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Introduction

In 1975, S. M. Voronin discovered [19] the universality of the Riemann zeta-
function ζ(s), s = σ + it. Roughly speaking, this means that any analytic function
can be approximated by shifts ζ(s + iτ) with desired accuracy. A precise statement
of the Voronin theorem is the following result.

Suppose that 0 < r < 1
4
. Let a function f(s) be non-vanishing and continuous

on the disc |s| ≤ r, and analytic in the interior of this disc. Then, for every ε > 0,
there exists a real number τ = τ(ε) such that

max
|s|≤r

∣∣∣∣ζ(s +
3

4
+ iτ

)
− f(s)

∣∣∣∣ < ε.

Later, the Voronin theorem was improved. We recall a theorem obtained in [9].
Denote by meas {A} the Lebesque measure of a measurable set A ⊂ R.

Suppose that K is a compact subset of the strip D = {s ∈ C : 1
2

< σ < 1} with
connected complement, and f(s) is a non-vanishing continuous function on K which
is analytic in the interior of K. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s + iτ)− f(s)| < ε

}
> 0.

This theorem shows that the set of shifts ζ(s + iτ) which approximate a given
analytic function is sufficiently rich, it has a positive lower density.

The universality property was also obtained for other zeta and L-function, see a
survey in [10].

Also, S. M. Voronin was the first who proved a point universality theorem for
Dirichlet L-functions. We recall that a Dirichlet L-function L(s, χ) is defined, for
σ > 1, by

L(s, χ) =
∞∑

m=0

χ(m)

ms
,

and by analytic continuation elsewhere. Here χ(m) is a Dirichlet character. In [18],
S. M. Voronin proved the folloving theorem. We state its modern version. Suppose
that χ1, ..., χn are pairwise non-equivalent Dirichlet characters. Let K1, ..., Kn be
compact subsets of the strip D with connected complements, and f1(s), ..., fn(s) be
non-vanishing continuous functions on K1, ..., Kn which are analytic in the interior
of K1, ..., Kn, respectively. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤n
s∈Kj

|L(s + iτ, αj)− f(s)| < ε

}
> 0.
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The aim of our work is to obtain joint universality theorems for periodic Hurwitz
zeta-functions.

The master work consist of two papers submisted for publication on joint uni-
versality of periodic Hurwitz zeta-functions. We recall the definition of the periodic
Hurwitz zeta-function. Let A = {am : m ∈ N0}, N0 = N ∪ {0}, be a periodic se-
quence with minimal period k ∈ N of complex numbers, and α, 0 < α ≤ 1, be a
fixed parameter. For σ > 1, the periodic Hurwitz zeta-function ζ(s, α; A) is defined
by

ζ(s, α; A) =
∞∑

m=0

am

(m + α)s
.

The function ζ(s, α; A) is analytically continuable to the whole complex plane, ex-
cept, maybe, for a simple pole at s = 1.

We prove two joint universality theorems for periodic Hurwitz zeta-functions
ζ(s, α1; A1), . . . , ζ(s, αr; Ar). Define

L(α1, . . . , αr) = {log(m + αj) : j = 1, . . . , r, m ∈ N0}.

Suppose that the set L(α1, . . . , αr) is linearly independent over the field of na-
tional numbers. For every j = 1, . . . , 2, let Kj be a compact subset of the strip
D with connected complement, and let f(s) be a continuous function on Kj and
analytic in the interior of Kj. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤r
sup
s∈Kj

|ζ(s + iτ, αj; Aj)− f(s)| < ε

}
> 0.

The later theorem is more stronger than that obtained in [8] because it does not
use any hypothesis on the sequences A1, . . . , Ar.

In the second joint universality theorem, we consider the use when parameter
αj corresponds general periodic sequences. Let lj, j = 1, . . . , r, be positive integers.
For every l = 1, . . . , lj, let Ajl = {amjl : m ∈ N0} be a periodic sequence of complex
numbers with minimal period kjl ∈ N, 0 < αj ≤ 1, and

ζ(s, αj; Ajl) =
∞∑

m=0

amjl

(m + αj)s
.

Moreover, let kj be the least common multiple of the periods kj1 , . . . , kjlj , j =
1, . . . , r, of k11, . . . , k1l1 , . . . , kr1, . . . , krlr , and k be the least common multiple

Bj =


a1j1 a1j2 . . . a1jlj

a2j1 a2j2 . . . a2jlj

. . . . . . . . . . . .
akj1 akj2 . . . akjlj

 , j = 1, . . . , r.
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The we have the following result.
Suppose that the system L(α1, . . . , αr) is linearly independent over the field of

national numbers, and that rank(Bj) = lj, j = 1, . . . , r. For every j = 1, . . . , r and
l = 1, . . . , lj, let Kjl be a compact subset of the strip D with connected complement,
and let fjl(s) be a continuous on Kjl function which is analytic in the interior of
Kjl, then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
sup

1≤j≤r
sup

1≤l≤lj

sup
s∈Kj

|ζ(s + iτ, αj; Ajl)− fjl(s)| < ε

}
> 0.

Note that the rank hypothesis in the later theorem is weaker then that in [13].
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Chapter 1

A joint universality theorem for
periodic Hurwitz zeta-functions

1.1. Introduction

Let, as usual, N, N0, Z, R and C denote the sets of all positive integers, non-
negative integers, integers, real and complex numbers, respectively. First, we recall
the definition of the periodic Hurwitz zeta-function. Let {am : m ∈ N0} ⊂ C
be a periodic sequence with minimal period k ∈ N, and α, 0 < α ≤ 1, be a fixed
parameter. Then the periodic Hurwitz zeta-function ζ(s, α; A), s = σ+it, is defined,
for σ > 1, by

ζ(s, α; A) =
∞∑

m=0

am

(m + α)s
.

The periodicity of the sequence {am}, for σ > 1, implies the equality

ζ(s, α; A) =
1

ks

k−1∑
l=0

alζ

(
s,

α + l

k

)
, (1.1)

where ζ(s, α) is the classical Hurwitz zeta-function, for σ > 1, given by Dirichlet
series

ζ(s, α) =
∞∑

m=0

1

(m + α)s
,

and can be continued analytically to the whole complex plane, except for a simple
pole at s = 1 with residue 1. Therefore, equality (1.1) shows that the function
ζ(s, α; A) also admits meromorphic continuation with a simple pole at s = 1 with
residue

a
def
=

1

k

k−1∑
l=0

al
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In the case a = 0, the function ζ(s, α; A) is entire.

Obviously, if am ≡ 1, then ζ(s, α; A) = ζ(s, α).

In [6] and [7], the universality of the function ζ(s, α; A) with transcendental
parameter α was investigated. Denote by meas {A} the Lebesgue measure of a
measurable set A ⊂ R, and let, for T > 0,

νT (. . . ) =
1

T
meas{τ ∈ [0; T ] : . . . },

where in place of dots a condition satisfied by τ is to be written. Then in [7] the
following statement was proved.

Theorem 1.1. Suppose that α is transcendental. Let K be a compact subset
of the strip D = {s ∈ C : 1

2
< σ < 1} with connected complement, and let f(s) be

a continuous function on K which is analytic in the interior of K. Then, for every
ε > 0,

lim inf
T→∞

νT

(
sup
s∈K

∣∣ζ(s + iτ, α; A)− f(s)
∣∣ < ε

)
> 0.

Note that the transcendence of α is used only for the linear independence of the
set

L(α)
def
= {log(m + α) : m ∈ N0}.

Since the fundamental Voronin work [18] on joint universality of Dirichlet L-
functions, many authors considered the joint universality of other zeta- and L-
functions. The first result in the field for periodic Hurwitz zeta-functions was ob-
tained in [11]. Let Aj = {amj : m ∈ N} ⊂ C be a periodic sequence with minimal
period kj, αj, 0 < αj ≤ 1, be a fixed parameter, and, for σ > 1,

ζ(s, αj; Aj) =
∞∑

m=0

amj

(m + αj)s
,

j = 1, . . . , r, r ∈ N\{1}.

Definition. For every j = 1, . . . , r, let Kj be a compact subset of the strip
D with connected complement, and let fj(s) be a function continuous on Kj and
analytic in the interior of Kj. We say that the functions ζ(s, α1; A1), . . . , ζ(s, αr; Ar)
are universal, if, for every ε > 0,

lim inf
T→∞

νT

(
sup

1≤j≤r
sup
s∈Kj

∣∣ζ(s + iτ, αj; Aj)− fj(s)
∣∣ < ε

)
> 0.
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Denote by k the least common multiple of the periods k1, . . . , kr, and define

A =


a11 a12 . . . a1r

a21 a22 . . . a2r

. . . . . . . . . . . .
ak1 ak2 . . . akr

 .

Then in [11] it was proved that if kj = k, αj = α, j = 1, . . . , r, α is transcen-
dental and rank(A) = r, then the functions ζ(s, α; A1), . . . , ζ(s, α; Ar) are universal.
In [12], the requirement that kj = k, j = 1, . . . , r, was removed. Finally, in [8] the
following joint universality theorem was proved.

Theorem 1.2. [8]. Suppose that the numbers α1, . . . , αr are algebraically inde-
pendent over the field of rational numbers Q, and rank(A) = r. Then the functions
ζ(s, α1; A1), . . . , ζ(s, αr; Ar) are universal.

The aim of this paper is to prove a joint universality theorem for the functions
ζ(s, α1; A1), . . . , ζ(s, αr; Ar) without using the hypothesis on the rank of the matrix
A. Let

L(α1, . . . , αr) = {log(m + αj) : j = 1, . . . , r, m ∈ N0}.

Theorem 1.3. Suppose that the set L(α1, . . . , αr) is linear independent over Q.
Then the functions ζ(s, α1; A1), . . . , ζ(s, αr; Ar) are universal.

We note that the linear independence of L(α1, . . . , αr) holds whenever the num-
bers α1, . . . , αr are algebraically independent over Q. Therefore, the hypothesis on
the numbers α1, . . . , αr in Theorem 1.3 is weaker than that in Theorem 1.2.

1.2. A joint limit theorem

The proof of Theorem 1.3 is based on a joint limit theorem in the space of analytic
functions for the functions ζ(s, α1; A1), . . . , ζ(s, αr; Ar). Its proof is independent on
the matrix A, therefore it is similar to that of a limit theorem from [8], where the
case of the algebraically independent numbers α1, . . . , αr was considered.

Denote by H(D) the space of analytic on D functions equipped with the topology
of uniform convergence on compacta, and define

Hr(D) = H(D)× · · · ×H(D)︸ ︷︷ ︸
r

.

Let, as usual, B(S) stand for the class of Borel sets of a space S. Moreover, let

Ω =
∞∏

m=0

γm,

9



where γm = {s ∈ C : |s| = 1} def
= γ for all m ∈ N0. Since γ is a compact, the

Tikhonov theorem shows that the infinite-dimensional torus Ω with the product
topology and point-wise multiplication is a compact topological Abelian group. Let

Ωr = Ω1 × · · · × Ωr,

where Ωj = Ω for j = 1, . . . , r. Then Ωr is also a compact topological Abelian
group. Therefore, on (Ωr,B(Ωr)), the probability Haar measure mr

H can be defined,
and we obtain a probability space (Ωr,B(Ωr), mr

H). It is important to note that
the Haar measure mr

H is the product of the Haar measures mjH on the coordinate
spaces (Ωj,B(Ωj)), j = 1, . . . , r. Denote by ωj(m) the projection of an element
ωj ∈ Ωj to the coordinate space γm, m ∈ N0. Let ω = (ω1, . . . , ωr) ∈ Ωr, where
ωj ∈ Ωj, j = 1, . . . , r, and let, for brevity,

ααα = (α1, . . . , αr), AAA = (A1, . . . , Ar).

On the probability space (Ωr,B(Ωr), mr
H), define the Hr(D)-valued random element

ζζζ(s,ααα,ωωω;AAA) by

ζζζ(s,ααα,ωωω;AAA) = (ζ(s, α1, ω1; A1), . . . , ζ(s, αr, ωr; Ar)),

where

ζ(s, αj, ωj; Aj) =
∞∑

m=0

amjωj(m)

(m + αj)s
, j = 1, . . . , r,

and denote by Pζζζ the distribution of ζζζ(s,ααα,ωωω;AAA), i.e.,

Pζζζ(A) = mr
H(ωωω ∈ Ωr : ζζζ(s,ααα,ωωω;AAA) ∈ A), A ∈ B(Hr(D)).

Let, for A ∈ B(Hr(D)),

PT (A) = νT (ζζζ(s + iτ,ααα;AAA) ∈ A),

where

ζζζ(s,ααα;AAA) = (ζ(s, α1; A1), . . . , ζ(s, αr; Ar)).

This section is devoted to the following probabilistic limit theorem.

Theorem 1.4. Suppose that the set L(α1, . . . , αr) is linear independent over Q.
Then PT converges weakly to the measure Pζζζ as T →∞.

We will not give a proof of Theorem 4 in details, we will indicate only its principal
points. The first important ingredient is a limit theorem on the torus Ωr. Let, for
A ∈ B(Ωr),

QT (A) = νT ((((m + α1)
−iτ : m ∈ N0), . . . , ((m + αr)

−iτ : m ∈ N0)) ∈ A).

10



Lemma 1.5. Suppose that the set L(α1, . . . , αr) is linear independent over Q.
Then QT converges weakly to the Haar measure mr

H as T →∞.

A proof of Lemma 5 is based on the Fonrier transforms method on compact
topological groups, and is given in [13].

Now let σ1 > 1
2

be fixed, and, for m, n ∈ N0,

υn(m, αj) = exp

{
−
(

m + αj

n + αj

)σ1
}

, j = 1, . . . , r.

Define

ζn(s, αj; Aj) =
∞∑

m=0

amjυn(m, αj)

(m + αj)s
, j = 1, . . . , n,

and

ζn(s, αj, ωj; Aj) =
∞∑

m=0

amjωj(m)υn(m, αj)

(m + αj)s
, j = 1, . . . , n,

the series being absolutely convergent for σ > 1
2
, see [6]. The next important step

in the proof of Theorem 1.4 are limit theorems for

ζζζn(s,ααα;AAA) = (ζn(s, α1; A1), . . . , ζn(s, αr; Ar))

and

ζζζn(s,ααα,ωωω;AAA) = (ζn(s, α1, ω1; A1), . . . , ζn(s, αr, ωr; Ar)).

Let, for A ∈ B(Hr(D)),

PT,n(A) = νT (ζζζn(s + iτ,ααα;AAA) ∈ A),

and, for fixed ω0ω0ω0 ∈ Ωr,

QT,n(A) = νT (ζζζn(s + iτ,ααα,ωωω0;AAA) ∈ A),

Lemma 1.6. Suppose that the set L(α1, . . . , αr) is linearly independent over Q.
Then PT,n and QT,n both converge weakly to the same probability measure Pn on
(Hr(D),B(Hr(D))) as T →∞.

Proof. Since the functions hn : Ωr → Hr(D) and h1,n : Ωr → Hr(D) given by
hn(ω) = ζζζn(s,ααα,ωωω;AAA) and

h1,n(www) = ζζζn(s,ααα,wwwwww0;AAA)

are continuous, and PT,n = QT h−1
n , QT,n = QT h−1

1,n, we obtain from Lemma 1.5
and Theorem 5.1 of [3] that PT,n and QT,n converge weakly to mr

Hh−1
n and mr

Hh−1
1,n,

11



respectively, as T →∞. Moreover, the invariance of the Haar measure mr
H and the

definitions of hn and h1,n show that mr
Hh−1

1,n = mr
Hh−1

n .

In order to pass from ζζζn(s,ααα;AAA) to ζζζ(s,ααα;AAA), we need an approximation of
ζζζ(s,ααα;AAA) and ζζζ(s,ααα,ωωω;AAA) by ζζζn(s,ααα;AAA) and ζζζn(s,ααα,ωωω;AAA), respectively. For this,
we will use a metric on Hr(D) which induces its topology. First we define a metric
on H(D). For g1, g2 ∈ H(D), we set

ρ(g1, g2) =
∞∑
l=1

2−l

sup
s∈Kl

∣∣g1(s)− g2(s)
∣∣

1 + sup
s∈Kl

∣∣g1(s)− g2(s)
∣∣ ,

where {Kl : l ∈ N} is a sequence of compact subsets of D such that

D =
∞⋃
l=1

Kl,

Kl ⊂ Kl+1 for all l ∈ N, and if K ⊂ D is a compact set, then K ⊂ Kl for some l.
It is not difficult to see that the metric ρ induces on H(D) the topology of uniform
convergence on compacta.

Now, for ggg1 = (g11, . . . , g1r), ggg2 = (g21, . . . , g2r) ∈ Hr(D), putting

ρρρ(ggg1, ggg2) = max
1≤j≤j

ρ(g1j, g2j),

we have the metric on Hr(D).

Lemma 1.7. The equality

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρρρ(ζζζ(s + iτ,ααα;AAA), ζζζn(s + iτ,ααα;AAA))dτ = 0

holds.

A proof does not depend on arithmetical nature of the numbers α1, . . . , αr and
is given in [8].

Lemma 1.8. Suppose that the set L(α1, . . . , αr) is linear independent over Q.
Then, for almost all ωωω ∈ Ωr, the equality

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρρρ(ζζζ(s + iτ,ααα,ωωω;AAA), ζζζn(s + iτ,ααα,ωωω;AAA))dτ = 0

holds.

Proof. Let aτ = {(m + α)−iτ : m ∈ N0}, τ ∈ R, 0 < α ≤ 1, and define
ϕτ : Ω → Ω by ϕτ (ω) = aτω, ω ∈ Ω. Then {ϕτ : τ ∈ R} is a one-parameter group
of measurable measure preserving transformations on Ω. If L(α) is linear independent

12



over Q, there it follows, see, for example, [13], that the group {ϕτ : τ ∈ R} is
ergodic. Since the set L(α1, . . . , αr) is linearly independent over Q, each set L(αj),
j = 1, . . . , r, is as well. Combining this with the classical Birkhoff-Khintchine ergodic
theorem, we obtain in a standard way that, for every compact subset K of D, the
equality

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

sup
s∈K

∣∣ζ(s + iτ, αj, ωj; Aj)− ζn(s + iτ, αj, ωj; Aj)
∣∣dτ = 0

holds for almost all ωj ∈ Ω, j = 1, . . . , r. This, for almost all ωj ∈ Ωj, implies the
equality

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ(ζ(s + iτ, αj, ωj; Aj), ζn(s + iτ, αj, ωj; Aj))dτ = 0

which together with the definition of ρρρ implies the assertion of the lemma.

For the proof of the theorem, we need one more lemma on a common limit
measure. Let, for A ∈ B(Hr(D)),

P̂T (A) = νT (ζζζ(s + iτ,ααα,ωωω;AAA) ∈ A.

Lemma 1.9. Suppose that the set L(α1, . . . , αr) is linearly independent over Q.

Then PT and P̂T for almost all ω ∈ Ωr, both converge weakly to the same probability
measure P on (Hr(D),B(Hr(D))) as T →∞.

Proof. We take a random variable θ defined on a certain probability space
(Ω0,B(Ω0), P) and uniformly distributed on [0, 1]. On (Ω0,B(Ω0), P), define the
Hr(D)-valued random element XXXT,n = XXXT,n(s,ααα;AAA) by the equality

XXXT,n(s,ααα;AAA) = ζζζn(s + iθτ,ααα;AAA).

Then, denoting by D−→ the convergence in distribution, we have by Lemma 6 that

XXXT,n
D−→

T→∞
XXXn, (1.2)

where XXXn is the Hr(D)-valued random element having the distribution Pn, and Pn

is the limit measure in Lemma 6. By a standard method, see, for example, [14], it
can be proved that the family of probability measures {Pn : n ∈ N0} is tight, i.e.,
for every ε > 0 there exists a compact subset Hε ⊂ Hr(D) such that

Pn(Hε) > 1− ε

for all n ∈ N0. Then, by the Prokhorov theorem, see Theorem 6.1 of [3], we have that
the family {Pn : n ∈ N0} is relatively compact. Therefore, there exists a subsequence

13



{Pnk
} ⊂ {Pn} such that Pnk

converges weakly to a certain probability measure P
on (Hr(D),B(Hr(D))) as k →∞, so the relation

XXXn
D−→

k→∞
P (1.3)

holds.

On (Ω0,B(Ω0), P), define one more Hr(D)-valued random element XXXT = XXXT (s,
ααα;AAA) by the equality

XXXT (s,ααα;AAA) = ζζζ(s + iθτ,ααα;AAA).

Then, for every ε > 0, Lemma 7 implies that

lim
n→∞

lim sup
T→∞

P(ρρρ(XXXT (s,ααα;AAA),XXXT,n(s,ααα;AAA)) ≥ ε) =

lim
n→∞

lim sup
T→∞

νT (ρρρ(ζζζ(s + iτ,ααα;AAA), ζζζn(s + iτ,ααα;AAA)) ≥ ε) ≤

lim
n→∞

lim sup
T→∞

1

Tε

∫ T

0

ρρρ(ζζζ(s + iτ,ααα;AAA), ζζζn(s + iτ,ααα;AAA))dτ = 0.

This, and relations (1.2) and (1.3) together with Theorem 4.2 of [3] lead to

XXXT
D−→

T→∞
P, (1.4)

and this is equivalent to the weak convergence of PT to P as T → ∞. Moreover,
relation (1.4) shows that the probability measure P does not depend on the sequence
{Pnk

}. Hence, taking into account the relative compactness of the family {Pn}, we
obtain that

XXXn
D−→

n→∞
P. (1.5)

It remains to shows, that P̂T also converges weakly to the same measure P as
T →∞. For this, we define the random elements

XXXT,n(s,ααα,ωωω;AAA) = ζζζn(s + iθT,ααα,ωωω;AAA)

and

XXXT (s,ααα,ωωω;AAA) = ζζζ(s + iθT,ααα,ωωω;AAA).

Then, using (1.5) and repeating the above arguments for the elements XT,n(s,ααα,ωωω;AAA)
and XT (s,ααα,ωωω;AAA) with application of Lemma 8, we obtain the weak convergence of
P̂T to P as T →∞.
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Proof of Theorem 1.4. Let, for τ ∈ R,

aaaτ = {((m + α1)
−iτ : m ∈ N0), . . . , ((m + αr)

−iτ : m ∈ N0)},

and, on the torus Ωr, define a family of transformations {Φτ : τ ∈ R} by formula
Φτ (ωωω) = aaaτωωω, ωωω ∈ Ωr. Then {Φτ : τ ∈ R} is a one - parameter group of measurable
measure preserving transformations on Ωr. Since the set L(α1, . . . , αr) is linearly
independent over Q, by Lemma 3 of [13], the group {Φτ : τ ∈ R} is ergodic.

Now we fix a continuity set A of the measure P in Lemma 1.9. Then by Theo-
rem 2.1 of [3] we find that

lim
T→∞

νT (ζζζ(s + iτ,ααα,ωωω;AAA) ∈ A) = P (A). (1.6)

Let ξ be a random variable on the probability space (Ωr,B(Ωr), mr
H) given by

ξ = ξ(ωωω) =

{
1 if ζζζ(s,ααα,ωωω;AAA) ∈ A,

0 if ζζζ(s,ααα,ωωω;AAA) /∈ A.

Then the ergodicity of {Φτ : τ ∈ R} shows that the random process ξ(Φτ (ωωω)) is also
ergodic. Therefore, the Birkhoff-Khinchine theorem mentioned already in the proof
of Lemma 8, for almost all ωωω ∈ Ωr, implies the equality

lim
T→∞

1

T

∫ T

0

ξ(Φτ (ωωω))dτ = Eξ, (1.7)

where Eξ denotes the expectation of ξ. On the other hand, the definition of ζ shows
that

Eξ =

∫
Ωr

ξdmr
H = mr

H(ωωω ∈ Ωr : ζζζ(s,ααα,ωωω;AAA) ∈ A),

that is

Eξ = Pζζζ(A). (1.8)

Since, by the definitions of ξ and Φτ ,

1

T

∫ T

0

ξ(Φτ (ωωω))dτ = νT (ζζζ(s + iτ,ααα,ωωω;AAA) ∈ A),

we see from relations (1.7) and (1.8) that, for almost all ωωω ∈ Ωr,

lim
T→∞

νT (ζζζ(s + iτ,ααα,ωωω;AAA) ∈ A) = Pζζζ(A).

This together with (1.6) shows that P (A) = Pζζζ(A) for continuity sets A of the
measure. However, all continuity sets constitute a determining class. Thus, the
measures P and Pζζζ coincide for all A ∈ B(Hr(D)), and the theorem is proved.
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1.3. Support of the measure Pζζζ

Denote the support of the measure Pζζζ by SPζζζ
. Thus, SPζζζ

is a minimal closed set
of the space Hr(D) such that Pζζζ(SPζζζ

) = 1. The support SPζζζ
consist of all points

ggg ∈ Hr(D) such that Pζζζ(G) > 0 for every neighbourhood G of ggg.

Theorem 1.10. Suppose that the set L(α1, . . . , αr) is linearly independent over
Q. Then the support of the measures Pζζζ is the whole of Hr(D).

Proof. Let, for Aj ∈ H(D), j = 1, . . . , r,

A = A1 × · · · × Ar. (1.9)

Since the space Hr(D) is separable, B(Hr(D)) coincides with σ-field generated by
sets (1.9). Moreover, the Haar measure mr

H is the product of m1H , . . . ,mrH . There-
fore,

Pζζζ(A) = mr
H(ωωω ∈ Ωr : ζζζ(s,ααα,ωωω;AAA) ∈ A) =

mr
H(ωωω ∈ Ωr : ζζζ(s,ααα,ωωω;AAA) ∈ A1 × · · · × Ar) =

m1H(ω1 ∈ Ω1 : ζ(s, α1, ω1; A1) ∈ A1) . . .

mrH(ωr ∈ Ωr : ζ(s, αr, ωr; Ar) ∈ Ar). (1.10)

Since the set L(α1, . . . , αr) is linearly independent over Q, each set L(α1), . . . , L(αr)
is as well. Therefore, as in the case of transcendental αj [7], we have that, for every
j = 1, . . . , r,

νT (ζ(s, αj; Aj) ∈ A), A ∈ B(H(D)),

converges weakly to Pjζ as T →∞, where

Pjζ(A) = mjH(ωj ∈ Ωj : ζ(s, αj, ωj; Aj) ∈ A), A ∈ B(H(D)),

is the distribution of the H(D)-valued random element ζ(s, αj, ωj; Aj), and the sup-
port of Pjζ is the whole of H(D). This and equality (1.10) prove the theorem.

1.4. Proof of Theorem 1.3

In view of Theorem 1.4 and 1.10, Theorem 1.3 is proved by a standard way. The
used arguments are based on the Mergelyan theorem on approximation of analytic
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functions by polynomials, see, for example, [20], and on the properties of weak
convergence of probability measures as well as on those of a support.

Proof of Theorem 1.3. By the Mergelyan theorem, there exist polynomials
p1(s), . . . , pr(s) such that

sup
1≤j≤r

sup
s∈Kj

|fj(s)− pj(s)| <
ε

2
. (1.11)

Let

G =

{
(g1, . . . , gr) ∈ Hr(D) : sup

1≤j≤r
sup
s∈Kj

|gj(s)− pj(s)| <
ε

2

}
.

Clearly, G is an open set. Moreover, in view of Theorem 10, (p1(s), . . . , pr(s)) ∈
SPζζζ

. Therefore, by properties of a support, the inequality Pζζζ(G) > 0 holds. Since
Theorem 1.4 and Theorem 2.1 of [3] imply

lim inf
T→∞

PT (G) ≥ Pζζζ(G),

hence we deduce that

lim inf
T→∞

νT

(
sup

1≤j≤r
sup
s∈Kj

|ζ(s + iτ, αj; Aj)− pj(s)| <
ε

2

)
> 0. (1.12)

However, inequality (1.11) shows that the inequality

sup
1≤j≤r

sup
s∈Kj

|ζ(s + iτ, αj; Aj)− pj(s)| <
ε

2

implies

sup
1≤j≤r

sup
s∈Kj

|ζ(s + iτ, αj; Aj)− fj(s)| < ε.

Therefore, {
τ ∈ [0, T ] : sup

1≤j≤r
sup
s∈Kj

|ζ(s + iτ, αj; Aj)− fj(s)| < ε

}
⊇

{
τ ∈ [0, T ] : sup

1≤j≤r
sup
s∈Kj

|ζ(s + iτ, αj; Aj)− pj(s)| <
ε

2

}
,

and this together with inequality (1.12) proves the theorem.
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Chapter 2

Joint universality for periodic
Hurwitz zeta-functions. II

2.1. Introduction

Let, as usual, N, N0, Z, R and C denote the set of all positive integers, non-
negative integers, integers, real and complex numbers, respectively, and let A =
{am : m ∈ N0} be a periodic sequence of complex numbers with minimal period
k ∈ N, and α, 0 < α ≤ 1, be a fixed parameter. The periodic Hurwitz zeta-function
ζ(s, α; A), s = σ + it, is defined, for σ > 1, by Dirichlet series

ζ(s, α, A) =
∞∑

m=0

am

(m + α)s
.

For A = {am = 1 : m ∈ N0}
def
= 1, the function ζ(s, α, A) reduces to the classical

Hurwitz zeta-function ζ(s, α). In view of the periodicity of the sequence A, we have
that, for σ > 1,

ζ(s, α; A) =
1

ks

k−1∑
l=0

alζ

(
s,

l + α

k

)
. (2.1)

Since the function ζ(s, α) has meromorphic continuation to the whole complex plane
and has a simple pole at s = 1 with Res

s=1
ζ(s, α) = 1, equality (2.1) shows that the

periodic Hurwitz zeta-function ζ(s, α, A) can be meromorphically continued to the
whole complex plane with possible simple pole at s = 1. If

a
def
=

1

k

k−1∑
l=0

al = 0,

then ζ(s, α, A) is an entire function, while if a 6= 0, then Res
s=1

ζ(s, α; A) = a.

In [6] and [7], the universality of the function ζ(s, α, A) in the Voronin sense was
considered. For brevity, we will use the following notation. Let meas {A} denote
the Lebesgue measure of a measurable set A ⊂ R, and, for T > 0, we put

νT (. . . ) =
1

T
meas{τ ∈ [0; T ] : . . . },
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where in place of dots a condition satisfied by τ is to be written. We also denote
D = {s ∈ C : 1

2
< σ < 1}.

Theorem 2.1 [7]. Suppose that the number α is transcendental. Let K be a
compact subset of the strop D with connected complement, and let f(s) be a contin-
uous on K function which is analytic in the interior of K. Then, for every ε > 0,

lim inf
T→∞

νT

(
sup
s∈K

|ζ(s + iτ, α; A)− f(s)| < ε

)
> 0.

We recall that the universality of the Riemann zeta-function ζ(s) = ζ(s, 1;1) was
discovered by Voronin in [19]. The improved version of his theorem can be found in
[9],[10], [15] and [16].

Voronin also obtained [18] the first joint universality theorem for Dirichlet L-
functions. A similar result was also given by Gonek [5] and Bagchi [1], [2]. A
modern version of that theorem is contained in [17].

In [11], the first author began to study the joint universality of periodic Hurwitz
zeta-functions. For j = 1, . . . , r, r > 1, let Aj = {amj : m ∈ N0} be a periodic
sequence of complex numbers with minimal period kj = N, αj ∈ R, 0 < αj ≤ 1,
and, for σ > 1,

ζ(s, αj; Aj) =
∞∑

m=0

amj

(m + αj)s
.

In [11], the simplest case kj = k and αj = α, j = 1, . . . , r, was considered. The
requirement that kj = k, j = 1, . . . , r, was removed in [12]. Let k be the least
common multiple of the periods k1, . . . , kr, and

A =


a11 a12 . . . a1r

a21 a22 . . . a2r

. . . . . . . . . . . .
ak1 ak2 . . . akr

 .

Then in [8], the following statement was obtained.

Theorem 2.2 [8]. Suppose that the number α1, . . . , αr are algebraically inde-
pendent over the field of rational numbers Q, and that rank(A) = r. For every
j = 1, . . . , r, let Kj be a compact subset of the strip D with connected complement,
and let fj(s) be a continuous on Kj function which is analytic in the interior of Kj.
Then, for every ε > 0,

lim inf
T→∞

νT

(
sup

1≤j≤r
sup
s∈Kj

|ζ(s + iτ, αj; Aj)− fj(s)| < ε

)
> 0.
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The rank condition of Theorem 2.2 was removed in [15].

A more general case was considered in [13]. Let lj, j = 1, . . . , r, be positive
integers. For every l = 1, . . . , lj, let Ajl = {amjl : m ∈ N0} be a periodic sequence of
complex numbers with minimal period kjl ∈ N. Suppose that αj ∈ R, 0 < αj ≤ 1,
and, for σ > 1,

ζ(s, αj; Ajl) =
∞∑

m=0

amjl

(m + αj)s
.

Denote by k the least common multiple of k11, . . . , k1l1 , . . . , kr1, . . . , krlr , and
define

B =


a111 a112 . . . a11l1 a122 . . . a12l2 . . . a1r1 a1r2 . . . a1rlr

a211 a212 . . . a21l1 a222 . . . a22l2 . . . a2r1 a2r2 . . . a2rlr

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ak11 ak12 . . . ak1l1 ak22 . . . ak2l2 . . . akr1 akr2 . . . akrlr

 .

Moreover, let

κ =
r∑

j=1

lj,

and
L(α1, . . . , αr) = {log(m + αj) : m ∈ N0, j = 1, . . . , r}.

Then we have the following result.

Theorem 2.3 [13]. Suppose that the system L(α1, . . . , αr) is linearly indepen-
dent over Q, and that rank(B) = κ. For every j = 1, . . . , r and l = 1, . . . , lj, let Kjl

be a compact subset of the strip D with connected complement, and let fjl(s) be a
continuous on Kjl function which is analytic in the interior of Kjl. Then, for every
ε > 0,

lim inf
T→∞

νT

(
sup

1≤j≤r
sup

1≤l≤lj

sup
s∈Kjl

|ζ(s + iτ, αj; Ajl)− fjl(s)| < ε

)
> 0.

The aim of this note is to make weaker the rank condition in Theorem 3. Let
kj be the least common multiple of the periods kj1, kj2, . . . , kjlj , j = 1, . . . , r, and
define

Bj =


a1j1 a1j2 . . . a1jlj

a2j1 a2j2 . . . a2jlj

. . . . . . . . . . . .
akj1 akj2 . . . akjlj

 , j = 1, . . . , r.
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Theorem 2.4. Suppose that the system L(α1, . . . , αr) is linearly independent
over Q, and that rank(Bj) = lj, j = 1, . . . , r. Let Kjl and fjl be the same as in
Theorem 3. Then the assertion of Theorem 2.3 is true.

We note that if the numbers α1, . . . , αr are algebraically independent over Q,
then the system L(α1, . . . , αr) is linearly independent over Q. In the case r = 1, the
linear independence of L(α1) follows from the transcendence of α1.

2.2. A limit theorem

The proof of Theorem 2.4 is based on the method of limit theorems in the
space of analytic functions proposed by Bagchi in [1], and later developed by Kohji
Matsumoto, Mishou, Nagoshi, Nakamura, Steuding, the first author, and others.

Denote by H(D) the space of analytic on D functions endowed with the topology
of uniform convergence on compacta, and let

Hκ(D) = H(D)× · · · ×H(D)︸ ︷︷ ︸
κ

,

where κ is defined in Introduction. Moreover, we define

Ω =
∞∏

m=0

γm,

where γm = {s ∈ C : |s| = 1} for all m ∈ N0. By the Tikhonow theorem, the
infinite-dimensional torus Ω is a compact topological Abelian group. Therefore,
denoting by B(S) the class of Borel sets of a space S, we have that on (Ω,B(Ω))
the probability Haar measure mH exists, and this leads to the probability space
(Ω,B(Ω), mH). Putting

Ωr = Ω1 × · · · × Ωr,

where Ωj = Ω for all j = 1, . . . , r, by the Tikhonov theorem again we have that
Ωr is also a compact topological Abelian group. Similarly as above, we obtain the
probability space (Ωr,B(Ωr), mr

H), where mr
H is the probability Haar measure on

(Ωr,B(Ωr)).

Let, for brevity ααα = (α1, . . . , αr) and AAA = (A11, . . . , A1l1 , . . . , Ar1, . . . , Arlr), denote
the elements of Ωr by ωωω = (ω1, . . . , ωr), and on the probability space (Ωr,B(Ωr), mr

H)
define the Hκ(D)-valued random element ζζζ(s,ααα,ωωω;AAA) by

ζζζ(s,ααα,ωωω;AAA) = (ζ(s, α1, ω1; A1), . . . , ζ(s, α1, ω1; A1l1), . . . ,
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ζ(s, αr, ωr; Ar1), . . . , ζ(s, αr, ωr; Arlr)),

where

ζ(s, αj, ωj; Ajl) =
∞∑

m=0

amjlωj(m)

(m + αj)s
, j = 1, . . . , r, l = 1, . . . , lj,

and ωj(m) is the projection of ωj ∈ Ωj, j = 1, . . . , r, to the coordinate space γm,
m ∈ N0. Denote by Pζζζ the distribution of the random element ζζζ(s,ααα,ωωω;AAA).

Let, for A ∈ B(Hκ(D)),

PT (A) = νT (ζζζ(s + iτ,ααα;AAA) ∈ A).

Theorem 2.5. Suppose that the system L(α1, . . . , αr) is linearly independent
over Q. Then the probability measure PT converges weakly to Pζζζ as T →∞.

The proof of Theorem does not depend of the hypothesis on the rank of the
matrices Bj, therefore, it remains the same as in [13], and we will recall only the
principal steps of that proof.

First it is proved that the probability measure

QT (A)
def
= νT ((((m + α1)

−it : m ∈ N0), . . . , ((m + αr)
−it : m ∈ N0)) ∈ A),

A ∈ B(Ωr),

converges weakly to the Haar measure mr
H as T → ∞. For this, the method of

Fourier transforms is applied in which the hypothesis on the linear independence of
the system L(α1, . . . , αr) is essentially used. A limit theorem for QT together with
the well-known properties of weak convergence of probability measures leads to limit
theorems for vectors whose components are absolutely convergent Dirichlet series.

Let, for a fixed σ1 > 1
2
, m, n ∈ N0, and 0 < α ≤ 1,

vn(m, α) = exp

{
−
(

m + α

n + α

)σ1
}

.

Then it is not difficult to see that the series

ζn(s, αj; Ajl) =
∞∑

m=0

amjlvn(m, αj)

(m + αj)s

and

ζn(s, αj, ωj; Ajl) =
∞∑

m=0

amjlωj(m)vn(m, αj)

(m + αj)s
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are absolutely convergent for σ > 1
2
, j = 1, . . . , r, l = 1, . . . , lj. Define

ζζζn(s,α;AAAα;AAAα;AAA) = (ζn(s, α1; A11), . . . , ζn(s, α1; A1l1), . . . ,

ζn(s, αr; Ar1), . . . , ζn(s, αr; Arlr)),

and

ζζζn(s,α,ωωω;AAAα,ωωω;AAAα,ωωω;AAA) = (ζn(s, α1, ω1; A11), . . . , ζn(s, α1, ω1; A1l1), . . . ,

ζn(s, αr, ωr; Arl1), . . . , ζn(s, αr, ωr; Arlr)).

Then the next step of the proof consists of the observation that the probability
measures

νT (ζζζn(s,ααα;AAA) ∈ A), A ∈ B(Hκ(D)), (2.2)

and
νT (ζζζn(s,ααα,ωωω;AAA) ∈ A), A ∈ B(Hκ(D)), (2.3)

both converge weakly simultaneously to the same probability measure on (Hκ(D),
B(Hκ(D))) as T →∞.

Now it remains to pass from the vector ζζζn(s,ααα;AAA) to ζζζ(s,ααα;AAA). For this, an
approximation in the mean of ζζζ(s,ααα;AAA) by ζζζn(s,ααα;AAA) as well as of ζζζ(s,ααα,ωωω;AAA) by
ζζζn(s,ααα,ωωω;AAA) is needed. First we define a metric on the space Hκ(D) which induces
the topology of uniform convergence on compacta. Let {Km : m ∈ N} be a sequence
of compacta subsets of D such that

∞⋃
m=1

Km = D,

Km ⊂ Km+1 for all m ∈ N, and, for every compact K ⊂ D, K ⊂ Km for some m.
For the existence of the sequence {Km}, see, for example, [4]. Let, for f, g ∈ H(D),

ρ(f, g) =
∞∑

m=1

2−m

sup
s∈Km

∣∣f(s)− g(s)
∣∣

1 + sup
s∈Km

∣∣f(s)− g(s)
∣∣ .

Then ρ is a metric on H(D) which induces its topology of uniform convergence on
compacta. Now if fff = (f11, . . . , f1l1 , fr1, . . . , frlr), ggg = (g11, . . . , g1l1 , gr1, . . . , grlr) ∈
Hκ(D) and

ρκ(fff,ggg) = max
1≤j≤r

max
1≤j≤lj

ρ(fjl, gjl),

then ρκ is a desired metric on Hκ(D).

Furthermore, it is proved that

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρκ(ζζζ(s + iτ,ααα;AAA)− ζζζn(s + iτ,ααα;AAA))dτ = 0. (2.4)
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For this, the mean square estimate [6]∫ T

0

|ζ(σ + it, α; A)|2 dt � T,
1

2
< σ < 1, (2.5)

is applied.

A more complicated situation is in the case of ζζζ(s,ααα,ωωω;AAA), because we have to
obtain an analogue of estimate (2.5) for ζ(σ + it, α, ω; A). To get such an analogue,
elements of ergodic theory are applied. Let aaaτk

= {((m+α1)
−iτ : m ∈ N0), . . . , ((m+

αr)
−iτ : m ∈ N0)}, τ ∈ R, and define a family of transformations {Φτ : τ ∈ R}

on Ωr by Φτ (ωωω) = aaaτωωω, ωωω ∈ Ωr. Then {Φτ : τ ∈ R} is a one-parameter group of
measurable measure preserving transformations on Ωr. We say that a set A ∈ B(Ωr)
is invariant with respect to the group {Φτ : τ ∈ R} if, for every τ ∈ R, the sets A
and Aτ = Φτ (A) coincide up to a set of mr

H-measure zero. The invariant sets form
a σ-field which is a σ-subfield of B(Ωr).

A one - parameter group {Φτ : τ ∈ R} is ergodic if its σ-field of invariant sets
consists only of sets of mr

H-measure zero or one.

Using the linear independence of the system L(α1, . . . , αr), it is not difficult to
prove that the one-parameter group {Φτ : τ ∈ R} is ergodic. This together with the
classical Birkhoff-Khintchine theorem, for almost all ω ∈ Ω, implies a bound∫ T

0

|ζ(σ + it, α, ω; A)|2 dt � T, σ >
1

2
.

Now, similarly to equality (2.4), we obtain that, for almost all ωωω ∈ Ωr,

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρκ(ζζζ(s + iτ,ααα,ωωω;AAA), ζζζn(s + iτ,ααα,ωωω;AAA))dτ = 0. (2.6)

The weak convergence of the probability measures (2.2) and (2.3) to the same
probability measure as T → ∞, relations (2.4) and (2.6), and Theorem 4.2 of [3]
allow to prove that the probability measures PT and

νT (ζζζ(s + iτ,ααα,ωωω;AAA) ∈ A), A ∈ B(Hκ(D)),

both converge weakly to the same probability measure P on (Hκ(D)), B(Hκ(D))
as T → ∞. This, the ergodicity of the group {Φτ : τ ∈ R}, and the Birkhoff-
Khintchine theorem show that the measure P coincides with Pζζζ . This completes the
proof Theorem 2.4.
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2.3. Support of Pζζζ

For the proof of Theorem 2.3, we need to know the support of the limit measure
Pζζζ in Theorem 2.4. Let S be a separable metric space, and P be a probability
measure on (S,B(S)). We recall that the support of the measure P is a minimal
closed set SP ∈ B(S) such that P (SP ) = 1. Moreover, the support SP consists of
all x ∈ S such that P (G) > 0 for every neighbourhood G of x.

Theorem 2.6. Suppose that the system L(α1, . . . , αr) is linearly independent
over Q. Then the support of the measure Pζζζ is the whole of Hκ(D).

Proof. Let, for Aj ∈ B(H lj(D)), j = 1, . . . , r,

A = A1 × · · · × Ar. (2.7)

Since the space Hκ(D) is separable, we have [3] that the σ-field B(Hκ(D)) coincides
with

B(H1(D))× · · · × B(H lr(D)),

that is, it coincides with a σ-field generated by the sets (2.7). We also note that
the measure mr

H is the product of the measures mjH on (Ωj,B(Ωj)), j = 1, . . . , r.
Therefore, we have that

Pζζζ(A) = mr
H(ωωω ∈ Ωr : ζζζ(s,ααα,ωωω;AAA) ∈ A) =

m1H(ω1 ∈ Ω1 : (ζ(s, α1, ω1; A11), . . . , ζ(s, α1, ω1; A1l1)) ∈ A1)× . . .

×mrH(ωr ∈ Ωr : ζ(s, αr, ωr; Ar1) . . . , ζ(s, αr, ωr; Arlr) ∈ Ar). (2.8)

Since rank(Bj) = lj, j = 1, . . . , r, in view of Lemma 11 from [12] we have that the
support of the measure

Pjζζζ(Aj) = mjH(ωj ∈ Ωj : (ζ(s, αj, ωj; Aj1), . . . , ζ(s, αj, ωj; Ajlj)) ∈ Aj)

is the whole of H(D), j = 1, . . . , r. Therefore, the theorem is a consequence of
equality (2.8).

Remark. In [12], it was assumed that α is transcendental, however, the proofs of
all statements remains the same if the system L(α) is linearly independent over Q,
because the transcendence of α is used only for the linear independence of L(α).
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2.4. Proof of Theorem 2.4

A proof of Theorem 2.4 is short and standard. By the Mergelyan theorem, see,
for example, [20], there exist polynomials pjl(s) such that

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|fjl(s)− pjl(s)| <
ε

2
. (2.9)

Let

G =

{
(g11, . . . , g1l1 , . . . , gr1, . . . , grlr) ∈ Hr(D) :

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|pjl(s)− gjl(s)| <
ε

2

}
.

The set G is open in Hκ(D), and, by Theorem 2.6, (p11, . . . , p1l1 , . . . , pr1, . . . , prlr) ∈
SPζζζ

. Therefore, Theorem 2.5 and Theorem 2.1 of [3] show that

lim inf
T→∞

νT

(
sup

1≤j≤r
sup

1≤l≤lj

sup
s∈Kjl

|ζ(s + iτ, αj; Ajl)− pjl(s)| <
ε

2

)
≥ Pζζζ(G) > 0.

This and inequality (2.9) complete the proof of Theorem 2.4.
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Santrauka

Periodinių Hurvico dzeta funkcijų jungtinis universalumas

Tarkime, kad s = σ + it yra kompleksinis kintamasis, α, 0 < α ≤ 1, yra fik-
suotas parametras, o A = {am : m ∈ N0} yra periodinų kompleksinių skaičių seka.
Periodinė Hurvico dzeta funkcija ζ(s, α; A) pusplokštumėje σ > 1 yra apibrėžiama
Dirichlė eilute ir yra analiziškai pratęsiama į visą kompleksinę plokštumą, išskyrus,
gal būt, tašką s = 1.

Magistro darbe yra nagrinėjamas Hurvico dzeta funkcijų rinkinio jungtinis uni-
versalumas. Tarkime, kad Kj yra juostos {s ∈ C : 1

2
< σ < 1} kompaktinė aibė,

turinti jungųjį papildinį, o fj(s) yra tolydi aibėje Kj funkcija ir analizinė aibės Kj

viduje, j = 1, . . . , r. Sakome, kad funkcijos ζ(s, α1; A1), . . . , ζ(s, αr; Ar) yra univer-
salios, jei su kiekvienu ε > 0

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤r
sup
s∈Kj

|ζ(s + iτ, αj; Aj)− fj(s)| < ε

}
> 0.

Čia measA yra mačios aibės A ⊂ R Lebego matas.
Darbe yra įrodytos dvi jungtinės universalumo teoremos. Pirmoji teorema tvir-

tina, kad jei aibė L(α1, . . . , αr) = {log(m+αj) : j = 1, . . . , r, m ∈ N0} yra tiesiškai
nepsiklausoma virš racionaliųjų skaičių kūno, tai funkcijos ζ(s+ iτ, αj; Aj), . . . , ζ(s+
iτ, αr; Ar) yra universalios. Ši teorema žymiai susilpnina sąlygas, kurioms esant,
buvo gautas analogiškas rezultatas A. Javtoko ir A. Laurinčiko 2008 m. darbe.

Antroje teoremoje yra nagrinėjamas atvejis, kai kiekvieną skaičių αj atitinka
periodinių sekų rinkinys. Kai sistema L(α1, . . . , αr) yra tiesiškai nepriklausoma virš
racionaliųjų skaičių kūno ir galioja vieno rango tipo sąlyga, silpnesnė negu A. Lau-
rinčiko darbe (2008), tai funkcijų rinkinys ζ(s, αj; Ajl), j = 1, . . . , r, l = 1, . . . , lj yra
taip pat universalus.
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