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Notation and abbreviations

Notations Descriptions
iid. Independent identically distributed.
LSE Least squares estimator.
MLE Maximum likelihood estimate.
NNS Nearly nonstationary.
CDF Cumulative distribution function.
AR(d) Autoregressive process of order d.
Yn ke The first order nearly nonstationary process (Y, x, k < n,n > 1).
€k i.i.d.random variables, innovations of nearly nonstationary pro-
cess.
ggn The least squares estimate in first order nearly nonstationary pro-
cess.
€k The estimated residuals from first order nearly nonstationary pro-
cess.
R The real numbers set.
N The natural numbers set.
DI0, 1] Skorohod (CADLAG functions) space on [0, 1].
C[0, 1] Continuous functions space on [0, 1].
Cto, 1] Space of fonctions on [0, 1] with continuous derivative.
HeJ0, 1] Separable Holder space with index « on [0, 1].
% Convergence in distribution in R.
% convergence in distribution in a metric space F.
n_}%> Convergence in probability.
D

Equality in distribution.

Continued on Next Page...



NOTATION AND ABBREVIATIONS

Table 0.1 — Continued

Notations Descriptions
w A standard Wiener process (W (t),t € [0, 1]).
U, An Ornstein-Uhlenbeck process (U, (t),t € [0, 1]).
N(u,o?) Gaussian distribution with mean p and variance o
el The polygonal line process (WP(t),t € [0,1]) build on i.i.d. ran-
dom variables.
Spl The polygonal line process (SP!(t),¢ € [0,1]) build on y, ;’s.
wp! The polygonal line process (WP\(t), ¢ € [0,1]) build on residuals.
I fll o Uniform norm of function f in the Skorohod and continuous func-
tions space.
£l Norm of the function f in the Holder space HC.
log(n) Natural logarithm.
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Asymptotic results on nearly nonstationary processes

Abstract

We study some Holderian functional central limit theorems for the polygonal
partial sum processes built on a first order nearly nonstationary autoregressive
Process Yn k = OnYnk—1 + € and its least squares residuals &, with ¢,, converging
to 1 and i.i.d. centered square-integrable innovations. In the case where ¢,, = ¢?/
with a negative constant v, we prove that the limiting process depends on Ornstein
— Uhlenbeck one. In the case where ¢, = 1 — 7, /n, with v, tending to infinity
slower than n, the convergence to Brownian motion is established in Holder space
in terms of the rate of v, and the integrability of the ¢;’s.

We also investigate some epidemic change in the innovations of the first order
nearly nonstationary autoregressive process AR(1). Two types of models are con-
sidered. For 0 < a < 1, we build the a-Hoélderian uniform increments statistics
based on the observations and on the least squares residuals to detect the short
epidemic change in the process under consideration. Under the assumptions for
innovations we find the limit of the statistics under null hypothesis, some condi-
tions of consistency and we perform a test power analysis. We also discuss the

interplay between the various parameters to detect the shortest epidemics.
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Résultats asymptotiques sur des processus quasi non
stationnaires

Résumé

Nous étudions certains théoremes limite centraux fonctionnels hélderiens pour
des processus autorégressifs d’ordre un quasi non stationnaires y, x = Gn¥n k-1 +<k
et leurs résidus au sens des moindres carrés avec ¢, — 1 et des innovations i.i.d.
centrées, de carré intégrable. Dans le cas ¢, = €™ avec v < 0, la limite en
loi est une fonction d'un processus d’Ornstein-Uhlenbeck intégré. Dans le cas
¢n = 1 — v,/n avec v, — 00, v,/n — 0, la convergence vers le mouvement
brownien est établie dans ’espace de Holder en termes de vitesse de divergence
v, et d’intégrabilité des innovations g.

Nous considérons également une rupture épidémique dans les innovations de
pro- cessus autorégressifs d’ordre un quasi non stationnaires AR(1). Deux types
de modeles sont considérés. Pour 0 < a < 1 nous construisons une statistique a-
holderienne basée sur les accroissements uniformes des observations ou des résidus
pour détecter une courte rupture épidémique dans les processus considérés. Sous
certaines hypotheses pour les innovations, nous trouvons la loi limite de la statis-
tique sous I'hypothese nulle, les conditions de consistance et nous effectuons une
analyse de la puissance du test statistique. Nous discutons également l'interaction

entre les différents parametres pour la détectabilité des plus courtes épidémies.

viil



Beveik nestacionariy procesy asimptotiniai rezultatai

Santrauka

Disertacijoje nagrinéjami daliniy sumy lauzc¢iy procesai sudaryti is pirmos eilés
beveik nestacionaraus proceso Y, = PnUnk—1 + € bei jo maziausiy kvadraty
liekany &, kai ¢, — 1 ir inovacijos yra nepriklausomi, vienodai pasiskirste ir
bent kvadratu integruojami atsitiktiniai dydziai su nuliniu vidurkiu. Jrodomos
funkcinés ribinés teoremos Siems lauzcéiy procesams Hiolderio erdvéje. Kai ¢, =
e?/™ 4 < 0, jrodoma, kad ribinis procesas priklauso nuo Ornsteino-Uhlenbecko
proceso. Kitu atveju, kai ¢, = 1 — ~,,/n ir 7, artéja i begalybe léciau nei n,
irodomas konvergavimas j Brauno judesj Hiolderio erdvéje, atsizvelgiant j v, di-
vergavimo greitj bei inovacijy integruojamuma.

Toliau nagrinéjamas epideminio pasikeitimo modelis beveik nestacionaraus
pirmos eilés autoregresinio proceso inovacijoms. Nagrin¢jami du modeliai. IS
stebéjimy bei liekany konstruojama tolydziyjy prieaugiy a-Hiolderio statistika,
kai 0 < a < 1. Remiantis prielaidomis inovacijoms, randama statistikos ribinis
procesas prie nulinés hipotezés, suderinamumo salygos, atlieckama galios analizeé.
Taip pat aptariamas parametry sarysis siekiant aptikti kuo trumpesnj epideminj

pasikeitima.

ix



Introduction

Research topic. The thesis is devoted to an asymptotic analysis of the
first order nearly nonstationary autoregressive processes. We consider a sample

Ynd,-- - Ynn, Where vy, is generated by first order nearly nonstationary process
Ynk = gbnyn,k—l + €, k < n, n > 17

¢n — 1 as n — oo, innovations (e, k = 0,...n) are centered, at least square

integrable random variables.

We investigate functional limit theorems for the process (y,x) in the space
of continuous function and in the Holder spaces. Also, we prove the Holderian
functional limit theorems for least square residuals (£, k = 0,...n) of the process
under investigation. We use the two type of parameterizations of the coefficient ¢,,:
the first is ¢,, = €?/™ and the second one ¢,, = 1—+,,/n with v,, — oo and v, /n — 0
as n — 0o. These two parameterizations give different limiting distribution in the
functional limit theorems. The limit in case one is a functional of an integrated
Ornstein-Uhlenbeck process, while in case two the limit is functional depending

on the Wiener process.

In this thesis we apply functional limit theorems to the epidemic change de-

tection in the mean of innovations, i.e., we discuss the model
Ynk = On¥Ynp—1 + €k +ang, k<n, n>1,
where

Qp k. = anl]m (]C)
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Figure 0.2: Trajectory of the innovations and the NNS AR(1) residuals with and
without the epidemic change. Blue vertical lines denote the beginning and the
end of the epidemic change.

Here 1;: (k) is the indicator function of the index set
={k+1,...,m"}

that denotes the epidemic change with the unknown beginning £* and end m™.

Such epidemic change is reflected in trajectories of y,, ;. and & (see figures 0.2
and 0.3). Thus we deal with uniform increments statistics build both on v, x’s

and &;’s. This leads to different results.

For the test statistics under investigation, we find the limit of the statistics
under the null hypothesis of no change. Also we investigate the consistency of
statistics, power analysis and we discuss the interplay between various parameters

to detect the shorter epidemics.

Actuality. Nearly nonstationary autoregressive processes are important in
statistics and particularly in econometrics. One important feature of such pro-
cesses is their behaviour in the neighbourhood of an unit root. This question have

been investigated by a number of authors: P.C.B. Phillips, L. Giraitis, N.H. Chan,
2
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Figure 0.3: Trajectory of the NNS AR(1) with and without the epidemic change.
Blue vertical lines denote the beginning and the end of the epidemic change.

etc. For more references and details, see section "State of the art".

Aim and tasks. The aim of the thesis is to prove the functional limit theorems
for the nearly nonstationary processes and to apply them to the epidemic change
detection in the mean of innovations. The tasks of the thesis are:

— to analyse the functional convergence of polygonal line processes build on

the vy, 1’s and residuals &j;

— to build and study test statistics for the epidemic change detection;

— to make numerical experiments for the epidemic change detection.

Novelty. In the thesis we prove various the Holderian functional central limit
theorems for the first order nearly nonstationary autoregressive processes. New
results on the epidemic change detection by Holderian type statistics in nearly

nonstationary first order autoregressive process are established.

Main results. Functional limit theorems for the first order nearly nonstation-
ary autoregressive process in continuous function and Hélder spaces are proved
(theorems 4.1.3, 4.1.8, 4.1.9); Holderian functional limit theorems for residuals are

given (theorems 4.2.2, 4.2.8); Levin and Kline type statistics build on y,’s for
3
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epidemic detection under null hypothesis of no change is investigated (theorems
5.1.1, 5.1.2); Holderian type statistics is studied (theorems 5.1.3, 5.1.4); consis-
tency of Levin and Kline and Hoélderian type statistics is given (theorem 5.2.1);
Holderian type statistics build on residuals for epidemic detection under null hy-
pothesis of no change is investigated (theorems 6.1.1, 6.1.2); consistency of such
type statistics in special case is considered (theorem 6.2.1).

Methods. Methods and results of probability theory, statistics and functional
analysis are used. Numerical experiments are performed with a free software

environment for statistical computing and graphics R.
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Structure of the thesis. The chapter 2 of the thesis is devoted to the state
of the art. We give some necessary background and tools in the chapter 3. Func-
tional limit theorems and some supplementary results are proved in the chapter 4.
Chapter 5 contains the analysis of the epidemic change with the statistics build
on the process y, . We investigate the statistics build on residuals in the chapter

6. Finally we give conclusions and the list of bibliography.



State of the Art

In this chapter we give the definition of the first order autoregressive process.
We review the main results related with these processes and we motivate the
choice to investigate first order nearly nonstationary autoregressive process. Also

we give some information on the change point and epidemic change problems.

2.1 First order autoregressive process

The first order autoregressive process AR(1) is a very important process in
applications of statistics and economics. The autoregressive model is a time series
model and it is one of linear prediction formulas that predicts an output based on

the previous outputs. The AR(1) equation is a standard linear difference equation
Y = OYp_1 + €, k=0,+1,+£2 £3, ... (2.1)

where () are innovations and give the variability in the time series. It is well
known (see for example Tsay [2002]) in the case |¢| < 1, the system (2.1) is said

to be stable, i.e., the effect of the changes in the past reduces as the time goes on.

6
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Besides, for |¢| < 1, the solution of (2.1) is a function of the error terms from the
past. For |[¢| > 1, the system (2.1) blows up. It means that the change in the past
has an increasing influence for the future. For the practical reasons it is natural
to have a system that is less affected by the past, thus the values of |¢| is typically
assumed to be less than one. Stationary autoregressive model has a mean reverting
property, i.e., the trajectory of the process moves towards the long-term mean.
When the coefficient ¢ is equal to 1 the process defined by (2.1) is nonstationary,
i.e., it has a unit root or 1 is a root of the process’s characteristic equation.
Nonstationary process fail to have mean reverting property. The trajectory of
such process moves up and down without the tendency of tending to the any

particular point.

In practice, the coefficient ¢ is unknown, so it has to be estimated. Usually

one uses the least squares estimator (LSE):

22:1 YrYr—1

= . (2.2)
> k=1 yl%—l

¢ =
Other possible estimation methods are Yule-Walker equations (method of mo-
ments) or maximum likelihood estimate. Note, that if (g4)’s are normally dis-
tributed, the least squares estimate ngS is also a maximum likelihood estimate of
¢. When |¢| < 1 it is well known (see, for example, Mann and Wald [1943] and

Anderson [1959]) that the standardized LSE is asymptotically normal:

n—00

n 1/2
-~ R
(Z yl%l) (¢ — &) —— N0, 1). (2.3)
k=1
It is worth to mention that with another normalization the latter result becomes:

V(g —¢) —— N0, 1-¢7).

However when ¢ = 1, the limit distribution of the properly standardized sequence
of the least-squares estimators is non-normal. It has been shown by White [1958],
see also Rao [1978], that

n 1/2 1 2

) ~ R (W31 —1)

-1 —1 > 73" 2.4
(zyk) (6-1) 2 oW (2.4)
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Putting another normalization, the following convergence is true:

- B Jo W()dW (1)
no-1) g JEwryde

Evans and Savin ([1981], [1984]) have found in extensive simulation experi-
ment that the statistical properties of the coefficient estimator and associated ¢
test in a stationary AR(1) with a root near unity are close to those of a ran-
dom walk. This is observed even in sample size of size 100. Similar results have
been found when the AR(1) is mildly explosive. Thus, according to Evans and
Savin ([1981], [1984]), (2.4) can be used to approximate the distribution of stan-
dardized estimate of ¢, when it is close to one. However, Chan and Wei [1987]
have observed that neither (2.3) nor (2.4) seems to be intuitive approximations
because of nonsmooth transition from normal distribution to the distribution of
(%(W2(1) - 1)) / ((fol W2(t) dt>1/2>. Also Ahtola and Tiao [1984] investigating

the score function with respect to the ¢, i.e.,
o <Z yl%l) (¢ — o),
k=1

have established that normal approximation of its distribution becomes poor in
finite samples when ¢ approaches unity and eventually fails even as an asymptotic
distribution when ¢ = 1. These results lead to an interest to investigate the so

called nearly nonstationary or nearly integrated processes.

2.2 Nearly nonstationary first order autoregres-

sive process

2.2.1 Definition and parameterization

The nearly nonstationary first order autoregressive process (y,, : k =0,1,. ..,

n;n =1,2,...) is generated by the triangular array scheme

Yn,k = ¢nyn,k—1 + Ek, (25)

where ¢, — 1, as n — 00, (&) is a sequence of innovations usually with Ee;, = 0
and finite variance 0. The initialization (y, 0,7 > 0) plays an important role and

will be precised later in discussion of every case.

8
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In all the literature related with the nearly nonstationary processes, the model
(2.5) is reparameterized in terms of closeness of ¢, to unity. Phillips [1987] uses
the parameterization ¢,, = €7/, where v is a constant. In fact, Phillips treated
parameter v as noncentrality parameter. When v = 0, the model has a unit
root. When v < 0 and n is fixed, then 0 < ¢, < 1 and obviously the model is
stationary. Similarly, when v > 0 and n is fixed, then ¢, > 1 and the model has
properties of the explosive one in finite data sample. When the ratio v/n is close
to zero and v < 0, the coefficient ¢,, is close to one and the model can be thought
of as having a root in the neighbourhood of unity. Similar parameterization, for
example, ¢, = 1 —v/n with v > 0 have been used by Chan and Wei [1987], Cox
and Llatas [1991], Park [2003], Dzhaparidze et al. [1994] etc.

The paper by Andrews and Guggenberger [2008] investigates the parameteri-
zation ¢,, = 1—,/n, where 7, — v € [0, 00). In this case the parameter ¢, is also
very near unit root in the sense that 1 — ¢, = O(n™!). Phillips and Magdalinos
[2007] have defined the parameter ¢, in the form ¢, = 1+ ~v/k,, v € R, which
represents moderate deviations from unity when (k) is a deterministic sequence
increasing to infinity at a rate slower than n, so that k, = o(n), as n — oo.

Putting 7 < 0 the model defined by (2.5) is considered as nearly nonstationary.
Moreover, Giraitis and Phillips [2006] investigate the first order AR model

without intercept when the autoregressive parameter ¢, deviates from unity by
more than O(n™!), i.e., n(1—¢,) — oco. Thus, for nearly nonstationary first order
autoregressive process one can parametrize ¢, = 1 — v, /n, where v, — oo and

Yn/n — 0, as n — oo and their results still applies.

2.2.2 Limit of the standardized LSE of ¢,

In the section 2.1 we have observed that the standardized LSE estimate has
a different limit in the stationary and nonstationary models and that there is
nonsmooth transition between them. Here we recall the main results of the limit
distributions of the standardized LSE estimate in the first order nearly nonsta-

tionary autoregressive model under various parametrizations.

Phillips [1987] have found the limit of the standardized LSE of the coefficient
¢n, which depends on the Wiener and Ornstein-Uhlenbeck processes, when the
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innovations are strong mixing:

R o hUmawe +5(1-2)
1o = 0n) s JLU2(t) dt ’

(2.6)

where v < 0 and ¢’ = lim,,_,oo E (nil (>, 5k)2). If innovations are i.i.d., the
latter result reduces to

~ R Jo U (1) dW (t)
on =) 2 T Rma

Chan and Wei [1987] have shown that the limiting distribution of (2’,;;1 yi,k&) 2
(6 — ) is L(7) (v > 0) which is a quotient of stochastic integrals of standard
Wiener process:
@+ tW () AW (t)

(Jo (1 + bt)=2W2(t) dt) 2

L(v)

where b = €7 — 1. They have assumed that initialization is y,, o = 0 and that inno-
vations are martingale difference sequence with respect to an increasing sequence
of o-fields. Later Chan [1988] under the same assumptions have established that

L(7) can be rewritten in terms of Ornstein-Uhlenbeck process:

p Jo U5(t) AW (?)
(U U2(t) )2

L(7)

So, essentially the result of Chan and Wei [1987] is the same as Phillips [1987].
Furthermore, Chan [1990] have investigated innovations in the domain of attrac-
tion of stable law with index a € [0,2]. He have found the following result for the
LSE of nearly nonstationary AR(1) model

- R Jo Xa(t) dUL(t)
= Jo X2(t)dt

where v is a real number. Here X, (t) satisfies the differential equation
dX,(t) = =y X, () dt + dU, (1),

where X, (0) = 0 and U, = (U,(t),t € [0,1]) is a Lévy process defined on the
Skorohod space DI0, 1].

To get more information on the properties like (2.6) one usually studies the

10
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rate of convergence. In Kubilius and Rackauskas [1996] the rate of convergence in
(2.6) is estimated with respect to Lévy-Prohorov metric 7. Further Rackauskas
[1996] investigate the convergence (2.6) with respect to a smooth functions topol-
ogy using an approach based on the convergence rate results in the central limit
theorem in Banach spaces.

Under the assumptions that (e;) are i.i.d., initialization yno = 332, ¢he_; and
¢n =1 —7/n, ¥ — 0, as n — oo, Andrews and Guggenberger [2008] derived
that

(270)720( — 60) 2 €,

n—oo

where C' is a Cauchy random variable. In fact, when ~, — 0, as n — oo the AR
parameter ¢,, is so close to the unity that the initial condition v, ¢ dominates the
behavior of v, for all & = 1,2,...,n. While changing the parameterization of
the coefficient these authors obtained different results. By defining ¢,, = 1—",,/n,
Yn — v € (0,00], as n — oo Andrews and Guggenberger [2008] have derived
— for v € (0, 00)
] e JLUzdw ()

o= ) R s

where the process U = (UX,t € [0,1]) is defined from a standard normal
random variable Z and an Ornstein-Uhlenbeck process U, = (U,(t),t €
[0, 1]) by:

U*(t) = U, (t) + (2y) Y2 Z. (2.7)

~

— for vy =00
(1= @2) 2! (6 — 6n) —— N(0,1).

The latter result provides for the coefficient that deviates from unity more than
O(n~1) the usual Gaussian limit theory still applies. In fact, this result is obtained
due to the results of Giraitis and Phillips [2006] where the authors have assumed
that () are stationary and ergodic martingale difference sequence with respect
to the natural filtration, initialization satisfies Ey2 = o(n'/?) and n(1 — ¢,) — oo
holds. Note that the convergence rate in this case depends on how close ¢, is to

unity.

11
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Similar cases have been investigated by Chan and Zhang [2009]. Authors as-
sume that the innovations are heavy tailed and have infinite variance. In particu-
lar, they show that when lim,, ., n(1—¢,) = 7, where  is a constant, then under
some regularity conditions the limit distribution of the least squares estimator of

¢n is a functional of fractional Ornstein-Uhlenbeck stable processes.

Investigating the coefficient defined by ¢, = 1+ v/k,, 7 < 0, in the nearly
nonstationary case Phillips and Magdalinos [2007] obtain

k(b — dn) —— MN(0, —27). (2.8)

n—o0

In this case the authors assume that innovations are centered i.i.d. random vari-
ables with finite variance and the process (y,) is initialized at some y,o =
op(vky). Phillips and Magdalinos [2007] note that, putting k, = n¢ yields a
convergence rate n'/2t¢/2 for the serial correlation coefficient (q@n — ¢p), which for
o € (0,1) covers the interval (n'/2,n) providing a link between the /n and n
asymptotics of stationary and nearly nonstationary autoregressions. Though the
parametrization ¢, = 1+ v/n? is very intuitive, the (2.8) result is more general.
It allows arbitrarily large neighborhoods of unity, with ¢, approaching 1 slower

than any polynomial rate, such as k, = log(n).

To sum up, the limit distribution of properly standardized LSE depend on
the parametrization of the model. In particular, it depends on how close the
coefficient ¢, is to 1. If the coefficient is further removed from the unity (for
example n(1—¢,) — oo, as n — 00) the standard Gaussian limit theory still holds,
while for the coefficients "very" close to the 1 (like liminf, . n(1 — ¢,) > 0) the
limit distribution is the one of a functional depending on the Ornstein-Uhlenbeck
process.

Dzhaparidze et al. [1994] also consider the parameter estimation problem in
the nearly nonstationary first order autoregression. They describe the sequential

procedure for estimating the parameter . For fixed t € [0, 1], the estimator for ~
is defined by

- fo[nt]/n n_l/Qyn,[nt] (3—) d(n_1/2yn,[nt] (S))
Y, nt] = fo[nt]/n n_lyi[nt] (s)ds

) f()[nt]/n nilyz,[nt](s) ds > Ov
0, elsewhere.

Note that the LSE of v based on only [nt] observations is given by 7, g, while
12



STATE OF THE ART

the LSE of v based on all observations is

n 2 n
n (Zk:1 Ynk—1 — k=1 yn,kyn,k—l)
n 2
> k=1 Yn k-1

~ J—
T =

Then under some regularity conditions Dzhaparidze et al. [1994] obtain

[nt]/n B N D[0,1 t N
(" 07250060 85) (= 3ng) 222 ([ ¥26)05) (=30

n—oo
with

— Jo Y(s)dY'(s)

R . EY2(s)ds > 0
=3 JyY?(s)ds o ¥(5)

0, elsewhere,

where Y (t) = [1e7*=Y dM(s) and M is a continuous semimartingale on [0, 1].

2.2.3 Other coefficient estimation methods

Cox and Llatas [1991] study asymptotic properties of a class of estimators of
the first order nearly nonstationary autoregressive model coefficient ¢,,. The class

of estimators considered are those obtained by solving nonlinear equations:

\I,n((bn) = Z yn,kw(yn,kJrl - ¢nyn,k> =0. (2'9)
k=0

Here 1) is a continuously differentiable and satisfies the second order Lipschitz
condition. Then Cox and Llatas [1991] obtain that there exists a sequence ()
of solutions (2.9) such that (¢, — ¢,) = Op(n~") and for such sequence

. e Jo Uy () AV (1)
Mo =) 2 T

where U, (t) is Ornstein-Uhlenbeck process defined by the stochastic differential

equation
AU, (t) = —U,(t) dt + dW(t),  U,(0) = N(0,07/27)
and (W (t), W (t)) is a two dimensional Brownian motion with

E(W2(t)) = tE(e}), E(W3(t)) = tE(y*(1)),
E(W (@)W (t)) = tE(e10(21)), ¢ € 0,1].

13
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In addition, Cox [1991] consider a three parameter first order nearly nonsta-
tionary autoregressive model, where the parameters are the mean, autoregressive
coefficient and variance of the innovations. Three different estimators are consid-
ered: the exact Gaussian MLE, the conditional maximum likelihood or LSE and
some "naive" estimators. It is shown that the estimators converge in distribution

to analogous estimators for a continuous-time Ornstein-Uhlenbeck process.

2.2.4 Limit theorems for the partial sums of the process

(ynx) and residuals

Phillips [1987] independently with Cumberland and Sykes [1982] have found
that the sequence of normalized processes (n~"/ Y nt]» t € [0, 1]) converges weakly
to an Ornstein-Uhlenbeck process in the classical Skorohod space D[0, 1] in the
case where ¢, = €/". The same result has been obtained by Andrews and
Guggenberger [2008] with ¢, = 1 — v,/n, 7, — v € [0,00), as n — oo. In
the case where v, — v € (0,00), as n — oo and initialization satisfies condi-
tion yno0 = 7%, ¢e_; Andrews and Guggenberger [2008] have established the

convergence

D[0,1
[0,1] oU*,
n—00 v

n_l/Q(y[nt]v te [07 1])

where U is defined by (2.7). Moreover putting 7, — 0, as n — oo they have

shown
0-_1<2’7n)1/2n_1/2yn,[nt] % Z ~ s31(07 1)7

for each t € [0,1] and Z does not depend on ¢. In contrast, with the initial con-
dition y,,0 = op(n), the result is the D0, 1] weak convergence of n=Y2(y,, 1y, t €
[0,1]) to oW (¢). Again, one can notice that the limit distribution differs depending

on the closeness of the coefficient ¢,, to 1 and the initial condition.

Further Phillips and Magdalinos [2007] found
n_lyfm] n_}%> 0, foreach te]l0,1],

when ¢, = 1+ v/k,, v < 0, with initialization yo = op(v/ky,).

The central limit theorem for the sums >}, ¥k, n > 1 is proved by various

authors in different cases. Phillips [1987] investigates the case where ¢, = ¢7/™.

14
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Under normalization n~%/? the limit is some integral of an Ornstein-Uhlenbeck

process

n 1
-3/2 R
n kE:1 Yn,k m O'/O UV(t) dt.

The same result is obtained by Andrews and Guggenberger [2008] with ¢, =
L —9/n, v — v € [0,00), as n — oo. Moreover putting the parametrization
¢n =1 —/n, ¥ — 7 € (0,00) and the initial condition y, o = 372, ¢le_; the
central limit theorem now is

n 1
23 gy —— o / U () dt.
0

n—00
k=1

where U is defined by (2.7). While in the case 7, — 0, as n — oo and initializa-
tion is yn0 = 252, @he—; they have shown that the limit is :

1/2,-3/2 S R 2
(27m)"*n kZ_jlyn,k_l —— N(0,07).
Next Giraitis and Phillips [2006] in case ¢, = 1—~,,/n, 7, — oo and v,,/n — 0,

as n — 00, have established that

n_1/2(1 — &n) ;; Yn k % 2N(0, 02).

One can see, that under such parametrization, the asymptotic distribution of
the sample mean of y, ; is normal random variable with a convergence rate that
depends on ¢,,.

Further Phillips and Magdalinos [2007] have proved the following weak law of
large numbers in case ¢, = 1+ v/k, and v < 0:

0.2

_ P
(nk,) ™" kz::lyi,k T ood 9y
The convergence rates of this result provide a bridge between the results for
nonstationary (or nearly nonstationary) and stationary processes. According to
Phillips and Magdalinos [2007] this easy to explain by putting k, = n¢ for some
0 € (0,1). Using this parametrization, ¢, approaches the boundary with the sta-
tionary region when o — 0 and the boundary of nearly nonstationary region when

o— 1.

15
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The partial sums of the residuals in various type models are frequently uti-
lized in many areas such as detecting parameter changes or probability density
estimation. Several authors have investigated the limiting distributions of the
partial sums for nearly nonstationary first order autoregression under various er-
ror structures. For example, Shin [1998] investigates the same parametrization as
Phillips [1987] ¢,, = ¢’/ and under zero-mean i.i.d. assumption for innovations

with variance 02 and sup,, E [e,**, 6 > 0 he has established

nt)
n 2N g 20 W) — ATBI(1), te (0,1,
k=1

n—oo

where A = [} UZ(r)dr, B = Jo Uy (r)dW (r) and J(t) = 3 U,(r)dr. Also Chan
and Liu [2010] study the goodness-of-fit test of the residual empirical process of

a nearly unstable long-memory time series.

2.3 Change points and epidemic change detec-
tion

Change point problems have a variety of applications in economics, medicine,
biology, engineering, etc. Studies concern detecting one change point as well
as multiple change points. A special case of multiple change point problem is
the epidemic change. To describe the epidemic change, suppose we are given a

sequence X1, ..., X,. The standard null hypothesis is
Hy: Xi,...,X, all have the same parameter 6,
(e.g. mean, median, variance, etc.) against the alternative

H, : there exists such integers 1 < k™ <m*™ <n that

91:...:9k*:9m*+1:...:9n:€0 and ek*+1:...:9m*:9A.

Here k* denotes the (unknown) time or location at which the epidemics starts, m*
is the end and we denote ¢* = m* — k* as the length of the epidemic change. That
is, at first the parameter € is in one state, then at some point a change occurs
(the value 6, changes to #4) and after a certain period the state comes back to

the initial one.

There is a lot of literature related with the testing for change points, estimation
16
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of them and forecasting the models with the structural breaks. According to
the method the data are obtained, there exist two different formulations of the
problem. Off-line (or a posteriori) change-points problem arises when the series of
observations is complete, i.e., the sample is finite. The sequential change-points
problem is formulated when the detection is performed in real time (or on-line).
The commonly used methods for detecting the change point is cumulative sums
(CUSUM), maximum liklihood, Bayesian methods. More on the change point
problem one can find in the books by Brodsky and Darkhovsky [1993], Csorgd
and Horvath [1997], Hackl and Westlund [1991], Chen and Gupta [2000]. Hackl
and Westlund [1989] give a lot of references concentrated on two topics: detection
of non-constancy of parameters in regression and time-series models and statistical
analysis of models with time-varying parameters. Peron [2006] wrote a review on
the methodological issues related to estimation, testing and computation of the
linear models with the structural changes. A central theme in this review is the
interplay between structural change and unit root and on methods to distinguish
between them two. Among many others, the surveys by Bhattacharya [1994],
Khodadadi and Asgharian [2008] concentrate on testing the hypothesis of "no

change', estimating the change point by a point estimator or a confidence set.

One way to construct test statistics for detecting the epidemic change of mean

is to construct the uniform increments statistics:

k+£ />

To the best of our knowledge, the changed segment in mean problem for i.i.d.
random variables have been formulated for the first time by Levin and Kline
[1985] (we also refer to Csorgdé and Horvath [1997] section 1.4). Other statistics
are offered also. For example, Gombay [1994] investigates rank and sign statis-
tics. Siegmund [1986] considers parametric framework for detecting the changed
segment, while Lombard [1987] suggests nonparametric tests. Yao [1993] have
studied various parametric test statistics in order to detect an epidemic change in
the mean value of a sequence of independent normally distributed random vari-
ables. Ramanayake and Gupta [2003] build the likelihood ratio statistic and a
likelihood ratio type statistic to detect the epidemic change in mean in a sequence
of independent exponential random variables. Further Ramanayake and Gupta

[2004] investigated the epidemic change of the natural parameter of the indepen-
17
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dent sequence given from the exponential family. The likelihood ratio statistic
for such hypothesis testing is derived. Gut and Steinebach [2005] propose a two-
step sequential procedure to detect the epidemic change. Fellouris et al. [2010]
have used the CUSUM procedure for this problem in the framework of counting

process.

We study statistics of the type (2.10). Rackauskas and Suquet [2004b] ob-
serve, that this statistics can detect only epidemics whose the length ¢* is such
that n'/2 = op(¢*). For shorter epidemics, Rackauskas and Suquet [2004b] have
proposed to improve the statistics by weighting. Let a € [0,1/2) and X;,..., X,
be any sample and define statistics by by

k+¢ [
Ta,n = Ta,n(Xb e 7Xn) = l]fgeag)%g lgrilgaz(_g ]:Xk—:i-l X] — n;XJ . (211)

Rackauskas and Suquet [2004b] have shown that for any 0 < a < 1/2 statistics
Ton(X1,. .., X,) detects epidemics with n’ = op(£*), where § = (1—2a)/(2—2a)
ranges in (0,1/2). Further, Mikosch and Rackauskas [2010] have studied the limit
behavior of T, , with regularly varying random variables and « > 1/2. Graiche
et al. [2011] propose Holderian type statistics based on independent not identically
distributed or a-mixing random variables to test the epidemic change. From the
statistical point of view it is interesting to relax the assumption of independence.
For example, Rastené [2011] has investigated the change segment problem in the

coefficient of the first order autoregressive process.
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In this chapter we give all the necessary background for the further chapters.
We provide the main results related with the Hoélder space that will be used
further. Also, we describe the invariance principle in function spaces and we
present the main tools that are necessary for the reading convenience of this

thesis.

Throughout the thesis W = (W (t),t € [0,1]) is a standard Brownian motion.

Also, the following process plays an important role in all the thesis:
t t
U, (t) = / =7 AW (5) = W (t) + / W (s)ds, te[0,1].  (3.1)
0 0

Actually, U, = (U,(t),t € [0,1]) is an Ornstein-Uhlenbeck process, generated by

the stochastic differential equation
dU,(t) =~U,(t)dt + dW (t), t€]0,1].

with the initial condition U,(0) = 0 and parameter v < 0.
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3.1 Holder space

We focus in this thesis on the functional convergence in the space of contin-
uous functions and Holder spaces. We denote by C[0, 1] the space of continuous

functions f : [0, 1] — R. Equipped with the supremum norm
1fll = sup [f(t)],
0<t<1

C[0,1] is a complete, separable Banach space.

For o € [0, 1) the Holder space
Hy[0.1) == { £ € CI0.1] : limewa (£.0) =0}

endowed with the norm || f||, := |f(0)] + wa(f, 1), where

_ Lf(t) = fs)]
wa<f7 5) T s,feu[(l]),l] |t o S|oz )
0<t—s<d

is a separable Banach space. In the special case where a = 0, the set H{[0, 1]

coincides with C[0, 1] and the norms || f||, and || ||, are equivalent.

The functional framework of Holder space is interesting in the theory of
stochastic processes since very often the continuous stochastic process under study
has a better regularity than the bare continuity. Also, the weak convergence of a
sequence of stochastic processes in some functions space E provides results about
the asymptotic distribution of functionals of the paths which are continuous with
respect to the topology of E. Since the Hoélder spaces are topologically embed-
ded in C[0, 1] and D[0, 1], they support more continuous functionals. From this
point of view, the alternative framework of Holder spaces gives functional limit
theorems of a broader scope (see more in Juodis et al. [2009]).

Throughout the thesis we work with random polygonal lines and study their
asymptotic behaviour in Holder topology. As a polygonal line is characterized by
its vertices, it is useful to know how its Hoélderian asymptotic behaviour depends
on the control of its vertices. To explain this, it is convenient here to represent a

polygonal line 7, with vertices (I/n,V}), 0 <1 <mn, V5 =0, under the form:
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where {nt} = nt — [nt] is the fractional part of nt. We claim that the H6lder norm

of such a line is reached at two vertices, that is

|Vk—%|

17l = oI (F Dy (3.3)
From (3.3) we immediately deduce that
Imall < 20 s [V (3.4

To prove that the Holder norm of a polygonal line is reached at two vertices
(equality (3.3)), it is convenient to generalize a bit by considering more general

weight functions than h +— h®.
Lemma 3.1.1. Let p : [0,1] — R be a weight function satisfying the following
properties.
i) p is concave.
ii) p(0) =0 and p is positive on (0, 1].
ii) p is non decreasing on [0, 1].
Let to = 0 < t; < --- < t, = 1 be a partition of [0,1] and f be a real valued

polygonal line function on [0,1] with vertices at the t;’s, i.e. [ is continuous on

0, 1] and its restriction to each interval [t;,t;11] is an affine function. Define

pt —s)
Then
R(s,t) = R(t;, ). 3.5
S (s,t) = max R(t;,t;) (3.5)

Proof. Obviously (3.5) will be established if we prove that

R(s,t) < max R(t;,t;), (3.6)

— 0<i<j<n

for every pair of real numbers s,t such that 0 < s < ¢ < 1. This in turn, is easily
deduced from the following estimates where in each configuration considered, f is

supposed to be affine on [a, b].

R(a,b) ifa<s<t<b,
R(s,t) < { max (R(s, a), R(s, b)) if s <a<t<b,
max (R(a,t), R(b,t)) ifa<s<b<t.
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In the first configuration,

50— p() = TU =Ty
whence
t—s pb—a)

R(s,t) = R(a,b) (3.7)

By concavity of p, the function h — p(h)/h is non increasing on (0, 1], as the
slope of the chord between 0 and h. So p(t —s)/(t—s) > p(b—a)/(b— a), whence

S < 1 and (3.7) gives R(s, 1) < R(a,b).

In the second configuration, let us parameterize the segment [a, b] by putting
t = (1 —u)a+ub, u € [0,1]. Thent—s = (1 —u)(a —s) +u(b— s) and as
£ ()= f(s) is affine on [a,b], ()= F(s) = (1=u)(f(a) — F(s)+u(F(B)— F(s)).
Now to estimate R(s,t), using triangular inequality for the numerator and the
concavity of p for the denominator gives:

(1w lf(@) ~ fs)| +ulf )~ f(s) _AutB_ B
(1 —u)p(a—s)+up(b—2s) Cu+ D Cu+ D’

R(s,t) <

where the constants A, A’,..., D depend on f, p, a, b and s (which is fixed here).
As p is non decreasing, (1 —u)p(a — s) +up(b—s) > p(a —s) > 0, so Cu+ D
remains positive when u varies between 0 and 1. It follows that the homographic
function A’ + B’/(Cu+ D) is monotonic on [0, 1] and hence reaches its maximum
at w =0 or at u = 1. This gives R(s,?) < max (R(s, a), R(s, b))

The bound for R(s,t) in the third configuration is obtained in a completely

similar way, so we omit the details. O]

Remark 3.1.2. In the case of vector valued polygonal lines, the result and the
proof are still valid, replacing |f(t) — f(s)| by ||f(t) — f(s)|| in the definition of
R(s,t).

The next theorem gives a characterization of the tightness of sequences of
random elements in a Holder space (see Suquet [1999] Theorem 13 for the case

0 < a < 1 and Proposition 1 for a = 0).
Theorem 3.1.3. The sequence (&,) of random elements in HS[0,1], 0 < a < 1,
is tight if and only if

(@) limasoo sup,s1 P ([[Enllc > A) = 0;

(b) Ve >0, lims_,osup,,>; P (wa(&n,0) > €) = 0.
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3.2 Invariance principle

Consider the polygonal line process constructed on i.i.d. random variables ()

[nt]

WP(t) = ;ej + (nr — [nt])epg1,  t€1[0,1]. (3.8)

This process lies in the continuous function space C[0, 1] and in each Holder space
H [0, 1], for 0 < o < 1. The limiting behaviour of such processes is well known.
The classical Donsker-Prohorov invariance principle states that, if Ee; = 0 and

0 < 02 := Var(e;) = Ee? < oo, then

_ _ clo,1
125 1W51 [0,1]
n—oo

W. (3.9)

This result has a lot of applications, especially in statistics, and continues to

receive many extensions.

Holderian invariance principle is also established. By the classical Levy’s result
on the modulus of continuity of W, W € H%|0, 1] with probability one for every
0 < a < 1/2. Lamperti [1962] proved that if 0 < o < 1/2 and E |go|” < oo, where
p>1/(1/2 — ), then

n 2 tyypt Lel0ll, (3.10)

n—oo

holds. This result was derived again by Kerkyacharian and Roynette [1991] by
another method using analysis given by Ciesielski [1960] of Holder spaces by tri-
angular functions. Further generalizations were given by Hamadouche [2000] and
Rackauskas and Suquet [1999]. The result (3.10) have been completed and ex-
tended by Rackauskas and Suquet [2004a]. They have proved that for p > 2 with
a=1/2—1/p (i.e. 0 < a < 1/2) the convergence (3.10) holds if and only if

R _
Jim ¢ P(le] >t)=0. (3.11)
Note that condition (3.11) can be rewritten as

lim tY//2=9) P(|e,| > t) = 0.

t—o00

Condition (3.11) provides precise relation between the strength of the convergence
(3.10) and the integrability of summands. Compared with the classical Donsker
invariance principle, it shows the price to be paid for functional convergence in
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a stronger topology. When « > 0, condition (3.11) implies that E|e;|” < oo for
p < (1/2 — )7t and in particular Ee? < co. We note also that condition (3.11)
with p = 2, so @ = 0, does not imply the convergence (3.9).

3.3 Tools

The first two results in this section help us to reduce the proof of functional
limit theorems to zero initial condition. The central point is the fact, that all

a-Hoélder norms of a function f are equivalent if f € C[0,1].

Lemma 3.3.1. If f € C'[0,1] and f is non constant, then all its a-Hélder norms
are equivalent in the sense that there exists positive constants b and ¢ such that
b <wa(f,1) < c, whereb and c do not depend on a. If f is constant || f]|,, = | f(0)]
for every 0 < a < 1.

Proof. Recall, that
(F D) = sy O]

o<s<t<1 |t —s|”

Since f’ is continuous on [0, 1], for any 0 < s < t < 1, there is a 6 € (0, 1) such
that f(t) — f(s) = (t—s)f(s+ 0(t — s)). From this we immediately deduce that

- e < HI=EN <y

whence

osc(f) = sup () = F(s)| < walfo1) < 1]

0<s<t<L1

If osc(f) = 0, then f is constant (and conversely), so w,(f,1) = 0 for every

a € (0,1). Else we can put b = osc(f) > 0 and ¢ = || f'||, to conclude. O

Here we give a more precise result of this type for the exponential function

t— at, where 0 < a < 1.

Lemma 3.3.2. For 0 < a < 1, let f be the map [0,1] — R, t — a'. Then for

every a € [0, 1],
a® — CLt

1—a< su < —Ina. 3.12
N 0§s<11:€)§1 (t—s) — ( )

Moreover, if p, is the polygonal line of linear interpolation of f between the points
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k/n, 0 <k <mn, then

1—a<wa(pn,1) <ws(f,1) < —Ina. (3.13)

Proof. Putting t — s = h, we deduce immediately from the factorisation

a® — a* Jd—a"
=a

(t —s) he

that

a® — a

sup (3.14)

o<s<t<1 (t — 8)®  ocn<1  h®
The function h — 1 — a” being concave on [0, 1], its graphic representation is

above its chord between the points with abscissas 0 and 1 and below its tangent

at the origin. This provides the inequalities:
(1—a)h<1—a"<(=Ina)h, hel0,1].

Hence for every h € (0, 1],

1—ah

1—a)ht™@ <
(1—aht=e < —

< (—Ina)h*.

Taking the supremum over h € (0, 1] and accounting (3.14), we obtain (3.12).
From Lemma 3.1.1 it is clear that ws (pn, 1) < wa(f,1). Together with the obvious
inequality 1 —a = p,,(0) — pn(1) < wa(pn, 1), this gives (3.13). O

The next results are useful tools to investigate the limiting behaviour of the

test statistics.

Lemma 3.3.3. Suppose a € [0,1). Consider the functionals g, and g defined on
the Hélder space H2[0,1] by

gn(x) ‘= 1nax IQ(JI,i/n,j/N), g(l’) = sup Ia(CL’,S,t), (315)
1<i<y<n 0<s<t<1
where

() = x(s) = (¢ = s)z(1)]

|t—8‘a Y

I (x,s,t) = 0<t—s<Ll. (3.16)

Then g, and g are Lipschitz on

Go = {x € H°[0,1] : 2(0) = 0}
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with the same constant C' = 2, if a € (0,1). Also, g, and g are Lipschitz on
Go = {x € C[0,1] : z(0) = 0} with the same constant C' =2, if a = 0.

Further, for any tight sequence of random elements (n,)n>o in C[0,1] or
He [0, 1], it holds

Gn (1) = 9(1n) + op(1). (3.17)

To prove Lemma 3.3.3 it is convenient to use the two following lemmas which
one can find in Rackauskas and Suquet [2004b].

Lemma 3.3.4. Let (n,) be a tight sequence of random elements in separable Ba-
nach space B and g,, g be continuous functionals B — R. Assume that g, con-

verges pointwise to g on B and that (g,) is equicontinuous. Then

9n(Nn) = 9(1n) + op(1).

Lemma 3.3.5. Let (B, ||||) be a vector normed space and q : B — R such that
a) q is subadditive: q(x +y) < q(x)+q(y), x,y € B;
b) q is symmetric: q(—x) = q(x), v € B;
c¢) for some constant C, q(z) < C'||z||, x € B.

Then q satisfies the Lipschitz condition

la(z +y) —q(@)[ < Clyll, 2yeB. (3.18)

If F is any set of functionals q fulfilling a), b) and c) with the same constant
C, then a), b) and c) are inherited by g(x) := sup {q(x) : ¢ € F} which therefore
satisfies (3.18).

Proof of Lemma 3.3.3. Here we shall give an unified proof for the cases a = 0
and a € (0,1). Since the spaces (C, || - ||s) and (Hg, || - ||o) are isomorphic, thus
putting @ = 0 in the proof gives the special case of g, and g being Lipschitz on
C[0,1]. To show that ¢ = I,(:,s,t) is Lipschitz, we shall use the Lemma 3.3.5
whose conditions a) and b) are obviously satisfied while condition c¢) follows from

(t) — a(s)

= I, ;8 t) < a

= s (1)) < 2]J2]l, - (3.19)
Define the closed subspace G, = {z € H2[0,1] : 2(0) = 0}. From (3.19) we

see that for any 0 < s < ¢t < 1, the functional ¢ = I,(-, s,t) satisfies on G, the
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Condition ¢) of Lemma 3.3.5 with the constant C' = 2. It follows by Lemma 3.3.5
that g, as well as g are Lipschitz on G, with this same constant C' = 2. As a

result, the sequence (g,),>2 is equicontinuous on G,.

Now by Lemma 3.3.4, the proof of (3.17) is reduced to check the pointwise
convergence of g, to g on GG,. Let us fix an arbitrary function x € G. By the
first inequality in (3.19) and the definition of the space H?, the function I,(z,-,-)
receives a continuous extension I, (, -, -) to the diagonal by putting I,(z, s, s) := 0
for every s € [0,1]. Since I, is non negative and I, (z, -, -) is null along the diagonal,

the functionals g, and g defined by (3.15) satisfy

gn(z) == max fa(x,i/n,j/n), g(x):= sup I,(z,s,t).

1<i<j<n 0<s<t<1

Next we observe that the value of the functional g(x) appears as the supremum
of the continuous bivariate function I,(z,-,-) on the closed triangular domain
K = {(s,t) €]0,1*: 0 < s <t <1}. By compactness of K, this supremum is
reached at some point (sg,ty) € K. For n > 1, let us define the integer

[nso] if s9 > 1/n, ‘ [nto] if to > 1/n,

Iy 1= In 1=
1 if 0 < sp < 1/n, 1 if 0 <ty <1/n.

Noting that 1 <4, < j, < n, we have

Lo(@,in /1, jn/1) < gn(2) < g(2) = La(a, 50, to).

Clearly (i,,/m, jn/n) converges in K to (s, %), so letting n tend to infinity in the
above inequalities gives the convergence of g, () to g(z) by continuity of I,(z, -, -).

As x was arbitrary in GG, the pointwise onvergence of g, to ¢ is established. [

In the last chapter we build test statistics on residuals to test the hypothesis
about epidemic change in mean of innovations. The following two results are

useful in the proofs of this chapter.

First suppose that we have a sample X, ..., X,, and assume that

Hj:Xi,...,X, are independent identically distributed random variables

with mean denoted by .

Then Theorem 3 in Rackauskas and Suquet [2004b] finds the limit of test statistics

under null hypothesis:
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Theorem 3.3.6. Let 0 < o < 1/2. Under Hj, assume that

lim t/1/2=9) P(|e,| > t) = 0.

t—o00
Then
o TP U Ly —— Ul o,
where
g g —« k420 g n
Ul,,= U]ayn(Xl, X)) = 1@?& <n (1 — n)) 1&127}1{4 j:zk;l X — njz:lXj

and

g WO =) = = W)
Ulaoo = 0<t—Is)<1 (t—s)(1—(t—s)) |

Note, that we use the weight ¢/n and not ¢/n-(1—¢/n), but in view of Lemma
3.3.3 and Holderian invariance principle the Theorem 3.3.6 can be adapted as

follows when we replace the statistics U1, , by the statistics 15, .

Corollary 3.3.7. Let 0 < o < 1/2. Under H|, assume that

lim tY//2=9 p(|ey| > t) = 0.

t—00
Then
oI = T,
where
k+¢ />
T&n::jhm(xaan'a)gﬂ :ﬁ£§2%€ 1;2%§4 .E: )9__;£§:‘Xj
Jj=k+1 Jj=1
and
Wi(t)—Wi(s)—(t—s)W(1
T WO W) (= W()]
0<t—s<1 |t - S|
Next, assume that Xj,..., X, are regularly varying random variables (the

precise definition of regularly varying random variables is given by definition 6.0.1,
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page 84). Define two statistics:

o,
M., = max ¢ max X n>0
o (Zin 1<k<n—f Z K -
j=k+1
and

k+¢ [

Ton = max ({(1 —¥¢/n))™* max X, — =) X n > 0.

= (0= ) g | 3 X =S

Then the following result of Mikosch and Rackauskas [2010] holds under the null
hypothesis H:

Theorem 3.3.8. Consider an i.i.d.sequence (X;) of random variables which are

reqularly varying with index p > 2 and have mean zero if it exists. Then, for
a € (1/2 - 1/p7 1];

lim P (b;l./\/lam < x) =P,(z) = e x>0,

n—oo
where the normalizing sequence is given by
b, =inf{z e R:P(|X|<z)>1-1/n}.
Moreover
nhﬁr{)lOIP’ (67:17;,,1 < :L‘) =d,(x), x>0.

The next corollary shows that the behavior of statistics M, (X1, ..., X,) and
Ton(Xi,...,X,) coincides.

Corollary 3.3.9. Under the assumptions of Theorem 3.3.8, the sequence (b, * M)

has the same limit distribution as the sequence

k+0 (>
b 1T, = b ! max 7% max X, — — X.l.
moTem T 1 Zin 1<k<n—t j—zk;d J n]z_:l !

For the proof of this corollary, see Remark 2.6 in Mikosch and Rackauskas
[2010].
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Functional limit theorems

In this chapter we prove the functional limit theorems for the partial sums of
the first order nearly nonstationary autoregressive processes in the space of con-
tinuous functions and in the Holder spaces. Further we prove the functional limit
theorems for the partial sums of the residuals of the process under investigation
in Holder space. Also we introduce some supplementary results that might be of
independent interest. As noticed in the chapter 2, finite dimensional of functional
weak limit theorems for nearly non stationnary processes depend on the conver-
gence rate of ¢, to 1. In this chapter our aim is to investigate functional central
limit theorems in the two situations where ¢, tends to 1 at the rate 1/n or slower,
that is n(1— ¢,,) tends to infinity. More precisely, we restrict our study to the two
following parameterizations introduced respectively in Phillips [1987] and Giraitis
and Phillips [2006].

~ Case 1: ¢, = /™ (v is a negative constant);

— Case 2: ¢, =1—22 ~, — o0 and 7, /n — 0, as n — oc.

n
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4.1 Functional central limit theorems for sums

of nearly nonstationary processes

Recall that we investigate the asymptotic behavior of the first-order autore-

gressive process (ynx:k=1,...,n;n=1,2,...) given by

Ynk = ¢nyn,k71 + €, (4.1)

where 0 < ¢, < 1 for fixed n, ¢, — 1, as n — 00, (&) is a sequence of indepen-
dent identically distributed random variables with Ee;, = 0 and ¥, is a random
variable. Despite the fact that (v, ;) is a triangular array, for simplicity, we omit

the index n in this chapter and we write y, = ¢,yr—1 + €k, k =1,2,...,n.
In this section we focus on polygonal line partial sums processes built on the
Yr's:

[nt]
SP(t) = yp1 + (nt — [0y, tE€[0,1], n>0, SP0)=0. (4.2)
k=1

Note that the definition of SP' is quite unusual with a general term y;_; where
one would expect y,. This definition is more convenient from the technical point
of view. However, asymptotic results proved remain true with y,_; replaced by

Y as well.

The estimate of the Hélder norm (3.4), page 21, enables us to reduce the
investigation of the asymptotic behaviour of the random polygonal line SP! (prop-
erly normalized) to the case where the initialization in (4.1) is given by vy, = 0.
Indeed let us associate to each autoregressive process (y,x) satisfying (4.1), the

process (y,, ;) defined by

3/;,1@ = Ynjk — ¢2yn,0- (4.3)

Then (y;,,) satisfies (4.1) with initialization y;, ; = 0 and the same ¢;’s and the

above mentioned reduction may be formulated as follows.

Proposition 4.1.1. Let S}jl' be the polygonal line process obtained by substitut-
ing in (4.2) the yn;’s by the Yn.; s Assume that cnS,Ejl/ converges in distribution

in H2[0,1], where the c,’s are some positive normalizing constants. Then ¢, SP!
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converges in distribution in HS[0, 1] to the same limit provided that

NCnYno = op(1). (4.4)

Proof. The stochastic process ¢,S?' — ¢, S is a random polygonal line , which
according to the representation (3.2) is determined by its vertices (I/n,V}), 0 <
[ <n, Vo =0, where

-1 ) 1— ¢l

Vi= Z cn¢£zyn,0 = 17ncnyn,0'
= - ¢n
7=0

As 7,(0) = 0, accounting Lemma 3.1.1 we have

ulmol |8 = (6)"]
1 — ¢, 1<i<k<n  |k/n—1/n|"

1Tnllq = walmn, 1) =
Applying inequalities (3.13) in Lemma 3.3.2 with the function f,, defined on [0, 1]
by t — ¢ we obtain

1—on (—nln¢y,)
n<L < - 7.
6 = [7mlle < cnlYnol o,

As ¢, tends to 1, for the two models under consideration, this gives

Cn |yn,0|

1Talla ~ 1€ [Ynol 1 — o0,

Thus assuming that cnSﬁl/ has a limiting distribution in H[0, 1], we deduce of
this estimate that, if nc,y,o = op(1), then ¢,SP' converges in H2[0, 1] to the same

limiting distribution. [l

Remark 4.1.2. Assume that ¢,S?" has a limiting distribution in H2[0,1] and

NCy |Yno| is not stochastically bounded in R. Since

Y
(e

[Tl < [enSB| + [|enst”

we have

leas?] = Imall, — [leas?’]

As ne, |ynpo| is not stochastically bounded in R, so ||m,||, — oo as n — o0
and together with boundedness of ¢,S?" we obtain that ¢,SP!, for any «, is not

stochastically bounded in H? [0, 1] and cannot converge in this space.
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4.1.1 First type model

In this section we study the process (4.1) in the case where ¢, = ¢?/" with a
constant v < 0. Note that for Theorem 4.1.3 and only here, instead of putting any
direct assumption on the ¢;’s, we assume rather some functional weak convergence
of WP to W. This extends the scope of the result far beyond the case where the
g;’s are iid. (for some Holderian invariance principles, in the case of weakly

dependent random variables, see Hamadouche [2000]).

Theorem 4.1.3. In the case 1 where (y) is generated by (4.1) with ¢, = /™,
v < 0, suppose that the sequence of polygonal lines (n=Y?WP) converges weakly
to the standard Brownian motion W either in C[0,1] or in H2[0,1] for some
0 < a < 1/2. Suppose moreover that y,o = op(n*/?). Then n=3/2SP' converges
weakly, as n — 00, in the space under consideration to the integrated Ornstein-
Uhlenbeck process J defined by:

¢
J(#) ;:/ U (s)ds, 0<t<1, (4.5)
0
where U, (s) = [ e~ dW (r).

Remark 4.1.4. The result in Theorem 4.1.3 is formulated for the variance equal
to 1. If variance is known and equal to o2, then under the conditions of Theorem
4.1.3 the following result holds:

n~32g=1gp! % J, (4.6)
where E denotes either C[0, 1] or H2[0, 1] for 0 < o < 1/2.

Remark 4.1.5. If variance is unknown by Slutsky’s Theorem it can be replaced
in (4.6) by it’s estimator
1 n
2= &, (4.7)
=1

since Phillips [1987] established, that

5> L o2 (4.8)

n—o0

Proof of theorem 4.1.3. Since the Banach spaces (C[0, 1], ||..) and (Hg, || ||,) are

isomorphic, the unified proof proposed here for the spaces H2[0,1], 0 < o < 1/2,
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includes the special case of the space C|0, 1]. By Proposition 4.1.1 and assumption
Yno = op(n'/?), it is enough to give the proof in the case where y,, o = 0.

The idea of the proof is to approximate the polygonal line n=3/2SP! by some
linear interpolation of a smooth process .J, which is a functional of n=/2W/P!

continuous in Holder topology, with Hrf?’/ng1 — J”H =op(1).

Successive polygonal approximations of n=3/2SP!

We detail first the successive approximations of m,; := n~>/2S?! by the polyg-

onal lines 7, 2, m, 3, T, 4 Where the later has vertices (I/n, V] 4) given by
l/n l/n rs
Via= n*1/2W7fl(s) ds + 7/ / e7(s”“)n’1/2W}fl(r) drds, (4.9)
0 o Jo
and satisfies

|28 — 74| = 0 (D). (4.10)

To control the distance in Holder norm between polygonal lines, we use the
following property. Let 7, be a polygonal line with representation (3.2), page 20.
As a consequence of (3.4), page 21, if we approximate each V; by some V, in such
a way that |V; — Vi| = op(n™®), uniformly in 1 < [ < n, then the corresponding
polygonal line 7, satisfies ||, — 7|, = op(1).

In what follows, we denote the successive polygonal lines approximating n~=3/2SP!
by 7, and their vertices by (I/n,V};), i = 1,2,3,4. At each step we will use the

following facts

Hn_1/2W751H is stochastically bounded (4.11)
and
—1/2757pl 1 P
Wa|n WP, —) —— 0, (4.12)
n n—00

by tightness in H2[0,1], 0 < o < 1/2, see Theorem 3.1.3 (page 22).

We start with 7, = n=3/2SP! for which

I
Vin=Y = n%? > Ykt
k=1
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We express y; in terms of innovations

k
=1

Noting that £; = WP! ( ) W (JT) we obtain

k . .
Yp = Ze(k—j)v/n (Wpl <]> — WP (-7 _ 1))
= " \n " n

VAN S s /ol [
= WP = —|—Ze (1 — e VMWP <>
n n

J=1

ARSI g\ , 7u
— e i (k=3)v/nyy7Pl <> n (k— ])7/”WP1 < >
" <n> + n ]Zle " \n om2 Z n

where u,, = 2n%y, 2 (1 —e T/ — vn_l). As

2 1
o= (L)
¢ n + 2n2 to n2)’
it follows
2n? 1
U, =—-14+—o (2> ——1, as n — oo. (4.13)
y n

Now our first approximation consist in neglecting the last term in the sum

above, which gives the polygonal line m, » with

ZW ( )+2§l:k§:2e<’f i=inyy, ( ) (4.14)

k=1 j=1
where W, := n~/ 2WP! for writing simplicity. For the approximation error, we
have the following bound valid for n > || :

2e'y
Vie = Vial < 5= Wl

Next, approximating Riemann sums by integrals in (4.14), we obtain the polygonal

line 7, 3 with

Vizg = / Wi (s)ds + % Z e'yk/”/ e "W, (r)dr. (4.15)
0 k=1 0
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Let us estimate the error of approximation. For any f € C[0, 1],

;k <J +]0) —/Dk/nf(s)ds

G5 ) s

Jj=1

whence

DS () - [ s

Moreover,

<un(F ) e o)

if feH20,1], wo(f,d) <walf,d)0°. (4.17)
If f(t) = g(t)h(t) with g of class C'[0,1] and h € C|0, 1],

w(gh,6) < llgllw (P, 6) + 119 lloo 17l 0. (4.18)
Using (4.16)—(4.18), we obtain the uniform bound

1 (2 + el
wa(Wn,) L2 +9e)
n n

14 e

Vis — Vial < [Wall oo

Finally, we replace the last sum remaining in (4.15) by an integral of f,(s) :=
e’ [y e "W, (r)dr, s € [0,1], noting that |f}(s)] < (1 + ve?) [|[W, ]|, for each
s € [0,1]. This gives the polygonal line 7, 4 with vertices

l/n l/n s
Via= / Wo.(s)ds + 'y/ e”/ e "W, (r)drds. (4.19)
0 0 0

The approximation error is given by the uniform bound

1
|Via—Vig| < +’ye

Walloo

Noting that 7, 4 is exactly the polygonal line defined by (4.9) (page 34), gathering
all the estimate of errors above, recalling (3.4) (page 21), we obtain finally with

some positive constants C, and C”:

728 =], < Copoa(War 1)+ Il (020)
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Recalling (4.11) and (4.12), it follows that

_ P
228 = | —— 0,

a N—oo
so (4.10) (page 34) is proved.

Convergence of J,,.

Next we note that m, 4 is exactly the linear interpolation at the points t,,; = I/n

of the random function:
t t s
Jn (1) ::/ n~Y2WP (s)ds +7/ / "I 2P (1) dr- ds.
0 0 Jo
By an elementary chaining argument, the interpolation error is controlled by

1
1 — ol < 4wa(Jn, )
n

which converges in probability to zero, provided that J, converges weakly in
H?[0,1]. Indeed, if J, converge weakly in H?[0, 1], then it is tight in H2[0, 1],
thus, according to Theorem 3.1.3 (page 22), we obtain

Ve>0, limP (wa (Jn, 1> > 6> =0.
n—oo n

Now, it only remains to check that .J,, converges weakly to J in H2[0,1]. As

the operator
H?[0,1] — H2[0,1] : = |—>/ z(s)ds —|—’y/ / My (r) dr ds
0 0o Jo

is continuous on HY[0, 1], this last convergence follows from the convergence of
n~2WP to W (see (3.10), page 23). O

Taking into account the classical Donsker-Prohorov invariance principle (3.9),
page 23, and the Holderian invariance principle (3.10), page 23, we have the

following corollary of Theorem 4.1.3 in the classical case of i.i.d. innovations.

Corollary 4.1.6. Assume that (yi) is generated by (4.1) with ¢, = /™, v <
0 and that the (ex)’s are i.i.d. and centered. Then the weak convergence of
o 'n=3/28P! to J holds
— in C[0, 1] provided that Ee? = 0® < oo and yno = op(n'/?);
—4n H2[0,1] for 0 < a < 1/2 under condition (3.11) (page 23) and y,o =
op(nt/?).
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4.1.2 Second type model

In this section we investigate the polygonal line process SP! built on the y;’s,
as defined by (4.2), where ¢,, = 1 — v,/n and =, — oo slower than n. Also the

innovations (gi) are supposed i.i.d. with zero mean and known variance.

A key point in all the following limit theorems is to keep a good control on the
asymptotic behavior of maxj<x<y, |yx|. This is provided by the following Lemma

which may be of independent interest.

Lemma 4.1.7. Suppose the process (yy) is generated by (4.1) and ¢, = 1 —,/n,
where (7,) is a sequence of non negative numbers such that v, — oo and 7y, /n — 0,
as n — oo. Suppose moreover that y,o = 0. Let p > 2. Assume that the

innovations (gx) are i.i.d. and satisfy

lim oo tPP(|eg] > t) =0,  if p>2;

(4.21)
Ee? < oo, if p=2.
Forp>2, puta=1/2—1/p. Then
—1/2, « p
no T, max Y| ——= 0. (4.22)

The proof of this Lemma is given in section 4.3.2, page 54.

We start with asymptotic behavior of SP! in the space C[0, 1].

Theorem 4.1.8. Suppose the process (yx) is generated by (4.1) and ¢, = 1—~,/n,
where () is a sequence of non negative numbers such that ~, — oo and ~y,/n — 0,
asn — oco. Assume also that the innovations (ey,) are i.i.d. with Eey, = 0, Ee} =1
and that 3,0 = op(n~Y2(1 — ¢,))7). Then the following convergence holds.
n12(1 - ¢,)sPt S gy (4.23)

n—o0

Proof. Using Proposition 4.1.1 and the assumption y, o = op(n™2(1 — ¢,)71) it
suffices to prove the result when y,, o = 0. To prove (4.23), in view of the Donsker-

Prohorov invariance principle (see Billingsley [1986]), it is enough to show that

P
A = ll&nlle —=2 0, (4.24)
where 5
L — ¢n o ~1/271/pl
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We observe that &, is a polygonal line with vertices at the points ¢, = k/n,

0 < k < n. Its supremum norm is reached at one of its vertices. Hence

(1—¢H)Zyj,1—28j :

1- n
A, = sup ¢ SPl(t) — nl/QWTIL’l(t)‘ = n"Y2 max
1<k<n =1 =1

o<t<1| nt/2z "

For every k > 1, it follows from (4.1) that Zle Y = On Zle Yj—1 + Zle €js

whence
k k
(1—¢n) Zyj—l = —Yr + ZEJ', (4.25)
J=1 j=1

so A,, reduces to

_ 172
An =7 max |yel

By the particular case where p = 2 in Lemma 4.1.7, the convergence (4.22) holds
true with a = 0. Hence n™"/2 maxi<j<, || ﬁ 0 and (4.24) follows. The proof

of the theorem is complete. O]

Next we extend Theorem 4.1.8 by proving convergence of SP! in the Hélder
space H3[0,1], 0 < 3 < a, of course under stronger condition on (g;,) than finite-
ness of the second moment. The necessity of an extra restriction on the divergence

of v, like (4.27) below and the optimality of this later remain an open question.

Theorem 4.1.9. Suppose (yx) is generated by (4.1) and ¢,, = 1—7,,/n, where (7,,)
is a sequence of non negative numbers such that v, — oo and v,/n — 0, asn —
00. Assume also that the innovations (ex) are i.i.d. and satisfy condition (3.11)

(page 23) for some p > 2. Put o = % — zlv' Then for 0 < B < a,

H9[0,1
n~Y2(1 — ¢,)SP! M

n—oo

1478 (4.26)
provided that y, o = op(n™ (1 — ¢,) ") and

lim inf 7,n” 5 > 0. (4.27)
Proof. By Rackauskas and Suquet [2004a], condition (4.21) gives the weak con-
vergence of n~'/2WP! defined by (3.8), page 23, to the standard Brownian motion
in the space H?[0, 1]. By continuous embedding of Hélder spaces, the same con-

vergence remains true in H3[0,1] for 0 < 8 < a. Therefore it is enough to show
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that
Dyg =[Gl — —> 0, (4.28)
where
C —1/2( ¢ )Spl —1/2wpl'

Note that ¢, is a polygonal line with vertices at the points ¢, = k/n, 0 < k <n.
According to Lemma 3.1.1, page 21, the Holderian norm of such a polygonal line
is reached at two vertices, so

‘n 1/ (yr — y])‘

B
= 1< Shen k/n—j/m)f = <20 e o]

H —1/2( — b )Spl —1/2Wp1H

Using Proposition 4.1.1 and the assumption y,, o = op(n~/2(1—¢,) ') it suffices to

prove (4.28) when y,,o = 0. Then, by Lemma 4.1.7, maxi <<, |yx| = op(n*/?+7%),
so the convergence (4.28) is satisfied provided that
n/B
lim sup — < o0,
n—+00 ’}’n
which is equivalent to our assumption (4.27). O

Remark 4.1.10. If variance of innovations is equal to o2, then under conditions
of Theorem 4.1.8 we have

n"12(1 — ¢,)o et S gy (4.29)

n—o0

and under conditions of Theorem 4.1.9 we obtain

HS[0,1
n Y21 = ¢,)otSP! 0T,

n—oo

(4.30)

2

Remark 4.1.11. If variance ¢~ is unknown by Slutsky’s Theorem it can be re-

placed in (4.29) and (4.30) by its estimator defined by (4.7) if

~ P
0'2 —_— 0'2.

n—oo

And the latter result is true by Lemma 4.3.1.
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4.2 Functional central limit theorems for resid-

uals of nearly nonstationary processes

In this section we establish the convergence in Holder spaces of the polygonal
line processes WP = (WP (¢),¢ € [0,1]) build on the residuals (&)
[nt]

WE(t) .= 3 & + (nt — [nt))Epgp1, t€[0,1), n>0, WP(0)=0. (4.31)
k=1

We investigate the same two type of parameterizations as in previous section. The
residuals of the model (4.1) are defined by

B =Yk — Pnlih—1 = €k — @n — On)Yr-1 (4.32)

where <5n is the LSE of the coefficient ¢,, as defined by (2.2), page 7. We assume
that innovations (ej) are centered and Ee? = 1. The condition that variance is
equal to 1 is just for the technical simplicity, but all the proofs holds also for
Ee? = o2

The estimate of the Holder norm (3.4), page 21, helps us to reduce the investi-
gation of the asymptotic behaviour of the properly normalized random polygonal
line W}fl to the case where the initialization in (4.1) is given by y, o = 0. Indeed

let us associate to each autoregressive process (y, ) satisfying (4.1), the process
(Y1) defined by

Yk = Ynk — Drln.o- (4.33)

Then (y;, ;) satisfies (4.1) with initialization y;, ; = 0. Then we obtain

o~

gj =& — (¢n - ¢n)yn,j—1
and
é\; - gj + (¢n - %)szflyn,o-
So the above mentioned reduction may be formulated as follows.
Proposition 4.2.1. Let W}lﬂ’ be the polygonal line process obtained by substituting

in (4.31) the &;’s by the &;’s. Assume that n_I/QWEI’ converges in distribution in

H[0,1]. Then n=2WP converges in distribution in H[0,1] to the same limit
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-~

provided that ¢, (¢n — ¢n) = Op(1) and
n2c 0 = op(1). (4.34)

Proof. The stochastic process n=/2(W?" — WP is a random polygonal line T,.
According to representation (3.2), m, is determined by its vertices (I/n, V), 0 <
[ <n, Vo =0, where

-1 R ' 1 — I R
Vi=>, n (6, — Gn) Dl Yn0 = 7%”71/2(% — $n)Yn.0-
=0

Applying Lemma 3.3.2, page 24, from

|| || n~1/? |yn,0| ’an - an‘ ‘gbfL - gbln‘
. = max — ——— g
“ 1— o, 1<i<k<n |k/n —1/n|
ol [Bn = 0a (o) — ()
B 1— ¢n 1<i<k<n  |k/n—1/n|"
we obtain
~1/2 T (—=nlng¢y)
Il < 072 ol [0 = 6] ==
Assuming that ¢, (¢ — ¢n) = Op(1), we obtain
—1n o,
Il = 026" ol T2 0 1),

1_¢n

Finally, as ¢, tends to 1, for the two models under consideration, this gives
17ully = Op(n'2c,  ynol)s 0 — o0

Since n~Y2WPY converges in distribution in H2[0,1], we deduce n~Y2WP con-
verges in H2[0,1] to the same limit distribution provided that n'/%c 'y, =
OP(]_). ]

4.2.1 First type model

For the process W,ﬁ’l defined by (4.31) we prove invariance principle and we

find necessary and sufficient condition for it.

Theorem 4.2.2. Let a € (0,1/2). Suppose that (yx) is generated by (4.1),
¢n = /" and v < 0 is a constant. Moreover assume that (g) are indepen-

dent, identically distributed random variables with Eeg = 0 and Ee3 = 1 and
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Yno = op(n/?). Then

e T e -1 (4.35)

if and only if condition (3.11) (page 23) holds. Here A = [ Uz(t)dt, B =
Jo U, (t)dW (t) and J(t) is an integrated Ornstein-Uhlenbeck process defined by
(4.5).

Remark 4.2.3. If variance o2 is known then under conditions of Theorem 4.2.2,

we obtain
e e L (4.36)

if and only if condition (3.11) holds.

Remark 4.2.4. If variance is unknown by Slutsky’s Theorem it can be replaced
in (4.36) by its estimator defined by (4.7) via Phillips [1987] result (4.8).

For the proof of the Theorem 4.2.2 we need the following technical lemmas

whose proofs are deferred to subsection 4.3.3.

Lemma 4.2.5. Let N,,, D,,, N, D be real valued random variables with D, and
D non negative. Assume that P(D = 0) = 0, P(D,, = 0) tends to 0 and that
(N,, D,,) converges in distribution on R? to (N, D). Define

. g—z on {D,, # 0}
0 on{D,=0}

Then ®,, converges in distribution to N/D.

Lemma 4.2.6. Suppose that the process (yi,) is defined by (4.1) with ¢, = /™,
v <0 and yo = 0. Let () are i.i.d. random variables with mean 0 and satisfies
condition (3.11) (page 23). Define

Apo = n? Z yi—la
k=1
. 2
D(n~ V2Pl = /1 <n_1/2W£1 + 7/ e(r_s)vn_l/QWr?l d5> dr.
0 0
Then

[D(n 2P = A o| = op(n ™). (4.37)
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Lemma 4.2.7. Suppose that the process (yi) is defined by (4.1) with ¢, = '/,
v <0 and yo = 0. Let () are i.i.d. random variables with mean 0 and satisfies
condition (3.11) (page 23). Define

n
o —1
Buo:=n""Y enyp_1,
k=1

1 ! ’
N<n71/2Wp1> — 5 (nl/ZWT;L)l(l) +’Y/ e(lfs)’ynfl/ZWT;L)l(@ dS)
0
1 T 2 1
_ 7/0 (n—l/QW}l’l(T) + 7/0 e(r_s)vn_l/QWSI(s) ds) dr — 7
Then

IN(Wy) = Bl = op(n™). (4.38)

Proof of theorem 4.2.2. Proposition 4.2.1 and assumption ¥, o = op(n'/?) enables

us to reduce the proof to the case where y,, o = 0.

To prove sufficiency, at first, we express WP in terms of WP and SP!:

nfl/QWé’l _ nfl/ZWT;Lﬂ N n71/2(($n N ¢n)551

—1 n
N g EkYk—1

_ o —1/27pl _
=n wk STy
k=1 Y1

. 3/28P (4.39)

Note that according to (2.2), page 7,

~ XYY
J=1 y]—l

1
g, = N3k EkYk-1
n= T 2

n=2 31 Y

Next, using U, definition (see (3.1), page 19) one obtains
! L/ Lo
/0 U (r) dW(r) = <U7(1) - 27/0 U2(r) dr)
(see for example Phillips [1987]), so we notice that
T(W)=W — A'BJ

where T is the following operator

N(x)

T:H[0,1] — HS[0,1]: z+— T(x):=2—
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here
NG = 5 (x0) 4 [ e -a(s)as)

1 r 2 1
— / (x(r) + 7/ elr=s1z(s) ds) dr — =
0 0 2
1 r 2
D(x) ::/ (x(r) —i—’y/ e (s) ds) dr
0 0
t r
F(z)(t) == / <x(r) + ’y/ e (s) ds) dr, te€]0,1].
0 0
for x € H2[0, 1]. It is obvious, that the domain of operator T is

Hp:={x € H.[0,1] : D(x) # 0}.

Further note, that Hr is the Holder space deprived of the zero functions.
Indeed, from the equations D(z) = 0, recalling that z is a continuous function on

0,1], we obtain for every r € [0, 1]

x(r) + V/DT ez (s)ds = 0. (4.40)
Thus any continuous solution x of D(x) = 0 satisfies

z(r) = —vye' /OT e”x(s)ds. (4.41)

Further from the continuity of x follows, that the right hand side of (4.41) is
obviously derivable, consequently z is itself derivable and for all » € (0,1) we
obtain z/(r) = 0. This implies that x is a constant on [0, 1] (it is continuous at 0
and at 1). Conversely, let r tend to 0 in (4.41). Then by continuity of 2 we obtain

x(0) = 0 and since z is a constant, z:(r) = 0 for every r € [0,1]. Thus we obtain
P(W € H2[0,1] \ Hy) = P(W = 0).

Next, we observe, that if W = 0 it follows that W (1) = 0, i.e., event {W = 0}
is included in the event {WW (1) = 0}. Recall, that W(t) ~ N(0,t), so W(1) is a
standard Gaussian random variable, then P(W (1) = 0) = 0 and this gives

P(W = 0) = 0. (4.42)
We obtain the convergence (4.35) by proving that

(a) T is continuous operator on Hy and P(WW € H2[0,1] \ Hr) = 0,
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(b) [nt2Wp = T2 2w —— 0.

a N—o0

We start with the continuity of T'. Operator T is the difference of two opera-
tors. The first one is the identity on H¢[0, 1], obviously continuous. The second

one is

T(x):= -F(z), xe€ Hp.

First we show that N : H%[0,1] — R and D : H[0, 1] — R are continuous. Let
us check first the continuity of D. By triangular inequality of L, norm applied to
the function f(z)(r) = z(r) + v f; ")V 2(s)ds,

1/2

D2 - 02 = ([ @ an) - ([ e o)

9 1/2

< ( [ (@) =sn + [ )~ yis)) ds) dr)

</01 (MT) v /0 el [z (s) — y(s)| ds)2 dr> )
o=yl (5 - 1))1/2.

Here we remark that if h € H2[0, 1], for every ¢ in [0, 1]

IN

IN

[h(®)] < [R(O)] + [A() = A(0)] < [R(0)] + wa(h, 1)i* < [R(0)] + walh, 1),

whence ||h]|, < ||h||,. Applying this to h = z — y gives finally

1 1/2
o 2] = () e,

This implies that D'/? is continuous on H2[0,1], and so is D. Using the same
arguments, we obtain the continuity of NV on H[0, 1].

So the ratio N/D is continuous as ratio of two continuous functions except on
the subset of H?[0, 1], where D(x) = 0, that is at the null function on [0, 1].

As F is linear, it is enough to show its continuity at 0. Consider

IF@). = [F@)0)] + sup L&O=F@)E)]

0<t’'<t<1 |t - t/|a
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Noting ||lz|, < ||z|,, we see that

F(2)(t) — F(z)(#)] = /tf (x(r) o [ nags) ds) dr

< (L4e") flzfl, [t =2

Since F'(z)(0) = 0, we obtain
1E (@)l < (T+ye) [zl (4.43)

which gives the continuity of F'
The continuity of 7' on Hy follows easily from the continuity of N, D and

F'. Finally, operator T" is continuous on Hrp as the difference of two continuous

operators.

As the operator 7' is continuous on Hr and (4.42) holds, also the Holderian

invariance principle holds (see (3.10), page 23), we have

T(n~ 28 20 (W) = W — A7 BU, (4.44)

by continuous mapping theorem (for details see Billingsley [1986], Theorem 5.1)

Next we check that Hn’lﬂﬁ\/ﬁ’l - T(n’l/QWé’l)Ha goes to 0 in probability. Due
to approximations of n™' °7_, ery,_1 and n™2 37_, y2_, by integrals (see Lemmas
4.2.6 and 4.2.7)

1

1 2
N (n71/2W’$1) — 5 <n1/2W51(1) + ’}// e(178)7n71/2W£1(8> dS)
0

B ’y/ol (n_l/ZWEI(T) i 'Y/OT e(r—s)vn—1/2W£1(8> ds>2 4 ;’
D (n71/2W£l) — /01 (nl/QWf:l(T) +7/0?" e(rfs)vn71/2W£1(8) ds)2 "
we obtain
n! Zn: ExYp-1 =N (n_l/QWé)l) + Ry
k=1

n=2 Z y? =D (n_1/2W}fI) + R,
k=1

where R, = op(n~®) and R, = op(n~*). We have also

n=328P(t) = F(n V2W(t) + R,, te€0,1]
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where ﬁn = op(n~®) (for details see the proof of theorem 4.1.3, page 33).
Further setting W,, := n~"/2WP! and writing formally

= PWP = W, — w : (F(Wn)(t) + fzn) :
DW,) + R,

we have formally

HF(Wn) ‘R,

N(Wn) + Ry, N(Wn) R

D(W,) + R, D(Wn)

N(W,)
D(Wn)

e -z, <

«

|

(e «

For the moment, such writing is just formal because here arises a problem :
the denominators D(W,) and D(W,) + R, may vanish with a positive probability
(unlike D(W)). This lead us to introduce the random variables ®,, and ®,, defined
by

P, = n
0 on {D(W,) =0}

b | B o DOV #0r o [T on (D) + Ry 7 0}
0 on {D(W,) + R, = 0}

Consider the event {D(W,) = 0}. It can occur if and only if the polygonal
line is the null function on [0, 1], which is equivalent to ¢; = 0, Vi € {1,...,n}.
Putting p := P(g; = 0) and discarding the degenerated case p = 1, we obtain by
independence and identical distribution of the innovations that P(D(W,,) = 0) =
p™. So for every p € [0,1),

P(D(W,)=0) —— 0. (4.45)

n—oo

Coming back to the decomposition of n'/ 217[\/};’1 and modifying the definition of
T(W,) as T(W,,) = W, — &, F(W,,) (it suffices to define T'(0) := 0 for that), we

can recast the estimate of Hn1/217[\/,§’1 - T(Wn)H as
[0

[ — ()| < |@, - &, |[FOV,) + B, R,

07

+ [P

By continuous mapping, (N(W,,), D(W,,)) converges in distribution in R? to
(N(W),D(W)) = (B,A). Accounting P(D(W) =0) = 0 and (4.45), lemma 4.2.5
gives us the convergence in distribution of ®, to B/A and in particular ®,, is

stochastically bounded.

R,

converge to 0 in probability and ||F'(W,,)

«

bounded, it remains only to check that ’@n — (fn‘ converges to 0 in probability.
48
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Note that on the event {D(W,) # 0} N {D(W,) + R, # 0},
Rl
[D(W,,) + R,|

N(W,)
D(W.,)

@, - @, < Rl +’
[D(W,) + Ry

and that estimate remains true on the whole probability space if we redefine by 0
the fractions whose denominator vanishes in the above formula. So the problem

reduces to proving that

| ) — njoof() and ‘Rn’ — rHPOO
[D(W,) + Ry [D(W,) + Ry

\

We detail only the first convergence. Let us fix an € > 0, we want to prove that
P(|R,|/ ‘D(Wn) + én‘ <€) tends to 1. Let us fix an arbitrary § € (0,1). Since
the distribution function of D(W) is null and continuous at 0, we can find n > 0
such that P(D(W) < n) < ¢ or equivalently P(D(W) > n) > 1 — 6. There is
no restriction in assuming that 7 is itself a point of continuity of the distribution
function of D(W). Hence by convergence in distribution of D(W,,) to D(W),

there is an integer ng such that
Vn >ng, P(D(W,)>n)>1-—20.
Next we can find n; > ng such that
VYn >ny, P <’]-En‘ > 727) < 0.
We can find a ny > n; such that
Vn >ny, P (|R.| > ne) < 6.

From this we deduce that

P %<2eandD(Wn)>O >1—40
DOV, + Ry

and recalling that P(D(W,,) = o) tends to 0, this establishes the expected con-
vergence in probability.
And finally the convergence (4.35) is established.

Next step is to prove the necessity. From (4.35), the sequence (n=Y/2IWP) is
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tight on H? [0, 1] and this implies that for every ¢ > 0,

lim sup P (wa(n’l/zﬁ\/}fl, J) > 6) =0,

6—0 n>1

see e.g. Theorem 13 in Suquet [1999]. This clearly entails that

Observing that

n_1/2 maxi<g<n ’é\k’ . n71/2 maxij<g<n ‘W}L)l(k/n) - Wﬁl((k - 1)/”)’
1 - 1

ne n

< Wa (n_l/QVT/,?l, 1) :
n

we obtain n~Y/2 max|<j<, |&x| ﬁ 0.

Next decompose &, = e — (q/ﬁ; — ¢n)Yk—1. Denote by Yne] the step process
Yy, t € [0,1]). Recall that by Phillips [1987] Lemma 1, part (a), n="2yj,
converges in distribution in DI0, 1] to an Ornstein-Uhlenbeck process. As the
supremum norm of such a step process is obviously reached at one of the points
t = k/n, 0 < k < n, this convergence implies the stochastic boundedness of
e Notice, that

maxi<i<n ‘n_l/ka—1’ = Hn_l/Q?/[m}

a—1/2 0T ‘ < a—l‘ . ‘ ~1/2 ‘ P
n 121]?;(” (an ¢n)yk—1 SN n((bn ¢n> 1%]?3)% n Yp—1 m 07

because from Phillips [1987] (Theorem 1, part (a)) ‘n(g/b; - (bn)‘ is also stochasti-
cally bounded. It follows then

n®? max |ey| —— 0,
1<k<n Nn—00
which gives the condition (3.11), page 23, due to independence of (e). ]

4.2.2 Second type model

For the second type model we obtain the result of convergence n="/ QW}L’I to
Wiener process in H3[0,1] for 0 < # < a assuming additionally some rate of

divergence for ~,.

Theorem 4.2.8. Suppose (y, ) is generated by (4.1) and ¢, = 1 — v, /n, where

(7n) is a sequence of nonnegative numbers, v, — oo and v,/n — 0, as n — 0.
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Assume also that the innovations (gy) are i.i.d. and satisfy condition (3.11):

1 p —
Jim ¢ P(leg] >t) =0

for some p > 2. Puta:%—%. Then for 0 < 8 < a,

n~1/2e! 117:[0;] W, (4.46)
i o = ol(1 — 6,)2) and

lim inf y,n” 755 > 0. (4.47)

Remark 4.2.9. If variance of innovations o is known, then under conditions of

Theorem 4.2.8, we obtain

HS[0,1]

n—oo

n_l/chlVV}f1

(4.48)

Remark 4.2.10. If variance is unknown by Slutsky’s Theorem it can be replaced
in (4.48) by its estimator defined by (4.7) (page 33) via Lemma 4.3.1.

Proof of Theorem 4.2.8. Condition (3.11), page 23, (see Rackauskas and Suquet
[2004b]) gives the weak convergence of WP defined by (3.8), page 23, to the
standard Brownian motion in the space H2[0,1]. By continuous embedding of
Hoélder spaces, the same convergence remains true in Hg[0,1] for 0 < g < .
Therefore to obtain (4.46) it suffices to prove that

Ay g = Hn’l/QWSI — n’l/QW};lH SN}

B n—oo
We first establish the useful inequality:
sz, < 2= [Iwa, + 20 mas ol (149

where SP! is defined by (4.2), page 31. We have for 1 < j < k < n,

SEU(k/m) = S /n) = (1= 6u) ™ (WEN(K/) = WE(i/n) — e + v5)

Recalling that the Holder norm of a polygonal line is reached at some pair of

vertices (see Lemma 3.1.1, page 21) and that SP'(0) = 0, we have

I |SEL (I /n) — SE(j /m)|
R N N
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(= 6™ (WE (/) — WG /m) — e + 33)

= max

1<j<k<n \k/n — j/n|°
[ e WEGRD =WRGM] el
= 4, |1<i<ksn k/n— j/n|° 1<i<ksn |k fn — j/n|”
_ MWPIH . |yk—%|6]
1<j<k<n |k /n — j/n|

This leads to (4.49) via the elementary estimate

lyr — vl p
—— <2 4
1<j<k<n |k /n —j/n|5 > 4n 1@35 |Yx| - (4.50)

Note, that VVpl WP+ (¢, — &n)SEI, see 4.39, page 44, thus we have
Ang=n""?¢, — bl HS};lHﬁ.

By results in Giraitis and Phillips [2006], there is a positive random variable M
not depending on n, such that |¢, — ¢n| < Mn=141/2 so accounting (4.49), we

n )

can bound A, g by:
/ 1/2 pl B
Ang < Mn~ (HW H + 2n 1rgl?<xn|yk|) .

As n~1/? HW}l’lHﬁ is stochastically bounded, the proof of the Theorem is finally
reduced in checking that

—1/248,—1/2
n T 7 max |yl —Wo 0.

1/2

By Lemma 4.1.7, maxi<x<n |yx| = op(n'/?v, %), so the above convergence is satis-

fied provided that
/)/LB

llm sup m
In

n—oo

< 00,

which is equivalent to assumption (4.47). O

4.3 Supplementary results

In this section, we provide supplementary results. At first we give the proof,

2 is consistent for the second type model. Further

that estimate of the variance &
we prove the maximal inequality (Lemma 4.1.7). At the end of this section we

give the proofs of the technical lemmas used in the proof of Theorem 4.2.2.
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4.3.1 Consistency of the estimate of variance

Here we show that for the second type model defined by (4.1), the estimate of

variance is consistent.

Lemma 4.3.1. Suppose (yx) is generated by (4.1) and ¢, = 1 — 7, /n, where ~,
is sequence of non negative numbers, v, /n — 0 and 7, — 00 as n — 0o. Assume
also that the innovations (gy,) are i.i.d. random variables with Bej, = 0, Eei = o2,
Variance estimator 62 is defined by (4.7) (page 33). Then

5 —— o’ (4.51)

Proof. We can rearrange (4.7), page 33, using (4.32), page 41, in the following

way
60 = -3 E = ek~ (00— ) Do ekyhr + (0 — ) Do vk
k=1 k=1 k=1 k=1

By the weak law of large numbers we have

n

e (4.52)

n—00
k=1

Further we will use Giraitis and Phillips [2006] results:

1/2

n oy R
1— $2)1/2 n
<n1¢/7;> > EkYk- % (0, o) (4.54)
k=1
1-— 31 n y2 L} 0_2 (4 55)
n el k—1 n—00 .

So using (4.53) and (4.55) for L(¢, — ¢,)2 S0, y7_, we obtain

—

i(¢n - ¢n)2 Z yl?:—l B 0. (456)

n—00
k=1

Also for %(qgn — On) Yobq €kYk—1 using (4.53) and (4.54) we find

2 n
5(% —fn) D ERYr1 ﬁ 0. (4.57)
k=1
Thus (4.52), (4.56) and (4.57) gives us (4.51). O
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4.3.2 Maximal inequality

Here we give a detailed proof of Lemma 4.1.7, page 38. It is convenient
to start with the following weaker result which already contains the estimate

maxi<k<n |yk| = Op(ﬂl/z’}/;a) if £ |€0|p < Q.

Lemma 4.3.2. Let (n;);>0 be a sequence of i.i.d. random variables, with Eny =0

and Eno|® < oo for some ¢ > 2. Suppose ¢, = 1 — 2= where v, — oo and

Yn/n — 0, as n — oo. Define
k .
5= 3 o, (4.58)
j=1

Then there exists an integer no(q) > 1 depending on q only, such that for every
n > no(q), Yn > Vno(q), and every A > 0,

ACe"E Jrpo|”

T, (4.59)

P (max |zk| > /\> <
1<k<n
where Cy is the universal constant in the Rosenthal inequality of order q. Choosing
A = n'2y /=127 for arbitrary T > 0 provides:

_ 1/2,1/q—1/2
max |z| = Op (n!/3/7712)

The right hand side of (4.59) becomes smaller as ¢ increases, subject to an
optimal choice of A. It seems difficult to say if the bound (4.59) is sharp. We
can nevertheless remark that in the boundary case, where 7, = n and so the z;’s
become i.i.d., our bound would lead to the estimate maxi<p<y, |2x| = Op(n'/9)

which is optimal in this case.

Proof. The idea of the proof relies on the following observation. For a < k < b,

2| = &L < ¢

k
> én'n;
j=1

k
> én'n;
=1

Here {Zle é,7nj, a < k < b} is a martingale adapted to its natural filtration
and if we repeat this procedure with regularly spaced bounds a and b, we keep
the structure of a geometric sum for the coefficients ¢¢. To profit of these two
features we are lead to the following splitting:

n=MK, max |z|= max max |2k| »
1<k<n 1<m<M (m—1)K<k<mK
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where M and K (not necessarily integers) depend on n in a way which will be

)

> o 7n;

1<j<mK

precised later. Applying this splitting we obtain first:

m—1)K
P(lrg?g(n\zk\ > >\> = Z P( 1<k< ~K Z(b i

1<m<M

Then using Markov’s and Doob’s inequalities at order ¢ gives

q

CZ51(11(77171)1(/1';”

v where 7T, :=

P (il >2) < 5

1<m<M

(4.60)

To bound T,,, we treat separately the special case ¢ = 2 with a simple variance
computation and use Rosenthal inequality in the case ¢ > 2. In both cases, the

following elementary estimate is useful.

[mK] [mK]—-1
Z gb;jq — qg;[qu] Z gbgﬂK]q—jq — ¢T—L[qu] Z #Lq
1<j<mK j=1 =0

—[gmK] —qmK
_ o i
T 1—-9fF T 1—0¢,

recalling that 0 < ¢,, < 1, whence,
S o< o (4.61)

1<j<mK

Now in the special case ¢ = 2, we have

k
T,, = Var (Z wm) =En; > ¢,%,
j=1

1<j<mK

so by (4.61),

T < 0, NEi2, (4.62)
Tn

When ¢ > 2, we apply Rosenthal inequality which gives here

a/2
T < C, | (B )Q/Q( 2 qsz) +Eml” > 9,7

1<j<mK 1<j<mK

2
As g > 2, (]En%)q/ < E|no|?. Also we may assume without loss of generality that
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E

< (i)Q/Q. Then using (4.61), we obtain

Tn

>1,s0

n
Tn

)

T < 2C,E [1|* n?/?n;, 42 5 (4.63)

Note that (4.62) obtained in the special case ¢ = 2 can be included in this formula
by defining Cy := 1/2.
Going back to (4.60) with this estimate, we obtain
2, -q/2y— -K
P (s 241> ) < 20l S g

< 2C,E |no|* 92, PN M ¢, K.

Now, choosing K = ,yﬂn, we see that ¢ %9 converges to e, so for n > ny(q),

¢ K9 < 2¢4. Then (4.59) follows by pluging this upper bound in the inequality
above and noting that M = ~,. O]

Remark 4.3.3. Under assumptions of Lemma 4.3.2 there exists a constant ¢,

depending on ¢ only, such that for every n > 1 and every A > 0

cgE |mol* a/2.1—q/2

P (sl > ) <
Remark 4.3.4. The Lemma 4.3.2 can be proved by applying Hajek-Rényi type
inequality (e.g. see Petrov [1975] section II1.5, paragraph 6). In our opinion, the
method applied in the proof of Lemma 4.3.2 seems more suitable for generalization,

e.g. for dependent innovations.

Proof. of Lemma 4.1.7. It is convenient to rewrite the assumption (4.21), page
38, as

) ft) — 0.

tp t—o0

P(|€0| > t) =
Moreover

f*(b) :=sup f(t) — 0.

th b—oo

In the special case where p = 2, (4.21) is replaced by Ee? < oo, but the above rep-
resentation of P(|eg| > t) remains valid since f(t) = t*P(|eo| > t) < E(e§1{jco>13)
by Markov inequality and this upper bound goes to zero by dominated convergence

theorem.
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Let us fix arbitrary positive numbers ¢ and €, and introduce the truncated

random variables

I ~

€5 = €5 1{j;1<bn) &5 =¢; — Eej
n__ . = M "

€; = EjL{le;|>bn} g; =¢; — Eey,

where the truncation level b,, goes to infinity at a rate which will be precised later.
Since Ee; = 0, ; = &; + &;. Now let us recall that
Ye=D_ 0 lej = Zqﬁk (& +E)) = Z¢k_’f33 +2 O =+,
j=1 j=1 j=1 j=1
where 23 and Zj are defined by substituting ¢; by &} and & respectively in the
definition of z, given by (4.58). Then for positive A = \,,, whose dependence on

n will be precised later,
/ /!
P <1r£1]?§xn ly| > 2)\) <P + P (4.64)
where

P =P (max 12| > A) P!:=P (max |Zy| > >\> :

1<k<n 1<k<n

To bound P), applying Lemma 4.3.2 to 2}, gives for any ¢ > p

4equE’go‘q a/2.1—q/2 20261, K|
n* "y <

/ q/2.1-q/2
Pn S )\q n — )\q n /yn )

since by elementary convexity inequalities, E|&}|? < 27E|e(|?. Now
/ g1
]E|€O|q :/0 qti P (|€0’ 1{\€j|Sbn} > t) dt
bn bn
:/ qt ' P(t < |go| < by,) dt g/ qt* ' P(|eo| > t) dt

_/ tq lf dt< QH.fHoobq p
q—7p

Going back to P/ we find that

20421gC, ||l n?2A-2bg

P <
" q—0p A9

Now we choose A = n'/2¢1/P=1/25 ¢ = p + 1 and

by, = 6P eyl/P (4.65)
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with arbitrary € > 0. Recalling that =, goes to infinity, the same holds for b,.

This choice gives

P =P <n_1/27a max |Z,| > 6) < Cpe, (4.66)

" 1<k<

with C), = 2¢73eP™ (p 4+ 1)Cppt || f o
To bound P”

n?

//

we apply Lemma 4.3.2 with z, = and ¢ = 2 (keeping the

above choices of A and b,, which do not depend on ¢):

7 8212/p "
Py < S PR 0)%.

In the special case where p = 2, this reduces to

Se?
P < ?E@gl{laobbn})

and this bound goes to zero by Lebesgue’s dominated convergence theorem, since

b, defined by (4.65) goes to infinity. When p > 2, we estimate E(e))? as follows.

B = [ 0P (ol > 1) d

bn 00
:/ 2tP(\80]>bn)dt+/ 2 P(|zo| > 1) dt
0 bn

2

= BP(zol > ba) + [ 200 A< FOINT 4 ST )

< p25(p+12p)2p /plf( ).

Finally, we see that there is a constant C§_, such that for p > 2,
Pl < G, I (b, (167
Going back to (4.64) with (4.66) and (4.67), we obtain

0, = P( 1/2,.)/04 max kal > 5) < C;e+05€pf*(b )

1<k<n

This gives lim sup,,_,, @, < Cje and as ¢ is arbitrary, so (4.22) (page 38) follows.
[

4.3.3 Lemmas for the proof of theorem 4.2.2

In this section we give proofs of Lemmas 4.2.5, 4.2.6 and 4.2.7.

Proof of Lemma 4.2.5. We note first that since P(D = 0) = 0, the limiting ran-
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dom variable N/D is well defined (up to an event of probability 0). We will check
that for each real t such that P(N/D = t) (i.e. for each point of continuity of
the distribution function of the claimed limiting distribution), P(®,, < t) tends
to P(N/D <t).

For such a t we clearly have P(N —tD = 0) = 0. This combined with the
convergence in distribution of (N,, D,) to (N, D) and continuous maping gives

the convergence:
P(N, —tD,, <0) - P(N —tD <0).

Now

P(CIDngt):P(Ogtanan:O)—irP(g"gtanan>0)

=o(1)+ P(N, —tD,, <0 and D, > 0).

Noting that

|P(N, < tD,)— P(N, —tD, <0 and D, > 0)| < P(D, =0) = o(1)
we deduce that P(®,, <t) tends to P(N/D < t). O

The next lemma is an auxilliary result used in the forthcoming proof of

Lemma 4.2.6.

Lemma 4.3.5. Suppose that the process (yi) is defined by (4.1) with ¢, = /™,
v < 0 and yo = 0. Let (1) be i.i.d. random variables with mean 0 and satisfies
condition (3.11) (page 23). Define

-1 o
Vo(l) = W, <n> 4y / eI, (5) ds (4.68)
0

forl <n. Then

_ 267 @ 1 24+ vleY
2y = V)] < Wl 5 S (W 1) + B a9
n n n n

Proof. Denote

-1
Vi = n*1/2yl,1 S V5 Z e(lflfj)'y/ngj.
j=1
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n

-2 .
Y1 = WP <H> 1+ 1 =1 mpy (J)
n n

Noting that ¢, = Wﬁ’l (%) _ ng (z

i) we can express
2, 1-2 :
Y Un S (=1-j)y/nppol (9)
+ 5> e whi=1,
2n* " \n

n =

where u,, is defined by (4.13), page 35, and u,, — —1, as n — oo. Then we define

2

1— .
Vig =W, L —1 + b e(l—l—j)v/an (]>
’ n n

n =
and for the approximation error we obtain the bound
'y e’

Vie = Vial < [[Wall,

Further we approximate Riemann sum by integral (which is exactly (4.68))

Vo(l) == W, (l_ 1) +7/ F=NW(s) ds.

Now we estimate the error. For any f € C|0, 1], we have

TR ()= [ e

_ Z/”” ( (””) —f(s)) ds—/(l/" f(s)ds, (4.70)

1-2)/n
whence
ST () = [ s < 2ER) 1l a71)
Moreover,
if feH[0,1], wo(f,0) < walf,d)0%. (4.72)
If f(t) = g(t)h(t) with g of class C' and h € CJ0, 1],
wo(gh,6) < llgllee wo(h, 0) +[19'll o [Tl O- (4.73)
So from (4.71)-(4.73) we obtain the uniform bound
Valt) = Vil € (Wi, 1)+ BN gy
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Proof of Lemma (4.2.6). Using lemma 4.3.5 we approximate A, o :=n"2>}_, yi_,
by

1™ k—1 Eo 2
A =-S5 (w, (222 / (E=1 (s)ds | .
o (e () o [ o

The approximation error is bounded by

Aus = Auol < pax |02y = Va)| (g [0 20| + e [Va(h)1).

(4.74)

From Lemma 4.3.5, maxj<x<y ‘nfl/kaq - Vn(k)’ = op(n™®). As V,(l) is the
image of W,, by a functional continuous on H?, from continuous mapping theorem
and Hoélderian invariance principle, maxj<x<y, |V, (k)| is stochastically bounded.

Also by Phillips [1987] max;<k<n ‘n‘l/ zyk,l‘ is stochastically bounded.
Further A, ; might be approximated by A, and the bound of approximation

error is
1
‘An - An,ll é w <.f7 )
n

where f(r) := (W,ﬁ’l(r) + 5 7 er=WPL(s) ds)2. Denote f(r) = g*(r) and g(r) :=
WP (r) + 7 [ =7 WPl(s) ds. Then

1 1 1 2 1
w(fa) Siawoz <f7) §7‘|g‘|oowa (ga>
n n n n n
2 1 1
< = Wl (o (W o) +
n n nt—

So we obtain |A,, — A, 0| = op(n™?). O

W), @)

Proof of Lemma 4.2.7. By squaring equation (4.1), page 31, subtracting y?_, from

both sides and summing both sides over k we obtain:

Yo = ( /" — Zyk 1_|_2€’Y/ Zyk 15k+28k
Then multiplying everything by n=! we get:

n 1 : “Un ¢
=20 ypoier = ey ( “lyr— Zyk 1= Z«i-vngzyil) 7
k=1 k:1 k=1
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where u,, — —1, n — oo. Further we can approximate B, ; by

1 - n
B = or/n <n e - =5 Z Ye—1 — Zi)
=1

and the bound of the approximation error is

Zyk 1

|Bn,2 n1| <

7

TL*)OO

because by Phillips [1987]

0, as n — oo. Further B, » we can approximate by

o 1 12 2y -
Bn,3 = e'Y/" (n n — 72222 )

In this case for the approximation error we have

12 9
n 25k

D y,%_l‘ is stochastically bounded on R and % —

1L>O

n—oo

‘Bn,S - Bn,2| S

by the weak law of large numbers since EcZ = 1. Next we approximate B, 3 by

Bn4 - nilyi % Z

TL

As ‘n_l 2 YR - 1’ is stochastically bounded by Phillips [1987] Lemma

1, we obtain

Lﬂ).

|Bn,4 - Bn,3| — oo

1
n- yn—*zyk1 |.‘_e”f/”

Finally, using Lemma 4.3.5 we obtain

1

1 2
B.= <Wn(1 oy / 11, (s) ds)

—7/( +7/ TSWW()dS) dr—;

The bound

Ll iye 2 b os) ?

3 (n™yn)” — (Wn<1) +7/ e T, () ds)
0

1 7 1 T 2

75 Vi _/ (Wn(r) + 7/ =W, (s) ds) dr

n? ‘= 0 0

’Bn - Bn,4| S

+7
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Further

g

12 1 r L 2
>R /0 (Wn(r)+7 /0 NG WWn(s)ds) dr
k=1

is bounded by (4.74) and (4.75) and

1

1 2
3 072t = (WalD) 47 [ =W, () ds)
0

is bounded by (4.74).

63



Testing the epidemic change with

statistics built on observations

In this chapter we investigate some epidemic change in the innovations of the
first order nearly nonstationary autoregressive process. For 0 < o < 1/2, we build
the a-Hoélderian uniform increments statistics based on the observations to detect a
short epidemic change in the process under consideration. Under the assumptions
for innovations we find the limit of the statistics under null hypothesis, some
conditions of consistency and we perform a test power analysis. We also discuss

the interplay between the various parameters to detect the shortest epidemics.

Assume we are given an n-sample y,, 1, ..., Ynn generated by
Ynk = ¢nyn,k71 + € + Ap k= 17 con, n2 17 Yn,o = 07 (51)

where the parameter ¢, € (0, 1) satisfies ¢, — 1, as n — oo, (gx, k > 1) are i.i.d.
centered, at least square integrable random variables, (a, ) is a sequence that will

be precised later. Throughout this chapter, the parameter ¢, is supposed to be
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known. The aim of this chapter is to propose tests for the null hypothesis
H()I an71:'--:an7n:0
against the epidemic or changed segment alternative:

Hy @ thereexist 1<k;, 1<m; <n suchthat

Ank = anlﬂ;j(k?), a, #0, 1<k <n,
where I is the epidemics interval

I'={k+1,...,m}

n

and 1y denotes its indicator function. Under that type of alternative the values
ay, during the period I} are interpreted as an epidemic deviation from the usual

(zero) mean and £} = m} — k is called the duration of the epidemic state.

To investigate such hypothesis, we build the test statistics

Ta,n = Ta,n(yn,h e 7yTL,TL>7 (5-2)

where T, (X1, ..., X,) is defined by (2.11), page 18:

k+¢ />
T,, = max { % max E Xj——g X;l.
’ 1<4<n 1<k<n—¢ | . n s
j=k+1 7j=1

To motivate such choice, rewrite the model (5.1) in the following way

Yne — Tnge = On(Ynk—1 — Tnk—1) + €k,

where
k=1 k A
Tok =3 Phanp—j = > O a,;. (5.3)
=0 j=1
Define
Znk = Ynk — Tnk- (54)

Note that (z,) is a nearly nonstationary first order autoregressive process and
satisfies the null hypothesis. So, due to (5.4), we have the epidemic change problem
where a sequence of dependent random variables satisfying the null hypothesis is

shifted by a deterministic sequence. This is the reason why statistics (5.2) seems
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natural in this situation.

We study limit behavior of T, an for @ = 0 (Levin and Kline statistics) and
a € (0,1/2 —1/p), p > 2 (Rackauskas and Suquet statistics) trying to see how
the use of Holder weighting allows detection of shorter epidemics than the use of
To,n- Of course the range of detection will be smaller here than in the case of i.i.d.
samples. If @ = 0, then the innovations are required to have finite second moment.

For another case the innovations satisfy the stronger integrability condition (3.11):
1 p —

Here we also study two types of first order nearly nonstationary models with
the coefficient ¢,, close to 1 in the model (5.1). The first type model corresponds

to the coefficient
bn ="~ <O. (5.5)

The second type model corresponds to the coefficient

¢n:1—ﬁ where ’yn—>ooandh—>0 as m — 00. (5.6)
n

n

As we shall see the limit behavior of fam statistics differs for these two types of

models.
5.1 Limit behavior of test statistics under null
hypothesis

For any function f € C[0,1] or f € H2[0,1] and 0 < o < 1/2 set

Tooolf) = sup |f(t) — f(s) = (t — s)f(l)\.

0<t<s<l1 |t — |«

(5.7)

5.1.1 Levin and Kline statistics

We start the investigation from Levin and Kline statistics TO,n- First let us
consider the model (5.1) under null hypothesis Hy with the coefficient ¢,, = /™,
v < 0. Under the assumption of square integrability of innovations, we obtain that
the limit of such statistics is a functional depending on an integrated Ornstein-

Uhlenbeck process.
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Theorem 5.1.1. Under Hy, for the first type model defined by (5.1) and (5.5),
n"e 7 Ty —— Thoo(J), (5.8)

where 0? = Ee? and J is an integrated Ornstein- Uhlenbeck process J(t)=[3U, (r)dr,
t €10,1] with U, defined by (3.1) (page 19).

Proof. Consider the functionals g,, and g defined on the continuous function space

C[0,1] by

gn(z) == max Iy(z,i/n,j/n), g(z):= sup Iy(x,s,t), (5.9)

1<i<j<n 0<s<t<1

where
In(z,s,t) == |z(t) —x(s) — (t —s)z(1)], 0<t—s<1l

By the special case of Lemma 3.3.3, page 25, where o = 0, the functionals g, and
g are Lipschitz on Gy = {z € C[0,1] : 2(0) = 0}. Note that

Tom = 9a(SE):  TooolJ) = 9(J). (5.10)

where (SP!(t),t € [0,1]) is the polygonal line constructed from partial sums of
observations (y, ,—1) defined by (4.2), page 31:

]
Ssl(t) = Z Yn k-1 + (Nt = [08])Yn g, t € [0,1].
k=1

It follows from Theorem 4.1.3 (see also remark 4.1.4, page 33), that

n~¥2g—1gpt S0,y (5.11)

n—oo
Lemma 3.3.3 (page 25) now gives
gu(n o7 1SP) = g(n=*20 1SR + op (1) (5.12)

and the convergence (5.8) follows from (5.10), (5.11) and (5.12) and continuous

mapping theorem. O

Next we find the limit of test statistics T o,» under null hypothesis for second

type model.
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Theorem 5.1.2. Under Hy, for the second type model defined by (5.1) and (5.6),
n2(1 = ¢n)o Ty —— Tooo(W), (5.13)
where o = Eei.

Proof. The proof of this theorem is essentially the same as the proof of the Theo-
rem 5.1.1 using the Theorem 4.1.8 instead of Theorem 4.1.3 and Lemma 3.3.3. O

5.1.2 7ihn statistics with o > 0

Now we show that for the model (5.1) with ¢, = €/ ~ < 0, the limit of
Ton (a > 0) under null hypothesis Hy is a functional of an integrated Ornstein-
Uhlenbeck process, but we have to require a stronger integrability on innovations

than just a second moment.

Theorem 5.1.3. In the first type model defined by (5.1) and (5.5), assume that
(e;) satisfy condition (3.11) (page 23) for some p > 2. Then under Hy for any
a€ (0,1/2—-1/p)

nTOeTIT, ) — Ty o), (5.14)
where 0? = Ee? and J is an integrated Ornstein- Uhlenbeck process J(t)=[3U, (r)dr,

t € [0,1] with U, defined by (3.1) (page 19).

Proof. Consider the functionals g,, g, defined on H?2[0, 1] by (5.9) where
|z(t) — x(s) — (£ — s)z(1)]

|t_8‘a Y

I (x,s,t) = 0<t—s<Ll

By Lemma 3.3.3 (page 25) g, and g are Lipschitz on G, = {x € H2[0, 1] : 2(0) = 0}.
Observe that

n°Tnn = gn(SPD),  Taoo(J) = g(J). (5.15)

where (SP!(¢),t € [0,1]) is defined by (4.2), page 31. From Theorem 4.1.3 (page
33),

_ _ H20,1]
n 3/20_ 1551 a

n—o0
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holds. Now from Lemma 3.3.3 it follows that
gn(n32o71SPY = g(n 3267 15P) 4 op(1) (5.17)

and the convergence (5.14) follows from (5.15), (5.16) and (5.17) and continuous

mapping theorem. ]

Further we find the limit of test statistics T, an under null hypothesis in the
second type model, i.e., in model (5.1) the coefficient is defined by ¢, = 1 —~,/n,
Yo — 00 and y,/n — 0, as n — oco. The limit under null hypothesis Hy of
this statistics is a functional depending on Wiener process. Here the require-
ments involve not only integrability condition on innovations, but also the rate of

divergence of v,.

Theorem 5.1.4. In the second type model defined by (5.1) and (5.6), assume
that (g;) satisfy condition (3.11) (page 23), for some p > 2. Then for a €
(0,1/2 —1/p) under Hy

n V21 = )0 Tan —— Tooo(W) (5.18)
provided that

li%gg.}f Npn 1271~ .

Proof. The idea of the proof of this theorem is the same as the proof of the
Theorem 5.1.3 using the Theorem 4.1.9 instead of Theorem 4.1.3 and Lemma
3.3.3. 0

5.2 Consistency of test statistics

We investigate the consistency of the test statistics Tn,a- The practical results
are given in corollaries 5.2.5 and 5.2.2. Proofs of these corollaries are based on
the following generic result (Theorem 5.2.1) which has a broader scope. The

consistency condition is expressed in terms of:

k+4 L
Ton(Tna,- s Ton) = max e Jpax j:%;rl Tnj — n; Tojl s (5.19)

where the 7, ;s are defined by (5.3).
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For notational simplicity we omit the index n in £}, m} and ;.

Theorem 5.2.1. Suppose that in the first order nearly nonstationary process de-
fined by (5.1) innovations are i.i.d. centred and satisfy condition (3.11) (page
23). Assume that for some normalizing sequence (b,)n,>1 the statistics bnfam is

stochastically bounded under Hy. Then under H 4,

bnfa,n %} oo (520)
if and only if
bnTa,n(Tn,b s 7Tn,n> m Q. (521)

A sufficient condition for (5.21) is

anby, b B K:
= (- (1-5)
) e == e

n—oo

Proof. Recall that the process (z,) is defined by 2, = Ypnk — Tnk, 0 < k <n. The
key point here is that when the process (y,,) satisfies H 4, the process (z,) satisfies
Hy (when (y,) satisfies Hy both process are identical). Hence b, Ty (201, - -5 2nn)

is stochastically bounded. Now by triangle inequality for the sequential norm 7, ,,:

’Ta,n(yn,lv c e 7yn,n) - Ta,n(Tn,b oo 77_n,n)|
S Ta,n(yn,l —Tndls---sYnn — Tn,n)

= Ta,n(zn,lv BRI Zn,n)7

so the stochastic boundedness of b,T,, ,(2n1, .-, 2n,) gives the equivalence be-
tween (5.20) and (5.21).

Looking now for a practical sufficient condition for (5.21), we choose as a
lower bound for T, ,, (71, - - -, Tnn) the weighted increment corresponding to the

epidemics interval (k*, m*] with length m* — k* = ¢*. With these notations,

k
Tok = Zqﬁﬁ*janl(k*ﬁm*](j), 1<k<n, 7,0:=0.
j=1

Since a,, will obviously be in factor in all computations of lower bounds below, it

is enough to write the proof for the case where a,, = 1.
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Let us compute 7 Ty k-

n
D Tak= 2 Tkt DL Tapt DL Tak
k=1

k<k* k*<k<m* m*<k<n
k—j k—j
DD DR D DD DRy
k*<k<m* k*<j<k m*<k<n k*<j<m*
:;A =:B

We compute separately the double geometric sums A and B.

PR S DIT T SRRt R G iaﬁ)
a k*<k<m* i=0 " k*<k<m* 1 =0, S 1- Pn i=1 ")
SO .
S . T _ o
Similarly,
e k
B = =
m*§<n 1—- ¢” 1—- ¢” m*§<n ¢n
e N i
N 1- ¢n 1-— ¢n
1 : - -
:m(¢n_¢ﬁ+l_¢n +1+¢n k+1)7
whence .
B=a"s (6n(1—0f) —gp ™ (1= gl)). (5.24)
Gathering (5.23) and (5.24), we obtain
- _ 1 * - _ an—m*+1 e
Z =T (1= 0)—op ™1 —-9l)). (5.25)
Finally
g*
A-— E(A + B)
— 1 *(1 _ _ E: _ o . E: n—m*+1
— o (Famen (1= ) — - (e Sarn)). 620
which explains why (5.22) is a sufficient condition for (5.21). O

Corollary 5.2.2. In the first type model defined by (5.1) and (5.5), assume that

for some p > 2, (g;) satisfy condition (3.11). Let o € (0,1/2 — 1/p), then under
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Hy
n3%er T oo (5.27)

provided that (>~ “n=3/2t%q, — 00, as n — oo and
liminf |1+ 2 — 05| > 0. (5.28)
n—00 2

All this extends to the special case o = 0, assuming that Ee? < oo.

Remark 5.2.3. From a statistical point of view, it is useful to find for which values
of the parameter v, condition (5.28) does not induce some extra restriction on the
choice of the sequence (m*(n)),>1. Writing 6,, :== m*(n)/n, we see that (5.28) is
not satisfied if and only if there exists some subsequence (f,,);>1 in (0,1) such
that ¢”%%) tends to 1 + /2. Then any 6 limit of some subsequence of (On;)j>1
(there is at least one such @ by compactness of [0, 1]) must satisfy 1++/2 = 719,

Clearly this equation has no solution for v < —2. For —2 < v < 0, it has a unique

9:1—11n<1+7).
ol 2

It is easily seen that this solution belongs to [0, 1] only if 79 < v < 0, where

solution

7o =~ —1.5937. From this we can conclude that if v < g, the condition (5.28) is
satisfied without any extra restrictions on the choice of the sequence (m*(n)),>1.

For vy < < 0, one can always find a sequence (m*(n)),>1 for which (5.28) fails.

Remark 5.2.4. From the consistency condition £*2~n=3/2*%q,, — 00, as n — oo,
one can see that the bigger a the shorter change can be detected with the statistics.

As expected, the detection is not so good as in the i.i.d. case, see Rackauskas and
Suquet [2004b].

Proof. We keep the notations A and B already used in the previous proof. By
Theorem 5.1.3, under H,, bnfa,n converges in distribution and hence is stochas-
tically bounded for the normalization b, = n=3/27®. So it remains only to check
condition (5.22). This require an estimate for the asymptotic order of magnitude
of

A—g—(AjLB)
n

- 5y (m — ) (1 - i) — Ga(1— ) (1 - i¢m>) .
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Using the second order expansions

2

0 i -2
L= == =g toln™)
* 2 px2
VA fyg fyg %2 _9
L=¢p =~ 55 Toll"/n7)

we deduce
g*
’A_M+Bﬁz
n

53 g

2
1 g* 26*2 6*2
+1 40 () S Y e
n n n 2n? n?

TL2 5*2,}/ g*Q,YQ 6*2’}/ 707@) 6*2
2 =l T 2 2 ol =
Y4l n 2n n n
L )

2 275

So the divergence (5.22) follows from the condition n=3/2+2¢*2=2q, — oo and (5.28).
[

Corollary 5.2.5. In the second type model defined by (5.1) and (5.6), assume
that for some p > 2, (g;) satisfy condition (3.11). Let o € (0,1/2 —1/p) and

assume that
lirr_1>inf N2 S

Suppose that either of the following conditions is satisfied:
1. 0*(1 — ¢p,) — o0, limsup,, ,. 0*/n < 1 and n= Y2+ l=aq, — oo;
2. 1*(1 — ¢,) — ¢ >0 and n~ 2+ =g, — oo;
3. (1 — ¢p) — 0 and n=3/2, 0272, — oo.

Then under H 4,

n=1 = $) Ty —— 00, (5.29)

The conclusion extends to the special case o = 0 under the same assumptions

provided that (3.11) is replaced by Ee? < oo.

Proof. By Theorem 5.1.4, under H, bnfayn converges in distribution and hence is

stochastically bounded for the normalization b, = n=Y/2+%(1 — ¢,). So it remains
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only to check condition (5.22) in the three cases under consideration.

— If £*(1 — ¢,,) tends to infinity, noting that

(1= ¢) (@0 — g < 1
and recalling that limsup ¢*/n < 1, we immediately see that for n large
enough, there is some positive constant ¢ such that:

cl*
> .

Then the divergence (5.22) follows clearly from the condition

‘A— f;(A+B)

p~V2repd-ag .

— If ¢*(1 — ¢,,) tends to some ¢ > 0, this implies in particular that ¢*/n tends
to zero and
1—¢ ——1—e"

n—oo

By strict convexity of the exponential function, e™¢ > 1 — ¢ with equality

only if ¢ = 0, hence ¢ — 1+ e7° > 0 since ¢ > 0 and

r* c—14e° (c—1+e )
‘A_n“+BﬂN<LwWQ“ = on)

Again the divergence (5.22) follows from the condition
n—1/2+a£*1—aan - 00.

— Assume finally that ¢*(1 — ¢,,) tends to zero (this implies in particular that
¢* = o(n)). Then in (5.26) the term ¢*(1 — ¢,) is compensated at the first
order by (1 — ¢%). By second order expansion, we find that

0¥ Yn E*Q’YQ

¢~ In n
1—¢, = " + 52 (14 o(1)).

This leads by elementary computation to

0* 6*2

A——(A+B)~—
—(A+B)~ -,

so the the divergence (5.22) follows from the condition
n—3/2+a7n£*2—aan - 00.
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]

Remark 5.2.6. The graphical interpretation presented in figure 5.1, 5.2 and 5.2
may provide a better understanding of the results in corollary 5.2.5. Assume for
simplicity that a, = 1, £* < n® (that is there are positive constants ¢; and ¢y such
that for n large enough, ¢;n® < ¢* < ¢yn?) and that ¢,, < n® for some 0 < a,b < 1.
For a given value of p in condition (3.11), page 23, what are the pairs (a,b) for
which corollary 5.2.5 allows detection of an epidemics of length ¢* < n®, subject
to an admissible choice of a 7 The set of solutions is represented by the shadowed
area of the unit square. The light grey part above the diagonal corresponds to the
cases 1 and 2, that is lim,_,,, £*(1 — ¢,) belongs to (0, 00]. Its West border is an
arc of hyperbola with parametric representation a = (1 — 2a,t)/(2 — 2a,t), b=1
where t = o/, and a;,, = 1/2 — 1/p. The darker grey area corresponds to the
case where ¢*(1 — ¢,,) tends to 0. It is the triangle delimited by the diagonal, the
horizontal axis and the straight line D,,, where D, has for Cartesian equation
(2—a)a+b—3/2+4 a=0. All these lines have F(1,—1/2) as a common point.
Figure 5.1 is given with the p = 8. If p tends to 2, the detection region becomes
smaller. This effect one may observe in figure 5.2, where p = 3. One can remark
that when p tends to infinity the whole shadowed area converges to the trapezoid
with upper basis the upper side of the unit square and lower basis the segment
[2/3,1] on the horizontal axis (see figure 5.3).

5.3 Test power analysis

Here we perform the test power analysis. For this, we present the results of
experiments in the tables 5.4 and 5.5. We computed empirical power on size-
adjusted (not nominal size) basis, i.e., replaced the nominal value of significance
level by the value of empirical distribution function for p-values under null hy-
pothesis. For more details on size power curves see Davidson and MacKinnon
[1994].

For different values of parameters v, v,, a, k*, £* and a,, we compute N = 1000
realizations of test statistics with the sample size n. Innovations have been gener-
ated as standard normally distributed random variables. For the limit distribution

we compute N = 5000 realizations of test statistics with the sample size n = 5000.
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wIN
oo

Figure 5.1: Detection area in the space of parameters (£* < n% v, < n’) for
corollary 5.2.5 with p = 8.
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o)
2
1
1+ »
1
=V | NN
p—2 :
>
0 2 1 2
7z 2 3 1 a
F(1,-3)

Figure 5.2: Detection area in the space of parameters (£* < n% 7y, < n’) for

corollary 5.2.5 with p = 3.
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24
2
3
P
142
1
P=V2P | i\
p—2
>
0 2 1 2 3
p+2 2 T\ 1 1 a
F(1,-3)

Figure 5.3: Detection area in the space of parameters (£* < n% v, < n’) for
corollary 5.2.5 with p = 30.
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We approximate the values of the standard Wiener process by

k -1/2 u .
144 <5ooo) 5000723 " e(4), k=1,...,5000, (5.30)

j=1
where () are generated as standard normally distributed random variables. The
Ornstein-Uhlenbeck process have been approximated by the the following dis-

cretization

1 —e2v/n

N - v/n
S(j) =50 —1)e"" + o

-e(7), e(y) ~90,1). (5.31)

For more details about (5.31), see van den Berg [2011]. Using values generated

by (5.31), we approximate the integrated Ornstein-Uhlenbeck process by

k L
—_— p— - ) :1 e .
J<5OOO> 5000 ;::15(3), k=1,...,5000,

Next we define the basic parameter set for the first type model
v=-2; a,=1; n=1000; i = 0.05; L =04, yno=0.
n n
Further modifying the separate parameters we compute the empirical size-power.
We always keep all these parameters fixed except one (indicated in the first col-
umn in both tables) which we allow to vary. Note, that in order to compute the
test power, we need to compute the empirical p-values. Usually, the estimate of
empirical p-value is p = s/N, where s is the number of values (limit process) that
are greater than or equal to the observed value (statistics), N is the number of
values. Nevertheless, the previous formula is biased due to the finite sampling.
Davison and Hinkley [1997] (see p.141) suggested to correct the bias with such
formula p = (s+1)/(N +1). One can observe, that these two formulas are essen-
tially the same when the number of replications N is large, but we use unbiased

estimate in this computations.

As one can see in the table 5.4 the test power is almost the same for all a.
The test power increases with the length of epidemics, the location of epidemics
makes the difference. The biggest power is for the epidemics in the middle of the
observations. For this model, the test can detect the epidemic change best when
a, = 1 or bigger, for the smaller changes it has a lower power. Naturally, the

test power increases with the number of observations. Further the bigger is ~,
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the bigger is test power. That is the test power increases when the coefficient is

further removed from the unity.

Parameters | a=0 o=2/32 a=6/32 «o=12.5/32
*/n=0.035 | 0.442 0.440 0.446 0.421
% /n=0.050 | 0.758 0.757 0.767 0.752
¢*/n = 0.100 | 1.000 1.000 1.000 1.000
E*/n =0.2 0.591 0.589 0.615 0.653
k*/n=0.4 0.758 0.757 0.767 0.752
k*/n =0.8 0.587 0.616 0.697 0.784
a, = 0.8 0.554 0.549 0.556 0.534
an =1 0.758 0.757 0.767 0.752
a, = 1.2 0.907 0.908 0.920 0.914
n = 500 0.388 0.404 0.408 0.409
n = 1000 0.758 0.757 0.767 0.752
n = 2000 0.979 0.982 0.980 0.983
v=-2 0.758 0.757 0.767 0.752
v =—12 0.677 0.728 0.822 0.896
v = —100 0.748 0.833 0.967 0.998

Table 5.4: Empirical power at the size-adjusted significance level 0.05 for the first
type model

The basic parameter set for the second type model ( ¢, =1 — =, /n) are

* *

l k
Yo =0 a, =1, n=1000; s 0.05; o= 04, yno=0.

For the second type model (table 5.5), the test power for all parameter values is
the lowest, when a = 0 and increases with . For this model, detection of epidemic
changes becomes better with the increasing length of epidemics, nevertheless the
test detects short epidemic change very good for the bigger a (= 1/3). Note, that
the test power does not depend on the place of epidemics. Also, it detects quite
good even small changes as a,, = 0.8. The test power increases when the number
of observations is increasing. The test power does not vary too much depending

on the chosen 7,.
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Parameters |a=0 a=2/32 a=6/32 a=10/32
0*/n=0.035 | 0.373 0.441 0.675 0.909
*/n=0.050 | 0.758 0.859 0.974 0.996
*/n = 0.065 | 0.980 0.990 0.999 1.000
k*/n = 0.2 0.780 0.875 0.980 0.999
k*/n =0.4 0.758 0.859 0.974 0.996
k*/n =0.8 0.783 0.877 0.981 0.998
a, = 0.8 0.478 0.565 0.780 0.929
ay = 0.758 0.859 0.974 0.996
an, = 1.2 0.949 0.985 0.999 1.000
n = 500 0.422 0.480 0.676 0.813
n = 1000 0.758 0.859 0.974 0.996
n = 2000 0.997 1.000 1.000 1.000
v =n/In(n) | 0.754  0.847  0.970 0.995
Yo =In*®(n) | 0.758  0.844 0.972 0.995
Y = 03/ 0.758 0.859 0.974 0.996

Table 5.5: Empirical power at the size-adjusted significance level 0.05 for the
second type model
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Testing the epidemic change with

statistics built on residuals

In the previous chapter we have studied test statistics built on the observations
for the detection of a changed segment in the mean of innovations in a first order
nearly nonstationary process. Another way to test such hypothesis is to build the
test statistics on residuals, since innovations are not observed. Indeed, residuals
are the estimated innovations and are supposed to have the same mean. In this
chapter we find the limit behaviour of test statistics under null hypothesis, we
investigate the conditions of consistency when the mean is shifted by a constant
during the epidemics. Also, we discuss the interplay of various parameters to
detect the shortest possible epidemics. Moreover, we perform test power analysis

for our test statistics.

Here we investigate the same model as in the previous section. Suppose, that

we observe an n-sample Yy, 1,. .., Yn, generated by
Ynk = ¢nyn,k:71 + e+ Qn, &, k< n, n> L Yn,o = 0 (61)
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where ¢, — 1, as n — oo, innovations (gx,k > 1) are i.i.d. centered and at least
square integrable random variables, (a, k) is a sequence that denotes the epidemic

change in mean.

The goal of this chapter is to propose the test statistics that is devoted to test
the null hypothesis

HO: an,lz"':annzo

)

against the changed segment alternative:

Hy @ thereexist 1<k,, 1<m; <n suchthat

Qn ke = an]-]I;j(k>7 Ap, 7é O, 1<k< n,
where I is the epidemics interval

I = {k* +1,...,m"}

n

and 1p: denotes its indicator function.
To detect a short epidemic change in the mean of innovations of the first order
nearly nonstationary autoregressive process, we build the a-Hoélderian uniform

increments statistics based on the residuals for 0 < o < 1:

R k+¢ g n
T,, = max /% max E; — — Eil. 6.2
= 7 | 3 6100 (62

Recall that residuals are defined by
Ek = Ynk — Unjk = Ynk — &nyn,kfla k<n, n=>0,

where ggn is the least squares estimate of the coefficient ¢,,:

3, = > b1 YnkYn k1
n - n 2 .
> k=1 Yn k-1

In this chapter we again investigate two type of models. First type model is
defined by (6.1) with the coefficient

¢n =",y <0, (6.3)
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while second type model is defined by (6.1) with coefficient

an:l—V—n, Yo = 00, Yp/n—0, as n— oo. (6.4)
n

Here we assume that innovations are

i.i.d. centred and satisfies for some p > 2 the integrability condition

. B
tlggot P(leo] >t) =0 (6.5)

or
i.i.d. centred and regularly varying random variables with index p > 2.  (6.6)

Definition 6.0.1. The random variable X is regularly varying with index p >
0 (denoted X € RV,) if there exists a slowly varying function L such that the
distribution function F(t) = P(X <'t) satisfies the tail balance condition

F(—z) ~bL(x)x™ and 1— F(z) ~aL(z)z™?, as = — oo,
where a,b € (0,1) and a+b=1.
We refer to Bingham et al. [1987] for an encyclopaedic treatment of regular

variation. The assumption on regular variation with p > 2 allows us to investigate

the test statistics in the whole range of a € (0, 1] except one point o, = 1/2—1/p.

6.1 Limit under null hypothesis

For any function f € H2[0,1] and 0 < a < 1/2 we define

Thoolf) = sup |f(t) = f(s) = (t = 3)f(1)|.

0<t<s<1 |t — s|«

6.1.1 Model with innovations satisfying condition (6.5)

Here we shall find the limit of the test statistics for two type of models.

Theorem 6.1.1. In the first type model defined by (6.1) and (6.3) assume that
innovations satisfy (6.5) for some p > 2. Then under Hy for any o € (0, ay)

n71/2+aailfa,n % Ta,oo<Z)7 (67)
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where 0> = Ee2. Here
Z(t) =W (t) — A 'BJ(t), (6.8)

where A = [} U2(t)dt, B = [y U,(t)dW(t) and J(t) = [y U,(r)dr, t € [0,1] and
U, is an Ornstein-Uhlenbeck process defined by (3.1) (page 19).

Proof. Consider the functionals g,, g, defined on H2[0, 1] by

gn(z) == max I,(z,i/n,j/n), g(z):= sup I,(x,s,t), (6.9)

1<i<j<n 0<s<t<1
where

|(t) — 2(s) — (£ = s)z(1)]

£ —s|”

I (x,s,t) = , O<t—s<l1.

By Lemma 3.3.3 (page 25), g, and g are Lipschitz on G, = {x € H%[0, 1] : 2(0) = 0}.
Observe that

n°Tom = gu(WP),  Tano(Z) = g(Z). (6.10)

where (WPL(t),¢ € [0,1]) is a polygonal line process built on residuals (£

[nt]
WP(t) :== " & + (nt — [nt])Epng1, t € [0,1].
k=1

From Theorem 4.2.2 (page 42) we have that
V2o R W ARy (6.11)
Lemma 3.3.3 now gives
gu(n™ 2o W) = g(n~ 2o W) + op(1) (6.12)
and the convergence (6.7) follows from (6.10), (6.11) and (6.12) and continuous
mapping theorem. O
Theorem 6.1.2. In the second type model defined by (6.1) and (6.4) assume that
innovations satisfies (6.5) for some p > 2. Then under Hy for any a € (0, o)

n VT, = Ty (W), (6.13)
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where 0% = Ee2, provided that

linl)inf N2/ (H200) 5

Proof. The proof of this theorem is essentially the same as the proof of The-
orem 6.1.1 using the Theorem 4.2.8 (page 50) instead of Theorem 4.2.2 and
Lemma 3.3.3. ]

6.1.2 Model with regularly varying innovations
If e1 € RV, we define
b, =inf{x >0: P(|le1| <z)>1-1/n}. (6.14)

It easily follows from tail condition that there is a slowly varying function v(n),n €
N such that

b, ~ n*Pu(n) as n — oco. (6.15)
Next theorem gives result for the first type model.

Theorem 6.1.3. Let p > 2. If innovations (g;) satisfy (6.6) in the first type
model defined by (6.1) and (6.3), then under H,

(a) for any a € (ay, 1]
b lo T, —— T, (6.16)
n M psoo TP

where T, is a random wvariable with Frechet distribution P(T, < z) =
e ® " x€R.
(b) for any o € (0, )

nT Ve, —— Taoo(2), (6.17)

where Z(t) is defined by (6.8) and A = [} UZ(t)dt, B = Jo U, (t) AW (t) and
J(t) = [{U,(r)dr, t € [0,1], U, is an Ornstein-Uhlenbeck process.

For the proof of Theorems 6.1.3 and 6.1.5 we use the following proposition

whose proof is given in subsection 6.4.

Proposition 6.1.4. Let p > 2. If (&;) are i.i.d. random variables, ¢, € RV, and

a € (o, 1] and (ynx) is generated by (4.1), then
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1. (a) for ¢, =", v <0
Ton(Ely..yEn) =Tan(er, ... en) +op(bn).

holds,

2. (b) for ¢, =1 — 22 where v, — oo and v,/n — 0 as n — 0o

Ta,n(é\la e ,é\n) = Ta,n<€17 e 75n) + 0P<bn)-
holds, provided that
Y = O(n1@=)) 0 < g <2 (6.18)

Proof of Theorem 6.1.3. (a) Proposition 6.1.4 (page 86) indicates that the
limit behaviors of both statistics Ta,n and T, (g1, ...,&,) coincide. Hence
the result follows by Theorem 1.1 in Mikosch and Rackauskas [2010] (see
Theorem 3.3.8 and Corollary 3.3.9 on page 29).

(b) We notice that if &; € RV, then for any p’ < p we have t*P(|g;| > t) — 0,
as t — 0o. Hence for @ < a;, choosing p" < p such that o < oy we deduce
the result by Theorem 6.1.1.

O

Further for the second type model, we obtain the following result.

Theorem 6.1.5. Let p > 2. If innovations (g;) satisfy (6.6) in the second type
model defined by (6.1) and (6.4), then under H,
(a) for any a € (ay, 1]
bylo  Ton —— T, (6.19)

provided that v, = O(n9@=)) for some 0 < q < 2.
(b) for any o € (0, ) if

—2a

lim inf ~v,,n+2 > ()
n—00 In ’

then it holds
nTVOeTIT, ) —— Ty o (W), (6.20)

Proof. (a) Proposition 6.1.4 (page 86) indicates that the limit behaviors of both
statistics fa,n and T, ,(e1,...,€,) coincide. Hence the result follows by
Theorem 1.1 in Mikosch and Rackauskas [2010] (see Theorem 3.3.8 and

Corollary 3.3.9 on page 29).
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(b) To prove this part, we notice that if e € RV,, then t!P(|e;| > t) ~ L(t)
for some slowly varying function L(t). So for every 0 < p’ < p we have
tP'P(|e1| > t) — 0, as t — oo. Now for all a € (0, ) we choose 2 < p' < p
such that o < ayy < . It follows that n=®/% < p=%% go that condition
lim inf,,_e0 Yan "/ > 0 holds. Then we deduce the convergence (6.20) by
Theorem 6.1.2.

]

6.2 Consistency analysis

In this section we find conditions for the consistency of test statistics for the
second type model. We see further, that the methods we use to prove the consis-

tency do not work for the first type model.

We again rewrite the model through the term 7, 4

Ynke — Tnge = On(Ynk—1 — Tnk—1) + €k,

where 7, is defined by (5.3) (page 65):

k

k—1
Tak = Y Ohlng—j = > Of 7 an .

J=0 J=1

Recall that
Znk = Ynk — Tnk, k:O,l,...,n.

Note, that 2, is a first order nearly nonstationary autoregressive process gener-
ated by (4.1), page 31.

The next theorem gives the result for consistency of test statistics fw for the

second type model with a,, constant and a € (0, a,).

Theorem 6.2.1. Under H,, assume that ¢* — oo, {*/n — 0 and for some
a € (0,a,),
n71/2+a£*(17a) .

n—oo

Then for the second type model defined by (6.1) and (6.4) with innovations (&;)
that satisfy (6.5) or (6.6)

e s oo (6.21)
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holds, provided that vy, is increasing in n or reqular varying sequence,

lim inf 7,n=%/% > 0 (6.22)
and
gbl”__ jjj = op(1). (6.23)

Condition (6.23) holds provided that
— 0= o(v,) if 0*(1 — ¢,) = 00, as n — 00;
— 0 =o(p3n™Y if ¢*(1 — ¢,) — 0, as n — occ.

Further we give the proof of consistency of statistics fa,n for the second type

model with a,, constant and « € (a, 1].

Theorem 6.2.2. Under H,, assume that ¢* — oo, {*/n — 0 and for some
a € (o, 1],
I A I

n—oo

Then for the second type model defined by (6.1) and (6.4) with innovations (g;)
that satisfy (6.6)

b T —— 00 (6.24)

n—00

holds, provided that 7, is increasing in n or reqular varying sequence,

Yp = O(n1@=)) 0 < q<2 (6.25)
and
&En - ¢n o
T = op(1). (6.26)

Condition (6.26) holds provided that
— 0 =o(v,) if (1 — ¢,) = 00, as n — 0o;
~ 0 =o(3nY) if 0*(1 — ¢,) — 0, as n — oco.

The proofs of Theorems 6.2.1 and 6.2.2 are given at the end of this subsection
on pages 98 and 100. Further supplementary results are given for both type of
models. We start from the lower bound of the test statistics and with the estimates

for some members of this lower bound.
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Lemma 6.2.3. In the first order nearly nonstationary autoregressive process de-
fined by (6.1) and either (6.3) or (6.4) assume that innovation satisfies condition
(6.5) or (6.6). Then under Hy for any o € (0,1]

fa,n Z Ta,n(an,lv s 7an,n) - ‘Q/;n - ¢n’ Ta,n(Tn,Oa s 77—n,n—1)

- Ta,n(€17 L 7€n) - ‘%ﬂ - ¢n‘ Ta,n(zn,0> cety Zn,n71> (627)
and

Ton(@ni, ... ann) > |ay] ¢r(1=a) (6.28)

Proof. We have under H 4

R k+¢ l n
Tom = max % max |\ >, &~ 2 &
Jj=k+1 j=1
k+-¢ N N
= g, | 3 (554 ong = (B = dn)rasor = (Ba = 00)sn)
[ ~ ~
- ﬁ Z (Ej + Qn,j — (an - ¢n)Tn,j—1 - (qbn - ¢n)zn,j—1)

7j=1
Z Ta,n<an,17 s 7an,n) - ‘(En - ¢n‘ Ta,n<7—n,07 cee 7Tn,n—1)

- Ta,n<517 s 7571) - ‘{b\n - qbn’ Ta,n(zn,07 s 7Zn,n—1)-

Further, assume that ¢* = o(n), then

k+£ [ X
— —a _ .
Ta,n(an,la SRR an,n) - lrgglg}%é 1[&127}57[ j:;i_l CLn]-]l* (]) n ]gl an]-]l (.])

/*
> ‘an‘ g*(lfa) (1 . ) > ’an’ g*(lfa).
n

The next lemma gives us the estimate of ‘QASH — gbn’ /(1 — ¢n).

Lemma 6.2.4. Assume k* = [An] with some fired 0 < XA < 1. Suppose that
first order nearly nonstationary process is defined by (6.1) and (6.3) or (6.4) with

innovations satisfying (6.5) or (6.6). Then for the least squares estimator ¢y,
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under alternative H 4

60 = 6a| _ |60 — 4] a2t 0|
vy = o, Op(1)+ Op (n(1_¢n)> + Op (n(1_¢n)3/2>

10 (man (LT el )

n(l—¢,) n(l — ¢,)/?
holds, assuming for the second type model that -, is increasing in n or reqular

varying. Here qgn denotes the least squares estimator under null hypothesis Hy.

To prove Lemma 6.2.4 we need the two following auxiliary lemmas whose proof

is deferred to section 6.4 on pages 122 and 124.

Lemma 6.2.5. Assume k* = [An] with some fized 0 < X\ < 1. Then it holds

2
ZZL 1an 1

- — 0p(1)
Z[ N nk 1

additionally assuming that 7y, is increasing in n or reqular varying for the second

type model.

Lemma 6.2.6. Assume k* = [An]| with some fivred 0 < X\ < 1. Then it holds
L (1-0)00(1)

n

[nA]
k=1 *nk—1

Proof of Lemma 6.2.4. Since

Al [nA]

n n
Yovarr =2 g1+ Tak-1)> > D (Znkot + Tak—1)? = D Zn iy

5

and

n n n
Dbt Pnk—1€k T D he1 Tnk—1€k + 2 p—1 Ynk—10nk
Sho Y2
k=1 Yn k-1

$n_¢n:

we have by denoting ggn the least squares estimator of ¢, built on (z,4)

2 k=1 Zn k-1 1
‘ ¢n‘ < ‘(bn ¢n‘ [n)\ ;L § Tn,k— 1€k + E ynk 1Qn .k
k=1 “n,k—1 Zk nk 1 k=1

( ¢n OP

S ‘(an_qsn‘OP(l) ZTnk 1€k+zynk 10n k
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Hence by Lemmas 6.2.5 and 6.2.6 we obtain

’&n_gbn‘ ’égn_gbn‘ Op(l) " Op(l) v
o < o Op(l)+ —— kzzzlyn,k—la'n,k: +T |k§17—n,k—15k .
=A =B =C

As ¢, is a least squares estimator in the model under null hypothesis, we have
~ by Phillips n(¢, — ¢,) = Op(1) and 2 ~ L 50 |¢“ ‘%’ — Op(1) for the
first type model.

. A n /2
- bf Giraitis and Phillips ﬁ(gb — ¢n) = Op(1) and % — 0, so
’qbl”:(i"l = 0p(1) for the second type model.
Thus
A =0p(1) for the first type model (6.29)
A =op(1) for the second type model. (6.30)

Next we have for part B

Zynk 1ank—@nzynk 1= 1_¢ (f Up + Yk — yn,m*+25k)-

k*+1 k+1

Evidently

ar (i Ek) = = %51@ = Op(\/ﬁ_*).

k+1 k+1

AS Ynpe = X0 OF T (g5 4 any) = XN, ¢F s we obtain

(Z ¢k _JEJ) 1— ¢ = YUnkr = OP(l/(l - ¢n)1/2)'

Since
m* L m* '

Z ¢m 5] + an,j) Z ¢n ej+ Z & " an,;

j=1 j=1 j=1

m* - ¢€*

:Z¢n 353""% Z b _J—Z¢ _]51"'“”

j=1 k41 — ¢n

we have

| = 0p(1/(1 = )% + Op(Ja,| £9).
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So the upper bound

an| Op(1) [ . =
B S n(l — (bn) (ﬁ ‘an‘ + ’yn,k*| + ‘yn,m*’ + ];1516 )
A |an| a’ e |an| VI*
= (g 0P O <n(1 - <z>n>3/2> T Oor <n(1 - <z>n)> tor (n(l — )

=0Op <n(1 _¢n)> +Op <n(1 _¢n)3/2> +Op (n(l _¢n)> :

Finally for C' we have

k=1 k=1 k=1

n n n n 1/2
Var (Z Tn,k—1€k> =0’ szk_l = Y Tup16x=Op ((Z Tik_1> ) .

Seeing that

n n k—1 2 n k—1 2
Zﬂikq = Z A Z Z 2_1_]111;; (7)
k=1 k=1 \j=1 k=1 \j=1
[ m* k—1 2 n m* 2
s ( > ¢) s ( > ¢)
k=k*+1 \j=k*+1 k=m*+1 \j=k*+1
- ) B l* N l*2
a
T =gn)? 1-92 ]
we obtain
Op(1) | & lan| VE Jan] €
C < 15k = O , .
>~ n kzzle k—1E€k p | max n<1 — ¢n) n(l — ¢n)1/2

[]

Remark 6.2.7. Clearly (6.29) shows that the condition (6.23) can not be satisfied
for the first type model using this method. But this condition is required to have
the consistency of statistics. Thus we can not obtain the result for the first type

model.

In the next corollary we assume that a, is constant and we investigate only

second type model.

Corollary 6.2.8. Assume k* = [An] with some fited 0 < X < 1 and v, is increas-

ing in n or reqular varying in the second type model defined by (6.1) and (6.4)
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with innovations satisfying (6.5) or (6.6). Then it holds under alternative H 4

90— 64|
1o, oW
provided that
— 0 =o(v,) if (1 — ¢,) = 00, as n — o0o;

— 0 =o(3nY) if 1*(1 — ¢,) — 0, as n — oo.

Proof. Taking into account the estimate of ‘qgn — gbn’ /(1—¢,) in Lemma 6.2.4 we

obtain
‘&% _'¢n‘ VQE 'VQ; 1
=g, "Wt i gym <OP ((1 - ¢n)1/2> o (1 - ¢n)

)

As 1/(1 — ¢,)"/? and V/¢* are negligible compared with v/¢* /(1 — ¢,,)"/2, thus we
need to consider only two cases.
— The first case is

L/
_ 1/2
@ ¢1”) — o0 < (1 — ¢y,) — o0,

1_¢n

then

M =op(1) + n(1:/_in)1/2 (OP ((1—%))

— op(1) + Op (M) |

The latter estimate gives us the condition £* = o(7,).

— The second case is

v
Ul 0o 07(1 = ¢,) =0,
1—¢n
SO
604 vE :
T =op(1) + W (OP <(1_¢n)>>
E*
=op(1)+ Op (71(1:/;)3/2) .
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Thus we obtain £* = o(y3n™1).

]
Next lemma allows us to estimate T (700, - - - Tnn—1) for the both type mod-
els.
Lemma 6.2.9. Let 7, is defined by (5.3), then with constant ¢ =5 it holds
5 |an|
Ton(Tnor e Tome nl pr(i-a), 6.31
n(Tn0 Ton—1) < 1— 6, ( )
Proof. We shall use
Tn,k— rr— ¢n_ = . 6.32
E T, ( =g (632

To prove (6.31) we have to consider all the possible configurations of the sets
{k+1,...,k+¢}and {k*+1,...,k* 4+ ¢*}. There are six configurations I, . . ., .
Denote forv=1,...,6

k+¢ n
(v) _ a .
Tam—grt}fgcé Z Tnj—1 — nZTn’J_l )
v j=k+1 j=1

First consider configuration I := {k, ¢ : [k* +1,m*] C [k + 1,k + (]}

k+1 k44
E*+1 m*
We easily obtain
ket [ mt k-2 k-t
2 Tng1 = R S
j=hi Lj=k*+1 =0 j=mrHl =k 41
[ 1— i—k*—1 mi+1 k01 p—kx—1 1 —mx—1
= ay L _|_ qb;l gbn ¢TL ¢1’L Qiri
Lj=k*+1 1 - ¢” 1 - ¢n 1— ¢n
n [ 1— ot 1 — b — phtt—mx kd-l0—k*
1 - (bn L - (bn 1-— ¢n
_ay _g* 1— ol N (1 — 6)(1 — ghtt=me)
_ -g* . ¢k+z—m*1—7¢f{k
1=, | " 1— o, |
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Together with (6.32) we find

1 — Ox
T{) = ] o (1 —¢/n) — ;%(qﬁw_m*

1— ¢n ktch 1 — ¢n n - (é/n)gbn )
3 ‘an| g*(l—a)
1- ¢n

Now let us turn to second configuration Iy := {k, ¢ : [k+1,k+/{] C [k*+1,m*|}

k+1 k—+/
k*+1 m*
Obviously
k40 k+¢ j—1 ‘ k+¢  j—1 ) )
Yoo T =an d > o T () =a, Y, Y ¢
j=k+1 j=k+1i=1 j=k+1i=k*+1
ktl j—k =2 a k+e¢ et
—a Y Y =Y (-
j=k+1 =0 — On j=k+1
11— ¢n 1 - d)n ’
SO
T(2 _ |(ln| —alp _ gbfzik*(]' — ¢fz) - l 0 — ¢n—m* 1— gbf:
an T 1= @, kiehy 1—¢. n "1,
4 ‘CLn‘ g*(l—a)
1— ¢n

If we consider the third configuration I3 := {k, ¢ : k+1 < k*+1 < k+{ <m*}

k—+1 k+ ¢
k*+1 m*
we have
k+¢ k+¢ j—1 ] ] k+2 j—1 —
Yoo Tger=an Yy, Y @ T () =a, Y Y oL
j=k+1 j=k+1i=1

j=k*+1i=k*+1
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k+e  j—k*—2 a, k+e e
j=k*+1 =0 n 5= k*—l—l

& o Lot
1_¢n<(k+£ E*) — e )

Since k + ¢ — k* < £*, then it is easy to see, that

k4-L—k* 0
3) — |a’n| fe? _*_1_¢n _g * _ n—m* ¢
Ty 1_¢n$2ﬁ€ (k+0—Fk") I l " 1_¢n
< 4|CLn| E*l o)
— n

Next, fourth configuration is I, := {k, 0 : k*+ 1 <k+1<m* < k+(}

k1l k+ ¢
E*+1 m*
Now
k+¢ k+4 m*
SRR B Sl SRR SR ST
J=k+1 j k+1i=k*+1 j=m*+1i=k*+1
[ m* k-2 ‘ k+e
=a, | Y. D e Y 4 Z o
Lj=k+1 =0 j=m*+1 i=k*+1
[ 1 — pi—Fk—1 m*+1 _ gkl o —k*—1 _ —m*—1
S [ et St bl A 2 P
Li=k+1 1- ¢n 1- ¢n 11— ¢n

. On * pope L — " kitome L —

together with (6.32) and m* — k < ¢* gives the estimate

@ - 1o ol — ) — he LW g gereemey L O
—
_g r* — n—m* (b ’§5|an|€*1a)

From the fifth configuration 5 := {k,{: m* <k+ 1< k+(}
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k+1 k+/¢
k*+1 m*
we get
k+¢ k+¢ m* ' ' k+20 ' m* _
Yo mger=an Y, Y o T =angt Y L > 6y
j=k+1 j=k+1i=k*+1 j=k+1 i=k*+1
. ¢_1 ' ¢k+1 _ ¢ﬁ+£+1 ‘ (b;k*—l _ (bT—Lm*—l
e (1)1 9y)
11— (bn " 1— (bn

and together with (6.32) the estimate is

76 _ _lonl e g = 00— 60) i<g*_¢zm*1—¢f:>|

on T g, hich | 1— s
3 ’an’ E*(l—a)
- ¢n

Finally sixth configuration I :={k,(: k+1 < k+ (¢ < k*}

kE+1 k+/
E*+1 m*
gives us
k+¢
Z Tnj—1 = 0
j=k+1
Thus
=9l 2ay|
T(6 _ |a’n| n—m* =  ¥n_ g—ai < n f*(l a).
el e T A

So collecting all the estimates of ") v =1,...,6 we obtain (6.31).

a,n?

Finally we give proofs of the Theorems 6.2.1 and 6.2.2.
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Proof of Theorem 6.2.1. Since (gi)’s are i.i.d. centered random variables, that
satisfies condition (6.5) and since consequently the partial sums polygonal line

built on e;’s satisfies the Holderian invariance principle, then
n~ V2T, (e1,. .. en) = Op(1). (6.33)

For more details see Rackauskas and Suquet [2004b] (also see Theorem 3.3.6 and
Corollary 3.3.7 on page 28). Besides we have

VT (Zn0s - Znme1) = Op(1/(1 = ¢,)), (6.34)
since by Theorem 5.1.4 (page 69) in previous section,
n71/2+a<1 - (bn)Ta,n(Zn,O; cee wzn,nfl) — OP(1>

when condition (6.22) holds. Taking into account (6.27), (6.33) and (6.34), we

obtain the lower bound of test statistics

fa,n Z Ta,n(an,h B 7an,n) - ‘&En - ¢n’ Ta,n(Tn,Oa cee 7Tn,n71)

=)

Further (6.28) gives

n—1/2—i-ozj>106771 > n—l/?—}—ag*(l—oc) — A

ny

where
A, = p-l/2te ‘gn - %‘ Ton(Tn0s -+ s Tan—1) + Op(1) (1 * W) '

Thus to get the condition of consistency we have to find the condition under which
A, = op(n~V/Fregri-a) (6.35)
when

n—1/2+o¢€*(1—0¢) 0.

n—oo
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Next from the estimate (6.31) we obtain

n—1/2+a£*(1—a)M _ 0P<n—1/2+a€*(1—a))7
1 - gbn
thus Lemma 6.2.9 gives that condition (6.35) is satisfied when
(gn - (bn
‘1_%’ = 0p(1).

Finally, Corollary 6.2.8 says that the latter equality holds for the second type
model provided that =, is increasing in n or regular varying sequence and
— 0* = o(vy,) if £*(1 — ¢,) — o0, as n — 00;
~ 0*=o(y2n ) if £5(1 — ¢,) — 0, as n — oco.
[

Proof of Theorem 6.2.2. By Mikosch and Rackauskas [2010] (see Theorem 3.3.8
and Corollary 3.3.9 on page 29) we have that

b, Ton(er,. .. en) = Op(1). (6.36)

Further from (6.40), page 117, we have that for the second type model

~1/2

byzlf}/n Ta,n(zn,Oa R Zn,n—l) = 0P<1)

holds if v,, = O(n?@=»)) with some 0 < ¢ < 2. Taking into account (6.27), (6.36)
and (6.40), we obtain the lower bound of test statistics Ty,

fa,n Z Ta,n<an,17 s 7an,n) - ‘Q/;n - an' Toa,n<7-n,07 s 77_n,n—1)

= Op(bn) = [0 = n| 0 (ba7/?)-
Further (6.28) gives
b T > b0 A
where
An = |60 = bn| Ton (T, > Tnn1) = Oplbn) = & — | 0p (bay/?).
Thus to get the condition of consistency we have to find the condition under which

A, = op(b; 017 (6.37)
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when

b= 5 .

n—oo

Next from the estimate (6.31) we obtain

b;lg*(lfa)

thus Lemma 6.2.9 gives that condition (6.36) is satisfied when

‘an - ¢n’
1 - ¢n
Finally, Corollary 6.2.8 says that the latter equality holds for the second type

= 0,(1).

model provided that =, is increasing in n or regular varying sequence and
— 0 = o(y,) if £*(1 — ¢,,) — 00, as n — 00;
— 0* =o(y3n7Y) if £5(1 — ¢,) — 0, as n — oco.
O

Remark 6.2.10. We investigate the compatibility of the conditions obtained in
Corollary 6.2.8 with the test statistics consistency condition obtained in Theo-
rem 6.2.1. Put /* < n® and 7, < n’. We draw the detection region in figures 6.1,
6.2 and 6.3. The two cases are considered:
— Case 0*(1—¢,) — oo. Then we obtain a set of parameters (a, b) by inequal-
ities

a+b>1
a<b

— Case (*(1 — ¢,,) — 0. Evidently the set (a,b) that satisfies conditions is

at+b<l1
a<3b—-1

For a given value p in condition (3.11), page 23, in both cases the West border
of the detection region is given as an arc of hyperbola with parametric represen-
tation a = (1 — 2a,t)/(2 — 2a,t), b =t where t = o/, and o, = 1/2 — 1/p. The
light grey area in figures 6.1, 6.2 and 6.3 corresponds to case £*(1 — ¢,,) — o0,

while the dark grey area corresponds to case £*(1 — ¢,) — 0.

In the figure 6.1 one can see the detection region of the test statistics fayn. To
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compare this detection area with the one in the figure 5.1, we see that it is smaller
than for the statistics fam. Figure 6.2 shows the detection region with p = 3. One
can see, that this region is smaller than in figure 6.1 (p = 8), while in figure 6.3
the detection region is much bigger (p = 30). Thus, from this we may conclude,
that as p tend to infinity (o, tend to 1/2), we can detect shorter epidemics and

we have more freedom in choosing the divergence rate of ~,.

Remark 6.2.11. We also study the compatibility of the conditions obtained in
Corollary 6.2.8 with the test statistics consistency condition obtained in Theo-
rem 6.2.2. Put ¢* < n% ~, < n’, and b, =< n’/?. We draw the detection region
considering two cases:

— Case (*(1 — ¢,,) — 00. The possible choice of the parameters (a,b) is given

by inequalities:

a+b>1
a<b

— Case (*(1 — ¢,) — 0. For this case possible choice of parameters (a,b) is

a+b<1
a<3b—-1

For a given value p in condition (3.11), page 23, in both cases the North border
of the detection region is given as a parametric curve a = (1)/(p(1/2 — t + 1/p)),
b= qt where t = a —y, and ay, = 1/2—1/p. The light grey area in figures 6.4, 6.5
and 6.6 corresponds to case £*(1—¢,) — oo, while the dark grey area corresponds
to case *(1 — ¢,,) — 0.

The points marked in the figures are:

5. 3P \/(3pq + 2p + 69)2 + 24p(—pg — 4q) + 2p + 6¢ .

1) —
" 12p
C 12p
() — V- \ﬂp2q+4pq — 16p + 4q) + pq + 2q
= "
a - 4p
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p—V2p

wiN

—/ P2 +2p+4+4p—2 | .........................

3p—6

L
3 5
0 L
pis 3 1 a
Figure 6.1: Detection areas in the space of parameters (£* < n® ~, < n) for

Theorem 6.2.1 with p = 8 and a < a,.
In light grey the case where £*(1 — ¢,,) — o©.
In dark grey the case where *(1 — ¢,,) — 0.
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by
1
2
: 3
p—V?2p 5
p—2 :
—/Tp?+2p+4+4p—2 :
3p—6 :
1
3 :
0 5 1 iy
e 3 1 a

Figure 6.2: Detection areas in the space of parameters (£* < n® ~, < nb) for
Theorem 6.2.1 with p = 3 and a < a,.

In light grey the case where £*(1 — ¢,,) — o©.

In dark grey the case where ¢*(1 — ¢,,) — 0.
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by
p
p—2
1
P=V2P | N\
p—2
2
3
—\/ P> +2p+d+4p—2 | ........................................
3p—6 :
i
3l
0 2 1 >
e 5 1 a
Figure 6.3: Detection areas in the space of parameters (£* < n® v, < nb) for

Theorem 6.2.1 with p = 30 and o < .
In light grey the case where £*(1 — ¢,,) — o©.
In dark grey the case where *(1 — ¢,,) — 0.
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@ _ —\/(pa+2p + 20)> — 8p%q + pg + 2p + 2
b — .
4p

In the figure 6.4 one can see the detection region of the test statistics fa,n. To
compare this detection area with the one in the figure 5.1 and 6.1, we see that it
is smaller, but partially it covers different area. Figure 6.5 shows the detection
region with p = 12. This region is bigger than in figure 6.4 (p = 8), while in figure
6.6 the detection region is even bigger (p = 30). Thus, from this we may conclude,

that as p tend to infinity («, tends to 1/2), we can detect shorter epidemics.

6.3 Test power analysis

In this section we perform the test power analysis. Though the methodology
we have used for consistency analysis have not worked for the first type model,
but we perform power analysis for both type models and using numerical methods
we see if this test statistics can detect epidemic change. The results are presented
in the tables 6.7 and 6.8. As in the previous section we compute empirical power
on size-adjusted (not nominal size) basis, i.e., replaced the nominal value of sig-
nificance level by the value of empirical distribution function for p-values under

null hypothesis.

Here we compute N = 1000 realizations of test statistics with the sample size n
for different values of parameters v, v, «, k*, £* and a,,. Innovations are generated
as standard normally distributed random variables. For the limit distribution we
compute N = 5000 realizations of test statistics with the sample size n = 5000.

We approximate the values of the standard Wiener process by

k —1/2 d .
— | = =1,...
W<5000> 50007123 "e(4), k=1,...,5000,

j=1
where £(j) are generated as standard normally distributed random variables. The

Ornstein-Uhlenbeck process have been approximated by the the following dis-

cretization

1 —e2v/n

N - y/n
SG) = 56 = D"+ =

-e(d),  €(j) ~N(0,1). (6.38)

Using values generated by (6.38), we approximate the integrated Ornstein-Uhlenbeck
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by
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Figure 6.4: Detection areas in the space of parameters (£* < n® v, < nb) for
Theorem 6.2.1 with p =8, ¢ = 1.5 and a > a,.

In light grey the case where £*(1 — ¢,,) — o©.

In dark grey the case where ¢*(1 — ¢,,) — 0.
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by
1
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Figure 6.5: Detection areas in the space of parameters (£* < n® ~, < nb) for
Theorem 6.2.1 with p =8, ¢ = 1.5 and a > a,.

In light grey the case where £*(1 — ¢,,) — o©.

In dark grey the case where ¢*(1 — ¢,,) — 0.
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Nl
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Figure 6.6: Detection areas in the space of parameters (£* < n® ~, < n) for
Theorem 6.2.1 with p =8, ¢ = 1.5 and a > a,.

In light grey the case where £*(1 — ¢,,) — o©.

In dark grey the case where £*(1 — ¢,,) — 0.
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process by
J <k) = 5000"" Zk:S(j), k=1,...,5000,
5000 =
and values
A=5000"3°S2(), B =Y 5()) (W <j> _w (H)) .
5000 5000

Jj=1 Jj=1

For the first type model (¢, = /™) with innovations that satisfy integrability
condition (3.11), page 23, the basic parameters are

* *

14 k
v=-2; a,=1; n=1000; — =005 —=04, y,0=0.
n n

We modify them separately and we compute the empirical size-power. We keep
all the parameters fixed except one (indicated in the first column in both tables)
which is allowed to vary. We use the same methodology for computing empirical

p-values as in the previous chapter.

As one can see in the table 6.7 the test power increases with the a. Test
statistics has a quite big power in detecting short epidemics with « closer to 1/2.
Naturally, increasing n increases test power. In general, test has a quite big power

for all chosen parameters.

For the second type model ( ¢, = 1 — 7, /n) with innovations that satisfy

integrability condition (3.11), the basic parameter set are
3/4 0* k*
Y =n"" a,=1; n=1000; — =005 —=04, y,0=0.
n n
For the second type model (table 6.8), the test power is very low for the small
a. The test power increases with n, ¢* and the rate of divergence of ~,.
Further we give the test power analysis for the model with regularly varying
innovations. For this we generate innovations as symmetric Pareto random vari-
ables. Note, that symmetric Pareto probability density function for some constant

p>0is

foley = | BTl >
0, if |z[<1
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Parameters | a=2/32 a=6/32 «o=125/32
0*/n =0.035 0.462 0.715 0.968
0* /n = 0.050 0.879 0.981 0.998
0*/n = 0.065 0.988 1.000 1.000
k*/n=0.2 0.903 0.981 1.000
k*/n=0.4 0.879 0.981 0.998
k*/n = 0.8 0.784 0.967 0.997
a, = 0.8 0.574 0.793 0.957
an =1 0.879 0.981 0.998
an = 1.2 0.989 1.000 1.000
n = 500 0.498 0.700 0.884
n = 1000 0.879 0.981 0.998
n = 2000 1.000 1.000 1.000
v=-2 0.879 0.981 0.998
v =—12 0.831 0.976 0.998
v = —100 0.010 0.267 0.975

Table 6.7: Empirical power at the size-adjusted significance level 0.05 for the first
type model with Gaussian innovations.

and cumulative distribution function
(=x)P, if < -1
5, if —1<z<1
x7 P it x>1.

Fp(fl]) =

1
1—3

Next, tables 6.9 and 6.10 shows the results of empirical size-adjusted test power
for the first type model with regularly varying innovations. Thus we generate

innovations as Pareto random variables with parameter p. The symmetric Pareto

CDF gives that b, = n'/?. For the first type model, we use basic parameters:

v k*

v=-2; a,=1; n=1000; — =0.05 — =04, y,0=0.

n n
Table 6.9 correspond to the Theorem 6.1.3 part (a), so we choose the values
a = 17/32,20/32,26/32 and p = 8. We see in this table that in general test
power increases with the length of epidemics ¢*, epidemic change size a, and
number of observations n. Also, we see that test power increases when o and ~

values decreases. Further, there is no difference for the test power if the epidemics
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Parameters | a=2/32 a=6/32 «o=10/32
¢*/n=0.035 | 0.049 0.190 0.763
¢*/n=0.050 | 0.093 0.573 0.965
¢*/n=0.065 | 0.216 0.880 0.998
k*/n = 0.2 0.077 0.589 0.974
k*/n = 0.4 0.093 0.573 0.965
k*/n =08 0.105 0.615 0.974
an =0.8 0.102 0.328 0.791
an =1 0.093 0.573 0.965
ap =12 0.080 0.810 1.000
n = 500 0.062 0.171 0.552
n = 1000 0.093 0.573 0.965
n = 2000 0.660 0.997 1.000
Yo =n/In(n) | 0.035 0.416 0.950
Y =In**(n) | 0.020 0.353 0.935
Yp = 0¥/ 0.093 0.573 0.965

Table 6.8: Empirical power at the size-adjusted significance level 0.05 for the
second type model with Gaussian innovations.

occur at the beginning, middle or end of the sample.

Table 6.10 correspond to the Theorem 6.1.3 part (b), so we choose the same «
values as in Gaussian innovation case and p = 20 in order to compare the results.

Thus basic parameters:

* *

¢ k
v=-2 ay=1; n=1000; — =005 — =04, ¥y,o=0.
n n

As we see in this table the test power increases with n, «, length of epidemics ¢*.
Test can detect epidemics with bigger power at the beginning or middle of the
sample. The bigger a,,, the bigger test power. To compare tables 6.10 and 6.7, we
observe that in general test power is a little smaller for the model with regularly
varying innovations (6.10).

For the second type model with regularly varying innovations, generated as
Pareto random variables with parameters p and b, = n'/?, we use such basic

parameters:

* *

( k
Yo =n% a,=1; n=1000; — =005 =04, yo=0.
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Parameters | a=17/32 a=20/32 «o=26/32
*/n = 0.035 0.934 0.802 0.064
0* /n = 0.050 0.991 0.921 0.067
0* /n = 0.065 0.998 0.975 0.069
k*/n =0.2 0.993 0.944 0.059
k*/n = 0.4 0.991 0.921 0.067
k*/n = 0.8 0.986 0.917 0.054
a, = 0.8 0.893 0.662 0.058
a, =1 0.991 0.921 0.067
a, = 1.2 1.000 0.994 0.092
n = 500 0.760 0.816 0.091
n = 1000 0.991 0.921 0.067
n = 2000 1.000 0.999 0.064
v=—2 0.991 0.921 0.067
v=—12 0.969 0.840 0.058
v = —20 0.947 0.760 0.056

Table 6.9: Empirical power at the size-adjusted significance level 0.05 for the first
type model with regular varying innovations, o > a,.

The results size-adjusted empirical power we present in the tables 6.11 and 6.12.
Table 6.11 correspond to the Theorem 6.1.5 part (a) and we choose a = 17/32,
20/32, 26/32 and p = 8. We see, that test power increases when a decreases (i.e.,
a is close to 1/2). Also test power increases with the number of observations n,

length of epidemics ¢* and a,,.

Table 6.12 correspond to the Theorem 6.1.5 part (b), so we choose the same
« values as in a case of Gaussian innovations, p = 20, normalization n~ %2t We
see, that test has no power for the small @ values, but it increases with «, n, £*
and a,. Comparing tables 6.12 and 6.8 we see, that generally test power is lower

for the model with regularly varying innovations.

6.4 Supplementary results and notes

The Proposition 6.1.4 is the main tool in proving the Theorems 6.1.3 and 6.1.5
parts (a). The proof of Proposition 6.1.4 intensively exploits the following version

of Hajek-Rényi inequality.
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Parameters | a=2/32 a=6/32 «o=125/32
0*/n =0.035 0.385 0.637 0.974
0* /n = 0.050 0.790 0.965 0.998
0*/n = 0.065 0.976 0.999 1.000
k*/n=0.2 0.768 0.973 0.999
k*/n=0.4 0.790 0.965 0.998
k*/n = 0.8 0.679 0.942 0.995
a, = 0.8 0.502 0.787 0.951
an =1 0.790 0.965 0.998
a, = 1.2 0.962 0.999 1.000
n = 500 0.476 0.621 0.876
n = 1000 0.790 0.965 0.998
n = 2000 1.000 1.000 1.000
v=-2 0.790 0.965 0.998
v=-12 0.793 0.972 0.995
v=-20 0.562 0.930 0.990.

Table 6.10: Empirical power at the size-adjusted significance level 0.05 for the
first type model with regular varying innovations and a < a,.

Lemma 6.4.1. For each n > 1 let (X, 1 < k < n) be a sequence of random
variables defined on a probability space (2, F, P) and (an,,1 < k < n) be a se-
quence of nonnegative real numbers and r > 0. If there exists ¢ > 0 such that for

any n >1 and any € > 0

k
P (1pax| 2 %o

> e> <ce ") an

k=1
then there exists ¢ > 0 such that for any n > 1 any sequence (B, 1 < k < n)
such that 0 < B < -+ < B,n and any € > 0 we have

k
> X
j=1

-1
]P’( max [3,,

k<n

n
> 6) <ce " Z szl:ank
k=1

Proof. The proof for the sequences and not triangular arrays is given in Témaéacs
and Libor [2006]. We shall use the same idea of the proof. Fix € > 0 and n > 0.
Without loss of generality assume that £,; = 1. Let

Ai={m:1<m<n and 20 <p, <2t} i=012...
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Parameters | a=17/32 a=20/32 o =26/32
¢*/n = 0.035 0.831 0.590 0.055
¢* /n = 0.050 0.930 0.615 0.055
¢*/n = 0.065 0.966 0.548 0.051
k*/n = 0.2 0.956 0.627 0.052
k*/n = 0.4 0.930 0.615 0.055
k*/n=0.8 0.945 0.628 0.051
an, = 0.8 0.726 0.354 0.051
ap =1 0.930 0.615 0.055
ap, = 1.2 0.991 0.827 0.059
n = 500 0.750 0.634 0.058
n = 1000 0.930 0.615 0.055
n = 2000 0.999 0.788 0.052
Yo =n/In(n) | 0.910 0.528 0.055
Yn = In*?(n) 0.883 0.488 0.055
Y = 13/ 0.930 0.615 0.055

Table 6.11: Empirical power at the size-adjusted significance level 0.05 for the
second type model with regular varying innovations and o > ay,.

and

I =max{i: A; #0}.

Further denote

m; = 1=0,1,2,..., m_1=0.
m;_—q if Az = (Z)
Then we have
k I k )
1 . i/r
P | max 5, ;Xn] >el| < ;P max ]Z_:an] > €2
I k ' I my
< ZIP’ iri?n}f Zan > 2V < Zce "2 ZZank
=0 - j=1 =0 k=1
I I
< 2ce™" Z ok Z Apj < 2ce" Z Z ani28, 1
k=0 JEAL k=0 j€Ag

n
=4ce " anfBy -
k=1
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Parameters | a=2/32 a=6/32 «o=10/32
¢*/n=0.035 | 0.094 0.226 0.792
¢*/n=0.050 | 0.173 0.630 0.959
¢*/n=0.100 | 0.368 0.912 0.994
k*/n = 0.2 0.152 0.620 0.966
k*/n = 0.4 0.173 0.630 0.959
k*/n = 0.8 0.141 0.627 0.963
an, = 0.8 0.154 0.389 0.805
an =1 0.173 0.630 0.959
ap =12 0.172 0.854 0.997
n = 500 0.039 0.124 0.509
n = 1000 0.173 0.630 0.959
n = 2000 0.706 0.997 1.000
Yo =n/In(n) | 0.085 0.555 0.944
Yp = In*?(n) | 0.057 0.445 0.949
Yp = 0¥/ 0.173 0.630 0.95

Table 6.12: Empirical power at the size-adjusted significance level 0.05 for the
second type model with regular varying innovations and o < ay,.

So the theorem is proved. m

Proof of Proposition 6.1.4. The proofs of both parts of this proposition are essen-
tially the same, so we shall give a unified proof noting the differences in cases (a)

and (b) where it is necessary. Since

Zgj = Zgj + (¢ — an)zyj—l
=1 i=1 =1

and
k+¢ 1 ftt
we have
Tan(é\l, ’é\n) Tan(gla agn) = |¢n_¢n|Anv
7 I- ¢n

where

k+e g

A= gf%bg lgrilgf—z j:zk;dgj — (Ynse = Yn) — njzzzlej + —Un
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Since |¢n — ¢n|/(1 — ¢n) = Op(1) in case (a) (by Phillips Phillips [1987]) and
1y 2| d, — | = Op(1) in case (b) (by Giraitis and Phillips Giraitis and Phillips
[2006]) the proofs reduces to

b, 'A, =op(1) in case (a), (6.39)
by Y2A, = op(1) in case (b). (6.40)
Writing
ke k
Ykt —Yp = OhT e £ 3 [on T — ¢l ey
j=k+1 Jj=1

we have A, <A/ + A” + A where

k+¢
Al = max (7% max Z [1 — ¢E+]e,],
1<Z<n 1<k<n—/{| . 1
k . .
A” = max /~* max k=i _ pktt=i)e.
T1<i<n 1<k<n—¢ ]Zl On Ol
n
A’”—maxfa [1— @™ ]e;
1<t<n jz_:l On " lEj

1. Estimate for A]’. First we note that

" o__
ATL

S0

Since E(X7_,(1 — ¢19)e;)* = O(n), then A) = O(n'/*™*). As by assumption
1)2—a< 1/p and as b, = n'/Pv(n) with v slowly varying function, this gives that
A" = op(b,) in both cases.

2. Estimate for A!l. Next consider A" and note that

k

ke

j=1

A’ < max 71 —¢%) m

1<l<n 1<k< —¢

(a) Using the convexity inequality 1 — e * < z for z > 0 gives

12
" < —a|7| k—j k—j .
Ay < 1§€<n£ n 1<k< Z On e Z On e

<Pl g

(b) Using the convexity inequality 1 — (1 —z)¥ < zy for 0 < x < 1 and y > 1,
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gives

k

> i e
j=1

k
< ~,n~ % max k=ie .
= PY’I’L lgkén ;¢n J

A < max 0~ alnt max
1<t<n n 1<k<n

Now we shall use Hajek-Rényi inequality (Lemma 6.4.1). Since

Z¢ jE]

n n
> e) <> P (\czﬁ;’%k\ >e) <Y 0, %0%,
k=1 k=1

( max
1<k<n
we have for any 6 > 0

(a)

P(A” > 6b,) < P(max ¢F

1<k<n

> db,n®)

—j
n €j

S 6—2n—20¢b;20_2 Z¢ij¢;2j — 5—2b 20_2nl —2a =0

=1
as n — oo since b, = n'Pv(n) with slowly varying function v and a >
1/2 —1/p.

(b)

P(A! > 6b,7L/?) < P(max ¢F

-1/2
1<k<n > 0byn®, )

—j
n €4

< 6—2n—2ab;2,yn0_22¢ij¢;2j —5 %b 2,212 -0,
i=1

as n — 0o by the same argumentation as in case (a) provided that

lim ~Y/2p@=y(n)~1 = 0. (6.41)

n—oo

This part (6.18) = (6.41) is correct, but I suggest to replace it by the
following sentence. From (6.18), v1/2n(@»~%) = O(n(@/2=1)(@=%)) and as ¢/2—
1 < 0 and v(n) is slowly varying, (6.41) is satisfied.

3. Estimate for A},. Finally it remains to prove

Al =op(b,) in case (a), (6.42)
Al = op(v/%b,) in case (b). (6.43)

For simplicity now we shall write ¢, noting that either ¢, = b, or ¢, = b,7-/2.
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First we decompose P(A! > 20¢,) < Py, + Payp, where

k+¢
P, =P (1 — ¢t gjl >4
= s Qo Z i| > den)

PQn:IP’( max ¢~ g max

1<tb<n 1<k<n 0

> 0cy,)-

1
Z 5 k+j

We have for the first probability, using Doob inequality

(a)

> g

j=k+1

€j >>§bnna)

P, < IP’( m?X max

1<k<n | &

k
> 5bnna) < P(2 max Z
7j=1

k 2
<457%,*n °E max | > g;| <46 %0°n'T*,”

1<k<n | “
7j=1

~ n1’2/p’20‘v(n)’2 —0

as n — 00, since aw > 1/2 — 1/p.

(b)

> 5

P, < P(max max
¢ j=k+1

> (5’ynl/26nna)

P(2 max > 3y, 2b,n®)

1<k<n

5

k 2
25

J=1

< 467%b*n %, E max
<k<n

< 45 2 2 1— 2a7nb 2

~ ynnl_Q/p_zo‘v(n)_ —0

as n — 00, since a > 1/2 — 1/p and lim,,_,., 7/2n=0F1/2=1/P)y(n)~1 = 0.

To estimate P, we define truncated random variables:
5; =¢;1{|e;| > hb,}, 5;’ =¢e;1{|e;| < hb,} — Ee;1{|e;| < hb,},
for j > 1, where h > 0 is subject to a choice. Then Py, (0) < P}, + Py (9), where
Py, = ]P( max [e}] > hbn>,

1<j<n
¢
Z JEk+;
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Since
Eerij1{[errj| < hbn} = Beryj1{[ens;| = hba},
we have
¢
m?xﬁ o max Z DElers i |ers | = hba}| < en'"°Elei|1{|e1| > hb, }.
7=1

By Karamata (see Bingham et al. [1987]) E|e;|1{|e1| > hb,} ~ en™'b,h'"P. So

we can center random variables in probability P, and estimate for large n

¢
Z 5k+]

J
Py, < P( max ("¢, max > QCn).
7=1

1<4<n

By stationarity

o
el > Sen):

Fix 7 > (@ — a,)~" in case (a) and 7 > ((1 — ¢/2)(a —a,))"", 0 < ¢ < 2 in case

Py, < nIP’( max (~*¢"

1<t<n

Zo-

(b). Using successively Markov’s, Doob’s and Rosenthal’s inequalities, we obtain

for each a > 0 we have
i
<max >(1-0.

with a constant ¢ > 0 depending on r only. By Karamata Ele}|" ~ bin"'h"?.

> a> < ca TKZ ¢, )PE(e] )T +Z [1—¢ j‘TE‘EY‘T]

Jj=1

Hence, there is a constant ¢ > 0 such that

P(m?xljzejl(l—gﬁnj)s}/ >a) <ca” {(]zn:l 1 —¢,7)°E(e)) ) +Z|1—¢HJ|TE|5”|]

<ca " Z Tnj
=1

where 7,; = o™n"/2 Y ¢7 — 1)" + (¢;7 — 1)"b"n~'h""P. By Lemma 6.4.1, noting

that the finite sequence (£%¢%);</<, is non decreasing, we obtain

%00

P(max£

sa) e Zfb” —

Finally we deduce

Py, < e by (o 0T 4 TP Y T
j=1
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(a) Using again convexity inequality 1 —e™* < z, we note that

Zn:j*m‘ ZZ: ( 7]) ‘7| Z] (A=) = Op(ni="e).

=1

This leads to
P2/;~L <C (,U(n)frnlfra+r/27r/p + nlfroz) ,

where C' = C(6,r,a,7,0,h,p) is a positive constant. Now the choice done

for r verifies 1 —ra+r/2—r/p < 0, which implies also 1 —ra < 0, so finally

lim Py, = 0.
n—oo
(b) Using the convexity inequality 1 — (1 —x)¥ < zy, for 0 <z < 1 and y > 1,

we note that

Zj—ra 1 - S Z (771.7) % er(l—a) — (%:, 1—- ra)'
7j=1 7=1

=1

This leads to
PQ//n < C (,U(n>—r,y;/2n1—ra+r/2—r/p + nl—'ra) 7

where C' = C(§,r,a,0,h,p) is a positive constant. Now we find that the

condition to have
. "o
8, Fon =0
is the existence of some r > p such that

lim v(n) 'yt 2pl/rrer—e — g, (6.44)

n—oo

This follows from our assumption (6.18), since we have for some constant
K:
U(n) /yn/Q 1/r+ap—a < KU( ) 1, 1/r+(a/2-1)(a—ap)

then this upper bound tends to 0 for any r > 0 such that

71n< (1—3)(04—041,).

Finally, since (Gnedenko [1943], see, for example, Embrechts et al. [1997],
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Theorem 3.3.7, for a more recent reference)

lim P(max |;| > hb,) =1—e """

n—oo " ‘i<j<n

the probability P/, can be made arbitrary small by choosing big h. So (6.42) and
(6.43) as well as (6.39) and (6.40) are proved. O

Remark 6.4.2. There is no loss in the proof when we deduce (6.44) from (6.18)
since the converse implication is true. Indeed assume that (6.44) holds true for
some r. Then we can rewrite it as

(,U(n)flnl/(Qr)),.)/71/2”1/(27‘)7(&701;7) — 0.

n—oo

As v(n) is slowly varying and 7 positive, v(n)'n'/®" tends to infinity, then

a—ap)

necessarily ~1/2n!/(2r)=( tends to zero and in particular is bounded. So for

some positive constant K:
Y < anl/rJrQ(afap)'

Now we define ¢ by

1
— +2(a — ap) =q(a— ap)a

as 7, tends to infinity, necessarily —1/r 4+ 2(o — «,) is positive. Then ¢ € (0,2)
and we get (6.18).

Further we state proofs of two lemmas that are the main tools to prove the
Lemma 6.2.4.

Proof of Lemma 6.2.5. For the first type model by Phillips it hold

n 20z~ 1 (#) (6.45)

n—oo

with the supremum norm ||-||_ . The map

Vo (DO, ]) —  R?: fH(/OlfQ(t)dt,/OAfQ(t)dt>

is continuous. Obviously

1 12
/(; ZTQL,[nt} dt = ﬁ Z Z?L,k*l' (646)
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Since

Jo £2(t) dt
Jo f2@t)dt

is continuous on

{f 1 [P # o}

and according to (6.45) the limiting process is Gaussian (Ornstein-Uhlenbeck), so

IP’(/OAU,f(t)dt:O> —0,

thus
fol(n_l/20-_lzn’[nt])2 dt R fol U,?(t) dt = OP(l)
Jo (120712, )2 At mee [AU2(E) dt '
For the second type model we have the following weak law of large numbers
1— 2 n ) P )
—) g O (6.47)
n el n—oo
Seeing that
Y n
2=t Z7217k—1 . - n% D k=1 Z?z,k—l . 1 - ¢[2n)\] n
n\ T o1—¢2 S
S Sgeskla,, 14
we obtain
1—¢2 —n
% D k=1 Zi,k—1 P g
1—¢[2M] nA] o n—o0’
o] k=1 Zn k-1
and

n 1

—_ A~ —

A A

Further assuming that v, is increasing in n we have v, /7, < 1

1_¢[2n)\] ~ v VnA| <£

If v, is regular varying then

lim AL — c(N)

n—oo fyn
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SO 9
1 = 9y

1— ¢,

remains bounded. O

Remark 6.4.3. We explain, why we need to put here an additional assumption

on 7, (increasing or regular varying). Let us define the sequence

n%! if n is even,
Tn =

n%% if n is odd.

Then let us define the subsequence ny = (4k +2), k = 0,1,2,.... As all ny are
even, we obtain 7,, = n)! = (4k + 2)°!. Now we take A\ = 1/2, then [n;)\] are
odd

[niA] = [ /2] = 2k + 1

and 0 Y, = (n/2)°? = (2k 4+ 1)°9. So we get

V] (26 + 1) 0.9 (4k +2)0°
= =(1/2)"——=L— — k — oc.
T S T >
The latter result implies that
2
1-— (b[n)\]
1—¢

is not bounded in such case.

Proof of Lemma 6.2.6. Let us consider first type model. Then equation (6.46)

gives us

1 1 (n—1/20—1)2 < (1 — an)OP(l)

Zgﬂ thk_l B nfo/\(n—l/2a_1zn7[nﬂ)2 dt n

by the same argumentation as in Lemma 6.2.5 and equivalence 1 — ¢,, ~ —v/n.
For the second type model applying the weak law of large numbers (6.47) we
imediatelly obtain the inequality
L (1-6,)00(1)

[nA] 2 -
k=1 *n k-1 n
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Conclusions

First order nearly nonstationary autoregressive processes Yn r = On¥Yni—1 + €k
are considered with coefficient ¢,, defined in two ways:

— =" 4 <0

— Op=1—v/n, Y —— 0, Yp/n — 0, as 1 — 0.
Polygonal line processes SP!' build on observations ¥, ; and W}fl build on process
residuals &, are studied. The functional limit theorems for SP! in the spaces C|0, 1]
and H2[0,1], a € (0,1/2) are proved. It is shown that the limiting distribution
differs for the both type models. Properly normalized SP' converge to integrated
Ornstein-Uhlenbeck process in the first type model whereas to Wiener process in
the second type model. Functional limit theorems for W};l in H2[0, 1] are proved.
For the first type model it is shown that integrability condition lim; ., t?P(|eg| >
t) = 0 is necessary and sufficient for the convergence in distribution of 17[\/75’1 in
the H2 [0, 1] space. For the second type model, the convergence in distribution to

Wiener process in H? [0, 1] is derived.

Further epidemic change detection in mean of innovations is investigated. The
model

Ynk = OnUnk—1 + €+ anp, n>0, k<n

is concerned. Uniform increments statistics is build on observations ¥, 1, ..., Ynn
and residuals &1,...,&,. Under some assumptions on residuals we find the limit
of both statistics. Consistency conditions for statistics Ta,n = Ton(YUniy- s Ynn)
and fam =T, n(1,...,E,) are found and test power analysis is performed. Both
statistics are worth of further investigation. Table 6.13 shows size-adjusted test
power for statistics Tam and fa,n, where innovations satisfies integrability condi-
tion lim; o tPP(|eg| > t) = 0. The result shows that with different parameters
for the second type model, different statistics give different results. In this exam-
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CONCLUSIONS

4y = 1,0 =30, k" = 400,71 = 1000, = —2,, = n0®
a; =0.0625 | ap =0.1875 | a3 = 0.39 (I model);
az = 0.31 (II model)

7 I model | 0.318 0.327 0.306
@™ II'model | 0.276 0.330 0.429
7 [ model | 0.335 0.526 0.914
@™ 1 II'model | 0.061 0.452 0.836

a, = 1,0 =30, k* = 400,n = 1000,y = —20, ~y,, = n®®
7 [ model | 0.280 0.322 0.467
@™ | II'model | 0.314 0.505 0.796
7 I model | 0.088 0.502 0.913
@™ | II'model | 0.073 0.213 0.682

Table 6.13: Comparing statistics T on and fm

ple, statistics T, with 7, = n®%® detects epidemics better, while with v, = n%%

statistics Ta,n performs better. Further note, that with the chosen parameters
statistics fmn for the first type model works better in both cases, but consistency

of this case is still an open question.
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