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Notation and abbreviations

Notations Descriptions

i.i.d. Independent identically distributed.
LSE Least squares estimator.
MLE Maximum likelihood estimate.
NNS Nearly nonstationary.
CDF Cumulative distribution function.
AR(d) Autoregressive process of order d.
yn,k The first order nearly nonstationary process (yn,k, k ≤ n, n ≥ 1).
εk i.i.d.random variables, innovations of nearly nonstationary pro-

cess.
φ̂n The least squares estimate in first order nearly nonstationary pro-

cess.
ε̂k The estimated residuals from first order nearly nonstationary pro-

cess.
R The real numbers set.
N The natural numbers set.

D[0, 1] Skorohod (CÀDLÀG functions) space on [0, 1].
C[0, 1] Continuous functions space on [0, 1].
C1[0, 1] Space of fonctions on [0, 1] with continuous derivative.
Ho
α[0, 1] Separable Hölder space with index α on [0, 1].
R−−−→

n→∞
Convergence in distribution in R.

E−−−→
n→∞

convergence in distribution in a metric space E.
P−−−→

n→∞
Convergence in probability.

D= Equality in distribution.
Continued on Next Page… v



NOTATION AND ABBREVIATIONS

Table 0.1 – Continued

Notations Descriptions

W A standard Wiener process (W (t), t ∈ [0, 1]).
Uγ An Ornstein-Uhlenbeck process (Uγ(t), t ∈ [0, 1]).

N(µ, σ2) Gaussian distribution with mean µ and variance σ2.
W pl
n The polygonal line process (W pl

n (t), t ∈ [0, 1]) build on i.i.d. ran-
dom variables.

Spl
n The polygonal line process (Spl

n (t), t ∈ [0, 1]) build on yn,k’s.
Ŵ pl
n The polygonal line process (Ŵ pl

n (t), t ∈ [0, 1]) build on residuals.
‖f‖∞ Uniform norm of function f in the Skorohod and continuous func-

tions space.
‖f‖α Norm of the function f in the Hölder space Ho

α.
log(n) Natural logarithm.
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Asymptotic results on nearly nonstationary processes

Abstract

We study some Hölderian functional central limit theorems for the polygonal
partial sum processes built on a first order nearly nonstationary autoregressive
process yn,k = φnyn,k−1 + εk and its least squares residuals ε̂k with φn converging
to 1 and i.i.d. centered square-integrable innovations. In the case where φn = eγ/n

with a negative constant γ, we prove that the limiting process depends on Ornstein
– Uhlenbeck one. In the case where φn = 1 − γn/n, with γn tending to infinity
slower than n, the convergence to Brownian motion is established in Hölder space
in terms of the rate of γn and the integrability of the εk’s.

We also investigate some epidemic change in the innovations of the first order
nearly nonstationary autoregressive process AR(1). Two types of models are con-
sidered. For 0 ≤ α < 1, we build the α-Hölderian uniform increments statistics
based on the observations and on the least squares residuals to detect the short
epidemic change in the process under consideration. Under the assumptions for
innovations we find the limit of the statistics under null hypothesis, some condi-
tions of consistency and we perform a test power analysis. We also discuss the
interplay between the various parameters to detect the shortest epidemics.
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Résultats asymptotiques sur des processus quasi non
stationnaires

Résumé

Nous étudions certains théorèmes limite centraux fonctionnels hölderiens pour
des processus autorégressifs d’ordre un quasi non stationnaires yn,k = φnyn,k−1+εk
et leurs résidus au sens des moindres carrés avec φn → 1 et des innovations i.i.d.
centrées, de carré intégrable. Dans le cas φn = eγ/n avec γ < 0, la limite en
loi est une fonction d’un processus d’Ornstein-Uhlenbeck intégré. Dans le cas
φn = 1 − γn/n avec γn → ∞, γn/n → 0, la convergence vers le mouvement
brownien est établie dans l’espace de Hölder en termes de vitesse de divergence
γn et d’intégrabilité des innovations εk.

Nous considérons également une rupture épidémique dans les innovations de
pro- cessus autorégressifs d’ordre un quasi non stationnaires AR(1). Deux types
de modèles sont considérés. Pour 0 ≤ α < 1 nous construisons une statistique α-
hölderienne basée sur les accroissements uniformes des observations ou des résidus
pour détecter une courte rupture épidémique dans les processus considérés. Sous
certaines hypothèses pour les innovations, nous trouvons la loi limite de la statis-
tique sous l’hypothèse nulle, les conditions de consistance et nous effectuons une
analyse de la puissance du test statistique. Nous discutons également l’interaction
entre les différents paramètres pour la détectabilité des plus courtes épidémies.
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Beveik nestacionarių procesų asimptotiniai rezultatai

Santrauka

Disertacijoje nagrinėjami dalinių sumų laužčių procesai sudaryti iš pirmos eilės
beveik nestacionaraus proceso yn,k = φnyn,k−1 + εk bei jo mažiausių kvadratų
liekanų ε̂k, kai φn → 1 ir inovacijos yra nepriklausomi, vienodai pasiskirstę ir
bent kvadratu integruojami atsitiktiniai dydžiai su nuliniu vidurkiu. Įrodomos
funkcinės ribinės teoremos šiems laužčių procesams Hiolderio erdvėje. Kai φn =
eγ/n, γ < 0, įrodoma, kad ribinis procesas priklauso nuo Ornsteino–Uhlenbecko
proceso. Kitu atveju, kai φn = 1 − γn/n ir γn artėja į begalybę lėčiau nei n,
įrodomas konvergavimas į Brauno judesį Hiolderio erdvėje, atsižvelgiant į γn di-
vergavimo greitį bei inovacijų integruojamumą.

Toliau nagrinėjamas epideminio pasikeitimo modelis beveik nestacionaraus
pirmos eilės autoregresinio proceso inovacijoms. Nagrinėjami du modeliai. Iš
stebėjimų bei liekanų konstruojama tolydžiųjų prieaugių α-Hiolderio statistika,
kai 0 ≤ α < 1. Remiantis prielaidomis inovacijoms, randama statistikos ribinis
procesas prie nulinės hipotezės, suderinamumo sąlygos, atliekama galios analizė.
Taip pat aptariamas parametrų sąryšis siekiant aptikti kuo trumpesnį epideminį
pasikeitimą.

ix



Introduction

Research topic. The thesis is devoted to an asymptotic analysis of the
first order nearly nonstationary autoregressive processes. We consider a sample
yn,1, . . . , yn,n, where yn,k is generated by first order nearly nonstationary process

yn,k = φnyn,k−1 + εk, k ≤ n, n ≥ 1,

φn → 1 as n → ∞, innovations (εk, k = 0, . . . n) are centered, at least square
integrable random variables.

We investigate functional limit theorems for the process (yn,k) in the space
of continuous function and in the Hölder spaces. Also, we prove the Hölderian
functional limit theorems for least square residuals (ε̂k, k = 0, . . . n) of the process
under investigation. We use the two type of parameterizations of the coefficient φn:
the first is φn = eγ/n and the second one φn = 1−γn/n with γn →∞ and γn/n→ 0
as n→∞. These two parameterizations give different limiting distribution in the
functional limit theorems. The limit in case one is a functional of an integrated
Ornstein-Uhlenbeck process, while in case two the limit is functional depending
on the Wiener process.

In this thesis we apply functional limit theorems to the epidemic change de-
tection in the mean of innovations, i.e., we discuss the model

yn,k = φnyn,k−1 + εk + an,k, k ≤ n, n ≥ 1,

where

an,k = an1I∗n(k).

1
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Figure 0.2: Trajectory of the innovations and the NNS AR(1) residuals with and
without the epidemic change. Blue vertical lines denote the beginning and the
end of the epidemic change.

Here 1I∗n(k) is the indicator function of the index set

I∗n = {k∗ + 1, . . . ,m∗}

that denotes the epidemic change with the unknown beginning k∗ and end m∗.

Such epidemic change is reflected in trajectories of yn,k and ε̂k (see figures 0.2
and 0.3). Thus we deal with uniform increments statistics build both on yn,k’s
and ε̂k’s. This leads to different results.

For the test statistics under investigation, we find the limit of the statistics
under the null hypothesis of no change. Also we investigate the consistency of
statistics, power analysis and we discuss the interplay between various parameters
to detect the shorter epidemics.

Actuality. Nearly nonstationary autoregressive processes are important in
statistics and particularly in econometrics. One important feature of such pro-
cesses is their behaviour in the neighbourhood of an unit root. This question have
been investigated by a number of authors: P.C.B. Phillips, L. Giraitis, N.H. Chan,

2
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Figure 0.3: Trajectory of the NNS AR(1) with and without the epidemic change.
Blue vertical lines denote the beginning and the end of the epidemic change.

etc. For more references and details, see section "State of the art".

Aim and tasks. The aim of the thesis is to prove the functional limit theorems
for the nearly nonstationary processes and to apply them to the epidemic change
detection in the mean of innovations. The tasks of the thesis are:

– to analyse the functional convergence of polygonal line processes build on
the yn,k’s and residuals ε̂k;

– to build and study test statistics for the epidemic change detection;
– to make numerical experiments for the epidemic change detection.
Novelty. In the thesis we prove various the Hölderian functional central limit

theorems for the first order nearly nonstationary autoregressive processes. New
results on the epidemic change detection by Hölderian type statistics in nearly
nonstationary first order autoregressive process are established.

Main results. Functional limit theorems for the first order nearly nonstation-
ary autoregressive process in continuous function and Hölder spaces are proved
(theorems 4.1.3, 4.1.8, 4.1.9); Hölderian functional limit theorems for residuals are
given (theorems 4.2.2, 4.2.8); Levin and Kline type statistics build on yn,k’s for

3
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epidemic detection under null hypothesis of no change is investigated (theorems
5.1.1, 5.1.2); Hölderian type statistics is studied (theorems 5.1.3, 5.1.4); consis-
tency of Levin and Kline and Hölderian type statistics is given (theorem 5.2.1);
Hölderian type statistics build on residuals for epidemic detection under null hy-
pothesis of no change is investigated (theorems 6.1.1, 6.1.2); consistency of such
type statistics in special case is considered (theorem 6.2.1).

Methods. Methods and results of probability theory, statistics and functional
analysis are used. Numerical experiments are performed with a free software
environment for statistical computing and graphics R.

Publications.

1. J. Markevičiūtė, A. Račkauskas, Ch. Suquet. Functional central limit theo-
rems for sums of nearly nonstationary processes. Lithuanian mathematical
journal, 52(3): 282-296, 2012.

2. J. Markevičiūtė, A. Račkauskas, Ch. Suquet. Testing the epidemic change in
nearly nonstationary processes. Nonlinear Analysis: Modelling and Control,
To appear, 2013.

3. J. Markevičiūtė, A. Račkauskas, Ch. Suquet. Epidemic change test based
on residuals for nearly nonstationary process. (preprint)

Conferences.

1. The First German-Polish Joint Conference on Probability Theory and Math-
ematical Statistics, Torun, Poland, 2013 06 06 - 2013 06 09. Talk "Testing
the epidemic change in nearly nonstationary processes".

2. Conference "Non-stationarity in Statistics and Risk Management", Luminy,
France, 2013 01 21 – 2013 01 25. Talk "Functional limit theorems for resid-
uals of nearly nonstationary processes".

3. 53rd conference of Lithuanian Mathematical Society, Klaipėda, Lithuania,
2012 06 11 - 2012 06 12. Talk "Functional central limit theorems for nearly
nonstationary processes and applications for testing epidemic change".

4. 2nd conference of young scientists by Lithuanian Academy of Sciences "In-
terdisciplinary research of physical and technological sciences", Vilnius, 2012
02 14. Poster "Weak law of large numbers for the first order nearly nonsta-
tionary autoregressive processes in the functional spaces".
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5. 52nd conference of Lithuanian Mathematical Society, Vilnius, 2011 06 16
– 2011 06 17. Talk "Functional limit theorems for residuals of nearly non
stationary processes".

6. 1st conference of young scientists by Lithuanian Academy of Sciences "Inter-
disciplinary research of physical and technological sciences", Vilnius, 2011
02 08. Poster "The choice of dimension of high frequency data smoothing".
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Structure of the thesis. The chapter 2 of the thesis is devoted to the state
of the art. We give some necessary background and tools in the chapter 3. Func-
tional limit theorems and some supplementary results are proved in the chapter 4.
Chapter 5 contains the analysis of the epidemic change with the statistics build
on the process yn,k. We investigate the statistics build on residuals in the chapter
6. Finally we give conclusions and the list of bibliography.
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2
State of the Art

In this chapter we give the definition of the first order autoregressive process.
We review the main results related with these processes and we motivate the
choice to investigate first order nearly nonstationary autoregressive process. Also
we give some information on the change point and epidemic change problems.

2.1 First order autoregressive process

The first order autoregressive process AR(1) is a very important process in
applications of statistics and economics. The autoregressive model is a time series
model and it is one of linear prediction formulas that predicts an output based on
the previous outputs. The AR(1) equation is a standard linear difference equation

yk = φyk−1 + εk, k = 0,±1,±2,±3, . . . (2.1)

where (εk) are innovations and give the variability in the time series. It is well
known (see for example Tsay [2002]) in the case |φ| < 1, the system (2.1) is said
to be stable, i.e., the effect of the changes in the past reduces as the time goes on.

6



STATE OF THE ART

Besides, for |φ| < 1, the solution of (2.1) is a function of the error terms from the
past. For |φ| > 1, the system (2.1) blows up. It means that the change in the past
has an increasing influence for the future. For the practical reasons it is natural
to have a system that is less affected by the past, thus the values of |φ| is typically
assumed to be less than one. Stationary autoregressive model has a mean reverting
property, i.e., the trajectory of the process moves towards the long-term mean.
When the coefficient φ is equal to 1 the process defined by (2.1) is nonstationary,
i.e., it has a unit root or 1 is a root of the process’s characteristic equation.
Nonstationary process fail to have mean reverting property. The trajectory of
such process moves up and down without the tendency of tending to the any
particular point.

In practice, the coefficient φ is unknown, so it has to be estimated. Usually
one uses the least squares estimator (LSE):

φ̂ =
∑n
k=1 ykyk−1∑n
k=1 y

2
k−1

. (2.2)

Other possible estimation methods are Yule-Walker equations (method of mo-
ments) or maximum likelihood estimate. Note, that if (εk)’s are normally dis-
tributed, the least squares estimate φ̂ is also a maximum likelihood estimate of
φ. When |φ| < 1 it is well known (see, for example, Mann and Wald [1943] and
Anderson [1959]) that the standardized LSE is asymptotically normal:(

n∑
k=1

y2
k−1

)1/2

(φ̂− φ) R−−−→
n→∞

N(0, 1). (2.3)

It is worth to mention that with another normalization the latter result becomes:
√
n(φ̂− φ) R−−−→

n→∞
N(0, 1− φ2).

However when φ = 1, the limit distribution of the properly standardized sequence
of the least-squares estimators is non-normal. It has been shown by White [1958],
see also Rao [1978], that(

n∑
k=1

y2
k−1

)1/2

(φ̂− 1) R−−−→
n→∞

1
2(W 2(1)− 1)(∫ 1
0 W

2(t) dt
)1/2 . (2.4)

7



STATE OF THE ART

Putting another normalization, the following convergence is true:

n(φ̂− 1) R−−−→
n→∞

∫ 1
0 W (t) dW (t)∫ 1

0 W
2(t) dt

.

Evans and Savin ([1981], [1984]) have found in extensive simulation experi-
ment that the statistical properties of the coefficient estimator and associated t

test in a stationary AR(1) with a root near unity are close to those of a ran-
dom walk. This is observed even in sample size of size 100. Similar results have
been found when the AR(1) is mildly explosive. Thus, according to Evans and
Savin ([1981], [1984]), (2.4) can be used to approximate the distribution of stan-
dardized estimate of φ, when it is close to one. However, Chan and Wei [1987]
have observed that neither (2.3) nor (2.4) seems to be intuitive approximations
because of nonsmooth transition from normal distribution to the distribution of(

1
2(W 2(1)− 1)

) / ((∫ 1
0 W

2(t) dt
)1/2

)
. Also Ahtola and Tiao [1984] investigating

the score function with respect to the φ, i.e.,

σ2
(

n∑
k=1

y2
k−1

)
(φ̂− φ),

have established that normal approximation of its distribution becomes poor in
finite samples when φ approaches unity and eventually fails even as an asymptotic
distribution when φ = 1. These results lead to an interest to investigate the so
called nearly nonstationary or nearly integrated processes.

2.2 Nearly nonstationary first order autoregres-
sive process

2.2.1 Definition and parameterization

The nearly nonstationary first order autoregressive process (yn,k : k = 0, 1, . . . ,
n;n = 1, 2, . . .) is generated by the triangular array scheme

yn,k = φnyn,k−1 + εk, (2.5)

where φn → 1, as n→∞, (εk) is a sequence of innovations usually with Eεk = 0
and finite variance σ2. The initialization (yn,0, n ≥ 0) plays an important role and
will be precised later in discussion of every case.

8



STATE OF THE ART

In all the literature related with the nearly nonstationary processes, the model
(2.5) is reparameterized in terms of closeness of φn to unity. Phillips [1987] uses
the parameterization φn = eγ/n, where γ is a constant. In fact, Phillips treated
parameter γ as noncentrality parameter. When γ = 0, the model has a unit
root. When γ < 0 and n is fixed, then 0 < φn < 1 and obviously the model is
stationary. Similarly, when γ > 0 and n is fixed, then φn > 1 and the model has
properties of the explosive one in finite data sample. When the ratio γ/n is close
to zero and γ < 0, the coefficient φn is close to one and the model can be thought
of as having a root in the neighbourhood of unity. Similar parameterization, for
example, φn = 1− γ/n with γ > 0 have been used by Chan and Wei [1987], Cox
and Llatas [1991], Park [2003], Dzhaparidze et al. [1994] etc.

The paper by Andrews and Guggenberger [2008] investigates the parameteri-
zation φn = 1−γn/n, where γn → γ ∈ [0,∞). In this case the parameter φn is also
very near unit root in the sense that 1 − φn = O(n−1). Phillips and Magdalinos
[2007] have defined the parameter φn in the form φn = 1 + γ/kn, γ ∈ R, which
represents moderate deviations from unity when (kn) is a deterministic sequence
increasing to infinity at a rate slower than n, so that kn = o(n), as n → ∞.
Putting γ < 0 the model defined by (2.5) is considered as nearly nonstationary.

Moreover, Giraitis and Phillips [2006] investigate the first order AR model
without intercept when the autoregressive parameter φn deviates from unity by
more than O(n−1), i.e., n(1−φn)→∞. Thus, for nearly nonstationary first order
autoregressive process one can parametrize φn = 1 − γn/n, where γn → ∞ and
γn/n→ 0, as n→∞ and their results still applies.

2.2.2 Limit of the standardized LSE of φn

In the section 2.1 we have observed that the standardized LSE estimate has
a different limit in the stationary and nonstationary models and that there is
nonsmooth transition between them. Here we recall the main results of the limit
distributions of the standardized LSE estimate in the first order nearly nonsta-
tionary autoregressive model under various parametrizations.

Phillips [1987] have found the limit of the standardized LSE of the coefficient
φn, which depends on the Wiener and Ornstein-Uhlenbeck processes, when the

9
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innovations are strong mixing:

n(φ̂n − φn) R−−−→
n→∞

∫ 1
0 Uγ(t) dW (t) + 1

2

(
1− σ

σ′

)
∫ 1

0 U
2
γ (t) dt

, (2.6)

where γ < 0 and σ′ = limn→∞ E
(
n−1 (∑n

k=1 εk)
2
)
. If innovations are i.i.d., the

latter result reduces to

n(φ̂n − φn) R−−−→
n→∞

∫ 1
0 Uγ(t) dW (t)∫ 1

0 U
2
γ (t) dt

.

Chan and Wei [1987] have shown that the limiting distribution of
(∑n

k=1 y
2
n,k−1

)1/2

(φ̂n − φn) is L(γ) (γ > 0) which is a quotient of stochastic integrals of standard
Wiener process:

L(γ) =
∫ 1

0 (1 + bt)−1W (t) dW (t)(∫ 1
0 (1 + bt)−2W 2(t) dt

)1/2 ,

where b = e2γ−1. They have assumed that initialization is yn,0 = 0 and that inno-
vations are martingale difference sequence with respect to an increasing sequence
of σ-fields. Later Chan [1988] under the same assumptions have established that
L(γ) can be rewritten in terms of Ornstein-Uhlenbeck process:

L(γ) D=
∫ 1

0 Uγ(t) dW (t)
(
∫ 1

0 U
2
γ (t) dt)1/2 .

So, essentially the result of Chan and Wei [1987] is the same as Phillips [1987].
Furthermore, Chan [1990] have investigated innovations in the domain of attrac-
tion of stable law with index α ∈ [0, 2]. He have found the following result for the
LSE of nearly nonstationary AR(1) model

n(φ̂n − φn) R−−−→
n→∞

∫ 1
0 Xα(t) dUα(t)∫ 1

0 X
2
α(t) dt

,

where γ is a real number. Here Xα(t) satisfies the differential equation

dXα(t) = −γXα(t) dt+ dUα(t),

where Xα(0) = 0 and Uα = (Uα(t), t ∈ [0, 1]) is a Lévy process defined on the
Skorohod space D[0, 1].

To get more information on the properties like (2.6) one usually studies the

10
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rate of convergence. In Kubilius and Račkauskas [1996] the rate of convergence in
(2.6) is estimated with respect to Lévy-Prohorov metric π. Further Račkauskas
[1996] investigate the convergence (2.6) with respect to a smooth functions topol-
ogy using an approach based on the convergence rate results in the central limit
theorem in Banach spaces.

Under the assumptions that (εk) are i.i.d., initialization yn,0 = ∑∞
j=0 φ

j
nε−j and

φn = 1 − γn/n, γn → 0, as n → ∞, Andrews and Guggenberger [2008] derived
that

(2γn)−1/2n(φ̂n − φn) R−−−→
n→∞

C,

where C is a Cauchy random variable. In fact, when γn → 0, as n→∞ the AR
parameter φn is so close to the unity that the initial condition yn,0 dominates the
behavior of yn,k for all k = 1, 2, . . . , n. While changing the parameterization of
the coefficient these authors obtained different results. By defining φn = 1−γn/n,
γn → γ ∈ (0,∞], as n→∞ Andrews and Guggenberger [2008] have derived

– for γ ∈ (0,∞)

n(φ̂n − φn) R−−−→
n→∞

∫ 1
0 U

∗
γ (t) dW (t)∫ 1

0 (U∗γ (t))2 dt
,

where the process U∗γ = (U∗γ , t ∈ [0, 1]) is defined from a standard normal
random variable Z and an Ornstein-Uhlenbeck process Uγ = (Uγ(t), t ∈
[0, 1]) by:

U∗γ (t) = Uγ(t) + (2γ)−1/2e−γtZ. (2.7)

– for γ =∞

(1− φ2
n)−1/2n1/2(φ̂n − φn) R−−−→

n→∞
N(0, 1).

The latter result provides for the coefficient that deviates from unity more than
O(n−1) the usual Gaussian limit theory still applies. In fact, this result is obtained
due to the results of Giraitis and Phillips [2006] where the authors have assumed
that (εk) are stationary and ergodic martingale difference sequence with respect
to the natural filtration, initialization satisfies Ey2

0 = o(n1/2) and n(1− φn)→∞
holds. Note that the convergence rate in this case depends on how close φn is to
unity.

11
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Similar cases have been investigated by Chan and Zhang [2009]. Authors as-
sume that the innovations are heavy tailed and have infinite variance. In particu-
lar, they show that when limn→∞ n(1−φn) = γ, where γ is a constant, then under
some regularity conditions the limit distribution of the least squares estimator of
φn is a functional of fractional Ornstein-Uhlenbeck stable processes.

Investigating the coefficient defined by φn = 1 + γ/kn, γ < 0, in the nearly
nonstationary case Phillips and Magdalinos [2007] obtain√

nkn(φ̂n − φn) R−−−→
n→∞

N(0,−2γ). (2.8)

In this case the authors assume that innovations are centered i.i.d. random vari-
ables with finite variance and the process (yn,k) is initialized at some yn,0 =
oP (
√
kn). Phillips and Magdalinos [2007] note that, putting kn = n% yields a

convergence rate n1/2+%/2 for the serial correlation coefficient (φ̂n− φn), which for
% ∈ (0, 1) covers the interval (n1/2, n) providing a link between the

√
n and n

asymptotics of stationary and nearly nonstationary autoregressions. Though the
parametrization φn = 1 + γ/n% is very intuitive, the (2.8) result is more general.
It allows arbitrarily large neighborhoods of unity, with φn approaching 1 slower
than any polynomial rate, such as kn = log(n).

To sum up, the limit distribution of properly standardized LSE depend on
the parametrization of the model. In particular, it depends on how close the
coefficient φn is to 1. If the coefficient is further removed from the unity (for
example n(1−φn)→∞, as n→∞) the standard Gaussian limit theory still holds,
while for the coefficients "very" close to the 1 (like lim infn→∞ n(1− φn) > 0) the
limit distribution is the one of a functional depending on the Ornstein-Uhlenbeck
process.

Dzhaparidze et al. [1994] also consider the parameter estimation problem in
the nearly nonstationary first order autoregression. They describe the sequential
procedure for estimating the parameter γ. For fixed t ∈ [0, 1], the estimator for γ
is defined by

γ̂n,[nt] =


− ∫ [nt]/n

0 n−1/2yn,[nt](s−) d(n−1/2yn,[nt](s))∫ [nt]/n
0 n−1y2

n,[nt](s) ds
,
∫ [nt]/n

0 n−1y2
n,[nt](s) ds > 0,

0, elsewhere.

Note that the LSE of γ based on only [nt] observations is given by γ̂n,[nt], while

12
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the LSE of γ based on all observations is

γ̂n,n =
n
(∑n

k=1 y
2
n,k−1 −

∑n
k=1 yn,kyn,k−1

)
∑n
k=1 y

2
n,k−1

.

Then under some regularity conditions Dzhaparidze et al. [1994] obtain(∫ [nt]/n

0
n−1y2

n,[nt](s) ds
)

(γ − γ̂n,[nt])
D[0,1]−−−−→
n→∞

(∫ t

0
Y 2(s) ds

)
(γ − γ̂t)

with

γ̂t =


− ∫ t0 Y (s) dY (s)∫ t

0 Y
2(s) ds

,
∫ t

0 Y
2(s) ds > 0

0, elsewhere,

where Y (t) =
∫ t

0 eγ(s−t) dM(s) and M is a continuous semimartingale on [0, 1].

2.2.3 Other coefficient estimation methods

Cox and Llatas [1991] study asymptotic properties of a class of estimators of
the first order nearly nonstationary autoregressive model coefficient φn. The class
of estimators considered are those obtained by solving nonlinear equations:

Ψn(φ̂n) =
n−1∑
k=0

yn,kψ(yn,k+1 − φ̂nyn,k) = 0. (2.9)

Here ψ is a continuously differentiable and satisfies the second order Lipschitz
condition. Then Cox and Llatas [1991] obtain that there exists a sequence (φ̂n)
of solutions (2.9) such that (φ̂n − φn) = OP (n−1) and for such sequence

n(φ̂n − φn) R−−−→
n→∞

∫ 1
0 Uγ(t) dW̃ (t)∫ 1

0 U
2
γ (t) dt

where Uγ(t) is Ornstein-Uhlenbeck process defined by the stochastic differential
equation

dUγ(t) = −γUγ(t) dt+ dW (t), Uγ(0) D= N(0, σ2/2γ)

and (W (t), W̃ (t)) is a two dimensional Brownian motion with

E(W 2(t)) = tE(ε2
1), E(W̃ 2(t)) = tE(ψ2(ε1)),

E(W (t)W̃ (t)) = tE(ε1ψ(ε1)), t ∈ [0, 1].

13
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In addition, Cox [1991] consider a three parameter first order nearly nonsta-
tionary autoregressive model, where the parameters are the mean, autoregressive
coefficient and variance of the innovations. Three different estimators are consid-
ered: the exact Gaussian MLE, the conditional maximum likelihood or LSE and
some "naive" estimators. It is shown that the estimators converge in distribution
to analogous estimators for a continuous-time Ornstein-Uhlenbeck process.

2.2.4 Limit theorems for the partial sums of the process
(yn,k) and residuals

Phillips [1987] independently with Cumberland and Sykes [1982] have found
that the sequence of normalized processes (n−1/2yn,[nt], t ∈ [0, 1]) converges weakly
to an Ornstein-Uhlenbeck process in the classical Skorohod space D[0, 1] in the
case where φn = eγ/n. The same result has been obtained by Andrews and
Guggenberger [2008] with φn = 1 − γn/n, γn → γ ∈ [0,∞), as n → ∞. In
the case where γn → γ ∈ (0,∞), as n → ∞ and initialization satisfies condi-
tion yn,0 = ∑∞

j=0 φ
j
nε−j Andrews and Guggenberger [2008] have established the

convergence

n−1/2(y[nt], t ∈ [0, 1]) D[0,1]−−−−→
n→∞

σU∗γ ,

where U∗γ is defined by (2.7). Moreover putting γn → 0, as n → ∞ they have
shown

σ−1(2γn)1/2n−1/2yn,[nt]
R−−−→

n→∞
Z ∼ N(0, 1),

for each t ∈ [0, 1] and Z does not depend on t. In contrast, with the initial con-
dition yn,0 = oP (n), the result is the D[0, 1] weak convergence of n−1/2(yn,[nt], t ∈
[0, 1]) to σW (t). Again, one can notice that the limit distribution differs depending
on the closeness of the coefficient φn to 1 and the initial condition.

Further Phillips and Magdalinos [2007] found

n−1y2
[nt]

P−−−→
n→∞

0, for each t ∈ [0, 1],

when φn = 1 + γ/kn, γ < 0, with initialization y0 = oP (
√
kn).

The central limit theorem for the sums ∑n
k=1 yn,k, n ≥ 1 is proved by various

authors in different cases. Phillips [1987] investigates the case where φn = eγ/n.
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Under normalization n−3/2 the limit is some integral of an Ornstein-Uhlenbeck
process

n−3/2
n∑
k=1

yn,k
R−−−→

n→∞
σ
∫ 1

0
Uγ(t) dt.

The same result is obtained by Andrews and Guggenberger [2008] with φn =
1 − γn/n, γn → γ ∈ [0,∞), as n → ∞. Moreover putting the parametrization
φn = 1 − γn/n, γn → γ ∈ (0,∞) and the initial condition yn,0 = ∑∞

j=0 φ
j
nε−j the

central limit theorem now is

n−3/2
n∑
k=1

yn,k
R−−−→

n→∞
σ
∫ 1

0
U∗γ (t) dt,

where U∗γ is defined by (2.7). While in the case γn → 0, as n→∞ and initializa-
tion is yn,0 = ∑∞

j=0 φ
j
nε−j they have shown that the limit is :

(2γn)1/2n−3/2
n∑
k=1

yn,k−1
R−−−→

n→∞
N(0, σ2).

Next Giraitis and Phillips [2006] in case φn = 1−γn/n, γn →∞ and γn/n→ 0,
as n→∞, have established that

n−1/2(1− φn)
n∑
k=1

yn,k
R−−−→

n→∞
N(0, σ2).

One can see, that under such parametrization, the asymptotic distribution of
the sample mean of yn,k is normal random variable with a convergence rate that
depends on φn.

Further Phillips and Magdalinos [2007] have proved the following weak law of
large numbers in case φn = 1 + γ/kn and γ < 0:

(nkn)−1
n∑
k=1

y2
n,k

P−−−→
n→∞

σ2

−2γ .

The convergence rates of this result provide a bridge between the results for
nonstationary (or nearly nonstationary) and stationary processes. According to
Phillips and Magdalinos [2007] this easy to explain by putting kn = n% for some
% ∈ (0, 1). Using this parametrization, φn approaches the boundary with the sta-
tionary region when %→ 0 and the boundary of nearly nonstationary region when
%→ 1.
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The partial sums of the residuals in various type models are frequently uti-
lized in many areas such as detecting parameter changes or probability density
estimation. Several authors have investigated the limiting distributions of the
partial sums for nearly nonstationary first order autoregression under various er-
ror structures. For example, Shin [1998] investigates the same parametrization as
Phillips [1987] φn = eγ/n and under zero-mean i.i.d. assumption for innovations
with variance σ2 and supk E |εk|2+δ, δ > 0 he has established

n−1/2
[nt]∑
k=1

ε̂k
D[0,1]−−−−→
n→∞

W (t)− A−1BJ(t), t ∈ [0, 1],

where A =
∫ 1

0 U
2
γ (r) dr, B =

∫ 1
0 Uγ(r) dW (r) and J(t) =

∫ t
0 Uγ(r) dr. Also Chan

and Liu [2010] study the goodness-of-fit test of the residual empirical process of
a nearly unstable long-memory time series.

2.3 Change points and epidemic change detec-
tion

Change point problems have a variety of applications in economics, medicine,
biology, engineering, etc. Studies concern detecting one change point as well
as multiple change points. A special case of multiple change point problem is
the epidemic change. To describe the epidemic change, suppose we are given a
sequence X1, . . . , Xn. The standard null hypothesis is

H0 : X1, . . . , Xn all have the same parameter θ0

(e.g. mean, median, variance, etc.) against the alternative

HA : there exists such integers 1 < k∗ < m∗ < n that

θ1 = . . . = θk∗ = θm∗+1 = . . . = θn = θ0 and θk∗+1 = . . . = θm∗ = θA.

Here k∗ denotes the (unknown) time or location at which the epidemics starts, m∗

is the end and we denote `∗ = m∗−k∗ as the length of the epidemic change. That
is, at first the parameter θ is in one state, then at some point a change occurs
(the value θ0 changes to θA) and after a certain period the state comes back to
the initial one.

There is a lot of literature related with the testing for change points, estimation
16
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of them and forecasting the models with the structural breaks. According to
the method the data are obtained, there exist two different formulations of the
problem. Off-line (or a posteriori) change-points problem arises when the series of
observations is complete, i.e., the sample is finite. The sequential change-points
problem is formulated when the detection is performed in real time (or on-line).
The commonly used methods for detecting the change point is cumulative sums
(CUSUM), maximum liklihood, Bayesian methods. More on the change point
problem one can find in the books by Brodsky and Darkhovsky [1993], Csörgő
and Horváth [1997], Hackl and Westlund [1991], Chen and Gupta [2000]. Hackl
and Westlund [1989] give a lot of references concentrated on two topics: detection
of non-constancy of parameters in regression and time-series models and statistical
analysis of models with time-varying parameters. Peron [2006] wrote a review on
the methodological issues related to estimation, testing and computation of the
linear models with the structural changes. A central theme in this review is the
interplay between structural change and unit root and on methods to distinguish
between them two. Among many others, the surveys by Bhattacharya [1994],
Khodadadi and Asgharian [2008] concentrate on testing the hypothesis of "no
change", estimating the change point by a point estimator or a confidence set.

One way to construct test statistics for detecting the epidemic change of mean
is to construct the uniform increments statistics:

T0,n(X1, . . . , Xn) = max
1≤k,`≤n

∣∣∣∣∣∣
k+∑̀

j=k+1
Xj −

`

n

n∑
j=1

Xj

∣∣∣∣∣∣ . (2.10)

To the best of our knowledge, the changed segment in mean problem for i.i.d.
random variables have been formulated for the first time by Levin and Kline
[1985] (we also refer to Csörgő and Horváth [1997] section 1.4). Other statistics
are offered also. For example, Gombay [1994] investigates rank and sign statis-
tics. Siegmund [1986] considers parametric framework for detecting the changed
segment, while Lombard [1987] suggests nonparametric tests. Yao [1993] have
studied various parametric test statistics in order to detect an epidemic change in
the mean value of a sequence of independent normally distributed random vari-
ables. Ramanayake and Gupta [2003] build the likelihood ratio statistic and a
likelihood ratio type statistic to detect the epidemic change in mean in a sequence
of independent exponential random variables. Further Ramanayake and Gupta
[2004] investigated the epidemic change of the natural parameter of the indepen-
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dent sequence given from the exponential family. The likelihood ratio statistic
for such hypothesis testing is derived. Gut and Steinebach [2005] propose a two-
step sequential procedure to detect the epidemic change. Fellouris et al. [2010]
have used the CUSUM procedure for this problem in the framework of counting
process.

We study statistics of the type (2.10). Račkauskas and Suquet [2004b] ob-
serve, that this statistics can detect only epidemics whose the length `∗ is such
that n1/2 = oP (`∗). For shorter epidemics, Račkauskas and Suquet [2004b] have
proposed to improve the statistics by weighting. Let α ∈ [0, 1/2) and X1, . . . , Xn

be any sample and define statistics by by

Tα,n = Tα,n(X1, . . . , Xn) = max
1≤`≤n

`−α max
1≤k≤n−`

∣∣∣∣∣∣
k+∑̀

j=k+1
Xj −

`

n

n∑
j=1

Xj

∣∣∣∣∣∣ . (2.11)

Račkauskas and Suquet [2004b] have shown that for any 0 < α < 1/2 statistics
Tα,n(X1, . . . , Xn) detects epidemics with nδ = oP (`∗), where δ = (1−2α)/(2−2α)
ranges in (0, 1/2). Further, Mikosch and Račkauskas [2010] have studied the limit
behavior of Tα,n with regularly varying random variables and α > 1/2. Graiche
et al. [2011] propose Hölderian type statistics based on independent not identically
distributed or α-mixing random variables to test the epidemic change. From the
statistical point of view it is interesting to relax the assumption of independence.
For example, Rastenė [2011] has investigated the change segment problem in the
coefficient of the first order autoregressive process.
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3
Preliminaries

In this chapter we give all the necessary background for the further chapters.
We provide the main results related with the Hölder space that will be used
further. Also, we describe the invariance principle in function spaces and we
present the main tools that are necessary for the reading convenience of this
thesis.

Throughout the thesis W = (W (t), t ∈ [0, 1]) is a standard Brownian motion.
Also, the following process plays an important role in all the thesis:

Uγ(t) =
∫ t

0
e(t−s)γ dW (s) = W (t) + γ

∫ t

0
e(t−s)γW (s) ds, t ∈ [0, 1]. (3.1)

Actually, Uγ = (Uγ(t), t ∈ [0, 1]) is an Ornstein-Uhlenbeck process, generated by
the stochastic differential equation

dUγ(t) = γUγ(t) dt+ dW (t), t ∈ [0, 1].

with the initial condition Uγ(0) = 0 and parameter γ < 0.
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3.1 Hölder space

We focus in this thesis on the functional convergence in the space of contin-
uous functions and Hölder spaces. We denote by C[0, 1] the space of continuous
functions f : [0, 1] 7→ R. Equipped with the supremum norm

‖f‖ = sup
0≤t≤1

|f(t)| ,

C[0, 1] is a complete, separable Banach space.

For α ∈ [0, 1) the Hölder space

Ho
α[0, 1] :=

{
f ∈ C[0, 1] : lim

δ→0
ωα(f, δ) = 0

}
,

endowed with the norm ‖f‖α := |f(0)|+ ωα(f, 1), where

ωα(f, δ) := sup
s,t∈[0,1]

0<t−s<δ

|f(t)− f(s)|
|t− s|α ,

is a separable Banach space. In the special case where α = 0, the set Ho
0[0, 1]

coincides with C[0, 1] and the norms ‖f‖0 and ‖f‖∞ are equivalent.

The functional framework of Hölder space is interesting in the theory of
stochastic processes since very often the continuous stochastic process under study
has a better regularity than the bare continuity. Also, the weak convergence of a
sequence of stochastic processes in some functions space E provides results about
the asymptotic distribution of functionals of the paths which are continuous with
respect to the topology of E. Since the Hölder spaces are topologically embed-
ded in C[0, 1] and D[0, 1], they support more continuous functionals. From this
point of view, the alternative framework of Hölder spaces gives functional limit
theorems of a broader scope (see more in Juodis et al. [2009]).

Throughout the thesis we work with random polygonal lines and study their
asymptotic behaviour in Hölder topology. As a polygonal line is characterized by
its vertices, it is useful to know how its Hölderian asymptotic behaviour depends
on the control of its vertices. To explain this, it is convenient here to represent a
polygonal line πn with vertices (l/n, Vl), 0 ≤ l ≤ n, V0 = 0, under the form:

πn(t) = (1− {nt})V[nt] + {nt}V[nt]+1, 0 ≤ t ≤ 1, (3.2)
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where {nt} = nt− [nt] is the fractional part of nt. We claim that the Hölder norm
of such a line is reached at two vertices, that is

‖πn‖α = max
0≤j<k≤n

|Vk − Vj|
( k
n
− j

n
)α
. (3.3)

From (3.3) we immediately deduce that

‖πn‖α ≤ 2nα max
1≤l≤n

|Vl| . (3.4)

To prove that the Hölder norm of a polygonal line is reached at two vertices
(equality (3.3)), it is convenient to generalize a bit by considering more general
weight functions than h 7→ hα.

Lemma 3.1.1. Let ρ : [0, 1] → R be a weight function satisfying the following
properties.

i) ρ is concave.

ii) ρ(0) = 0 and ρ is positive on (0, 1].

iii) ρ is non decreasing on [0, 1].

Let t0 = 0 < t1 < · · · < tn = 1 be a partition of [0, 1] and f be a real valued
polygonal line function on [0, 1] with vertices at the ti’s, i.e. f is continuous on
[0, 1] and its restriction to each interval [ti, ti+1] is an affine function. Define

R(s, t) := |f(t)− f(s)|
ρ(t− s) , 0 ≤ s < t ≤ 1.

Then
sup

0≤s<t≤1
R(s, t) = max

0≤i<j≤n
R(ti, tj). (3.5)

Proof. Obviously (3.5) will be established if we prove that

R(s, t) ≤ max
0≤i<j≤n

R(ti, tj), (3.6)

for every pair of real numbers s, t such that 0 ≤ s < t ≤ 1. This in turn, is easily
deduced from the following estimates where in each configuration considered, f is
supposed to be affine on [a, b].

R(s, t) ≤


R(a, b) if a ≤ s < t ≤ b,

max
(
R(s, a), R(s, b)

)
if s < a ≤ t ≤ b,

max
(
R(a, t), R(b, t)

)
if a ≤ s ≤ b < t.
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In the first configuration,

f(t)− f(s) = f(b)− f(a)
b− a (t− s),

whence
R(s, t) = R(a, b) t− s

ρ(t− s)
ρ(b− a)
b− a . (3.7)

By concavity of ρ, the function h 7→ ρ(h)/h is non increasing on (0, 1], as the
slope of the chord between 0 and h. So ρ(t− s)/(t− s) ≥ ρ(b−a)/(b−a), whence
t−s
ρ(t−s)

ρ(b−a)
b−a ≤ 1 and (3.7) gives R(s, t) ≤ R(a, b).

In the second configuration, let us parameterize the segment [a, b] by putting
t = (1 − u)a + ub, u ∈ [0, 1]. Then t − s = (1 − u)(a − s) + u(b − s) and as
t 7→ f(t)−f(s) is affine on [a, b], f(t)−f(s) = (1−u)(f(a)−f(s))+u(f(b)−f(s)).
Now to estimate R(s, t), using triangular inequality for the numerator and the
concavity of ρ for the denominator gives:

R(s, t) ≤ (1− u) |f(a)− f(s)|+ u |f(b)− f(s)|
(1− u)ρ(a− s) + uρ(b− s) = Au+B

Cu+D
= A′ + B′

Cu+D
,

where the constants A,A′, . . . , D depend on f , ρ, a, b and s (which is fixed here).
As ρ is non decreasing, (1 − u)ρ(a − s) + uρ(b − s) ≥ ρ(a − s) > 0, so Cu + D

remains positive when u varies between 0 and 1. It follows that the homographic
function A′+B′/(Cu+D) is monotonic on [0, 1] and hence reaches its maximum
at u = 0 or at u = 1. This gives R(s, t) ≤ max

(
R(s, a), R(s, b)

)
.

The bound for R(s, t) in the third configuration is obtained in a completely
similar way, so we omit the details.

Remark 3.1.2. In the case of vector valued polygonal lines, the result and the
proof are still valid, replacing |f(t)− f(s)| by ‖f(t)− f(s)‖ in the definition of
R(s, t).

The next theorem gives a characterization of the tightness of sequences of
random elements in a Hölder space (see Suquet [1999] Theorem 13 for the case
0 < α < 1 and Proposition 1 for α = 0).

Theorem 3.1.3. The sequence (ξn) of random elements in Ho
α[0, 1], 0 ≤ α < 1,

is tight if and only if

(a) limA→∞ supn≥1 P (‖ξn‖∞ > A) = 0;

(b) ∀ε > 0, limδ→0 supn≥1 P (ωα(ξn, δ) ≥ ε) = 0.
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3.2 Invariance principle

Consider the polygonal line process constructed on i.i.d. random variables (εj)

W pl
n (t) =

[nt]∑
j=1

εj + (nr − [nt])ε[nt]+1, t ∈ [0, 1]. (3.8)

This process lies in the continuous function space C[0, 1] and in each Hölder space
Ho
α[0, 1], for 0 < α < 1. The limiting behaviour of such processes is well known.

The classical Donsker-Prohorov invariance principle states that, if Eε1 = 0 and
0 < σ2 := Var(ε1) = Eε2

1 <∞, then

n−1/2σ−1W pl
n

C[0,1]−−−−→
n→∞

W. (3.9)

This result has a lot of applications, especially in statistics, and continues to
receive many extensions.

Hölderian invariance principle is also established. By the classical Levy’s result
on the modulus of continuity of W , W ∈ Ho

α[0, 1] with probability one for every
0 ≤ α < 1/2. Lamperti [1962] proved that if 0 < α < 1/2 and E |ε0|p <∞, where
p > 1/(1/2− α), then

n−1/2σ−1W pl
n

H0
α[0,1]−−−−→
n→∞

W (3.10)

holds. This result was derived again by Kerkyacharian and Roynette [1991] by
another method using analysis given by Ciesielski [1960] of Hölder spaces by tri-
angular functions. Further generalizations were given by Hamadouche [2000] and
Račkauskas and Suquet [1999]. The result (3.10) have been completed and ex-
tended by Račkauskas and Suquet [2004a]. They have proved that for p > 2 with
α = 1/2− 1/p (i.e. 0 < α < 1/2) the convergence (3.10) holds if and only if

lim
t→∞

tpP (|ε1| ≥ t) = 0. (3.11)

Note that condition (3.11) can be rewritten as

lim
t→∞

t1/(1/2−α)P (|ε1| ≥ t) = 0.

Condition (3.11) provides precise relation between the strength of the convergence
(3.10) and the integrability of summands. Compared with the classical Donsker
invariance principle, it shows the price to be paid for functional convergence in
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a stronger topology. When α > 0, condition (3.11) implies that E |ε1|p < ∞ for
p < (1/2 − α)−1 and in particular Eε2

1 < ∞. We note also that condition (3.11)
with p = 2, so α = 0, does not imply the convergence (3.9).

3.3 Tools

The first two results in this section help us to reduce the proof of functional
limit theorems to zero initial condition. The central point is the fact, that all
α-Hölder norms of a function f are equivalent if f ∈ C1[0, 1].

Lemma 3.3.1. If f ∈ C1[0, 1] and f is non constant, then all its α-Hölder norms
are equivalent in the sense that there exists positive constants b and c such that
b ≤ ωα(f, 1) ≤ c, where b and c do not depend on α. If f is constant ‖f‖α = |f(0)|
for every 0 < α < 1.

Proof. Recall, that

ωα(f, 1) = sup
0≤s<t≤1

|f(t)− f(s)|
|t− s|α .

Since f ′ is continuous on [0, 1], for any 0 ≤ s < t ≤ 1, there is a θ ∈ (0, 1) such
that f(t)− f(s) = (t− s)f ′(s+ θ(t− s)). From this we immediately deduce that

|f(t)− f(s)| ≤ |f(t)− f(s)|
|t− s|α ≤ ‖f ′‖∞ ,

whence
osc(f) := sup

0≤s<t≤1
|f(t)− f(s)| ≤ ωα(f, 1) ≤ ‖f ′‖∞ .

If osc(f) = 0, then f is constant (and conversely), so ωα(f, 1) = 0 for every
α ∈ (0, 1). Else we can put b = osc(f) > 0 and c = ‖f ′‖∞ to conclude.

Here we give a more precise result of this type for the exponential function
t 7→ at, where 0 < a < 1.

Lemma 3.3.2. For 0 < a < 1, let f be the map [0, 1] → R+, t 7→ at. Then for
every α ∈ [0, 1],

1− a ≤ sup
0≤s<t≤1

as − at
(t− s)α ≤ − ln a. (3.12)

Moreover, if pn is the polygonal line of linear interpolation of f between the points
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k/n, 0 ≤ k ≤ n, then

1− a ≤ ωα(pn, 1) ≤ ωα(f, 1) ≤ − ln a. (3.13)

Proof. Putting t− s = h, we deduce immediately from the factorisation

as − at
(t− s)α = as

1− ah
hα

that
sup

0≤s<t≤1

as − at
(t− s)α = sup

0<h≤1

1− ah
hα

(3.14)

The function h 7→ 1 − ah being concave on [0, 1], its graphic representation is
above its chord between the points with abscissas 0 and 1 and below its tangent
at the origin. This provides the inequalities:

(1− a)h ≤ 1− ah ≤ (− ln a)h, h ∈ [0, 1].

Hence for every h ∈ (0, 1],

(1− a)h1−α ≤ 1− ah
hα

≤ (− ln a)h1−α.

Taking the supremum over h ∈ (0, 1] and accounting (3.14), we obtain (3.12).
From Lemma 3.1.1 it is clear that ωα(pn, 1) ≤ ωα(f, 1). Together with the obvious
inequality 1− a = pn(0)− pn(1) ≤ ωα(pn, 1), this gives (3.13).

The next results are useful tools to investigate the limiting behaviour of the
test statistics.

Lemma 3.3.3. Suppose α ∈ [0, 1). Consider the functionals gn and g defined on
the Hölder space Ho

α[0, 1] by

gn(x) := max
1≤i<j≤n

Iα(x, i/n, j/n), g(x) := sup
0≤s<t≤1

Iα(x, s, t), (3.15)

where

Iα(x, s, t) := |x(t)− x(s)− (t− s)x(1)|
|t− s|α , 0 < t− s ≤ 1. (3.16)

Then gn and g are Lipschitz on

Gα = {x ∈ Ho
α[0, 1] : x(0) = 0}
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with the same constant C = 2, if α ∈ (0, 1). Also, gn and g are Lipschitz on
G0 = {x ∈ C[0, 1] : x(0) = 0} with the same constant C = 2, if α = 0.

Further, for any tight sequence of random elements (ηn)n≥0 in C[0, 1] or
Ho
α[0, 1], it holds

gn(ηn) = g(ηn) + oP(1). (3.17)

To prove Lemma 3.3.3 it is convenient to use the two following lemmas which
one can find in Račkauskas and Suquet [2004b].

Lemma 3.3.4. Let (ηn) be a tight sequence of random elements in separable Ba-
nach space B and gn, g be continuous functionals B → R. Assume that gn con-
verges pointwise to g on B and that (gn) is equicontinuous. Then

gn(ηn) = g(ηn) + oP(1).

Lemma 3.3.5. Let (B, ‖‖) be a vector normed space and q : B → R such that
a) q is subadditive: q(x+ y) ≤ q(x) + q(y), x, y ∈ B;
b) q is symmetric: q(−x) = q(x), x ∈ B;
c) for some constant C, q(x) ≤ C ‖x‖, x ∈ B.

Then q satisfies the Lipschitz condition

|q(x+ y)− q(x)| ≤ C ‖y‖ , x, y ∈ B. (3.18)

If F is any set of functionals q fulfilling a), b) and c) with the same constant
C, then a), b) and c) are inherited by g(x) := sup {q(x) : q ∈ F} which therefore
satisfies (3.18).

Proof of Lemma 3.3.3. Here we shall give an unified proof for the cases α = 0
and α ∈ (0, 1). Since the spaces (C, || · ||∞) and (Ho

0 , || · ||0) are isomorphic, thus
putting α = 0 in the proof gives the special case of gn and g being Lipschitz on
C[0, 1]. To show that q = Iα(·, s, t) is Lipschitz, we shall use the Lemma 3.3.5
whose conditions a) and b) are obviously satisfied while condition c) follows from

q(x) = Iα(x, s, t) ≤ x(t)− x(s)
|t− s|α + |t− s|1−α |x(1)| ≤ 2 ‖x‖α . (3.19)

Define the closed subspace Gα = {x ∈ Ho
α[0, 1] : x(0) = 0}. From (3.19) we

see that for any 0 ≤ s < t ≤ 1, the functional q = Iα(·, s, t) satisfies on Gα the
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Condition c) of Lemma 3.3.5 with the constant C = 2. It follows by Lemma 3.3.5
that gn as well as g are Lipschitz on Gα with this same constant C = 2. As a
result, the sequence (gn)n≥2 is equicontinuous on Gα.

Now by Lemma 3.3.4, the proof of (3.17) is reduced to check the pointwise
convergence of gn to g on Gα. Let us fix an arbitrary function x ∈ Gα. By the
first inequality in (3.19) and the definition of the space Ho

α, the function Iα(x, ·, ·)
receives a continuous extension Ĩα(x, ·, ·) to the diagonal by putting Ĩα(x, s, s) := 0
for every s ∈ [0, 1]. Since Iα is non negative and Ĩα(x, ·, ·) is null along the diagonal,
the functionals gn and g defined by (3.15) satisfy

gn(x) := max
1≤i≤j≤n

Ĩα(x, i/n, j/n), g(x) := sup
0≤s≤t≤1

Ĩα(x, s, t).

Next we observe that the value of the functional g(x) appears as the supremum
of the continuous bivariate function Ĩα(x, ·, ·) on the closed triangular domain
K := {(s, t) ∈ [0, 1]2 : 0 ≤ s ≤ t ≤ 1}. By compactness of K, this supremum is
reached at some point (s0, t0) ∈ K. For n ≥ 1, let us define the integer

in :=


[ns0] if s0 ≥ 1/n,

1 if 0 < s0 < 1/n,
jn :=


[nt0] if t0 ≥ 1/n,

1 if 0 < t0 < 1/n.

Noting that 1 ≤ in ≤ jn ≤ n, we have

Iα(x, in/n, jn/n) ≤ gn(x) ≤ g(x) = Ĩα(x, s0, t0).

Clearly (in/n, jn/n) converges in K to (s0, t0), so letting n tend to infinity in the
above inequalities gives the convergence of gn(x) to g(x) by continuity of Ĩα(x, ·, ·).
As x was arbitrary in Gα, the pointwise onvergence of gn to g is established.

In the last chapter we build test statistics on residuals to test the hypothesis
about epidemic change in mean of innovations. The following two results are
useful in the proofs of this chapter.

First suppose that we have a sample X1, . . . , Xn and assume that

H ′0 : X1, . . . , Xn are independent identically distributed random variables

with mean denoted by µ0.

Then Theorem 3 in Račkauskas and Suquet [2004b] finds the limit of test statistics
under null hypothesis:
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Theorem 3.3.6. Let 0 < α < 1/2. Under H ′0, assume that

lim
t→∞

t1/(1/2−α)P (|ε1| ≥ t) = 0.

Then

σ−1n−1/2UIα,n
R−−−→

n→∞
UIα,∞,

where

UIα,n = UIα,n(X1, . . . , Xn) = max
1≤`≤n

(
`

n

(
1− `

n

))−α
max

1≤k≤n−`

∣∣∣∣∣∣
k+∑̀

j=k+1
Xj −

`

n

n∑
j=1

Xj

∣∣∣∣∣∣
and

UIα,∞ = sup
0<t−s<1

|W (t)−W (s)− (t− s)W (1)|
|(t− s)(1− (t− s))|α .

Note, that we use the weight `/n and not `/n ·(1−`/n), but in view of Lemma
3.3.3 and Hölderian invariance principle the Theorem 3.3.6 can be adapted as
follows when we replace the statistics UIα,n by the statistics Tα,n.

Corollary 3.3.7. Let 0 < α < 1/2. Under H ′0, assume that

lim
t→∞

t1/(1/2−α)P (|ε1| ≥ t) = 0.

Then

σ−1n−1/2+αTα,n
R−−−→

n→∞
Tα,∞,

where

Tα,n = Tα,n(X1, . . . , Xn) = max
1≤`≤n

`−α max
1≤k≤n−`

∣∣∣∣∣∣
k+∑̀

j=k+1
Xj −

`

n

n∑
j=1

Xj

∣∣∣∣∣∣
and

Tα,∞ = sup
0<t−s<1

|W (t)−W (s)− (t− s)W (1)|
|t− s|α .

Next, assume that X1, . . . , Xn are regularly varying random variables (the
precise definition of regularly varying random variables is given by definition 6.0.1,
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page 84). Define two statistics:

Mα,n = max
1≤`≤n

`−α max
1≤k≤n−`

∣∣∣∣∣∣
k+∑̀

j=k+1
Xj

∣∣∣∣∣∣ , n ≥ 0

and

Tα,n = max
1≤`≤n

(`(1− `/n))−α max
1≤k≤n−`

∣∣∣∣∣∣
k+∑̀

j=k+1
Xj −

`

n

n∑
j=1

Xj

∣∣∣∣∣∣ , n ≥ 0.

Then the following result of Mikosch and Račkauskas [2010] holds under the null
hypothesis H ′0:

Theorem 3.3.8. Consider an i.i.d.sequence (Xi) of random variables which are
regularly varying with index p > 2 and have mean zero if it exists. Then, for
α ∈ (1/2− 1/p, 1],

lim
n→∞

P
(
b−1
n Mα,n ≤ x

)
= Φα(x) = e−x−α , x > 0,

where the normalizing sequence is given by

bn = inf {x ∈ R : P(|X| ≤ x) ≥ 1− 1/n} .

Moreover

lim
n→∞

P
(
b−1
n Tα,n ≤ x

)
= Φα(x), x > 0.

The next corollary shows that the behavior of statisticsMα,n(X1, . . . , Xn) and
Tα,n(X1, . . . , Xn) coincides.

Corollary 3.3.9. Under the assumptions of Theorem 3.3.8, the sequence (b−1
n Mα,n)

has the same limit distribution as the sequence

b−1
n Tα,n = b−1

n max
1≤`≤n

`−α max
1≤k≤n−`

∣∣∣∣∣∣
k+∑̀

j=k+1
Xj −

`

n

n∑
j=1

Xj

∣∣∣∣∣∣ .
For the proof of this corollary, see Remark 2.6 in Mikosch and Račkauskas

[2010].
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4
Functional limit theorems

In this chapter we prove the functional limit theorems for the partial sums of
the first order nearly nonstationary autoregressive processes in the space of con-
tinuous functions and in the Hölder spaces. Further we prove the functional limit
theorems for the partial sums of the residuals of the process under investigation
in Hölder space. Also we introduce some supplementary results that might be of
independent interest. As noticed in the chapter 2, finite dimensional of functional
weak limit theorems for nearly non stationnary processes depend on the conver-
gence rate of φn to 1. In this chapter our aim is to investigate functional central
limit theorems in the two situations where φn tends to 1 at the rate 1/n or slower,
that is n(1−φn) tends to infinity. More precisely, we restrict our study to the two
following parameterizations introduced respectively in Phillips [1987] and Giraitis
and Phillips [2006].

– Case 1 : φn = eγ/n (γ is a negative constant);
– Case 2 : φn = 1− γn

n
, γn →∞ and γn/n→ 0, as n→∞.
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4.1 Functional central limit theorems for sums
of nearly nonstationary processes

Recall that we investigate the asymptotic behavior of the first-order autore-
gressive process (yn,k : k = 1, . . . , n;n = 1, 2, . . .) given by

yn,k = φnyn,k−1 + εk, (4.1)

where 0 < φn < 1 for fixed n, φn → 1, as n → ∞, (εk) is a sequence of indepen-
dent identically distributed random variables with Eεk = 0 and yn,0 is a random
variable. Despite the fact that (yn,k) is a triangular array, for simplicity, we omit
the index n in this chapter and we write yk = φnyk−1 + εk, k = 1, 2, . . . , n.

In this section we focus on polygonal line partial sums processes built on the
yk’s:

Spl
n (t) :=

[nt]∑
k=1

yk−1 + (nt− [nt])y[nt], t ∈ [0, 1], n ≥ 0, Spl
n (0) = 0. (4.2)

Note that the definition of Spl
n is quite unusual with a general term yk−1 where

one would expect yk. This definition is more convenient from the technical point
of view. However, asymptotic results proved remain true with yk−1 replaced by
yk as well.

The estimate of the Hölder norm (3.4), page 21, enables us to reduce the
investigation of the asymptotic behaviour of the random polygonal line Spl

n (prop-
erly normalized) to the case where the initialization in (4.1) is given by yn,0 = 0.
Indeed let us associate to each autoregressive process (yn,k) satisfying (4.1), the
process (y′n,k) defined by

y′n,k = yn,k − φknyn,0. (4.3)

Then (y′n,k) satisfies (4.1) with initialization y′n,0 = 0 and the same εk’s and the
above mentioned reduction may be formulated as follows.

Proposition 4.1.1. Let Spl
n
′ be the polygonal line process obtained by substitut-

ing in (4.2) the yn,j’s by the y′n,j’s. Assume that cnSpl
n
′ converges in distribution

in Ho
α[0, 1], where the cn’s are some positive normalizing constants. Then cnS

pl
n
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converges in distribution in Ho
α[0, 1] to the same limit provided that

ncnyn,0 = oP (1). (4.4)

Proof. The stochastic process cnSpl
n − cnSpl

n
′ is a random polygonal line πn which

according to the representation (3.2) is determined by its vertices (l/n, Vl), 0 ≤
l ≤ n, V0 = 0, where

Vl =
l−1∑
j=0

cnφ
j
nyn,0 = 1− φln

1− φn
cnyn,0.

As πn(0) = 0, accounting Lemma 3.1.1 we have

‖πn‖α = ωα(πn, 1) = cn |yn,0|
1− φn

max
1≤l<k≤n

∣∣∣(φnn)k/n − (φnn)l/n
∣∣∣

|k/n− l/n|α .

Applying inequalities (3.13) in Lemma 3.3.2 with the function fn defined on [0, 1]
by t 7→ φtn, we obtain

cn |yn,0|
1− φnn
1− φn

≤ ‖πn‖α ≤ cn |yn,0|
(−n lnφn)

1− φn
.

As φn tends to 1, for the two models under consideration, this gives

‖πn‖α ∼ ncn |yn,0| , n→∞.

Thus assuming that cnSpl
n
′ has a limiting distribution in Ho

α[0, 1], we deduce of
this estimate that, if ncnyn,0 = oP (1), then cnSpl

n converges in Ho
α[0, 1] to the same

limiting distribution.

Remark 4.1.2. Assume that cnSpl
n
′ has a limiting distribution in Ho

α[0, 1] and
ncn |yn,0| is not stochastically bounded in R. Since

‖πn‖α ≤
∥∥∥cnSpl

n

∥∥∥
α

+
∥∥∥cnSpl

n

′∥∥∥
α
,

we have ∥∥∥cnSpl
n

∥∥∥
α
≥ ‖πn‖α −

∥∥∥cnSpl
n

′∥∥∥
α
.

As ncn |yn,0| is not stochastically bounded in R, so ‖πn‖α → ∞ as n → ∞
and together with boundedness of cnSpl

n
′ we obtain that cnSpl

n , for any α, is not
stochastically bounded in Ho

α[0, 1] and cannot converge in this space.
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4.1.1 First type model

In this section we study the process (4.1) in the case where φn = eγ/n with a
constant γ < 0. Note that for Theorem 4.1.3 and only here, instead of putting any
direct assumption on the εj’s, we assume rather some functional weak convergence
of W pl

n to W . This extends the scope of the result far beyond the case where the
εj’s are i.i.d. (for some Hölderian invariance principles, in the case of weakly
dependent random variables, see Hamadouche [2000]).

Theorem 4.1.3. In the case 1 where (yk) is generated by (4.1) with φn = eγ/n,
γ < 0, suppose that the sequence of polygonal lines (n−1/2W pl

n ) converges weakly
to the standard Brownian motion W either in C[0, 1] or in Ho

α[0, 1] for some
0 < α < 1/2. Suppose moreover that yn,0 = oP (n1/2). Then n−3/2Spl

n converges
weakly, as n → ∞, in the space under consideration to the integrated Ornstein-
Uhlenbeck process J defined by:

J(t) :=
∫ t

0
Uγ(s) ds, 0 ≤ t ≤ 1, (4.5)

where Uγ(s) =
∫ s

0 eγ(s−r) dW (r).

Remark 4.1.4. The result in Theorem 4.1.3 is formulated for the variance equal
to 1. If variance is known and equal to σ2, then under the conditions of Theorem
4.1.3 the following result holds:

n−3/2σ−1Spl
n

E−−−→
n→∞

J, (4.6)

where E denotes either C[0, 1] or Ho
α[0, 1] for 0 < α < 1/2.

Remark 4.1.5. If variance is unknown by Slutsky’s Theorem it can be replaced
in (4.6) by it’s estimator

σ̂2 := 1
n

n∑
k=1

ε̂2
k, (4.7)

since Phillips [1987] established, that

σ̂2 P−−−→
n→∞

σ2. (4.8)

Proof of theorem 4.1.3. Since the Banach spaces (C[0, 1], ‖ ‖∞) and (Ho
0, ‖ ‖0) are

isomorphic, the unified proof proposed here for the spaces Ho
α[0, 1], 0 ≤ α < 1/2,
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includes the special case of the space C[0, 1]. By Proposition 4.1.1 and assumption
yn,0 = oP (n1/2), it is enough to give the proof in the case where yn,0 = 0.

The idea of the proof is to approximate the polygonal line n−3/2Spl
n by some

linear interpolation of a smooth process Jn which is a functional of n−1/2W pl
n ,

continuous in Hölder topology, with
∥∥∥n−3/2Spl

n − Jn
∥∥∥
α

= oP (1).

Successive polygonal approximations of n−3/2Spl
n .

We detail first the successive approximations of πn,1 := n−3/2Spl
n by the polyg-

onal lines πn,2, πn,3, πn,4 where the later has vertices (l/n, Vl,4) given by

Vl,4 =
∫ l/n

0
n−1/2W pl

n (s) ds+ γ
∫ l/n

0

∫ s

0
eγ(s−r)n−1/2W pl

n (r) dr ds, (4.9)

and satisfies ∥∥∥n−3/2Spl
n − πn,4

∥∥∥
α

= oP (1). (4.10)

To control the distance in Hölder norm between polygonal lines, we use the
following property. Let πn be a polygonal line with representation (3.2), page 20.
As a consequence of (3.4), page 21, if we approximate each Vl by some Ṽl in such
a way that |Vl − Ṽl| = oP (n−α), uniformly in 1 ≤ l ≤ n, then the corresponding
polygonal line π̃n satisfies ‖πn − π̃n‖α = oP (1).

In what follows, we denote the successive polygonal lines approximating n−3/2Spl
n

by πn,i and their vertices by (l/n, Vl,i), i = 1, 2, 3, 4. At each step we will use the
following facts ∥∥∥n−1/2W pl

n

∥∥∥
∞

is stochastically bounded (4.11)

and

ωα

(
n−1/2W pl

n ,
1
n

)
P−−−→

n→∞
0, (4.12)

by tightness in Ho
α[0, 1], 0 ≤ α < 1/2, see Theorem 3.1.3 (page 22).

We start with πn,1 = n−3/2Spl
n for which

Vl,1 = Yl = n−3/2
l∑

k=1
yk−1.

34



FUNCTIONAL LIMIT THEOREMS

We express yk in terms of innovations

yk =
k∑
j=1

e(k−j)γ/nεj.

Noting that εj = W pl
n

(
j
n

)
−W pl

n

(
j−1
n

)
, we obtain

yk =
k∑
j=1

e(k−j)γ/n
(
W pl
n

(
j

n

)
−W pl

n

(
j − 1
n

))

= W pl
n

(
k

n

)
+

k−1∑
j=1

e(k−j)γ/n(1− e−γ/n)W pl
n

(
j

n

)

= W pl
n

(
k

n

)
+ γ

n

k−1∑
j=1

e(k−j)γ/nW pl
n

(
j

n

)
+ γ2un

2n2

k−1∑
j=1

e(k−j)γ/nW pl
n

(
j

n

)
,

where un = 2n2γ−2
n

(
1− e−γ/n − γn−1

)
. As

e−γ/n = 1− γ

n
+ γ2

2n2 + o
( 1
n2

)
,

it follows

un = −1 + 2n2

γ2 o
( 1
n2

)
→ −1, as n→∞. (4.13)

Now our first approximation consist in neglecting the last term in the sum
above, which gives the polygonal line πn,2 with

Vl,2 = 1
n

l∑
k=1

Wn

(
k − 1
n

)
+ γ

n2

l∑
k=1

k−2∑
j=1

e(k−j−1)γ/nWn

(
j

n

)
, (4.14)

where Wn := n−1/2W pl
n for writing simplicity. For the approximation error, we

have the following bound valid for n ≥ |γ| :

|Vl,2 − Vl,1| ≤
γ2eγ
2n ‖Wn‖∞ .

Next, approximating Riemann sums by integrals in (4.14), we obtain the polygonal
line πn,3 with

Vl,3 =
∫ l/n

0
Wn(s) ds+ γ

n

l∑
k=1

eγk/n
∫ k/n

0
e−γrWn(r) dr. (4.15)
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Let us estimate the error of approximation. For any f ∈ C[0, 1],

1
n

k−k0∑
j=1

f
(
j + j0

n

)
−
∫ k/n

0
f(s) ds

=
k−k0∑
j=1

∫ j/n

(j−1)/n

(
f
(
j + j0

n

)
− f(s)

)
ds−

∫ k/n

(k−k0)/n
f(s) ds,

whence∣∣∣∣∣∣ 1n
k−k0∑
j=1

f
(
j + j0

n

)
−
∫ k/n

0
f(s) ds

∣∣∣∣∣∣ ≤ ω0

(
f,

1 + j0

n

)
+ ‖f‖∞

k0

n
. (4.16)

Moreover,

if f ∈ Ho
α[0, 1], ω0(f, δ) ≤ ωα(f, δ)δα. (4.17)

If f(t) = g(t)h(t) with g of class C1[0, 1] and h ∈ C[0, 1],

ω(gh, δ) ≤ ‖g‖∞ ω(h, δ) + ‖g′‖∞ ‖h‖∞ δ. (4.18)

Using (4.16)–(4.18), we obtain the uniform bound

|Vl,3 − Vl,2| ≤
1 + γeγ
nα

ωα

(
Wn,

1
n

)
+ γeγ(2 + γeγ)

n
‖Wn‖∞ .

Finally, we replace the last sum remaining in (4.15) by an integral of fn(s) :=
eγs

∫ s
0 e−γrWn(r) dr, s ∈ [0, 1], noting that |f ′n(s)| ≤ (1 + γeγ) ‖Wn‖∞ for each

s ∈ [0, 1]. This gives the polygonal line πn,4 with vertices

Vl,4 =
∫ l/n

0
Wn(s) ds+ γ

∫ l/n

0
eγs

∫ s

0
e−γrWn(r) dr ds. (4.19)

The approximation error is given by the uniform bound

|Vl,4 − Vl,3| ≤
1 + γeγ

n
‖Wn‖∞ .

Noting that πn,4 is exactly the polygonal line defined by (4.9) (page 34), gathering
all the estimate of errors above, recalling (3.4) (page 21), we obtain finally with
some positive constants Cγ and C ′γ:∥∥∥n−3/2Spl

n − πn,4
∥∥∥
α
≤ Cγωα

(
Wn,

1
n

)
+ C ′γ ‖Wn‖∞ nα−1. (4.20)
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Recalling (4.11) and (4.12), it follows that∥∥∥n−3/2Spl
n − πn,4

∥∥∥
α

P−−−→
n→∞

0,

so (4.10) (page 34) is proved.

Convergence of Jn.

Next we note that πn,4 is exactly the linear interpolation at the points tn,l = l/n

of the random function:

Jn(t) :=
∫ t

0
n−1/2W pl

n (s) ds+ γ
∫ t

0

∫ s

0
eγ(s−r)n−1/2W pl

n (r) dr ds.

By an elementary chaining argument, the interpolation error is controlled by

‖Jn − πn,4‖α ≤ 4ωα
(
Jn,

1
n

)
,

which converges in probability to zero, provided that Jn converges weakly in
Ho
α[0, 1]. Indeed, if Jn converge weakly in Ho

α[0, 1], then it is tight in Ho
α[0, 1],

thus, according to Theorem 3.1.3 (page 22), we obtain

∀ε > 0, lim
n→∞

P
(
ωα

(
Jn,

1
n

)
≥ ε

)
= 0.

Now, it only remains to check that Jn converges weakly to J in Ho
α[0, 1]. As

the operator

Ho
α[0, 1]→ Ho

α[0, 1] : x 7−→
∫ •

0
x(s) ds+ γ

∫ •
0

∫ s

0
eγ(s−r)x(r) dr ds

is continuous on Ho
α[0, 1], this last convergence follows from the convergence of

n−1/2W pl
n to W (see (3.10), page 23).

Taking into account the classical Donsker-Prohorov invariance principle (3.9),
page 23, and the Hölderian invariance principle (3.10), page 23, we have the
following corollary of Theorem 4.1.3 in the classical case of i.i.d. innovations.

Corollary 4.1.6. Assume that (yk) is generated by (4.1) with φn = eγ/n, γ <

0 and that the (εk)’s are i.i.d. and centered. Then the weak convergence of
σ−1n−3/2Spl

n to J holds
– in C[0, 1] provided that Eε2

1 = σ2 <∞ and yn,0 = oP (n1/2);
– in Ho

α[0, 1] for 0 < α < 1/2 under condition (3.11) (page 23) and yn,0 =
oP (n1/2).
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4.1.2 Second type model

In this section we investigate the polygonal line process Spl
n built on the yk’s,

as defined by (4.2), where φn = 1 − γn/n and γn → ∞ slower than n. Also the
innovations (εk) are supposed i.i.d. with zero mean and known variance.

A key point in all the following limit theorems is to keep a good control on the
asymptotic behavior of max1≤k≤n |yk|. This is provided by the following Lemma
which may be of independent interest.

Lemma 4.1.7. Suppose the process (yk) is generated by (4.1) and φn = 1−γn/n,
where (γn) is a sequence of non negative numbers such that γn →∞ and γn/n→ 0,
as n → ∞. Suppose moreover that yn,0 = 0. Let p ≥ 2. Assume that the
innovations (εk) are i.i.d. and satisfy

limt→∞ t
pP (|ε0| > t) = 0, if p > 2;

Eε2
0 <∞, if p = 2.

(4.21)

For p ≥ 2, put α = 1/2− 1/p. Then

n−1/2γαn max
1≤k≤n

|yk| P−−−→
n→∞

0. (4.22)

The proof of this Lemma is given in section 4.3.2, page 54.

We start with asymptotic behavior of Spl
n in the space C[0, 1].

Theorem 4.1.8. Suppose the process (yk) is generated by (4.1) and φn = 1−γn/n,
where (γn) is a sequence of non negative numbers such that γn →∞ and γn/n→ 0,
as n→∞. Assume also that the innovations (εk) are i.i.d. with Eεk = 0, Eε2

k = 1
and that yn,0 = oP (n−1/2(1− φn)−1). Then the following convergence holds.

n−1/2(1− φn)Spl
n

C[0,1]−−−−→
n→∞

W. (4.23)

Proof. Using Proposition 4.1.1 and the assumption yn,0 = oP (n−1/2(1− φn)−1) it
suffices to prove the result when yn,0 = 0. To prove (4.23), in view of the Donsker-
Prohorov invariance principle (see Billingsley [1986]), it is enough to show that

∆n = ‖ξn‖∞
P−−−→

n→∞
0, (4.24)

where
ξn = 1− φn

n1/2 Spl
n − n−1/2W pl

n .
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We observe that ξn is a polygonal line with vertices at the points tn,k = k/n,
0 ≤ k ≤ n. Its supremum norm is reached at one of its vertices. Hence

∆n = sup
0≤t≤1

∣∣∣∣∣1− φnn1/2 Spl
n (t)− n−1/2W pl

n (t)
∣∣∣∣∣ = n−1/2 max

1≤k≤n

∣∣∣∣∣∣(1− φn)
k∑
j=1

yj−1 −
k∑
j=1

εj

∣∣∣∣∣∣ .
For every k ≥ 1, it follows from (4.1) that ∑k

j=1 yj = φn
∑k
j=1 yj−1 + ∑k

j=1 εj,
whence

(1− φn)
k∑
j=1

yj−1 = −yk +
k∑
j=1

εj, (4.25)

so ∆n reduces to
∆n = n−1/2 max

1≤k≤n
|yk| .

By the particular case where p = 2 in Lemma 4.1.7, the convergence (4.22) holds
true with α = 0. Hence n−1/2 max1≤k≤n |yk| P−−−→

n→∞
0 and (4.24) follows. The proof

of the theorem is complete.

Next we extend Theorem 4.1.8 by proving convergence of Spl
n in the Hölder

space Ho
β[0, 1], 0 < β < α, of course under stronger condition on (εk) than finite-

ness of the second moment. The necessity of an extra restriction on the divergence
of γn like (4.27) below and the optimality of this later remain an open question.

Theorem 4.1.9. Suppose (yk) is generated by (4.1) and φn = 1−γn/n, where (γn)
is a sequence of non negative numbers such that γn →∞ and γn/n→ 0, as n→
∞. Assume also that the innovations (εk) are i.i.d. and satisfy condition (3.11)
(page 23) for some p > 2. Put α = 1

2 − 1
p
. Then for 0 < β < α,

n−1/2(1− φn)Spl
n

Ho
β [0,1]
−−−−→
n→∞

W, (4.26)

provided that yn,0 = oP (n−1/2(1− φn)−1) and

lim inf
n→∞

γnn
− β
α > 0. (4.27)

Proof. By Račkauskas and Suquet [2004a], condition (4.21) gives the weak con-
vergence of n−1/2W pl

n , defined by (3.8), page 23, to the standard Brownian motion
in the space Ho

α[0, 1]. By continuous embedding of Hölder spaces, the same con-
vergence remains true in Ho

β[0, 1] for 0 < β < α. Therefore it is enough to show
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that

Dn,β := ‖ζn‖β
P−−−→

n→∞
0, (4.28)

where

ζn := n−1/2(1− φn)Spl
n − n−1/2W pl

n .

Note that ζn is a polygonal line with vertices at the points tn,k = k/n, 0 ≤ k ≤ n.
According to Lemma 3.1.1, page 21, the Hölderian norm of such a polygonal line
is reached at two vertices, so

∥∥∥n−1/2(1− φn)Spl
n − n−1/2W pl

n

∥∥∥
β
≤ max

1≤j<k≤n

∣∣∣n−1/2(yk − yj)
∣∣∣

|k/n− j/n|β
≤ 2nβ− 1

2 max
1≤k≤n

|yk| .

Using Proposition 4.1.1 and the assumption yn,0 = oP (n−1/2(1−φn)−1) it suffices to
prove (4.28) when yn,0 = 0. Then, by Lemma 4.1.7, max1≤k≤n |yk| = oP (n1/2γ−αn ),
so the convergence (4.28) is satisfied provided that

lim sup
n→∞

nβ

γαn
<∞,

which is equivalent to our assumption (4.27).

Remark 4.1.10. If variance of innovations is equal to σ2, then under conditions
of Theorem 4.1.8 we have

n−1/2(1− φn)σ−1Spl
n

C[0,1]−−−−→
n→∞

W (4.29)

and under conditions of Theorem 4.1.9 we obtain

n−1/2(1− φn)σ−1Spl
n

Ho
β [0,1]
−−−−→
n→∞

W. (4.30)

Remark 4.1.11. If variance σ2 is unknown by Slutsky’s Theorem it can be re-
placed in (4.29) and (4.30) by its estimator defined by (4.7) if

σ̂2 P−−−→
n→∞

σ2.

And the latter result is true by Lemma 4.3.1.
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4.2 Functional central limit theorems for resid-
uals of nearly nonstationary processes

In this section we establish the convergence in Hölder spaces of the polygonal
line processes Ŵ pl

n = (Ŵ pl
n (t), t ∈ [0, 1]) build on the residuals (ε̂k)

Ŵ pl
n (t) :=

[nt]∑
k=1

ε̂k + (nt− [nt])ε̂[nt]+1, t ∈ [0, 1], n ≥ 0, Ŵ pl
n (0) = 0. (4.31)

We investigate the same two type of parameterizations as in previous section. The
residuals of the model (4.1) are defined by

ε̂k = yk − φ̂nyk−1 = εk − (φ̂n − φn)yk−1 (4.32)

where φ̂n is the LSE of the coefficient φn as defined by (2.2), page 7. We assume
that innovations (εk) are centered and Eε2

1 = 1. The condition that variance is
equal to 1 is just for the technical simplicity, but all the proofs holds also for
Eε2

1 = σ2.

The estimate of the Hölder norm (3.4), page 21, helps us to reduce the investi-
gation of the asymptotic behaviour of the properly normalized random polygonal
line Ŵ pl

n to the case where the initialization in (4.1) is given by yn,0 = 0. Indeed
let us associate to each autoregressive process (yn,k) satisfying (4.1), the process
(y′n,k) defined by

y′n,k = yn,k − φknyn,0. (4.33)

Then (y′n,k) satisfies (4.1) with initialization y′n,0 = 0. Then we obtain

ε̂j = εj − (φ̂n − φn)yn,j−1

and

ε̂′j = ε̂j + (φ̂n − φn)φj−1
n yn,0.

So the above mentioned reduction may be formulated as follows.

Proposition 4.2.1. Let Ŵ pl
n
′ be the polygonal line process obtained by substituting

in (4.31) the ε̂j’s by the ε̂′j’s. Assume that n−1/2Ŵ pl
n
′ converges in distribution in

Ho
α[0, 1]. Then n−1/2Ŵ pl

n converges in distribution in Ho
α[0, 1] to the same limit

41



FUNCTIONAL LIMIT THEOREMS

provided that cn(φ̂n − φn) = OP (1) and

n1/2c−1
n yn,0 = oP (1). (4.34)

Proof. The stochastic process n−1/2(Ŵ pl
n
′ − Ŵ pl

n ) is a random polygonal line πn.
According to representation (3.2), πn is determined by its vertices (l/n, Vl), 0 ≤
l ≤ n, V0 = 0, where

Vl =
l−1∑
j=0

n−1/2(φ̂n − φn)φjnyn,0 = 1− φln
1− φn

n−1/2(φ̂n − φn)yn,0.

Applying Lemma 3.3.2, page 24, from

‖πn‖α =
n−1/2 |yn,0|

∣∣∣φ̂n − φn∣∣∣
1− φn

max
1≤l<k≤n

∣∣∣φkn − φln∣∣∣
|k/n− l/n|α

=
n−1/2 |yn,0|

∣∣∣φ̂n − φn∣∣∣
1− φn

max
1≤l<k≤n

∣∣∣(φnn)k/n − (φnn)l/n
∣∣∣

|k/n− l/n|α

we obtain

‖πn‖α ≤ n−1/2 |yn,0|
∣∣∣φ̂n − φn∣∣∣ (−n lnφn)

1− φn
.

Assuming that cn(φ̂n − φn) = OP (1), we obtain

‖πn‖α = n1/2c−1
n |yn,0|

(− lnφn)
1− φn

OP (1).

Finally, as φn tends to 1, for the two models under consideration, this gives

‖πn‖α = OP (n1/2c−1
n |yn,0|), n→∞.

Since n−1/2Ŵ pl
n
′ converges in distribution in Ho

α[0, 1], we deduce n−1/2Ŵ pl
n con-

verges in Ho
α[0, 1] to the same limit distribution provided that n1/2c−1

n yn,0 =
oP (1).

4.2.1 First type model

For the process Ŵ pl
n defined by (4.31) we prove invariance principle and we

find necessary and sufficient condition for it.

Theorem 4.2.2. Let α ∈ (0, 1/2). Suppose that (yk) is generated by (4.1),
φn = eγ/n and γ < 0 is a constant. Moreover assume that (εk) are indepen-
dent, identically distributed random variables with Eε0 = 0 and Eε2

0 = 1 and
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yn,0 = oP (n1/2). Then

n−1/2Ŵ pl
n

Ho
α[0,1]−−−−→
n→∞

W − A−1BJ (4.35)

if and only if condition (3.11) (page 23) holds. Here A =
∫ 1

0 U
2
γ (t) dt, B =∫ 1

0 Uγ(t) dW (t) and J(t) is an integrated Ornstein-Uhlenbeck process defined by
(4.5).

Remark 4.2.3. If variance σ2 is known then under conditions of Theorem 4.2.2,
we obtain

n−1/2σ−1Ŵ pl
n

Ho
α[0,1]−−−−→
n→∞

W − A−1BJ (4.36)

if and only if condition (3.11) holds.

Remark 4.2.4. If variance is unknown by Slutsky’s Theorem it can be replaced
in (4.36) by its estimator defined by (4.7) via Phillips [1987] result (4.8).

For the proof of the Theorem 4.2.2 we need the following technical lemmas
whose proofs are deferred to subsection 4.3.3.

Lemma 4.2.5. Let Nn, Dn, N , D be real valued random variables with Dn and
D non negative. Assume that P (D = 0) = 0, P (Dn = 0) tends to 0 and that
(Nn, Dn) converges in distribution on R2 to (N,D). Define

Φn :=


Nn
Dn

on {Dn 6= 0}
0 on {Dn = 0}

Then Φn converges in distribution to N/D.

Lemma 4.2.6. Suppose that the process (yk) is defined by (4.1) with φn = eγ/n,
γ < 0 and y0 = 0. Let (εk) are i.i.d. random variables with mean 0 and satisfies
condition (3.11) (page 23). Define

An,0 := n−2
n∑
k=1

y2
k−1,

D(n−1/2W pl
n ) :=

∫ 1

0

(
n−1/2W pl

n + γ
∫ r

0
e(r−s)γn−1/2W pl

n ds
)2

dr.

Then ∣∣∣D(n−1/2W pl
n )− An,0

∣∣∣ = oP(n−α). (4.37)
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Lemma 4.2.7. Suppose that the process (yk) is defined by (4.1) with φn = eγ/n,
γ < 0 and y0 = 0. Let (εk) are i.i.d. random variables with mean 0 and satisfies
condition (3.11) (page 23). Define

Bn,0 := n−1
n∑
k=1

εkyk−1,

N(n−1/2W pl
n ) := 1

2

(
n−1/2W pl

n (1) + γ
∫ 1

0
e(1−s)γn−1/2W pl

n (s) ds
)2

− γ
∫ 1

0

(
n−1/2W pl

n (r) + γ
∫ r

0
e(r−s)γn−1/2W pl

n (s) ds
)2

dr − 1
2 .

Then

|N(Wn)−Bn,0| = oP(n−α). (4.38)

Proof of theorem 4.2.2. Proposition 4.2.1 and assumption yn,0 = oP (n1/2) enables
us to reduce the proof to the case where yn,0 = 0.

To prove sufficiency, at first, we express Ŵ pl
n in terms of W pl

n and Spl
n :

n−1/2Ŵ pl
n = n−1/2W pl

n − n−1/2(φ̂n − φn)Spl
n

= n−1/2W pl
n −

n−1∑n
k=1 εkyk−1

n−2∑n
k=1 y

2
k−1

· n−3/2Spl
n . (4.39)

Note that according to (2.2), page 7,

φ̂n − φn =
∑n
j=1 yjyj−1∑n
j=1 y

2
j−1

− φn = n−1∑n
k=1 εkyk−1

n−2∑n
k=1 y

2
k−1

Next, using Uγ definition (see (3.1), page 19) one obtains∫ 1

0
Uγ(r) dW (r) = 1

2

(
U2
γ (1)− 1− 2γ

∫ 1

0
U2
γ (r) dr

)
(see for example Phillips [1987]), so we notice that

T (W ) = W − A−1BJ

where T is the following operator

T : Ho
α[0, 1] −→ Ho

α[0, 1] : x 7−→ T (x) := x− N(x)
D(x)F (x)
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here

N(x) := 1
2

(
x(1) + γ

∫ 1

0
e(1−s)γx(s) ds

)2

− γ
∫ 1

0

(
x(r) + γ

∫ r

0
e(r−s)γx(s) ds

)2
dr − 1

2

D(x) :=
∫ 1

0

(
x(r) + γ

∫ r

0
e(r−s)γx(s) ds

)2
dr

F (x)(t) :=
∫ t

0

(
x(r) + γ

∫ r

0
e(r−s)γx(s) ds

)
dr, t ∈ [0, 1].

for x ∈ Ho
α[0, 1]. It is obvious, that the domain of operator T is

HT := {x ∈ Ho
α[0, 1] : D(x) 6= 0} .

Further note, that HT is the Hölder space deprived of the zero functions.
Indeed, from the equations D(x) = 0, recalling that x is a continuous function on
[0, 1], we obtain for every r ∈ [0, 1]

x(r) + γ
∫ r

0
e(r−s)γx(s) ds = 0. (4.40)

Thus any continuous solution x of D(x) = 0 satisfies

x(r) = −γerγ
∫ r

0
e−sγx(s) ds. (4.41)

Further from the continuity of x follows, that the right hand side of (4.41) is
obviously derivable, consequently x is itself derivable and for all r ∈ (0, 1) we
obtain x′(r) = 0. This implies that x is a constant on [0, 1] (it is continuous at 0
and at 1). Conversely, let r tend to 0 in (4.41). Then by continuity of x we obtain
x(0) = 0 and since x is a constant, x(r) = 0 for every r ∈ [0, 1]. Thus we obtain

P(W ∈ Ho
α[0, 1] \HT ) = P(W = 0).

Next, we observe, that if W = 0 it follows that W (1) = 0, i.e., event {W = 0}
is included in the event {W (1) = 0}. Recall, that W (t) ∼ N(0, t), so W (1) is a
standard Gaussian random variable, then P(W (1) = 0) = 0 and this gives

P(W = 0) = 0. (4.42)

We obtain the convergence (4.35) by proving that

(a) T is continuous operator on HT and P(W ∈ Ho
α[0, 1] \HT ) = 0,
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(b)
∥∥∥n1/2Ŵ pl

n − T (n−1/2W pl
n )
∥∥∥
α

P−−−→
n→∞

0.

We start with the continuity of T . Operator T is the difference of two opera-
tors. The first one is the identity on Ho

α[0, 1], obviously continuous. The second
one is

T̃ (x) := N(x)
D(x) · F (x), x ∈ HT .

First we show that N : Ho
α[0, 1]→ R and D : Ho

α[0, 1]→ R are continuous. Let
us check first the continuity of D. By triangular inequality of L2 norm applied to
the function f(x)(r) = x(r) + γ

∫ r
0 e(r−s)γx(s) ds,

∣∣∣D1/2(x)−D1/2(y)
∣∣∣ =

∣∣∣∣∣
(∫ 1

0
(f(x)(r))2 dr

)1/2
−
(∫ 1

0
(f(y)(r))2 dr

)1/2∣∣∣∣∣
≤
∣∣∣∣∣∣
(∫ 1

0

(
(x(r)− y(r)) + γ

∫ r

0
e(r−s)γ(x(s)− y(s)) ds

)2
dr
)1/2

∣∣∣∣∣∣
≤
∣∣∣∣∣∣
(∫ 1

0

(
|x(r)− y(r)|+ γ

∫ r

0
e(r−s)γ |x(s)− y(s)| ds

)2
dr
)1/2

∣∣∣∣∣∣
≤ ‖x− y‖∞

( 1
2γ (e2γ − 1)

)1/2
.

Here we remark that if h ∈ Ho
α[0, 1], for every t in [0, 1]

|h(t)| ≤ |h(0)|+ |h(t)− h(0)| ≤ |h(0)|+ ωα(h, 1)tα ≤ |h(0)|+ ωα(h, 1),

whence ‖h‖∞ ≤ ‖h‖α. Applying this to h = x− y gives finally

∣∣∣D1/2(x)−D1/2(y)
∣∣∣ ≤ ( 1

2γ (e2γ − 1)
)1/2

‖x− y‖α .

This implies that D1/2 is continuous on Ho
α[0, 1], and so is D. Using the same

arguments, we obtain the continuity of N on Ho
α[0, 1].

So the ratio N/D is continuous as ratio of two continuous functions except on
the subset of Ho

α[0, 1], where D(x) = 0, that is at the null function on [0, 1].

As F is linear, it is enough to show its continuity at 0. Consider

‖F (x)‖α = |F (x)(0)|+ sup
0≤t′<t≤1

|F (x)(t)− F (x)(t′)|
|t− t′|α .
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Noting ‖x‖∞ ≤ ‖x‖α, we see that

|F (x)(t)− F (x)(t′)| =
∣∣∣∣∫ t

t′

(
x(r) + γ

∫ r

0
e(r−s)γx(s) ds

)
dr
∣∣∣∣

≤ (1 + γeγ) ‖x‖α |t− t′| .

Since F (x)(0) = 0, we obtain

‖F (x)‖α ≤ (1 + γeγ) ‖x‖α (4.43)

which gives the continuity of F

The continuity of T̃ on HT follows easily from the continuity of N , D and
F . Finally, operator T is continuous on HT as the difference of two continuous
operators.

As the operator T is continuous on HT and (4.42) holds, also the Hölderian
invariance principle holds (see (3.10), page 23), we have

T (n−1/2Ŵ pl
n ) Ho

α[0,1]−−−−→
n→∞

T (W ) = W − A−1BJ, (4.44)

by continuous mapping theorem (for details see Billingsley [1986], Theorem 5.1)

Next we check that
∥∥∥n−1/2Ŵ pl

n − T (n−1/2W pl
n )
∥∥∥
α

goes to 0 in probability. Due
to approximations of n−1∑n

k=1 εkyk−1 and n−2∑n
k=1 y

2
k−1 by integrals (see Lemmas

4.2.6 and 4.2.7)

N
(
n−1/2W pl

n

)
:= 1

2

(
n−1/2W pl

n (1) + γ
∫ 1

0
e(1−s)γn−1/2W pl

n (s) ds
)2

− γ
∫ 1

0

(
n−1/2W pl

n (r) + γ
∫ r

0
e(r−s)γn−1/2W pl

n (s) ds
)2

dr − 1
2 ,

D
(
n−1/2W pl

n

)
:=
∫ 1

0

(
n−1/2W pl

n (r) + γ
∫ r

0
e(r−s)γn−1/2W pl

n (s) ds
)2

dr

we obtain

n−1
n∑
k=1

εkyk−1 := N
(
n−1/2W pl

n

)
+Rn

n−2
n∑
k=1

y2
k−1 := D

(
n−1/2W pl

n

)
+ R̃n,

where Rn = oP(n−α) and R̃n = oP(n−α). We have also

n−3/2Spl
n (t) = F (n−1/2W pl

n )(t) + ˜̃
Rn, t ∈ [0, 1]
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where ˜̃
Rn = oP(n−α) (for details see the proof of theorem 4.1.3, page 33).

Further setting Wn := n−1/2W pl
n and writing formally

n−1/2Ŵ pl
n = Wn −

N(Wn) +Rn

D(Wn) + R̃n

·
(
F (Wn)(t) + ˜̃

Rn

)
,

we have formally

∥∥∥n−1/2Ŵ pl
n − T (Wn)

∥∥∥
α
≤
∣∣∣∣∣N(Wn) +Rn

D(Wn) + R̃n
− N(Wn)
D(Wn)

∣∣∣∣∣
∥∥∥∥F (Wn) + ˜̃

Rn

∥∥∥∥
α

+
∣∣∣∣N(Wn)
D(Wn)

∣∣∣∣ ∥∥∥∥ ˜̃Rn∥∥∥∥
α
.

For the moment, such writing is just formal because here arises a problem :
the denominators D(Wn) and D(Wn)+ R̃n may vanish with a positive probability
(unlike D(W )). This lead us to introduce the random variables Φn and Φ̃n defined
by

Φn :=


N(Wn)
D(Wn) on {D(Wn) 6= 0}
0 on {D(Wn) = 0}

Φ̃n :=


N(Wn)+Rn
D(Wn)+R̃n

on {D(Wn) + R̃n 6= 0}

0 on {D(Wn) + R̃n = 0}

Consider the event {D(Wn) = 0}. It can occur if and only if the polygonal
line is the null function on [0, 1], which is equivalent to εi = 0, ∀i ∈ {1, . . . , n}.
Putting p := P (ε1 = 0) and discarding the degenerated case p = 1, we obtain by
independence and identical distribution of the innovations that P (D(Wn) = 0) =
pn. So for every p ∈ [0, 1),

P (D(Wn) = 0) −−−→
n→∞

0. (4.45)

Coming back to the decomposition of n1/2Ŵ pl
n and modifying the definition of

T (Wn) as T (Wn) = Wn − ΦnF (Wn) (it suffices to define T (0) := 0 for that), we
can recast the estimate of

∥∥∥n1/2Ŵ pl
n − T (Wn)

∥∥∥
α

as

∥∥∥n1/2Ŵ pl
n − T (Wn)

∥∥∥
α
≤
∣∣∣Φn − Φ̃n

∣∣∣ ∥∥∥∥F (Wn) + ˜̃
Rn

∥∥∥∥
α

+ |Φn|
∥∥∥∥ ˜̃Rn

∥∥∥∥
α
.

By continuous mapping, (N(Wn), D(Wn)) converges in distribution in R2 to
(N(W ), D(W )) = (B,A). Accounting P (D(W ) = 0) = 0 and (4.45), lemma 4.2.5
gives us the convergence in distribution of Φn to B/A and in particular Φn is
stochastically bounded.

Since
∥∥∥∥ ˜̃Rn

∥∥∥∥
α

converge to 0 in probability and ‖F (Wn)‖α is stochastically

bounded, it remains only to check that
∣∣∣Φn − Φ̃n

∣∣∣ converges to 0 in probability.
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Note that on the event {D(Wn) 6= 0} ∩ {D(Wn) + R̃n 6= 0},

∣∣∣Φn − Φ̃n

∣∣∣ ≤ |Rn|∣∣∣D(Wn) + R̃n

∣∣∣ +
∣∣∣∣∣N(Wn)
D(Wn)

∣∣∣∣∣ ·
∣∣∣R̃n

∣∣∣∣∣∣D(Wn) + R̃n

∣∣∣
and that estimate remains true on the whole probability space if we redefine by 0
the fractions whose denominator vanishes in the above formula. So the problem
reduces to proving that

|Rn|∣∣∣D(Wn) + R̃n

∣∣∣ P−−−→
n→∞

0 and

∣∣∣R̃n

∣∣∣∣∣∣D(Wn) + R̃n

∣∣∣ P−−−→
n→∞

0.

We detail only the first convergence. Let us fix an ε > 0, we want to prove that
P (|Rn| /

∣∣∣D(Wn) + R̃n

∣∣∣ ≤ ε) tends to 1. Let us fix an arbitrary δ ∈ (0, 1). Since
the distribution function of D(W ) is null and continuous at 0, we can find η > 0
such that P (D(W ) ≤ η) < δ or equivalently P (D(W ) > η) > 1 − δ. There is
no restriction in assuming that η is itself a point of continuity of the distribution
function of D(W ). Hence by convergence in distribution of D(Wn) to D(W ),
there is an integer n0 such that

∀n ≥ n0, P (D(Wn) > η) > 1− 2δ.

Next we can find n1 ≥ n0 such that

∀n ≥ n1, P
(∣∣∣R̃n

∣∣∣ > η

2

)
< δ.

We can find a n2 ≥ n1 such that

∀n ≥ n2, P (|Rn| > ηε) < δ.

From this we deduce that

P

 |Rn|∣∣∣D(Wn) + R̃n

∣∣∣ < 2ε and D(Wn) > 0
 > 1− 4δ

and recalling that P (D(Wn) = o) tends to 0, this establishes the expected con-
vergence in probability.

And finally the convergence (4.35) is established.

Next step is to prove the necessity. From (4.35), the sequence (n−1/2Ŵ pl
n ) is
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tight on Ho
α[0, 1] and this implies that for every ε > 0,

lim
δ→0

sup
n≥1

P
(
ωα(n−1/2Ŵ pl

n , δ) > ε
)

= 0,

see e.g. Theorem 13 in Suquet [1999]. This clearly entails that

ωα

(
n−1/2Ŵ pl

n ,
1
n

)
P−−−→

n→∞
0.

Observing that

n−1/2 max1≤k≤n |ε̂k|
1
nα

=
n−1/2 max1≤k≤n

∣∣∣Ŵ pl
n (k/n)− Ŵ pl

n ((k − 1)/n)
∣∣∣

1
nα

≤ ωα

(
n−1/2Ŵ pl

n ,
1
n

)
,

we obtain n−1/2 max1≤k≤n |ε̂k| P−−−→
n→∞

0.

Next decompose ε̂k = εk − (φ̂n − φn)yk−1. Denote by y[n•] the step process
(y[nt], t ∈ [0, 1]). Recall that by Phillips [1987] Lemma 1, part (a), n−1/2y[n•]

converges in distribution in D[0, 1] to an Ornstein-Uhlenbeck process. As the
supremum norm of such a step process is obviously reached at one of the points
t = k/n, 0 ≤ k ≤ n, this convergence implies the stochastic boundedness of
max1≤k≤n

∣∣∣n−1/2yk−1

∣∣∣ =
∥∥∥n−1/2y[n•]

∥∥∥
∞

. Notice, that

nα−1/2 max
1≤k≤n

∣∣∣(φ̂n − φn)yk−1

∣∣∣ ≤ nα−1
∣∣∣n(φ̂n − φn)

∣∣∣ max
1≤k≤n

∣∣∣n−1/2yk−1

∣∣∣ P−−−→
n→∞

0,

because from Phillips [1987] (Theorem 1, part (a))
∣∣∣n(φ̂n − φn)

∣∣∣ is also stochasti-
cally bounded. It follows then

nα−1/2 max
1≤k≤n

|εk| P−−−→
n→∞

0,

which gives the condition (3.11), page 23, due to independence of (εk).

4.2.2 Second type model

For the second type model we obtain the result of convergence n−1/2Ŵ pl
n to

Wiener process in Ho
β[0, 1] for 0 < β ≤ α assuming additionally some rate of

divergence for γn.

Theorem 4.2.8. Suppose (yn,k) is generated by (4.1) and φn = 1 − γn/n, where
(γn) is a sequence of nonnegative numbers, γn → ∞ and γn/n → 0, as n → ∞.
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Assume also that the innovations (εk) are i.i.d. and satisfy condition (3.11):

lim
t→∞

tpP(|ε0| > t) = 0

for some p > 2. Put α = 1
2 − 1

p
. Then for 0 < β ≤ α,

n−1/2Ŵ pl
n

Ho
β [0,1]
−−−−→
n→∞

W, (4.46)

if yn,0 = o((1− φn)−1/2) and

lim inf
n→∞

γnn
− 2β

1+2α > 0. (4.47)

Remark 4.2.9. If variance of innovations σ2 is known, then under conditions of
Theorem 4.2.8, we obtain

n−1/2σ−1Ŵ pl
n

Ho
β [0,1]
−−−−→
n→∞

W. (4.48)

Remark 4.2.10. If variance is unknown by Slutsky’s Theorem it can be replaced
in (4.48) by its estimator defined by (4.7) (page 33) via Lemma 4.3.1.

Proof of Theorem 4.2.8. Condition (3.11), page 23, (see Račkauskas and Suquet
[2004b]) gives the weak convergence of W pl

n , defined by (3.8), page 23, to the
standard Brownian motion in the space Ho

α[0, 1]. By continuous embedding of
Hölder spaces, the same convergence remains true in H0

β[0, 1] for 0 < β ≤ α.
Therefore to obtain (4.46) it suffices to prove that

∆n,β :=
∥∥∥n−1/2Ŵ pl

n − n−1/2W pl
n

∥∥∥
β

P−−−→
n→∞

0.

We first establish the useful inequality:∥∥∥Spl
n

∥∥∥
β
≤ n

γn

[∥∥∥W pl
n

∥∥∥
β

+ 2nβ max
1≤k≤n

|yk|
]
, (4.49)

where Spl
n is defined by (4.2), page 31. We have for 1 ≤ j < k ≤ n,

Spl
n (k/n)− Spl

n (j/n) = (1− φn)−1
(
W pl
n (k/j)−W pl

n (j/n)− yk + yj
)
.

Recalling that the Hölder norm of a polygonal line is reached at some pair of
vertices (see Lemma 3.1.1, page 21) and that Spl

n (0) = 0, we have

∥∥∥Spl
n

∥∥∥
β

= max
1≤j<k≤n

∣∣∣Spl
n (k/n)− Spl

n (j/n)
∣∣∣

|k/n− j/n|β
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= max
1≤j<k≤n

∣∣∣(1− φn)−1
(
W pl
n (k/j)−W pl

n (j/n)− yk + yj
)∣∣∣

|k/n− j/n|β

≤ n

γn

 max
1≤j<k≤n

∣∣∣W pl
n (k/j)−W pl

n (j/n)
∣∣∣

|k/n− j/n|β
+ max

1≤j<k≤n

|yk − yj|
|k/n− j/n|β


= n

γn

[∥∥∥W pl
n

∥∥∥
β

+ max
1≤j<k≤n

|yk − yj|
|k/n− j/n|β

]
.

This leads to (4.49) via the elementary estimate

max
1≤j<k≤n

|yk − yj|
|k/n− j/n|β

≤ 2nβ max
1≤k≤n

|yk| . (4.50)

Note, that Ŵ pl
n = W pl

n + (φn − φ̂n)Spl
n , see 4.39, page 44, thus we have

∆n,β = n−1/2|φn − φ̂n|
∥∥∥Spl

n

∥∥∥
β
.

By results in Giraitis and Phillips [2006], there is a positive random variable M
not depending on n, such that |φn − φ̂n| ≤ Mn−1γ1/2

n , so accounting (4.49), we
can bound ∆n,β by:

∆n,β ≤Mn−1/2γ−1/2
n

(∥∥∥W pl
n

∥∥∥
β

+ 2nβ max
1≤k≤n

|yk|
)
.

As n−1/2
∥∥∥W pl

n

∥∥∥
β

is stochastically bounded, the proof of the Theorem is finally
reduced in checking that

n−1/2+βγ−1/2
n max

1≤k≤n
|yk| P−−−→

n→∞
0.

By Lemma 4.1.7, max1≤k≤n |yk| = oP (n1/2γ−αn ), so the above convergence is satis-
fied provided that

lim sup
n→∞

nβ

γ
1/2+α
n

<∞,

which is equivalent to assumption (4.47).

4.3 Supplementary results

In this section, we provide supplementary results. At first we give the proof,
that estimate of the variance σ̂2 is consistent for the second type model. Further
we prove the maximal inequality (Lemma 4.1.7). At the end of this section we
give the proofs of the technical lemmas used in the proof of Theorem 4.2.2.
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4.3.1 Consistency of the estimate of variance

Here we show that for the second type model defined by (4.1), the estimate of
variance is consistent.

Lemma 4.3.1. Suppose (yk) is generated by (4.1) and φn = 1 − γn/n, where γn
is sequence of non negative numbers, γn/n→ 0 and γn →∞ as n→∞. Assume
also that the innovations (εk) are i.i.d. random variables with Eεk = 0, Eε2

k = σ2.
Variance estimator σ̂2 is defined by (4.7) (page 33). Then

σ̂2 P−−−→
n→∞

σ2. (4.51)

Proof. We can rearrange (4.7), page 33, using (4.32), page 41, in the following
way

σ̂2 = 1
n

n∑
k=1

ε̂k
2 = 1

n

n∑
k=1

ε2
k −

2
n

(φ̂n − φn)
n∑
k=1

εkyk−1 + 1
n

(φ̂n − φn)2
n∑
k=1

y2
k−1.

By the weak law of large numbers we have

1
n

n∑
k=1

ε2
k

P−−−→
n→∞

σ2. (4.52)

Further we will use Giraitis and Phillips [2006] results:

n1/2

(1− φ2
n)1/2 (φ̂n − φn) R−−−→

n→∞
N(0, 1) (4.53)

(1− φ2
n)1/2

n1/2

n∑
k=1

εkyk−1
R−−−→

n→∞
N(0, σ4) (4.54)

1− φ2
n

n

n∑
k=1

y2
k−1

P−−−→
n→∞

σ2 (4.55)

So using (4.53) and (4.55) for 1
n
(φ̂n − φn)2∑n

k=1 y
2
k−1 we obtain

1
n

(φ̂n − φn)2
n∑
k=1

y2
k−1

P−−−→
n→∞

0. (4.56)

Also for 2
n
(φ̂n − φn)∑n

k=1 εkyk−1 using (4.53) and (4.54) we find

2
n

(φ̂n − φn)
n∑
k=1

εkyk−1
P−−−→

n→∞
0. (4.57)

Thus (4.52), (4.56) and (4.57) gives us (4.51).
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4.3.2 Maximal inequality

Here we give a detailed proof of Lemma 4.1.7, page 38. It is convenient
to start with the following weaker result which already contains the estimate
max1≤k≤n |yk| = OP (n1/2γ−αn ) if E |ε0|p <∞.

Lemma 4.3.2. Let (ηj)j≥0 be a sequence of i.i.d. random variables, with Eη0 = 0
and E |η0|q < ∞ for some q ≥ 2. Suppose φn = 1 − γn

n
, where γn → ∞ and

γn/n→ 0, as n→∞. Define

zk =
k∑
j=1

φk−jn ηj. (4.58)

Then there exists an integer n0(q) ≥ 1 depending on q only, such that for every
n ≥ n0(q), γn > γn0(q), and every λ > 0,

P
(

max
1≤k≤n

|zk| > λ
)
≤ 4CqeqE |η0|q

λq
nq/2γ1−q/2

n , (4.59)

where Cq is the universal constant in the Rosenthal inequality of order q. Choosing
λ = n1/2γ1/q−1/2

n τ for arbitrary τ > 0 provides:

max
1≤k≤n

|zk| = OP

(
n1/2γ1/q−1/2

n

)
.

The right hand side of (4.59) becomes smaller as q increases, subject to an
optimal choice of λ. It seems difficult to say if the bound (4.59) is sharp. We
can nevertheless remark that in the boundary case, where γn = n and so the zk’s
become i.i.d., our bound would lead to the estimate max1≤k≤n |zk| = OP(n1/q)
which is optimal in this case.

Proof. The idea of the proof relies on the following observation. For a < k ≤ b,

|zk| = φkn

∣∣∣∣∣∣
k∑
j=1

φ−jn ηj

∣∣∣∣∣∣ ≤ φan

∣∣∣∣∣∣
k∑
j=1

φ−jn ηj

∣∣∣∣∣∣ .
Here {∑k

j=1 φ
−j
n ηj, a < k ≤ b} is a martingale adapted to its natural filtration

and if we repeat this procedure with regularly spaced bounds a and b, we keep
the structure of a geometric sum for the coefficients φan. To profit of these two
features we are lead to the following splitting:

n = MK, max
1≤k≤n

|zk| = max
1≤m≤M

max
(m−1)K<k≤mK

|zk| ,
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where M and K (not necessarily integers) depend on n in a way which will be
precised later. Applying this splitting we obtain first:

P
(

max
1≤k≤n

|zk| > λ
)
≤

∑
1≤m≤M

P

φ(m−1)K
n max

1≤k≤mK

∣∣∣∣∣∣
k∑
j=1

φ−jn ηj

∣∣∣∣∣∣ > λ

 .
Then using Markov’s and Doob’s inequalities at order q gives

P
(

max
1≤k≤n

|zk| > λ
)
≤

∑
1≤m≤M

φq(m−1)K
n Tm

λq
where Tm := E

∣∣∣∣∣∣
∑

1≤j≤mK
φ−jn ηj

∣∣∣∣∣∣
q

.

(4.60)

To bound Tm, we treat separately the special case q = 2 with a simple variance
computation and use Rosenthal inequality in the case q > 2. In both cases, the
following elementary estimate is useful.

∑
1≤j≤mK

φ−jqn = φ−[qmK]
n

[mK]∑
j=1

φ[mK]q−jq
n = φ−[qmK]

n

[mK]−1∑
j=0

φjqn

≤ φ−[qmK]
n

1− φqn ≤
φ−qmKn

1− φn
recalling that 0 < φn < 1, whence,

∑
1≤j≤mK

φ−jqn ≤ n

γn
φ−qmKn . (4.61)

Now in the special case q = 2, we have

Tm = Var
 k∑
j=1

φ−jn ηj

 = Eη2
0

∑
1≤j≤mK

φ−2j
n ,

so by (4.61),

Tm ≤
n

γn
φ−2mK
n Eη2

0. (4.62)

When q > 2, we apply Rosenthal inequality which gives here

Tm ≤ Cq

(Eη2
0

)q/2
 ∑

1≤j≤mK
φ−2j
n

q/2

+ E |η0|q
∑

1≤j≤mK
φ−jqn

 .
As q > 2,

(
Eη2

0

)q/2 ≤ E |η0|q. Also we may assume without loss of generality that
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n
γn
≥ 1, so n

γn
≤
(
n
γn

)q/2
. Then using (4.61), we obtain

Tm ≤ 2CqE |η0|q nq/2γ−q/2
n φ−qmKn . (4.63)

Note that (4.62) obtained in the special case q = 2 can be included in this formula
by defining C2 := 1/2.

Going back to (4.60) with this estimate, we obtain

P
(

max
1≤k≤n

|zk| > λ
)
≤ 2CqE |η0|q nq/2γ−q/2

n λ−q
∑

1≤m≤M
φ−Kqn

≤ 2CqE |η0|q nq/2γ−q/2
n λ−qMφ−Kqn .

Now, choosing K = n
γn

, we see that φ−Kqn converges to eq, so for n ≥ n0(q),
φ−Kqn ≤ 2eq. Then (4.59) follows by pluging this upper bound in the inequality
above and noting that M = γn.

Remark 4.3.3. Under assumptions of Lemma 4.3.2 there exists a constant cq
depending on q only, such that for every n ≥ 1 and every λ > 0

P
(

max
1≤k≤n

|zk| > λ
)
≤ cqE |η0|q

λq
nq/2γ1−q/2

n .

Remark 4.3.4. The Lemma 4.3.2 can be proved by applying Hájek-Rényi type
inequality (e.g. see Petrov [1975] section III.5, paragraph 6). In our opinion, the
method applied in the proof of Lemma 4.3.2 seems more suitable for generalization,
e.g. for dependent innovations.

Proof. of Lemma 4.1.7. It is convenient to rewrite the assumption (4.21), page
38, as

P (|ε0| > t) = f(t)
tp

, f(t) −−−→
t→∞

0.

Moreover

f ∗(b) := sup
t≥b

f(t) −−−→
b→∞

0.

In the special case where p = 2, (4.21) is replaced by Eε2
0 <∞, but the above rep-

resentation of P (|ε0| > t) remains valid since f(t) = t2P (|ε0| > t) ≤ E(ε2
01{|ε0|>t})

by Markov inequality and this upper bound goes to zero by dominated convergence
theorem.
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Let us fix arbitrary positive numbers δ and ε, and introduce the truncated
random variables

ε′j = εj1{|εj |≤bn} ε̃′j = ε′j − Eε′j
ε′′j = εj1{|εj |>bn} ε̃′′j = ε′′j − Eε′′j ,

where the truncation level bn goes to infinity at a rate which will be precised later.
Since Eεj = 0, εj = ε̃′j + ε̃′′j . Now let us recall that

yk =
k∑
j=1

φk−jn εj =
k∑
j=1

φk−jn (ε̃′j + ε̃′′j ) =
k∑
j=1

φk−jn ε̃′j +
k∑
j=1

φk−jn ε̃′′j = z̃′k + z̃′′k ,

where z̃′k and z̃′′k are defined by substituting εj by ε̃′j and ε̃′′j respectively in the
definition of zk, given by (4.58). Then for positive λ = λn, whose dependence on
n will be precised later,

P
(

max
1≤k≤n

|yk| > 2λ
)
≤ P ′n + P ′′n , (4.64)

where

P ′n := P
(

max
1≤k≤n

|z̃′k| > λ
)
, P ′′n := P

(
max

1≤k≤n
|z̃′′k | > λ

)
.

To bound P ′n, applying Lemma 4.3.2 to z̃′k gives for any q > p

P ′n ≤
4eqCqE|ε̃′0|q

λq
nq/2γ1−q/2

n ≤ 2q+2eqCqE|ε′0|q
λq

nq/2γ1−q/2
n ,

since by elementary convexity inequalities, E|ε̃′0|q ≤ 2qE|ε′0|q. Now

E|ε′0|q =
∫ ∞

0
qtq−1P

(
|ε0|1{|εj |≤bn} > t

)
dt

=
∫ bn

0
qtq−1P (t < |ε0| ≤ bn) dt ≤

∫ bn

0
qtq−1P (|ε0| > t) dt

=
∫ bn

0
qtq−1f(t)

tp
dt ≤ q ‖f‖∞

q − p bq−pn .

Going back to P ′n we find that

P ′n ≤
2q+2eqqCq ‖f‖∞

q − p · n
q/2γ1−q/2

n bq−pn

λq
.

Now we choose λ = n1/2γ1/p−1/2
n δ, q = p+ 1 and

bn = δp+1εγ1/p
n (4.65)
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with arbitrary ε > 0. Recalling that γn goes to infinity, the same holds for bn.
This choice gives

P ′n = P
(
n−1/2γαn max

1≤k≤n
|z̃′k| > δ

)
≤ C ′pε, (4.66)

with C ′p = 2p+3ep+1(p+ 1)Cp+1 ‖f‖∞.

To bound P ′′n , we apply Lemma 4.3.2 with zk = z̃′′k and q = 2 (keeping the
above choices of λ and bn which do not depend on q):

P ′′n ≤
8e2

δ2 γ
1−2/p
n E(ε′′0)2.

In the special case where p = 2, this reduces to

P ′′n ≤
8e2

δ2 E(ε2
01{|ε0|>bn})

and this bound goes to zero by Lebesgue’s dominated convergence theorem, since
bn defined by (4.65) goes to infinity. When p > 2, we estimate E(ε′′0)2 as follows.

E(ε′′0)2 =
∫ ∞

0
2tP

(
|ε0|1{|ε0|>bn} > t

)
dt

=
∫ bn

0
2tP (|ε0| > bn) dt+

∫ ∞
bn

2tP (|ε0| > t) dt

= b2
nP (|ε0| > bn) +

∫ ∞
bn

2t1−pf(t) dt ≤ f(bn)b2−p
n + 2

p− 2f
∗(bn)b2−p

n

≤ p

p− 2δ
(p+1)(2−p)ε2−pγ2/p−1

n f ∗(bn).

Finally, we see that there is a constant C ′′δ,ε,p such that for p ≥ 2,

P ′′n ≤ C ′′δ,ε,pf
∗(bn). (4.67)

Going back to (4.64) with (4.66) and (4.67), we obtain

Qn := P
(
n−1/2γαn max

1≤k≤n
|yk| > δ

)
≤ C ′pε+ C ′′δ,ε,pf

∗(bn).

This gives lim supn→∞Qn ≤ C ′pε and as ε is arbitrary, so (4.22) (page 38) follows.

4.3.3 Lemmas for the proof of theorem 4.2.2

In this section we give proofs of Lemmas 4.2.5, 4.2.6 and 4.2.7.

Proof of Lemma 4.2.5. We note first that since P (D = 0) = 0, the limiting ran-
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dom variable N/D is well defined (up to an event of probability 0). We will check
that for each real t such that P (N/D = t) (i.e. for each point of continuity of
the distribution function of the claimed limiting distribution), P (Φn ≤ t) tends
to P (N/D ≤ t).

For such a t we clearly have P (N − tD = 0) = 0. This combined with the
convergence in distribution of (Nn, Dn) to (N,D) and continuous maping gives
the convergence:

P (Nn − tDn ≤ 0) −−→
→∞

P (N − tD ≤ 0).

Now

P (Φn ≤ t) = P (0 ≤ t and Dn = 0) + P
(
Nn

Dn

≤ t and Dn > 0
)

= o(1) + P (Nn − tDn ≤ 0 and Dn > 0).

Noting that

|P (Nn ≤ tDn)− P (Nn − tDn ≤ 0 and Dn > 0)| ≤ P (Dn = 0) = o(1)

we deduce that P (Φn ≤ t) tends to P (N/D ≤ t).

The next lemma is an auxilliary result used in the forthcoming proof of
Lemma 4.2.6.

Lemma 4.3.5. Suppose that the process (yk) is defined by (4.1) with φn = eγ/n,
γ < 0 and y0 = 0. Let (εk) be i.i.d. random variables with mean 0 and satisfies
condition (3.11) (page 23). Define

Vn(l) := Wn

(
l − 1
n

)
+ γ

∫ l
n

0
e( l
n
−s)γWn(s) ds (4.68)

for l ≤ n. Then
∣∣∣n−1/2yl−1 − Vn(l)

∣∣∣ ≤ ‖Wn‖∞
γ2eγ
2n + eγ

nα
ωα

(
Wn,

1
n

)
+ |2 + γ| eγ

n
‖Wn‖∞ . (4.69)

Proof. Denote

Vl,1 := n−1/2yl−1 = n−1/2
l−1∑
j=1

e(l−1−j)γ/nεj.
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Noting that εl = W pl
n

(
l
n

)
−W pl

n

(
l−1
n

)
we can express

yl−1 = W pl
n

(
l − 1
n

)
+ γ

n

l−2∑
j=1

e(l−1−j)γ/nW pl
n

(
j

n

)
+ γ2un

2n2

l−2∑
j=1

e(l−1−j)γ/nW pl
n

(
j

n

)
,

where un is defined by (4.13), page 35, and un → −1, as n→∞. Then we define

Vl,2 := Wn

(
l − 1
n

)
+ γ

n

l−2∑
j=1

e(l−1−j)γ/nWn

(
j

n

)

and for the approximation error we obtain the bound

|Vl,2 − Vl,1| ≤ ‖Wn‖∞
γ2eγ
2n .

Further we approximate Riemann sum by integral (which is exactly (4.68))

Vn(l) := Wn

(
l − 1
n

)
+ γ

∫ l
n

0
e( l
n
−s)γWn(s) ds.

Now we estimate the error. For any f ∈ C[0, 1], we have

1
n

l−2∑
j=1

f
(
j + j0

n

)
−
∫ l/n

0
f(s) ds

=
l−2∑
j=1

∫ j/n

(j−1)/n

(
f
(
j + j0

n

)
− f(s)

)
ds−

∫ l/n

(l−2)/n
f(s) ds, (4.70)

whence ∣∣∣∣∣∣ 1n
l−2∑
j=1

f
(
j + j0

n

)
−
∫ l/n

0
f(s) ds

∣∣∣∣∣∣ ≤ ω0

(
f,

1 + j0

n

)
+ ‖f‖∞

2
n
. (4.71)

Moreover,

if f ∈ Ho
α[0, 1], ω0(f, δ) ≤ ωα(f, δ)δα. (4.72)

If f(t) = g(t)h(t) with g of class C1 and h ∈ C[0, 1],

ω0(gh, δ) ≤ ‖g‖∞ ω0(h, δ) + ‖g′‖∞ ‖h‖∞ δ. (4.73)

So from (4.71)-(4.73) we obtain the uniform bound

|Vn(l)− Vl,2| ≤
eγ
nα
ωα(Wn,

1
n

) + |2 + γ| eγ
n

‖Wn‖∞ .
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Proof of Lemma (4.2.6). Using lemma 4.3.5 we approximateAn,0 := n−2∑n
k=1 y

2
k−1

by

An,1 := 1
n

n∑
k=1

(
Wn

(
k − 1
n

)
+ γ

∫ k
n

0
e( k
n
−s)γWn(s) ds

)2

.

The approximation error is bounded by

|An,1 − An,0| ≤ max
1≤k≤n

∣∣∣n−1/2yk−1 − Vn(k)
∣∣∣ (max

1≤k≤n

∣∣∣n−1/2yk−1

∣∣∣+ max
1≤k≤n

|Vn(k)|
)
.

(4.74)

From Lemma 4.3.5, max1≤k≤n

∣∣∣n−1/2yk−1 − Vn(k)
∣∣∣ = oP(n−α). As Vn(l) is the

image of Wn by a functional continuous on Ho
α, from continuous mapping theorem

and Hölderian invariance principle, max1≤k≤n |Vn(k)| is stochastically bounded.
Also by Phillips [1987] max1≤k≤n

∣∣∣n−1/2yk−1

∣∣∣ is stochastically bounded.

Further An,1 might be approximated by An and the bound of approximation
error is

|An − An,1| ≤ ω
(
f,

1
n

)

where f(r) :=
(
W pl
n (r) + γ

∫ r
0 e(r−s)γW pl

n (s) ds
)2

. Denote f(r) = g2(r) and g(r) :=
W pl
n (r) + γ

∫ r
0 e(r−s)γW pl

n (s) ds. Then

ω
(
f,

1
n

)
≤ 1
nα
ωα

(
f,

1
n

)
≤ 2
nα
‖g‖∞ ωα

(
g,

1
n

)
≤ 2
nα
· ‖Wn‖∞ eγ

(
ωα

(
Wn,

1
n

)
+ 1
n1−α eγ ‖Wn‖∞

)
. (4.75)

So we obtain |An − An,0| = oP(n−α).

Proof of Lemma 4.2.7. By squaring equation (4.1), page 31, subtracting y2
k−1 from

both sides and summing both sides over k we obtain:

y2
n = (e2γ/n − 1)

n∑
k=1

y2
k−1 + 2eγ/n

n∑
k=1

yk−1εk +
n∑
k=1

ε2
k.

Then multiplying everything by n−1 we get:

Bn,1 := 2n−1
n∑
k=1

yk−1εk = 1
eγ/n

(
n−1y2

n −
2γ
n2

n∑
k=1

y2
k−1 −

1
n

n∑
k=1

ε2
k −

γ2un
n3

n∑
k=1

y2
k−1

)
,
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where un → −1, n→∞. Further we can approximate Bn,1 by

Bn,2 := 1
eγ/n

(
n−1y2

n −
2γ
n2

n∑
k=1

y2
k−1 −

1
n

n∑
k=1

ε2
k

)

and the bound of the approximation error is

|Bn,2 −Bn,1| ≤
γ2

n

∣∣∣∣∣ 1
n2

n∑
k=1

y2
k−1

∣∣∣∣∣ P−−−→
n→∞

0,

because by Phillips [1987]
∣∣∣ 1
n2
∑n
k=1 y

2
k−1

∣∣∣ is stochastically bounded on R and γ2

n
→

0, as n→∞. Further Bn,2 we can approximate by

Bn,3 := 1
eγ/n

(
n−1y2

n −
2γ
n2

n∑
k=1

y2
k−1 − 1

)
.

In this case for the approximation error we have

|Bn,3 −Bn,2| ≤
∣∣∣∣∣ 1n

n∑
k=1

ε2
k − 1

∣∣∣∣∣ P−−−→
n→∞

0

by the weak law of large numbers since Eε2
0 = 1. Next we approximate Bn,3 by

Bn,4 := n−1y2
n −

2γ
n2

n∑
k=1

y2
k−1 − 1.

As
∣∣∣n−1y2

n − 2γ
n2
∑n
k=1 y

2
k−1 − 1

∣∣∣ is stochastically bounded by Phillips [1987] Lemma
1, we obtain

|Bn,4 −Bn,3| =
∣∣∣∣∣n−1y2

n −
2γ
n2

n∑
k=1

y2
k−1 − 1

∣∣∣∣∣ ·
∣∣∣∣1− 1

eγ/n
∣∣∣∣ P−−−→
n→∞

0.

Finally, using Lemma 4.3.5 we obtain

Bn = 1
2

(
Wn(1) + γ

∫ 1

0
e(1−s)γWn(s) ds

)2

− γ
∫ 1

0

(
Wn(r) + γ

∫ r

0
e(r−s)γWn(s) ds

)2
dr − 1

2 .

The bound

|Bn −Bn,4| ≤
1
2

∣∣∣∣∣(n−1/2yn)2 −
(
Wn(1) + γ

∫ 1

0
e(1−s)γWn(s) ds

)2∣∣∣∣∣
+ γ

∣∣∣∣∣ 1
n2

n∑
k=1

y2
k−1 −

∫ 1

0

(
Wn(r) + γ

∫ r

0
e(r−s)γWn(s) ds

)2
dr
∣∣∣∣∣
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Further

γ

∣∣∣∣∣ 1
n2

n∑
k=1

y2
k−1 −

∫ 1

0

(
Wn(r) + γ

∫ r

0
e(r−s)γWn(s) ds

)2
dr
∣∣∣∣∣

is bounded by (4.74) and (4.75) and

1
2

∣∣∣∣∣(n−1/2yn)2 −
(
Wn(1) + γ

∫ 1

0
e(1−s)γWn(s) ds

)2∣∣∣∣∣
is bounded by (4.74).
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5
Testing the epidemic change with

statistics built on observations

In this chapter we investigate some epidemic change in the innovations of the
first order nearly nonstationary autoregressive process. For 0 ≤ α < 1/2, we build
the α-Hölderian uniform increments statistics based on the observations to detect a
short epidemic change in the process under consideration. Under the assumptions
for innovations we find the limit of the statistics under null hypothesis, some
conditions of consistency and we perform a test power analysis. We also discuss
the interplay between the various parameters to detect the shortest epidemics.

Assume we are given an n-sample yn,1, . . . , yn,n generated by

yn,k = φnyn,k−1 + εk + an,k, k = 1, . . . , n, n ≥ 1, yn,0 = 0, (5.1)

where the parameter φn ∈ (0, 1) satisfies φn → 1, as n→∞, (εk, k ≥ 1) are i.i.d.
centered, at least square integrable random variables, (an,k) is a sequence that will
be precised later. Throughout this chapter, the parameter φn is supposed to be

64



TESTING THE EPIDEMIC CHANGE I

known. The aim of this chapter is to propose tests for the null hypothesis

H0 : an,1 = · · · = an,n = 0

against the epidemic or changed segment alternative:

HA : there exist 1 ≤ k∗n, 1 ≤ m∗n ≤ n such that

an,k = an1I∗n(k), an 6= 0, 1 ≤ k ≤ n,

where I∗n is the epidemics interval

I∗n = {k∗n + 1, . . . ,m∗n}

and 1I∗n denotes its indicator function. Under that type of alternative the values
an,k during the period I∗n are interpreted as an epidemic deviation from the usual
(zero) mean and `∗n = m∗n − k∗n is called the duration of the epidemic state.

To investigate such hypothesis, we build the test statistics

T̃α,n = Tα,n(yn,1, . . . , yn,n), (5.2)

where Tα,n(X1, . . . , Xn) is defined by (2.11), page 18:

Tα,n = max
1≤`≤n

`−α max
1≤k≤n−`

∣∣∣∣∣∣
k+∑̀

j=k+1
Xj −

`

n

n∑
j=1

Xj

∣∣∣∣∣∣ .
To motivate such choice, rewrite the model (5.1) in the following way

yn,k − τn,k = φn(yn,k−1 − τn,k−1) + εk,

where

τn,k =
k−1∑
j=0

φjnan,k−j =
k∑
j=1

φk−jn an,j. (5.3)

Define

zn,k = yn,k − τn,k. (5.4)

Note that (zn,k) is a nearly nonstationary first order autoregressive process and
satisfies the null hypothesis. So, due to (5.4), we have the epidemic change problem
where a sequence of dependent random variables satisfying the null hypothesis is
shifted by a deterministic sequence. This is the reason why statistics (5.2) seems
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natural in this situation.

We study limit behavior of T̃α,n for α = 0 (Levin and Kline statistics) and
α ∈ (0, 1/2 − 1/p), p > 2 (Račkauskas and Suquet statistics) trying to see how
the use of Hölder weighting allows detection of shorter epidemics than the use of
T̃0,n. Of course the range of detection will be smaller here than in the case of i.i.d.
samples. If α = 0, then the innovations are required to have finite second moment.
For another case the innovations satisfy the stronger integrability condition (3.11):

lim
t→∞

tpP (|ε0| > t) = 0.

Here we also study two types of first order nearly nonstationary models with
the coefficient φn close to 1 in the model (5.1). The first type model corresponds
to the coefficient

φn = eγ/n, γ < 0. (5.5)

The second type model corresponds to the coefficient

φn = 1− γn
n

where γn →∞ and γn
n
→ 0 as n→∞. (5.6)

As we shall see the limit behavior of T̃α,n statistics differs for these two types of
models.

5.1 Limit behavior of test statistics under null
hypothesis

For any function f ∈ C[0, 1] or f ∈ Ho
α[0, 1] and 0 ≤ α < 1/2 set

Tα,∞(f) := sup
0<t<s<1

|f(t)− f(s)− (t− s)f(1)|
|t− s|α . (5.7)

5.1.1 Levin and Kline statistics

We start the investigation from Levin and Kline statistics T̃0,n. First let us
consider the model (5.1) under null hypothesis H0 with the coefficient φn = eγ/n,
γ < 0. Under the assumption of square integrability of innovations, we obtain that
the limit of such statistics is a functional depending on an integrated Ornstein-
Uhlenbeck process.
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Theorem 5.1.1. Under H0, for the first type model defined by (5.1) and (5.5),

n−3/2σ−1T̃0,n
R−−−→

n→∞
T0,∞(J), (5.8)

where σ2 = Eε2
1 and J is an integrated Ornstein-Uhlenbeck process J(t)=

∫ t
0Uγ(r)dr,

t ∈ [0, 1] with Uγ defined by (3.1) (page 19).

Proof. Consider the functionals gn and g defined on the continuous function space
C[0, 1] by

gn(x) := max
1≤i<j≤n

I0(x, i/n, j/n), g(x) := sup
0<s<t<1

I0(x, s, t), (5.9)

where

I0(x, s, t) := |x(t)− x(s)− (t− s)x(1)| , 0 < t− s < 1.

By the special case of Lemma 3.3.3, page 25, where α = 0, the functionals gn and
g are Lipschitz on G0 = {x ∈ C[0, 1] : x(0) = 0}. Note that

T̃0,n = gn(Spl
n ), T0,∞(J) = g(J). (5.10)

where (Spl
n (t), t ∈ [0, 1]) is the polygonal line constructed from partial sums of

observations (yn,k−1) defined by (4.2), page 31:

Spl
n (t) :=

[nt]∑
k=1

yn,k−1 + (nt− [nt])yn,[nt], t ∈ [0, 1].

It follows from Theorem 4.1.3 (see also remark 4.1.4, page 33), that

n−3/2σ−1Spl
n

C[0,1]−−−−→
n→∞

J. (5.11)

Lemma 3.3.3 (page 25) now gives

gn(n−3/2σ−1Spl
n ) = g(n−3/2σ−1Spl

n ) + oP(1) (5.12)

and the convergence (5.8) follows from (5.10), (5.11) and (5.12) and continuous
mapping theorem.

Next we find the limit of test statistics T̃0,n under null hypothesis for second
type model.
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Theorem 5.1.2. Under H0, for the second type model defined by (5.1) and (5.6),

n−1/2(1− φn)σ−1T̃0,n
R−−−→

n→∞
T0,∞(W ), (5.13)

where σ2 = Eε2
1.

Proof. The proof of this theorem is essentially the same as the proof of the Theo-
rem 5.1.1 using the Theorem 4.1.8 instead of Theorem 4.1.3 and Lemma 3.3.3.

5.1.2 T̃α,n statistics with α > 0

Now we show that for the model (5.1) with φn = eγ/n, γ < 0, the limit of
T̃α,n (α > 0) under null hypothesis H0 is a functional of an integrated Ornstein-
Uhlenbeck process, but we have to require a stronger integrability on innovations
than just a second moment.

Theorem 5.1.3. In the first type model defined by (5.1) and (5.5), assume that
(εi) satisfy condition (3.11) (page 23) for some p > 2. Then under H0 for any
α ∈ (0, 1/2− 1/p)

n−3/2+ασ−1T̃α,n
R−−−→

n→∞
Tα,∞(J), (5.14)

where σ2 = Eε2
1 and J is an integrated Ornstein-Uhlenbeck process J(t)=

∫ t
0Uγ(r)dr,

t ∈ [0, 1] with Uγ defined by (3.1) (page 19).

Proof. Consider the functionals gn, g, defined on Ho
α[0, 1] by (5.9) where

Iα(x, s, t) := |x(t)− x(s)− (t− s)x(1)|
|t− s|α , 0 < t− s < 1.

By Lemma 3.3.3 (page 25) gn and g are Lipschitz onGα = {x ∈ Ho
α[0, 1] : x(0) = 0}.

Observe that

nαT̃α,n = gn(Spl
n ), Tα,∞(J) = g(J). (5.15)

where (Spl
n (t), t ∈ [0, 1]) is defined by (4.2), page 31. From Theorem 4.1.3 (page

33),

n−3/2σ−1Spl
n

Ho
α[0,1]−−−−→
n→∞

J (5.16)
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holds. Now from Lemma 3.3.3 it follows that

gn(n−3/2σ−1Spl
n ) = g(n−3/2σ−1Spl

n ) + oP(1) (5.17)

and the convergence (5.14) follows from (5.15), (5.16) and (5.17) and continuous
mapping theorem.

Further we find the limit of test statistics T̃α,n under null hypothesis in the
second type model, i.e., in model (5.1) the coefficient is defined by φn = 1−γn/n,
γn → ∞ and γn/n → 0, as n → ∞. The limit under null hypothesis H0 of
this statistics is a functional depending on Wiener process. Here the require-
ments involve not only integrability condition on innovations, but also the rate of
divergence of γn.

Theorem 5.1.4. In the second type model defined by (5.1) and (5.6), assume
that (εi) satisfy condition (3.11) (page 23), for some p > 2. Then for α ∈
(0, 1/2− 1/p) under H0

n−1/2+α(1− φn)σ−1T̃α,n
R−−−→

n→∞
Tα,∞(W ) (5.18)

provided that

lim inf
n→∞

γnn
−α/(1/2−1/p) > 0.

Proof. The idea of the proof of this theorem is the same as the proof of the
Theorem 5.1.3 using the Theorem 4.1.9 instead of Theorem 4.1.3 and Lemma
3.3.3.

5.2 Consistency of test statistics

We investigate the consistency of the test statistics T̃n,α. The practical results
are given in corollaries 5.2.5 and 5.2.2. Proofs of these corollaries are based on
the following generic result (Theorem 5.2.1) which has a broader scope. The
consistency condition is expressed in terms of:

Tα,n(τn,1, . . . , τn,n) = max
1≤`≤n

`−α max
1≤k≤n−`

∣∣∣∣∣∣
k+∑̀

j=k+1
τn,j −

`

n

n∑
j=1

τn,j

∣∣∣∣∣∣ , (5.19)

where the τn,k’s are defined by (5.3).
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For notational simplicity we omit the index n in k∗n, m∗n and `∗n.

Theorem 5.2.1. Suppose that in the first order nearly nonstationary process de-
fined by (5.1) innovations are i.i.d. centred and satisfy condition (3.11) (page
23). Assume that for some normalizing sequence (bn)n≥1 the statistics bnT̃α,n is
stochastically bounded under H0. Then under HA,

bnT̃α,n
P−−−→

n→∞
∞ (5.20)

if and only if
bnTα,n(τn,1, . . . , τn,n) −−−→

n→∞
∞. (5.21)

A sufficient condition for (5.21) is

anbn
(1− φn)2`∗α

(
`∗(1− φn)

(
1− `∗

n

)

− (1− φ`∗n )
(
φn −

`∗

n
φn−m

∗+1
n

))
−−−→
n→∞

∞. (5.22)

Proof. Recall that the process (zn) is defined by zn,k = yn,k−τn,k, 0 ≤ k ≤ n. The
key point here is that when the process (yn) satisfies HA, the process (zn) satisfies
H0 (when (yn) satisfies H0 both process are identical). Hence bnTα,n(zn,1, . . . , zn,n)
is stochastically bounded. Now by triangle inequality for the sequential norm Tα,n:

|Tα,n(yn,1, . . . , yn,n)− Tα,n(τn,1, . . . , τn,n)|
≤ Tα,n(yn,1 − τn,1, . . . , yn,n − τn,n)

= Tα,n(zn,1, . . . , zn,n),

so the stochastic boundedness of bnTα,n(zn,1, . . . , zn,n) gives the equivalence be-
tween (5.20) and (5.21).

Looking now for a practical sufficient condition for (5.21), we choose as a
lower bound for Tα,n(τn,1, . . . , τn,n) the weighted increment corresponding to the
epidemics interval (k∗,m∗] with length m∗ − k∗ = `∗. With these notations,

τn,k =
k∑
j=1

φk−jn an1(k∗,m∗](j), 1 ≤ k ≤ n, τn,0 := 0.

Since an will obviously be in factor in all computations of lower bounds below, it
is enough to write the proof for the case where an = 1.
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Let us compute ∑n
j=1 τn,k.

n∑
k=1

τn,k =
∑
k≤k∗

τn,k +
∑

k∗<k≤m∗
τn,k +

∑
m∗<k≤n

τn,k

=
∑

k∗<k≤m∗

∑
k∗<j≤k

φk−jn︸ ︷︷ ︸
=:A

+
∑

m∗<k≤n

∑
k∗<j≤m∗

φk−jn︸ ︷︷ ︸
=:B

.

We compute separately the double geometric sums A and B.

A =
∑

k∗<k≤m∗

k−k∗−1∑
i=0

φin =
∑

k∗<k≤m∗

1− φk−k∗n

1− φn
= 1

1− φn

(
`∗ −

`∗∑
i=1

φin

)
,

so
A = 1

(1− φn)2

(
`∗(1− φn)− φn(1− φ`∗n )

)
. (5.23)

Similarly,

B =
∑

m∗<k≤n

φk−m
∗

n − φk−k∗n

1− φn
= φ−m

∗
n − φ−k∗n

1− φn
∑

m∗<k≤n
φkn

= φ−m
∗

n − φ−k∗n

1− φn
× φm

∗+1
n − φn+1

n

1− φn
= 1

(1− φn)2 (φn − φ`
∗+1
n − φn−m∗+1

n + φn−k
∗+1

n ),

whence
B = 1

(1− φn)2

(
φn(1− φ`∗n )− φn−m∗+1

n (1− φ`∗n )
)
. (5.24)

Gathering (5.23) and (5.24), we obtain
n∑
j=1

τn,j = 1
(1− φn)2

(
`∗(1− φn)− φn−m∗+1

n (1− φ`∗n )
)
. (5.25)

Finally

A− `∗

n
(A+B)

= 1
(1− φn)2

(
`∗(1− φn)

(
1− `∗

n

)
− (1− φ`∗n )

(
φn −

`∗

n
φn−m

∗+1
n

))
, (5.26)

which explains why (5.22) is a sufficient condition for (5.21).

Corollary 5.2.2. In the first type model defined by (5.1) and (5.5), assume that
for some p > 2, (εi) satisfy condition (3.11). Let α ∈ (0, 1/2− 1/p), then under
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HA

n−3/2+αT̃α,n
P−−−→

n→∞
∞ (5.27)

provided that `∗2−αn−3/2+αan →∞, as n→∞ and

lim inf
n→∞

∣∣∣∣1 + γ

2 − eγ(1−m
∗
n

)
∣∣∣∣ > 0. (5.28)

All this extends to the special case α = 0, assuming that Eε2
1 <∞.

Remark 5.2.3. From a statistical point of view, it is useful to find for which values
of the parameter γ, condition (5.28) does not induce some extra restriction on the
choice of the sequence (m∗(n))n≥1. Writing θn := m∗(n)/n, we see that (5.28) is
not satisfied if and only if there exists some subsequence (θnj)j≥1 in (0, 1) such
that eγ(1−θnj ) tends to 1 + γ/2. Then any θ limit of some subsequence of (θnj)j≥1

(there is at least one such θ by compactness of [0, 1]) must satisfy 1+γ/2 = eγ(1−θ).
Clearly this equation has no solution for γ ≤ −2. For −2 < γ < 0, it has a unique
solution

θ = 1− 1
γ

ln
(

1 + γ

2

)
.

It is easily seen that this solution belongs to [0, 1] only if γ0 ≤ γ < 0, where
γ0 ' −1.5937. From this we can conclude that if γ < γ0, the condition (5.28) is
satisfied without any extra restrictions on the choice of the sequence (m∗(n))n≥1.
For γ0 ≤ γ < 0, one can always find a sequence (m∗(n))n≥1 for which (5.28) fails.

Remark 5.2.4. From the consistency condition `∗2−αn−3/2+αan →∞, as n→∞,
one can see that the bigger α the shorter change can be detected with the statistics.
As expected, the detection is not so good as in the i.i.d. case, see Račkauskas and
Suquet [2004b].

Proof. We keep the notations A and B already used in the previous proof. By
Theorem 5.1.3, under H0, bnT̃α,n converges in distribution and hence is stochas-
tically bounded for the normalization bn = n−3/2+α. So it remains only to check
condition (5.22). This require an estimate for the asymptotic order of magnitude
of

A− `∗

n
(A+B)

= 1
(1− φn)2

(
`∗(1− φn)

(
1− `∗

n

)
− φn(1− φ`∗n )

(
1− `∗

n
φn−m

∗

n

))
.
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Using the second order expansions

1− φn = −γ
n
− γ2

2n2 + o(n−2)

1− φ`∗n = −γ`
∗

n
− γ2`∗2

2n2 + o(`∗2/n−2)

we deduce∣∣∣∣∣A− `∗

n
(A+B)

∣∣∣∣∣ ≥ n2

γ2

∣∣∣∣
(
`∗ − `∗2

n

)(
−γ
n
− γ2

2n2 + o(n−2)
)

−
(

1 + γ

n
+ o

( 1
n

))(
−γ`

∗

n
− γ2`∗2

2n2 + o

(
`∗2

n2

))

×
(

1− `∗

n
eγ(1−m

∗
n

)
) ∣∣∣∣

≥ n2

γ2

∣∣∣∣`∗2γn2 + `∗2γ2

2n2 −
`∗2γ

n2 eγ(1−m
∗
n

) + o

(
`∗2

n2

) ∣∣∣∣
≥ `∗2

∣∣∣∣∣12 + 1
γ

(
1− eγ(1−m

∗
n

)
)∣∣∣∣∣ .

So the divergence (5.22) follows from the condition n−3/2+α`∗2−αan →∞ and (5.28).

Corollary 5.2.5. In the second type model defined by (5.1) and (5.6), assume
that for some p > 2, (εi) satisfy condition (3.11). Let α ∈ (0, 1/2− 1/p) and
assume that

lim inf
n→∞

γnn
−α/(1/2−1/p) > 0.

Suppose that either of the following conditions is satisfied:

1. `∗(1− φn)→∞, lim supn→∞ `∗/n < 1 and n−1/2+α`∗1−αan →∞;

2. `∗(1− φn)→ c > 0 and n−1/2+α`∗1−αan →∞;

3. `∗(1− φn)→ 0 and n−3/2+αγn`
∗2−αan →∞.

Then under HA,
n−1/2+α(1− φn)T̃α,n P−−−→

n→∞
∞. (5.29)

The conclusion extends to the special case α = 0 under the same assumptions
provided that (3.11) is replaced by Eε2

1 <∞.

Proof. By Theorem 5.1.4, under H0, bnT̃α,n converges in distribution and hence is
stochastically bounded for the normalization bn = n−1/2+α(1− φn). So it remains
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only to check condition (5.22) in the three cases under consideration.
– If `∗(1− φn) tends to infinity, noting that∣∣∣(1− φ`∗n )(φn − `∗n−1φn−m

∗+1
n )

∣∣∣ ≤ 1

and recalling that lim sup `∗/n < 1, we immediately see that for n large
enough, there is some positive constant c such that:∣∣∣∣∣A− `∗

n
(A+B)

∣∣∣∣∣ ≥ c`∗

1− φn
.

Then the divergence (5.22) follows clearly from the condition

n−1/2+α`∗1−αan →∞.

– If `∗(1− φn) tends to some c > 0, this implies in particular that `∗/n tends
to zero and

1− φ`∗n −−−→n→∞
1− e−c.

By strict convexity of the exponential function, e−c ≥ 1 − c with equality
only if c = 0, hence c− 1 + e−c > 0 since c > 0 and∣∣∣∣∣A− `∗

n
(A+B)

∣∣∣∣∣ ∼ c− 1 + e−c
(1− φn)2 ∼

(c− 1 + e−c)`∗
c(1− φn) .

Again the divergence (5.22) follows from the condition

n−1/2+α`∗1−αan →∞.

– Assume finally that `∗(1− φn) tends to zero (this implies in particular that
`∗ = o(n)). Then in (5.26) the term `∗(1 − φn) is compensated at the first
order by (1− φ`∗n ). By second order expansion, we find that

1− φ`∗n = `∗γn
n

+ `∗2γ2
n

2n2 (1 + o(1)).

This leads by elementary computation to

A− `∗

n
(A+B) ∼ −`

∗2

2 ,

so the the divergence (5.22) follows from the condition

n−3/2+αγn`
∗2−αan →∞.
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Remark 5.2.6. The graphical interpretation presented in figure 5.1, 5.2 and 5.2
may provide a better understanding of the results in corollary 5.2.5. Assume for
simplicity that an = 1, `∗ � na (that is there are positive constants c1 and c2 such
that for n large enough, c1n

a ≤ `∗ ≤ c2n
a) and that φn � nb for some 0 < a, b < 1.

For a given value of p in condition (3.11), page 23, what are the pairs (a, b) for
which corollary 5.2.5 allows detection of an epidemics of length `∗ � na, subject
to an admissible choice of α ? The set of solutions is represented by the shadowed
area of the unit square. The light grey part above the diagonal corresponds to the
cases 1 and 2, that is limn→∞ `

∗(1− φn) belongs to (0,∞]. Its West border is an
arc of hyperbola with parametric representation a = (1− 2αpt)/(2− 2αpt), b = t

where t = α/αp and αp = 1/2 − 1/p. The darker grey area corresponds to the
case where `∗(1− φn) tends to 0. It is the triangle delimited by the diagonal, the
horizontal axis and the straight line Dαp , where Dα has for Cartesian equation
(2− α)a + b− 3/2 + α = 0. All these lines have F (1,−1/2) as a common point.
Figure 5.1 is given with the p = 8. If p tends to 2, the detection region becomes
smaller. This effect one may observe in figure 5.2, where p = 3. One can remark
that when p tends to infinity the whole shadowed area converges to the trapezoid
with upper basis the upper side of the unit square and lower basis the segment
[2/3, 1] on the horizontal axis (see figure 5.3).

5.3 Test power analysis

Here we perform the test power analysis. For this, we present the results of
experiments in the tables 5.4 and 5.5. We computed empirical power on size-
adjusted (not nominal size) basis, i.e., replaced the nominal value of significance
level by the value of empirical distribution function for p-values under null hy-
pothesis. For more details on size power curves see Davidson and MacKinnon
[1994].

For different values of parameters γ, γn, α, k∗, `∗ and an we compute N = 1000
realizations of test statistics with the sample size n. Innovations have been gener-
ated as standard normally distributed random variables. For the limit distribution
we compute N = 5000 realizations of test statistics with the sample size n = 5000.
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Figure 5.1: Detection area in the space of parameters (`∗ � na, γn � nb) for
corollary 5.2.5 with p = 8.
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Figure 5.2: Detection area in the space of parameters (`∗ � na, γn � nb) for
corollary 5.2.5 with p = 3.
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Figure 5.3: Detection area in the space of parameters (`∗ � na, γn � nb) for
corollary 5.2.5 with p = 30.
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We approximate the values of the standard Wiener process by

W

(
k

5000

)
= 5000−1/2

k∑
j=1

ε(j), k = 1, . . . , 5000, (5.30)

where ε(j) are generated as standard normally distributed random variables. The
Ornstein-Uhlenbeck process have been approximated by the the following dis-
cretization

S(j) = S(j − 1)eγ/n +

√√√√1− e2γ/n

−2γ · ε(j), ε(j) ∼ N(0, 1). (5.31)

For more details about (5.31), see van den Berg [2011]. Using values generated
by (5.31), we approximate the integrated Ornstein-Uhlenbeck process by

J

(
k

5000

)
= 5000−1

k∑
j=1

S(j), k = 1, . . . , 5000,

Next we define the basic parameter set for the first type model

γ = −2; an = 1; n = 1000; `∗

n
= 0.05; k∗

n
= 0.4, yn,0 = 0.

Further modifying the separate parameters we compute the empirical size-power.
We always keep all these parameters fixed except one (indicated in the first col-
umn in both tables) which we allow to vary. Note, that in order to compute the
test power, we need to compute the empirical p-values. Usually, the estimate of
empirical p-value is p̂ = s/N , where s is the number of values (limit process) that
are greater than or equal to the observed value (statistics), N is the number of
values. Nevertheless, the previous formula is biased due to the finite sampling.
Davison and Hinkley [1997] (see p.141) suggested to correct the bias with such
formula p̂ = (s+ 1)/(N + 1). One can observe, that these two formulas are essen-
tially the same when the number of replications N is large, but we use unbiased
estimate in this computations.

As one can see in the table 5.4 the test power is almost the same for all α.
The test power increases with the length of epidemics, the location of epidemics
makes the difference. The biggest power is for the epidemics in the middle of the
observations. For this model, the test can detect the epidemic change best when
an = 1 or bigger, for the smaller changes it has a lower power. Naturally, the
test power increases with the number of observations. Further the bigger is γ,
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the bigger is test power. That is the test power increases when the coefficient is
further removed from the unity.

Parameters α = 0 α = 2/32 α = 6/32 α = 12.5/32
`∗/n = 0.035 0.442 0.440 0.446 0.421
`∗/n = 0.050 0.758 0.757 0.767 0.752
`∗/n = 0.100 1.000 1.000 1.000 1.000

k∗/n = 0.2 0.591 0.589 0.615 0.653
k∗/n = 0.4 0.758 0.757 0.767 0.752
k∗/n = 0.8 0.587 0.616 0.697 0.784

an = 0.8 0.554 0.549 0.556 0.534
an = 1 0.758 0.757 0.767 0.752
an = 1.2 0.907 0.908 0.920 0.914

n = 500 0.388 0.404 0.408 0.409
n = 1000 0.758 0.757 0.767 0.752
n = 2000 0.979 0.982 0.980 0.983

γ = −2 0.758 0.757 0.767 0.752
γ = −12 0.677 0.728 0.822 0.896
γ = −100 0.748 0.833 0.967 0.998

Table 5.4: Empirical power at the size-adjusted significance level 0.05 for the first
type model

The basic parameter set for the second type model ( φn = 1− γn/n) are

γn = n3/4; an = 1; n = 1000; `∗

n
= 0.05; k∗

n
= 0.4, yn,0 = 0.

For the second type model (table 5.5), the test power for all parameter values is
the lowest, when α = 0 and increases with α. For this model, detection of epidemic
changes becomes better with the increasing length of epidemics, nevertheless the
test detects short epidemic change very good for the bigger α (≈ 1/3). Note, that
the test power does not depend on the place of epidemics. Also, it detects quite
good even small changes as an = 0.8. The test power increases when the number
of observations is increasing. The test power does not vary too much depending
on the chosen γn.
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Parameters α = 0 α = 2/32 α = 6/32 α = 10/32
`∗/n = 0.035 0.373 0.441 0.675 0.909
`∗/n = 0.050 0.758 0.859 0.974 0.996
`∗/n = 0.065 0.980 0.990 0.999 1.000

k∗/n = 0.2 0.780 0.875 0.980 0.999
k∗/n = 0.4 0.758 0.859 0.974 0.996
k∗/n = 0.8 0.783 0.877 0.981 0.998

an = 0.8 0.478 0.565 0.780 0.929
an = 1 0.758 0.859 0.974 0.996
an = 1.2 0.949 0.985 0.999 1.000

n = 500 0.422 0.480 0.676 0.813
n = 1000 0.758 0.859 0.974 0.996
n = 2000 0.997 1.000 1.000 1.000

γn = n/ ln(n) 0.754 0.847 0.970 0.995
γn = ln2.5(n) 0.758 0.844 0.972 0.995
γn = n3/4 0.758 0.859 0.974 0.996

Table 5.5: Empirical power at the size-adjusted significance level 0.05 for the
second type model
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6
Testing the epidemic change with

statistics built on residuals

In the previous chapter we have studied test statistics built on the observations
for the detection of a changed segment in the mean of innovations in a first order
nearly nonstationary process. Another way to test such hypothesis is to build the
test statistics on residuals, since innovations are not observed. Indeed, residuals
are the estimated innovations and are supposed to have the same mean. In this
chapter we find the limit behaviour of test statistics under null hypothesis, we
investigate the conditions of consistency when the mean is shifted by a constant
during the epidemics. Also, we discuss the interplay of various parameters to
detect the shortest possible epidemics. Moreover, we perform test power analysis
for our test statistics.

Here we investigate the same model as in the previous section. Suppose, that
we observe an n-sample yn,1, . . . , yn,n generated by

yn,k = φnyn,k−1 + εk + an,k, k ≤ n, n ≥ 1, yn,0 = 0 (6.1)
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where φn → 1, as n→∞, innovations (εk, k ≥ 1) are i.i.d. centered and at least
square integrable random variables, (an,k) is a sequence that denotes the epidemic
change in mean.

The goal of this chapter is to propose the test statistics that is devoted to test
the null hypothesis

H0 : an,1 = · · · = an,n = 0

against the changed segment alternative:

HA : there exist 1 ≤ k∗n, 1 ≤ m∗n ≤ n such that

an,k = an1I∗n(k), an 6= 0, 1 ≤ k ≤ n,

where I∗n is the epidemics interval

I∗n = {k∗n + 1, . . . ,m∗n}

and 1I∗n denotes its indicator function.

To detect a short epidemic change in the mean of innovations of the first order
nearly nonstationary autoregressive process, we build the α-Hölderian uniform
increments statistics based on the residuals for 0 < α ≤ 1:

T̂α,n = max
1≤`≤n

`−α max
1≤k≤n−`

∣∣∣∣∣∣
k+∑̀

j=k+1
ε̂j −

`

n

n∑
j=1

ε̂j

∣∣∣∣∣∣ . (6.2)

Recall that residuals are defined by

ε̂k = yn,k − ŷn,k = yn,k − φ̂nyn,k−1, k ≤ n, n ≥ 0,

where φ̂n is the least squares estimate of the coefficient φn:

φ̂n =
∑n
k=1 yn,kyn,k−1∑n
k=1 y

2
n,k−1

.

In this chapter we again investigate two type of models. First type model is
defined by (6.1) with the coefficient

φn = eγ/n, γ < 0, (6.3)
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while second type model is defined by (6.1) with coefficient

φn = 1− γn
n
, γn →∞, γn/n→ 0, as n→∞. (6.4)

Here we assume that innovations are

i.i.d. centred and satisfies for some p > 2 the integrability condition

lim
t→∞

tpP (|ε0| > t) = 0 (6.5)

or

i.i.d. centred and regularly varying random variables with index p > 2. (6.6)

Definition 6.0.1. The random variable X is regularly varying with index p >

0 (denoted X ∈ RVp) if there exists a slowly varying function L such that the
distribution function F (t) = P (X ≤ t) satisfies the tail balance condition

F (−x) ∼ bL(x)x−p and 1− F (x) ∼ aL(x)x−p, as x→∞,

where a, b ∈ (0, 1) and a+ b = 1.

We refer to Bingham et al. [1987] for an encyclopaedic treatment of regular
variation. The assumption on regular variation with p > 2 allows us to investigate
the test statistics in the whole range of α ∈ (0, 1] except one point αp = 1/2−1/p.

6.1 Limit under null hypothesis

For any function f ∈ Ho
α[0, 1] and 0 < α < 1/2 we define

Tα,∞(f) := sup
0<t<s<1

|f(t)− f(s)− (t− s)f(1)|
|t− s|α .

6.1.1 Model with innovations satisfying condition (6.5)

Here we shall find the limit of the test statistics for two type of models.

Theorem 6.1.1. In the first type model defined by (6.1) and (6.3) assume that
innovations satisfy (6.5) for some p > 2. Then under H0 for any α ∈ (0, αp)

n−1/2+ασ−1T̂α,n
R−−−→

n→∞
Tα,∞(Z), (6.7)
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where σ2 = Eε2
1. Here

Z(t) = W (t)− A−1BJ(t), (6.8)

where A =
∫ 1

0 U
2
γ (t) dt, B =

∫ 1
0 Uγ(t) dW (t) and J(t) =

∫ t
0 Uγ(r) dr, t ∈ [0, 1] and

Uγ is an Ornstein-Uhlenbeck process defined by (3.1) (page 19).

Proof. Consider the functionals gn, g, defined on Ho
α[0, 1] by

gn(x) := max
1≤i<j≤n

Iα(x, i/n, j/n), g(x) := sup
0<s<t<1

Iα(x, s, t), (6.9)

where

Iα(x, s, t) := |x(t)− x(s)− (t− s)x(1)|
|t− s|α , 0 < t− s < 1.

By Lemma 3.3.3 (page 25), gn and g are Lipschitz onGα = {x ∈ Ho
α[0, 1] : x(0) = 0}.

Observe that

nαT̂α,n = gn(Ŵ pl
n ), Tα,∞(Z) = g(Z). (6.10)

where (Ŵ pl
n (t), t ∈ [0, 1]) is a polygonal line process built on residuals (ε̂k)

Ŵ pl
n (t) :=

[nt]∑
k=1

ε̂k + (nt− [nt])ε̂[nt]+1, t ∈ [0, 1].

From Theorem 4.2.2 (page 42) we have that

n−1/2σ−1Ŵ pl
n

Ho
α[0,1]−−−−→
n→∞

W − A−1BJ. (6.11)

Lemma 3.3.3 now gives

gn(n−1/2σ−1Ŵ pl
n ) = g(n−1/2σ−1Ŵ pl

n ) + oP(1) (6.12)

and the convergence (6.7) follows from (6.10), (6.11) and (6.12) and continuous
mapping theorem.

Theorem 6.1.2. In the second type model defined by (6.1) and (6.4) assume that
innovations satisfies (6.5) for some p > 2. Then under H0 for any α ∈ (0, αp)

n−1/2+ασ−1T̂α,n
R−−−→

n→∞
Tα,∞(W ), (6.13)
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where σ2 = Eε2
1, provided that

lim inf
n→∞

γnn
−2α/(1+2αp) > 0.

Proof. The proof of this theorem is essentially the same as the proof of The-
orem 6.1.1 using the Theorem 4.2.8 (page 50) instead of Theorem 4.2.2 and
Lemma 3.3.3.

6.1.2 Model with regularly varying innovations

If ε1 ∈ RVp we define

bn = inf{x > 0 : P (|ε1| ≤ x) ≥ 1− 1/n}. (6.14)

It easily follows from tail condition that there is a slowly varying function v(n), n ∈
N such that

bn ∼ n1/pv(n) as n→∞. (6.15)

Next theorem gives result for the first type model.

Theorem 6.1.3. Let p > 2. If innovations (εi) satisfy (6.6) in the first type
model defined by (6.1) and (6.3), then under H0

(a) for any α ∈ (αp, 1]

b−1
n σ−1T̂α,n

R−−−→
n→∞

Tp, (6.16)

where Tp is a random variable with Frechet distribution P (Tp ≤ x) =
e−x−p , x ∈ R.

(b) for any α ∈ (0, αp)

n−1/2+ασ−1T̂α,n
R−−−→

n→∞
Tα,∞(Z), (6.17)

where Z(t) is defined by (6.8) and A =
∫ 1

0 U
2
γ (t) dt, B =

∫ 1
0 Uγ(t) dW (t) and

J(t) =
∫ t

0 Uγ(r) dr, t ∈ [0, 1], Uγ is an Ornstein-Uhlenbeck process.

For the proof of Theorems 6.1.3 and 6.1.5 we use the following proposition
whose proof is given in subsection 6.4.

Proposition 6.1.4. Let p > 2. If (εi) are i.i.d. random variables, ε1 ∈ RVp and
α ∈ (αp, 1] and (yn,k) is generated by (4.1), then
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1. (a) for φn = eγ/n, γ < 0

Tα,n(ε̂1, . . . , ε̂n) = Tα,n(ε1, . . . , εn) + oP (bn).

holds,

2. (b) for φn = 1− γn
n

, where γn →∞ and γn/n→ 0 as n→∞

Tα,n(ε̂1, . . . , ε̂n) = Tα,n(ε1, . . . , εn) + oP (bn).

holds, provided that

γn = O(nq(α−αp)), 0 < q < 2. (6.18)

Proof of Theorem 6.1.3. (a) Proposition 6.1.4 (page 86) indicates that the
limit behaviors of both statistics T̂α,n and Tα,n(ε1, . . . , εn) coincide. Hence
the result follows by Theorem 1.1 in Mikosch and Račkauskas [2010] (see
Theorem 3.3.8 and Corollary 3.3.9 on page 29).

(b) We notice that if ε1 ∈ RVp, then for any p′ < p we have tp′P(|ε1| > t)→ 0,
as t → ∞. Hence for α < αp choosing p′ < p such that α ≤ αp′ we deduce
the result by Theorem 6.1.1.

Further for the second type model, we obtain the following result.

Theorem 6.1.5. Let p > 2. If innovations (εi) satisfy (6.6) in the second type
model defined by (6.1) and (6.4), then under H0

(a) for any α ∈ (αp, 1]
b−1
n σ−1T̂α,n

R−−−→
n→∞

Tp, (6.19)

provided that γn = O(nq(α−αp)) for some 0 < q < 2.
(b) for any α ∈ (0, αp) if

lim inf
n→∞

γnn
−2α

1+2αp > 0,

then it holds
n−1/2+ασ−1T̂α,n

R−−−→
n→∞

Tα,∞(W ). (6.20)

Proof. (a) Proposition 6.1.4 (page 86) indicates that the limit behaviors of both
statistics T̂α,n and Tα,n(ε1, . . . , εn) coincide. Hence the result follows by
Theorem 1.1 in Mikosch and Račkauskas [2010] (see Theorem 3.3.8 and
Corollary 3.3.9 on page 29).
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(b) To prove this part, we notice that if ε1 ∈ RVp, then tpP(|ε1| > t) ∼ L(t)
for some slowly varying function L(t). So for every 0 < p′ < p we have
tp
′P(|ε1| > t) → 0, as t →∞. Now for all α ∈ (0, αp) we choose 2 < p′ < p

such that α < αp′ < αp. It follows that n−α/αp < n−α/αp′ so that condition
lim infn→∞ γnn−α/αp′ > 0 holds. Then we deduce the convergence (6.20) by
Theorem 6.1.2.

6.2 Consistency analysis

In this section we find conditions for the consistency of test statistics for the
second type model. We see further, that the methods we use to prove the consis-
tency do not work for the first type model.

We again rewrite the model through the term τn,k

yn,k − τn,k = φn(yn,k−1 − τn,k−1) + εk,

where τn,k is defined by (5.3) (page 65):

τn,k =
k−1∑
j=0

φjnan,k−j =
k∑
j=1

φk−jn an,j.

Recall that

zn,k = yn,k − τn,k, k = 0, 1, . . . , n.

Note, that zn,k is a first order nearly nonstationary autoregressive process gener-
ated by (4.1), page 31.

The next theorem gives the result for consistency of test statistics T̂α,n for the
second type model with an constant and α ∈ (0, αp).

Theorem 6.2.1. Under HA, assume that `∗ → ∞, `∗/n → 0 and for some
α ∈ (0, αp),

n−1/2+α`∗(1−α) −−−→
n→∞

∞.

Then for the second type model defined by (6.1) and (6.4) with innovations (εi)
that satisfy (6.5) or (6.6)

n−1/2+αT̂α,n
P−−−→

n→∞
∞ (6.21)
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holds, provided that γn is increasing in n or regular varying sequence,

lim inf
n→∞

γnn
−α/αp > 0 (6.22)

and

φ̂n − φn
1− φn

= oP (1). (6.23)

Condition (6.23) holds provided that
– `∗ = o(γn) if `∗(1− φn)→∞, as n→∞;
– `∗ = o(γ3

nn
−1) if `∗(1− φn)→ 0, as n→∞.

Further we give the proof of consistency of statistics T̂α,n for the second type
model with an constant and α ∈ (αp, 1].

Theorem 6.2.2. Under HA, assume that `∗ → ∞, `∗/n → 0 and for some
α ∈ (αp, 1],

b−1
n `∗(1−α) −−−→

n→∞
∞.

Then for the second type model defined by (6.1) and (6.4) with innovations (εi)
that satisfy (6.6)

b−1
n T̂α,n

P−−−→
n→∞

∞ (6.24)

holds, provided that γn is increasing in n or regular varying sequence,

γn = O(nq(α−αp)), 0 < q < 2 (6.25)

and

φ̂n − φn
1− φn

= oP (1). (6.26)

Condition (6.26) holds provided that
– `∗ = o(γn) if `∗(1− φn)→∞, as n→∞;
– `∗ = o(γ3

nn
−1) if `∗(1− φn)→ 0, as n→∞.

The proofs of Theorems 6.2.1 and 6.2.2 are given at the end of this subsection
on pages 98 and 100. Further supplementary results are given for both type of
models. We start from the lower bound of the test statistics and with the estimates
for some members of this lower bound.
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Lemma 6.2.3. In the first order nearly nonstationary autoregressive process de-
fined by (6.1) and either (6.3) or (6.4) assume that innovation satisfies condition
(6.5) or (6.6). Then under HA for any α ∈ (0, 1]

T̂α,n ≥ Tα,n(an,1, . . . , an,n)−
∣∣∣φ̂n − φn∣∣∣Tα,n(τn,0, . . . , τn,n−1)

− Tα,n(ε1, . . . , εn)−
∣∣∣φ̂n − φn∣∣∣Tα,n(zn,0, . . . , zn,n−1) (6.27)

and

Tα,n(an,1, . . . , an,n) ≥ |an| `∗(1−α). (6.28)

Proof. We have under HA

T̂α,n = max
1≤`≤n

`−α max
1≤k≤n−`

∣∣∣∣∣∣
k+∑̀

j=k+1
ε̂j −

l

n

n∑
j=1

ε̂j

∣∣∣∣∣∣
= max

1≤`≤n
`−α max

1≤k≤n−`

∣∣∣∣ k+∑̀
j=k+1

(
εj + an,j − (φ̂n − φn)τn,j−1 − (φ̂n − φn)zn,j−1

)

− l

n

n∑
j=1

(
εj + an,j − (φ̂n − φn)τn,j−1 − (φ̂n − φn)zn,j−1

) ∣∣∣∣
≥ Tα,n(an,1, . . . , an,n)−

∣∣∣φ̂n − φn∣∣∣Tα,n(τn,0, . . . , τn,n−1)

− Tα,n(ε1, . . . , εn)−
∣∣∣φ̂n − φn∣∣∣Tα,n(zn,0, . . . , zn,n−1).

Further, assume that `∗ = o(n), then

Tα,n(an,1, . . . , an,n) = max
1≤`≤n

`−α max
1lek≤n−`

∣∣∣∣∣∣
k+∑̀

j=k+1
an1I∗n(j)− l

n

n∑
j=1

an1I∗n(j)

∣∣∣∣∣∣
≥ |an| `∗(1−α)

(
1− `∗

n

)
≥ |an| `∗(1−α).

The next lemma gives us the estimate of
∣∣∣φ̂n − φn∣∣∣ /(1− φn).

Lemma 6.2.4. Assume k∗ = [λn] with some fixed 0 < λ < 1. Suppose that
first order nearly nonstationary process is defined by (6.1) and (6.3) or (6.4) with
innovations satisfying (6.5) or (6.6). Then for the least squares estimator φ̂n
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under alternative HA∣∣∣φ̂n − φn∣∣∣
1− φn

=

∣∣∣φ̃n − φn∣∣∣
1− φn

OP (1) +OP

(
a2
n`
∗

n(1− φn)

)
+OP

(
|an|

n(1− φn)3/2

)

+OP

(
max

(
|an|
√
`∗

n(1− φn) ,
|an| `∗

n(1− φn)1/2

))

holds, assuming for the second type model that γn is increasing in n or regular
varying. Here φ̃n denotes the least squares estimator under null hypothesis H0.

To prove Lemma 6.2.4 we need the two following auxiliary lemmas whose proof
is deferred to section 6.4 on pages 122 and 124.

Lemma 6.2.5. Assume k∗ = [λn] with some fixed 0 < λ < 1. Then it holds∑n
k=1 z

2
n,k−1∑[nλ]

k=1 z
2
n,k−1

= OP (1)

additionally assuming that γn is increasing in n or regular varying for the second
type model.

Lemma 6.2.6. Assume k∗ = [λn] with some fixed 0 < λ < 1. Then it holds

1∑[nλ]
k=1 z

2
n,k−1

≤ (1− φn)OP (1)
n

.

Proof of Lemma 6.2.4. Since

n∑
k=1

y2
n,k−1 =

n∑
k=1

(zn,k−1 + τn,k−1)2 ≥
[nλ]∑
k=1

(zn,k−1 + τn,k−1)2 =
[nλ]∑
k=1

z2
n,k−1

and

φ̂n − φn =
∑n
k=1 zn,k−1εk +∑n

k=1 τn,k−1εk +∑n
k=1 yn,k−1an,k∑n

k=1 y
2
n,k−1

we have by denoting φ̃n the least squares estimator of φn built on (zn,k)

∣∣∣φ̂n − φn∣∣∣ ≤ ∣∣∣φ̃n − φn∣∣∣
∑n
k=1 z

2
n,k−1∑[nλ]

k=1 z
2
n,k−1

+ 1∑[nλ]
k=1 z

2
n,k−1

∣∣∣∣∣
n∑
k=1

τn,k−1εk +
n∑
k=1

yn,k−1an,k

∣∣∣∣∣
≤
∣∣∣φ̃n − φn∣∣∣OP (1) + (1− φn)OP (1)

n

∣∣∣∣∣
n∑
k=1

τn,k−1εk +
n∑
k=1

yn,k−1an,k

∣∣∣∣∣ .
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Hence by Lemmas 6.2.5 and 6.2.6 we obtain∣∣∣φ̂n − φn∣∣∣
1− φn

≤
∣∣∣φ̃n − φn∣∣∣

1− φn
OP (1)︸ ︷︷ ︸

:=A

+ OP (1)
n

∣∣∣∣∣
n∑
k=1

yn,k−1an,k

∣∣∣∣∣︸ ︷︷ ︸
:=B

+ OP (1)
n

∣∣∣∣∣
n∑
k=1

τn,k−1εk

∣∣∣∣∣︸ ︷︷ ︸
:=C

.

As φ̃n is a least squares estimator in the model under null hypothesis, we have
– by Phillips n(φ̃n − φn) = OP (1) and n

−γ ∼ 1
1−φn , so |φ̃n−φn|1−φn = OP (1) for the

first type model.
– by Giraitis and Phillips n1/2

(1−φ2
n)1/2 (φ̃n − φn) = OP (1) and (1+φn)1/2

(n(1−φn))1/2 → 0, so
|φ̃n−φn|

1−φn = oP (1) for the second type model.
Thus

A = OP (1) for the first type model (6.29)

A = oP (1) for the second type model. (6.30)

Next we have for part B

n∑
k=1

yn,k−1an,k = an
m∗∑
k∗+1

yn,k−1 = an
1− φn

`∗an + yn,k∗ − yn,m∗ +
m∗∑
k+1

εk

 .
Evidently

Var
m∗∑
k+1

εk

 = σ2`∗ ⇒
m∗∑
k+1

εk = OP (
√
`∗).

As yn,k∗ = ∑k∗

j=1 φ
k∗−j
n (εj + an,j) = ∑k∗

j=1 φ
k∗−j
n εj we obtain

Var
 k∗∑
j=1

φk
∗−j
n εj

 ≤ σ2

1− φn
⇒ yn,k∗ = OP (1/(1− φn)1/2).

Since

yn,m∗ =
m∗∑
j=1

φm
∗−j

n (εj + an,j) =
m∗∑
j=1

φm
∗−j

n εj +
m∗∑
j=1

φm
∗−j

n an,j

=
m∗∑
j=1

φm
∗−j

n εj + an
m∗∑

j=k∗+1
φm
∗−j

n =
m∗∑
j=1

φm
∗−j

n εj + an
1− φ`∗n
1− φn

,

we have

|yn,m∗ | = OP (1/(1− φn)1/2) +OP (|an| `∗).
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So the upper bound

B ≤ |an|OP (1)
n(1− φn)

`∗ |an|+ |yn,k∗ |+ |yn,m∗ |+
∣∣∣∣∣∣
m∗∑
k+1

εk

∣∣∣∣∣∣


= a2
n`
∗

n(1− φn)OP (1) +OP

( |an|
n(1− φn)3/2

)
+OP

(
a2
n`
∗

n(1− φn)

)
+OP

(
|an|
√
`∗

n(1− φn)

)

= OP

(
a2
n`
∗

n(1− φn)

)
+OP

( |an|
n(1− φn)3/2

)
+OP

(
|an|
√
`∗

n(1− φn)

)
.

Finally for C we have

Var
(

n∑
k=1

τn,k−1εk

)
= σ2

n∑
k=1

τ 2
n,k−1 ⇒

n∑
k=1

τn,k−1εk = OP

( n∑
k=1

τ 2
n,k−1

)1/2
 .

Seeing that

n∑
k=1

τ 2
n,k−1 =

n∑
k=1

k−1∑
j=1

φk−1−j
n an,j

2

= a2
n

n∑
k=1

k−1∑
j=1

φk−1−j
n 1I∗n(j)

2

= a2
n

 m∗∑
k=k∗+1

 k−1∑
j=k∗+1

φk−1−j
n

2

+
n∑

k=m∗+1

 m∗∑
j=k∗+1

φk−1−j
n

2


≤ a2
n

[
l∗

(1− φn)2 + l∗2

1− φ2
n

]
,

we obtain

C ≤ OP (1)
n

∣∣∣∣∣
n∑
k=1

τn,k−1εk

∣∣∣∣∣ = OP

(
max

(
|an|
√
`∗

n(1− φn) ,
|an| `∗

n(1− φn)1/2

))
.

Remark 6.2.7. Clearly (6.29) shows that the condition (6.23) can not be satisfied
for the first type model using this method. But this condition is required to have
the consistency of statistics. Thus we can not obtain the result for the first type
model.

In the next corollary we assume that an is constant and we investigate only
second type model.

Corollary 6.2.8. Assume k∗ = [λn] with some fixed 0 < λ < 1 and γn is increas-
ing in n or regular varying in the second type model defined by (6.1) and (6.4)
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with innovations satisfying (6.5) or (6.6). Then it holds under alternative HA∣∣∣φ̂n − φn∣∣∣
1− φn

= oP (1)

provided that
– `∗ = o(γn) if `∗(1− φn)→∞, as n→∞;
– `∗ = o(γ3

nn
−1) if `∗(1− φn)→ 0, as n→∞.

Proof. Taking into account the estimate of
∣∣∣φ̂n − φn∣∣∣ /(1−φn) in Lemma 6.2.4 we

obtain∣∣∣φ̂n − φn∣∣∣
1− φn

= oP (1) +
√
`∗

n(1− φn)1/2

(
OP

( √
`∗

(1− φn)1/2

)
+OP

(
1

1− φn

)

+ OP

(
max

(
1

(1− φn)1/2 ,
√
`∗
)))

.

As 1/(1− φn)1/2 and
√
`∗ are negligible compared with

√
`∗/(1− φn)1/2, thus we

need to consider only two cases.
– The first case is

√
`∗

(1−φn)1/2

1
1−φn

→∞⇔ `∗(1− φn)→∞,

then ∣∣∣φ̂n − φn∣∣∣
1− φn

= oP (1) +
√
`∗

n(1− φn)1/2

(
OP

( √
`∗

(1− φn)1/2

))

= oP (1) +OP

(
`∗

n(1− φn)

)
.

The latter estimate gives us the condition `∗ = o(γn).
– The second case is

√
`∗

(1−φn)1/2

1
1−φn

→ 0⇔ `∗(1− φn)→ 0,

so ∣∣∣φ̂n − φn∣∣∣
1− φn

= oP (1) +
√
`∗

n(1− φn)1/2

(
OP

(
1

(1− φn)

))

= oP (1) +OP

( √
`∗

n(1− φn)3/2

)
.
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Thus we obtain `∗ = o(γ3
nn
−1).

Next lemma allows us to estimate Tα,n(τn,0, . . . , τn,n−1) for the both type mod-
els.

Lemma 6.2.9. Let τn,k is defined by (5.3), then with constant c = 5 it holds

Tα,n(τn,0, . . . , τn,n−1) ≤ 5 |an|
1− φn

`∗(1−α). (6.31)

Proof. We shall use
n∑
j=1

τn,k−1 = an
1− φn

(
`∗ − φn−m∗n

1− φ`∗n
1− φn

)
. (6.32)

To prove (6.31) we have to consider all the possible configurations of the sets
{k + 1, . . . , k + `} and {k∗ + 1, . . . , k∗ + `∗}. There are six configurations I1, . . . , I6.
Denote for v = 1, . . . , 6

T (v)
α,n = max

k,`∈Iv
`−α

∣∣∣∣∣∣
k+∑̀

j=k+1
τn,j−1 −

`

n

n∑
j=1

τn,j−1

∣∣∣∣∣∣ .
First consider configuration I1 := {k, ` : [k∗ + 1,m∗] ⊂ [k + 1, k + `]}

k∗ + 1 m∗
k + 1 k + ℓ

We easily obtain

k+∑̀
j=k+1

τn,j−1 = an

 m∗∑
j=k∗+1

j−k∗−2∑
i=0

φin + φ−1
n

k+∑̀
j=m∗+1

φjn

m∗∑
i=k∗+1

φ−in


= an

 m∗∑
j=k∗+1

1− φj−k∗−1
n

1− φn
+ φ−1

n

φm∗+1
n − φk+`+1

n

1− φn
φ−k∗−1
n − φ−m∗−1

n

1− φ−1
n


= an

1− φn

[
`∗ − 1− φ`∗n

1− φn
+ 1− φ`∗n − φk+`−m∗

n + φk+`−k∗
n

1− φn

]

= an
1− φn

[
`∗ − 1− φ`∗n

1− φn
+ (1− φ`∗n )(1− φk+`−m∗

n )
1− φn

]

= an
1− φn

[
`∗ − φk+`−m∗

n

1− φ`∗n
1− φn

]
.
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Together with (6.32) we find

T (1)
α,n = |an|

1− φn
max
k,`∈I1

`−α
∣∣∣∣∣`∗(1− `/n)− 1− φ`∗n

1− φn
(φk+`−m∗

n − (`/n)φn−m∗n )
∣∣∣∣∣

≤ 3 |an|
1− φn

`∗(1−α).

Now let us turn to second configuration I2 := {k, ` : [k+1, k+`] ⊂ [k∗+1,m∗]}

k∗ + 1 m∗
k + 1 k + ℓ

Obviously

k+∑̀
j=k+1

τn,j−1 = an
k+∑̀

j=k+1

j−1∑
i=1

φj−1−i
n 1I∗n(i) = an

k+∑̀
j=k+1

j−1∑
i=k∗+1

φj−1−i
n

= an
k+∑̀

j=k+1

j−k∗−2∑
i=0

φin = an
1− φn

k+∑̀
j=k+1

(1− φj−k∗−1
n )

= an
1− φn

(
`− φk−k

∗
n (1− φ`n)

1− φn

)
,

so

T (2)
α,n = |an|

1− φn
max
k,`∈I2

`−α
∣∣∣∣∣`− φk−k

∗
n (1− φ`n)

1− φn
− `

n

(
`∗ − φn−m∗n

1− φ`∗n
1− φn

)∣∣∣∣∣
≤ 4 |an|

1− φn
`∗(1−α).

If we consider the third configuration I3 := {k, ` : k+1 < k∗+1 ≤ k+` < m∗}

k∗ + 1 m∗
k + 1 k + ℓ

we have
k+∑̀

j=k+1
τn,j−1 = an

k+∑̀
j=k+1

j−1∑
i=1

φj−1−i
n 1I∗n(i) = an

k+∑̀
j=k∗+1

j−1∑
i=k∗+1

φj−1−i
n
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= an
k+∑̀

j=k∗+1

j−k∗−2∑
i=0

φin = an
1− φn

k+∑̀
j=k∗+1

(1− φj−k∗−1
n )

= an
1− φn

(
(k + `− k∗)− 1− φk+`−k∗

n

1− φn

)
.

Since k + `− k∗ ≤ `∗, then it is easy to see, that

T (3)
α,n = |an|

1− φn
max
k,`∈I3

`−α
∣∣∣∣∣(k + `− k∗)− 1− φk+`−k∗

n

1− φn
− `

n

(
`∗ − φn−m∗n

1− φ`∗n
1− φn

)∣∣∣∣∣
≤ 4 |an|

1− φn
`∗(1−α).

Next, fourth configuration is I4 := {k, ` : k∗ + 1 < k + 1 ≤ m∗ < k + `}

k∗ + 1 m∗
k + 1 k + ℓ

Now
k+∑̀

j=k+1
τn,j−1 = an

 m∗∑
j=k+1

j−1∑
i=k∗+1

φj−1−i
n +

k+∑̀
j=m∗+1

m∗∑
i=k∗+1

φj−1−i
n


= an

 m∗∑
j=k+1

j−k∗−2∑
i=0

φin + φ−1
n

k+∑̀
j=m∗+1

φjn

m∗∑
i=k∗+1

φ−in


= an

 m∗∑
j=k+1

1− φj−k∗−1
n

1− φn
+ φ−1

n

φm
∗+1

n − φk+`+1
n

1− φn
φ−k

∗−1
n − φ−m∗−1

n

1− φ−1
n


= an

1− φn

[
(m∗ − k)− φk−k∗n

1− φm∗−kn

1− φn
+ (1− φk+`−m∗

n )1− φ`∗n
1− φn

]

together with (6.32) and m∗ − k ≤ `∗ gives the estimate

T (4)
α,n = |an|

1− φn
max
k,`∈I4

`−α
∣∣∣∣(m∗ − k)− φk−k∗n

1− φm∗−kn

1− φn
+ (1− φk+`−m∗

n )1− φ`∗n
1− φn

− `

n

(
`∗ − φn−m∗n

1− φ`∗n
1− φn

) ∣∣∣∣ ≤ 5 |an|
1− φn

`∗(1−α).

From the fifth configuration I5 := {k, ` : m∗ < k + 1 < k + `}
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k∗ + 1 m∗
k + 1 k + ℓ

we get

k+∑̀
j=k+1

τn,j−1 = an
k+∑̀

j=k+1

m∗∑
i=k∗+1

φj−1−i
n = anφ

−1
n

k+∑̀
j=k+1

φjn

m∗∑
i=k∗+1

φ−in

= anφ
−1
n ·

φk+1
n − φk+`+1

n

1− φn
· φ
−k∗−1
n − φ−m∗−1

n

1− φ−1
n

= an
1− φn

· φk−m∗n

(1− φ`n)(1− φ`∗n )
1− φn

and together with (6.32) the estimate is

T (5)
α,n = |an|

1− φn
max
k,`∈I5

`−α
∣∣∣∣∣φk−m∗n

(1− φ`n)(1− φ`∗n )
1− φn

− `

n

(
`∗ − φn−m∗n

1− φ`∗n
1− φn

)∣∣∣∣∣
≤ 3 |an|

1− φn
`∗(1−α).

Finally sixth configuration I6 := {k, ` : k + 1 < k + ` ≤ k∗}

k∗ + 1 m∗
k + 1 k + ℓ

gives us

k+∑̀
j=k+1

τn,j−1 = 0.

Thus

T (6)
α,n = |an|

1− φn

∣∣∣∣∣`∗ − φn−m∗n

1− φ`∗n
1− φn

∣∣∣∣∣ max
k,`∈I6

`−α
`

n
≤ 2 |an|

1− φn
`∗(1−α).

So collecting all the estimates of T (v)
α,n, v = 1, . . . , 6 we obtain (6.31).

Finally we give proofs of the Theorems 6.2.1 and 6.2.2.
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Proof of Theorem 6.2.1. Since (εk)’s are i.i.d. centered random variables, that
satisfies condition (6.5) and since consequently the partial sums polygonal line
built on εk’s satisfies the Hölderian invariance principle, then

n−1/2+αTα,n(ε1, . . . , εn) = OP (1). (6.33)

For more details see Račkauskas and Suquet [2004b] (also see Theorem 3.3.6 and
Corollary 3.3.7 on page 28). Besides we have

n−1/2+αTα,n(zn,0, . . . , zn,n−1) = OP (1/(1− φn)), (6.34)

since by Theorem 5.1.4 (page 69) in previous section,

n−1/2+α(1− φn)Tα,n(zn,0, . . . , zn,n−1) = OP (1)

when condition (6.22) holds. Taking into account (6.27), (6.33) and (6.34), we
obtain the lower bound of test statistics

T̂α,n ≥ Tα,n(an,1, . . . , an,n)−
∣∣∣φ̂n − φn∣∣∣Tα,n(τn,0, . . . , τn,n−1)

−Op(n1/2−α)
1 +

∣∣∣φ̂n − φn∣∣∣
1− φn

 .
Further (6.28) gives

n−1/2+αT̂α,n ≥ n−1/2+α`∗(1−α) −∆n,

where

∆n = n−1/2+α
∣∣∣φ̂n − φn∣∣∣Tα,n(τn,0, . . . , τn,n−1) +Op(1)

1 +

∣∣∣φ̂n − φn∣∣∣
1− φn

 .
Thus to get the condition of consistency we have to find the condition under which

∆n = oP (n−1/2+α`∗(1−α)) (6.35)

when

n−1/2+α`∗(1−α) −−−→
n→∞

∞.
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Next from the estimate (6.31) we obtain

n−1/2+α`∗(1−α)

∣∣∣φ̂n − φn∣∣∣
1− φn

= oP (n−1/2+α`∗(1−α)),

thus Lemma 6.2.9 gives that condition (6.35) is satisfied when∣∣∣φ̂n − φn∣∣∣
1− φn

= op(1).

Finally, Corollary 6.2.8 says that the latter equality holds for the second type
model provided that γn is increasing in n or regular varying sequence and

– `∗ = o(γn) if `∗(1− φn)→∞, as n→∞;
– `∗ = o(γ3

nn
−1) if `∗(1− φn)→ 0, as n→∞.

Proof of Theorem 6.2.2. By Mikosch and Račkauskas [2010] (see Theorem 3.3.8
and Corollary 3.3.9 on page 29) we have that

b−1
n Tα,n(ε1, . . . , εn) = OP (1). (6.36)

Further from (6.40), page 117, we have that for the second type model

b−1
n γ−1/2

n Tα,n(zn,0, . . . , zn,n−1) = oP (1)

holds if γn = O(nq(α−αp)) with some 0 < q < 2. Taking into account (6.27), (6.36)
and (6.40), we obtain the lower bound of test statistics T̂α,n

T̂α,n ≥ Tα,n(an,1, . . . , an,n)−
∣∣∣φ̂n − φn∣∣∣Tα,n(τn,0, . . . , τn,n−1)

−Op(bn)−
∣∣∣φ̂n − φn∣∣∣ oP (bnγ1/2

n ).

Further (6.28) gives

b−1
n T̂α,n ≥ b−1

n `∗(1−α) −∆n,

where

∆n =
∣∣∣φ̂n − φn∣∣∣Tα,n(τn,0, . . . , τn,n−1)−Op(bn)−

∣∣∣φ̂n − φn∣∣∣ oP (bnγ1/2
n ).

Thus to get the condition of consistency we have to find the condition under which

∆n = oP (b−1
n `∗(1−α)) (6.37)

100



TESTING THE EPIDEMIC CHANGE II

when

b−1
n `∗(1−α) −−−→

n→∞
∞.

Next from the estimate (6.31) we obtain

b−1
n `∗(1−α)

∣∣∣φ̂n − φn∣∣∣
1− φn

= oP (b−1
n `∗(1−α)),

thus Lemma 6.2.9 gives that condition (6.36) is satisfied when∣∣∣φ̂n − φn∣∣∣
1− φn

= op(1).

Finally, Corollary 6.2.8 says that the latter equality holds for the second type
model provided that γn is increasing in n or regular varying sequence and

– `∗ = o(γn) if `∗(1− φn)→∞, as n→∞;
– `∗ = o(γ3

nn
−1) if `∗(1− φn)→ 0, as n→∞.

Remark 6.2.10. We investigate the compatibility of the conditions obtained in
Corollary 6.2.8 with the test statistics consistency condition obtained in Theo-
rem 6.2.1. Put `∗ � na and γn � nb. We draw the detection region in figures 6.1,
6.2 and 6.3. The two cases are considered:

– Case `∗(1−φn)→∞. Then we obtain a set of parameters (a, b) by inequal-
ities  a+ b > 1

a < b

– Case `∗(1− φn)→ 0. Evidently the set (a, b) that satisfies conditions is a+ b < 1
a < 3b− 1

For a given value p in condition (3.11), page 23, in both cases the West border
of the detection region is given as an arc of hyperbola with parametric represen-
tation a = (1− 2αpt)/(2− 2αpt), b = t where t = α/αp and αp = 1/2− 1/p. The
light grey area in figures 6.1, 6.2 and 6.3 corresponds to case `∗(1 − φn) → ∞,
while the dark grey area corresponds to case `∗(1− φn)→ 0.

In the figure 6.1 one can see the detection region of the test statistics T̂α,n. To
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compare this detection area with the one in the figure 5.1, we see that it is smaller
than for the statistics T̃α,n. Figure 6.2 shows the detection region with p = 3. One
can see, that this region is smaller than in figure 6.1 (p = 8), while in figure 6.3
the detection region is much bigger (p = 30). Thus, from this we may conclude,
that as p tend to infinity (αp tend to 1/2), we can detect shorter epidemics and
we have more freedom in choosing the divergence rate of γn.

Remark 6.2.11. We also study the compatibility of the conditions obtained in
Corollary 6.2.8 with the test statistics consistency condition obtained in Theo-
rem 6.2.2. Put `∗ � na, γn � nb, and bn � n1/p. We draw the detection region
considering two cases:

– Case `∗(1− φn)→∞. The possible choice of the parameters (a, b) is given
by inequalities:  a+ b > 1

a < b

– Case `∗(1− φn)→ 0. For this case possible choice of parameters (a, b) is a+ b < 1
a < 3b− 1

For a given value p in condition (3.11), page 23, in both cases the North border
of the detection region is given as a parametric curve a = (1)/(p(1/2− t+ 1/p)),
b = qt where t = α−αp and αp = 1/2−1/p. The light grey area in figures 6.4, 6.5
and 6.6 corresponds to case `∗(1−φn)→∞, while the dark grey area corresponds
to case `∗(1− φn)→ 0.

The points marked in the figures are:

κ(1)
a = 3 ·

3pq −
√

(3pq + 2p+ 6q)2 + 24p(−pq − 4q) + 2p+ 6q
12p − 1

κ
(1)
b =

3pq −
√

(3pq + 2p+ 6q)2 + 24p(−pq − 4q) + 2p+ 6q
12p

κ(2) =
√
q ·
√

(p2q + 4pq − 16p+ 4q) + pq + 2q
4p

κ(3)
a = 1−

−
√

(pq + 2p+ 2q)2 − 8p2q + pq + 2p+ 2q
4p
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2
p+2

1
2 1 a

b

p
p−2

1

p−√
2p

p−2

−
√

7p2+2p+4+4p−2
3p−6

0

2
3

1
3

Figure 6.1: Detection areas in the space of parameters (`∗ � na, γn � nb) for
Theorem 6.2.1 with p = 8 and α < αp.
In light grey the case where `∗(1− φn)→∞.
In dark grey the case where `∗(1− φn)→ 0.
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Figure 6.2: Detection areas in the space of parameters (`∗ � na, γn � nb) for
Theorem 6.2.1 with p = 3 and α < αp.
In light grey the case where `∗(1− φn)→∞.
In dark grey the case where `∗(1− φn)→ 0.
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Figure 6.3: Detection areas in the space of parameters (`∗ � na, γn � nb) for
Theorem 6.2.1 with p = 30 and α < αp.
In light grey the case where `∗(1− φn)→∞.
In dark grey the case where `∗(1− φn)→ 0.
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κ
(3)
b =

−
√

(pq + 2p+ 2q)2 − 8p2q + pq + 2p+ 2q
4p .

In the figure 6.4 one can see the detection region of the test statistics T̂α,n. To
compare this detection area with the one in the figure 5.1 and 6.1, we see that it
is smaller, but partially it covers different area. Figure 6.5 shows the detection
region with p = 12. This region is bigger than in figure 6.4 (p = 8), while in figure
6.6 the detection region is even bigger (p = 30). Thus, from this we may conclude,
that as p tend to infinity (αp tends to 1/2), we can detect shorter epidemics.

6.3 Test power analysis

In this section we perform the test power analysis. Though the methodology
we have used for consistency analysis have not worked for the first type model,
but we perform power analysis for both type models and using numerical methods
we see if this test statistics can detect epidemic change. The results are presented
in the tables 6.7 and 6.8. As in the previous section we compute empirical power
on size-adjusted (not nominal size) basis, i.e., replaced the nominal value of sig-
nificance level by the value of empirical distribution function for p-values under
null hypothesis.

Here we compute N = 1000 realizations of test statistics with the sample size n
for different values of parameters γ, γn, α, k∗, `∗ and an. Innovations are generated
as standard normally distributed random variables. For the limit distribution we
compute N = 5000 realizations of test statistics with the sample size n = 5000.
We approximate the values of the standard Wiener process by

W

(
k

5000

)
= 5000−1/2

k∑
j=1

ε(j), k = 1, . . . , 5000,

where ε(j) are generated as standard normally distributed random variables. The
Ornstein-Uhlenbeck process have been approximated by the the following dis-
cretization

S(j) = S(j − 1)eγ/n +

√√√√1− e2γ/n

−2γ · ε(j), ε(j) ∼ N(0, 1). (6.38)

Using values generated by (6.38), we approximate the integrated Ornstein-Uhlenbeck
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Figure 6.4: Detection areas in the space of parameters (`∗ � na, γn � nb) for
Theorem 6.2.1 with p = 8, q = 1.5 and α > αp.
In light grey the case where `∗(1− φn)→∞.
In dark grey the case where `∗(1− φn)→ 0.
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Figure 6.5: Detection areas in the space of parameters (`∗ � na, γn � nb) for
Theorem 6.2.1 with p = 8, q = 1.5 and α > αp.
In light grey the case where `∗(1− φn)→∞.
In dark grey the case where `∗(1− φn)→ 0.
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Figure 6.6: Detection areas in the space of parameters (`∗ � na, γn � nb) for
Theorem 6.2.1 with p = 8, q = 1.5 and α > αp.
In light grey the case where `∗(1− φn)→∞.
In dark grey the case where `∗(1− φn)→ 0.
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process by

J

(
k

5000

)
= 5000−1

k∑
j=1

S(j), k = 1, . . . , 5000,

and values

A = 5000−1
n∑
j=1

S2(j), B =
n∑
j=1

S(j)
(
W
(

j

5000

)
−W

(
j − 1
5000

))
.

For the first type model (φn = eγ/n) with innovations that satisfy integrability
condition (3.11), page 23, the basic parameters are

γ = −2; an = 1; n = 1000; `∗

n
= 0.05; k∗

n
= 0.4, yn,0 = 0.

We modify them separately and we compute the empirical size-power. We keep
all the parameters fixed except one (indicated in the first column in both tables)
which is allowed to vary. We use the same methodology for computing empirical
p-values as in the previous chapter.

As one can see in the table 6.7 the test power increases with the α. Test
statistics has a quite big power in detecting short epidemics with α closer to 1/2.
Naturally, increasing n increases test power. In general, test has a quite big power
for all chosen parameters.

For the second type model ( φn = 1 − γn/n) with innovations that satisfy
integrability condition (3.11), the basic parameter set are

γn = n3/4; an = 1; n = 1000; `∗

n
= 0.05; k∗

n
= 0.4, yn,0 = 0.

For the second type model (table 6.8), the test power is very low for the small
α. The test power increases with n, `∗ and the rate of divergence of γn.

Further we give the test power analysis for the model with regularly varying
innovations. For this we generate innovations as symmetric Pareto random vari-
ables. Note, that symmetric Pareto probability density function for some constant
p > 0 is

fP (x) =


p
2 |x|

−(p+1) , if |x| > 1
0, if |x| ≤ 1
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Parameters α = 2/32 α = 6/32 α = 12.5/32
`∗/n = 0.035 0.462 0.715 0.968
`∗/n = 0.050 0.879 0.981 0.998
`∗/n = 0.065 0.988 1.000 1.000

k∗/n = 0.2 0.903 0.981 1.000
k∗/n = 0.4 0.879 0.981 0.998
k∗/n = 0.8 0.784 0.967 0.997

an = 0.8 0.574 0.793 0.957
an = 1 0.879 0.981 0.998
an = 1.2 0.989 1.000 1.000

n = 500 0.498 0.700 0.884
n = 1000 0.879 0.981 0.998
n = 2000 1.000 1.000 1.000

γ = −2 0.879 0.981 0.998
γ = −12 0.831 0.976 0.998
γ = −100 0.010 0.267 0.975

Table 6.7: Empirical power at the size-adjusted significance level 0.05 for the first
type model with Gaussian innovations.

and cumulative distribution function

FP (x) =


1
2(−x)−p, if x < −1

1
2 , if − 1 ≤ x ≤ 1

1− 1
2x
−p, if x ≥ 1.

Next, tables 6.9 and 6.10 shows the results of empirical size-adjusted test power
for the first type model with regularly varying innovations. Thus we generate
innovations as Pareto random variables with parameter p. The symmetric Pareto
CDF gives that bn = n1/p. For the first type model, we use basic parameters:

γ = −2; an = 1; n = 1000; `∗

n
= 0.05; k∗

n
= 0.4, yn,0 = 0.

Table 6.9 correspond to the Theorem 6.1.3 part (a), so we choose the values
α = 17/32, 20/32, 26/32 and p = 8. We see in this table that in general test
power increases with the length of epidemics `∗, epidemic change size an and
number of observations n. Also, we see that test power increases when α and γ

values decreases. Further, there is no difference for the test power if the epidemics
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Parameters α = 2/32 α = 6/32 α = 10/32
`∗/n = 0.035 0.049 0.190 0.763
`∗/n = 0.050 0.093 0.573 0.965
`∗/n = 0.065 0.216 0.880 0.998

k∗/n = 0.2 0.077 0.589 0.974
k∗/n = 0.4 0.093 0.573 0.965
k∗/n = 0.8 0.105 0.615 0.974

an = 0.8 0.102 0.328 0.791
an = 1 0.093 0.573 0.965
an = 1.2 0.080 0.810 1.000

n = 500 0.062 0.171 0.552
n = 1000 0.093 0.573 0.965
n = 2000 0.660 0.997 1.000

γn = n/ ln(n) 0.035 0.416 0.950
γn = ln2.5(n) 0.020 0.353 0.935
γn = n3/4 0.093 0.573 0.965

Table 6.8: Empirical power at the size-adjusted significance level 0.05 for the
second type model with Gaussian innovations.

occur at the beginning, middle or end of the sample.

Table 6.10 correspond to the Theorem 6.1.3 part (b), so we choose the same α
values as in Gaussian innovation case and p = 20 in order to compare the results.
Thus basic parameters:

γ = −2; an = 1; n = 1000; `∗

n
= 0.05; k∗

n
= 0.4, yn,0 = 0.

As we see in this table the test power increases with n, α, length of epidemics `∗.
Test can detect epidemics with bigger power at the beginning or middle of the
sample. The bigger an, the bigger test power. To compare tables 6.10 and 6.7, we
observe that in general test power is a little smaller for the model with regularly
varying innovations (6.10).

For the second type model with regularly varying innovations, generated as
Pareto random variables with parameters p and bn = n1/p, we use such basic
parameters:

γn = n3/4; an = 1; n = 1000; `∗

n
= 0.05; k∗

n
= 0.4, yn,0 = 0.
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Parameters α = 17/32 α = 20/32 α = 26/32
`∗/n = 0.035 0.934 0.802 0.064
`∗/n = 0.050 0.991 0.921 0.067
`∗/n = 0.065 0.998 0.975 0.069

k∗/n = 0.2 0.993 0.944 0.059
k∗/n = 0.4 0.991 0.921 0.067
k∗/n = 0.8 0.986 0.917 0.054

an = 0.8 0.893 0.662 0.058
an = 1 0.991 0.921 0.067
an = 1.2 1.000 0.994 0.092

n = 500 0.760 0.816 0.091
n = 1000 0.991 0.921 0.067
n = 2000 1.000 0.999 0.064

γ = −2 0.991 0.921 0.067
γ = −12 0.969 0.840 0.058
γ = −20 0.947 0.760 0.056

Table 6.9: Empirical power at the size-adjusted significance level 0.05 for the first
type model with regular varying innovations, α > αp.

The results size-adjusted empirical power we present in the tables 6.11 and 6.12.
Table 6.11 correspond to the Theorem 6.1.5 part (a) and we choose α = 17/32,
20/32, 26/32 and p = 8. We see, that test power increases when α decreases (i.e.,
α is close to 1/2). Also test power increases with the number of observations n,
length of epidemics `∗ and an.

Table 6.12 correspond to the Theorem 6.1.5 part (b), so we choose the same
α values as in a case of Gaussian innovations, p = 20, normalization n−1/2+α. We
see, that test has no power for the small α values, but it increases with α, n, `∗

and an. Comparing tables 6.12 and 6.8 we see, that generally test power is lower
for the model with regularly varying innovations.

6.4 Supplementary results and notes

The Proposition 6.1.4 is the main tool in proving the Theorems 6.1.3 and 6.1.5
parts (a). The proof of Proposition 6.1.4 intensively exploits the following version
of Hájek-Rényi inequality.
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Parameters α = 2/32 α = 6/32 α = 12.5/32
`∗/n = 0.035 0.385 0.637 0.974
`∗/n = 0.050 0.790 0.965 0.998
`∗/n = 0.065 0.976 0.999 1.000

k∗/n = 0.2 0.768 0.973 0.999
k∗/n = 0.4 0.790 0.965 0.998
k∗/n = 0.8 0.679 0.942 0.995

an = 0.8 0.502 0.787 0.951
an = 1 0.790 0.965 0.998
an = 1.2 0.962 0.999 1.000

n = 500 0.476 0.621 0.876
n = 1000 0.790 0.965 0.998
n = 2000 1.000 1.000 1.000

γ = −2 0.790 0.965 0.998
γ = −12 0.793 0.972 0.995
γ = −20 0.562 0.930 0.990.

Table 6.10: Empirical power at the size-adjusted significance level 0.05 for the
first type model with regular varying innovations and α < αp.

Lemma 6.4.1. For each n ≥ 1 let (Xnk, 1 ≤ k ≤ n) be a sequence of random
variables defined on a probability space (Ω,F , P ) and (ank, 1 ≤ k ≤ n) be a se-
quence of nonnegative real numbers and r > 0. If there exists c > 0 such that for
any n ≥ 1 and any ε > 0

P
(

max
k≤n

∣∣∣∣ k∑
j=1

Xnj

∣∣∣∣ ≥ ε
)
≤ cε−r

n∑
k=1

ank

then there exists c > 0 such that for any n ≥ 1 any sequence (βnk, 1 ≤ k ≤ n)
such that 0 < βn1 ≤ · · · ≤ βnn and any ε > 0 we have

P
(

max
k≤n

β−1
nk

∣∣∣∣ k∑
j=1

Xnj

∣∣∣∣ ≥ ε
)
≤ cε−r

n∑
k=1

β−rnk ank.

Proof. The proof for the sequences and not triangular arrays is given in Tómács
and Libor [2006]. We shall use the same idea of the proof. Fix ε > 0 and n ≥ 0.
Without loss of generality assume that βn1 = 1. Let

Ai =
{
m : 1 ≤ m ≤ n and 2i < βrnm < 2i+1

}
, i = 0, 1, 2, . . .
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Parameters α = 17/32 α = 20/32 α = 26/32
`∗/n = 0.035 0.831 0.590 0.055
`∗/n = 0.050 0.930 0.615 0.055
`∗/n = 0.065 0.966 0.548 0.051

k∗/n = 0.2 0.956 0.627 0.052
k∗/n = 0.4 0.930 0.615 0.055
k∗/n = 0.8 0.945 0.628 0.051

an = 0.8 0.726 0.354 0.051
an = 1 0.930 0.615 0.055
an = 1.2 0.991 0.827 0.059

n = 500 0.750 0.634 0.058
n = 1000 0.930 0.615 0.055
n = 2000 0.999 0.788 0.052

γn = n/ ln(n) 0.910 0.528 0.055
γn = ln2.5(n) 0.883 0.488 0.055
γn = n3/4 0.930 0.615 0.055

Table 6.11: Empirical power at the size-adjusted significance level 0.05 for the
second type model with regular varying innovations and α > αp.

and
I = max {i : Ai 6= ∅} .

Further denote

mi =

 maxAi if Ai 6= ∅
mi−1 if Ai = ∅

i = 0, 1, 2, . . . , m−1 = 0.

Then we have

P

max
k≤n

β−1
nk

∣∣∣∣∣∣
k∑
j=1

Xnj

∣∣∣∣∣∣ ≥ ε

 ≤ I∑
i=0

P

max
k∈Ai

∣∣∣∣∣∣
k∑
j=1

Xnj

∣∣∣∣∣∣ ≥ ε2i/r


≤
I∑
i=0

P

max
k≤mi

∣∣∣∣∣∣
k∑
j=1

Xnj

∣∣∣∣∣∣ ≥ ε2i/r
 ≤ I∑

i=0
cε−r2−i

mi∑
k=1

ank

≤ 2cε−r
I∑

k=0
2−k

∑
j∈Ak

anj ≤ 2cε−r
I∑

k=0

∑
j∈Ak

anj2β−rnk

= 4cε−r
n∑
k=1

ankβ
−r
nk .

115



TESTING THE EPIDEMIC CHANGE II

Parameters α = 2/32 α = 6/32 α = 10/32
`∗/n = 0.035 0.094 0.226 0.792
`∗/n = 0.050 0.173 0.630 0.959
`∗/n = 0.100 0.368 0.912 0.994

k∗/n = 0.2 0.152 0.620 0.966
k∗/n = 0.4 0.173 0.630 0.959
k∗/n = 0.8 0.141 0.627 0.963

an = 0.8 0.154 0.389 0.805
an = 1 0.173 0.630 0.959
an = 1.2 0.172 0.854 0.997

n = 500 0.039 0.124 0.509
n = 1000 0.173 0.630 0.959
n = 2000 0.706 0.997 1.000

γn = n/ ln(n) 0.085 0.555 0.944
γn = ln2.5(n) 0.057 0.445 0.949
γn = n3/4 0.173 0.630 0.95

Table 6.12: Empirical power at the size-adjusted significance level 0.05 for the
second type model with regular varying innovations and α < αp.

So the theorem is proved.

Proof of Proposition 6.1.4. The proofs of both parts of this proposition are essen-
tially the same, so we shall give a unified proof noting the differences in cases (a)
and (b) where it is necessary. Since

n∑
j=1

ε̂j =
n∑
j=1

εj + (φn − φ̂n)
n∑
j=1

yj−1

and
k+∑̀

j=k+1
yj−1 = 1

1− φn

[ k+∑̀
j=k+1

εj + yk − yk+`

]
,

we have ∣∣∣∣Tα,n(ε̂1, . . . , ε̂n)− Tα,n(ε1, . . . , εn)
∣∣∣∣ ≤ |φ̂n − φn|1− φn

∆n,

where

∆n = max
1≤`<n

`−α max
1≤k≤n−`

∣∣∣∣ k+∑̀
j=k+1

εj − (yk+` − yk)−
`

n

n∑
j=1

εj + `

n
yn

∣∣∣∣
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Since |φ̂n − φn|/(1 − φn) = OP (1) in case (a) (by Phillips Phillips [1987]) and
nγ−1/2

n |φ̂n−φn| = OP (1) in case (b) (by Giraitis and Phillips Giraitis and Phillips
[2006]) the proofs reduces to

b−1
n ∆n = oP (1) in case (a), (6.39)

b−1
n γ−1/2

n ∆n = oP (1) in case (b). (6.40)

Writing

yk+` − yk =
k+∑̀

j=k+1
φk+`−j
n εj +

k∑
j=1

[φk+`−j
n − φk−jn ]εj

we have ∆n ≤ ∆′n + ∆′′n + ∆′′′n , where

∆′n = max
1≤`<n

`−α max
1≤k≤n−`

∣∣∣∣ k+∑̀
j=k+1

[1− φk+`−j
n ]εj

∣∣∣∣,
∆′′n = max

1≤`<n
`−α max

1≤k≤n−`

∣∣∣∣ k∑
j=1

[φk−jn − φk+`−j
n ]εj

∣∣∣∣,
∆′′′n = max

1≤`<n
`−α

`

n

∣∣∣∣ n∑
j=1

[1− φn−jn ]εj
∣∣∣∣.

1. Estimate for ∆′′′n . First we note that

∆′′′n = n−α

∣∣∣∣∣∣
n∑
j=1

(1− φn−jn )εj

∣∣∣∣∣∣ .
Since E(∑n

j=1(1 − φn−jn )εj)2 = O(n), then ∆′′′n = O(n1/2−α). As by assumption
1/2−α < 1/p and as bn = n1/pv(n) with v slowly varying function, this gives that
∆′′′n = oP (bn) in both cases.

2. Estimate for ∆′′n. Next consider ∆′′n and note that

∆′′n ≤ max
1≤`<n

`−α(1− φ`n) max
1≤k≤n−`

∣∣∣∣∣∣
k∑
j=1

φk−jn εj

∣∣∣∣∣∣ .
(a) Using the convexity inequality 1− e−z ≤ z for z ≥ 0 gives

∆′′n ≤ max
1≤`<n

`−α
|γ| `
n

max
1≤k≤n

∣∣∣∣ k∑
j=1

φk−jn εj

∣∣∣∣ ≤ |γ|n−α max
1≤k≤n

∣∣∣∣ k∑
j=1

φk−jn εj

∣∣∣∣.
(b) Using the convexity inequality 1 − (1 − x)y ≤ xy for 0 < x ≤ 1 and y ≥ 1,
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gives

∆′′n ≤ max
1≤`<n

`−α
γn`

n
max

1≤k≤n

∣∣∣∣ k∑
j=1

φk−jn εj

∣∣∣∣ ≤ γnn
−α max

1≤k≤n

∣∣∣∣ k∑
j=1

φk−jn εj

∣∣∣∣.
Now we shall use Hájek-Rényi inequality (Lemma 6.4.1). Since

P

max
1≤k≤n

∣∣∣∣∣∣
k∑
j=1

φ−jn εj

∣∣∣∣∣∣ > ε

 ≤ n∑
k=1

P
(∣∣∣φ−kn εk

∣∣∣ > ε
)
≤ ε−2

n∑
k=1

φ−2k
n σ2,

we have for any δ > 0

(a)

P(∆′′n > δbn) ≤ P( max
1≤k≤n

φkn

∣∣∣∣∣∣
k∑
j=1

φ−jn εj

∣∣∣∣∣∣ > δbnn
α)

≤ δ−2n−2αb−2
n σ2

n∑
j=1

φ2j
n φ
−2j
n = δ−2b−2

n σ2n1−2α → 0

as n → ∞ since bn = n1/pv(n) with slowly varying function v and α >

1/2− 1/p.

(b)

P(∆′′n > δbnγ
1/2
n ) ≤ P( max

1≤k≤n
φkn

∣∣∣∣∣∣
k∑
j=1

φ−jn εj

∣∣∣∣∣∣ > δbnn
αγ−1/2

n )

≤ δ−2n−2αb−2
n γnσ

2
n∑
j=1

φ2j
n φ
−2j
n = δ−2γnb

−2
n σ2n1−2α → 0,

as n→∞ by the same argumentation as in case (a) provided that

lim
n→∞

γ1/2
n n(αp−α)v(n)−1 = 0. (6.41)

This part (6.18) ⇒ (6.41) is correct, but I suggest to replace it by the
following sentence. From (6.18), γ1/2

n n(αp−α) = O(n(q/2−1)(α−αp)) and as q/2−
1 < 0 and v(n) is slowly varying, (6.41) is satisfied.

3. Estimate for ∆′n. Finally it remains to prove

∆′n = oP (bn) in case (a), (6.42)

∆′n = oP (γ1/2
n bn) in case (b). (6.43)

For simplicity now we shall write cn noting that either cn = bn or cn = bnγ
1/2
n .
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First we decompose P(∆′n > 2δcn) ≤ P1n + P2n, where

P1n = P
(

max
1≤`<n

`−α(1− φ`n) max
1≤k≤n−`

∣∣∣∣ k+∑̀
j=k+1

εj

∣∣∣∣ > δcn)

P2n = P
(

max
1≤`<n

`−αφ`n max
1≤k≤n−`

∣∣∣∣ ∑̀
j=1

(1− φ−jn )εk+j

∣∣∣∣ > δcn).

We have for the first probability, using Doob inequality

(a)

P1n ≤ P
(

max
`

max
k

∣∣∣∣ k+∑̀
j=k+1

εj

∣∣∣∣ > δbnn
α
)
≤ P(2 max

1≤k≤n

∣∣∣∣ k∑
j=1

εj

∣∣∣∣ > δbnn
α)

≤ 4δ−2b−2
n n−2αE max

1≤k≤n

∣∣∣∣ k∑
j=1

εj

∣∣∣∣2 ≤ 4δ−2σ2n1−2αb−2
n

∼ n1−2/p−2αv(n)−2 → 0

as n→∞, since α > 1/2− 1/p.

(b)

P1n ≤ P
(

max
`

max
k

∣∣∣∣ k+∑̀
j=k+1

εj

∣∣∣∣ > δγ−1/2
n bnn

α
)

≤ P(2 max
1≤k≤n

∣∣∣∣ k∑
j=1

εj

∣∣∣∣ > δγ−1/2
n bnn

α)

≤ 4δ−2b−2
n n−2αγnE max

1≤k≤n

∣∣∣∣ k∑
j=1

εj

∣∣∣∣2
≤ 4δ−2σ2n1−2αγnb

−2
n

∼ γnn
1−2/p−2αv(n)−2 → 0

as n→∞, since α > 1/2− 1/p and limn→∞ γ
1/2
n n−α+(1/2−1/p)v(n)−1 = 0.

To estimate P2n we define truncated random variables:

ε′j = εj1{|εj| ≥ hbn}, ε′′j = εj1{|εj| ≤ hbn} − Eεj1{|εj| ≤ hbn},

for j ≥ 1, where h > 0 is subject to a choice. Then P2n(δ) ≤ P ′2n + P ′′2n(δ), where

P ′2n = P
(

max
1≤j≤n

|ε′j| > hbn

)
,

P ′′2n = P
(

max
`
`−αφ`n max

k

∣∣∣∣ ∑̀
j=1

(1− φ−jn )εk+j1{|εk+j| ≤ hbn}
∣∣∣∣ > δcn

)
.
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Since
Eεk+j1{|εk+j| ≤ hbn} = Eεk+j1{|εk+j| ≥ hbn},

we have

max
`
`−αφ`n max

k

∣∣∣∣ ∑̀
j=1

(1− φ−jn )E|εk+j1{|εk+j| ≥ hbn}| ≤ cn1−αE|ε1|1{|ε1| ≥ hbn}.

By Karamata (see Bingham et al. [1987]) E|ε1|1{|ε1| ≥ hbn} ∼ cn−1bnh
1−p. So

we can center random variables in probability P ′′2n and estimate for large n

P ′′2n ≤ P
(

max
1≤`≤n

`−αφ`n max
k

∣∣∣∣ ∑̀
j=1

(1− φ−jn )ε′′k+j

∣∣∣∣ > δ

2cn
)
.

By stationarity

P ′′2n ≤ nP
(

max
1≤`≤n

`−αφ`n

∣∣∣∣ ∑̀
j=1

(1− φ−jn )ε′′j
∣∣∣∣ > δ

2cn
)
.

Fix r > (α − αp)−1 in case (a) and r > ((1− q/2)(α− αp))−1, 0 < q < 2 in case
(b). Using successively Markov’s, Doob’s and Rosenthal’s inequalities, we obtain
for each a > 0 we have

P
(

max
`

∣∣∣∣ ∑̀
j=1

(1−φ−jn )ε′′j
∣∣∣∣ > a

)
≤ ca−r

[( n∑
j=1

(1−φ−jn )2E(ε′′1)2
)r/2

+
n∑
j=1
|1−φ−jn |rE|ε′′1|r

]

with a constant c > 0 depending on r only. By Karamata E|ε′′1|r ∼ brnn
−1hr−p.

Hence, there is a constant c > 0 such that

P
(

max
`

∣∣∣ ∑̀
j=1

(1− φ−jn )ε′′j
∣∣∣ > a

)
≤ ca−r

[( n∑
j=1

(1− φ−jn )2E(ε′′1)2
)r/2

+
n∑
j=1
|1− φ−jn |rE|ε′′1|r

]

≤ ca−r
n∑
j=1

τnj ,

where τnj = σrnr/2−1(φ−jn − 1)r + (φ−jn − 1)rbrnn−1hr−p. By Lemma 6.4.1, noting
that the finite sequence (`αφ−`n )1≤`≤n is non decreasing, we obtain

P
(

max
`
`−αφ`n

∣∣∣∣ ∑̀
j=1

(1− φ−jn )ε′′j
∣∣∣∣ > a

)
≤ ca−r

n∑
j=1

φrjn j
−rατnj.

Finally we deduce

P ′′2n ≤ c2rδ−rnb−rn
(
σrnr/2−1 + n−1brnh

r−p
) n∑
j=1

j−rα(1− φjn)r
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(a) Using again convexity inequality 1− e−z ≤ z, we note that
n∑
j=1

j−rα(1− φjn)r ≤
n∑
j=1

j−rα
(−γj

n

)r
= |γ|

r

nr

n∑
j=1

jr(1−α) = OP (n1−rα).

This leads to

P ′′2n ≤ C
(
v(n)−rn1−rα+r/2−r/p + n1−rα

)
,

where C = C(δ, r, α, γ, σ, h, p) is a positive constant. Now the choice done
for r verifies 1− rα+ r/2− r/p < 0, which implies also 1− rα < 0, so finally

lim
n→∞

P ′′2n = 0.

(b) Using the convexity inequality 1 − (1 − x)y ≤ xy, for 0 < x ≤ 1 and y ≥ 1,
we note that

n∑
j=1

j−rα(1− φjn)r ≤
n∑
j=1

j−rα
(
γnj

n

)r
= γrn
nr

n∑
j=1

jr(1−α) = OP (γrnn1−rα).

This leads to

P ′′2n ≤ C
(
v(n)−rγr/2

n n1−rα+r/2−r/p + n1−rα
)
,

where C = C(δ, r, α, σ, h, p) is a positive constant. Now we find that the
condition to have

lim
n→∞

P ′′2n = 0

is the existence of some r > p such that

lim
n→∞

v(n)−1γ1/2
n n1/r+αp−α = 0. (6.44)

This follows from our assumption (6.18), since we have for some constant
K:

v(n)−1γ1/2
n n1/r+αp−α ≤ Kv(n)−1n1/r+(q/2−1)(α−αp).

then this upper bound tends to 0 for any r > 0 such that

1
r
<
(

1− q

2

)
(α− αp).

Finally, since (Gnedenko [1943], see, for example, Embrechts et al. [1997],
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Theorem 3.3.7, for a more recent reference)

lim
n→∞

P( max
1≤j≤n

|εj| ≥ hbn) = 1− e−h−p

the probability P ′1n can be made arbitrary small by choosing big h. So (6.42) and
(6.43) as well as (6.39) and (6.40) are proved.

Remark 6.4.2. There is no loss in the proof when we deduce (6.44) from (6.18)
since the converse implication is true. Indeed assume that (6.44) holds true for
some r. Then we can rewrite it as

(v(n)−1n1/(2r))γ1/2
n n1/(2r)−(α−αp) −−−→

n→∞
0.

As v(n) is slowly varying and r positive, v(n)−1n1/(2r) tends to infinity, then
necessarily γ1/2

n n1/(2r)−(α−αp) tends to zero and in particular is bounded. So for
some positive constant K:

γn ≤ Kn−1/r+2(α−αp).

Now we define q by
−1
r

+ 2(α− αp) = q(α− αp),

as γn tends to infinity, necessarily −1/r + 2(α − αp) is positive. Then q ∈ (0, 2)
and we get (6.18).

Further we state proofs of two lemmas that are the main tools to prove the
Lemma 6.2.4.

Proof of Lemma 6.2.5. For the first type model by Phillips it hold

n−1/2σ−1z[nt]
D[0,1]−−−−→
n→∞

Uγ(t) (6.45)

with the supremum norm ‖·‖∞. The map

Ψ : (D[0, 1], ‖·‖∞) 7→ R2 : f 7→
(∫ 1

0
f 2(t) dt,

∫ λ

0
f 2(t) dt

)

is continuous. Obviously ∫ 1

0
z2
n,[nt] dt = 1

n

n∑
k=1

z2
n,k−1. (6.46)
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Since

f 7−→
∫ 1

0 f
2(t) dt∫ λ

0 f
2(t) dt

is continuous on {
f ∈ D[0, 1];

∫ λ

0
f 2(t) dt 6= 0

}

and according to (6.45) the limiting process is Gaussian (Ornstein-Uhlenbeck), so

P
(∫ λ

0
U2
γ (t) dt = 0

)
= 0,

thus ∫ 1
0 (n−1/2σ−1zn,[nt])2 dt∫ λ
0 (n−1/2σ−1zn,[nt])2 dt

R−−−→
n→∞

∫ 1
0 U

2
γ (t) dt∫ λ

0 U
2
γ (t) dt

= OP (1).

For the second type model we have the following weak law of large numbers

1− φ2
n

n

n∑
k=1

z2
n,k−1

P−−−→
n→∞

σ2. (6.47)

Seeing that
∑n
k=1 z

2
n,k−1∑[nλ]

k=1 z
2
n,k−1

=
1−φ2

n

n

∑n
k=1 z

2
n,k−1

1−φ2
[nλ]

[nλ]
∑[nλ]
k=1 z

2
n,k−1

·
1− φ2

[nλ]

1− φ2
n

· n

[nλ]

we obtain
1−φ2

n

n

∑n
k=1 z

2
n,k−1

1−φ2
[nλ]

[nλ]
∑[nλ]
k=1 z

2
n,k−1

P−−−→
n→∞

1

and
n

[nλ] ∼
1
λ
.

Further assuming that γn is increasing in n we have γ[nλ]/γn ≤ 1

1− φ2
[nλ]

1− φ2
n

∼ c
n

[nλ]
γ[nλ]

γn
≤ c

λ
.

If γn is regular varying then

lim
n→∞

γ[nλ]

γn
= c(λ)
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so
1− φ2

[nλ]

1− φ2
n

remains bounded.

Remark 6.4.3. We explain, why we need to put here an additional assumption
on γn (increasing or regular varying). Let us define the sequence

γn =

 n0.1 if n is even,
n0.9 if n is odd.

Then let us define the subsequence nk = (4k + 2), k = 0, 1, 2, . . .. As all nk are
even, we obtain γnk = n0.1

k = (4k + 2)0.1. Now we take λ = 1/2, then [nkλ] are
odd

[nkλ] = [nk/2] = 2k + 1

and so γ[nkλ] = (nk/2)0.9 = (2k + 1)0.9. So we get

γ[nkλ]

γnk
= (2k + 1)0.9

(4k + 2)0.1 = (1/2)0.9 (4k + 2)0.9

(4k + 2)0.1 →∞ as k →∞.

The latter result implies that
1− φ2

[nλ]

1− φ2
n

is not bounded in such case.

Proof of Lemma 6.2.6. Let us consider first type model. Then equation (6.46)
gives us

1∑[nλ]
k=1 z

2
n,k−1

= 1
n
∫ λ

0 (n−1/2σ−1zn,[nt])2 dt
(n−1/2σ−1)2 ≤ (1− φn)OP (1)

n

by the same argumentation as in Lemma 6.2.5 and equivalence 1− φn ∼ −γ/n.

For the second type model applying the weak law of large numbers (6.47) we
imediatelly obtain the inequality

1∑[nλ]
k=1 z

2
n,k−1

≤ (1− φn)OP (1)
n

.
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Conclusions

First order nearly nonstationary autoregressive processes yn,k = φnyn,k−1 + εk

are considered with coefficient φn defined in two ways:
– φn = eγ/n, γ < 0;
– φn = 1− γn/n, γn →→∞, γn/n→ 0, as n→∞.

Polygonal line processes Spl
n build on observations yn,k and Ŵ pl

n build on process
residuals ε̂k are studied. The functional limit theorems for Spl

n in the spaces C[0, 1]
and Ho

α[0, 1], α ∈ (0, 1/2) are proved. It is shown that the limiting distribution
differs for the both type models. Properly normalized Spl

n converge to integrated
Ornstein-Uhlenbeck process in the first type model whereas to Wiener process in
the second type model. Functional limit theorems for Ŵ pl

n in Ho
α[0, 1] are proved.

For the first type model it is shown that integrability condition limt→∞ t
pP(|ε0| >

t) = 0 is necessary and sufficient for the convergence in distribution of Ŵ pl
n in

the Ho
α[0, 1] space. For the second type model, the convergence in distribution to

Wiener process in Ho
α[0, 1] is derived.

Further epidemic change detection in mean of innovations is investigated. The
model

yn,k = φnyn,k−1 + εk + an,k, n ≥ 0, k ≤ n

is concerned. Uniform increments statistics is build on observations yn,1, . . . , yn,n
and residuals ε̂1, . . . , ε̂n. Under some assumptions on residuals we find the limit
of both statistics. Consistency conditions for statistics T̃α,n = Tα,n(yn,1, . . . , yn,n)
and T̂α,n = Tα,n(ε̂1, . . . , ε̂n) are found and test power analysis is performed. Both
statistics are worth of further investigation. Table 6.13 shows size-adjusted test
power for statistics T̃α,n and T̂α,n, where innovations satisfies integrability condi-
tion limt→∞ t

pP(|ε0| > t) = 0. The result shows that with different parameters
for the second type model, different statistics give different results. In this exam-
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an = 1, `∗ = 30, k∗ = 400, n = 1000, γ = −2, γn = n0.45

α1 = 0.0625 α2 = 0.1875 α3 = 0.39 (I model);
α3 = 0.31 (II model)

T̃α,n
I model 0.318 0.327 0.306
II model 0.276 0.330 0.429

T̂α,n
I model 0.335 0.526 0.914
II model 0.061 0.452 0.836
an = 1, `∗ = 30, k∗ = 400, n = 1000, γ = −20, γn = n0.8

T̃α,n
I model 0.280 0.322 0.467
II model 0.314 0.505 0.796

T̂α,n
I model 0.088 0.502 0.913
II model 0.073 0.213 0.682

Table 6.13: Comparing statistics T̃α,n and T̂α,n

ple, statistics T̂α,n with γn = n0.45 detects epidemics better, while with γn = n0.8

statistics T̃α,n performs better. Further note, that with the chosen parameters
statistics T̂α,n for the first type model works better in both cases, but consistency
of this case is still an open question.
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