ŠIAULIAI UNIVERSITY FACULTY OF MATHEMATIC AND INFORMATICS DEPARTMENT OF MATHEMATICS

SANTA SKERSTONAITĖ

JOINT UNIVERSALITY FOR PERIODIC HURWITZ ZETA-FUNCTIONS

Master work

Scientific supervisor Prof. Dr. Habil. A. Laurinčikas

Šiauliai, 2009

ŠIAULIŲ UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS MATEMATIKOS KATEDRA

SANTA SKERSTONAITĖ

PERIODINIŲ HURVICO DZETA FUNKCIJŲ JUNGTINIS UNIVERSALUMAS

Magistro darbas

Darbo vadovas Prof. Habil. Dr. A. Laurinčikas

Šiauliai, 2009

Content

Introduction
Chapter 1. A joint universality theorem for periodic Hurwitz zeta-functions \dots 7
1.1. Introduction
1.2. A joint limit theorem
1.3. Support of the measure P_{ζ}
1.4. Proof of Theorem 1.3 16
Chapter 2. Joint universality for periodic Hurwitz zeta-functions. II 18
2.1. Introduction
2.2. A limit theorem
2.3. Support of P_{ζ}
2.4. Proof of Theorem 2.4
Santrauka
Bibliography

Introduction

In 1975, S. M. Voronin discovered [19] the universality of the Riemann zetafunction $\zeta(s)$, $s = \sigma + it$. Roughly speaking, this means that any analytic function can be approximated by shifts $\zeta(s + i\tau)$ with desired accuracy. A precise statement of the Voronin theorem is the following result.

Suppose that $0 < r < \frac{1}{4}$. Let a function f(s) be non-vanishing and continuous on the disc $|s| \leq r$, and analytic in the interior of this disc. Then, for every $\varepsilon > 0$, there exists a real number $\tau = \tau(\varepsilon)$ such that

$$\max_{|s| \le r} \left| \zeta \left(s + \frac{3}{4} + i\tau \right) - f(s) \right| < \varepsilon.$$

Later, the Voronin theorem was improved. We recall a theorem obtained in [9]. Denote by meas $\{A\}$ the Lebesque measure of a measurable set $A \subset \mathbb{R}$.

Suppose that K is a compact subset of the strip $D = \{s \in \mathbb{C} : \frac{1}{2} < \sigma < 1\}$ with connected complement, and f(s) is a non-vanishing continuous function on K which is analytic in the interior of K. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T] : \sup_{s \in K} |\zeta(s + i\tau) - f(s)| < \varepsilon \right\} > 0.$$

This theorem shows that the set of shifts $\zeta(s + i\tau)$ which approximate a given analytic function is sufficiently rich, it has a positive lower density.

The universality property was also obtained for other zeta and L-function, see a survey in [10].

Also, S. M. Voronin was the first who proved a point universality theorem for Dirichlet *L*-functions. We recall that a Dirichlet *L*-function $L(s, \chi)$ is defined, for $\sigma > 1$, by

$$L(s,\chi) = \sum_{m=0}^{\infty} \frac{\chi(m)}{m^s},$$

and by analytic continuation elsewhere. Here $\chi(m)$ is a Dirichlet character. In [18], S. M. Voronin proved the following theorem. We state its modern version. Suppose that $\chi_1, ..., \chi_n$ are pairwise non-equivalent Dirichlet characters. Let $K_1, ..., K_n$ be compact subsets of the strip D with connected complements, and $f_1(s), ..., f_n(s)$ be non-vanishing continuous functions on $K_1, ..., K_n$ which are analytic in the interior of $K_1, ..., K_n$, respectively. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \operatorname{meas}\left\{ \tau \in [0, T] : \sup_{\substack{1 \le j \le n \\ s \in K_j}} |L(s + i\tau, \alpha_j) - f(s)| < \varepsilon \right\} > 0.$$

The aim of our work is to obtain joint universality theorems for periodic Hurwitz zeta-functions.

The master work consist of two papers submisted for publication on joint universality of periodic Hurwitz zeta-functions. We recall the definition of the periodic Hurwitz zeta-function. Let $\mathfrak{A} = \{a_m : m \in \mathbb{N}_0\}, \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, be a periodic sequence with minimal period $k \in \mathbb{N}$ of complex numbers, and α , $0 < \alpha \leq 1$, be a fixed parameter. For $\sigma > 1$, the periodic Hurwitz zeta-function $\zeta(s, \alpha; \mathfrak{A})$ is defined by

$$\zeta(s,\alpha;\mathfrak{A}) = \sum_{m=0}^{\infty} \frac{a_m}{(m+\alpha)^s}.$$

The function $\zeta(s, \alpha; \mathfrak{A})$ is analytically continuable to the whole complex plane, except, maybe, for a simple pole at s = 1.

We prove two joint universality theorems for periodic Hurwitz zeta-functions $\zeta(s, \alpha_1; \mathfrak{A}_1), \ldots, \zeta(s, \alpha_r; \mathfrak{A}_r)$. Define

$$L(\alpha_1,\ldots,\alpha_r) = \{\log(m+\alpha_j) : j = 1,\ldots,r, m \in \mathbb{N}_0\}.$$

Suppose that the set $L(\alpha_1, \ldots, \alpha_r)$ is linearly independent over the field of national numbers. For every $j = 1, \ldots, 2$, let K_j be a compact subset of the strip D with connected complement, and let f(s) be a continuous function on K_j and analytic in the interior of K_j . Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \operatorname{meas}\left\{ \tau \in [0, T] : \sup_{1 \le j \le r} \sup_{s \in K_j} |\zeta(s + i\tau, \alpha_j; \mathfrak{A}_j) - f(s)| < \varepsilon \right\} > 0.$$

The later theorem is more stronger than that obtained in [8] because it does not use any hypothesis on the sequences $\mathfrak{A}_1, \ldots, \mathfrak{A}_r$.

In the second joint universality theorem, we consider the use when parameter α_j corresponds general periodic sequences. Let l_j , $j = 1, \ldots, r$, be positive integers. For every $l = 1, \ldots, l_j$, let $\mathfrak{A}_{jl} = \{a_{mjl} : m \in \mathbb{N}_0\}$ be a periodic sequence of complex numbers with minimal period $k_{jl} \in \mathbb{N}$, $0 < \alpha_j \leq 1$, and

$$\zeta(s,\alpha_j;\mathfrak{A}_{jl}) = \sum_{m=0}^{\infty} \frac{a_{mjl}}{(m+\alpha_j)^s}.$$

Moreover, let k_j be the least common multiple of the periods $k_{j_1}, \ldots, k_{jl_j}, j = 1, \ldots, r$, of $k_{11}, \ldots, k_{1l_1}, \ldots, k_{r1}, \ldots, k_{rl_r}$, and k be the least common multiple

$$B_{j} = \begin{pmatrix} a_{1j_{1}} & a_{1j_{2}} & \dots & a_{1jl_{j}} \\ a_{2j_{1}} & a_{2j_{2}} & \dots & a_{2jl_{j}} \\ \dots & \dots & \dots & \dots \\ a_{kj_{1}} & a_{kj_{2}} & \dots & a_{kjl_{j}} \end{pmatrix}, \quad j = 1, \dots, r.$$

The we have the following result.

Suppose that the system $L(\alpha_1, \ldots, \alpha_r)$ is linearly independent over the field of national numbers, and that rank $(B_j) = l_j$, $j = 1, \ldots, r$. For every $j = 1, \ldots, r$ and $l = 1, \ldots, l_j$, let K_{jl} be a compact subset of the strip D with connected complement, and let $f_{jl}(s)$ be a continuous on K_{jl} function which is analytic in the interior of K_jl , then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \max \left\{ \sup_{1 \le j \le r} \sup_{1 \le l \le l_j} \sup_{s \in K_j} |\zeta(s + i\tau, \alpha_j; \mathfrak{A}_{jl}) - f_{jl}(s)| < \varepsilon \right\} > 0.$$

Note that the rank hypothesis in the later theorem is weaker than that in [13].

Chapter 1

A joint universality theorem for periodic Hurwitz zeta-functions

1.1. Introduction

Let, as usual, \mathbb{N} , \mathbb{N}_0 , \mathbb{Z} , \mathbb{R} and \mathbb{C} denote the sets of all positive integers, nonnegative integers, integers, real and complex numbers, respectively. First, we recall the definition of the periodic Hurwitz zeta-function. Let $\{a_m : m \in \mathbb{N}_0\} \subset \mathbb{C}$ be a periodic sequence with minimal period $k \in \mathbb{N}$, and α , $0 < \alpha \leq 1$, be a fixed parameter. Then the periodic Hurwitz zeta-function $\zeta(s, \alpha; \mathfrak{A}), s = \sigma + it$, is defined, for $\sigma > 1$, by

$$\zeta(s,\alpha;\mathfrak{A}) = \sum_{m=0}^{\infty} \frac{a_m}{(m+\alpha)^s}.$$

The periodicity of the sequence $\{a_m\}$, for $\sigma > 1$, implies the equality

$$\zeta(s,\alpha;\mathfrak{A}) = \frac{1}{k^s} \sum_{l=0}^{k-1} a_l \zeta\left(s, \frac{\alpha+l}{k}\right),\tag{1.1}$$

where $\zeta(s, \alpha)$ is the classical Hurwitz zeta-function, for $\sigma > 1$, given by Dirichlet series

$$\zeta(s,\alpha) = \sum_{m=0}^{\infty} \frac{1}{(m+\alpha)^s},$$

and can be continued analytically to the whole complex plane, except for a simple pole at s = 1 with residue 1. Therefore, equality (1.1) shows that the function $\zeta(s, \alpha; \mathfrak{A})$ also admits meromorphic continuation with a simple pole at s = 1 with residue

$$a \stackrel{def}{=} \frac{1}{k} \sum_{l=0}^{k-1} a_l$$

In the case a = 0, the function $\zeta(s, \alpha; \mathfrak{A})$ is entire.

Obviously, if $a_m \equiv 1$, then $\zeta(s, \alpha; \mathfrak{A}) = \zeta(s, \alpha)$.

In [6] and [7], the universality of the function $\zeta(s, \alpha; \mathfrak{A})$ with transcendental parameter α was investigated. Denote by meas $\{A\}$ the Lebesgue measure of a measurable set $A \subset \mathbb{R}$, and let, for T > 0,

$$\nu_T(\dots) = \frac{1}{T} \operatorname{meas}\{\tau \in [0;T]:\dots\},\$$

where in place of dots a condition satisfied by τ is to be written. Then in [7] the following statement was proved.

Theorem 1.1. Suppose that α is transcendental. Let K be a compact subset of the strip $D = \{s \in \mathbb{C} : \frac{1}{2} < \sigma < 1\}$ with connected complement, and let f(s) be a continuous function on K which is analytic in the interior of K. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \nu_T \Big(\sup_{s \in K} \left| \zeta(s + i\tau, \alpha; \mathfrak{A}) - f(s) \right| < \varepsilon \Big) > 0.$$

Note that the transcendence of α is used only for the linear independence of the set

$$L(\alpha) \stackrel{def}{=} \{ \log(m+\alpha) : m \in \mathbb{N}_0 \}.$$

Since the fundamental Voronin work [18] on joint universality of Dirichlet *L*-functions, many authors considered the joint universality of other zeta- and *L*-functions. The first result in the field for periodic Hurwitz zeta-functions was obtained in [11]. Let $\mathfrak{A}_j = \{a_{mj} : m \in \mathbb{N}\} \subset \mathbb{C}$ be a periodic sequence with minimal period $k_j, \alpha_j, 0 < \alpha_j \leq 1$, be a fixed parameter, and, for $\sigma > 1$,

$$\zeta(s,\alpha_j;\mathfrak{A}_j) = \sum_{m=0}^{\infty} \frac{a_{mj}}{(m+\alpha_j)^s},$$

 $j = 1, \ldots, r, \quad r \in \mathbb{N} \setminus \{1\}.$

Definition. For every j = 1, ..., r, let K_j be a compact subset of the strip D with connected complement, and let $f_j(s)$ be a function continuous on K_j and analytic in the interior of K_j . We say that the functions $\zeta(s, \alpha_1; \mathfrak{A}_1), \ldots, \zeta(s, \alpha_r; \mathfrak{A}_r)$ are universal, if, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \nu_T \Big(\sup_{1 \le j \le r} \sup_{s \in K_j} \left| \zeta(s + i\tau, \alpha_j; \mathfrak{A}_j) - f_j(s) \right| < \varepsilon \Big) > 0.$$

Denote by k the least common multiple of the periods k_1, \ldots, k_r , and define

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1r} \\ a_{21} & a_{22} & \dots & a_{2r} \\ \dots & \dots & \dots & \dots \\ a_{k1} & a_{k2} & \dots & a_{kr} \end{pmatrix}.$$

Then in [11] it was proved that if $k_j = k$, $\alpha_j = \alpha$, $j = 1, \ldots, r$, α is transcendental and rank(A) = r, then the functions $\zeta(s, \alpha; \mathfrak{A}_1), \ldots, \zeta(s, \alpha; \mathfrak{A}_r)$ are universal. In [12], the requirement that $k_j = k$, $j = 1, \ldots, r$, was removed. Finally, in [8] the following joint universality theorem was proved.

Theorem 1.2. [8]. Suppose that the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over the field of rational numbers \mathbb{Q} , and rank(A) = r. Then the functions $\zeta(s, \alpha_1; \mathfrak{A}_1), \ldots, \zeta(s, \alpha_r; \mathfrak{A}_r)$ are universal.

The aim of this paper is to prove a joint universality theorem for the functions $\zeta(s, \alpha_1; \mathfrak{A}_1), \ldots, \zeta(s, \alpha_r; \mathfrak{A}_r)$ without using the hypothesis on the rank of the matrix A. Let

$$L(\alpha_1,\ldots,\alpha_r) = \{\log(m+\alpha_j) : j = 1,\ldots,r, m \in \mathbb{N}_0\}.$$

Theorem 1.3. Suppose that the set $L(\alpha_1, \ldots, \alpha_r)$ is linear independent over \mathbb{Q} . Then the functions $\zeta(s, \alpha_1; \mathfrak{A}_1), \ldots, \zeta(s, \alpha_r; \mathfrak{A}_r)$ are universal.

We note that the linear independence of $L(\alpha_1, \ldots, \alpha_r)$ holds whenever the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} . Therefore, the hypothesis on the numbers $\alpha_1, \ldots, \alpha_r$ in Theorem 1.3 is weaker than that in Theorem 1.2.

1.2. A joint limit theorem

The proof of Theorem 1.3 is based on a joint limit theorem in the space of analytic functions for the functions $\zeta(s, \alpha_1; \mathfrak{A}_1), \ldots, \zeta(s, \alpha_r; \mathfrak{A}_r)$. Its proof is independent on the matrix A, therefore it is similar to that of a limit theorem from [8], where the case of the algebraically independent numbers $\alpha_1, \ldots, \alpha_r$ was considered.

Denote by H(D) the space of analytic on D functions equipped with the topology of uniform convergence on compacta, and define

$$H^r(D) = \underbrace{H(D) \times \cdots \times H(D)}_r$$

Let, as usual, $\mathcal{B}(S)$ stand for the class of Borel sets of a space S. Moreover, let

$$\Omega = \prod_{m=0}^{\infty} \gamma_m,$$

where $\gamma_m = \{s \in \mathbb{C} : |s| = 1\} \stackrel{def}{=} \gamma$ for all $m \in \mathbb{N}_0$. Since γ is a compact, the Tikhonov theorem shows that the infinite-dimensional torus Ω with the product topology and point-wise multiplication is a compact topological Abelian group. Let

$$\Omega^r = \Omega_1 \times \cdots \times \Omega_r,$$

where $\Omega_j = \Omega$ for j = 1, ..., r. Then Ω^r is also a compact topological Abelian group. Therefore, on $(\Omega^r, \mathcal{B}(\Omega^r))$, the probability Haar measure m_H^r can be defined, and we obtain a probability space $(\Omega^r, \mathcal{B}(\Omega^r), m_H^r)$. It is important to note that the Haar measure m_H^r is the product of the Haar measures m_{jH} on the coordinate spaces $(\Omega_j, \mathcal{B}(\Omega_j))$, j = 1, ..., r. Denote by $\omega_j(m)$ the projection of an element $\omega_j \in \Omega_j$ to the coordinate space $\gamma_m, m \in \mathbb{N}_0$. Let $\omega = (\omega_1, ..., \omega_r) \in \Omega^r$, where $\omega_j \in \Omega_j$, j = 1, ..., r, and let, for brevity,

$$\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_r), \quad \boldsymbol{\mathfrak{A}} = (\mathfrak{A}_1, \ldots, \mathfrak{A}_r),$$

On the probability space $(\Omega^r, \mathcal{B}(\Omega^r), m_H^r)$, define the $H^r(D)$ -valued random element $\boldsymbol{\zeta}(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}})$ by

$$\boldsymbol{\zeta}(s,\boldsymbol{\alpha},\boldsymbol{\omega};\boldsymbol{\mathfrak{A}}) = (\zeta(s,\alpha_1,\omega_1;\mathfrak{A}_1),\ldots,\zeta(s,\alpha_r,\omega_r;\mathfrak{A}_r)),$$

where

$$\zeta(s,\alpha_j,\omega_j;\mathfrak{A}_j) = \sum_{m=0}^{\infty} \frac{a_{mj}\omega_j(m)}{(m+\alpha_j)^s}, \quad j = 1,\dots,r,$$

and denote by $P_{\boldsymbol{\zeta}}$ the distribution of $\boldsymbol{\zeta}(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}})$, i.e.,

$$P_{\boldsymbol{\zeta}}(A) = m_H^r(\boldsymbol{\omega} \in \Omega^r : \boldsymbol{\zeta}(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{a}}) \in A), \quad A \in \mathcal{B}(H^r(D)).$$

Let, for $A \in \mathcal{B}(H^r(D))$,

$$P_T(A) = \nu_T(\boldsymbol{\zeta}(s + i\tau, \boldsymbol{\alpha}; \boldsymbol{a}) \in A),$$

where

$$\boldsymbol{\zeta}(s,\boldsymbol{\alpha};\boldsymbol{\mathfrak{A}}) = (\zeta(s,\alpha_1;\mathfrak{A}_1),\ldots,\zeta(s,\alpha_r;\mathfrak{A}_r)).$$

This section is devoted to the following probabilistic limit theorem.

Theorem 1.4. Suppose that the set $L(\alpha_1, \ldots, \alpha_r)$ is linear independent over \mathbb{Q} . Then P_T converges weakly to the measure $P_{\boldsymbol{\zeta}}$ as $T \to \infty$.

We will not give a proof of Theorem 4 in details, we will indicate only its principal points. The first important ingredient is a limit theorem on the torus Ω^r . Let, for $A \in \mathcal{B}(\Omega^r)$,

$$Q_T(A) = \nu_T((((m + \alpha_1)^{-i\tau} : m \in \mathbb{N}_0), \dots, ((m + \alpha_r)^{-i\tau} : m \in \mathbb{N}_0)) \in A).$$

Lemma 1.5. Suppose that the set $L(\alpha_1, \ldots, \alpha_r)$ is linear independent over \mathbb{Q} . Then Q_T converges weakly to the Haar measure m_H^r as $T \to \infty$.

A proof of Lemma 5 is based on the Fonrier transforms method on compact topological groups, and is given in [13].

Now let $\sigma_1 > \frac{1}{2}$ be fixed, and, for $m, n \in \mathbb{N}_0$,

$$v_n(m, \alpha_j) = \exp\left\{-\left(\frac{m+\alpha_j}{n+\alpha_j}\right)^{\sigma_1}\right\}, \quad j = 1, \dots, r.$$

Define

$$\zeta_n(s,\alpha_j;\mathfrak{A}_j) = \sum_{m=0}^{\infty} \frac{a_{mj}\upsilon_n(m,\alpha_j)}{(m+\alpha_j)^s}, \quad j = 1,\dots,n,$$

and

$$\zeta_n(s,\alpha_j,\omega_j;\mathfrak{A}_j) = \sum_{m=0}^{\infty} \frac{a_{mj}\omega_j(m)\upsilon_n(m,\alpha_j)}{(m+\alpha_j)^s}, \quad j = 1,\dots,n,$$

the series being absolutely convergent for $\sigma > \frac{1}{2}$, see [6]. The next important step in the proof of Theorem 1.4 are limit theorems for

$$\boldsymbol{\zeta}_n(s,\boldsymbol{\alpha};\boldsymbol{\mathfrak{A}}) = (\zeta_n(s,\alpha_1;\boldsymbol{\mathfrak{A}}_1),\ldots,\zeta_n(s,\alpha_r;\boldsymbol{\mathfrak{A}}_r))$$

and

$$\boldsymbol{\zeta}_n(s,\boldsymbol{\alpha},\boldsymbol{\omega};\boldsymbol{\mathfrak{A}}) = (\zeta_n(s,\alpha_1,\omega_1;\mathfrak{A}_1),\ldots,\zeta_n(s,\alpha_r,\omega_r;\mathfrak{A}_r)).$$

Let, for $A \in \mathcal{B}(H^r(D))$,

$$P_{T,n}(A) = \nu_T(\boldsymbol{\zeta}_n(s+i\tau,\boldsymbol{\alpha};\boldsymbol{\mathfrak{A}}) \in A),$$

and, for fixed $\boldsymbol{\omega}_{\mathbf{0}} \in \Omega^r$,

$$Q_{T,n}(A) = \nu_T(\boldsymbol{\zeta}_n(s+i\tau, \boldsymbol{\alpha}, \boldsymbol{\omega}_0; \boldsymbol{\mathfrak{A}}) \in A),$$

Lemma 1.6. Suppose that the set $L(\alpha_1, \ldots, \alpha_r)$ is linearly independent over \mathbb{Q} . Then $P_{T,n}$ and $Q_{T,n}$ both converge weakly to the same probability measure P_n on $(H^r(D), \mathcal{B}(H^r(D)))$ as $T \to \infty$.

Proof. Since the functions $h_n : \Omega^r \to H^r(D)$ and $h_{1,n} : \Omega^r \to H^r(D)$ given by $h_n(\omega) = \boldsymbol{\zeta}_n(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}})$ and

$$h_{1,n}(\boldsymbol{w}) = \boldsymbol{\zeta}_n(s, \boldsymbol{\alpha}, \boldsymbol{w} \boldsymbol{w}_0; \boldsymbol{a})$$

are continuous, and $P_{T,n} = Q_T h_n^{-1}$, $Q_{T,n} = Q_T h_{1,n}^{-1}$, we obtain from Lemma 1.5 and Theorem 5.1 of [3] that $P_{T,n}$ and $Q_{T,n}$ converge weakly to $m_H^r h_n^{-1}$ and $m_H^r h_{1,n}^{-1}$, respectively, as $T \to \infty$. Moreover, the invariance of the Haar measure m_H^r and the definitions of h_n and $h_{1,n}$ show that $m_H^r h_{1,n}^{-1} = m_H^r h_n^{-1}$.

In order to pass from $\boldsymbol{\zeta}_n(s, \boldsymbol{\alpha}; \boldsymbol{\mathfrak{A}})$ to $\boldsymbol{\zeta}(s, \boldsymbol{\alpha}; \boldsymbol{\mathfrak{A}})$, we need an approximation of $\boldsymbol{\zeta}(s, \boldsymbol{\alpha}; \boldsymbol{\mathfrak{A}})$ and $\boldsymbol{\zeta}(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}})$ by $\boldsymbol{\zeta}_n(s, \boldsymbol{\alpha}; \boldsymbol{\mathfrak{A}})$ and $\boldsymbol{\zeta}_n(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}})$, respectively. For this, we will use a metric on $H^r(D)$ which induces its topology. First we define a metric on H(D). For $g_1, g_2 \in H(D)$, we set

$$\rho(g_1, g_2) = \sum_{l=1}^{\infty} 2^{-l} \frac{\sup_{s \in K_l} |g_1(s) - g_2(s)|}{1 + \sup_{s \in K_l} |g_1(s) - g_2(s)|},$$

where $\{K_l : l \in \mathbb{N}\}$ is a sequence of compact subsets of D such that

$$D = \bigcup_{l=1}^{\infty} K_l,$$

 $K_l \subset K_{l+1}$ for all $l \in \mathbb{N}$, and if $K \subset D$ is a compact set, then $K \subset K_l$ for some l. It is not difficult to see that the metric ρ induces on H(D) the topology of uniform convergence on compacta.

Now, for
$$\boldsymbol{g}_1 = (g_{11}, \dots, g_{1r}), \boldsymbol{g}_2 = (g_{21}, \dots, g_{2r}) \in H^r(D)$$
, putting
 $\boldsymbol{\rho}(\boldsymbol{g}_1, \boldsymbol{g}_2) = \max_{1 \le j \le j} \boldsymbol{\rho}(g_{1j}, g_{2j}),$

we have the metric on $H^r(D)$.

Lemma 1.7. The equality

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \boldsymbol{\rho}(\boldsymbol{\zeta}(s + i\tau, \boldsymbol{\alpha}; \boldsymbol{\alpha}), \boldsymbol{\zeta}_n(s + i\tau, \boldsymbol{\alpha}; \boldsymbol{\alpha})) d\tau = 0$$

holds.

A proof does not depend on arithmetical nature of the numbers $\alpha_1, \ldots, \alpha_r$ and is given in [8].

Lemma 1.8. Suppose that the set $L(\alpha_1, \ldots, \alpha_r)$ is linear independent over \mathbb{Q} . Then, for almost all $\boldsymbol{\omega} \in \Omega^r$, the equality

$$\lim_{n\to\infty}\limsup_{T\to\infty}\frac{1}{T}\int_0^T \boldsymbol{\rho}(\boldsymbol{\zeta}(s+i\tau,\boldsymbol{\alpha},\boldsymbol{\omega};\boldsymbol{\mathfrak{A}}),\boldsymbol{\zeta}_n(s+i\tau,\boldsymbol{\alpha},\boldsymbol{\omega};\boldsymbol{\mathfrak{A}}))d\tau=0$$

holds.

Proof. Let $a_{\tau} = \{(m + \alpha)^{-i\tau} : m \in \mathbb{N}_0\}, \quad \tau \in \mathbb{R}, \quad 0 < \alpha \leq 1$, and define $\varphi_{\tau} : \Omega \to \Omega$ by $\varphi_{\tau}(\omega) = a_{\tau}\omega, \quad \omega \in \Omega$. Then $\{\varphi_{\tau} : \tau \in \mathbb{R}\}$ is a one-parameter group of measurable measure preserving transformations on Ω . If $L(\alpha)$ is linear independent

over \mathbb{Q} , there it follows, see, for example, [13], that the group $\{\varphi_{\tau} : \tau \in \mathbb{R}\}$ is ergodic. Since the set $L(\alpha_1, \ldots, \alpha_r)$ is linearly independent over \mathbb{Q} , each set $L(\alpha_j)$, $j = 1, \ldots, r$, is as well. Combining this with the classical Birkhoff-Khintchine ergodic theorem, we obtain in a standard way that, for every compact subset K of D, the equality

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \sup_{s \in K} \left| \zeta(s + i\tau, \alpha_j, \omega_j; \mathfrak{A}_j) - \zeta_n(s + i\tau, \alpha_j, \omega_j; \mathfrak{A}_j) \right| d\tau = 0$$

holds for almost all $\omega_j \in \Omega$, j = 1, ..., r. This, for almost all $\omega_j \in \Omega_j$, implies the equality

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho(\zeta(s + i\tau, \alpha_j, \omega_j; \mathfrak{A}_j), \zeta_n(s + i\tau, \alpha_j, \omega_j; \mathfrak{A}_j)) d\tau = 0$$

which together with the definition of ρ implies the assertion of the lemma.

For the proof of the theorem, we need one more lemma on a common limit measure. Let, for $A \in \mathcal{B}(H^r(D))$,

$$\widehat{P}_T(A) = \nu_T(\boldsymbol{\zeta}(s+i\tau, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}}) \in A.$$

Lemma 1.9. Suppose that the set $L(\alpha_1, \ldots, \alpha_r)$ is linearly independent over \mathbb{Q} . Then P_T and \hat{P}_T for almost all $\underline{\omega} \in \Omega^r$, both converge weakly to the same probability measure P on $(H^r(D), \mathcal{B}(H^r(D)))$ as $T \to \infty$.

Proof. We take a random variable θ defined on a certain probability space $(\Omega_0, \mathcal{B}(\Omega_0), \mathbb{P})$ and uniformly distributed on [0, 1]. On $(\Omega_0, \mathcal{B}(\Omega_0), \mathbb{P})$, define the $H^r(D)$ -valued random element $\mathbf{X}_{T,n} = \mathbf{X}_{T,n}(s, \boldsymbol{\alpha}; \boldsymbol{\alpha})$ by the equality

$$\boldsymbol{X}_{T,n}(s,\boldsymbol{\alpha};\boldsymbol{\mathfrak{A}}) = \boldsymbol{\zeta}_n(s+i\theta\tau,\boldsymbol{\alpha};\boldsymbol{\mathfrak{A}}).$$

Then, denoting by $\xrightarrow{\mathcal{D}}$ the convergence in distribution, we have by Lemma 6 that

$$\boldsymbol{X}_{T,n} \xrightarrow[T \to \infty]{\mathcal{D}} \boldsymbol{X}_n, \tag{1.2}$$

where X_n is the $H^r(D)$ -valued random element having the distribution P_n , and P_n is the limit measure in Lemma 6. By a standard method, see, for example, [14], it can be proved that the family of probability measures $\{P_n : n \in \mathbb{N}_0\}$ is tight, i.e., for every $\varepsilon > 0$ there exists a compact subset $H_{\varepsilon} \subset H^r(D)$ such that

$$P_n(H_{\varepsilon}) > 1 - \varepsilon$$

for all $n \in \mathbb{N}_0$. Then, by the Prokhorov theorem, see Theorem 6.1 of [3], we have that the family $\{P_n : n \in \mathbb{N}_0\}$ is relatively compact. Therefore, there exists a subsequence $\{P_{n_k}\} \subset \{P_n\}$ such that P_{n_k} converges weakly to a certain probability measure P on $(H^r(D), \mathcal{B}(H^r(D)))$ as $k \to \infty$, so the relation

$$\boldsymbol{X}_n \xrightarrow[k \to \infty]{\mathcal{D}} \boldsymbol{P} \tag{1.3}$$

holds.

On $(\Omega_0, \mathcal{B}(\Omega_0), \mathbb{P})$, define one more $H^r(D)$ -valued random element $X_T = X_T(s, \alpha; \mathfrak{A})$ by the equality

$$\boldsymbol{X}_T(s,\boldsymbol{\alpha};\boldsymbol{\mathfrak{A}}) = \boldsymbol{\zeta}(s+i\theta\tau,\boldsymbol{\alpha};\boldsymbol{\mathfrak{A}}).$$

Then, for every $\varepsilon > 0$, Lemma 7 implies that

$$\lim_{n \to \infty} \limsup_{T \to \infty} \mathbb{P}(\boldsymbol{\rho}(\boldsymbol{X}_{T}(s, \boldsymbol{\alpha}; \boldsymbol{\mathfrak{a}}), \boldsymbol{X}_{T,n}(s, \boldsymbol{\alpha}; \boldsymbol{\mathfrak{a}})) \geq \varepsilon) =$$
$$\lim_{n \to \infty} \limsup_{T \to \infty} \nu_{T}(\boldsymbol{\rho}(\boldsymbol{\zeta}(s + i\tau, \boldsymbol{\alpha}; \boldsymbol{\mathfrak{a}}), \boldsymbol{\zeta}_{n}(s + i\tau, \boldsymbol{\alpha}; \boldsymbol{\mathfrak{a}})) \geq \varepsilon) \leq$$
$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T\varepsilon} \int_{0}^{T} \boldsymbol{\rho}(\boldsymbol{\zeta}(s + i\tau, \boldsymbol{\alpha}; \boldsymbol{\mathfrak{a}}), \boldsymbol{\zeta}_{n}(s + i\tau, \boldsymbol{\alpha}; \boldsymbol{\mathfrak{a}})) d\tau = 0$$

This, and relations (1.2) and (1.3) together with Theorem 4.2 of [3] lead to

$$X_T \xrightarrow[T \to \infty]{\mathcal{D}} P,$$
 (1.4)

and this is equivalent to the weak convergence of P_T to P as $T \to \infty$. Moreover, relation (1.4) shows that the probability measure P does not depend on the sequence $\{P_{n_k}\}$. Hence, taking into account the relative compactness of the family $\{P_n\}$, we obtain that

$$X_n \xrightarrow[n \to \infty]{\mathcal{D}} P.$$
 (1.5)

It remains to shows, that \widehat{P}_T also converges weakly to the same measure P as $T \to \infty$. For this, we define the random elements

$$\boldsymbol{X}_{T,n}(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}}) = \boldsymbol{\zeta}_n(s + i\theta T, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}})$$

and

$$X_T(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}}) = \boldsymbol{\zeta}(s + i\theta T, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}}).$$

Then, using (1.5) and repeating the above arguments for the elements $X_{T,n}(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}})$ and $X_T(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}})$ with application of Lemma 8, we obtain the weak convergence of \widehat{P}_T to P as $T \to \infty$. Proof of Theorem 1.4. Let, for $\tau \in \mathbb{R}$,

$$\boldsymbol{a}_{\tau} = \{((m+\alpha_1)^{-i\tau} : m \in \mathbb{N}_0), \dots, ((m+\alpha_r)^{-i\tau} : m \in \mathbb{N}_0)\},\$$

and, on the torus Ω^r , define a family of transformations $\{\Phi_{\tau} : \tau \in \mathbb{R}\}$ by formula $\Phi_{\tau}(\boldsymbol{\omega}) = \boldsymbol{a}_{\tau}\boldsymbol{\omega}, \boldsymbol{\omega} \in \Omega^r$. Then $\{\Phi_{\tau} : \tau \in \mathbb{R}\}$ is a one - parameter group of measurable measure preserving transformations on Ω^r . Since the set $L(\alpha_1, \ldots, \alpha_r)$ is linearly independent over \mathbb{Q} , by Lemma 3 of [13], the group $\{\Phi_{\tau} : \tau \in \mathbb{R}\}$ is ergodic.

Now we fix a continuity set A of the measure P in Lemma 1.9. Then by Theorem 2.1 of [3] we find that

$$\lim_{T \to \infty} \nu_T(\boldsymbol{\zeta}(s + i\tau, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}}) \in A) = P(A).$$
(1.6)

Let ξ be a random variable on the probability space $(\Omega^r, \mathcal{B}(\Omega^r), m_H^r)$ given by

$$\xi = \xi(\boldsymbol{\omega}) = \begin{cases} 1 & \text{if } \boldsymbol{\zeta}(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}}) \in A, \\ 0 & \text{if } \boldsymbol{\zeta}(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}}) \notin A. \end{cases}$$

Then the ergodicity of $\{\Phi_{\tau} : \tau \in \mathbb{R}\}$ shows that the random process $\xi(\Phi_{\tau}(\boldsymbol{\omega}))$ is also ergodic. Therefore, the Birkhoff-Khinchine theorem mentioned already in the proof of Lemma 8, for almost all $\boldsymbol{\omega} \in \Omega^r$, implies the equality

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \xi(\Phi_\tau(\boldsymbol{\omega})) d\tau = \mathbb{E}\xi, \qquad (1.7)$$

where $\mathbb{E}\xi$ denotes the expectation of ξ . On the other hand, the definition of ζ shows that

$$\mathbb{E}\xi = \int_{\Omega^r} \xi dm_H^r = m_H^r(\boldsymbol{\omega} \in \Omega^r : \boldsymbol{\zeta}(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}}) \in A),$$

that is

$$\mathbb{E}\xi = P_{\boldsymbol{\zeta}}(A). \tag{1.8}$$

Since, by the definitions of ξ and Φ_{τ} ,

$$\frac{1}{T}\int_0^T \xi(\Phi_\tau(\boldsymbol{\omega}))d\tau = \nu_T(\boldsymbol{\zeta}(s+i\tau,\boldsymbol{\alpha},\boldsymbol{\omega};\boldsymbol{\mathfrak{A}}) \in A),$$

we see from relations (1.7) and (1.8) that, for almost all $\boldsymbol{\omega} \in \Omega^r$,

$$\lim_{T\to\infty}\nu_T(\boldsymbol{\zeta}(s+i\tau,\boldsymbol{\alpha},\boldsymbol{\omega};\boldsymbol{\mathfrak{A}})\in A)=P_{\boldsymbol{\zeta}}(A).$$

This together with (1.6) shows that $P(A) = P_{\zeta}(A)$ for continuity sets A of the measure. However, all continuity sets constitute a determining class. Thus, the measures P and P_{ζ} coincide for all $A \in \mathcal{B}(H^r(D))$, and the theorem is proved.

1.3. Support of the measure P_{ζ}

Denote the support of the measure $P_{\boldsymbol{\zeta}}$ by $S_{P_{\boldsymbol{\zeta}}}$. Thus, $S_{P_{\boldsymbol{\zeta}}}$ is a minimal closed set of the space $H^r(D)$ such that $P_{\boldsymbol{\zeta}}(S_{P_{\boldsymbol{\zeta}}}) = 1$. The support $S_{P_{\boldsymbol{\zeta}}}$ consist of all points $\boldsymbol{g} \in H^r(D)$ such that $P_{\boldsymbol{\zeta}}(G) > 0$ for every neighbourhood G of \boldsymbol{g} .

Theorem 1.10. Suppose that the set $L(\alpha_1, \ldots, \alpha_r)$ is linearly independent over \mathbb{Q} . Then the support of the measures $P_{\boldsymbol{\zeta}}$ is the whole of $H^r(D)$.

Proof. Let, for $A_j \in H(D)$, $j = 1, \ldots, r$,

$$A = A_1 \times \dots \times A_r. \tag{1.9}$$

Since the space $H^r(D)$ is separable, $\mathcal{B}(H^r(D))$ coincides with σ -field generated by sets (1.9). Moreover, the Haar measure m_H^r is the product of m_{1H}, \ldots, m_{rH} . Therefore,

$$P_{\boldsymbol{\zeta}}(A) = m_{H}^{r}(\boldsymbol{\omega} \in \Omega^{r} : \boldsymbol{\zeta}(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}}) \in A) =$$

$$m_{H}^{r}(\boldsymbol{\omega} \in \Omega^{r} : \boldsymbol{\zeta}(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}}) \in A_{1} \times \dots \times A_{r}) =$$

$$m_{1H}(\omega_{1} \in \Omega_{1} : \boldsymbol{\zeta}(s, \alpha_{1}, \omega_{1}; \boldsymbol{\mathfrak{A}}_{1}) \in A_{1}) \dots$$

$$m_{rH}(\omega_{r} \in \Omega_{r} : \boldsymbol{\zeta}(s, \alpha_{r}, \omega_{r}; \boldsymbol{\mathfrak{A}}_{r}) \in A_{r}).$$
(1.10)

Since the set $L(\alpha_1, \ldots, \alpha_r)$ is linearly independent over \mathbb{Q} , each set $L(\alpha_1), \ldots, L(\alpha_r)$ is as well. Therefore, as in the case of transcendental α_j [7], we have that, for every $j = 1, \ldots, r$,

$$\nu_T(\zeta(s, \alpha_j; \mathfrak{A}_j) \in A), \quad A \in \mathcal{B}(H(D)),$$

converges weakly to $P_{j\zeta}$ as $T \to \infty$, where

$$P_{j\zeta}(A) = m_{jH}(\omega_j \in \Omega_j : \zeta(s, \alpha_j, \omega_j; \mathfrak{A}_j) \in A), \quad A \in \mathcal{B}(H(D)),$$

is the distribution of the H(D)-valued random element $\zeta(s, \alpha_j, \omega_j; \mathfrak{A}_j)$, and the support of $P_{j\zeta}$ is the whole of H(D). This and equality (1.10) prove the theorem.

1.4. Proof of Theorem 1.3

In view of Theorem 1.4 and 1.10, Theorem 1.3 is proved by a standard way. The used arguments are based on the Mergelyan theorem on approximation of analytic

functions by polynomials, see, for example, [20], and on the properties of weak convergence of probability measures as well as on those of a support.

Proof of Theorem 1.3. By the Mergelyan theorem, there exist polynomials $p_1(s), \ldots, p_r(s)$ such that

$$\sup_{1 \le j \le r} \sup_{s \in K_j} |f_j(s) - p_j(s)| < \frac{\varepsilon}{2}.$$
(1.11)

Let

$$G = \left\{ (g_1, \dots, g_r) \in H^r(D) : \sup_{1 \le j \le r} \sup_{s \in K_j} |g_j(s) - p_j(s)| < \frac{\varepsilon}{2} \right\}.$$

Clearly, G is an open set. Moreover, in view of Theorem 10, $(p_1(s), \ldots, p_r(s)) \in S_{P_{\zeta}}$. Therefore, by properties of a support, the inequality $P_{\zeta}(G) > 0$ holds. Since Theorem 1.4 and Theorem 2.1 of [3] imply

$$\liminf_{T\to\infty} P_T(G) \ge P_{\boldsymbol{\zeta}}(G),$$

hence we deduce that

$$\liminf_{T \to \infty} \nu_T \left(\sup_{1 \le j \le r} \sup_{s \in K_j} |\zeta(s + i\tau, \alpha_j; \mathfrak{A}_j) - p_j(s)| < \frac{\varepsilon}{2} \right) > 0.$$
(1.12)

However, inequality (1.11) shows that the inequality

$$\sup_{1 \le j \le r} \sup_{s \in K_j} |\zeta(s + i\tau, \alpha_j; \mathfrak{A}_j) - p_j(s)| < \frac{\varepsilon}{2}$$

implies

$$\sup_{1 \le j \le r} \sup_{s \in K_j} |\zeta(s + i\tau, \alpha_j; \mathfrak{A}_j) - f_j(s)| < \varepsilon.$$

Therefore,

$$\left\{ \tau \in [0,T] : \sup_{1 \le j \le r} \sup_{s \in K_j} |\zeta(s+i\tau,\alpha_j;\mathfrak{A}_j) - f_j(s)| < \varepsilon \right\} \supseteq$$
$$\left\{ \tau \in [0,T] : \sup_{1 \le j \le r} \sup_{s \in K_j} |\zeta(s+i\tau,\alpha_j;\mathfrak{A}_j) - p_j(s)| < \frac{\varepsilon}{2} \right\},$$

and this together with inequality (1.12) proves the theorem.

Chapter 2

Joint universality for periodic Hurwitz zeta-functions. II

2.1. Introduction

Let, as usual, \mathbb{N} , \mathbb{N}_0 , \mathbb{Z} , \mathbb{R} and \mathbb{C} denote the set of all positive integers, nonnegative integers, integers, real and complex numbers, respectively, and let $\mathfrak{A} = \{a_m : m \in \mathbb{N}_0\}$ be a periodic sequence of complex numbers with minimal period $k \in \mathbb{N}$, and α , $0 < \alpha \leq 1$, be a fixed parameter. The periodic Hurwitz zeta-function $\zeta(s, \alpha; \mathfrak{A}), s = \sigma + it$, is defined, for $\sigma > 1$, by Dirichlet series

$$\zeta(s,\alpha,\mathfrak{A}) = \sum_{m=0}^{\infty} \frac{a_m}{(m+\alpha)^s}.$$

For $\mathfrak{A} = \{a_m = 1 : m \in \mathbb{N}_0\} \stackrel{def}{=} \mathbf{1}$, the function $\zeta(s, \alpha, \mathfrak{A})$ reduces to the classical Hurwitz zeta-function $\zeta(s, \alpha)$. In view of the periodicity of the sequence \mathfrak{A} , we have that, for $\sigma > 1$,

$$\zeta(s,\alpha;\mathfrak{A}) = \frac{1}{k^s} \sum_{l=0}^{k-1} a_l \zeta\left(s, \frac{l+\alpha}{k}\right).$$
(2.1)

Since the function $\zeta(s, \alpha)$ has meromorphic continuation to the whole complex plane and has a simple pole at s = 1 with $\operatorname{Res}_{s=1} \zeta(s, \alpha) = 1$, equality (2.1) shows that the periodic Hurwitz zeta-function $\zeta(s, \alpha, \mathfrak{A})$ can be meromorphically continued to the whole complex plane with possible simple pole at s = 1. If

$$a \stackrel{def}{=} \frac{1}{k} \sum_{l=0}^{k-1} a_l = 0.$$

then $\zeta(s, \alpha, \mathfrak{A})$ is an entire function, while if $a \neq 0$, then $\operatorname{Res}_{s=1} \zeta(s, \alpha; \mathfrak{A}) = a$.

In [6] and [7], the universality of the function $\zeta(s, \alpha, \mathfrak{A})$ in the Voronin sense was considered. For brevity, we will use the following notation. Let meas $\{A\}$ denote the Lebesgue measure of a measurable set $A \subset \mathbb{R}$, and, for T > 0, we put

$$\nu_T(\dots) = \frac{1}{T} \operatorname{meas} \{ \tau \in [0; T] : \dots \},\$$

where in place of dots a condition satisfied by τ is to be written. We also denote $D = \{s \in \mathbb{C} : \frac{1}{2} < \sigma < 1\}.$

Theorem 2.1 [7]. Suppose that the number α is transcendental. Let K be a compact subset of the strop D with connected complement, and let f(s) be a continuous on K function which is analytic in the interior of K. Then, for every $\varepsilon > 0$,

$$\liminf_{T\to\infty}\nu_T\left(\sup_{s\in K}|\zeta(s+i\tau,\alpha;\mathfrak{A})-f(s)|<\varepsilon\right)>0.$$

We recall that the universality of the Riemann zeta-function $\zeta(s) = \zeta(s, 1; \mathbf{1})$ was discovered by Voronin in [19]. The improved version of his theorem can be found in [9],[10], [15] and [16].

Voronin also obtained [18] the first joint universality theorem for Dirichlet L-functions. A similar result was also given by Gonek [5] and Bagchi [1], [2]. A modern version of that theorem is contained in [17].

In [11], the first author began to study the joint universality of periodic Hurwitz zeta-functions. For j = 1, ..., r, r > 1, let $\mathfrak{A}_j = \{a_{mj} : m \in \mathbb{N}_0\}$ be a periodic sequence of complex numbers with minimal period $k_j = \mathbb{N}, \alpha_j \in \mathbb{R}, 0 < \alpha_j \leq 1$, and, for $\sigma > 1$,

$$\zeta(s,\alpha_j;\mathfrak{A}_j) = \sum_{m=0}^{\infty} \frac{a_{mj}}{(m+\alpha_j)^s}$$

In [11], the simplest case $k_j = k$ and $\alpha_j = \alpha$, $j = 1, \ldots, r$, was considered. The requirement that $k_j = k$, $j = 1, \ldots, r$, was removed in [12]. Let k be the least common multiple of the periods k_1, \ldots, k_r , and

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1r} \\ a_{21} & a_{22} & \dots & a_{2r} \\ \dots & \dots & \dots & \dots \\ a_{k1} & a_{k2} & \dots & a_{kr} \end{pmatrix}$$

Then in [8], the following statement was obtained.

Theorem 2.2 [8]. Suppose that the number $\alpha_1, \ldots, \alpha_r$ are algebraically independent over the field of rational numbers \mathbb{Q} , and that rank(A) = r. For every $j = 1, \ldots, r$, let K_j be a compact subset of the strip D with connected complement, and let $f_j(s)$ be a continuous on K_j function which is analytic in the interior of K_j . Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \nu_T \left(\sup_{1 \le j \le r} \sup_{s \in K_j} |\zeta(s + i\tau, \alpha_j; \mathfrak{A}_j) - f_j(s)| < \varepsilon \right) > 0.$$

The rank condition of Theorem 2.2 was removed in [15].

A more general case was considered in [13]. Let l_j , j = 1, ..., r, be positive integers. For every $l = 1, ..., l_j$, let $\mathfrak{A}_{jl} = \{a_{mjl} : m \in \mathbb{N}_0\}$ be a periodic sequence of complex numbers with minimal period $k_{jl} \in \mathbb{N}$. Suppose that $\alpha_j \in \mathbb{R}$, $0 < \alpha_j \leq 1$, and, for $\sigma > 1$,

$$\zeta(s,\alpha_j;\mathfrak{A}_{jl}) = \sum_{m=0}^{\infty} \frac{a_{mjl}}{(m+\alpha_j)^s}.$$

Denote by k the least common multiple of $k_{11}, \ldots, k_{1l_1}, \ldots, k_{r1}, \ldots, k_{rl_r}$, and define

Moreover, let

$$\kappa = \sum_{j=1}^{r} l_j,$$

and

$$L(\alpha_1,\ldots,\alpha_r) = \{\log(m+\alpha_j) : m \in \mathbb{N}_0, j = 1,\ldots,r\}.$$

Then we have the following result.

Theorem 2.3 [13]. Suppose that the system $L(\alpha_1, \ldots, \alpha_r)$ is linearly independent over \mathbb{Q} , and that $rank(B) = \kappa$. For every $j = 1, \ldots, r$ and $l = 1, \ldots, l_j$, let K_{jl} be a compact subset of the strip D with connected complement, and let $f_{jl}(s)$ be a continuous on K_{jl} function which is analytic in the interior of K_{jl} . Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \nu_T \left(\sup_{1 \le j \le r} \sup_{1 \le l \le l_j} \sup_{s \in K_{jl}} |\zeta(s + i\tau, \alpha_j; \mathfrak{A}_{jl}) - f_{jl}(s)| < \varepsilon \right) > 0.$$

The aim of this note is to make weaker the rank condition in Theorem 3. Let k_j be the least common multiple of the periods $k_{j1}, k_{j2}, \ldots, k_{jl_j}, j = 1, \ldots, r$, and define

$$B_{j} = \begin{pmatrix} a_{1j1} & a_{1j2} & \dots & a_{1jl_{j}} \\ a_{2j1} & a_{2j2} & \dots & a_{2jl_{j}} \\ \dots & \dots & \dots & \dots \\ a_{kj1} & a_{kj2} & \dots & a_{kjl_{j}} \end{pmatrix}, \quad j = 1, \dots, r.$$

Theorem 2.4. Suppose that the system $L(\alpha_1, \ldots, \alpha_r)$ is linearly independent over \mathbb{Q} , and that $rank(B_j) = l_j$, $j = 1, \ldots, r$. Let K_{jl} and f_{jl} be the same as in Theorem 3. Then the assertion of Theorem 2.3 is true.

We note that if the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} , then the system $L(\alpha_1, \ldots, \alpha_r)$ is linearly independent over \mathbb{Q} . In the case r = 1, the linear independence of $L(\alpha_1)$ follows from the transcendence of α_1 .

2.2. A limit theorem

The proof of Theorem 2.4 is based on the method of limit theorems in the space of analytic functions proposed by Bagchi in [1], and later developed by Kohji Matsumoto, Mishou, Nagoshi, Nakamura, Steuding, the first author, and others.

Denote by H(D) the space of analytic on D functions endowed with the topology of uniform convergence on compacta, and let

$$H^{\kappa}(D) = \underbrace{H(D) \times \cdots \times H(D)}_{\kappa},$$

where κ is defined in Introduction. Moreover, we define

$$\Omega = \prod_{m=0}^{\infty} \gamma_m,$$

where $\gamma_m = \{s \in \mathbb{C} : |s| = 1\}$ for all $m \in \mathbb{N}_0$. By the Tikhonow theorem, the infinite-dimensional torus Ω is a compact topological Abelian group. Therefore, denoting by $\mathcal{B}(S)$ the class of Borel sets of a space S, we have that on $(\Omega, \mathcal{B}(\Omega))$ the probability Haar measure m_H exists, and this leads to the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$. Putting

$$\Omega^r = \Omega_1 \times \cdots \times \Omega_r,$$

where $\Omega_j = \Omega$ for all j = 1, ..., r, by the Tikhonov theorem again we have that Ω^r is also a compact topological Abelian group. Similarly as above, we obtain the probability space $(\Omega^r, \mathcal{B}(\Omega^r), m_H^r)$, where m_H^r is the probability Haar measure on $(\Omega^r, \mathcal{B}(\Omega^r))$.

Let, for brevity $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_r)$ and $\boldsymbol{\mathfrak{a}} = (\mathfrak{A}_{11}, \ldots, \mathfrak{A}_{1l_1}, \ldots, \mathfrak{A}_{r1}, \ldots, \mathfrak{A}_{rl_r})$, denote the elements of Ω^r by $\boldsymbol{\omega} = (\omega_1, \ldots, \omega_r)$, and on the probability space $(\Omega^r, \mathcal{B}(\Omega^r), m_H^r)$ define the $H^{\kappa}(D)$ -valued random element $\boldsymbol{\zeta}(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{a}})$ by

$$\boldsymbol{\zeta}(s,\boldsymbol{\alpha},\boldsymbol{\omega};\boldsymbol{\mathfrak{A}}) = (\zeta(s,\alpha_1,\omega_1;\mathfrak{A}_1),\ldots,\zeta(s,\alpha_1,\omega_1;\mathfrak{A}_{1l_1}),\ldots,$$

$$\zeta(s, \alpha_r, \omega_r; \mathfrak{A}_{r1}), \ldots, \zeta(s, \alpha_r, \omega_r; \mathfrak{A}_{rl_r})),$$

where

$$\zeta(s,\alpha_j,\omega_j;\mathfrak{A}_{jl}) = \sum_{m=0}^{\infty} \frac{a_{mjl}\omega_j(m)}{(m+\alpha_j)^s}, \quad j = 1,\dots,r, \quad l = 1,\dots,l_j,$$

and $\omega_j(m)$ is the projection of $\omega_j \in \Omega_j$, j = 1, ..., r, to the coordinate space γ_m , $m \in \mathbb{N}_0$. Denote by $P_{\boldsymbol{\zeta}}$ the distribution of the random element $\boldsymbol{\zeta}(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}})$.

Let, for $A \in \mathcal{B}(H^{\kappa}(D))$,

$$P_T(A) = \nu_T(\boldsymbol{\zeta}(s + i\tau, \boldsymbol{\alpha}; \boldsymbol{\mathfrak{A}}) \in A).$$

Theorem 2.5. Suppose that the system $L(\alpha_1, \ldots, \alpha_r)$ is linearly independent over \mathbb{Q} . Then the probability measure P_T converges weakly to $P_{\boldsymbol{\zeta}}$ as $T \to \infty$.

The proof of Theorem does not depend of the hypothesis on the rank of the matrices B_j , therefore, it remains the same as in [13], and we will recall only the principal steps of that proof.

First it is proved that the probability measure

$$Q_T(A) \stackrel{def}{=} \nu_T((((m+\alpha_1)^{-it} : m \in \mathbb{N}_0), \dots, ((m+\alpha_r)^{-it} : m \in \mathbb{N}_0)) \in A),$$
$$A \in \mathcal{B}(\Omega^r),$$

converges weakly to the Haar measure m_H^r as $T \to \infty$. For this, the method of Fourier transforms is applied in which the hypothesis on the linear independence of the system $L(\alpha_1, \ldots, \alpha_r)$ is essentially used. A limit theorem for Q_T together with the well-known properties of weak convergence of probability measures leads to limit theorems for vectors whose components are absolutely convergent Dirichlet series.

Let, for a fixed $\sigma_1 > \frac{1}{2}$, $m, n \in \mathbb{N}_0$, and $0 < \alpha \leq 1$,

$$v_n(m,\alpha) = \exp\left\{-\left(\frac{m+\alpha}{n+\alpha}\right)^{\sigma_1}\right\}.$$

Then it is not difficult to see that the series

$$\zeta_n(s,\alpha_j;\mathfrak{A}_{jl}) = \sum_{m=0}^{\infty} \frac{a_{mjl}v_n(m,\alpha_j)}{(m+\alpha_j)^s}$$

and

$$\zeta_n(s,\alpha_j,\omega_j;\mathfrak{A}_{jl}) = \sum_{m=0}^\infty \frac{a_{mjl}\omega_j(m)v_n(m,\alpha_j)}{(m+\alpha_j)^s}$$

are absolutely convergent for $\sigma > \frac{1}{2}$, $j = 1, \ldots, r$, $l = 1, \ldots, l_j$. Define

$$\boldsymbol{\zeta}_n(s,\boldsymbol{\alpha};\boldsymbol{\mathfrak{A}}) = (\zeta_n(s,\alpha_1;\mathfrak{A}_{11}),\ldots,\zeta_n(s,\alpha_1;\mathfrak{A}_{1l_1}),\ldots,\zeta_n(s,\alpha_r;\mathfrak{A}_{rl_r})),$$

and

$$\boldsymbol{\zeta}_n(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}}) = (\zeta_n(s, \alpha_1, \omega_1; \mathfrak{A}_{11}), \dots, \zeta_n(s, \alpha_1, \omega_1; \mathfrak{A}_{1l_1}), \dots, \zeta_n(s, \alpha_r, \omega_r; \mathfrak{A}_{rl_1}), \dots, \zeta_n(s, \alpha_r, \omega_r; \mathfrak{A}_{rl_r})).$$

Then the next step of the proof consists of the observation that the probability measures

$$\nu_T(\boldsymbol{\zeta}_n(s,\boldsymbol{\alpha};\boldsymbol{\mathfrak{A}}) \in A), \quad A \in \mathcal{B}(H^{\kappa}(D)), \tag{2.2}$$

and

$$\nu_T(\boldsymbol{\zeta}_n(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}}) \in A), \quad A \in \mathcal{B}(H^{\kappa}(D)),$$
(2.3)

both converge weakly simultaneously to the same probability measure on $(H^{\kappa}(D), \mathcal{B}(H^{\kappa}(D)))$ as $T \to \infty$.

Now it remains to pass from the vector $\boldsymbol{\zeta}_n(s, \boldsymbol{\alpha}; \boldsymbol{\mathfrak{A}})$ to $\boldsymbol{\zeta}(s, \boldsymbol{\alpha}; \boldsymbol{\mathfrak{A}})$. For this, an approximation in the mean of $\boldsymbol{\zeta}(s, \boldsymbol{\alpha}; \boldsymbol{\mathfrak{A}})$ by $\boldsymbol{\zeta}_n(s, \boldsymbol{\alpha}; \boldsymbol{\mathfrak{A}})$ as well as of $\boldsymbol{\zeta}(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}})$ by $\boldsymbol{\zeta}_n(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}})$ as well as of $\boldsymbol{\zeta}(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}})$ by $\boldsymbol{\zeta}_n(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}})$ is needed. First we define a metric on the space $H^{\kappa}(D)$ which induces the topology of uniform convergence on compacta. Let $\{K_m : m \in \mathbb{N}\}$ be a sequence of compacta subsets of D such that

$$\bigcup_{m=1}^{\infty} K_m = D,$$

 $K_m \subset K_{m+1}$ for all $m \in \mathbb{N}$, and, for every compact $K \subset D$, $K \subset K_m$ for some m. For the existence of the sequence $\{K_m\}$, see, for example, [4]. Let, for $f, g \in H(D)$,

$$\rho(f,g) = \sum_{m=1}^{\infty} 2^{-m} \frac{\sup_{s \in K_m} \left| f(s) - g(s) \right|}{1 + \sup_{s \in K_m} \left| f(s) - g(s) \right|}$$

Then ρ is a metric on H(D) which induces its topology of uniform convergence on compacta. Now if $\mathbf{f} = (f_{11}, \ldots, f_{1l_1}, f_{r1}, \ldots, f_{rl_r}), \mathbf{g} = (g_{11}, \ldots, g_{1l_1}, g_{r1}, \ldots, g_{rl_r}) \in H^{\kappa}(D)$ and

$$\rho_{\kappa}(\boldsymbol{f}, \boldsymbol{g}) = \max_{1 \leq j \leq r} \max_{1 \leq j \leq l_j} \rho(f_{jl}, g_{jl}),$$

then ρ_{κ} is a desired metric on $H^{\kappa}(D)$.

Furthermore, it is proved that

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho_\kappa(\boldsymbol{\zeta}(s + i\tau, \boldsymbol{\alpha}; \boldsymbol{\mathfrak{A}}) - \boldsymbol{\zeta}_n(s + i\tau, \boldsymbol{\alpha}; \boldsymbol{\mathfrak{A}})) d\tau = 0.$$
(2.4)

For this, the mean square estimate [6]

$$\int_0^T \left| \zeta(\sigma + it, \alpha; \mathfrak{A}) \right|^2 dt \ll T, \quad \frac{1}{2} < \sigma < 1, \tag{2.5}$$

is applied.

A more complicated situation is in the case of $\boldsymbol{\zeta}(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}})$, because we have to obtain an analogue of estimate (2.5) for $\boldsymbol{\zeta}(\sigma + it, \alpha, \omega; \mathfrak{A})$. To get such an analogue, elements of ergodic theory are applied. Let $\boldsymbol{a}_{\tau_k} = \{((m+\alpha_1)^{-i\tau} : m \in \mathbb{N}_0), \dots, ((m+\alpha_r)^{-i\tau} : m \in \mathbb{N}_0)\}, \tau \in \mathbb{R}$, and define a family of transformations $\{\Phi_\tau : \tau \in \mathbb{R}\}$ on Ω^r by $\Phi_\tau(\boldsymbol{\omega}) = \boldsymbol{a}_\tau \boldsymbol{\omega}, \boldsymbol{\omega} \in \Omega^r$. Then $\{\Phi_\tau : \tau \in \mathbb{R}\}$ is a one-parameter group of measurable measure preserving transformations on Ω^r . We say that a set $A \in \mathcal{B}(\Omega^r)$ is invariant with respect to the group $\{\Phi_\tau : \tau \in \mathbb{R}\}$ if, for every $\tau \in \mathbb{R}$, the sets Aand $A_\tau = \Phi_\tau(A)$ coincide up to a set of m_H^r -measure zero. The invariant sets form a σ -field which is a σ -subfield of $\mathcal{B}(\Omega^r)$.

A one - parameter group $\{\Phi_{\tau} : \tau \in \mathbb{R}\}$ is ergodic if its σ -field of invariant sets consists only of sets of m_{H}^{r} -measure zero or one.

Using the linear independence of the system $L(\alpha_1, \ldots, \alpha_r)$, it is not difficult to prove that the one-parameter group $\{\Phi_\tau : \tau \in \mathbb{R}\}$ is ergodic. This together with the classical Birkhoff-Khintchine theorem, for almost all $\omega \in \Omega$, implies a bound

$$\int_0^T |\zeta(\sigma + it, \alpha, \omega; \mathfrak{A})|^2 dt \ll T, \quad \sigma > \frac{1}{2}.$$

Now, similarly to equality (2.4), we obtain that, for almost all $\boldsymbol{\omega} \in \Omega^r$,

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho_\kappa(\boldsymbol{\zeta}(s + i\tau, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}}), \boldsymbol{\zeta}_n(s + i\tau, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}})) d\tau = 0.$$
(2.6)

The weak convergence of the probability measures (2.2) and (2.3) to the same probability measure as $T \to \infty$, relations (2.4) and (2.6), and Theorem 4.2 of [3] allow to prove that the probability measures P_T and

$$\nu_T(\boldsymbol{\zeta}(s+i\tau,\boldsymbol{\alpha},\boldsymbol{\omega};\boldsymbol{\mathfrak{A}})\in A), \quad A\in\mathcal{B}(H^{\kappa}(D)),$$

both converge weakly to the same probability measure P on $(H^{\kappa}(D))$, $\mathcal{B}(H^{\kappa}(D))$ as $T \to \infty$. This, the ergodicity of the group $\{\Phi_{\tau} : \tau \in \mathbb{R}\}$, and the Birkhoff-Khintchine theorem show that the measure P coincides with P_{ζ} . This completes the proof Theorem 2.4.

2.3. Support of P_{ζ}

For the proof of Theorem 2.3, we need to know the support of the limit measure $P_{\boldsymbol{\zeta}}$ in Theorem 2.4. Let S be a separable metric space, and P be a probability measure on $(S, \mathcal{B}(S))$. We recall that the support of the measure P is a minimal closed set $S_P \in \mathcal{B}(S)$ such that $P(S_P) = 1$. Moreover, the support S_P consists of all $x \in S$ such that P(G) > 0 for every neighbourhood G of x.

Theorem 2.6. Suppose that the system $L(\alpha_1, \ldots, \alpha_r)$ is linearly independent over \mathbb{Q} . Then the support of the measure $P_{\boldsymbol{\zeta}}$ is the whole of $H^{\kappa}(D)$.

Proof. Let, for $A_j \in \mathcal{B}(H^{lj}(D)), j = 1, \ldots, r$,

$$A = A_1 \times \dots \times A_r. \tag{2.7}$$

Since the space $H^{\kappa}(D)$ is separable, we have [3] that the σ -field $\mathcal{B}(H^{\kappa}(D))$ coincides with

$$\mathcal{B}(H^1(D)) \times \cdots \times \mathcal{B}(H^{l_r}(D)),$$

that is, it coincides with a σ -field generated by the sets (2.7). We also note that the measure m_H^r is the product of the measures m_{jH} on $(\Omega_j, \mathcal{B}(\Omega_j)), j = 1, \ldots, r$. Therefore, we have that

$$P_{\boldsymbol{\zeta}}(A) = m_{H}^{r}(\boldsymbol{\omega} \in \Omega^{r} : \boldsymbol{\zeta}(s, \boldsymbol{\alpha}, \boldsymbol{\omega}; \boldsymbol{\mathfrak{A}}) \in A) =$$

$$m_{1H}(\omega_{1} \in \Omega_{1} : (\boldsymbol{\zeta}(s, \alpha_{1}, \omega_{1}; \boldsymbol{\mathfrak{A}}_{11}), \dots, \boldsymbol{\zeta}(s, \alpha_{1}, \omega_{1}; \boldsymbol{\mathfrak{A}}_{1l_{1}})) \in A_{1}) \times \dots$$

$$\times m_{rH}(\omega_{r} \in \Omega_{r} : \boldsymbol{\zeta}(s, \alpha_{r}, \omega_{r}; \boldsymbol{\mathfrak{A}}_{r1}) \dots, \boldsymbol{\zeta}(s, \alpha_{r}, \omega_{r}; \boldsymbol{\mathfrak{A}}_{rl_{r}}) \in A_{r}).$$
(2.8)

Since $rank(B_j) = l_j$, j = 1, ..., r, in view of Lemma 11 from [12] we have that the support of the measure

$$P_{j\boldsymbol{\zeta}}(A_j) = m_{jH}(\omega_j \in \Omega_j : (\boldsymbol{\zeta}(s, \alpha_j, \omega_j; \mathfrak{A}_{j1}), \dots, \boldsymbol{\zeta}(s, \alpha_j, \omega_j; \mathfrak{A}_{jl_j})) \in A_j)$$

is the whole of H(D), j = 1, ..., r. Therefore, the theorem is a consequence of equality (2.8).

Remark. In [12], it was assumed that α is transcendental, however, the proofs of all statements remains the same if the system $L(\alpha)$ is linearly independent over \mathbb{Q} , because the transcendence of α is used only for the linear independence of $L(\alpha)$.

2.4. Proof of Theorem 2.4

A proof of Theorem 2.4 is short and standard. By the Mergelyan theorem, see, for example, [20], there exist polynomials $p_{jl}(s)$ such that

$$\sup_{1 \le j \le r} \sup_{1 \le l \le l_j} \sup_{s \in K_{jl}} |f_{jl}(s) - p_{jl}(s)| < \frac{\varepsilon}{2}.$$
(2.9)

Let

$$G = \left\{ (g_{11}, \dots, g_{1l_1}, \dots, g_{r1}, \dots, g_{rl_r}) \in H^r(D) : \\ \sup_{1 \le j \le r} \sup_{1 \le l \le l_j} \sup_{s \in K_{jl}} |p_{jl}(s) - g_{jl}(s)| < \frac{\varepsilon}{2} \right\}.$$

The set G is open in $H^{\kappa}(D)$, and, by Theorem 2.6, $(p_{11}, \ldots, p_{1l_1}, \ldots, p_{r1}, \ldots, p_{rl_r}) \in S_{P_{\boldsymbol{\zeta}}}$. Therefore, Theorem 2.5 and Theorem 2.1 of [3] show that

$$\liminf_{T \to \infty} \nu_T \left(\sup_{1 \le j \le r} \sup_{1 \le l \le l_j} \sup_{s \in K_{jl}} |\zeta(s + i\tau, \alpha_j; \mathfrak{A}_{jl}) - p_{jl}(s)| < \frac{\varepsilon}{2} \right) \ge P_{\boldsymbol{\zeta}}(G) > 0.$$

This and inequality (2.9) complete the proof of Theorem 2.4.

Santrauka

Periodinių Hurvico dzeta funkcijų jungtinis universalumas

Tarkime, kad $s = \sigma + it$ yra kompleksinis kintamasis, α , $0 < \alpha \leq 1$, yra fiksuotas parametras, o $\mathfrak{A} = \{a_m : m \in \mathbb{N}_0\}$ yra periodinų kompleksinių skaičių seka. Periodinė Hurvico dzeta funkcija $\zeta(s, \alpha; \mathfrak{A})$ pusplokštumėje $\sigma > 1$ yra apibrėžiama Dirichlė eilute ir yra analiziškai pratęsiama į visą kompleksinę plokštumą, išskyrus, gal būt, tašką s = 1.

Magistro darbe yra nagrinėjamas Hurvico dzeta funkcijų rinkinio jungtinis universalumas. Tarkime, kad K_j yra juostos $\{s \in \mathbb{C} : \frac{1}{2} < \sigma < 1\}$ kompaktinė aibė, turinti jungųjį papildinį, o $f_j(s)$ yra tolydi aibėje K_j funkcija ir analizinė aibės K_j viduje, $j = 1, \ldots, r$. Sakome, kad funkcijos $\zeta(s, \alpha_1; \mathfrak{A}_1), \ldots, \zeta(s, \alpha_r; \mathfrak{A}_r)$ yra universalios, jei su kiekvienu $\varepsilon > 0$

$$\liminf_{T \to \infty} \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T] : \sup_{1 \le j \le r} \sup_{s \in K_j} |\zeta(s + i\tau, \alpha_j; \mathfrak{A}_j) - f_j(s)| < \varepsilon \right\} > 0.$$

Cia meas A yra mačios aibės $A \subset \mathbb{R}$ Lebego matas.

Darbe yra įrodytos dvi jungtinės universalumo teoremos. Pirmoji teorema tvirtina, kad jei aibė $L(\alpha_1, \ldots, \alpha_r) = \{log(m+\alpha_j) : j = 1, \ldots, r, m \in \mathbb{N}_0\}$ yra tiesiškai nepsiklausoma virš racionaliųjų skaičių kūno, tai funkcijos $\zeta(s+i\tau, \alpha_j; \mathfrak{A}_j), \ldots, \zeta(s+i\tau, \alpha_r; \mathfrak{A}_r)$ yra universalios. Ši teorema žymiai susilpnina sąlygas, kurioms esant, buvo gautas analogiškas rezultatas A. Javtoko ir A. Laurinčiko 2008 m. darbe.

Antroje teoremoje yra nagrinėjamas atvejis, kai kiekvieną skaičių α_j atitinka periodinių sekų rinkinys. Kai sistema $L(\alpha_1, \ldots, \alpha_r)$ yra tiesiškai nepriklausoma virš racionaliųjų skaičių kūno ir galioja vieno rango tipo sąlyga, silpnesnė negu A. Laurinčiko darbe (2008), tai funkcijų rinkinys $\zeta(s, \alpha_j; \mathfrak{A}_{jl}), j = 1, \ldots, r, l = 1, \ldots, l_j$ yra taip pat universalus.

Bibliography

[1] B. Bagchi, The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series, Ph. D. Thesis, Indian Statistical Institute, Calcutta, 1981.

[2] B. Bagchi, Joint universality theorem for Dirichlet *L*-functions, *Math. Z.*, **181**, No. 3 (1982), 319–334.

[3] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.

[4] J. Conway, *Functions of One Complex Variable*, Springer-Verlag, New York, 1973.

[5] S. M. Gonek, Analytic Properties of Zeta and L-Functions, Ph. D. Thesis, University of Michigan, 1979.

[6] A. Javtokas, A. Laurinčikas, On the periodic Hurwitz zeta-function, *Hardy-Ramanujan J.* **29** (2006), 18-36.

[7] A. Javtokas, A. Laurinčikas, The universality of the periodic Hurwitz zetafunction, *Integral Transforms Spec. Funct.* **17** (2006), 711-722.

[8] A. Javtokas, A. Laurinčikas, A joint universality theorem for periodic Hurwitz zeta-functions, *Bull. Austral. Math. Soc.*, **78** (2008), 13-33.

[9] A. Laurinčikas, *Limit Theorems for the Riemann Zeta-Function*, Kluwer Academic Publisher, Dordrecht, Boston, London, 1996.

[10] A. Laurinčikas, The universality of zeta-functions, *Acta Appl. Math.* **78**, No. 1–3 (2003), 251–271.

[11] A. Laurinčikas, The joint universality for periodic Hurwitz zeta-functions, Analysis (Munich) **26** (2006), 419-428.

[12] A. Laurinčikas, Voronin-type theorem for periodic Hurwitz zeta-functions, *Mat. Sb.* **198**, Nr. **2** (2007), 91-102 (in Russian) = *Sb. Math.* **198**, Nr. 2 (2007), 231-242.

[13] A. Laurinčikas, Joint universality for periodic Hurwitz zeta-functions, *Izvestiya RAN, Ser. Mat.* **72**, Nr. 4 (2008), 121-140 (in Russian) = *Izvestiya: Mathematics* **72**, Nr. 4 (2008), 741-760.

[14] A. Laurinčikas, The joint universality of Hurwitz zeta-functions, *Šiauliai* Math. Semin. **3** (11) (2008), 169-187.

[15] A. Laurinčikas, S. Skerstonaitė, A joint universality theorem for periodic Hurwitz zeta-functions, submitted.

[16] K. Matsumoto, Probabilistic value-distribution theory of zeta-functions, Sugaku Expositions, 17, No. 1 (2004), 51–71.

[17] J. Steuding, Value-Distribution of *L*-Functions, *Lecture Notes Math*, V. 1877, Springer-Verlag, Berlin, Heidelberg, New York, 2007.

[18] S. M. Voronin, On the functional independence of Dirichlet *L*-functions, *Acta Arith.* **27** (1975), 493-503 (in Russian).

[19] S. M. Voronin, Theorem on the "universality" of the Riemann zeta-function, *Izv. Akad. Nauk SSSR, Ser. Matem.*, **39**, No. 3 (1975) 475–486 (in Russian) = *Math. USSR Izv.*, **9**, No. 3 (1975), 443–453.

[20] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Coll. Publ., vol. XX, Providence, 1960.