also observed a secondary cool-dwarf
sequence, which is very similar to what has been observed in
RAVE DR6 (Steinmetz et al. 2020b) and in which case results
from the presence of binary stars. Indeed, these stars in the
regime 4600 < Teff < 5100 K and 4 < log(g) < 4.2 show a very
large Gaia DR3 RUWE (∼4), suggesting a poor astrometric solu-
tion likely due to binarity. We further discuss the stability of the
CNN with radial velocity errors in Appendix C.

We also present Kiel diagrams for the rest of the RVS sample
(197 013 stars) in grey (stars outside the training sample limits).
Such stars are discussed in more detail in Sect. 5. In Appendix B,
we provide more detail regarding the CNN application using
only RVS spectra (i.e. no photometry, parallaxes, or XP data).

In order to show that the CNN is able to properly parame-
terise the RVS spectra, we show in Fig. 12 the mean spectra from
the observed sample in sequences of Teff, log(g), [M/H], and
[α/M] as derived by the CNN. Panel a of the figure shows typical
turn-off stars with solar [M/H], ranging from ∼4900 to 6000 K.
As expected, cooler stars present shallower spectral lines. Next,
panel b shows a log(g) sequence from 2.7 to 4.4 dex for stars
around 5000 K and solar [M/H]. In the same fashion as Teff,
cooler stars present shallower CaII feature, while the Fe I and Ti I
blend do not show strong sensitivity to gravity. Panel c shows a
metallicity sequence from −1.5 to solar [M/H] for cool giants.
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Fig. 9. Gaia RVS spectral sensitivity maps of CNN. Top: mean RVS spectra of training sample RC stars with [M/H] ∼ 0. In the next sub-panels,
we show the mean gradients of the CNN output labels with respect to the input RVS pixels for Teff, log(g), [M/H], and [α/M] (δlabel/δλ). The
vertical coloured lines show the location of the main RVS spectral features from which CNN learns (see Sect. 3.5.1).

Overall, the more metal-poor stars suffer from the weakening of
spectral lines, as expected. Panel d shows a [α/M] sequence for
cool dwarfs from Solar to +0.26. Similar to [M/H], shallower
lines result from lowering the overall [α/M] ratio. The Ti I com-
ponent of the blend seems more sensitive to [α/M] enrichment.
Such diagnostic plots show that the CNN properly determines
stellar labels and propagates the knowledge from the training
sample labels.

4.2. Uncertainties of the observed sample

The uncertainties were derived by quadratically combining the
dispersion from the 28 CNN models together with the fit of
the running dispersion from the training sample (polynomial
curve in Fig. 8). In Fig. 13, we present the total uncertainty of
the 768 793 stars within the training sample limits. The bulk
of the sample shows very similar uncertainty distributions to
those in the training sample (see Fig. 8). Stars with larger uncer-
tainties are also present. For instance, cool super giants show

uncertainties on the order of 70–300 K in Teff, 0.15–0.5 dex in
log(g), and 0.1–0.3 dex in [M/H] (roughly 19 000 stars). We
note that we provide to the community both the model-to-model
dispersion and the overall combined uncertainty (see Table 2).

4.3. The [α/M] versus [M/H] distributions of the observed
sample

We explore in this section the abundance pattern of [α/M] ver-
sus [M/H] of the observed sample in the different regions of
the Kiel diagram when selecting stars within the training sample
limits (644 287 stars).

In Fig. 14, [α/M] versus [M/H] patterns are presented in
bins of 500 K in Teff and 1 dex in log(g). As expected, we probed
the low-[α/M] regime preferentially in the dwarf regime, as such
objects are likely located closer to the Sun. We started probing
the high-[α/M] sequence when moving to lower log(g), and we
started populating the metal-poor tail of the sample. In the region
4000 < Teff < 4500 K and 1 < log(g) < 2, we clearly observed
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Fig. 10. Gaia XP spectra sensitivity maps of CNN. In the top panel,
we show a correlation matrix shown as a heat map between the
55 BP XP coefficients and labels in the training sample. The colour
bar shows the strength of the (anti-)correlation, where green in the mid-
dle (zero value) represents no linear relationship between the labels and
XP coefficients. The second panel shows the mean gradients of BP XP
coefficients (δlabel/δXP) as a function of the 55 BP XP coefficients for
the training sample. The third and fourth panels depict the heat map and
gradients for the RP XP coefficients (i.e. the red part of XP spectra).

a bimodality in [α/M], as expected (e.g. Hayden et al. 2015;
Queiroz et al. 2020). Such a feature was not visible using RAVE
data (Guiglion et al. 2020). We discuss the bimodality in more
detail in Sect. 7.

4.4. Precision and accuracy of metal-poor stars in the
observed sample

We investigated the precision and accuracy of metal-poor stars
present in the observed sample that fall within the training sam-
ple limits. As a reference, we used APOGEE DR17 labels and

Table 2. Atmospheric parameters, chemical abundance ratios, uncer-
tainties, and boundary flag of the publicly available online catalogue of
886 080 Gaia-RVS stars.

Col Format Units Label Explanations

1 char – sourceid Gaia Source ID
2 float K teff Effective temperature
3 float K eteff Model-to-model dispersion of Teff

4 float K sigma_teff Overall dispersion of Teff

5 float cm s−2 logg Surface gravity
6 float cm s−2 elogg Model-to-model dispersion of log(g)
7 float cm s−2 sigma_logg Overall dispersion of log(g)
8 float dex mh Overall metallicity
9 float dex emh Model-to-model dispersion of [M/H]
10 float dex sigma_mh Overall dispersion of [M/H]
11 float dex feh [Fe/H] ratio
12 float dex efeh Model-to-model dispersion of [Fe/H]
13 float dex sigma_feh Overall dispersion of [Fe/H]
14 float dex alpham [α/M] ratio
15 float dex ealpham Model-to-model dispersion of [α/M]
16 float dex sigma_alpham Overall dispersion of [α/M]
17 int – flag_boundary Boundary flag composed of 8 digits

focused only on the stars with [M/H]APOGEE < −1 . To demon-
strate the robustness of the CNN in the low S/N regime, we
selected stars with 15 < S/N < 25. We note that GSP-Spec do
not provide results with good quality flags_gspspec for these
stars. In Fig. 15, we compare the CNN labels to APOGEE DR17
for 353 RVS metal-poor stars of the observed sample. The effec-
tive temperature and surface gravity show no significant bias,
with a dispersion of 75 K and 0.17 dex, respectively. The over-
all [M/H] also shows no significant bias, with a dispersion of
0.14 dex. The bottom panel of Fig. 15 shows an [α/M] dispersion
below 0.07 dex and a tiny residual that is a function of [α/M] and
is consistent with the training sample (see Sect. 3.3).

Taken together, these results demonstrate that the CNN is
able to provide robust parameterisation of metal-poor stars down
to [M/H] = −2.3 dex at 15 < S/N < 25. Notably, this is the S/N
regime where standard spectroscopy struggles to provide precise
and accurate measurements for such types of stars.

4.5. Stability of the convolutional neural network in the low
signal-to-noise ratio regime

The Gaia DR3 RVS sample contains a significant fraction of low
S/N stars: 38% of the observed sample spectra range from 15 to
25 in S/N. In this section, we investigate how the CNN precision
varies with the S/N. Thus, we computed the standard deviation
between the CNN labels and APOGEE DR17 for stars within the
training sample limits in the observed sample. We computed the
same quantities in the training sample for reference. In Fig. 16,
we show how the precision behaves as a function of the S/N.
For the training sample (in orange, solid lines), the CNN preci-
sion is extremely stable and constant with respect to the S/N for
our four labels (Teff, log(g), [M/H], and [α/M]). As a compar-
ison, the precision of the GSP-Spec with respect to APOGEE
is two to five times worse (in orange, dashed lines), showing
decreasing precision with a decreasing S/N. We observed the
same behaviours in the observed sample (in green). The CNN
precision is constant as a function of the S/N in the observed
sample as well, which is not the case for GSP-SPec, again due to
the fact that the CNN combines spectroscopy, photometry, and
astrometry. Such plots show how the CNN is able to efficiently
deal with the noise in the data compared to standard spectro-
scopic methods, and it is able to extract high-quality labels in
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Fig. 11. Kiel diagrams of 644 287 Gaia-RVS stars in bins of S/N selected within the training sample limits. The stars are colour-coded by metallicity.
In the background, we show 2D histograms (in grey) of 197 013 stars that fall outside of the training sample limits.

Fig. 12. Mean RVS-observed spectra plotted in sequences of Teff
(panel a), log(g) (panel b), [M/H] (panel c), and [α/M] (panel d.). We
identified the two main spectral features as Ca II and a blend of Fe I
and Ti I.

low S/N spectra. Such an advantage of the CNN will be key for
the next data releases of Gaia, for instance, for extracting infor-
mation from individual epoch spectra at very low S/N, where
epoch spectra will be released at intrinsically lower S/N than the
presently available time-averaged spectra. In Appendix C, we

Fig. 13. Two-dimensional density distribution of the total uncertainties
for the 644 287 observed sample stars within the training sample limits
as a function of stellar labels. In the background, we show in grey the
uncertainty distributions for stars outside of the training set limits (see
Sect. 5).
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Fig. 14. Representation of [α/M] versus [M/H] for 644 287 Gaia-RVS stars of the observed sample within the training sample limits. The sample
is presented in panels corresponding to cuts in the effective temperature and surface gravity (steps of 500 K in Teff and 1 dex in log(g)). In the
top-left corner, we show a Kiel diagram of the sample to guide the eye.

present additional CNN sensitivity tests with respect to radial
velocity uncertainties.

5. How to ensure that the convolutional neural
network labels are within the physical limits of
the training set

Machine learning algorithms, such as the CNN, are extremely
proficient at learning from spectral features present in a train-
ing sample spectra. Nevertheless, some spectra of the observed
sample may not share common features with the training sam-
ple. Hence, parameterising such types of spectra could lead to
systematics in the determined labels. To understand how reliable
the CNN labels are, we present in the next sections a classifi-
cation method based on t-SNE, and we explore in Sect. 5.3 the
labels of stars outside of the training limits.

5.1. Using the t-SNE method to understand the limitations
of convolutional neural network labels

In order to supplement the reliability of our CNN results,
we performed a classification of our observed sample spectra
into ‘training-like’ and ‘training-unlike’ spectra, in the same
fashion as in Ambrosch et al. (2023). For such a task, we
used t-SNE, which is a dimensionality reduction technique
(Van der Maaten & Hinton 2008). From an N-dimensional
dataset (i.e. full spectra), t-SNE will provide a 2D map where
each point corresponds to a data sample, and points close to

each other in such a map then share similar spectral features.
We concatenated the training sample (44 780 spectra) and
the observed sample (841 300 spectra) into a main sample of
spectra (886 080 spectra), in all composed of 2401 pixels. We
produced four different t-SNE maps with perplexity = [30, 50,
75, 100]. We emphasise that this hyperparameter is equivalent
to the number of neighbours for a given data point (see Van der
Maaten & Hinton 2008 for more details). We give an example of
a t-SNE map with perplexity = 50 for the RVS sample in Fig. 17.
Panel a of the figure shows a density map of the 886 080 spectra,
colour-coded by the number of spectra per bin. In panel b, we
display the same map but highlight the training sample spectra
in green and the observed sample spectra in yellow. One can
clearly see that in some regions, only yellow points are visible,
meaning that such observed spectra do not share the same
spectral features as the training sample spectra. We computed
geometric distances between each point of the training sample
and the observed sample in the t-SNE map for the four different
perplexities. We selected observed spectra similar to the training
sample simultaneously for the four learning rates (an observed
spectrum must be similar to a training sample spectrum in
each of the four computed t-SNE maps). A similar method was
already used in Ambrosch et al. (2023) for selecting training-like
observed spectra. In panel c, we show 669 572 RVS spectra that
are training-like, while panel d shows 171 728 training-unlike
RVS spectra. In Appendix A, we show similar plots for the four
classifications in Fig. A.1 and plots for the classification with
perplexity = 75 colour-coded with Teff, log(g), and [M/H] in
Fig. A.2.
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Fig. 15. Residual between the CNN and APOGEE parameters as a func-
tion of APOGEE for 353 metal-poor stars ([M/H]APOGEE < −1 dex) in
the observed sample in the range 15 < S/N < 25. The black dashed line
shows a null difference. The mean bias (b) and dispersion (σ) of the
difference is given in the bottom-left corner.

5.2. Defining a robust flag to isolate spurious convolutional
neural network labels

Thanks to the t-SNE classification, we were able to isolate the
CNN labels that may suffer from systematics. Additionally, Gaia
G, parallaxes, and labels of the observed sample outside of the
physical limits of the training sample (as described in Table 1)
can suffer from systematics. We provide an eight-digit integer
flag in which each digit corresponds to one of the labels (in the
order Teff, log(g), [M/H], [α/M], and [Fe/H]) as well as the Gaia
G magnitude, parallax, and t-SNe classification. For instance,
‘00000000’ means that all labels are within the training sample
limits and within the G magnitude and parallax of the training
sample and that the t-SNE classification considered this spec-
trum to be similar to the training set. In contrast, a star with
‘10000000’ would indicate that the Teff derived by the CNN is
outside of the training sample limits and should be taken with
caution. We note that the flag we provide can be used to search
for peculiar stars or non-FGK objects in the RVS sample.

5.3. Exploring the labels outside of the training sample limits

In this section, we present the CNN labels of the 197 013
observed sample stars outside the limits presented in Table 1 and
classified by t-SNE as training-unlike (i.e. flag,00000000). The
sample consists of 197 013 stars, and Kiel diagrams are presented
in Fig. 18. The sample seems to cover a large range of [M/H]
from −3 to +1.

The typical spectrum of the giant branch is presented in
the bottom-right corner of each panel in Fig. 18. It shows very
strong TiO bands that increase with metallicity. As a result, the

Fig. 16. Precision computed as the standard deviation of the CNN
minus APOGEE (solid lines) and calibrated GSP-Spec minus APOGEE
(dashed lines) as a function of S/N bins for 41 623 stars of the training
sample (orange) and 76 996 stars of the observed sample (green, within
the training sample limits).

CNN interprets the strong TiO bands as metal-rich features.
Labels for these stars are unlikely to be accurate. Such TiO
bands indicate that such stars are M giants (confirmed by their
Gaia DR3 spectraltype_esphs). Such stars were also observed
in RAVE (Matijevič et al. 2012). There are no such stars in the
training set.

In the top-left corner of each panel of Fig. 18, we show spec-
tra of the hot stars. The spectra show very strong Hydrogen
Paschen lines, in fact indicating very hot stars. The strength of
the Paschen lines decrease with increasing metallicity, indicating
that the CNN understands the Paschen lines as being metal-poor
lines. These spectra are classified as OB stars when checking the
spectraltype_esphs from Gaia DR3. The CNN labels are also
unlikely to be accurate.

With Fig. 19, we investigated in more detail three regions
of the Kiel diagram that present labels for both the CNN and
APOGEE DR17: hot dwarfs (5700 ≤ Teff ≤ 7000, 2 ≤ log(g) ≤
4.5; blue dots), cool dwarfs (4000 ≤ Teff ≤ 5000, log(g) ≥ 4.5;
green crosses), and cool giants (2000 ≤ Teff ≤ 4800, −2 ≤
log(g) ≤ 2; orange stars). Regarding the hot dwarfs, we clearly
observed that for Teff > 7000 K, there is a large discrepancy
between the CNN labels and APOGEE directly accountable for
the large Paschen features in the RVS spectra and caused by the
fact that the training sample does not contain such targets. The
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Fig. 17. Classification of Gaia RVS spectra with t-SNE. Panel a: t-SNE maps with perplexity = 50 of the entire RVS sample consisting of 886 080
spectra plotted in a 2D-histogram manner. Panel b: same map but split into training (green) and observed (yellow) samples. Panel c: spectra of the
observed sample identified as similar to that of the training sample. Panel d: spectra of the observed sample identified as not being similar to that
of the training sample. See Sect. 5 for more details.

Fig. 18. RVS stars outside of the training sample limits. The Kiel diagram representations (197 013 stars) are in bins of [M/H] and colour-coded as
a function of [M/H]. We show typical RVS spectra of different regions of the Kiel diagram.

Fig. 19. Stars outside of the training set limits. The residual of the
CNN minus APOGEE for hot dwarfs, cool giants, and cool dwarfs were
selected from Fig. 18 (see text for more details).

gravity suffers from large systematics as well, while [M/H] and
[α/M] match rather well within 0.12 and 0.05 dex, respectively.

Concerning the cool dwarfs, the main issue comes from a
poorly parameterised log(g), as such objects are very nearby with
parallaxes larger than 7 mas. In the current training sample, we
have few nearby cool dwarfs. Hence, the CNN gravities for such
objects strongly suffer from systematics.

Finally, we observed that the cool giants show discrepant
Teff up to +1000 K compared to APOGEE, with metallicity
systematics up to +1 dex. Surprisingly, the [α/M] agrees within
0.1 dex between APOGEE and the CNN.

5.4. The catalogue of RVS labels with convolutional neural
network

We present our catalogue of atmospheric parameters (Teff, log(g)
and [M/H]) along with chemical abundances ([Fe/H], [α/M])
for 886 080 Gaia-RVS stars (summarised in Table 2). We pro-
vide two sources of uncertainties, model-to-model uncertainties
(eTeff, elog(g), e[M/H], e[Fe/H], and e[α/M]) and overall com-
bined uncertainties (σTeff, σlog(g), σ[M/H], σ[Fe/H], and
σ[α/M]), as well as the eight-digit flag described in Sect. 5.2.
The data table is publicly available with the AIP Gaia archive8.
The CNN Python code can be provided upon reasonable request.
In order to use the CNN catalogue of labels, we recommend
using the eight digits to identify the stars within the training

8 https://gaia.aip.de/metadata/gaiadr3_contrib/cnn_
gaia_rvs_catalog/
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Fig. 20. Atmospheric parameter comparison between CNN and APOGEE (left column), GSP-Phot and APOGEE (middle column), and GSP-Phot
and CNN (right column) for 33 120 stars of the observed sample.

sample limits, that is, the stars with the best CNN parameteri-
sation. To select the CNN labels within the training set limits,
we recommend adopting flag_boundary = “00000000”.

6. Validation of convolutional neural network labels

We validate our CNN methodology in his section. We used exter-
nal datasets in the form of asteroseismic data, parameters from
GSP-Phot, and GALAH data.

6.1. Comparison of convolutional neural network labels with
GSP-Phot

In this section, we compare the CNN labels of the observed sam-
ple with atmospheric parameters from GSP-Phot (Andrae et al.
2023a). We note that Gaia DR3 provided the community with
spectro-photometric atmospheric parameters using parallaxes,
stellar magnitude, and BP and RP coefficients.

In Fig. 20, we present comparisons between the CNN and
GSP-Phot9 with respect to APOGEE, as APOGEE was used as
training labels. We required that the CNN labels be within the
training set limits, resulting in having 33 120 labels in common
between APOGEE, the CNN, and GSP-Phot. The left columns of
Fig. 20 show a comparison of the CNN labels to APOGEE, and
a very similar behaviour as seen in Fig. 7 can be observed. When
comparing GSP-Phot with APOGEE (middle column of Fig. 20),
a larger overall dispersion can be measured, two to three times
larger than when comparing the CNN to APOGEE. There are
significant systematics for Teff < 4500 K and log(g) < 2. We also
noticed a double sequence in the [M/H] residual for [M/H] >
−0.8. The most striking feature is the large residual trend for
[M/H] < −0.8, with a difference larger than 0.5 dex. The third
panel of Fig. 7 presents comparisons between the CNN and GSP-
Phot. Overall, the dwarfs compare quite well, while the giants
show rather large discrepancies in both Teff and log(g), consistent
with what is shown in the left and middle panels of Fig. 7. The

9 We note that we did not apply the metallicity calibration relation
proposed by Andrae et al. (2023a).

large discrepancy in the parameters between CNN and GSP-Phot
can be explained by the fact that the CNN combines RVS spectra,
astrometry, photometry, and BP and RP coefficients and that it
trains on labels from the high-resolution APOGEE survey.

6.2. Validation of surface gravities with asteroseismic data

To test CNN accuracy and precision in surface gravity, we
compared the CNN log(g) with the precise log(g) from astero-
seismology. Asteroseismology relies on stellar oscillations and
is widely used by spectroscopic surveys for validation or cal-
ibration purposes, such as in RAVE (Valentini et al. 2017),
Gaia-ESO (Worley et al. 2020), and APOGEE (Anders et al.
2017; Pinsonneault et al. 2018; Miglio et al. 2021). For stars
with solar-like oscillations, as well as red giants, the frequency
at maximum oscillation power (νmax) is used for determining
log(g)seismo using only the additional parameter Teff (Brown
1991; Kjeldsen & Bedding 1995; Chaplin & Miglio 2013). We
adopted the most recent version of the K2 Galactic Archaeol-
ogy Program (K2 GAP) for campaigns C1-C8 and C10-C18 from
Zinn et al. (2022). The authors provide asteroseismic parameters
for 19 000 red giant stars. We have 164 stars in common with
our training sample and 589 stars in common with our observed
set (within the training sample limits). Each star also has GSP-
Spec calibrated log(g) for further comparison, with the 13 first
flags_gspec equal to zero. We computed log(g)seismo from Zinn’s
νmax and Teff using Eq. (3) from Valentini et al. (2019), assuming
νmax,⊙ = 3090µHz and Teff,⊙ = 5777 K (Huber et al. 2011).

In Fig. 21, we present a one-to-one comparison between the
asteroseismic log(g)s and APOGEE DR17, CNN, and GSP-Spec
surface gravities in the training and observed samples. Firstly,
the APOGEE and seismic log(g) compare very well in both the
training (used as input labels) and observed stars. No signifi-
cant bias was measured, while the dispersion ranges from 0.05 to
0.07, depending on the log(g) range. This absence of bias is con-
sistent with the fact that APOGEE calibrated the spectroscopic
log(g) with respect to the seismic ones (Abdurro’uf et al. 2022).
Secondly, the CNN and seismic log(g) also compare very well,
with no significant bias for log(g) < 2.6. For log(g) > 2.6, we
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Fig. 21. One-to-one comparisons of surface gravities log(g) from APOGEE DR17 (left column), CNN (middle column), and calibrated GSP-Spec
(right column) with respect to seismic log(g) calculated based on νmax and Teff from Zinn et al. (2022). The top row shows stars of the training
sample, while the bottom row shows targets of the observed sample. We computed the mean bias (b) and mean dispersion (σ) for three ranges of
gravity: log(g) < 2.3 (orange), 2.3 < log(g) < 2.6 (green), and log(g) < 2.6 (red).

measured a small bias on the order of 0.1 dex in both training
and observed stars, likely due to the fact that we combined spec-
tra, photometry, parallaxes, and XP coefficients. In the observed
sample, the dispersion ranges from 0.04 to 0.09 dex, which is
remarkable. The red clump (in green) shows no apparent bias
as well as a dispersion below 0.1 dex. We note that the log(g)
residual between APOGEE and the CNN shows no trend with
respect to the CNN Teff or [M/H]. The CNN is then capable of
conserving the APOGEE calibration. Finally, we compared the
GSP-Spec-calibrated log(g) with respect to the seismic log(g).
We observed that the calibrated GSP-Spec gravities match quite
well the seismic log(g), with a dispersion on the order of 0.15,
while biases range from 0.10 to 0.11.

Such comparisons once again show the remarkable per-
formances of the CNN, which combines several datasets for
improved measurements compared to pure spectroscopic labels
(as derived by GSP-Spec). The CNN is able to transfer and pre-
serve the properties of the training set, which in the present case
refers to the seismic calibration of APOGEE labels. (We refer the
reader to Appendix B for a CNN application using RVS spectra
only.)

6.3. Comparison between convolutional neural network and
GALAH DR3

We previously assessed CNN performances with respect to
APOGEE (which could reflect our training sample) and

GSP-Spec (which uses the same spectra as the CNN). In order
to have a fully independent comparison, we adopted the third
data release (DR3) of the high-resolution (R ∼ 28 000) optical
spectroscopic survey GALAH (Buder et al. 2021). GALAH DR3
used the Spectroscopy Made Easy (SME; Valenti & Piskunov
1996) spectral fitting code to derive atmospheric parameters and
chemical abundances for 588 571 stars. We adopted GALAH
quality flags according to the recommendations presented in
the best practices for using GALAH DR310, including removing
stars flagged to have peculiarities in their stellar parameters and
iron and alpha abundances, namely, flag_guess = 0, flag_sp =
0, flag_fe_h = 0, flag_alpha_fe = 0, and we made a S/N cut
with snr_c3_iraf > 40 per pixel. Regarding CNN labels, we
only required that labels be within the training sample lim-
its. For completeness, we also compared GALAH to calibrated
GSP-Spec parameters. Following the above selection, the sam-
ple consisted of 24 803 stars in common between the CNN and
GALAH DR3 and with labels within the training sample limits
and 15 ≤ S/N ≤ 25.

In Fig. 22, we present label differences in the form CNN -
GALAH as a function of GALAH. We observed that Teff and
log(g) present no strong systematics, apart from hot dwarf stars
(Teff > 6500 K) with a significant bias of >300 K (total of
200 stars). For gravities, log(g) shows a weak residual trend

10 https://www.galah-survey.org/dr3/using_the_data/
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Fig. 22. Differences between CNN minus GALAH as a function of
GALAH for Teff, log(g), [Fe/H], and [α/M] for 24 803 stars of the
observed set with 15 ≤ S/N ≤ 25 and within the training set limits.

with a dispersion on the order of 0.1. We note that such a dis-
persion increases to 0.17 for log(g) < 2.2. The CNN [M/H]
shows remarkable agreement with GALAH, with a disper-
sion below 0.1 for [M/H] > −1, and it reaches 0.19 dex for
[M/H] < −1. In addition, the CNN [α/M] matches GALAH
well, with a dispersion well below 0.1. We note that the sys-
tematic trends measured between the CNN and GALAH are
also visible in the input APOGEE DR17 labels. In this section,
we have demonstrated that the CNN parameters in the range
15 ≤ S/N ≤ 25 based on spectroscopy, astrometry, and pho-
tometry are very consistent with high-resolution spectroscopic
GALAH parameters.

6.4. Comparison of convolutional neural network iron content
with open clusters from GALAH

We compare here the CNN [Fe/H] predictions for open clus-
ter stars to those from GALAH DR3. We used a list of known
clusters within the Gaia-RVS clusters from Cantat-Gaudin et al.
(2020) updated to DR3 (Cantat-Gaudin, priv. comm.). There are
nine clusters with more than three members ranging from −0.4
to +0.25 in [Fe/H]. We present a comparison plot in Fig. 23.
Overall, the CNN [Fe/H] agrees very well with GALAH. How-
ever, two clusters present rather large systematics. For instance,
NGC 2539 shows a mean difference of 0.26 dex between
the CNN and GALAH. A recent study by Casamiquela et al.
(2021) found this cluster to be slightly sub-solar ([Fe/H] =
−0.012), which is consistent with the CNN data. The sec-
ond cluster, NGC 2632, shows a rather large dispersion of
0.12 dex for GALAH [Fe/H], while the CNN finds an inter-
nal dispersion of 0.05 dex. The mean [Fe/H] abundance is
0.08 for the CNN and 0.19 for GALAH, while Casamiquela
et al. (2021) reported 0.12 as the mean [Fe/H]. Our com-
parison plot allowed us to show the robustness of the CNN
[Fe/H] ratios.

Fig. 23. Comparison of CNN [Fe/H] with respect to GALAH DR3 for
10 open clusters. The clusters are listed in the top-left corner. We also
computed a mean [Fe/H] and the associated error bar (computed as
standard deviation). The mean bias is written next to the cluster name.

7. The [α/M] − [M/H] bimodality traced by Gaia-RVS

The abundance patterns of α-elements (such as magnesium and
oxygen) have been studied and characterised in the Milky Way
disc, bulge, and halo for more than two decades in the solar
neighbourhood (e.g. Fuhrmann 1998, 2011; Pompéia et al. 2002;
Adibekyan et al. 2011; Mikolaitis et al. 2014; Guiglion et al.
2015) and toward the inner and outer disc thanks to large-scale
spectroscopic surveys (e.g. Anders et al. 2014; Hayden et al.
2015; Buder et al. 2019; Queiroz et al. 2020). A strong debate
has animated the Galactic Archaeology community regarding
the mechanisms responsible for the bimodality measure in
this abundance space (see for instance Chiappini et al. 1997;
Schönrich & Binney 2009; Haywood et al. 2013; Minchev
et al. 2013; Grand et al. 2018; Spitoni et al. 2019; Buck 2020;
Khoperskov et al. 2021; Agertz et al. 2021). So far, the bimodal-
ity has been clearly characterised at high resolution, even though
hints of such a bimodality have been detected by low-resolution
and intermediate-resolution surveys, such as SEGUE (Lee et al.
2011), LAMOST (Xiang et al. 2019), and RAVE (Guiglion
et al. 2020). We have shown in the previous sections that our
CNN methodology provides precise and accurate chemical
information. In Fig. 4.3, we presented that giant stars show a
bimodality in the [α/M] − [M/H] plane, and this is the first time
that such a clear bimodality has been seen in Gaia-RVS spectra,
which are characterised by both limited resolution and spectral
coverage. Our finding is fully consistent with previous work: a
low [α/M] sequence (< +0.15 dex) ranging from [M/H] ∼ −0.6
to [M/H] ∼ +0.2 dex together with a high [α/M] (> +0.15 dex)
sequence ranging from [M/H] ∼ −1 to [M/H] ∼ −0.2 dex.
We note that in the literature, the shape and zero-point of the
bimodality depend on the type of stars used and the type of
α-elements studied.

To trace the spatial variations of the bimodality, we
calculated the positions and velocities in the galactocentric
rest-frame using available astrometric solutions (sky positions
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Fig. 24. Two-dimensional histograms and contours of [α/M] vs. [M/H] in 53 200 Gaia-RVS giants of the observed sample with 15 ≤ S/N ≤ 25
and log(g) ≤ 2.2 within the training sample limits. The stars are plotted in kiloparsec bins of galactocentric radius (R) and height above the galactic
plane (Z).

and proper motions) and radial velocities from Gaia DR3 (Gaia
Collaboration 2023) and assuming distances computed with
the StarHorse Bayesian method (Queiroz et al. 2023) and the
current CNN labels (more details in Nepal et al., in prep.). We
also assumed an in-plane distance of the Sun from the Galactic
centre of 8.19 kpc (GRAVITY Collaboration 2018), a velocity of
the Local Standard of Rest of 240 km s−1 (Reid et al. 2014), and
a peculiar velocity of the Sun with respect to the local standard
of rest, U⊙ = 11.1 km s−1, v⊙ = 12.24 km s−1, W⊙ = 7.25 km s−1

(Schönrich et al. 2010).
We explored the [α/M] − [M/H] bimodality for 15 ≤ S/N ≤

25, that is, the S/N regime for which GSP-Spec does not pro-
vide [α/M] ratios with good quality flags. In Fig. 24, we show
the [α/M] − [M/H] plane decomposed into bins of galactocen-
tric radius R and height above the Galactic plane Z. Our sample
consists of 53 200 stars with 15 ≤ S/N ≤ 25 and log(g) < 2.3,
within the training sample limits. At low Z (|Z| < 0.5 kpc) and
±1kpc around the solar radius, we mainly probed low-[α/M]
stars. When moving towards the inner disc, we started to popu-
late the high-[α/M] sequence, and a bimodality is clearly visible
in the range 0 < R < 4 kpc (bottom-left panel of Fig. 24). Mov-
ing to higher Z (|Z| > 1.0 kpc), the inner disc shows a clear
transition from being low-[α/M] populated to high-[α/M] pop-
ulated (stars in the bins 0 < R < 4 kpc and 1.5 < |Z| < 4 kpc;
top-left panels of Fig. 24). In the outer disc, the stars mainly
show low-[α/M] enrichment, which is due to disc flaring, as

first suggested by Minchev et al. (2015). Such results are con-
sistent with previous works (Anders et al. 2014; Hayden et al.
2015). The bimodality is also seen in the bulge region with
our CNN abundances, confirming previous results based on
APOGEE DR14 and DR16 (Rojas-Arriagada et al. 2019; Queiroz
et al. 2020, 2021). By investigating the [α/M] versus [M/H]
pattern over a large range of galactic R and Z, we show that
CNN is able to recover the main abundance trends in the Milky
Way over a large galactic volume, even for low S/N ratio RVS
data. This first detection of the bimodality in the RVS data
using a CNN is a step forward in the scientific output of the
Gaia mission. A detailed discussion of the candidate-bulge stars
seen in this sample will be discussed in Nepal et al. (in prep).
Other interesting results will also be discussed in forthcoming
papers using the new StarHorse method run on this sample
(Nepal et al. 2024).

8. Caveats

Stars with [M/H] below −2.3 may suffer from systematics due to
low statistics in the training sample at very low metallicities. For
the future use of the CNN and Gaia-RVS, a proactive training
sample should be adopted by further populating the metal-poor
regime. We are going in such a direction with an accepted SDSS-
V open-fiber programme (PI G. Guiglion) that will observe 4000
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RAVE metal-poor stars (Matijevič et al. 2017; Guiglion et al.
2020) with the APOGEE spectrograph. In the future, such metal-
poor stars will complement the current training sample and
improve the reliability of the metallicity measurements of stars
below −2.3 dex.

Over the full RVS catalogue of 886 080 stars parameterised
by the CNN, 22% belong outside of the training sample limits. It
is clear that in the present study, the performances of our CNN
approach are limited by the training sample. The APOGEE and
Gaia surveys are characterised by different selection functions.
The selection function of the training sample is then charac-
terised by traits common to both surveys, but a full analysis of
the selection function is beyond the scope of the present paper.
For future Gaia releases, substantial effort should be applied to
populating the training sample with more diverse targets, such
as OB stars, M dwarfs, and giants. Also, nearby stars (with large
parallaxes) or bright stars should be added in the training set
in order to have a more complete representation of the local
stellar populations. Such statements are valid for ongoing and
future large spectroscopic surveys that may want to use ML algo-
rithms for spectral parameterisation, such as GALAH, SDSS-V,
and 4MOST.

9. Conclusion

In June 2022, the Gaia consortium released data of one mil-
lion RVS stars, with one-third having a low signal-to-noise ratio
(15 < S/N < 25). In this paper, we derived atmospheric parame-
ters and chemical abundances from this dataset by combining,
for the first time, Gaia-RVS spectra, photometry (G, G_BP,
G_RP), parallaxes, and Gaia XP coefficients. We summarise our
method and main achievements below:

– Benefitting from the last data release of the APOGEE survey,
we built a training sample with high-quality labels, including
atmospheric parameters Teff, log(g), and [M/H] and chemi-
cal abundances [Fe/H] and [α/M]. After careful use of Gaia
and APOGEE flags, the resulting training sample was com-
posed of 44 780 stars (Sect. 2, Fig. 4) with RVS spectra,
photometry, astrometry, and XP data. We also assembled a
set of RVS spectra (with additional photometry, astrometry,
and XP data) for which we measured the above-mentioned
labels. This observed set is composed of 841 300 stars.

– We built a CNN based on previously used architectures from
Guiglion et al. (2020); Nepal et al. (2023); Ambrosch et al.
(2023) that we optimised for the Gaia datasets used in this
work (Sect. 3, Fig. 6). We trained a series of 28 CNN models
that we combined in order to determine average labels. We
showed that the CNN learns from relevant spectral features
for a given label as well as from XP coefficients (Sect. 3.5,
Figs. 9, and 10). We confirmed that XP coefficients can
be used for constraining atmospheric parameters as well as
[α/M].

– We derived realistic uncertainties by combining the model-
to-model dispersion with the departure from the training
sample input labels (Sect. 3.4, Fig. 8). The uncertainties in
the observed sample are on the order of 50−70 K in Teff;
0.1 dex in log(g); 0.07/0.15 dex in [M/H] and [Fe/H]; and
0.02/0.04 in [α/M].

– The CNN shows a stable performance across a large range
of S/N (Sect. 4.5, Fig. 16). The dispersion with respect to
APOGEE is constant with S/N in both training and observed
samples and more robust than the GSP-Spec parameters
when compared to APOGEE. We demonstrated that the

CNN is capable of precisely and accurately parameterising
metal-poor stars in the range 15 < S/N < 25 (see Sect. 4.4,
and Fig. 15). Such high-quality parameterisation is only
achievable when combining spectra, photometry, parallaxes,
and XP data.

– Compared with the precise asteroseismic log(g) of red giant
stars computed using asteroseismic parameters from Zinn
et al. (2022), the CNN shows no mean bias or residual trends,
with a typical dispersion of 0.1 dex, which is remarkable
(Sect. 6.2, Fig. 21). Such a precision can only be achieved
thanks to the external data we used in the form of pho-
tometry, parallaxes, and XP coefficients. Comparisons with
GALAH DR3 also showed the CNN to have a higher preci-
sion compared to GSP-Spec (Fig. 22). We also showed that
CNN is very robust regarding radial velocity uncertainties
(Fig. C.1).

– Using the dimensionality-reduction algorithm t-SNE, we
classified the RVS spectra into training-like and training-
unlike spectra, allowing us to discard RVS spectra that
are not similar to the training sample. As a result,
among the 841 300 RVS stars of the observed sam-
ple, 644 287 stars (including 10 718 metal-poor stars) are
within the training sample limits and characterised by
flag_boundary = “00000000”, and they are recommended for
science applications.

– With our dataset, it is possible, for the first time, to resolve
and trace the [α/M]-[M/H] bimodality in the Milky Way
disc using Gaia data (Sect. 7, Fig. 24). Such a performance
has been achieved thanks to a large-enough and high-quality
training sample combined with a complex CNN architecture,
and most important is the combining of four unique datasets
(RVS spectra, photometry, parallaxes, and XP coefficients).

As RVS spectra are rich in spectral lines, we plan to measure
more elemental abundances for the next releases of Gaia-RVS
data, such as Ti, Si, and Ce. In addition, the next Gaia data
release will consist of 66 months of data (expected by the end of
2025) and will include all epoch and transit data for all sources
(i.e. low S/N RVS data). This current paper represents a step for-
ward in the analysis of such a dataset. For the next studies and
generation of surveys, the training sample should be built in a
proactive way, that is, by selecting targets to be observed instead
of simply using an existing set of reference stars. In this way,
the biases inherent to any training sample will be limited. For
instance, focus should be on the tail of metal-poor stars as well as
bright stars, local stars, and M giants. Such a challenge will have
to be faced by 4MOST, which aims at using ML tools for stellar
parameterisation. On that topic, we believe that the experience
gained here with the analysis of spectra with limited resolu-
tion and spectral coverage will be crucial in the development of
a CNN method for future surveys, such as the 4MOST Milky
Way Disc and Bulge Low-Resolution Survey (4MIDABLE-LR;
Chiappini et al. 2019).
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Appendix A: Details on t-SNe classification

We present here a comprehensive view of the t-SNE classifica-
tion of RVS spectra for four different perplexities: 30, 50, 75,
100. Results are shown in Fig. A.1. Overall, the t-SNE look visu-
ally similar, with quite consistent numbers of ‘training-like’ and
‘training-unlike’ spectra from the observed sample.

To give the reader an idea of how the t-SNE classification
correlates with atmospheric parameters, we present in Fig. A.2
the t-SNE classification with perplexity=50 colour-coded with

Teff, log(g), and [M/H]. One can clearly see in the ‘training-
unlike’ map blobs of cool and hot stars that are not present in the
‘training-like’ map. Such blobs correspond to the cool giants and
hot dwarfs described in Section 5.3 and were clearly mislabelled
by the CNN. Using this t-SNE approach allows us to adequately
flag the mislabelled spectra and then provide the user a robust
flag for cleaning the CNN catalogue of spurious measurements.

Fig. A.1. t-SNE maps of the RVS spectra for four different perplexities (4 columns: 30, 50, 75, 100). The top row shows the maps for the whole
RVS sample; the second shows only the RVS classification for the training sample; and the third and fourth rows show the ‘training-like’ and
‘training-unlike’ spectra from the observed sample, respectively.
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Fig. A.2. t-SNE maps for perplexity=50 for the training sample spectra (left) and the ‘training-like’ (middle) and ‘training-unlike’ (right) spectra
of the observed sample. The maps are colour-coded with Teff (top), log(g) (centre), and [M/H] (bottom).

Appendix B: Training convolutional neural network
of purely Gaia-RVS spectra

We have demonstrated in the previous sections that combin-
ing RVS spectra, magnitudes, parallaxes, and XP coefficients
allowed us to provide high-quality CNN labels. For complete-
ness, we trained CNN using only RVS spectra as input data.
In Fig. B.1, we show Kiel diagrams of the high-quality sample
in bins of S/N (15-25, 25-35, 35-75, and ≥ 75), colour-coded
with [M/H] (219 145 stars within training set limits. We present
the rest of the RVS sample in grey (stars outside the train-
ing sample limits or with large uncertainties). We observed a
consistent Kiel diagram, even at low S/N, with a clear metallic-
ity sequence in the giant branch, while the red clump locus is

clearly reproduced. The sequence of cool dwarfs only extends
down to Teff = 5 000 K, contrary to Fig. 11. This is due to the
fact that, similar to RAVE spectra, RVS seems to suffer from
degeneracies as well. Such degeneracies are clearly brought to
light by the stars in grey, that is, a sequence connecting the cool
giants to the cool dwarfs (see Kordopatis et al. 2013; Guiglion
et al. 2020 for more details of the RAVE spectral degenera-
cies). Another interesting feature is a high concentration of stars
above Teff > 6500 K. Their spectra are characterised by strong
Hydrogen Paschen lines. The CNN seems to constrain their
temperature rather well, while log(g) is clearly biased.

In Fig. B.2, we compare CNN gravities (derived from RVS
spectra only) to seismic gravities computed from Zinn et al.
(2022) (see Sect. 6.2; same stars as in Fig. 21). Overall, the
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Fig. B.1. Same figure as Fig. 11 but for RVS stars parameterised by
CNN only using RVS spectra.

Fig. B.2. Same figure as Fig. 21 but comparing the CNN gravities
(derived using only RVS spectra) and seismic gravities.

bias is well below 0.1 dex, while the dispersion ranges from
0.08 to 0.12 dex, which is remarkable considering that we only
trained on RVS spectra. We emphasise that calibrated GSP-Spec
gravities only showed a precision of 0.14-0.17 dex compared to
seismic gravities.

Through such tests, we show that the CNN still provides reli-
able parameters when trained only on RVS spectra. This is due
to the high-quality APOGEE labels transferred and learned dur-
ing the training process. The CNN is still not immune to spectral
degeneracies for some stars. Such degeneracies are broken when
using extra magnitudes, parallaxes, and XP data.

Appendix C: Convolutional neural network stability
with respect to Gaia DR3 radial velocities

In this section, we investigate how sensitive the CNN is to the
radial velocity uncertainties. In this study, the adopted Gaia-RVS
have been corrected from Doppler shift by the Gaia consortium.
It may happen that a tiny residual shift (a fraction of a pixel)
can be present in the corrected spectra of stars with large Vrad
uncertainties. We note that small systematics in the radial veloc-
ity applied to spectra may lead to systematics in the predicted
labels (see Nepal et al. 2023). In Fig. C.1, we show how the dif-
ference in labels between CNN and APOGEE and GSP-Spec
and APOGEE (in both training and observed samples) varies
with Gaia DR3 radial velocity uncertainties (eVrad). We applied
the recommended flags_gspspec in order to clean the GSP-Spec
sample. First, for the training sample, we clearly observed that
for each label (Teff, log(g), [M/H], and [α/M]), the systemat-
ics (bias) between CNN and APOGEE is constant as a function
of eVrad. On the other hand, GSP-Spec - APOGEE shows strong
residual trends for the bulk of the distribution, with increasing
bias as a function of eVrad, as documented in Recio-Blanco et al.
(2023). The dispersion is also two to three times larger com-
pared to the CNN. For the stars on the observed sample, we

A9, page 25 of 25



Guiglion, G., et al.: A&A, 682, A9 (2024)

Fig. C.1. Two-dimensional density distribution of the CNN minus APOGEE and calibrated GSP-Spec minus APOGEE as a function of Gaia DR3
radial velocity uncertainties in both the training (2 606 stars) and observed samples (20 948 stars, within the training sample limits).

observed similar systematic trends. We note that even if not plot-
ted here, [Fe/H] behaves similarly as [M/H]. With such tests, we
can conclude that the CNN shows no strong sensitivity to eVrad
and shows no residual trends.
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