
VILNIUS UNIVERSITY

Adomas Birštunas

SEQUENT CALCULI WITH AN EFFICIENT LOOP-CHECK FOR
BDI LOGICS

Doctoral dissertation
Physical sciences, Informatics (09P)

Vilnius, 2010

This work was performed in 2004-2009 at Vilnius University, Lithuania.

Research supervisor :

Assoc. Prof. Habil. Dr. Regimantas Pliuškevičius (Institute of Mathematics and
Informatics, phisical science, mathematics - 01P)

VILNIAUS UNIVERSITETAS

Adomas Birštunas

SEKVENCINIAI SKAIČIAVIMAI BDI LOGIKOMS SU EFEKTYVIA
CIKLŲ PAIEŠKA

Daktaro disertacija
Fiziniai mokslai, Informatika (09P)

Vilnius, 2010

Disertacija rengta 2004-2009 metais Vilniaus universitete.

Mokslinis vadovas :

doc. habil. dr. Regimantas Pliuškevičius (Matematikos ir informatikos institutas,
fiziniai mokslai, matematika - 01P)

Abstract

BDI logics are widely used for agent system description and implementation. Agents
are autonomous systems, those acts in some environment and aspire to achieve preas-
signed goals. Decision making mechanism is the main and the most complicated part
of agent systems implementation. Different logics are used as a basis for the decision
making. One of such a logics is BDI logic, which express agent via its beliefs, desires
and intentions. In this thesis, there are researched sequent calculi for BDI logics.
Known sequent calculi for BDI logics, like sequent calculi for other modal logics,

use loop-check technique to get decidability. Inefficient loop-check takes a major part
of the resources used for the derivation. For some modal logics, there are known loop-
check free sequent calculi or calculi with an efficient loop-check.
In this thesis, there is presented loop-check free sequent calculus for KD45 logic,

which is the main fragment of the BDI logics. Introduced calculus not only elimi-
nates loop-check, but also simplifies sequent derivation. For the branching time logic
(another BDI logic fragment) there is presented sequent calculus with an efficient
loop-check.
Obtained results are adapted for creation sequent calculi for monoagent and multi-

agent BDI logics. Introduced calculi use only restricted loop-check. Moreover, loop-
check is totally eliminated for some types of the loops. These results enables to create
more efficient agent systems, those are based on the BDI logics.

1

2

Acknowledgements

I would like to take the opportunity to thank the people who have supported me. I owe
my deepest gratitude to my supervisor Assoc. Prof. Regimantas Pliuškevičius, for his
valuable support through the work.
It is an honor for me to thank Assoc. Prof. Stanislovas Leonas Norgėla, who was

my supervisor of the previous works. I am indebted to my many of my colleagues from
the University to support and encourage me through all my studies. I am grateful to the
staff of the Logical section of the Institute of Mathematics and Informatics, for their
advise and interesting discussions.
It is a pleasure to thank my parents and my sister, for their love and support. I would

like to show my special gratitude to my wife Vilma and my daughter Miglė, for their
patience and love.

3

4

Contents

Abstract 1

Acknowledgements 3

Contents 5

List of Figures 7

Introduction 8

1 Agents and BDI logic 13
1.1 Agents . 13
1.2 BDI Agents . 16

2 Sequent Calculus and Loop-check 19
2.1 Language . 19
2.2 Sequent Calculus . 22
2.3 Semantics . 27
2.4 Loop-check and Backtracking . 30

3 Loop-check Free Sequent Calculus for KD45 Logic 34
3.1 Calculi for KD45 Logic . 34
3.2 Loop-check Free Sequent Calculus for KD45 Logic 36
3.3 Complexity Results for Sequent Calculus KD45lcf 47

4 Sequent Calculus With an Efficient Loop-check for Branching Time Logic 54
4.1 Temporal Logics . 54
4.2 Sequent Calculus With an Efficient Loop-check for Branching Time

Logic . 58
4.3 Complexity Results for Sequent Calculus PTLrlc 76

5 Sequent Calculi With an Efficient Loop-check for BDI Logics 82
5.1 Calculi for BDI Logic . 82

5

5.2 Sequent Calculus With an Efficient Loop-check for BDI Logic 85
5.3 Multiagent BDI Logic . 92
5.4 Sequent Calculus With an Efficient Loop-check for Multiagent BDI

Logic . 95
5.5 Complexity Results for Sequent Calculus BDIn

elc 104

6 Conclusion 106

Bibliography 108

A Decision Algorithm for KD45 Logic 113

6

List of Figures

1.1 Simple agent behaviour schema . 14
1.2 General BDI agent implementation scheme 17

3.1 Illustration for the proof of the Lemma 3.2.5 42

4.1 Linear time logic . 55
4.2 Branching time logic . 55
4.3 Illustration for the proof of the Lemma 4.2.1 64
4.4 Illustration for the proof of the Lemma 4.2.5 66
4.5 Illustration for the proof of the Lemma 4.2.6 66

7

Introduction

In this thesis, new loop-check free sequent calculus for KD45 logic, sequent calculi
with an efficient loop-check for branching time and BDI logics are presented.

Research Area and Problem Relevance

In this thesis, research on the tasks of the artificial intelligence related to agent imple-
mentation is presented. Agents are autonomous systems, those acts in some environ-
ment and aspire to achieve preassigned goals. Agents main property is an ability to
decide that to do autonomous according to the information obtained from the environ-
ment. One of the possible solution for autonomous decision making implementation is
the modal logic applications.
For different scopes, different modal logics, those uses one or several modalities to

express agent, are used. The most popular modal logic used for agents implementation
is BDI logic ([52]), which express agent using three modalities: beliefs, desires and
intentions; usually, combined together with temporal logic. The popularity of the BDI
logic was based on the fact, that it is suitable to define various scopes ([31, 44, 16, 20,
43, 50, 14]) and it is known complete axiomatization for it.
Sequent calculi are recognized as suitable to be the basis for autonomous decision

making implementations. There is known sequent calculus forBDI logic ([39]), which
is sound and complete. However this calculus uses inefficient (direct) loop-check to
get decidability. In recent years, loop-check elimination and efficient loop-check con-
struction are widely researched areas. In this work, analysis of the mentioned sequent
calculus for BDI logic is presented and another equivalent calculus, which eliminates
some of the loops and uses efficient loop-check technique for the rest of the loops, is
introduced.

Research Objectives

Loop-check free sequent calculi and sequent calculi with an efficient loop-check for
BDI logics and their fragments.

8

Aim of the Work

The main aim of the thesis is to construct an efficient sound and complete derivation
search systems for BDI logics, based on the sequent calculi, those do not use loop-
check or uses only restricted loop-check.

Work Tasks

To reach the aim of this work, these tasks had to be solved:

1. To construct sound and complete loop-check free sequent calculus, or sequent
calculus with an efficient loop-check forKD45 logic and evaluate its complexity.

2. To construct sound and complete loop-check free sequent calculus, or sequent
calculus with an efficient loop-check for branching time logic and evaluate its
complexity.

3. To construct sound and complete loop-check free sequent calculus, or sequent
calculus with an efficient loop-check for BDI logic and evaluate its complexity.

4. Generalize results to get sound and complete sequent calculus with an efficient
loop-check for multiagent BDI logic.

Methods

Invertable, semi-invertable rules, combination of the and-rules together with or-rules
and primal sequents were used to get decidability for the new calculi. Analysis of the
modal logics, loop-check technique and graph theory were used to proof specific fea-
tures of the particular fragments of the BDI logics. Special types of sequent histories
(marked modal operators, marked sequents and modal operators with special indexes)
and proven features were used to construct loop-check free sequent calculi or sequent
calculi with an efficient loop-check for the fragments of the BDI logics. N. NIDE and
T. Shiro results ([39]) for BDI logics, efficiency results obtained for the fragments of
theBDI logics were used to construct sound and complete systems for theBDI logics.

Scientific Novelty and Practical Significance

In this thesis, there are presented new sequent calculi: loop-check free sequent calculus
for KD45 logic, sequent calculi with an efficient loop-check for branching time and
BDI logics.

9

New approach to the inference tree construction was applied during loop-check free
sequent calculus for KD45 logic creation. If particular conditions are satisfied, some
sequent on the inference tree, irrespective of the fact that sequent is derivable or not
by itself, may be treated as non derivable and its derivation are not proceeded (initial
sequent derivability will be determined by other branches of the or-rules).
During sequent calculus for branching time logic creation, ground formula of the

sequent (it appears in every sequent inside a loop) was introduced and its usage leads
to restrictions for the loop-check. Such a ground formula may be also adapted for
construction restrictions for the loop-check for other logics.
Multiagent system implementations require efficient decision procedures for BDI

logics. One of such an efficient procedure (based on the sequent calculus) is presented
in this thesis. Practical application of the sequent calculi for BDI logics is obvious.
Sequent calculi for the fragments of the BDI logic are also practically applicable.
KD45 logic and branching time logic are also used outside the scope of the BDI
logics.
Loop-check free sequent calculus for KD45 logic, presented in this thesis, is al-

ready applied for the prover for the KD45 logic. "The Tableau Workbench (TWB)"
([2]) is a framework used for creating provers for different modal logics. Project is lead
by well known logician R. Gore (homepage: http://users.rsise.anu.edu.au/ rpg/). Prover
for KD45 logic is also implemented in this framework. This prover implementation is
based on the loop-check free sequent calculus for KD45 logic ([1]) presented in this
thesis.

Defending Statements

Statements presented for defence:

1. New constructed sequent calculus for KD45 logic is a loop-check free calculus
which not only eliminates loop-check, but also decrease the complexity of the
derivation search itself.

2. New constructed sequent calculus for branching time logic with until operator
uses restrictions those decrease complexity of the used loop-check.

3. New constructed sequent calculi for monoagent and multiagent BDI logics use
efficient loop-check for detection of the loops of all the types.

10

Approval of Research Results

Results of the scientific research are publicated in 7 articles. One publication is in the
journal included in Scientific Master Journal List (ISI), another publication is included
in the international databases under acceptation of the Science Council of Lithuania.
Other publications are included in the international refereed journals.
Intermediate results presented in 5 conference and in the seminars organized by the

Logical section of the Institute of Mathematics and Informatics.
Introduced sequent calculus forKD45 logic was used to create a prover for KD45

logic in the "The Tableau Workbench (TWB)" project.

Publications of the Author

The list of author’s publications that are related to the thesis is as follows:

• Scientific articles in the periodical journals, those are included in the interna-
tional databases list accepted by the Science Council of Lithuania:

1. A. Birštunas, Efficient loop-check for KD45 logic, Lithuanian Mathematical
Journal, vol 46, No. 1, 2006, pp. 44–53, Springer, New York.

2. A. Birštunas, PSPACE complexity of modal logic KD45n, Lithuanian Math-
ematical Journal, vol 48, No. 2, 2008, pp. 174–187, Springer, New York.

• Scientific articles in the international refereed journals:

3. A. Birštunas, Efficient decision procedure for Belief modality, Lithuanian
Mathematical Journal, vol 45, spec. issue, 2005, pp. 321–325.

4. A. Birštunas, Sequent calculus usage for BDI agent implementation,
Lithuanian Mathematical Journal, vol 46, spec. issue, 2006, pp. 232–237.

5. A. Birštunas, Efficient loop-check for multimodal KD45n logic, Lithuanian
Mathematical Journal, vol 47, spec. issue, 2007, pp. 351–355.

6. A. Birštunas, Restrictions for loop-check in sequent calculus for temporal
logic, Lithuanian Mathematical Journal, LMD works, vol 48-49, 2008, pp. 269–
274.

7. A. Birštunas, Restrictions for loop-check in sequent calculus for temporal logic
with until operator, Lithuanian Mathematical Journal, LMD works, vol 50, 2009,
pp. 247–252.

11

Outline of the Thesis

In the introduction, aim of the work, thesis actuality, tasks and main results were pre-
sented.
In the first chapter, there are described agents and agent systems. There is presented

basic schema of the agents behaviour. Agent system architecture, based on the BDI
logics is also described.
The second chapter is used to present main definitions and concepts used through

the dissertation. Semantics of the used logic is presented. Loop-check technique, its
advantages and disadvantages are introduced.
In the third chapter, there is presented known sequent calculus for KD45 logic.

Lemmas for loop-check restrictions are proven. There is introduced loop-check free
sequent calculus for KD45 logic, which uses marked modal operators. Lemmas for
calculus complexity are proven.
In the fourth chapter, there is presented research on the branching time logic.

Ground sequent formulas are defined and lemmas for loop-check restrictions are
proven. There is introduced sequent calculus with an efficient loop-check for branch-
ing time logic. Efficiency of the loop-check is obtained by using marked sequents and
indexes.
In the fifth chapter, there are presented sequent calculus for monoagent and multi-

agent BDI logics. Lemmas, showing that restrictions obtained for the separate frag-
ments of the BDI logics may be applied for the BDI logics, are proven. There are
presented sequent calculi for monoagent and multiagent BDI logics those use an effi-
cient loop-check.
In the appendix, there is presented and described pseudocode for implementing

loop-check free sequent calculus for KD45 logic implementation.

12

Chapter 1

Agents and BDI logic

In this chapter, agents and agents systems are presented. Basic agent behaviour schema
and possible approaches for agents implementations discussed. BDI agent model and
its implementation issues are described.

1.1 Agents

In this section, agents and their main properties are discussed from the philosophical
point. Agents autonomy is the main property, which requires decision making mech-
anism, the most important and the most complex part of the agent implementation, to
be implemented. Several main decision making mechanism implementation techniques
are also presented.
Humans always tried to make machines or systems work for their purposes. It is

especially applicable in our days when computer systems and machines are used in the
most areas of our life. Some of the functions of these systems can be made by them-
selves, but we still need a human who instructs the system what to do. We can eliminate
human work only if systems can rationally decide what to do by themselves. We want to
make machines work independently as possible. Such a systems with decision making
possibility became rational agents.
The implementation of such an agent based systems are very perspective area of the

research works. The hardest and the most important part of the agent implementation
is rational decision making.
There are a lot of agents in our life. We know about autopilots in the aircrafts,

different electronic equipment in our cars (like ABS - Anti-lock Braking System), about
programs those seeks for special information in the internet, about sorting machines,
moon vehicles, different robots and a lot of other machines or software programs those
are agents. These agents may vary very much. Some of them are very important, some
are not. Some are very complex, some are very simple. All of them are agents, because

13

Environment

Agent'

&
sensor
input

- $

%
action
output

�

Figure 1.1: Simple agent behaviour schema.
Agent gets information from the environment via input sensors and performs actions those
may change environment.

they decide that to do by themselves. Agents performs a lot of work for us every day.
A lot of agents help us to do work more easy. Some things are even impossible to
do without agents helps (for example, we cannot drive moon vehicle directly from the
earth, because signal goes too slow, and moon vehicle should decide by itself how to
drive). Therefore, agents are very important in our life and it is the reason why, we can
see a great interest on agent research in recent years.
Any agent lives in some environment. Agent should adapt in the changeable en-

vironment if it tries to achieve its goals. Agent gets information about current envi-
ronment state via its sensors (physical sensors or program drivers). Agent may change
environment via its actions. According to collected information agent decides what ac-
tion to perform. It is simple agets behaviour schema (see Figure 1.1). Agent may not
know about all existing agents in the environment, but environment may be changed by
any agent.
Agent can be defined as entity (machine, software system…), which can change en-

vironment via its actions, can be influenced by the environment, and has the following
properties ([52]):

• autonomy,

• proactiveness,

• reactivity, and

• social ability.

The autonomy is agents possibility to operate independently. The proactiveness
means that agent acts in a way, which helps him to achieve its goals. The reactivity is
agents possibility to change its behaviour if environment changes. The social ability is
agents possibility to interact with other self-interested agents to achieve its own goals.
The autonomy property is the most important property of the agent. If we want to

construct an agent we have to create some decision making mechanism. It is the core
part of the artificial intelligence. This problem may be solved in several different ways.

14

The simplest way is to use decision trees (or decision tables) ([4]). In such a case,
for every possible environment state we define the most suitable action to perform.
If agent is very simple, or agent lives in a very restricted environment, then such a
solution is suitable, because agent may perform very fast. If environment is complicated
decision trees are useless, because sometimes it is even impossible to define all possible
environment states. For more complicated environment artificial neural networks (for
example [51, 54]) or some mathematical logic may be used.
Artificial neural networks may help agent to decide that to do in very different en-

vironments. You can use artificial neural networks for different environments in very
similar way. This advantage is one of the main reasons why artificial neural networks
are popular. Instead of this, artificial neural network also has disadvantages. Since
artificial neural network always does mistakes, agents based on neural networks will
perform mistakes too. Mistake probability may be higher or lower. Unfortunately, if
environment is complicated, mistake probability is rather high. Instead of this, if mis-
take probability level is acceptable for constructed agent, then artificial neural networks
may be a good solution.
Mathematical logic is treated as rational way of thinking, so, it is not a surprise to

use logic for agent implementation. If some mistakes are unallowable (autopilot cannot
decide to crash an aircraft even by mistake), then mathematical logic may help. If we
implement agent based on the mathematical logic we can assure that some conditions
may never be broken. This property of the agent based on the mathematical logic are
very important. If we construct an agent based on mathematical logic we do not tell
agent what to do, we just tell the rules, those must be followed during agents life. This
is why we can assure that special conditions are never broken by an agent.
Agents may be implemented using different kind of the decision making mech-

anism. Of course, sometimes these mechanisms may be used together to get better
results.
There are known a lot of different logics those may be the basis for agent decision

making mechanism. These logics differ in application scope, language expressivity,
semantics. Logic of knowledge, KARO logic, BDI logic and other are researched
and used in different areas.
For example, KARO logic may be described with knowledge, belief, action ([α]

’after performance of α it holds that’), ability and desire modalities ([35, 36]). Logic
of knowledge (also known as epistemic logic) uses modal logic S5 to represent agents
knowledge and logic of belief (also known as doxastic logic) uses modal logic KD45

to represent agents beliefs ([26, 53]).
There are lots of reasonable combinations of these modal logics combined with

actions, temporal, dynamic logics together with special features (for example [49, 15,
33, 47]). BDI logic itself is some fragment of the LORA logic presented in [52].

15

BDI logic distinguish from others, because its language is very expressive and it is
applicable for very different areas. This is the reason we research agents based on the
BDI logics.
Further we will talk only about agents based on the mathematical logic, because

this work concentrates on the agents based on the BDI logic.

1.2 BDI Agents

In this section, BDI model for agent implementation is presented. In BDI model,
agent is expressed via agents beliefs, desires and intentions. This approach is applica-
ble for different scopes. The main BDI agents implementation schema is discussed.
Formal BDI logic usage for BDI agents decision making mechanism is shown.
We concentrate on the agents based on theBDI logic, or simplyBDI agents. BDI

logics are the most popular logics used for agent implementation ([52]), because of their
expressive power and suitability for many applications. BDI logic was introduced by
A.S. Rao and M. Georgeff ([44]). There are known a lot of agents implementations
based on the BDI logics ([31, 44, 16, 20, 43, 50, 14]). There are even special pro-
gramming languages created ([13, 46, 17]) for implementing and modeling multi-agent
systems, and they are based on formal BDI logic.
In BDI model, every agent can be defined by the set of its actions and plans, and

the sets of its beliefs, desires and intentions. Agents belief corresponds the information
agent has about the world. Every agent has some vision of the current state of the
environment it lives in. There are some facts that are thought to be true by an agent.
These facts are agents beliefs. Some agents beliefs may be very stable (for example,
moon vehicle beliefs that it cannot go over a rock, and this belief does not change
during its life), some beliefs may change frequently (for example moon vehicle may
belief that there is no rock in front of him, but this belief may change every time it gets
new information from its sensors).
Desire represents state of the world agent wants to be true in an ideal world. Agents

desires are its goals. Normally agents desires are set during agents construction, be-
cause agent desires describes purpose of the agent. If agents purpose is to clean a
room, then it has a desire, that there is no refuse in the room. It is allowed that agent
has desires those contradict to each other. For a human it is normal to desire contracting
things. For example, human may desire to go to the cinema and to the basketball, but
these events may state at the same time. The same logic is also applied for agents.
Finally, intention is such a state of the environment currently agent tries to achieve.

Intentions describes that agent plans to do. If agent has an intention, it tries to achieve
this intention. Agent does not drop its intention without a good reason. Typically

16

General control loop for agent implementation
1. B := B0; /* B0 are initial beliefs */
2. I := I0; /* I0 are initial intentions */
3. while true do
4. get next percept p;
5. B := brf(B, p);
6. D := options(B, I);
7. I := filter(B, D, I);
8. π := plan(B, I);
9. execute(π);
10. end while

Figure 1.2: General BDI agent implementation scheme.
Here, p denotes all information obtained from the environment, B, D, I - sets of all agents
beliefs, desires, intentions respectively, and π denotes some plan chosen by an agent.

agent tries to achieve its intention till it beliefs that intention is already achieved, or it
beliefs, that intention cannot be achieved in current situation. Of course, current agents
intentions cannot contradict to each over, otherwise, agent will act irrationally.

BDI agent, like all agents, gets information from the environment, chooses action
and performs it. Action selection process is described using belief, desire and intention
concepts. BDI model was introduced by A.S. Rao and M. Georgeff ([44]). In BDI
model, agents beliefs, desires and intentions are defined as BDI logic formulas. Most
researches agree that it is reasonable to treat operator belief as modality of modal logic
KD45 and agents desire and intention to treat as modalities of modal logicKD ([52]).
So, we have BDI logic used to describe and implement rational agents. Agent must
take into account its beliefs, desires and intentions during action selection. Action
selection is the most important part of the agent implementation, since it ensures the
main property - autonomy. In [52], Wooldridge suggest to separate action selection into
3 functions (options, filter, plan) as it is shown in Figure 1.2.
According to general scheme (see Figure 1.2), agent repeats defined operations step

by step. Agent updates its beliefs about the world and current state according to the
information obtained from its sensors. After, agent decides what it wants to achieve
(chooses desires). Further, agent has to select an intention used to achieve chosen goals
(desires). When intentions are chosen, agent has to decide how such an intention can
be achieved (chooses a plan). So, function brf is used to renew current agents beliefs
according to information obtained from the environment via agents sensors. In function
options, agent chooses current desires according to new beliefs and last intentions. In
function filter, agent selects the best intention according to new beliefs, chosen desires
and last intentions. Finally, agent must select the most suitable (in current situation)
plan to execute (function plan). Every plan consists of the ordered list of actions - π =

α1, α2, . . . , αk (αi is an action). In other words, plan is some simple instructions for

17

an agent. In function execute, agent just performs all actions described in the selected
plan π.
In [52], there are presented some more complex schemes for agent implementation.

These agent implementation schemas take into account some commitment strategies,
those helps agent to drop a plan during execution, if plan became irrational. However,
all these schemas bases on functions brf, options, filter, plan.
There are works concentrating on formal description of agent (not only BDI

agents) for some scopes using formal logic ([20, 14]). In [44, 46] there was mentioned
existence of the gap between BDI agent implementations and the formal logics. Solu-
tion for this problem may be found in [53, 44, 32, 6], where main ideas of the formal
logic usage for agents action selection are proposed. In [16], there is given an exam-
ple of agent implementation which uses formal logic for action selection. There are
even organized contests on agent implementations (see the first contest on Multi-Agent
systems organized during CLIMA-VI1 in [18]).
If we deal with BDI agents, sets B, D, I are sets of the BDI logic formulas.

However, there is no evident places in the general BDI agent implementation scheme,
where formal logic method is applied. In general scheme only function’s implementa-
tions are not defined. Wooldridge left function’s implementation issues opened. One
can implement them in the way he wants. Since functions deal with sets of BDI logic
formulas, it is wise to use some formal logic methods to implement these functions. If
we implement all functions without any logic method usage at all, we will construct an
agent which is not an agent really based on the BDI logic. In such a case, logic is used
only as notation and nothing more (and BDI logic formulas usage has no advantages).
Formal logic methods may be applied in functions options, filter, plan implementa-

tion. There are different approaches how formal logic methods can be applied and in
which functions implementation formal logic methods are suitable. In works [53, 44],
there are used invocation conditions for actions. If invocation condition is satisfied
then action must be chosen for execution. Similar approach is used in [32] where ‘if-
then’ statements are used. In [16], there is shown how formal logic can be applied
for checking such an invocation conditions. Action choosing is performed in function
plan. Result of this function is a plan (ordered list of actions) for execution. Main idea
of this function implementation is that plan must be executed only if some invocation
condition is satisfied. In such an implementation we have finite list of possible plans
and every plan is associated with some condition formula. All these pairs (formula
and plan) are ordered in some priority queue. Similar approach is used in [6], where
suggested to use formal logic methods for implementing functions filter and plan.

1CLIMA-VI - VI International Workshop on Computational Logic in Multi-agent Systems.

18

Chapter 2

Sequent Calculus and Loop-check

In this chapter, we introduce main definitions used in other chapters. Used language
semantics and main issues related to the sequent calculus are presented. Therefore, in
this thesis, efficient loop-check for sequent calculus is researched. In the last section,
loop-check technique and its appliance are discussed.

2.1 Language

In this section, we define formulas, used modal operators and their variations. We de-
fine subformula, extended formula, formula length and other used terms and notations.

Definition 2.1.1 Suppose that P is a set of propositional symbols.

• if p ∈ P , then p is formula.

• if φ, ψ are formulas, then
¬φ, φ ∨ ψ, φ&ψ,
2φ, Bφ,Dφ, Iφ,
◦φ, A(φ ∪ ψ), E(φ ∪ ψ),
2∗φ, B∗φ

are also formulas.

• if φ, ψ are formulas and i is agent’s index, then
Biφ,Diφ, Iiφ, B∗

iφ

are also formulas.

• if φ, ψ are formulas and α, β are special indexes, then
Aα

β(φ ∪ ψ), Eα
β (φ ∪ ψ)

are also formulas.

19

Formulas φ ⊃ ψ, φ⇔ ψ, are abbreviations of
¬φ ∨ ψ, (φ ⊃ ψ) ∧ (ψ ⊃ φ), respectively.

Definition 2.1.2 If F is formula of the shape
2φ, Bφ,Dφ, Iφ,
◦φ, A(φ ∪ ψ), E(φ ∪ ψ),
2∗φ, B∗φ,
Biφ,Diφ, Iiφ, B∗

iφ,
Aα

β(φ ∪ ψ), Eα
β (φ ∪ ψ)

then F is modalized formula.

Definition 2.1.3 If F is formula of the shape
2∗φ, B∗φ, B∗

iφ

then F is marked modalized formula.

For the transparency, we use formulas notation as follows (through all the disserta-
tion):

• with small Greek letter (φ, ψ, γ, κ, φ1, φ2, . . . , ψ1, ψ2, . . .) we denote general for-
mula;

• with Θ we denote one (possibly empty) formula;

• with Σ,Π we denote finite (may be empty) sets of propositional variables
(usually, Σ ∩ Π = ∅).

• with capital Greek letter (Γ,Γ1,Γ2, . . . ,∆,∆1,∆2, . . .) we denote finite (may be
empty) set of the formulas.

• with modal operator followed by capital Greek letter (ΩΓ, where
Ω ∈ {◦,2,B,B∗,D, I,B1,B2, . . . ,B

∗
1,B

∗
2, . . . ,D1,D2, . . . , I1, I2, . . .}) we de-

note finite (may be empty) set of the formulas of the shape Ωφ.

Definition 2.1.4 If F is formula of the shape
A(φ ∪ ψ), E(φ ∪ ψ), Aα

β(φ ∪ ψ), Eα
β (φ ∪ ψ)

then F is AE formula.

Definition 2.1.5 If F is formula of the shape
A(φ ∪ ψ), ◦A(φ ∪ ψ), E(φ ∪ ψ), ¬E(φ ∪ ψ), ◦¬E(φ ∪ ψ), ¬ ◦ ¬E(φ ∪ ψ),
Aα

β(φ ∪ ψ), ◦Aα
β(φ ∪ ψ), Eα

β (φ ∪ ψ), ¬Eα
β (φ ∪ ψ), ◦¬Eα

β (φ ∪ ψ), ¬ ◦ ¬Eα
β (φ ∪ ψ)

then F is extended AE formula.

Definition 2.1.6 We define formulas F extended set Ext(F) as follows:

20

• Ext(A(φ ∪ ψ)) = Ext(◦A(φ ∪ ψ)) = {A(φ ∪ ψ), ◦A(φ ∪ ψ)},

• Ext(E(φ ∪ ψ)) = Ext(¬E(φ ∪ ψ)) = Ext(◦¬E(φ ∪ ψ)) =

Ext(¬ ◦ ¬E(φ∪ ψ)) = {E(φ ∪ ψ),¬E(φ ∪ ψ), ◦¬E(φ ∪ ψ),¬ ◦ ¬E(φ ∪ ψ)},

• Ext(Aα
β(φ ∪ ψ)) = Ext(◦Aα

β(φ ∪ ψ)) =
{
Aα

β(φ ∪ ψ), ◦Aα
β(φ ∪ ψ)

}
,

• Ext(Eα
β (φ ∪ ψ)) = Ext(¬Eα

β (φ ∪ ψ)) =

Ext(◦¬Eα
β (φ ∪ ψ)) = Ext(¬ ◦ ¬Eα

β (φ ∪ ψ)) ={
Eα

β (φ ∪ ψ),¬Eα
β (φ ∪ ψ), ◦¬Eα

β (φ ∪ ψ),¬ ◦ ¬Eα
β (φ ∪ ψ)

}
,

• otherwise Ext(F) = ∅.

Definition 2.1.7 If F is formula of the shape
φ, ¬φ, φ ∨ ψ, φ&ψ,
2φ, Bφ,Dφ, Iφ,
◦φ, A(φ ∪ ψ), E(φ ∪ ψ),
2∗φ, B∗φ,
Biφ,Diφ, Iiφ, B∗

iφ,
Aα

β(φ ∪ ψ), Eα
β (φ ∪ ψ)

then φ and ψ are subformulas of F .
If φ ∈ Ext(F), then φ is also subformula of F .
If φ is subformula of ψ, and ψ is subformula of F , then φ is subformula of F .
If φ is subformula of F we write φ ⊆sf F .

Definition 2.1.8 We define length function len for formulas as follows:

• len(φ) = 1, if φ is propositional variable,

• len(φ ∨ ψ) = len(φ&ψ) = len(φ) + len(ψ) + 1,

• len(¬φ) = len(φ) + 1,
len(2φ) = len(Bφ) = len(Dφ) = len(Iφ) = len(φ) + 1,
len(◦φ) = len(φ) + 1,
len(2∗φ) = len(B∗φ) = len(φ) + 1,
len(Biφ) = len(Diφ) = len(Iiφ) = len(B∗

iφ) = len(φ) + 1,

• len(A(φ ∪ ψ)) = len(E(φ ∪ ψ)) = len(Aα
β(φ ∪ ψ)) = len(Eα

β (φ ∪ ψ)) =

len(φ) + len(ψ) + 1.

Definition 2.1.9 Formula φ is proper subformula of ψ,
if φ ⊆sf ψ and len(φ) < len(ψ).
If φ is proper subformula of ψ we write φ ⊂sf ψ.

21

Definition 2.1.10 We define formulas modality depth function as follows:

• depth(φ) = 0, if φ is propositional variable,

• depth(φ ∨ ψ) = depth(φ&ψ) = max(depth(φ), depth(ψ)),

• depth(¬φ) = depth(φ),

• depth(2φ) = depth(Bφ) = depth(Dφ) = depth(Iφ) = depth(φ) + 1,
depth(2∗φ) = depth(B∗φ) = depth(φ) + 1,
depth(Biφ) = depth(Diφ) = depth(Iiφ) = depth(B∗

iφ) = depth(φ) + 1,

• depth(◦φ) = depth(φ) + 1, if φ is not an extended AE formula,
depth(◦φ) = depth(φ), if φ is an extended AE formula,

• depth(A(φ ∪ ψ)) = depth(E(φ ∪ ψ)) = depth(Aα
β(φ ∪ ψ)) =

depth(Eα
β (φ ∪ ψ)) = max(depth(φ), depth(ψ)) + 1.

We have to mention, that formula A(φ ∪ ψ) and ◦A(φ ∪ ψ) has the same modality
depth. It is done so, since every extendedAE formula F ′ ∈ Ext(F)must have the same
modality depth. In other words, until operator combined with ◦ (if together compose
extended AE formula) is treated as one modality.

2.2 Sequent Calculus

In this section, sequent and main sequent calculus rules are defined. Sequent calculus
and-rules and or-rules are described. Inference tree, derivation tree and other defini-
tions related to the sequent calculus are presented.

Definition 2.2.1 If F1, F2, . . . , Fn, G1, G2, . . . Gm are formulas and n+m > 0,
then F1, F2, . . . , Fn → G1, G2, . . . Gm is a sequent.

Definition 2.2.2 We define length function len for the sequents as follows:
If S = F1, F2, . . . , Fn → G1, G2, . . . Gm is a sequent then
len(S) = len(F1) + len(F2) + . . .+ len(Fn) + len(G1) + len(G2) + . . .+ len(Gm).

So, length of the sequent is the sum of sequent formulas lengths.

Definition 2.2.3 We define modality depth function depth for the sequents as follows:
If S = F1, F2, . . . , Fn → G1, G2, . . . Gm is a sequent then
depth(S) = max(depth(F1), . . . , depth(Fn), depth(G1), . . . , depth(Gm)).

So, depth of the sequent is the maximum of sequent formulas depths.

22

Definition 2.2.4 Sequent calculus logical rules are:

φ,Γ→ ∆ ψ,Γ→ ∆
φ ∨ ψ,Γ→ ∆

(∨L)
φ, ψ,Γ→ ∆
φ&ψ,Γ→ ∆

(&L)
Γ→ φ,∆
¬φ,Γ→ ∆

(¬L)

Γ→ φ,∆ Γ→ ψ,∆
Γ→ φ&ψ,∆

(&R)
Γ→ φ, ψ,∆

Γ→ φ ∨ ψ,∆ (∨R)
φ,Γ→ ∆

Γ→ ¬φ,∆ (¬R)

Definition 2.2.5 Sequent calculus rule (Weak) is:

Γ→ ∆
Γ,Γ′ → ∆,∆′ (Weak)

Definition 2.2.6 Tree is a sequent S inference tree in the sequent calculus C (or just
sequent S tree in the calculus C) if the following conditions are satisfied:

• every tree node contain some sequent,

• in the root node there is a sequent S,

• if node N contains sequent S and it has children N1, N2, . . . , Nk those contain
sequents S1, S2, . . . , Sk respectively, then sequent S is a conclusion and sequents
S1, S2, . . . , Sk are all premises of some sequent calculus C rule application.

Definition 2.2.7 Sequent S inference tree in the sequent calculusC is sequent S deriva-
tion tree in the sequent calculus C if every tree leaf contains some axiom of the sequent
calculus C.

Definition 2.2.8 We define sequent S inference tree T height function height(T) to be
the function which calculates the maximum count of the sequents placed on one tree
branch.

Example 2.2.1 Suppose we have an initial sequent
S = φ1 ∨ (φ2&¬φ3)→ (¬φ2&¬φ3) ∨ φ1,
then sequent S inference tree may be the following:

⊕
φ1 → ¬φ2&¬φ3, φ1

φ1 → (¬φ2&¬φ3) ∨ φ1
(∨R)

φ2 → φ3,¬φ2&¬φ3, φ1

φ2,¬φ3 → ¬φ2&¬φ3, φ1
(¬L)

φ2&¬φ3 → ¬φ2&¬φ3, φ1
(&L)

φ2&¬φ3 → (¬φ2&¬φ3) ∨ φ1
(∨R)

φ1 ∨ (φ2&¬φ3)→ (¬φ2&¬φ3) ∨ φ1
(∨L)

This inference tree has height 5. Inference tree is an intermediate tree obtained
during sequent derivation. This tree may not end with axioms. Therefore, if we have
inference tree, in general, we cannot say whether an initial sequent S is derivable or not.
Only if every sequent calculus rule is invertable and some inference tree leaf contains
final non axiom sequent, we know that an initial sequent S is non derivable.

23

Example 2.2.2 Suppose we have an initial sequent
S = φ1 ∨ (φ2&¬φ3)→ (φ2&¬φ3) ∨ φ1,
then sequent S derivation tree may be the following:

⊕
φ1 → ¬φ2&¬φ3, φ1

φ1 → (¬φ2&¬φ3) ∨ φ1
(∨R)

⊕
φ2 → φ3, φ2, φ1

⊕
φ2, φ3 → φ3, φ1

φ2 → φ3,¬φ3, φ1
(¬R)

φ2 → φ3, φ2&¬φ3, φ1
(&R)

φ2,¬φ3 → φ2&¬φ3, φ1
(¬L)

φ2,¬φ3 → (φ2&¬φ3) ∨ φ1
(∨R)

φ2&¬φ3 → (φ2&¬φ3) ∨ φ1
(&L)

φ1 ∨ (φ2&¬φ3)→ (φ2&¬φ3) ∨ φ1
(∨L)

This derivations tree has height 7. It is a derivation tree, because it is inference tree
and every leaf contains an axiom. If we found a derivation, we know that an initial
sequent S is derivable in the given sequent calculus.

Every sequent calculus rule (and-rule) satisfies: if all premises of the rule are deriv-
able, then conclusion of the rule is derivable.

Definition 2.2.9 Sequent calculus rule is invertable if the following condition is satis-
fied: if conclusion of the rule is derivable, then all premises of the rule are derivable.

Definition 2.2.10 Sequent calculus rule is semi-invertable if the following condition is
satisfied: if conclusion of the rule is derivable, then at least one of the premises of the
rule is derivable.

It is obviously, that every invertable rule is also semi-invertable rule. We can
see that all logical rules are invertable. Rule (Weak) is neither invertable nor semi-
invertable.

Definition 2.2.11 If sequents S1, S2, . . . are premises of some calculus rule R appli-
cation and S is a conclusion, then we say that sequents S1, S2, . . . are children of the
sequent S (S will be the father of S1, S2, . . .) in the tree.

Definition 2.2.12 We define sequent S as a leaf sequent in the inference tree (or simply
a leaf) if sequent S do not have children.

Definition 2.2.13 We say that sequent S is an ancestor of the sequent S ′ in the inference
tree, if there exists sequence of the sequents S1 = S, S2, S3, S4 . . . , Sn−1, Sn = S ′ that
for every i = 1, 2, . . . (n− 1), sequent Si is a conclusion and sequent Si+1 is a premise
of some rule application.

24

Definition 2.2.14 We say, that sequent S is a final in the sequent calculus C if it is not
an axiom of the sequent calculus C and there is no sequent calculus C rule, which can
be applied for the sequent S.

Since any rule cannot be applied for some final sequent, final sequent is always
placed in the leaf of the inference tree. Since it is not an axiom, final sequent is non
derivable.

Definition 2.2.15 We say, that we have a weak loop S ; S ′ in the sequent tree if the
following conditions are satisfied:

• sequent S is an ancestor of the sequent S ′,

• S ′ may be obtained from S by the rule (Weak) application: S
S ′ (Weak).

If S ; S ′ is a weak loop in the sequent tree, when S ′ is called weak loop-ending
sequent, and S is called weak loop-starting sequent.

Definition 2.2.16 We say, that we have a loop S ; S ′ in the sequent tree if the follow-
ing conditions are satisfied:

• sequent S is an ancestor of the sequent S ′,

• sequents S and S ′ contains the same formulas on the right sides of the→, and on
the left sides of the→.

If S ; S ′ is a loop in the sequent tree, when S ′ is called loop-ending sequent, and
S is called loop-starting sequent.

It is obviously, that every loop S ; S ′ is also a weak loop S ; S ′.

Definition 2.2.17 Sequent calculus rule is called and-rule if rule conclusion is derivable
if all rule premises are derivable.

Definition 2.2.18 Sequent calculus rule is called or-rule if rule conclusion is derivable
if at least one of the rule premises is derivable.

Logical rules, ruleWeak and all common sequent calculus rules are and-rules. In
this thesis, some calculi uses and-rules together with or-rules. As an example rule (2W)

(see Definition 3.2.5.) is or-rule.
In the notation, to separate and-rule premises we use empty space:

S1 S2

S ′ (and− rule)

In the notation, to separate or-rule premises we use special symbol ||:

S1 || S2

S ′ (or − rule)

25

Definition 2.2.19 In the case when only and-rules are used in the sequent calculus, we
say that sequent inference tree is a tree with and-branches.
In the case when or-rules are used in the sequent calculus, we say that sequent

inference tree is a tree with or-branches.

When we have or-branches beside and-branches, the sequent can be derivable even
if not all tree leaves are derivable (i.e. axioms). This is the reason why, we have to
specify derivation tree definition for the sequent calculus having or-rules.

Definition 2.2.20 Sequent S inference tree T in the sequent calculus C (having or-
rules) is sequent S derivation tree in the sequent calculus C, if we can transform tree T
into the tree T ′, that the following conditions are satisfied:

• tree T ′ have the same sequent S in the root;

• if we have some or-rule R application in the tree T , when only one premise of
the rule R application is left in the tree T ′ (all other premises are deleted with all
their subtrees);

• if we have some and-rule R application in the tree T , when it is left in the tree T ′

unchanged unless whole rule application was deleted according to previous item.

• every tree T ′ leaf contains some axiom of the sequent calculus C.

For both cases (calculus without or-rules and calculus with or-rules), if we con-
structed sequent S derivation tree in the sequent calculus C, we show that sequent S is
derivable in the sequent calculus C.

Example 2.2.3 Suppose we have an initial sequent S in KD45 logic:
S = 2(φ1 ∨2φ2)→ 2φ1 ∨2φ2.
In this thesis, we introduce loop-check free sequent calculus KD45lcf (see Defini-

tion 3.2.9) which uses or-rule (2LCF) (see Definition 3.2.8).
Sequent S derivation tree T in the sequent calculusKD45lcf may be the following:

⊕
φ1,2

∗(φ1 ∨2φ2)→ φ1,2
∗φ1,2

∗φ2

⊕
2φ2,2

∗(φ1 ∨2φ2)→ φ1,2
∗φ1,2

∗φ2

↑
↑

φ1 ∨2φ2,2
∗(φ1 ∨2φ2)→ φ1,2

∗φ1,2
∗φ2

(∨L)

↑
↑
↑
↑
↑
S1 ||

(final)
φ1,2

∗(φ1 ∨2φ2)→ φ2,2
∗φ1,2

∗φ2

⊕
2φ2,2

∗(φ1 ∨2φ2)→ φ2,2
∗φ1,2

∗φ2

↑
↑
↑

φ1 ∨2φ2,2
∗(φ1 ∨2φ2)→ φ2,2

∗φ1,2
∗φ2

(∨L)

S2

2(φ1 ∨2φ2)→ 2φ1,2φ2
(2LCF)

2(φ1 ∨2φ2)→ 2φ1 ∨2φ2
(∨R)

26

Rules (∨R), (∨L) are and-rules, rule (2LCF) is or-rule. In this case, we have 2
or-branches: S1 and S2. S1 is derivable, because all its leaves ends with axioms. S2 is
treated as non derivable, because one of the leafs contains final sequent, which is not
an axiom.
Inference tree T is a derivation tree in the sequent calculus KD45lcf , because we

can get a subtree T ′, which satisfies all the conditions described in the Definition 2.2.20.
Subtree T ′ is:

⊕
φ1,2

∗(φ1 ∨2φ2)→ φ1,2
∗φ1,2

∗φ2

⊕
2φ2,2

∗(φ1 ∨2φ2)→ φ1,2
∗φ1,2

∗φ2

φ1 ∨2φ2,2
∗(φ1 ∨2φ2)→ φ1,2

∗φ1,2
∗φ2

(∨L)

2(φ1 ∨2φ2)→ 2φ1,2φ2
(2LCF)

2(φ1 ∨2φ2)→ 2φ1 ∨2φ2
(∨R)

Subtree T ′ is obtained from the tree T by removing or-branch S2. Subtree T ′ con-
tains only axioms in the leaves. As it is argued in the Section 2.4, or-rules is used
instead of the backtracking and obtained tree T ′ is a derivation tree if we use backtrack-
ing instead of the or-rules.
It is worth to mention, that or-branch S2 derivation is optional. Suppose, that tree

T1 is obtained from the tree T by removing all the sequents above the sequent
S2 = 2(φ1 ∨2φ2)→ 2φ1,2φ2 (sequent S2 derivation not finished).
Tree T1 is still an inference tree in the sequent calculus KD45lcf , because there is

no requirements to derive all branches in the Definition 2.2.6. Tree T1 is also derivation
tree in the sequent calculus KD45lcf , since it satisfies all the conditions placed in the
Definition 2.2.20 (the same subtree T ′ satisfies definition).

When sequent calculus contains only and-rules, sequent is derivable if all leaves
contain some axioms of the sequent calculus. If sequent contains and-rules together
with or-rules are used, then every inference tree is some and-or tree. We may treat
every leaf containing an axiom as derivable and all other inference tree leaves as non
derivable. If all premises of some and-rule application are derivable, then rule conclu-
sion must be treated as derivable; otherwise, rule conclusion must be treated as non
derivable. If at least one premise of some or-rule application is derivable, then rule
conclusion must be treated as derivable; otherwise, rule conclusion must be treated as
non derivable. If we proceed the same arguments for every rule application till we reach
the root, we determine whether an initial sequent is derivable or not.

2.3 Semantics

In this section, we present semantics of used modal operators and researched logic. For
this purpose, Kripke ’possible worlds’ semantics ([24]) is used. In this thesis, several

27

logics are researched, but all of them are some fragments of the multiagent BDI logic.
Therefore, semantics only for multiagent BDI logic is presented.
In this thesis, we concentrate on the multiagent BDI logic which is based on 3

modalities: Belief, Desire and Intend, and temporal logic. Belief is modality of the
modal logicKD45, Desire and Intend are modalities of the modal logicKD ([52]). For
Belief modality we use modal operatorB (orBi if we have multiple agents), for Desire
modality we use modal operator D (or Di) and for Intend modality we use modal
operator I (or Ii). In some calculus, for Belief modality we will use marked modal
operator B∗ (or B∗

i) besides ordinary B (or Bi). Modal operator B∗ , B∗
i semantics

are the same. We write just modality 2 if its type (Belief, Desire, Intend) is known
from the current context.
We research multi-agent BDI logic which has n agents. Agents count n is not

known in advance but finite number.
We use branching-time temporal logic with until operator. So, modality ◦ is used

to represent ’in every next time’, modality A is used to represent ’in all futures until’,
modality E is used to represent ’in some future until’. In some calculus, we will use
temporal operators with indexes (Aα

β , E
α
β), those semantics do not differ from A, E

respectively.
We use Kripke ’possible worlds’ semantics to describe multi-agent BDI logic. We

choose a set of possible worlds W . For every world w ∈ W we define a set of time
states Stw and binary relationRw which represents ’next time’ relation. For every agent
i we define 3 accessability relations Bi,Di, Ii for Belief, Desire and Intend modalities.
Finally, for every world w ∈ W and time state s ∈ Stw we define a true-value assign-
ment L(w, s) ⊆ P which describes ’what is valid in a given world state’.
Belief modality is KD45 logic modality, Desire and Intend modalities are KD

logic modalities, therefore we have the following formal definitions:

Definition 2.3.1 We define multi-agent BDI logic structure as a tuple
M =< W, {Stw : w ∈ W} , {Rw : w ∈ W} ,B1, . . . ,Bn,D1, . . . ,Dn, I1, . . . , In, L >,
where: W 6= ∅ is possible world set,
Stw 6= ∅ is set of time states in the world w ∈ W ,
Rw ⊂ Stw × Stw is serial binary relation for time in the world w ∈ W ,
L is true-value assignment L(w, s) ⊆ P (w ⊂ W , s ∈ Stw),
Bi,Di, Ii ⊂ W ×

⋃
w∈W Stw×W are accessability ternary relations for Belief, Desire,

Intend modalities those satisfies the following conditions:

• (B-D) for each world w ∈ W , there exists w′ ∈ W that (w, s, w′) ∈ Bi;

• (D-D) for each world w ∈ W , there exists w′ ∈ W that (w, s, w′) ∈ Di;

• (I-D) for each world w ∈ W , there exists w′ ∈ W that (w, s, w′) ∈ Ii;

28

• (B-4) for each worlds w,w′, w′′ ∈ W , if (w, s, w′) ∈ Bi and (w′, s, w′′) ∈ Bi,
then (w, s, w′′) ∈ Bi;

• (B-5) for each worlds w,w′, w′′ ∈ W , if (w′, s, w) ∈ Bi and (w′, s, w′′) ∈ Bi,
then (w, s, w′′) ∈ Bi.

Definition 2.3.2 Infinite sequence of time states s0, s1, s2, . . . is called (state) path on
world w ∈ W if si ∈ Stw and (si, si+1) ∈ Rw for every i = 0, 1, 2,

Definition 2.3.3 Formula φ is true in a BDI-structure M , world w ∈ W and state
s ∈ Stw ((M,w, s) |= φ) if the following conditions are satisfied:

• if φ is primitive preposition (φ ∈ P), then (M,w, s) |= φ iff φ ∈ L(w, s).

• (M,w, s) |= ¬φ iff (M,w, s) 6|= φ.

• (M,w, s) |= φ ∨ ψ iff (M,w, s) |= φ or (M,w, s) |= ψ.

• (M,w, s) |= φ&ψ iff (M,w, s) |= φ and (M,w, s) |= ψ.

• (M,w, s) |= Bi(φ) iff for all w′, satisfying (w, s, w′) ∈ Bi, (M,w′, s) |= φ.

• (M,w, s) |= Di(φ) iff for all w′, satisfying (w, s, w′) ∈ Di, (M,w′, s) |= φ.

• (M,w, s) |= Ii(φ) iff for all w′, satisfying (w, s, w′) ∈ Ii, (M,w′, s) |= φ.

• (M,w, s) |= ◦(φ) iff for all state s′, satisfying (s, s′) ∈ Rw, (M,w, s′) |= φ.

• (M,w, s0) |= A(φ ∪ ψ) iff every path s0, s1, . . . , sk, . . . on world w satisfies:
there exists k, that (M,w, si) |= φ for every 0 ≤ i < k and (M,w, sk) |= ψ.

• (M,w, s0) |= E(φ∪ψ) iff at least one path s0, s1, . . . , sk, . . . on worldw satisfies:
there exists k, that (M,w, si) |= φ for every 0 ≤ i < k and (M,w, sk) |= ψ.

Definition 2.3.4 Formula φ is valid in BDI logic if (M,w, s) |= φ for every BDI-
structureM , every world w ∈ W and every state s ∈ Stw.

All other logics, presented in the thesis, are some fragments of the multi-agentBDI
logic. So, we do not define separate semantics for them.

Example 2.3.1 We present some simple examples how some agents imagination about
the environment may be expressed using BDI logic.
Suppose that φ - is true if the lamp is lighting,

ψ1 - is true if the switch 1 is on,
ψ2 - is true if the switch 2 is on.

29

Then formula: B1(φ&ψ1)&D1(¬φ) means, that "agent 1 beliefs that the lamp is
lighting and the switch 1 is on, and agent 1 desires that the lamp do not light".
Formula: B1(¬ψ1 → ¬φ) means, that "agent 1 beliefs, that if the switch 1 is off,

then the lamp do not light".
Formula B2(¬ψ1&¬ψ2)&D2(ψ1 ∨ ψ2) means, that "agent 2 beliefs, that both

switches are off, and agent 2 desires, that the switch 1 is on or the switch 2 is on".
Formula B1(B2ψ2 → ¬I2ψ1) means, that "agent 1 beliefs, that if agent 2 beliefs,

that the switch 2 is on, then agent 2 do not intend to turn the switch 1 on".

2.4 Loop-check and Backtracking

In this section, loop-check technique and its necessity for decision procedure are dis-
cussed. There are some main properties of the sequent calculus, those enables us to
construct efficient decision procedure based on the given sequent calculus. These prop-
erties are also explained in this section. Sequents with histories and history variations
are presented. Backtracking and its elimination is also described.
The objective of this thesis is an efficient sequent calculus for multiagent BDI

logic. Since we want to have applicable sequent calculus, we need to use at least sound,
complete and decidable calculus. There must exit decision procedure, which always
terminates and returns result.
Usual sequent calculi with cut rule are practically unusable in automated environ-

ment. Since simple cut rule enables us to choose any formula in the cut rule premise,
there may exist infinite count of the inference trees for the particular sequent, and,
therefore, decision procedure do not exist.
We say, that sequent calculus uses analytic cut, if there are only finite possible cut

rule applications for the particular sequent. So, we need to construct sequent calculus,
which is cut free, or only analytic cut is used. Examples of the cut elimination may be
found in [47, 23].
Cut free sequent calculus (or sequent calculus with an analytic cut) are not enough.

Every sequent calculus rule must be invertable or at least semi-invertable. If some
rules are neither invertable nor semi-invertable, then only special derivation tactics
may guarantee decidability. Therefore, we try to use only invertable or, if impossible,
semi-invertable rules.
Even if every sequent calculus rule is invertable or semi-invertable, we still may fail

with decision procedure construction. The following property of the sequent calculus
must also hold: every inference tree branch derivation must terminate. For some log-
ics (especially for modal logics), there are used sequent calculus rules those premises
contains more (or greater) formulas then conclusion. So, for such a logic, potentially

30

derivation may be infinite. Usually, sequent calculus rules satisfies superformula con-
dition - every formula in any sequent in the inference tree is subformula of the some
formula placed in the initial sequent. It means, that, in any inference tree branch, we
get one of the following cases:

• branch ends with some axiom of the used calculus, it means, that current branch
is derivable,

• branch ends with some final sequent (non axiom sequent for which none of the
sequent calculus rule may be applied), it means, that branch is non derivable,

• branch is infinite, and some sequents occur repeatedly on the branch.

For the last case, we may use loop-check technique to get finite decision procedure.
If some sequent occurs on the same branch for several times we say that we have a loop.
According to logic semantics, every loop may indicate that sequent is non derivable
(commonly case), derivable, or unknown.
Sequent calculus may use weak loops or simple loops (see Definition 2.2.15 and

Definition 2.2.16). In this thesis, all introduced sequent calculi uses simple loops, be-
cause they are based on the known sequent calculii, those use simple loops. Despite of
this, all introduced lemmas, those restrict loop-check, are also valid for weak loops.
Loop-check is a technique (introduced by M. Fitting in [27]), which allows termi-

nate derivation process if only some loop is detected. Loop-check may be used only if
any loop indicates derivable or non derivable sequent.
Loop-check enables us to get finite decision procedure, and, therefore, it is very

important and valuable. The main disadvantage of the loop-check is its inefficiency.
Sequent derivation using direct loop-check may be described with the following steps:

1. Find sequent calculus rule, which may be applied for the current sequent.

2. Apply found rule and add new sequent (or several sequents, if rule contains sev-
eral premises) into the inference tree.

3. If it is an axiom, or final sequent - terminate.

4. Otherwise perform loop-check:
test if the sequent placed 1 level bellow is the same as current;
if not, test if the sequent placed 2 level bellow is the same as current;
if not, test if the sequent placed 3 level bellow is the same as current;
and so on till we found a loop, or reach the initial sequent (inference tree root).
If we found a loop - terminate. If not, proceed.

5. Take the first leaf of the inference tree and proceed the same.

31

When loop-check is unused, one step in the inference tree construction is just one
rule application. When loop-check is used, one step in the inference tree construction is
not only one rule application, but also testing all ancestor sequents. So, it is obviously,
that most of the time is used for the loop-check, but not for the rule applications.
This is the reason we need loop-check free sequent calculus, or calculus with some

efficient loop-check. One of the possibilities to construct sequent calculi with an effi-
cient loop-check is sequents with histories usage (as it is done for some modal logics in
[29]).
History is such an additional formulas stored in the sequent, those contain informa-

tion about the rules applied between the root sequent and the current sequent, or other
information about ancestor sequents. Using histories loop existence may be checked
locally without testing every ancestor sequent.
It depends on the researched logic, but sometimes histories enables us to construct

even loop-check free sequent calculi. If used, histories must use as less space as it is
possible and loop-check must be performed using admissible time.
For every sequent calculus, which uses loop-check to get decision procedure, we

may create a loop-check free sequent calculus, which uses histories. We only have to
store every ancestor sequent in the history, and we need to look for a loop in history,
instead of testing ancestor sequents. In such a way, formally, we always get a loop-check
free sequent calculus. Unfortunately, such an approach is bad, because we still have to
test the same count of the sequents and we need to store enormous amount of redundant
information.
Usually, then histories are used, not all, but only several formulas from the ancestor

sequents are added to the history. Histories store only formulas, those have real impact
to loop existence. Therefore, histories may vary for different logics. J.M. Howe (in [30])
compares 2 types of the used histories, those may be used for loop-check restriction.
As a special case of histories used, indexes for formulas, or only indexes for oper-

ators may be used. Such a indexes are also histories, because store information about
already applied rules. Usage of such an indexes may be found in [40, 41], where loop-
check free sequent calculi for the fragments of some logics are presented.
As a very special type of histories used, marked operators may be applied. Marked

operator is such an operator, which has the same semantics, but uses special notation
to separate it from non marked operator. Marked sequents may also be used as special
type of histories.
From the space complexity perspective, indexes are better then normal histories,

and marked operators are even better then indexes, because they use less space.
In this thesis, we also use histories to get efficient loop-check: we use marked

modal operators to get loop-check free sequent calculus forKD45 logic, we use marked
sequents and special indexes to get an efficient loop-check for branching time logic.

32

Another related aspect of the inference tree construction is backtracking. If during
sequent derivation we constructed final inference tree, which is not a derivation tree, we
need to backtrack (return to some rule application and choose another possible premise
for that rule, or even another rule). We need backtracking to ensure that derivation tree
do not exist (to prove that sequent is non derivable).
If every calculus rule is invertable, then backtracking is not needed at all. Unfortu-

nately, modal logics contains not only invertable rules, but also semi-invertable rules.
In the case then semi-invertable rules are used, backtracking is needed to get decidabil-
ity.
Backtracking may be eliminated if sequent calculus restricts only with invertable

rules. Another way to eliminate backtracking is or-rules used instead of the traditional
and-rules. Or-rules are semi-invertable rules, because, according definition, rule con-
clusion is derivable if at least one of the or-rule premises is derivable.
Backtracking and or-rules are very similar, but for some cases, one method may

have advantages. In this thesis, all new efficient sequent calculus uses or-rules and
eliminates backtracking. For the modal logic KD45, loop-check was eliminated be-
cause of the used or-rules.

33

Chapter 3

Loop-check Free Sequent Calculus for
KD45 Logic

In this chapter, modal logic KD45 is discussed. Modal logic KD45 is used to express
agents beliefs and is one of the main parts of the BDI logics. Known sequent calculus
for modal logic KD45 is presented. New weak free sequent calculus and new loop-
check free sequent calculus for KD45 logic are introduced. Proven complexity results
for loop-check free sequent calculus for KD45 logic are also presented.
In this chapter, KD45 logic is researched. Therefore, only logical operators (¬, ∨,

&) and modal operators2, 2∗ are used. Formulas, those contain other modal operators
are not well-formed formulas for KD45 logic.

3.1 Calculi for KD45 Logic

In this section, known calculi for KD45 logic are presented. Hilbert style axiomatiza-
tion and known sound and complete sequent calculus are given.
Modal logic KD45 is also known as weak − S5 logic, doxastic logic, or logic of

the individual belief. This logic uses one modality belief to express agents beliefs about
its world. Halpern and Moses (in [28]) have shown that modal logic KD45 is the best
to express agents beliefs. Different modal logics for agent systems uses KD45 logic
to express agents beliefs (for example BDI , KARO logics, logic of knowledge and
belief and others). In this thesis,KD45 is important as the part of the researched BDI
logics.

Definition 3.1.1 Hilbert type calculus for KD45 logic is calculus with classical non
modal axioms, modal axioms as follows:

• K. 2(φ→ ψ)→ (2φ→ 2ψ),

• D. 2φ→ ¬2¬φ,

34

• 4. 2φ→ 22φ,

• 5. ¬2φ→ 2¬2φ,

and rules:

φ, φ→ ψ
ψ

,
φ

2 φ
.

Tableau method forKD45 logic may be found in [25], where tableaux methods for
various normal logics are presented. Single step tableaux method (combination of the
Gentzen-type and prefixed tableaux methods) for KD45 logic may be found in [37].
Resolution based system (as a part of the system for logic containing CTL and KD45

logics) may be found in [21].
Sequent calculus for KD45 was introduced in [48]. As the basis for our research

we use sequent calculus forKD45 logic with a slight modification and it may be found
in [39]. It uses modal rule (2) besides logical rules (see Definition 2.2.4.):

Definition 3.1.2 Sequent calculus rule (2) is:

Γ,2Γ→ Θ,2Θ,2∆
2Γ→ 2Θ,2∆ (2)

• Θ is empty or only one formula.

• Γ - set of the formulas obtained from 2Γ by removing the most outer 2 oc-
curence.

Definition 3.1.3 The sequent calculus with an axiom φ,Γ→ φ,∆, logical rules, rule
(Weak) and modal rule (2) we define sequent calculus KD45init .

We say, that KD45init is an initial sequent calculus for KD45 logic. This sequent
calculus contains non invertable (also non semi-invertable) rule (Weak). Therefore, at
least some derivation tactics is necessary to get decidability.

Theorem 3.1.1 Sequent calculus KD45init is sound and complete calculus for KD45

logic.

Proof.
The proof is presented by N. NIDE and T. Shiro in [39] as the fragment of the BDI

logic.
According to [39], decision procedure, based on the sequent calculus KD45init ,

exists (some special tactics is used). This decision procedure uses loop-check technique
to get decidability. Loop-check is used to prove that sequent is non derivable. Described
loop-check is inefficient, because it requires after every rule application to check all

35

the ancestor sequents of the current sequent. Such a direct loop-check takes most of
the time used for derivation. This is the main disadvantage of the sequent calculus
KD45init . In the following sections we present new sequent calculus, which is loop-
check free, and, therefore, it obviate the main disadvantage of the sequent calculus
KD45init .

3.2 Loop-check Free Sequent Calculus for KD45 Logic

In this section, intermediate sequent calculus for KD45 logic, which eliminates non
invertable rule (Weak) is given. Some features of the created sequent calculus are
proven. These features was used to introduce new loop-check free sequent calculus for
KD45 logic. Equivalence of all presented calculi (initial, weak free and loop-check
free sequent calculi) for KD45 logic are also proven.
First, we introduce an intermediate sequent calculus for KD45 logic which uses

new modal rule (2W) instead of the rules (2) and (Weak). The new (2W) rule is
or-rule. So, derivation tree constructed according new sequent calculus may contain
or=branches besides and-branches.
Sequent calculus KD45wf (and KD45init) do not use marked modal operator 2∗,

but such a marked operator is used in the sequent calculusKD45lcf (introduced later).
Therefore, we also use marked modal operator 2∗ in the following definitions, since
they are applicable for the both calculi.

Definition 3.2.1 We say that sequent Σ,2Γ,2∗Γ′ → Π,2∆,2∗∆′ is a primal sequent
for KD45 logic if:

• Σ,Π - finite (may be empty) sets of propositional variables, Σ ∩ Π = ∅.

Definition 3.2.2 We say that sequent 2Γ,2∗Γ′ → 2∆,2∗∆′ is a strict-primal sequent
for KD45 logic.

Definition 3.2.3 Sequent calculus rule (Weak∗KD45) is:

2Γ→ 2∆
Σ,2Γ→ Π,2∆ (Weak∗KD45)

• Σ,Π - finite (may be empty) sets of propositional variables, Σ ∩ Π = ∅.

Simple speaking, rule (Weak∗KD45) is just a rule (Weak), which is restricted to be
used only for primal sequents. Rule (Weak∗KD45) do not delete any modalized formula.
Therefore, rule (Weak∗KD45) is invertable rule in KD45 logic, since Σ and Π contains
only propositional variables.

36

Definition 3.2.4 Sequent calculus rule (2or) is:

Γ,2Γ→ φ1,2φ1, . . . ,2φn || . . . || Γ,2Γ→ φn,2φ1, . . . ,2φn

2Γ→ 2φ1,2φ2, . . . ,2φn
(2or)

• The case n = 0 is allowed, and then rule transforms into: Γ,2Γ→
2Γ→ (2or).

• Γ - set of the formulas obtained from 2Γ by removing the most outer 2 oc-
curence.

It is obviously, that rule (2or) is semi-invertable rule.
Rule (Weak∗KD45)may be applied only for primal sequent and its premise is always

some strict-primal sequent. Rule (2or) may be applied only for strict-primal sequent.
We define new rule (2W) which is just a concatenation of the rules (Weak∗KD45) and
(2or):

Definition 3.2.5 Sequent calculus rule (2W) is a concatenation of the rules
(Weak∗KD45), (2

or) and may be defined as follows:

Γ,2Γ→ φ1,2φ1, . . . ,2φn || . . . || Γ,2Γ→ φn,2φ1, . . . ,2φn

Σ,2Γ→ Π,2φ1, . . . ,2φn
(2W)

• The case n = 0 is allowed, and then rule transforms into: Γ,2Γ→
Σ,2Γ→ Π (2W).

• Σ,Π - finite (may be empty) sets of the propositional variables only, Σ ∩ Π = ∅.

• Γ - set of the formulas obtained from 2Γ by removing the most outer 2 oc-
curence.

If a sequent has n > 0 modalized formulas on the right side of →, then rule
(2W) contains n premises, those in consequence generates n or-branches. We have
or-branches, since a sequent is derivable if at least one of these branches is derivable. It
is obviously, that rule (2W) is semi-invertable rule. Actually, rule (2) has or-branches,
since during rule (2) application one formula from the right side must be chosen.

Definition 3.2.6 The sequent calculus with an axiom φ,Γ→ φ,∆, logical rules and
modal rule (2W) we define sequent calculus KD45wf .

We say, that KD45wf is a weak free sequent calculus for KD45 logic. In this
sequent calculus, rule (2W) is semi-invertable rule and all other rules are invertable.

Theorem 3.2.1 A sequent is derivable in the sequent calculusKD45wf if and only if it
is derivable in the sequent calculus KD45init .

37

Proof.
If a sequent S is derivable in the KD45init , then we have a derivation tree, which

uses rules (¬L), (¬R), (∨L), (∨R), (&L), (&R), (2), and (Weak). First, we have to
eliminate from this tree every rule (Weak) application. There are the following cases
of the rule (Weak) application:

1. The premise sequent of the rule (Weak) application is an axiom. Then we can
delete such a rule (Weak) application at all, since the conclusion sequent of the
rule (Weak) application is also an axiom.

2. Rule (Weak) is consecutively applied two times. Then we can transform
(Trans1) such a part of the tree to use only one application of the rule (Weak):

. . .
Γ→ ∆

Γ,Γ′ → ∆,∆′ (Weak)

Γ,Γ′,Γ′′ → ∆,∆′,∆′′ (Weak)

⇓ (Trans2). . .
Γ→ ∆

Γ,Γ′,Γ′′ → ∆,∆′,∆′′ (Weak)

3. Rule (Weak) and logical rules R is consecutively applied (in the bottom-up di-
rection) (rule R is one of the (¬L), (¬R), (∨L), (∨R), (&L), (&R)). We can
change the order of these rules applications (rule (Weak) application appears
above the logical rule R application). We perform transformation Trans2:

. . .
φ,Γ→ ∆

. . .
ψ,Γ→ ∆

φ ∨ ψ,Γ→ ∆
(∨L)

φ ∨ ψ,Γ,Γ′ → ∆,∆′ (Weak)

⇓ (Trans2). . .
φ,Γ→ ∆

φ,Γ,Γ′ → ∆,∆′ (Weak)

. . .
ψ,Γ→ ∆

ψ,Γ,Γ′ → ∆,∆′ (Weak)

φ ∨ ψ,Γ,Γ′ → ∆,∆′ (∨L)

Transformation Trans2 is performed for the rule (∨L). The analogous transfor-
mation can be also applied for rules (¬L), (¬R), (∨R), (&L), (&R). In such a
case, we can raise rule (Weak) application by one step in an inference tree.

4. Rules (Weak) and (2) are consecutively applied (in the bottom-up direction). In
this case, we can do everything rather the same as in the Case 3. The difference is
that during rule (Weak) raising we change rule (2) application by the new rules
(Weak∗KD45) and (2or) applications (i.e. by the one rule (2W) application).

38

We denote the main formula of the rule (2) application by 2φ1 (may be empty).
We denote all other not deleted modalized formulas by 2∆ = 2φ2, . . . ,2φk

and all deleted modalized formulas by 2∆′ = 2φk+1, . . . ,2φn. We perform
transformation Trans3:

. . .
Γ,2Γ→ φ1,2φ1,2∆

2Γ→ 2φ1,2∆
(2)

Λ,2Γ,2Γ′ → Π,2φ1,2∆,2∆′ (Weak)

⇓ (Trans3). . .
Γ,2Γ→ φ1,2φ1,2∆

Γ,2Γ,Γ′,2Γ′ → φ1,2φ1,2∆,2∆′ (Weak) ||
. . .
Si

2Γ,2Γ′ → 2φ1,2∆,2∆′ (2or)

Λ,2Γ,2Γ′ → Π,2φ1,2∆,2∆′ (Weak∗KD45)

Here Si = Γ,2Γ,Γ′,2Γ′ → φi,2φ1,2∆,2∆′ - for all i = 2, 3, . . . , n.

Sequents Si are some unused or-branches of the derivation tree, because we get a
derivation tree (in the calculusKD45init) by choosing formula 2φ1 as the main
for the rule (2) application. In other words, we do not proceed sequents Si in the
sequent calculusKD45wf , because these branches do not impact derivability of
the initial sequent and are redundant.

By applying such a transformations in the bottom-up direction we eliminate all
applications of the rule (Weak) from the sequent S derivation tree. If there is left
some rule (2) application in the tree, apply transformation like in the Case 4 to get the
rule (2W) application instead of the rule (2) application. After these transformations
we get a derivation tree for the sequent calculus KD45wf , therefore, sequent S is also
derivable in the KD45wf .
If a sequent S is derivable in the KD45wf , then we have a derivation tree, which

uses rules (¬L), (¬R), (∨L), (∨R), (&L), (&R), (2W). We can apply another trans-
formation to change rule (2W) application into (Weak) and (2) rules applications.
After rule (2W) application, we can get n sequents. At least one of them is derivable
if the father sequent is derivable. If an initial sequent S is derivable, then we can leave
only one branch from or-branches which is derivable in the KD45wf . Suppose that
we have chosen such a derivable branches (one for every rule (2W) application) and
marked them as derivable. All other or-branches become redundant and, therefore, we
mark them as redundant. We use consequently applied rules (Weak∗KD45) and (2or)

instead of the rule (2W). Suppose that derivable branch is obtained by taking i = 1.

39

We apply transformation Trans4:

(derivable)
. . .

Γ,2Γ→ φ1,2φ1, . . . ,2φn || . . . ||
(redundant)

. . .
Γ,2Γ→ φn,2φ1, . . . ,2φn

2Γ→ 2φ1, . . . ,2φn
(2or)

Σ,2Γ→ Π,2φ1, . . . ,2φn
(Weak∗KD45)

(i = 2, 3, . . . , n)

⇓ (Trans4)
(derivable)

. . .
Γ,2Γ→ φ1,2φ1,2φ2, . . . ,2φn

2Γ→ 2φ1,2φ2, . . . ,2φn
(2)

Σ,2Γ→ Π,2φ1, . . . ,2φn
(Weak)

By applying such a transformations we eliminate all applications of the rule (2W)

from the derivation tree. After these transformations we get a derivation tree for the
sequent calculus KD45init , therefore, sequent S is also derivable in the KD45init .
The advantage of the sequent calculus KD45wf is that we can determine whether

sequent is derivable or not. For such a decision procedure loop-check is needed, but no
special tactics is needed anymore.
Now we will show that any formula in the sequent S inference tree is some subfor-

mula of the initial sequent S.

Lemma 3.2.1 If F is some formula in any sequent S ′ in the sequent S inference tree
constructed according to the sequent calculusKD45wf , then there exists formula G in
the initial sequent S, that F ⊆sf G.

Proof.
Premises of any sequent calculus KD45wf rule ((¬L), (¬R), (∨L), (∨R), (&L),

(&R), (2W)) contains only subformulas of the rule conclusion. According to the Def-
inition 2.1.7., formula F is subformula of some formula G in the initial sequent S.
Sequent calculus KD45wf uses and-rules ((¬L), (¬R), (∨L), (∨R), (&L), (&R))

and one or-rule ((2W)). If we have a finite constructed tree in the sequent calculus
KD45wf , all leaves are known to be derivable or not, and we can determine whether
an initial sequent is derivable or not (see Section 2.2.). A leaf sequent is derivable
if it is an axiom. A leaf sequent is non derivable if it is a final sequent (it is not an
axiom and no rule can be applied for it). The next Lemma says that a leaf sequent is
non derivable if it is a loop-ending sequent. Since in any sequent inference tree, we
can only have subformulas of formulas from the initial sequent (Lemma 3.2.1.), the
derivation procedure always terminates.

Lemma 3.2.2 Sequent S is non derivable in the sequent calculus KD45wf if we can
construct inference tree which satisfies the following conditions:

40

• every tree leaf contains:
i) some axiom,
ii) some final sequent, or
iii) some loop-ending sequent,

• sequent inference tree is not a derivation tree in the sequent calculus KD45wf .

Proof.
Proof goes straightforward from the proof placed in [39].
This Lemma says, that if we found some loop-ending sequent in a derivation tree,

we have to stop to proceed this branch and we have treat it as non derivable.
Since in any sequent S inference tree we can only have subformulas of the formulas

from the initial sequent S (Lemma 3.2.1.), we get an inference tree, that any tree leaf
contains an axiom, final sequent or loop-ending sequent. If such a constructed tree is
sequent S derivation tree in the sequent calculusKD45wf , then sequent S is derivable.
If such a constructed tree is not a derivation tree in the sequent calculusKD45wf , then
sequent S is non derivable. So, for the sequent calculus KD45wf , we have finite
procedure to determine whether sequent is derivable or not.
We have a sequent calculus which uses loop-check technique to determine the se-

quent derivability. The main disadvantage of this calculus is an inefficient loop-check.
To determine whether sequent S is the loop-ending sequent or not, we have to scan all
ancestors of the sequent S. This procedure takes the most of the time during derivation.
According to the Lemma 3.2.1, for every sequent, we can construct a finite tree

(with derivable or non derivable sequent in the root).

Lemma 3.2.3 If we have a loop S ; S ′ in the sequent calculus KD45wf , when at
least one rule (2W) application exists between S and S ′ in a inference tree.

Proof.
Suppose that only rules (¬L), (¬R), (∨L), (∨R), (&L), (&R) are applied between

S and S ′. In such a case, we cannot get a loop S ; S ′, since all used rules decrease the
number of operations used in the sequent and, therefore, len(S) > len(S ′) and S ; S ′

is not a loop. We get a contradiction, and, therefore, at least one rule (2W) application
exists between S and S ′.

Lemma 3.2.4 If we have a loop S ; S ′, then all the sequents between S and S ′ in an
inference tree contain the same modalized formulas.

Proof.
All rules (¬L), (¬R), (∨L), (∨R), (&L), (&R) do not change any modalized for-

mula (rule premises and conclusion contains the same modalized formulas). Rule (2W)

41

...
S1,1 ||

...
S1,2 || . . . ||

...
S2,1 ||

...
S2,2 || . . . ||

...
S3,1 ||

...
S3,2 || . . . ||

...
S4,1 || . . . ||

...
S4,n

S4

(2W)

...
S ′

3,r

S3,r || . . . ||
...

S3,n

S3

(2W)

...
S ′

2,r

S2,r || . . . ||
...

S2,n

S2

(2W)

...
S ′

1,r

S1,r || . . . ||
...

S1,n

S1

(2W)

Figure 3.1: Illustration for the proof of the Lemma 3.2.5.
Fragment of the sequent S1 inference tree.

can only increase the number of modalized formulas (premises contains more modal-
ized formulas then conclusion). Taking into account that sequents S and S ′ contain
the same formulas, we get that all the sequents between S and S ′ contain the same
modalized formulas.
Now we introduce some features of the sequent calculus KD45wf . These features

are very useful while optimizing loop-check. After, we introduce a new sequent calcu-
lus, which is based on the sequent calculusKD45wf . We will use the above mentioned
features to get loop-check free sequent calculus for KD45 logic.
To separate sequents used in the rule (2W) application in a derivation tree, we

mark them with a line. Suppose, that sequent S ′ is a premise and S ′′ is a conclusion of
the rule (2W) application. Then we mark the sequent S ′ by a line above (S ′) and the
sequent S ′′ by a line below (S ′′).
Now we show that only sequents for which rule (2W) is applied (those are denoted

by a line above - S) may be used in a loop-check. Moreover, we show that such a loop
can be checked locally. We say that loop-check acts locally if only current or maybe
some one particular ancestor sequent is used to determine the loop existence.

Lemma 3.2.5 Suppose that we have sequents S1, S2 and that the following conditions
are true:

(a) S1 is an ancestor of S2 in the inference tree,

42

(b) S1 and S2 contain the same modalized formulas,

(c) Exactly only one time rule (2W) was applied between S1 and S2

(rule (2W) was applied for S1, after only rules (¬L), (¬R), (∨L), (∨R), (&L),
(&R) were applied to get S2),

(d) The sequents S1,0, . . . S1,n are children of S1, and S1,r is such of them, that it is
an ancestor of the S2

(the path from S1 to S2 goes through S1,r: S1 → S1,r → . . .→ S2).

Then S1 is derivable if and only if there exists a derivable sequent S1,i 6= S1,r.

Proof. In general, a sequent S1 can be derivable if and only if at least one of the
sequents S1,0, . . . S1,n is derivable. So, if the sequent S1 is non derivable, then all se-
quents S1,0, . . . S1,n are non derivable and, therefore, there do not exist such a derivable
sequent S1,i 6= S1,r.
Suppose that the sequent S1 is derivable and all conditions of the Lemma are satis-

fied (see Figure 3.1). Set Sj = S1 . Sequent Sj+1 and Sj contain the same modalized
formulas and rule (2W) application generates the same premises for both sequents.
Then we have 2 possible cases:

1. There exists a sequent Sj,i 6= Sj,r (S1,i = Sj,i 6= Sj,r = S1,r), which is derivable,
and the Lemma is true.

2. Sj,i is non derivable for every i ∈ 1, . . . , n, i 6= r, the sequent Sj,r is derivable.
If so, we have two subcases:

2.1. there is no rule (2W) application above the sequent Sj,r, i.e., only rules
(¬L), (¬R), (∨L), (∨R), (&L), (&R) are applied. In such a case, Sj,r is
derivable only if all its children (and its children’s children) are derivable,
because all these rules creates only and-branches of the tree. Moreover, all
of them are axioms and have the same modalized formulas.

Since, rule (2W) is applied for the sequents S1, S2, we have that j ≥ 2.
Sequents Sj−1 and Sj contains the same modalized formulas and rule (2W)

is applied for them. Suppose that Sj−1,0, . . . Sj−1,n are obtained from Sj−1

by the rule (2W) application. Therefore, Sj,r = Sj−1,r. We get that no
rule (2W) is applied for Sj−1,r. We get a contradiction for the sequent
Sj,r existence (it is obtained by the rule (2W) application, and Sj−1,r is its
ancestor).

2.2. Rule (2W) is applied above the sequent Sj,r and such a sequent Sj+1

exists. Since Sj,r is derivable, then Sj+1 must also be derivable. Let

43

Sj+1,0, . . . Sj+1,n be the sequents obtained from Sj+1 (rule (2W)). Accord-
ing to condition (b), Sj,i = Sj+1,i for every i ∈ 1, . . . , n. If the sequent Sj+1

is derivable, then one of the sequents Sj+1,0, . . . Sj+1,n is also derivable:

2.2.1. If there exists derivable Sj+1,i 6= Sj,r, then S1,i = Sj,i 6= Sj,r = S1,r

is also derivable and we get a contradiction to the Case 2 (only Sj,r is
derivable).

2.2.2. If only Sj+1,r = Sj,r is derivable, then Sj+1,i is non derivable for every
i ∈ 1, . . . , n, i 6= r, and the sequent Sj+1,r is derivable. In such a case,
we can apply inductively the same arguments for Sj+1,r as for Sj,r in
the Case 2 till we reach leaves of the tree. Then we reach leaves, we get
the same contradiction as in the Case 2.1.

Lemma 3.2.5 says that if we find two sequents S1 and S2 satisfying the conditions
of the Lemma, then the branch above the sequent S2 does not impact derivation at all,
and we can terminate proceeding such a branch without any loss. This is the reason
why Lemma 3.2.5 is the main for constructing the loop-check free sequent calculus for
KD45 logic.
We have to mention the fact, that the existence of such a sequents S1, S2 (satisfying

the conditions of the Lemma 3.2.5) do not guarantee that the sequent S2 is non derivable
by itself. We only know that nothing depends on the branches above S2. Even if the
initial sequent S2 is derivable by itself, we can treat S2 as non derivable branch, since
some ancestor of S2 will be derivable as well because of the other or-branches placed
below S2.
Now we can terminate the proceed some sequent S during the derivation tree con-

struction if one of the following 4 cases occurs:

1. S is an axiom (such a branch is derivable and, S is derivable by itself).

2. S has only atomic formulas and none rule can be applied (such a branch is non
derivable, and S is non derivable by itself).

3. S is some loop-ending sequent (such a branch is non derivable, and S is non
derivable by itself).

4. S is a sequent for which rule (2W) must be applied and there exists such an
ancestor sequent S

′
with the same modalized formulas (such a branch is treated

as non derivable but S can be derivable or non derivable by itself, as it was
described above).

To determine the Case 3 or the Case 4 we have to use loop-check technique. The
main difference in loop-check used is that, in the Case 4, we can use loop-check locally,

44

while, in the Case 3, we cannot. In the Case 3, we have to scan all the sequents below
S even till the root of the tree, while, in the Case 4, we have to test only one particular
sequent below S (the sequent for which the last rule (2W) was applied). Sequent
calculus KD45wf uses only the Cases 1, 2 and 3. Now we introduce the new sequent
calculus, which uses the Cases 1, 2 and 4 for derivation termination. First we show that
the Case 3 is redundant.

Lemma 3.2.6 If some branch in the derivation tree ends with a loop S ; S ′, then on
that branch, one can find sequents S1, S2 satisfying the conditions of the Lemma 3.2.5.

Proof. Proof is straightforward from the Lemma 3.2.4 and the Lemma 3.2.5.
According to the Lemma 3.2.6, the Case 3 for termination of the derivation is re-

dundant, since if some branch derivation was terminated because of the Case 3, its
derivation can be also terminated because of the Case 4.
The new calculus uses rule (2LCF) (rule 2 for loop-check free calculus) instead

of the rule (2W) and uses marked modal operator 2∗ to determine whether any new
modalized formula appears after the last rule (2LCF) application:

Definition 3.2.7 Sequent calculus rule (2∗) is:

Γ,Γ1,2
∗Γ,2∗Γ1 → φ1,2

∗φ1, . . . ,2
∗φn|| . . . ||Γ,Γ1,2

∗Γ,2∗Γ1 → φn,2
∗φ1, . . . ,2

∗φn

2Γ,2∗Γ1 → 2φ1, . . . ,2φk,2
∗φk+1, . . . ,2

∗φn

(2∗) can be applied only if 2Γ ∪2φ1 ∪ . . . ∪2φk 6= ∅.

• The case n = 0 is allowed, and then rule transforms into:
Γ,Γ1,2

∗Γ,2∗Γ1 →
2Γ,2∗Γ1 → (2∗).

• 2∗Γ - set of the formulas obtained from 2Γ by replacing every most outer 2

occurence with 2∗.

It is obviously, that rule (2∗) is semi-invertable rule.
Rule (Weak∗KD45)may be applied only for primal sequent and its premise is always

some strict-primal sequent. Rule (2∗) may be applied only for strict-primal sequent.
We define new rule (2LCF), which is just a concatenation of the rules (Weak∗KD45)

and (2∗):

Definition 3.2.8 Sequent calculus rule (2LCF) is:

Γ,Γ1,2
∗Γ,2∗Γ1 → φ1,2

∗φ1, . . . ,2
∗φn|| . . . ||Γ,Γ1,2

∗Γ,2∗Γ1 → φn,2
∗φ1, . . . ,2

∗φn

Σ,2Γ,2∗Γ1 → Π,2φ1, . . . ,2φk,2
∗φk+1, . . . ,2

∗φn

(2LCF) can be applied only if 2Γ ∪2φ1 ∪ . . . ∪2φk 6= ∅.

45

• The case n = 0 is allowed, and then rule transforms into:
Γ,Γ1,2

∗Γ,2∗Γ1 →
Σ,2Γ,2∗Γ1 → Π (2LCF).

• Σ,Π - finite (may be empty) sets of propositional variables only, Σ ∩ Π = ∅.

• 2∗Γ - set of the formulas obtained from 2Γ by replacing every most outer 2

occurence with 2∗.

We have to mention, that if, after some rule application, we have formulas 2φ, 2∗φ

on the same side of→, then we leave only one formula 2∗φ. Rule (2LCF) marks all
top-level 2 operators with star symbol (∗) to indicate that such a formula was used in
the last rule (2LCF) application. Rule (2LCF) can be applied only for the sequent,
which has at least one modalized formula with non marked 2 operator. Since after rule
(2LCF) application, all old top-level 2 operators become marked, rule (2LCF) can be
applied for the second time in such a branch only if some new modalized formula with
non marked 2 operator appears. Such a restriction dramatically decreases the number
of choices.

Definition 3.2.9 The sequent calculus with an axiom φ,Γ→ φ,∆, logical rules and
modal rule (2LCF) we define sequent calculus KD45lcf .

We say, that KD45lcf is a loop-check free sequent calculus for KD45 logic. Se-
quent calculus KD45lcf rule (2LCF) is semi-invertable rule and all the others are in-
vertable.

Theorem 3.2.2 A sequent is derivable in the sequent calculusKD45lcf if and only if it
is derivable in the sequent calculus KD45wf .

Proof.
There is only one major difference between calculi KD45wf and KD45lcf . Rule

(2LCF) is the same as in (2W) but cannot be applied if 2Γ ∪2φ1 ∪ . . . ∪2φk = ∅. If
some modalized formula has a marked 2 operator (2∗), then such a formula was used
in the last rule (2LCF) application. Suppose that, for a sequent S2, rule (2LCF) cannot
be applied, since 2Γ∪2φ1 ∪ . . .∪2φk = ∅, i.e., all modalized formulas have marked
2 operators. So, all sequent S2 modalized formulas were used in the last rule (2LCF)

application. Suppose that the last rule (2LCF) was applied for the sequent S1. Then
the sequents S1, S2 have the same modalized formulas and satisfy all conditions placed
in the Lemma 3.2.5. Therefore, the sequent S2 derivation can be stopped according the
Case 3 without any loss.
If some sequent S is non derivable in the sequent calculusKD45wf , then S is non

derivable in the sequent calculus KD45lcf (Lemma 3.2.6). If a sequent is derivable

46

in the sequent calculus KD45wf , then it remains derivable in the sequent calculus
KD45lcf (Lemma 3.2.5).
We got that sequent calculus KD45lcf is equivalent to the sequent calculus

KD45wf . Sequent calculus KD45wf is equivalent to the sequent calculus KD45init .
Therefore, sequent calculus KD45lcf is equivalent to the sequent calculus KD45init .

Theorem 3.2.3 Sequent calculus KD45lcf is sound and complete calculus for KD45

logic.

Proof.
The proof goes straightforward from the Theorems 3.1.1, 3.2.1, 3.2.2.
Inference tree construction in the sequent calculusKD45lcf always terminates, be-

cause after every rule (2LCF) application we get one more formula modalized with
marked operator 2∗. Marked operator 2∗ cannot become unmarked. Therefore, finally
we get only marked modalized formulas in the sequent, but, for such a sequent, rule
(2LCF) cannot be applied. It is the reason why, we can manage without loop-check.
Intermediate results related to this section are published in [5, 7]. The same ap-

proach was used to get a loop-check free sequent calculus for multimodalKD45n logic
([8]).

3.3 Complexity Results for Sequent Calculus KD45lcf

In this section, complexity results for the new loop-check free sequent calculus are
presented. Proven complexity results shows, that new sequent calculus KD45lcf is
essentially better then known sequent calculus KD45init . In this section, it is shown
that trees constructed according to the calculus KD45lcf are smaller than constructed
according to the calculusKD45wf and, moreover, that loop-check is totally eliminated.
In addition, it includes a full-scale example of non derivable sequent derivation in the
sequent calculus KD45lcf .
The efficiency of the used loop-check can be estimated via time used to check the

loop existence. Suppose that we have a branch with height n and we want to check the
loop existence for some sequent placed in a tree leaf. For such a check in theKD45wf ,
we have to review all the sequents placed bellow even till the root. If a loop exists,
then we have to review only the sequents placed between loop-starting and loop-ending
sequents, but if there is no loop, then we have to review all n sequents places below
the current sequent. Such a review must be done for every sequent for which any rule
can be applied and which is not an axiom. For the comparison in the sequent calculus
KD45lcf , we need to check only one special condition for the rule (2LCF) application.
Moreover, we need to do such a check only for the sequents for which rule (2LCF)must
be applied.

47

To avoid a blind review of all the sequents bellow the current sequent some his-
tories can be used. Such an approach is used in works [29] and [38]. Even such an
approach cannot be applied directly for the sequent calculus KD45wf . Newly intro-
duced sequent calculus KD45lcf does not explicitly use histories but the main idea of
histories is used. We use a marked 2 operator (2∗) to indicate the formula usage in
the last rule (2LCF) application. Usage of a marked modal operator 2∗ allowed us to
construct loop-check free sequent calculus, since all loop-check is included inside the
rule (2LCF) application restrictions.
Sequent calculusKD45lcf has one more advantage against theKD45wf . Both se-

quent calculi construct finite trees (one uses loop-check and the other does not) but the
tree constructed according to the KD45lcf is some subtree (with some generalization)
of the tree constructed according to the KD45wf (this follows from Lemma 3.2.6). Of
course, there are such cases when both trees have the same size, but for the most se-
quents containing modalized formulas, such a tree will be smaller. Since rules (¬L),
(¬R), (∨L), (∨R), (&L), (&R) applications reduce the number of operators, the con-
structed tree size mostly depends on the modal rule application number. The next
Lemma determines the maximal number of the rule (2LCF) applications in one branch
and, therefore, determines bounds for height of the whole tree.

Lemma 3.3.1 If sequent S contains k logical operators andm different occurrences of
the modal operator2, then for any inference tree T in theKD45lcf height(T) ≤ m ·k.

Proof.
Any sequent in a inference tree contains only subformulas of the initial sequent S.

Every rule (2LCF) changes at least one subformula of the shape 2φ into 2∗φ. There is
no rule which changes 2∗φ into 2φ. So, at most m times rule (2LCF) can be applied
in any inference tree branch. Between two rules (2LCF) applications at most k logical
rules can be applied. Therefore, any branch in an inference tree do not exceed height
m · k. So, height(T) ≤ m · k.
We have to mention, that, for the sequent calculus KD45wf , such a lemma is not

correct. Lemma 3.3.1 determines the upper bound of the time complexity. Algorithm
time complexity directly depends on the constructed inference tree size.

Lemma 3.3.2 If sequent S contains k logical operators andm occurrences of the modal
operator 2, then decision algorithm for the sequent calculusKD45lcf time complexity
is ≤ 2 ·mm·k.

Proof.
Since during the decision algorithm, every node is performed ≤ 2 times (see Ap-

pendix A for algorithm pseudocode). For any inference tree T , height(T) ≤ m ·k, and

48

every node has ≤ m branches (every rule contains ≤ m premises). Therefore, decision
algorithm for the sequent calculus KD45lcf time complexity is ≤ 2 ·mm·k.

Corollary 3.3.1 Sequent calculusKD45lcf time complexity is EXPTIME.

Of course, we get an exponential time complexity, but it is much better result then
we can get for the sequent calculus KD45wf (or KD45init), which uses direct loop-
check and creates bigger (or equal) inference trees.
Now we propose some lemmas to show space complexity of the sequent calculus

KD45lcf .

Lemma 3.3.3 Decision algorithm for the sequent calculus KD45lcf space complexity
is at most O(l3) (here l = len(S)).

Proof.
Suppose that sequent S has length l = len(S). Every sequent in an inference tree

contains only subformulas of S (including 2∗φ for subformula 2φ). Every subformula
has length ≤ l and there are < 2 · l different subformulas of S (because every formula
F has≤ l different non marked modalized subformulas, and every formula 2φ has one
additional subformula 2∗φ). We can give an index for any subformula of sequent S.
We need < 2 · l · l = 2 · l2 space to store table of subformulas and their indexes.
Every sequent in the inference tree can be defined by two 2 · l length arrays of sub-

formulas indexes (one array for the left side, and one for the right side of the sequent).
According to the Lemma 3.3.1, height of any branch < m · k < l2. Therefore, we need
< 2 · l2 + 2 · 2 · l · l2 space if we use deep first search algorithm and stack (see Annex A
for pseudocode). So, sequent calculusKD45lcf space complexity requiresO(l3) space.

Corollary 3.3.2 Sequent calculusKD45lcf space complexity is PSPACE.

Example 3.3.1 Suppose we have a sequent S = 2(φ ∨ ψ) → 2ψ,22φ. Sequent
S has length = 9. Table of subformulas for the sequent S (used in the proof of the
Lemma 3.3.3) may be the following:

Index of subformula Subformula Index of subformula Subformula

1 2(φ ∨ ψ) 7 2∗ψ

2 2∗(φ ∨ ψ) 8 22φ

3 φ ∨ ψ 9 2∗2φ

4 φ 10 2φ

5 ψ 11 2∗φ

6 2ψ

Sequent S ′ = φ ∨ ψ,2∗(φ ∨ ψ) → ψ,2∗φ,2∗ψ,2∗2φ may be stored as 2 arrays
of indexes: [3, 2]→ [5, 11, 7, 9].

49

Example 3.3.2 We will show that the sequent S0
1 = 2(φ ∨ ψ) → 2ψ,22φ is non

derivable in the calculus KD45lcf . If no rule can be applied for the sequent S, we
mark it by ×, if the sequent S is an axiom we mark it by ⊕.

⊕
S2

1

×
S2

2

S1
1

(∨L)
||

⊕
S4

1

×
S4

2

S3
1

(∨L)
||

⊕
S4

3

×
S4

4

S3
2

(∨L)
||

×
S4

5

×
S4

6

S3
3

(∨L)

S2
3

(2LCF)

...
S3

4 ||
...
S3

5 ||
...
S3

6

S2
4

(2LCF)

S1
2

(∨L)

S0
1

(2LCF)

S0
1 = 2(φ ∨ ψ)→ 2ψ,22φ : (2LCF) :

· S1
1 = φ ∨ ψ,2∗(φ ∨ ψ)→ ψ,2∗ψ,2∗2φ : (∨L) :

· S2
1 = φ,2∗(φ ∨ ψ)→ ψ,2∗ψ,2∗2φ (terminate)

· S2
2 = ψ,2∗(φ ∨ ψ)→ ψ,2∗ψ,2∗2φ (axiom)

· S1
2 = φ ∨ ψ,2∗(φ ∨ ψ)→ 2φ,2∗ψ,2∗2φ : (∨L) :

· S2
3 = φ,2∗(φ ∨ ψ)→ 2φ,2∗ψ,2∗2φ : (2LCF) :

· S3
1 = φ ∨ ψ,2∗(φ ∨ ψ)→ φ,2∗φ,2∗ψ,2∗2φ : (∨L) :

· S4
1 = φ,2∗(φ ∨ ψ)→ φ,2∗φ,2∗ψ,2∗2φ (axiom)

· S4
2 = ψ,2∗(φ ∨ ψ)→ φ,2∗φ,2∗ψ,2∗2φ (terminate)

· S3
2 = φ ∨ ψ,2∗(φ ∨ ψ)→ ψ,2∗φ,2∗ψ,2∗2φ : (∨L) :

· S4
3 = φ,2∗(φ ∨ ψ)→ ψ,2∗φ,2∗ψ,2∗2φ (terminate)

· S4
4 = ψ,2∗(φ ∨ ψ)→ ψ,2∗φ,2∗ψ,2∗2φ (axiom)

· S3
3 = φ ∨ ψ,2∗(φ ∨ ψ)→ 2∗φ,2∗ψ,2∗2φ : (∨L) :

· S4
5 = φ,2∗(φ ∨ ψ)→ 2∗φ,2∗ψ,2∗2φ (terminate)

· S4
6 = ψ,2∗(φ ∨ ψ)→ 2∗φ,2∗ψ,2∗2φ (terminate)

· S2
4 = ψ,2∗(φ ∨ ψ)→ 2φ,2∗ψ,2∗2φ : (2LCF) :

· S3
4 same as S

3
1

· S3
5 same as S

3
2

· S3
6 same as S

3
3

Such a tree has the maximal height 5 and consists of 22 sequents. Rule (2LCF) was
applied at most 2 times in any branch. According to the Lemma 3.3.1, rule (2LCF)

50

can be applied at most 4 times in any branch. In our case, we get only 2 modal rule
applications, since we have marked three modal operators at the same time.
For the comparison, the sequent S0

1 = 2(φ ∨ ψ)→ 2ψ,22φ tree obtained by the
sequent calculus KD45wf has maximal height 10 and consists even of 127 sequents.
There is a branch, where rule (2W) was applied 5 times. Moreover, we have to mention
that, during tree construction in the sequent calculus KD45wf , we have to test the
sequents placed below in a tree to detect loop existence, while in the sequent calculus
KD45lcf , such a check is not needed at all.

Lemma 3.3.4 There exists sequent with length l, for which decision algorithm for the
sequent calculus KD45lcf requires O(l3) space.

Proof.
To prove this lemma, we construct the sequent (set of the sequents), which has

an inference tree T with at least one branch having height(T) = O(l2). We define
formulas F1, F2, . . . , Fk as follows:
F1 = ¬2(ψ1 ∨ φ1) ∨2φ1,
F2 = ¬2(¬(¬2(ψ2 ∨ φ2) ∨2φ2) ∨ φ1) ∨2φ1,
F3 = ¬2(¬(¬2(¬(¬2(ψ3 ∨ φ3) ∨2φ3) ∨ φ2) ∨2φ2) ∨ φ1) ∨2φ1,
. . .

Fk = ¬2(¬(¬2(. . .¬(¬2(ψk ∨ φk) ∨2φk) . . . ∨ φ2) ∨2φ2) ∨ φ1) ∨2φ1.
Formula Fj+1 is obtained from formula Fj by replacing subformula ψj with a new

subformula ¬(¬2(ψj+1 ∨ φj+1) ∨2φj+1).
In the sequent → Fk inference tree T , we have one branch, which is obtained by

applying the following rules in the defined order (in the bottom-up direction):
(∨R), (¬R), (2LCF),

(∨L), (¬L), (∨R), (¬R), (2LCF),

(∨L), (¬L), (∨R), (¬R), (∨L), (¬L), (∨R), (¬R), (2LCF),

. . .

(∨L), (¬L), (∨R), (¬R), . . . , (∨L), (¬L), (∨R), (¬R), (2LCF).
So, in this branch, there are 3 + (1 · 4 + 1) + (2 · 4 + 1) + . . .+ ((k− 1) · 4 + 1) =

= 3 + 4 · k·(k−1)
2

+ 1 · (k − 1) = 2 · k2 − k + 2 rules applied. And, therefore, sequent
→ Fk inference tree T height(T) ≥ 2 · k2 − k + 2.
Sequent→ Fk has length l = 8 · k, because len(→ Fk) = len(→ Fk−1)− 1 + 9 =

= len(→ Fk−1) + 8.
Sequent → Fk inference tree T height is at least 2 · k2 − k + 2. In other words,

sequent → Fk inference tree height(T) ≥ 2 · (l
8
)2 − l

8
+ 2, and maximum height is

O(l2).
According to the Lemma 3.3.3, we use O(l) space to store one sequent in the stack,

and, therefore, we use O(l3) space for the sequent→ Fk derivation.

51

Analogous complexity results are obtained for the multimodalKD45n logic. These
results are published in [9].

Example 3.3.3 We show inference trees for the sequents → F1,→ F2,→ F3 (taken
from the Lemma 3.3.4 proof).
Sequent→ F1 =→ ¬2(ψ1 ∨ φ1) ∨2φ1 inference tree is:

	
2∗(ψ1 ∨ φ1), ψ1 → 2∗φ1, φ1

⊕
φ1, . . .→ φ1, . . .

2∗(ψ1 ∨ φ1), ψ1 ∨ φ1 → 2∗φ1, φ1
(∨L)

2(ψ1 ∨ φ1)→ 2φ1
(2LCF)

→ ¬2(ψ1 ∨ φ1),2φ1
(¬R)

→ ¬2(ψ1 ∨ φ1) ∨2φ1
(∨R)

→ F1

We denote ψ1 = ¬(¬2(ψ2 ∨ φ2) ∨2φ2). Then formula
F2 = ¬2(ψ1 ∨ φ1) ∨2φ1 = ¬2(¬(¬2(ψ2 ∨ φ2) ∨2φ2) ∨ φ1) ∨2φ1

and its inference tree is:

...
2∗(ψ1 ∨ φ1),2

∗(ψ2 ∨ φ2), ψ1 ∨ φ1, ψ2 ∨ φ2 → 2∗φ1,2
∗φ2, φ1, φ2

2∗(ψ1 ∨ φ1),2(ψ2 ∨ φ2)→ 2∗φ1, φ1,2φ2
(2LCF)

2∗(ψ1 ∨ φ1)→ 2∗φ1, φ1,¬2(ψ2 ∨ φ2),2φ2
(¬R)

2∗(ψ1 ∨ φ1)→ 2∗φ1, φ1,¬2(ψ2 ∨ φ2) ∨2φ2
(∨R)

2∗(ψ1 ∨ φ1),¬(¬2(ψ2 ∨ φ2) ∨2φ2)→ 2∗φ1, φ1
(¬L)

2∗(ψ1 ∨ φ1), ψ1 → 2∗φ1, φ1

⊕
φ1 → φ1

2∗(ψ1 ∨ φ1), ψ1 ∨ φ1 → 2∗φ1, φ1
(∨L)

2(ψ1 ∨ φ1)→ 2φ1
(2LCF)

→ ¬2(ψ1 ∨ φ1),2φ1
(¬R)

→ ¬2(ψ1 ∨ φ1) ∨2φ1
(∨R)

→ F2

We denote ψ2 = ¬(¬2(ψ3 ∨ φ3) ∨2φ3), and
ψ1 = ¬(¬2(ψ2 ∨ φ2) ∨2φ2) = ¬(¬2(¬(¬2(ψ3 ∨ φ3) ∨2φ3) ∨ φ2) ∨2φ2).
Then formula
F3 = ¬2(ψ1 ∨ φ1) ∨2φ1 = ¬2(¬(¬2(ψ2 ∨ φ2) ∨2φ2) ∨ φ1) ∨2φ1 =

¬2(¬(¬2(¬(¬2(¬(¬2(ψ3 ∨ φ3) ∨2φ3) ∨ φ2) ∨2φ2) ∨ φ2) ∨2φ2) ∨ φ1) ∨2φ1

and its inference tree is:

52

⊕
φ1 → φ1

⊕
φ2 → φ2

...
2∗(ψ1 ∨ φ1),2

∗(ψ2 ∨ φ2),2
∗(ψ3 ∨ φ3), . . .→ 2∗φ1,2

∗φ2,2
∗φ3, . . .

2∗(ψ1 ∨ φ1),2
∗(ψ2 ∨ φ2),2(ψ3 ∨ φ3)→ 2∗φ1,2

∗φ2, φ1, φ2,2φ3
(2LCF)

2∗(ψ1 ∨ φ1),2
∗(ψ2 ∨ φ2)→ 2∗φ1,2

∗φ2, φ1, φ2,¬2(ψ3 ∨ φ3),2φ3
(¬R)

2∗(ψ1 ∨ φ1),2
∗(ψ2 ∨ φ2)→ 2∗φ1,2

∗φ2, φ1, φ2,¬2(ψ3 ∨ φ3) ∨2φ3
(∨R)

2∗(ψ1 ∨ φ1),2
∗(ψ2 ∨ φ2),¬(¬2(ψ3 ∨ φ3) ∨2φ3)→ 2∗φ1,2

∗φ2, φ1, φ2
(¬L)

2∗(ψ1 ∨ φ1),2
∗(ψ2 ∨ φ2), ψ2 → 2∗φ1,2

∗φ2, φ1, φ2

↑
↑
↑

2∗(ψ1 ∨ φ1),2
∗(ψ2 ∨ φ2), ψ2 ∨ φ2 → 2∗φ1,2

∗φ2, φ1, φ2
(∨L)

2∗(ψ1 ∨ φ1),2
∗(ψ2 ∨ φ2), ψ2 ∨ φ2 → 2∗φ1,2

∗φ2, φ1, φ2,¬2(ψ2 ∨ φ2)
(¬R)

2∗(ψ1 ∨ φ1),2
∗(ψ2 ∨ φ2), ψ2 ∨ φ2 → 2∗φ1,2

∗φ2, φ1, φ2,¬2(ψ2 ∨ φ2) ∨2φ2
(∨R)

2∗(ψ1 ∨ φ1),2
∗(ψ2 ∨ φ2),¬(¬2(ψ2 ∨ φ2) ∨2φ2), ψ2 ∨ φ2 → 2∗φ1,2

∗φ2, φ1, φ2
(¬L)

2∗(ψ1 ∨ φ1),2
∗(ψ2 ∨ φ2), ψ1, ψ2 ∨ φ2 → 2∗φ1,2

∗φ2, φ1, φ2

↑
↑
↑

2∗(ψ1 ∨ φ1),2
∗(ψ2 ∨ φ2), ψ1 ∨ φ1, ψ2 ∨ φ2 → 2∗φ1,2

∗φ2, φ1, φ2
(∨L)

2∗(ψ1 ∨ φ1),2(ψ2 ∨ φ2)→ 2∗φ1, φ1,2φ2
(2LCF)

2∗(ψ1 ∨ φ1)→ 2∗φ1, φ1,¬2(ψ2 ∨ φ2),2φ2
(¬R)

2∗(ψ1 ∨ φ1)→ 2∗φ1, φ1,¬2(ψ2 ∨ φ2) ∨2φ2
(∨R)

2∗(ψ1 ∨ φ1),¬(¬2(ψ2 ∨ φ2) ∨2φ2)→ 2∗φ1, φ1
(¬L)

2∗(ψ1 ∨ φ1), ψ1 → 2∗φ1, φ1

⊕
φ1 → φ1

2∗(ψ1 ∨ φ1), ψ1 ∨ φ1 → 2∗φ1, φ1
(∨L)

2(ψ1 ∨ φ1)→ 2φ1
(2LCF)

→ ¬2(ψ1 ∨ φ1),2φ1
(¬R)

→ ¬2(ψ1 ∨ φ1) ∨2φ1
(∨R)

→ F3

53

Chapter 4

Sequent Calculus With an Efficient
Loop-check for Branching Time Logic

In this chapter, branching time logic is discussed. Temporal logics are used to rep-
resent time. Linear and branching time logics are the most popular in agents world.
Usually, BDI model uses branching time logic for time representation. In this chapter,
new weak free sequent calculus and sequent calculus with an efficient loop-check for
branching time logic are introduced. Both new sequent calculi create the same infer-
ence trees, and efficiency was gained by restricted loop-check used. In the last section,
complexity results for the efficient loop-check are also presented.
In this chapter, branching time logic with until operators is researched. Therefore,

only logical operators (¬, ∨, &) and modal operators ◦, A, E, Aα
β , E

α
β are used. For-

mulas, those contain other modal operators are not well-formed formulas for branching
time logic.

4.1 Temporal Logics

In this section, the most popular temporal logics are presented. Linear and branching
time logics with always and until operators are discussed. Calculi for known temporal
logics are presented. Hilbert style axiomatization, sound and complete sequent calculus
for branching time logic with until operators are given.
Temporal logics are used to express time flow in the different agent systems. Nor-

mally, time is discrete and defined as infinite sequence of time points t1, t2, t3, t1
stands for the current time point, t2 stands for the next time point, and so on. There
are two big groups of the temporal logics: linear time logic and branching time logic.
In the Linear Time Logic (LTL), there exists only one possible future (see Figure 4.1).
In the branching time logic, there may exist several different futures (see Figure 4.2).
Since branching time logic creates trees (of the time points), branching time logic is

54

t1
-
t2

-
t3

-
t4

-
t5
. . .

Figure 4.1: Linear time logic.

t1
-
t2,4

�
�

�
�

�
��t2,1 . . .

�
�

�
�

��3
t2,2 . . .

������1
t2,3 . . .

Q
Q

Q
Q

QQs. . .

-
t3,4

�
�

�
�

�
��t3,1 . . .

�
�

�
�

��3
t3,2 . . .

������1
t3,3 . . .

Q
Q

Q
Q

QQs. . .

-
t4,4
. . .�

�
�

�
�

��t4,1 . . .

�
�

�
�

��3
t4,2 . . .

������1
t4,3 . . .

Q
Q

Q
Q

QQs. . .

Figure 4.2: Branching time logic.
Here, t2,1, t2,2, t2,3, . . . stands for the different possible next future points and so on.

named as Computational Tree Logic (CTL).
Temporal logics use modalities to express next time (◦), and modalities to ex-

press later future: always and sometimes modalities (2,3), or until modalities (A(φ ∪
ψ), E(φ ∪ ψ)). Modalities meanings are the following:

• ◦φ means ‘φ is true in the next time point’.

• 2φ means ‘φ is true in every future point t’.

• 3φ means ‘there exists future point t, that φ is true in the time point t’.

• A(φ∪ ψ) means ‘for every time path t1, t2, . . ., there exists time point t, that φ is
true in every time point t′, t1 ≤ t′ < t and ψ is true in the time point t’.

• E(φ ∪ ψ) means ‘there exists a path t1, t2, . . . and time point t, that φ is true in
every time point t′, t1 ≤ t′ < t and ψ is true in the time point t’.

There are other not so popular temporal logics. For example, temporal logics with
the past ([34]), temporal logics with intervals ([19]), temporal logic with gaps([3]) and
other variations, those are applicable for special scopes.
For the BDI logic usually until modalities are used. There is known axiomatiza-

tion for CTL (branching time logic) expressed as Hilbert style calculus ([22]). Modal
operator AX is the same ◦ operator.

Definition 4.1.1 Hilbert type calculus for CTL logic (branching time logic) is calculus
with classical non modal axioms, modal axioms as follows:

55

• EX true & AX true,

• AG(ξ → (¬ψ & EXξ))→ (ξ → ¬A(φ ∪ ψ),

• AG(ξ → (¬ψ & EXξ))→ (ξ → ¬AFψ),

• AG(ξ → (¬ψ & (φ→ AXξ)))→ (ξ → ¬E(φ ∪ ψ)),

• AG(ξ → (¬ψ & AXξ))→ (ξ → ¬EFψ),

• AG(φ→ ψ)→ (EXφ→ EXψ),

and rules:

φ, φ→ ψ
ψ

,
φ

AG φ
.

Here

• EFφ ≡ E(true ∪ φ),

• AGφ ≡ ¬EF¬φ,

• AFφ ≡ A(true ∪ φ),

• EGφ ≡ ¬AF¬φ,

• EX(φ ∨ ψ) ≡ EXφ ∨ EXψ,

• AXφ ≡ ¬EX¬φ,

• E(φ ∪ ψ) ≡ ψ ∨ (ψ & EXE(φ ∪ ψ)),

• A(φ ∪ ψ) ≡ ψ ∨ (ψ & AXA(φ ∪ ψ)).

Resolution methods for linear time logic and branching time logic may be found in
[12]. Tableau method for the fragment of the CTL may by found in [42].
There is known sequent calculus for linear temporal logic with until operator, which

is cut free and invariant free sequent calculus ([23]). Another cut free and invariant free
sequent calculus for branching time temporal logic with until operator may be find in
[39] (as a special fragment of the presented sequent calculus for BDI logic). Both
calculi requires loop-check to get decision procedure. In the first paper ([23]), loop
leads only to non derivable sequent. In the second paper ([39]), loop leads to non
derivable sequent or to special loop-axiom. In this chapter, we define restrictions those
are valid for the both loop types.
In [10], there is presented sequent calculus with restricted loop-check for linear

temporal logic with modal operators next and always. In this chapter, we concentrate

56

on the branching time temporal logic with modal operators: ◦ (’next’), A(φ ∪ ψ) (’in
all futures until’) and E(φ ∪ ψ) (’in at least one future until’).
We have sequent calculus for branching time temporal logic, which uses loop-check

([39]). First of all, we define modal rules used in this sequent calculus.

Definition 4.1.2 Sequent calculus rule (◦) is:
Γ→ Θ
◦Γ→ ◦Θ (◦)

• Θ - is empty or only one formula.

• Γ - set of the formulas obtained from ◦Γ by removing the most outer ◦ occurence.

Definition 4.1.3 Sequent calculus rules (AU-L), (AU-R), (EU-L), (EU-R) are:

ψ,Γ→ ∆ φ, ◦A(φ ∪ ψ),Γ→ ∆
A(φ ∪ ψ),Γ→ ∆

(AU-L)

Γ→ ψ, φ,∆ Γ→ ψ, ◦A(φ ∪ ψ),∆
Γ→ A(φ ∪ ψ),∆

(AU-R)

ψ,Γ→ ∆ φ,¬ ◦ ¬E(φ ∪ ψ),Γ→ ∆
E(φ ∪ ψ),Γ→ ∆

(EU-L)

Γ→ ψ, φ,∆ Γ→ ψ,¬ ◦ ¬E(φ ∪ ψ),∆
Γ→ E(φ ∪ ψ),∆

(EU-R)

Definition 4.1.4 We say, that sequent S ′ is a loop-axiom if there exists sequent S satis-
fying the following conditions:

• S ; S ′ is a loop in the inference tree.

• Between sequents S and S ′, there exists such a rule (AU-L) or (EU-L) applica-
tion, that its right premise is sequent S ′ ancestor.

Definition 4.1.5 The sequent calculus with a loop-axiom and with an axiom
φ,Γ → φ,∆, logical rules, rule (Weak) and modal rules (◦), (AU-L), (AU-R),
(EU-L), (EU-R) we define sequent calculus PTLinit .

We say, that PTLinit is an initial sequent calculus for branching time logic. This
sequent calculus contains non invertable (also non semi-invertable) rule (Weak) and
semi-invertable rule (◦). Therefore, at least some derivation tactics is necessary to get
decidability.

Theorem 4.1.1 Sequent calculus PTLinit is sound and complete calculus for branching
time logic with until operator.

Proof.
The proof is presented by N. NIDE and T. Shiro in [39] as the fragment of the BDI

logic.

57

4.2 Sequent Calculus With an Efficient Loop-check for

Branching Time Logic

In this section, weak free sequent calculus for branching time temporal logic with until
operator is presented. Some properties for the weak free sequent calculus are proven.
These properties was used to construct sequent calculus with an efficient loop-check.
Efficient loop-check technique was obtained by radically restricted the count of the
sequents, for those loop-check is performed, and the count of the tested (during loop-
check) sequents.
We prove that we can use not all but only several special sequents from the inference

tree to use in the loop-check. We use indexes to discover these special sequents in the
sequent calculus. These restrictions let us to get an efficient decision procedure based
on the introduced sequent calculus.
There is known decision procedure (described in [39]) for the sequent calculus

PTLinit . Unfortunately, this procedure uses direct loop-check technique to detect non
derivable sequent, or to detect loop-axiom.
In other words, sequent calculus PTLinit deals with two types of the loops. One is

a loop-axiom (see Definition 4.1.4) which may lead an initial sequent to be derivable.
For this type of the loop we use term loop-axiom. Other is a simple loop, which is not
a loop-axiom, and leads an initial sequent to be non derivable. For this type of the loop
we use term ‘non derivable’ loop. We use term loop to denote both types of the loop.
All presented restrictions for the loop-check are applied for the both loop types.
Now we introduce sequent calculus PTLwf which uses only invertable or semi-

invertable rules. To get such a sequent calculus, we use primary sequents.

Definition 4.2.1 Sequent S is a primary if S has the shape Σ, ◦Γ→ Π, ◦∆ and formula
sets Σ,Π contains only propositional variables, Σ ∩ Π = ∅.

Definition 4.2.2 We say, that sequent ◦Γ→ ◦∆ is a strict-primal sequent for branching
time logic.

Definition 4.2.3 Sequent calculus rule (Weak∗PTL) is:

◦Γ→ ◦∆
Σ, ◦Γ→ Π, ◦∆ (Weak∗PTL)

• Σ,Π - finite (may be empty) sets of propositional variables, Σ ∩ Π = ∅.

Simple speaking, rule (Weak∗PTL) is just a rule (Weak) which is restricted to be
used only for primal sequent. Rule (Weak∗PTL) do not delete any modalized formula.
Therefore, rule (Weak∗PTL) is invertable rule in branching time logic, since Σ and Π

contains only propositional variables.

58

Definition 4.2.4 Sequent calculus rule (◦or) is:

Γ→ φ1 || Γ→ φ2 || . . . || Γ→ φn

◦Γ→ ◦φ1, ◦φ2, . . . , ◦φn
(◦or)

• The case n = 0 is allowed and then rule transforms into: Γ→
◦Γ→ (◦or)

• Γ - set of the formulas obtained from ◦Γ by removing the most outer ◦ occurence.

It is obviously, that rule (◦or) is semi-invertable rule.
Rule (Weak∗PTL) may be applied only for primal sequent and its premise is always

some strict-primal sequent. Rule (◦or) may be applied only for strict-primal sequent.
We define new rule (◦W) which is just a concatenation of the rules (Weak∗PTL) and
(◦or):

Definition 4.2.5 Sequent calculus rule (◦W) is:

Γ→ φ1 || Γ→ φ2 || . . . || Γ→ φn

Σ, ◦Γ→ Π, ◦φ1, ◦φ2, . . . , ◦φn
(◦W)

• Σ,Π contains only propositional variables and Σ ∩ Π = ∅.

• The case n = 0 is allowed and then rule transforms into: Γ→
Σ, ◦Γ→ Π (◦W)

• Γ - set of the formulas obtained from ◦Γ by removing the most outer ◦ occurence.

Simple speaking, rule (◦W) may be applied only for primary sequents.

Definition 4.2.6 The sequent calculus with a loop-axiom and with an axiom
φ,Γ → φ,∆, logical rules, and modal rules (◦W), (AU-L), (AU-R), (EU-L), (EU-R)

we define sequent calculus PTLwf .

We say, that PTLwf is a weak free sequent calculus for branching time temporal
logic. This sequent calculus contains invertable rules and one semi-invertable rule
(◦W).

Theorem 4.2.1 Sequent S is derivable in the sequent calculus PTLinit if and only if
sequent S is derivable in the sequent calculus PTLwf .

Proof.
If a sequent S is derivable in the PTLinit , then we have a derivation tree, which

uses rules (¬L), (¬R), (∨L), (∨R), (&L), (&R), (AU-L), (AU-R), (EU-L), (EU-R),
(◦), and (Weak). First, we have to eliminate every rule (Weak) application from the
inference tree. There are the following cases of the rule (Weak) application:

59

1. The premise sequent of the rule (Weak) application is an axiom. Then we can
delete such a rule (Weak) application at all, since the conclusion sequent of the
rule (Weak) application is also an axiom.

2. Rule (Weak) is consecutively applied two times. Then we can transform such a
part of the tree to use only one application of the rule (Weak). For this purposes
we use the transformation Trans1 as in the proof of the Theorem 3.2.1.

3. Rule (Weak) and rule R are consecutively applied (in the bottom-up direction)
(rule R is one of the (¬L), (¬R), (∨L), (∨R), (&L), (&R), (AU-L), (AU-R),
(EU-L), (EU-R)). We can change the order of these rules applications (rule
(Weak) will appear above rule R application). For the logical rules we use
transformation analogous to the transformation Trans2 as in the proof of the
Theorem 3.2.1. For the rule (AU-R), we perform transformation Trans5:

. . .
Γ→ ψ, φ,∆

. . .
Γ→ ψ, ◦A(φ ∪ ψ),∆

Γ→ A(φ ∪ ψ),∆
(AU-R)

Γ,Γ′ → A(φ ∪ ψ),∆,∆′ (Weak)

⇓ (Trans5)
. . .

Γ→ ψ, φ,∆

Γ,Γ′ → ψ, φ,∆,∆′ (Weak)

. . .
Γ→ ψ, ◦A(φ ∪ ψ),∆

Γ,Γ′ → ψ, ◦A(φ ∪ ψ),∆,∆′ (Weak)

Γ,Γ′ → A(φ ∪ ψ),∆,∆′ (AU-R)

Transformation Trans5 is used for the rule (AU-R). The analogous transforma-
tion can be also applied for the rules (AU-L), (EU-L), (EU-R). In such a case,
we can raise the rule (Weak) application by one step in a tree.

4. Rules (Weak) and (◦) are consecutively applied (in the bottom-up direction). In
this case, we can do everything rather the same as in the Case 3. The difference
is that during the rule (Weak) raising we change rule (◦) application by the new
rulesWeak∗PTL and ◦or applications (i.e. by the one rule (◦W) application).

We denote the main formula of the rule (◦) application as ◦φ1 (may be empty).
Then we perform transformation Trans6:

. . .
Γ→ φ1

◦Γ→ ◦φ1
(◦)

Λ, ◦Γ, ◦Γ′ → Π, ◦φ1, ◦φ2, ◦φ3, . . . , ◦φn
(Weak)

(Trans6)

⇓
. . .

Γ→ φ1

Γ,Γ′ → φ1
(Weak) ||

(redundant)
. . .

Γ,Γ′ → φ2 || . . . ||
(redundant)

. . .
Γ,Γ′ → φn

◦Γ, ◦Γ′ → ◦φ1, ◦φ2, ◦φ3, . . . , ◦φn
(◦or)

Λ, ◦Γ, ◦Γ′ → Π, ◦φ1, ◦φ2, ◦φ3, . . . , ◦φn
(Weak∗PTL)

60

Sequents Γ,Γ′ → φ2; Γ,Γ
′ → φ3; . . . ; Γ,Γ

′ → φn are some unused or-branches
of the derivation tree, because we get derivation tree (in calculus the PTLinit)
by choosing formula ◦φ1 as the main for the rule (◦) application. In other words,
we do not proceed sequents Γ,Γ′ → φ2,Γ,Γ

′ → φ3, . . . ,Γ,Γ
′ → φn, because

these branches do not effect derivability of the initial sequent and are redundant.

By applying such a transformations in the bottom-up direction we eliminate all
applications of the rule (Weak) from the sequent S derivation tree. If there is left rule
(◦) application in the derivation tree, apply transformation like in the Case 4 to get the
rule (◦W) application instead of the rule (◦) application. After these transformations,
we get a derivation tree for the sequent calculus PTLwf , therefore, sequent S is also
derivable in the calculus PTLwf .
If a sequent S is derivable in the PTLwf , then we have derivation tree, which uses

rules (¬L), (¬R), (∨L), (∨R), (&L), (&R), (AU-L), (AU-R), (EU-L), (EU-R), (◦W).
We can apply another transformation to change rule (◦W) application into the (Weak)

and (◦) rules applications. After rule (◦W) application, we can get n sequents. At least
one of them is derivable if the father sequent is derivable. If the initial sequent S is
derivable, then we can leave only one branch from or-branches which is derivable in
the PTLwf . Suppose that we have chosen such a derivable branches (one for every
rule (◦W) application) and marked them as derivable. All other or-branches become
redundant and, therefore, we mark them as redundant. We use consequently applied
rules (Weak∗PTL) and (◦or) instead of the rule (◦W). Suppose that derivable branch is
obtained by taking premise with ◦φ1 (for the case n = 0, ◦φ1 and φ1 denotes an empty
sequents) and apply transformation Trans7:

(derivable)
. . .

Γ→ φ1 ||
(redundant)

. . .
Γ→ φ2 || . . . ||

(redundant)
. . .

Γ→ φn

◦Γ→ ◦φ1, ◦φ2, . . . , ◦φn
(◦or)

Σ, ◦Γ→ Π, ◦φ1, ◦φ2, . . . , ◦φn
(Weak∗PTL)

⇓ (Trans7)
(derivable)

. . .
Γ→ φ1

◦Γ→ ◦φ1
(◦)

Σ, ◦Γ→ Π, ◦φ1, ◦φ2, . . . , ◦φn
(Weak)

By applying such a transformations we eliminate all applications of the rule (◦W)

from the derivation tree. After these transformations we get a derivation tree for the
sequent calculus PTLinit , therefore, sequent S is also derivable in the sequent calculus
PTLinit .
Now we introduce sequent calculus PTLol which uses loop-check only for the se-

quents, those are some premises of the rule (◦W) application. This modification re-

61

duces the number of the checked sequents in the inference tree. We define special type
of the loop (◦-loop) which is used in the sequent calculus PTLol .

Definition 4.2.7 Loop S ; S ′ is a ◦-loop if there exist primary sequents S1, S
′
1 in the

inference tree that the following conditions are satisfied:

• S1 is obtained from the sequent S by the rule (◦W) applications (i.e., SS1
(◦W)),

• S ′
1 is obtained from the sequent S

′ by the rule (◦W) applications (i.e., S
′

S ′
1
(◦W)).

Definition 4.2.8 We say, that sequent S ′ is a ◦-loop-axiom if there exists sequent S
satisfying the following conditions:

• S ; S ′ is a ◦-loop in the derivation tree.

• S ; S ′ is a loop-axiom.

Example 4.2.1 Suppose we have a sequent
S = φ2, ◦A(φ1 ∪ ψ)→ ◦A((φ1 ∨ φ2) ∪ ψ).
Sequent S derivation tree in the sequent calculus PTLwf is:

⊕
ψ → φ1 ∨ φ2, ψ

⊕
ψ → ψ, ◦A((φ1 ∨ φ2) ∪ ψ)

ψ → A((φ1 ∨ φ2) ∪ ψ)
(AU-L)

⊕
φ1, ◦A(φ1 ∪ ψ)→ φ1, φ2, ψ

φ1, ◦A(φ1 ∪ ψ)→ φ1 ∨ φ2, ψ
(∨R)

↑
↑
↑

(◦-loop)
S ′′ = A(φ1 ∪ ψ)→ A((φ1 ∨ φ2) ∪ ψ)

φ1, ◦A(φ1 ∪ ψ)→ ψ ◦ A((φ1 ∨ φ2) ∪ ψ)
(◦W)

φ1, ◦A(φ1 ∪ ψ)→ A((φ1 ∨ φ2) ∪ ψ)
(AU-L)

↑
↑
↑
↑

S ′ = A(φ1 ∪ ψ)→ A((φ1 ∨ φ2) ∪ ψ)
(AU-R)

φ2, ◦A(φ1 ∪ ψ)→ ◦A((φ1 ∨ φ2) ∪ ψ)
(◦W)

Sequents S ′ and S ′′ compose a ◦-loop S ′ ; S ′′, since sequents S ′ and S ′′ are
premises of the rule (◦W) applications. ◦-loop S ′ ; S ′′ is also a ◦-loop-axiom, since
there is rule (AU-L) application between sequents S ′ and S ′′ (see Definition 4.1.4).
Therefore, sequent S is derivable in the sequent calculus PTLwf , since all inference
tree leaves contains axioms (usual or loop-axiom).

Definition 4.2.9 The sequent calculus with ◦-loop-axiom and with an axiom φ,Γ →
φ,∆, logical rules, and modal rules (◦W), (AU-L), (AU-R), (EU-L), (EU-R)we define
sequent calculus PTLol .

62

We say, that PTLol is a sequent calculus for branching time logic with ◦-loops.
There is the only difference between the sequent caluclus PTLwf and the sequent cal-
culus PTLol . New sequent calculus PTLol uses only ◦-loops, and sequent calculus
PTLwf uses simple loops (those may be ◦-loops and may be not).
Now we prove the Lemma, which will be used to show, that restriction to use only

◦-loops do not impact any sequent derivability.

Lemma 4.2.1 If we have a loop S ; S ′ in the inference tree in the sequent calculus
PTLwf and S ′ is a loop-axiom, when at least one rule (◦W) application exists between
sequents S and S ′.

Proof.
Since S ′ is a loop-axiom, then between sequents S and S ′, there exists such a se-

quents S1 and S2 between S and S ′, that S1 is a conclusion and S2 is a right premise
of the rule (AU-L) (or (EU-L)) application (see Definition 4.1.4). See Figure 4.3 for
the transparency. Therefore, sequent S1 contains formula A(φ ∪ ψ) (or E(φ ∪ ψ)) and
sequent S2 contains formula ◦A(φ ∪ ψ) (or ¬ ◦ ¬E(φ ∪ ψ) respectively).
Suppose that there is no rule (◦W) application between S and S ′. Suppose that

sequent S1 contains k formulas having the shape ◦A(φ∪ψ) (or ¬◦¬E(φ∪ψ), ◦¬E(φ∪
ψ)). So, sequent S2 contains k+1 formulas having the shape ◦A(φ∪ψ) (or ¬◦¬E(φ∪
ψ), ◦¬E(φ ∪ ψ)).
Since there is no rule (◦W) application between S and S ′, sequent S ′ contains ≥

k + 1 formulas having the shape ◦A(φ ∪ ψ) (or ¬ ◦ ¬E(φ ∪ ψ), ◦¬E(φ ∪ ψ)). Since
S ; S ′ is a loop, sequent S also contains≥ k+1 formulas having the shape ◦A(φ∪ψ)

(or ¬ ◦ ¬E(φ ∪ ψ), ◦¬E(φ ∪ ψ)).
Since there is no rule (◦W) application between S and S ′, sequent S1 contains

≥ k + 1 formulas having the shape ◦A(φ ∪ ψ) (or ¬ ◦ ¬E(φ ∪ ψ), ◦¬E(φ ∪ ψ)).
We get a contradiction (because sequent S1 contains k such a formulas), and, there-

fore, at least one rule (◦W) application exists between S and S ′.

Theorem 4.2.2 Sequent S is derivable in the sequent calculus PTLwf if and only if
sequent S is derivable in the sequent calculus PTLol .

Proof.
If sequent S is derivable in the sequent calculus PTLol , then it is derivable in

the sequent calculus PTLwf , because every derivation tree in the sequent calculus
PTLol is also a derivation tree in the sequent calculus PTLwf (every ◦-loop is also a
loop and every ◦-loop-axiom is also a loop-axiom).
If sequent S is derivable in the sequent calculus PTLwf then we have a derivation

tree T in the sequent calculus PTLwf . If some tree T leaf contains an axiom φ,Γ →
φ,∆, then it is also an axiom for the sequent calculus PTLol .

63

. . .

...
S3

...
S ′

...
S2

S1
(AU-L)(or (EU-L))

...
S
...

Figure 4.3: Illustration for the proof of the Lemma 4.2.1.
Loop S ; S′, in some inference tree, contains rule (AU-L) (or (EU-L)) application.

If some tree T leaf contains a loop-axiom S1, which is not ◦-loop-axiom. According
to the Lemma 4.2.1, there exist sequents S ′

0, S
′′
0 between sequents S0 and S1 that S ′

0 is a
conclusion and S ′′

0 is premise of the rule (◦W) application.
We can extend tree T into the tree T ′ by applying the same rules for the sequent S1

as for sequent S0 till we reach sequent S ′′
1 = S ′′

0 , or sequent S
′′′ which was a leaf in the

derivation tree T .
After modification, we get a tree T ′ which is still a derivation tree in the sequent

calculus PTLwf . Since S ′′
1 , S

′′
0 contains the same formulas and S

′′
1 , S

′′
0 are premises of

the rule (◦W) application, S ′′
1 is a ◦-loop-axiom.

We apply such a modifications for every loop-axiom, which is not ◦-loop-axiom
in the derivation tree T . Finally, we get a tree T ′′, those every leaf is an axiom or a
◦-loop-axiom. Tree T ′ is a derivation tree in the sequent calculus PTLol . Therefore,
sequent S is also derivable in the sequent calculus PTLol .
Now we prove some lemmas to introduce main restrictions to the loop-check used.

If formula F is a subformula of G we write F ⊆sf G (see Definition 2.1.7), if F
is proper subformula of G (F has less length then G has) we write F ⊂sf G (see
Definition 2.1.9). Ext(F) is formula F extended set (see Definition 2.1.6).

Lemma 4.2.2 If F ⊆sf G and G ⊆sf F , then Ext(F) = Ext(G).

Proof.
The proof goes straightforward from subformula and extended set definitions.

Definition 4.2.10 Formula F is ground in a sequent S if for every formula G ∈ S,
formula F is not a proper subformula of G (F 6⊂sf G).

It is evident, that, for every formula F in a sequent S, there exists formula G in the
sequent S, which is ground and F ⊆sf G, or formula F is ground in the sequent S.

64

Example 4.2.2 Suppose, that a sequent
S = A(φ ∪ ◦¬E(◦ψ ∪ φ)), ◦ψ → E(◦ψ ∪ φ), ◦φ, ◦A(φ ∪ ◦¬E(◦ψ ∪ φ)).
Formulas ◦A(φ ∪ ◦¬E(◦ψ ∪ φ)) and ◦φ are ground in the sequent S, because they

are not proper subformulas of any other formula in the sequent S.
Formulas A(φ ∪ ◦¬E(◦ψ ∪ φ)), E(◦ψ ∪ φ) and ◦ψ are not ground, because they

are proper subformulas of ◦A(φ ∪ ◦¬E(◦ψ ∪ φ)). It is worth to mention, that
A(φ ∪ ◦¬E(◦ψ ∪ φ)) ⊆sf ◦A(φ ∪ ◦¬E(◦ψ ∪ φ)) and
◦A(φ ∪ ◦¬E(◦ψ ∪ φ)) ⊆sf A(φ ∪ ◦¬E(◦ψ ∪ φ)), but
◦A(φ ∪ ◦¬E(◦ψ ∪ φ)) 6⊂sf A(φ ∪ ◦¬E(◦ψ ∪ φ)).

Lemma 4.2.3 If formula F is ground in a sequent S and F ⊆sf G for some formula
G ∈ S, then F,G ∈ Ext(F) = Ext(G).

Proof.
The proof goes straightforward from the ground formula definition and the

Lemma 4.2.2.

Lemma 4.2.4 If F ⊂sf G, and G ⊆sf H (or F ⊆sf G, and G ⊂sf H), then F ⊂sf H

or formulas F,G,H ∈ Ext(F) = Ext(G) = Ext(H).

Proof.
It is evident, that F ⊆sf H . Therefore,

• F ⊂sf H (satisfies lemma), or

• H ⊆sf F . In this case, we get that H ⊆sf F ⊂sf G ⊆sf H

(or H ⊆sf F ⊆sf G ⊂sf H).

According to the Lemma 4.2.2, F,H ∈ Ext(F) = Ext(H), because H ⊆sf F

and F ⊆sf H , andG,H ∈ Ext(G) = Ext(H), becauseH ⊆sf G andG ⊆sf H .
And we get the proof.

We have to notice that F has one of the shape: A(φ ∪ ψ), ◦A(φ ∪ ψ),

E(φ ∪ ψ),¬E(φ ∪ ψ), ◦¬E(φ ∪ ψ),¬ ◦ ¬E(φ ∪ ψ) if Ext(F) 6= ∅.

Lemma 4.2.5 If S ; S ′ is a weak ◦-loop and T is any sequent inside this weak loop,
then any ground formula F in the sequent T is such, that Ext(F) 6= ∅.

Proof.
Since S ; S ′ is a weak ◦-loop, there exists such a sequent S ′

1, that S
′
1 is a conclu-

sion and S ′ is a premise of the rule (◦W) application (see Figure 4.4).
There exists ground formulaG ∈ S, that F ⊆sf G, because sequent S is an ancestor

of the sequent T . Since S ; S ′ is a weak ◦-loop, G ∈ S ′ and ◦G ∈ S ′
1.

65

...
S ′ = G, . . .→ . . .

S ′
1 = ◦G, . . .→ . . .

(◦W)

...
T = F,H, . . .→ . . .

...
S = G, . . .→ . . .

...

Figure 4.4: Illustration for the proof of the Lemma 4.2.5.
◦-loop S ; S′ in some inference tree. We use bold characters for ground formulas, those are
indeed ground (non bold may be ground or not).

...
S ′ = F,H, . . .→ . . .

...
T = G, . . .→ . . .

...
S = F,H, . . .→ . . .

...

...
S ′ = F, H, . . .→ . . .

...
T = G, . . .→ . . .

...
S = H, . . .→ . . .

...
(Case 1) (Case 2)

Figure 4.5: Illustration for the proof of the Lemma 4.2.6.
◦-loop S ; S′ in some inference tree. We use bold characters for ground formulas, those
are indeed ground (non bold may be ground or not). Formula F is indeed not ground in the
sequent T .

There exists ground formula H ∈ T , that ◦G ⊆sf H , because sequent T is an
ancestor of the sequent S ′

1 (or S
′).

We have, that F ⊆sf G, G ⊂sf ◦G, ◦G ⊆sf H . So, according to the Lemma 4.2.4,
F ⊂sf H (we get a contradiction, because F is ground formula in T),
or F,G ∈ Ext(F) = Ext(G) 6= ∅ (satisfies Lemma).

Lemma 4.2.6 Suppose, that S ; S ′ is a weak ◦-loop in the derivation tree constructed
according to the sequent calculus PTLol .
If F is ground formula in the sequent S or in the sequent S ′, then, for every sequent

T in a weak ◦-loop S ; S ′, there exists formula F ′ ∈ Ext(F), which is ground in T .

Proof.
Every rule premise contains only subformulas of the rule conclusion.

• Case 1) Ground formula F ∈ S (see Figure 4.5). Then F ∈ S ′, because S ; S ′

66

is a weak ◦-loop. We show that in every sequent inside a ◦-loop S ; S ′ formula
F ′ ∈ Ext(F) is also ground.

Suppose, that formula F is not ground on some sequent T inside the weak ◦-loop
S ; S ′. So, there exists ground formula G ∈ T , that F ⊂sf G.

There exists ground formula H ∈ S, that G ⊆sf H , because sequent S is an
ancestor of the sequent T . We have that F ⊂sf G and G ⊆sf H . According
to the Lemma 4.2.4, F ⊂sf H ∈ S (contradiction for F being ground in S), or
G ∈ Ext(F) andG is ground in T (satisfies Lemma). We got that if F is ground
in the sequent S, then, for any sequent T in a weak ◦-loop S ; S ′, there exists
formula F ′ ∈ Ext(F) which is ground in T .

• Case 2) Ground formula F ∈ S ′ (see Figure 4.5). We show that in every sequent
inside a weak ◦-loop S ; S ′ formula F or formula F ′ ∈ Ext(F) is also ground.

Suppose, that formula F is not ground on some sequent T inside the weak ◦-loop
S ; S ′. So, there exists ground formula G ∈ T , that F ⊂sf G.

There exists ground formula H ∈ S, that G ⊆sf H , because sequent S is an
ancestor of the sequent T . According to the Lemma 4.2.4, F ⊂sf H or G ∈
Ext(F) (satisfies Lemma). In the case F ⊂sf H , we have that H ∈ S ′, because
S ; S ′ is a weak ◦-loop. Formula F is ground in S ′. Therefore, F 6⊂sf H , and
we get a contradiction, because F ⊂sf H .

We get that if F is ground in the sequent S ′, then F or F ′ ∈ Ext(F) is ground in
every sequent in a weak ◦-loop S ; S ′.

Corollary 4.2.1 If we have an inference tree satisfying the following conditions:

• sequent T is a conclusion and T ′ is a premise of some rule R application,

• there exists a ground formula F in the sequent T ,

• there is no ground formula F ′ ∈ Ext(F) in the sequent T ′.

Then sequent T is not inside any weak ◦-loop S ; S ′.

Proof.
Proof goes straightforward from the Lemma 4.2.5 and the Lemma 4.2.6.
Simple speaking, if some ground formula was deleted during some rule application

(in the bottom-up direction), then we do not need to check any sequent below that rule
application in order to catch a loop. The main problem is to identify such a situation,
because every time we delete some ground formula, at least one new ground formula
appears.

67

Rules (in the calculus PTLol), those may satisfy above conditions, are (AU-L),
(AU-R), (EU-L), (EU-R), then we take left premise, and the rule (◦W). So, we can add
special indexes for until operators to catch such a situation.
We add different upper-indexes for every different subformula A(φ ∪ ψ), E(φ ∪ ψ)

in the initial sequent S. The bottom-index will be a set of indexes.

Definition 4.2.11 IfA(φ∪ψ) (orE(φ∪ψ)) is a subformula in the initial sequent S, then
Ai

U(φ ∪ ψ) (or Ei
U(φ ∪ ψ)) is indexed formula if it satisfies the following conditions:

• i ∈ N is a unique number for every different subformula A(φ∪ψ) (or E(φ∪ψ)).

• U is a set of numbers (upper indexes of the other subformulas).

• If there exists subformula F in a sequent S having the shapeAj
V (γ∪κ),Ej

V (γ∪κ),
that Ai

U(φ ∪ ψ) ⊂sf F , or Ei
U(φ ∪ ψ) ⊂sf F , then j ∈ U and V ⊂ U .

• If there is no subformula F in a sequent S having the shapeAj
V (γ∪κ), Ej

V (γ∪κ),
that Ai

U(φ ∪ ψ) ⊂sf F , or Ei
U(φ ∪ ψ) ⊂sf F , then U = ∅.

It means that every ground formula F in any sequent S have until operators with
an empty set as its bottom index: Ai

∅(φ ∪ ψ), ◦Ai
∅(φ ∪ ψ), Ei

∅(φ ∪ ψ), ¬Ei
∅(φ ∪ ψ),

◦¬Ei
∅(φ ∪ ψ), ¬ ◦ ¬Ei

∅(φ ∪ ψ).

Example 4.2.3 Suppose that we have a sequent S:
◦φ1& ◦ A(◦¬E(φ2 ∪ ◦φ3) ∪ (φ2& ◦ ¬A(φ3 ∪ φ1)))→ A(φ2 ∪ ◦E(φ2 ∪ ◦φ3)).
Sequent S with indexed formulas will be:

◦φ1&◦A1
∅(◦¬E2

{1,4}(φ2∪◦φ3)∪(φ2&◦¬A3
{1}(φ3∪φ1)))→ A4

∅(φ2∪◦E2
{1,4}(φ2∪◦φ3)).

There are 2 subformula E(φ2 ∪ ◦φ3) occurrences, so, they have the same upper
indexes (2). Every other AE subformula has only one occurrence and its upper index is
unique.
Formula E(φ2 ∪ ◦φ3) is a proper subformula of A(φ2 ∪ ◦E(φ2 ∪ ◦φ3)) and

◦φ1&◦A(◦¬E(φ2∪◦φ3)∪(φ2&◦¬A(φ3∪φ1))). Therefore, its bottom index is {1, 3}.
Formula A(φ3 ∪ φ1) is a proper subformula of

◦φ1& ◦ A(◦¬E(φ2 ∪ ◦φ3) ∪ (φ2& ◦ ¬A(φ3 ∪ φ1))), therefore its bottom index is {1}.
Formulas ◦φ1&◦A(◦¬E(φ2∪◦φ3)∪(φ2&◦¬A(φ3∪φ1))) andA(φ2∪◦E(φ2∪◦φ3))

are ground formulas in the sequent S. Therefore, they contain ∅ as their bottom indexes.

Definition 4.2.12 We say that index j is surplus index in the sequent S if:

• there is no subformula in the sequent S with upper-index j,

• there exists such a subformula in the sequent S with bottom-index V , that j ∈ V .

68

In other words, index j is surplus if it occurs as the bottom-index, but it does not
occur as the upper-index in the sequent S.

Definition 4.2.13 If S = Γ→ ∆ is a sequent, then we say that S ′ = [S]+ = [Γ→ ∆]+

is a index-cleaned sequent if S ′ = Γ′ δ→ ∆′ and the following conditions are satisfied:

• If there exists such a surplus index j in the sequent S, then S ′ is a sequent ob-
tained from the sequent S by removing every surplus index. In this case, δ = +.

• If there does not exist any surplus index in the sequent S, then S ′ = S. In this
case, δ is empty.

Definition 4.2.14 Sequent calculus rule (◦+) is:

[Γ
◦→ φ1]

+ || [Γ
◦→ φ2]

+ || . . . || [Γ
◦→ φn]+

◦Γ→ ◦φ1, . . . , ◦φn
(◦+)

• The case n = 0 is allowed and then rule transforms into: [Γ
◦→]+

◦Γ→ (◦+)

• Γ - set of the formulas obtained from ◦Γ by removing the most outer ◦ occurence.

It is obviously, that rule (◦+) is semi-invertable rule.
Rule (Weak∗PTL) may be applied only for the primal sequent and its premise is

always some strict-primal sequent. Rule (◦+) may be applied only for strict-primal se-
quent. We define new rule (◦RLC)which is just a concatenation of the rules (Weak∗PTL)

and (◦+):

Definition 4.2.15 Sequent calculus rule (◦RLC) is:

[Γ
◦→ φ1]

+ || [Γ
◦→ φ2]

+ || . . . || [Γ
◦→ φn]+

Σ, ◦Γ→ Π, ◦φ1, . . . , ◦φn
(◦RLC)

• Σ,Π contains only propositional variables and Σ ∩ Π = ∅.

• The case n = 0 is allowed and then rule transforms into: [Γ
◦→]+

Σ, ◦Γ→ Π (◦RLC)

• Γ - set of the formulas obtained from ◦Γ by removing the most outer ◦ occurence.

69

Definition 4.2.16 Sequent calculus rules (AU − L+), (AU-R+), (EU-L+), (EU-R+)

are:

[ψ,Γ→ ∆]+ φ, ◦Aj
U(φ ∪ ψ),Γ→ ∆

Aj
U(φ ∪ ψ),Γ→ ∆

(AU-L+)

[Γ→ ψ, φ,∆]+ Γ→ ψ, ◦Aj
U(φ ∪ ψ),∆

Γ→ Aj
U(φ ∪ ψ),∆

(AU-R+)

[ψ,Γ→ ∆]+ φ,¬ ◦ ¬Ej
U(φ ∪ ψ),Γ→ ∆

Ej
U(φ ∪ ψ),Γ→ ∆

(EU-L+)

[Γ→ ψ, φ,∆]+ Γ→ ψ,¬ ◦ ¬Ej
U(φ ∪ ψ),∆

Γ→ Ej
U(φ ∪ ψ),∆

(EU-R+)

Simple speaking, if we get a sequent marked by +, we know, that some ground for-
mula was just deleted and loop cannot appear here. If we delete some ground formula
with some upper-index j, we also delete every index j occurence. Then some ground
formula was deleted, we must get some new ground formula. These new ground for-
mulas are formulas containing modalized subformula with an empty set as their bottom
index.
Indexes are some kind of the histories, because they store information about applied

rules. Histories are one of the possible instruments used to make an efficient loop-check
(some calculi with used histories may be found in [29, 38]).

Definition 4.2.17 The sequent calculus with ◦-loop-axiom and with an axiom φ,Γ →
φ,∆, logical rules, and modal rules (◦RLC), (AU-L+), (AU-R+), (EU-L+), (EU-R+)

we define sequent calculus PTLrlc .

We say, that PTLrlc is a sequent calculus with an efficient loop-check for branching
time logic. This sequent calculus contains invertable rules and one semi-invertable rule
(◦RLC).

Theorem 4.2.3 Sequent S is derivable in the sequent calculus PTLol if and only if
sequent S is derivable in the sequent calculus PTLrlc .

Proof.
The proof is straightforward from the Corollary 4.2.1.

Theorem 4.2.4 Sequent calculus PTLrlc is sound and complete sequent calculus for
branching time logic with until operator.

70

Proof.
The proof goes straightforward from the Theorems 4.1.1, 4.2.1, 4.2.2, 4.2.3.
Inference tree construction in the sequent calculus PTLrlc always terminates, be-

cause every rule application contains only the finite premises count, and every sequent
in the inference tree contains only subformulas of the initial sequent, and derivation is
not proceed for every loop-ending sequent.
We obtain an efficient decision procedure for branching time temporal logic if we

use sequent calculus PTLrlc with restricted loop-check (for the both loop types). Since
sequent calculus PTLrlc uses only ◦-loops, we get that:

• loop-check is performed not for every sequent, but only for the sequents, those
are marked by ◦ (those are premises of some rule (◦RLC) application), because
only these sequents may be ◦-loop-ending sequents.

• during loop-check, only sequents marked by ◦ are tested (those are premises
of some rule (◦RLC) application), because only these sequents may be ◦-loop-
starting sequents.

• during loop-check, only the sequents between the current sequent and the first se-
quent marked by + (in the top-down direction) are tested, because every sequent
marked by + is outside any ◦-loop.

Intermediate results related to this chapter are published in [10, 11].

Example 4.2.4 Suppose we have a sequent:
S = ◦A(¬A(φ ∪ ¬(φ ∨ ψ)) ∪ A(γ ∪ (ψ&κ)))→ ◦A(γ ∪ ψ).
Sequent S with indexed formulas is:
S = ◦A1

∅(¬A2
{1}(φ ∪ ¬(φ ∨ ψ)) ∪ A3

{1}(γ ∪ (ψ&κ)))→ ◦A4
∅(γ ∪ ψ).

The following short formula notation is used to denote formulas:

• G1 = A1
∅(¬G2 ∪G3) = A1

∅(¬A2
{1}(φ ∪ ¬(φ ∨ ψ)) ∪ A3

{1}(γ ∪ (ψ&κ))),

• G2 = A2
{1}(φ ∪ ¬(φ ∨ ψ)), G′

2 = A2
∅(φ ∪ ¬(φ ∨ ψ)),

• G3 = A3
{1}(γ ∪ (ψ&κ)), G′

3 = A3
∅(γ ∪ (ψ&κ)),

• G4 = A4
∅(γ ∪ ψ).

71

Sequent S = ◦G1 → ◦G4 inference tree may be the following:

S1

G′
3

+→ G4

A3
∅(γ ∪ (ψ&κ))

+→ G4

⊕
φ, ◦G1 → φ,G4

⊕
ψ, ◦G1 → φ, γ, ψ

⊕
ψ, ◦G1 → φ, ψ, ◦G4

↑
ψ, ◦G1 → φ,A4

∅(γ ∪ ψ)
(AU-R+)

φ ∨ ψ, ◦G1 → φ,G4
(∨L)

◦G1 → φ,¬(φ ∨ ψ), G4
(¬R)

S2

φ ∨ ψ, ◦G1 → ◦G2, G4

◦G1 → ¬(φ ∨ ψ), ◦G2, G4
(¬R)

↑
↑

◦G1 → A2
{1}(φ ∪ ¬(φ ∨ ψ)), G4

(AU-R+)

¬A2
{1}(φ ∪ ¬(φ ∨ ψ)), ◦G1 → G4

(¬L)

A(¬A2
{1}(φ ∪ ¬(φ ∨ ψ)) ∪ A3

{1}(γ ∪ (ψ&κ)))→ G4

(AU-L+)

G1
◦→ G4

◦G1 → ◦G4
(◦RLC)

Inference tree fragment for the sequent S1 is

⊕
ψ, κ

+→ γ, ψ
⊕

ψ, κ→ ψ, ◦G4

ψ, κ→ A4
∅(γ ∪ ψ)

(AU-R+)

↑ (&L)

↑
ψ&κ→ G4

⊕
γ, ◦G′

3
+→ γ, ψ

(◦-loop)⊕
G′

3
◦→ G4

γ, ◦G′
3 → ψ, ◦G4

(◦RLC)

γ, ◦G′
3 → A4

∅(γ ∪ ψ)
(AU-R+)

A3
∅(γ ∪ (ψ&κ))

+→ G4

(AU-L+)

G′
3

+→ G4

S1

Inference tree fragment for the sequent S2 is

S3

G1
◦→ G2

φ, ◦G1
+→ γ, ψ, ◦G2

(◦RLC)

S3

G1
+◦→ G2 ||

(◦-loop)⊕
G1

◦→ G4

φ, ◦G1 → ψ, ◦G2, ◦G4
(◦RLC)

φ, ◦G1 → ◦G2, A
4
∅(γ ∪ ψ)

(AU-R+)

↑
↑
↑
↑

⊕
ψ, ◦G1

+→ γ, ψ, ◦G2

⊕
ψ, ◦G1 → ψ, ◦G2, ◦G4

ψ, ◦G1 → ◦G2, A
4
∅(γ ∪ ψ)

(AU-R+)

φ ∨ ψ, ◦G1 → ◦G2, G4
(∨L)

S2

72

Inference tree fragment for the sequent S3 is
S8

ψ&κ
+→ G′

2

ψ&κ
+→ A2

∅(φ ∪ ¬(φ ∨ ψ))

S4

γ, ◦G′
3 → G′

2

γ, ◦G′
3 → A2

∅(φ ∪ ¬(φ ∨ ψ))

A3
∅(γ ∪ (ψ&κ))

+→ A2
∅(φ ∪ ¬(φ ∨ ψ))

(AU-L+)

↑
↑
↑
↑

S6

◦G1 → G2

¬G2, ◦G1 → G2
(¬L)

A1
∅(¬A2

{1}(φ ∪ ¬(φ ∨ ψ)) ∪ A3
{1}(γ ∪ (ψ&κ)))

+◦→ A2
{1}(φ ∪ ¬(φ ∨ ψ))

(AU-L+)

G1
+◦→ G2

S3

Inference tree fragment for the sequent S4 is

⊕
φ, γ, ◦G′

3 → φ

S10

G′
3

◦→
ψ, γ, ◦G′

3 → φ
(◦RLC)

φ ∨ ψ, γ, ◦G′
3 → φ

(∨L)

γ, ◦G′
3

+→ φ,¬(φ ∨ ψ)
(¬R)

↑
↑
↑
↑
↑
↑

S5

G′
3

◦→ G′
2

φ, γ, ◦G′
3 → ◦G′

2

(◦RLC)

S5

G′
3

◦→ G′
2

ψ, γ, ◦G′
3 → ◦G′

2

(◦RLC)

φ ∨ ψ, γ, ◦G′
3 → ◦G′

2

(∨L)

γ, ◦G′
3 → ¬(φ ∨ ψ), ◦G′

2

(¬R)

γ, ◦G′
3 → A2

∅(φ ∪ ¬(φ ∨ ψ))
(AU-R+)

γ, ◦G′
3 → G′

2

S4

Inference tree fragment for the sequent S5 is

S8

ψ&κ
+→ G′

2

⊕
φ, γ, ◦G′

3 → φ

S10

G′
3

◦→
ψ, γ, ◦G′

3 → φ
(◦RLC)

φ ∨ ψ, γ, ◦G′
3 → φ

(∨L)

γ, ◦G′
3

+→ φ,¬(φ ∨ ψ)
(¬R)

↑
↑
↑
↑
↑
↑

(◦-loop)⊕
G′

3
◦→ G′

2

φ, γ, ◦G′
3 → ◦G′

2

(◦RLC)

(◦-loop)⊕
G′

3
◦→ G′

2

ψ, γ, ◦G′
3 → ◦G′

2

(◦RLC)

φ ∨ ψ, γ, ◦G′
3 → ◦G′

2

(∨L)

γ, ◦G′
3 → ¬(φ ∨ ψ), ◦G′

2

(¬R)

γ, ◦G′
3 → A2

∅(φ ∪ ¬(φ ∨ ψ))
(AU-R+)

A3
∅(γ ∪ (ψ&κ))

◦→ G′
2

(AU-L+)

G′
3

◦→ G′
2

S5

73

Inference tree fragment for the sequent S6 is

⊕
φ, ◦G1 → φ

S7

G1
◦→

ψ, ◦G1 → φ
(◦RLC)

φ ∨ ψ, ◦G1 → φ
(∨L)

◦G1 → φ,¬(φ ∨ ψ)
(¬R)

(◦-loop)⊕
G1

◦→ G2

φ, ◦G1 → ◦G2
(◦RLC)

(◦-loop)⊕
G1

◦→ G2

ψ, ◦G1 → ◦G2
(◦RLC)

φ ∨ ψ, ◦G1 → ◦G2
(∨L)

◦G1 → ¬(φ ∨ ψ), ◦G2
(¬R)

◦G1 → A2
{1}(φ ∪ ¬(φ ∨ ψ))

(AU-R+)

◦G1 → G2

S6

Inference tree fragment for the sequent S7 is

S10

G′
3

+→
A3

∅(γ ∪ (ψ&κ))
+→

⊕
φ, ◦G1 → φ

(◦-loop)⊕
G1

◦→
ψ, ◦G1 → φ

(◦RLC)

φ ∨ ψ, ◦G1 → φ
(∨L)

◦G1 → φ,¬(φ ∨ ψ)
(¬R)

(◦-loop)⊕
G1

◦→ G2

φ, ◦G1 → ◦G2
(◦RLC)

(◦-loop)⊕
G1

◦→ G2

ψ, ◦G1 → ◦G2
(◦RLC)

φ ∨ ψ, ◦G1 → ◦G2
(∨L)

◦G1 → ¬(φ ∨ ψ), ◦G2
(¬R)

◦G1 → A2
{1}(φ ∪ ¬(φ ∨ ψ))

(AU-R+)

↑
↑
↑

¬A2
{1}(φ ∪ ¬(φ ∨ ψ)), ◦G1 →

(¬L)

A1
∅(¬A2

{1}(φ ∪ ¬(φ ∨ ψ)) ∪ A3
{1}(γ ∪ (ψ&κ)))

◦→
(AU-L+)

G1
◦→

S7

Inference tree fragment for the sequent S8 is

⊕
φ, ψ, κ→ φ

(final)
ψ, κ→ φ

φ ∨ ψ, ψ, κ→ φ
(∨L)

ψ, κ
+→ φ,¬(φ ∨ ψ)

(¬R)

S9
◦→ G′

2

φ, ψ, κ→ ◦G′
2

(◦RLC)

S9
◦→ G′

2

ψ, κ→ ◦G′
2

(◦RLC)

φ ∨ ψ, ψ, κ→ ◦G′
2

(∨L)

ψ, κ→ ¬(φ ∨ ψ), ◦G′
2

(¬R)

ψ, κ→ A2
∅(φ ∪ ¬(φ ∨ ψ))

(AU-R+)

ψ&κ
+→ A2

∅(φ ∪ ¬(φ ∨ ψ))
(&L)

S8

Inference tree fragment for the sequent S9 is

⊕
φ→ φ

(final)
ψ → φ

φ ∨ ψ → φ
(∨L)

+→ φ,¬(φ ∨ ψ)
(¬R)

(◦-loop)
◦→ G′

2

φ→ ◦G′
2

(◦RLC)

(◦-loop)
◦→ G′

2

ψ → ◦G′
2

(◦RLC)

φ ∨ ψ → ◦G′
2

(∨L)

→ ¬(φ ∨ ψ), ◦G′
2

(¬R)

◦→ A2
∅(φ ∪ ¬(φ ∨ ψ))

(AU-R+)

◦→ G′
2

S9

74

Inference tree fragment for the sequent S10 is

(final)
ψ, κ→
ψ&κ

+→
(&L)

(◦-loop)⊕
G′

3
◦→

A3
∅(γ ∪ (ψ&κ))

◦→
γ, ◦A3

∅(γ ∪ (ψ&κ))→ (◦RLC)

A3
∅(γ ∪ (ψ&κ))

◦→
(AU-L+)

G′
3

◦→
S10

Since we use short formula notation (using G1, G2, G′
2, G3, G′

3, G4) to denote
formulas, there are used nodes without any rule application. These nodes just rewrites
the same sequent using other notation (short notation instead of the full notation, or
conversely) and, in fact, they are not the part of the inference tree.
We write ⊕ to denote axioms, we write ‘(final)’ to denote final sequents and we

write ‘(◦-loop)’ to denote loop-ending sequents. There are only 2 non axiom ◦-loops:
the ones having the loop-ending sequent ◦→ G′

2 placed in the fragment S9. All other
◦-loops are axioms.
We presented full sequent S inference tree. It is obviously, that some tree branches

may be left unfinished, since we can show that sequent S is non derivable in the sequent
calculus PTLrlc even if some branches are left unfinished.
Presented inference tree is not a derivation tree, and sequent S is non derivable in

the sequent calculus PTLrlc . There is only two or-branches: sequents G1
+◦→ G2 and

G1
◦← G4 placed in the fragment S2. SequentG1

◦← G4 is treated as derivable, because
it is a ◦-loop axiom. Sequent G1

+◦→ G2 is treated a non derivable, because it contains
final sequents in its inference tree (see fragment S3) and no or-branches.
Sequent S inference tree contains a lot of the rule (◦RLC) applications and loops.

All the count information is placed in the following table:

Sequent Loop count Rule (◦RLC) applications Height All rule count

S10 1 1 2 3

S9 2 2 4 7

S8 4 6 9 22

S7 4 4 6 13

S6 6 7 10 21

S5 7 10 10 34

S4 15 24 14 79

S3 35 37 16 125

S2 51 75 19 255

S1 1 1 3 5

S 52 77 24 268

75

Inference tree contains the sequents marked by ◦ and the sequents marked by +.
If sequent S ′ is marked by ◦, then S ′ is potentially a ◦-loop-ending (and a ◦-loop-
starting) sequent and loop-check must be performed for it. If loop-check is performed
for the sequent S ′, then from zero to several sequents are tested (the sequents those
are potentially a ◦-loop-starting sequents). Only the ancestor sequents marked by ◦ are
tested. Moreover, the sequents placed below sequent marked by + are not tested.
Since only sequents marked by ◦ are used in the loop-check in the sequent calculus

PTLrlc , and only sequents till the first sequent (in the top-down direction) marked
by + are tested, we get that loop-check is performed only for 77 sequents and only 58

sequents are tested during loop-check. In this example, only for 2 sequents (marked
by ◦) during loop-check 2 ancestor sequents are tested. These sequents are sequents
G1

◦→ G2 placed in the inference tree fragment S7 (and 2 tested sequents are G1
◦→

placed in S7 and G1
+◦→ G2 placed in S3). For all other sequents (marked by ◦) during

loop-check only one or zero ancestor sequents are tested. This is the reason, why we
get the less count of the tested sequents then there are sequents marked by ◦.
For the comparison, loop-check is performed for every sequent from the inference

tree in the sequent calculus PTLwf (and we have more then 268 sequents, because
there are 268 rules applications). For every sequent from 0 to 24 sequents are tested,
because inference tree has maximum height = 24. Therefore, restricted loop-check
used in the sequent calculus PTLrlc is essentially better then loop-check used in the
sequent calculus PTLwf .

4.3 Complexity Results for Sequent Calculus PTLrlc

In this section, complexity results for the loop-check used in the introduced sequent
calculus PTLrlc are presented. Applied restrictions radically reduce the time used for
the loop-check. Proven upper bound of the tested sequents during loop-check illus-
trates, that the new sequent calculus with an efficient loop-check for branching time
logic improves the decision procedure performance.
We use different modalized formulas counts and formulas modality depth (see De-

finition 2.1.10) to evaluate sequent calculus PTLrlc complexity.
In this section, if S is an initial sequent, then

• ma denotes the count of the different AE subformulas (formulas having the shape
Aβ

α(φ ∪ ψ) or Eβ
α(φ ∪ ψ)),

• m◦ denotes the count of the different modalized subformulas having the shape
◦φ, those are not extended AE formulas,

• m = ma +m◦,

76

• k′ denotes logical operators count,

• k = k′ + 3 ·ma (maximum count of the logical and until rules applied consecu-
tively),

• d denotes initial sequent S modality depth.

The maximum possible count of the logical rules and rules (AU-L+), (AU-R+),
(EU-L+), (EU-R+) applied consecutively in the inference tree is denoted by k. There
may be at mostma rules (AU-L+), (AU-R+), (EU-L+), (EU-R+) applications. Premise
of the rule (EU-L+) (or (EU-R+)) application may contain 2 new logical operators
¬ (not presented in rule conclusion). Therefore, there may be applied at most k =

k′ +ma + 2 ·ma rules (logical and until rules) consecutively.
We have to mention, that ma counts only AE subformulas (not every extended AE

formula) and m◦ do not include extended AE subformulas. This is illustrated in the
Example 4.3.1.

Example 4.3.1 Suppose that we have a sequent S:
◦φ1& ◦ A(◦¬E(φ2 ∪ ◦φ3) ∪ ◦φ1), ◦E(φ2 ∪ ◦φ3)→ A(φ2 ∪ ◦E(φ2 ∪ ◦φ3)).
Sequent S with indexed formulas will be:

◦φ1&◦A1
∅(◦¬E2

{1,3}(φ2∪◦φ3)∪◦φ1), ◦E2
{1,3}(φ2∪◦φ3)→ A3

∅(φ2∪◦E2
{1,3}(φ2∪◦φ3)).

There are 3 subformula E(φ2 ∪ ◦φ3) occurrences, so, they have the same upper-
index. Subformula E(φ2∪◦φ3) are proper subformula of A(◦¬E(φ2∪◦φ3)∪◦φ1) and
A(φ2 ∪ ◦E(φ2 ∪ ◦φ3)), and, therefore, its bottom-index is {1, 3}.
Formulas ◦φ1&◦A1

∅(◦¬E2
{1,3}(φ2∪◦φ3)∪◦φ1) and A3

∅(φ2∪◦E2
{1,3}(φ2∪◦φ3)) are

ground formulas in the sequent S. Formula ◦E2
{1,3}(φ2 ∪ ◦φ3) is not a ground formula,

because it is a proper subformula of the formula A3
∅(φ2 ∪ ◦E2

{1,3}(φ2 ∪ ◦φ3)).
Sequent S contains only ma = 3 different AE subformulas (this count is equal

to the maximum upper index). Sequent S contains only m◦ = 3 different modal-
ized subformulas having the shape ◦ψ, those are not extended AE formulas: ◦φ1, ◦φ3,
◦E2

{1,3}(φ2 ∪ ◦φ3).
We have to mention, that formulas

◦¬E2
{1,3}(φ2 ∪ ◦φ3) and ¬E2

{1,3}(φ2 ∪ ◦φ3) ∈ Ext(E2
{1,3}(φ2 ∪ ◦φ3)),

but ◦E2
{1,3}(φ2 ∪ ◦φ3) /∈ Ext(E2

{1,3}(φ2 ∪ ◦φ3)).
Formulas ◦φ1, ◦φ3 have modality depth= 1. Formula ◦E2

{1,3}(φ2∪◦φ3) has modal-
ity depth = 3. Formula A3

∅(φ2 ∪ ◦E2
{1,3}(φ2 ∪ ◦φ3)) has modality depth = 4.

Formula ◦A1
∅(◦¬E2

{1,3}(φ2 ∪ ◦φ3) ∪ ◦φ1) has modality depth only = 3. ◦A(. . .)

and ◦¬E(. . .) are counted as one modality, because they are extended AE formulas (see
Definition 2.1.10.).
Therefore, sequent S modality depth is 4 = max(3, 3, 4).

77

Lemma 4.3.1 Suppose that we have ki different modalized subformulas (AE subfor-
mulas or subformulas of the shape ◦φ, those are not extended AE formulas) having
modality depth = i. If so, then any branch in the sequent S inference tree contains at
most k1 · k2 · . . . · kd rule (◦RLC) applications.

Proof.
If formulas F ′ and F ′′ are the same subformula in the sequent S, then any non

axiom sequent in the sequent S inference tree contains at most one of the formulas F ′

and F ′′.
Suppose that subtree T ′ is such a sequent S inference tree branch, that it contains

the maximum rule (◦RLC) application count.
Suppose, that sequents S1, S2, . . . , Sn and S ′

1, S
′
2, . . . , S

′
n are such a sequents on the

branch T ′, that the following conditions are satisfied:

• S is an ancestor of S1 and there is no rule (◦RLC) application between S and S1,

• sequents S1, S2, S3, . . . , Sn are non axiom primary sequents,

• Sequents S ′
i are such, that Si is a conclusion and S ′

i is a premise of the rule (◦RLC)

application (for every i = 1, 2, . . . , n).

We use mathematical induction according modality depth d to prove this fact.
If d = 1. Sequent S ′

1 do not contain any formula of the shape ◦φ (there may be left
only extended AE formulas), because d = 1.
Suppose that S ′

1 contains k
′ ≤ k1 extended AE formulas, then S ′

2 contains k
′′ ≤ k′

extended AE formulas. If k′′ = k′ then we have a ◦-loop S ′
1 ; S ′

2 (and inference tree
construction stops). If k′′ < k′, then we proceed the same arguments for S ′

2 as for S
′
1.

Since any rule (including (◦RLC)) do not increase count of the extended AE formulas,
after k1 rule (◦RLC) applications we get a sequent without modalized formulas, or we
get a ◦-loop. Therefore, any branch in the sequent S inference tree contains at most k1

rule (◦RLC) applications.
Assumption of the mathematical induction: if sequent S modality depth d′ < d,

then sequent S inference tree contains at most k1 · k2 · . . . · kd′ rule (◦RLC) applications.
Suppose, that sequent S has modality depth = d.
If S ′ and S ′′ are sequents on the same inference tree, S ′ is an ancestor of S ′′, there

is a ground formula G in the sequent S ′, but there is no ground formula G (or ground
G′ ∈ Ext(G)) in the sequent S ′′, then there is no formula G (or G′ ∈ Ext(G)) in any
sequent S ′′′, which is placed above the sequent S ′′ (S ′′ is an ancestor of the sequent S ′′′).
Simply speaking, if we delete ground formula in the sequent S ′, then we cannot get it
above the sequent S ′, because all above sequents contain only subformulas of the S ′.

78

If formula ◦φ is not a ground formula in the sequent Si, then there exists a ground
formulaG (in the sequent Si), that ◦φ ⊂sf G. SinceG also has the shape ◦ψ (sequent Si

contains only propositional variables or only formulas having the shape ◦ψ), G modal-
ity depth is greater then ◦φ modality depth (because there exists only one extended AE
subformula F ′ ∈ Ext(F) having the shape ◦φ).
If formula F in the sequent Si has modality depth d, then F is a ground formula

in the sequent Si, because all formulas in the sequent Si contains only propositional
variables (having modality depth = 0) or only formulas having the shape ◦φ.
Sequent S contains kd ground formulas, those has modality depth = d (there may

exist other ground formulas, those has modality depth < d). Therefore S1 contains
m ≤ kd ground formulas, those have modality depth = d. Suppose, that any sequent
in S1, S2, S3, . . . , Sl contains all the ground formulas having modality depth = d (we
indicate them with ◦G1, ◦G2, . . . , ◦Gm). Since ◦G1, ◦G2, . . . , ◦Gm are the only for-
mulas those have modality depth = d, all other modalized formulas in any sequent Si

have modality depth < d. Therefore, there exists l ≤ k1 · k2 · . . . · kd−1 rule (◦RLC)

applications between S1 and Sl.
If we delete one ground formula (having modality depth = d) we can have at most

l rule (◦RLC) applications till the next ground formula (having modality depth = d)
deletion.
If some sequent Sp do not contain any formula from ◦G1, ◦G2, . . . , ◦Gm, then se-

quent S ′
p modality depth < d and, according assumption, we get that sequent Sp infer-

ence tree contains at most k1 · k2 · . . . · kd−1 rule (◦RLC) applications.
Therefore, there exist at mostm · l ≤ kd · (k1 ·k2 ·k3 · . . . ·kd−1) ≤ k1 ·k2 ·k3 · . . . ·kd

rule (◦RLC) applications between S1 and Sn.
According to mathematical induction, any branch in the sequent S inference tree

contains at most k1 · k2 · . . . · kd rule (◦RLC) applications.

Lemma 4.3.2 Suppose that sequent S has modality depth d and contains m different
modalized subformulas (AE subformulas or subformulas of the shape ◦φ, those are not
extended AE formulas), then any branch in the sequent S inference tree has at most
(m

d
)d rule (◦RLC) applications.

Proof.
Suppose that ki is the count of the different modalized subformulas (extended AE

subformulas or subformulas of the shape ◦φ) having modality depth = i (for every
i = 1, 2, . . . , d). According to the Lemma 4.3.1, any branch in the sequent S inference
tree contains at most k1·k2·. . .·kd rule (◦RLC) applications. Sincem = k1+k2+. . .+kd,
any branch in the sequent S inference tree contains
≤ k1 · k2 · . . . · kd ≤

m

d
· m
d
· . . . · m

d︸ ︷︷ ︸
d times

= (m
d
)d rule (◦RLC) applications.

79

These two lemmas (the Lemma 4.3.1 and the Lemma 4.3.2) shows the upper bound
for the inference tree height in the sequent calculus PTLrlc . Since sequent calculi
PTLwf and PTLrlc constructs the same inference trees, both lemmas are also valid for
the sequent calculus PTLwf .

Lemma 4.3.3 Suppose that sequent S has modality depth d, contains ma different AE
subformulas, m◦ different modalized subformulas having the shape ◦φ, those are not
extended AE formulas, and k′ logical rules. If k = (k′ + 3 ·ma) and m = ma + m◦,
then any branch in the sequent S inference tree has height ≤ k · (m

d
)d.

Proof.
According to the Lemma 4.3.2, any branch in the sequent S inference tree has

at most (m
d
)d rule (◦RLC) applications. Between two rule (◦RLC) applications, only

logical rules and rules (AU-L+), (AU-R+), (EU-L+), (EU-R+) are applied. Rules
(AU-L+), (AU-R+), (EU-L+), (EU-R+) may be applied at most ma times. If it is the
rule (EU-L+) or rule (EU-R+), then premise may contain 2 new logical operations ¬.
So, between two rule (◦RLC) applications, at most k′ +ma + 2 ·ma = k′ + 3 ·ma = k

rules may be applied. Therefore, any branch in the sequent S inference tree has height
≤ k · (m

d
)d.

Lemma 4.3.4 Suppose that sequent S has modality depth d and contains m different
modalized subformulas (AE subformulas or subformulas having the shape ◦φ, those
are not extended AE formulas), then any weak ◦-loop S ; S ′ in the sequent calculus
PTLrlc contains at most (m

d
)d−1 rule (◦RLC) applications.

Proof.
According to the Lemma 4.2.6, any weak ◦-loop contains the same ground formu-

las (those are extended AE formulas). Suppose that ki is the count of the different
modalized subformulas (AE subformulas or subformulas of the shape ◦φ, those are not
extended AE formulas) having modality depth = i (for every i = 1, 2, . . . , d). Only
ground formulas have modality depth = d.
Therefore, according to the Lemma 4.3.1 proof, there are at most k1 · k2 · . . . · kd−1

rule (◦RLC) applications inside weak ◦-loop S ; S ′. Since k1 + k2 + . . . + kd−1 <

k1 + k2 + . . . + kd = m, then any weak ◦-loop S ; S ′ in the sequent calculus
PTLrlc contains at most
k1 · k2 · . . . · kd−1 ≤

m

d
· m
d
· . . . · m

d︸ ︷︷ ︸
d−1 times

= (m
d
)d−1 rule (◦RLC) applications.

Lemma 4.3.4 says, that, during loop-check, at most (m
d
)d−1 sequents are tested for

every sequent inside the sequent S inference tree in the sequent calculus PTLrlc . For
the comparison, during loop-check at most k ·(m

d
)d sequents are tested for every sequent

80

inside the sequent S inference tree in the sequent calculus PTLinit . Moreover, in the
sequent calculus PTLinit , loop-check is performed for every sequent in the sequent S
inference tree, and, in the sequent calculus PTLrlc , loop-check is performed only for
sequents, those are rule (◦RLC) premises. Therefore, sequent calculus PTLrlc greatly
restricts loop-check performed.
To be precise, sequent S inference tree in the sequent calculus PTLrlc contains at

most m(m
d

)d
rule applications. So, loop-check is performed at most m(m

d
)d
times. Ac-

cording to the Lemma 4.3.4, every loop-check tests at most (m
d
)d−1 sequents. Therefore,

during sequent S inference tree construction, in the sequent calculus PTLrlc , there are
at most (m

d
)d−1 ·m(m

d
)d
sequents tested for the loop-check.

For the comparison, sequent S inference tree in the calculus PTLwf (PTLinit)
have the same size like sequent S inference tree in the sequent calculus PTLrlc (with
some generalization, they create the same inference trees). Every logical rule and rules
(AU-L+), (AU-R+), (EU-L+), (EU-R+) have at most 2 premises and rule (◦RLC)

may have m premises. According to the Lemmas 4.3.2 and 4.3.4, sequent S in-
ference tree contains at most m(m

d
)d · 2(k·(m

d
)d−(m

d
)d) sequents. In the sequent cal-

culus PTLwf (PTLinit), loop-check is performed for every sequent in the infer-
ence tree and every ancestor sequent is tested. Therefore, during sequent S infer-
ence tree construction, in the sequent calculus PTLwf (PTLinit), there are at most
k · (m

d
)d ·m(m

d
)d · 2((k−1)·(m

d
)d) sequents tested for the loop-check.

Of course there are only the upper bounds for the loop-check, and they are not
accessible, but numbers

(m
d
)d−1 ·m(m

d
)d
and k · (m

d
)d ·m(m

d
)d · 2((k−1)·(m

d
)d) are more then self-explanatory.

81

Chapter 5

Sequent Calculi With an Efficient
Loop-check for BDI Logics

In this chapter, new sequent calculi for monoagent and multiagentBDI logics are intro-
duced. BDI logic is used to describe agents using their beliefs, desires and intentions.
Special modalities are used to represent beliefs, desires, intentions and some modali-
ties to represent time. Therefore, BDI logic is a combination of several modal logics.
In this chapter, sequent calculi for the fragments of the BDI logics (introduced in the
previous chapters) are combined to get sequent calculi with an efficient loop-check for
BDI logics.
In this chapter, monoagent and multiagent BDI logics are researched. For monoa-

gent BDI logic, only logical operators (¬, ∨, &) and modal operators B, D, I, B∗, ◦,
A, E, Aα

β , E
α
β are used. Formulas, those contain other modal operators are not well-

formed formulas for monoagent BDI logic. For multiagent BDI logic, only logical
operators (¬, ∨, &) and modal operatorsBi,Di, Ii,B∗

i , ◦, A, E, Aα
β , E

α
β are used. For-

mulas, those contain other modal operators are not well-formed formulas for multiagent
BDI logic.

5.1 Calculi for BDI Logic

In this section, known calculi for monoagent BDI logic are presented. Hilbert style
axiomatization, sound and complete sequent calculus for BDI logic are given.

BDI is multimodal logic used to describe agents via their beliefs, desires and inten-
tions. BDI logic is widely described by M. Wooldridge in [52]. Usually, BDI logic is
a combination of several modal logics and branching time logic. Therefore, BDI logic
deals with several modalities:

• Belief, which is represented by a modal operator B, which is a modality of the

82

modal logic KD45. In Chapter 3, we presented a loop-check free sequent calcu-
lus for KD45 logic.

• Intend, which is represented by a modal operator I, which is a modality of the
modal logic KD.

• Desire, which is represented by a modal operator D, which is a modality of the
modal logic KD.

• Next and Until modalities are represented by modal operators ◦, A(φ ∪ ψ) and
E(φ ∪ ψ) those are branching time logic until modalities. In Chapter 4, we
presented sequent calculus for branching time logic, which uses an efficient loop-
check.

Since, BDI logic uses modalities from KD45, KD and branching time logic
(CTL), Hilbert style axiomatization is the following:

Definition 5.1.1 Hilbert type calculus for BDI logic is calculus with classical non
modal axioms and modal axioms as follows:

• (B-K) B(φ→ ψ)→ (Bφ→ Bψ),

• (B-D) Bφ→ ¬B¬φ,

• (B-4) Bφ→ BBφ,

• (B-5) ¬Bφ→ B¬Bφ,

• (D-K) D(φ→ ψ)→ (Dφ→ Dψ),

• (D-D) Dφ→ ¬D¬φ,

• (I-K) I(φ→ ψ)→ (Iφ→ Iψ),

• (I-D) Iφ→ ¬I¬φ,

• EX true & AX true,

• AG(ξ → (¬ψ&EXξ))→ (ξ → ¬A(φ ∪ ψ),

• AG(ξ → (¬ψ&EXξ))→ (ξ → ¬AFψ),

• AG(ξ → (¬ψ&(φ→ AXξ)))→ (ξ → ¬E(φ ∪ ψ)),

• AG(ξ → (¬ψ&AXξ))→ (ξ → ¬EFψ),

• AG(φ→ ψ)→ (EXφ→ EXψ),

83

and rules:

φ, φ→ ψ
ψ

,
φ

B φ
,

φ
D φ

,
φ
I φ

,
φ

AG φ
.

Here

• EFφ ≡ E(true ∪ φ),

• AGφ ≡ ¬EF¬φ,

• AFφ ≡ A(true ∪ φ),

• EGφ ≡ ¬AF¬φ,

• EX(φ ∨ ψ) ≡ EXφ ∨ EXψ,

• AXφ ≡ ¬EX¬φ,

• E(φ ∪ ψ) ≡ ψ ∨ (ψ&EXE(φ ∪ ψ)),

• A(φ ∪ ψ) ≡ ψ ∨ (ψ&AXA(φ ∪ ψ)),

• modal operator AX stands for ◦ operator.

A.S. Rao, M. Georgeff in the work [45] presents decision procedure for multia-
gent branching time BDI logic. They provide sound and complete axiomatizations and
presents tableau-based decision procedure for formula satisfability and validity. Ac-
cording them, complexity of these decision procedures is not greater than the complex-
ity of used temporal logics.
In [39], N. NIDE and T. Shiro presented sequent calculus for BDI logic, which

uses branching time logic with until operators for time representation.

Definition 5.1.2 Sequent calculus rule (BEL) is:

Γ,BΓ→ Θ,BΘ,B∆
BΓ→ BΘ,B∆ (BEL)

• Θ is empty or only one formula.

• Γ - set of the formulas obtained from BΓ by removing the most outer B oc-
curence.

Rule (BEL) is the same rule as the sequent calculus KD45init modal rule (2) for
KD45 logic used in Chapter 3. Here we use different notation, because B is only one
modality of the modalities used in the BDI logic.

84

Definition 5.1.3 Sequent calculus rules (INT) and (DES) are:

Γ→ Θ
IΓ→ IΘ (INT) Γ→ Θ

DΓ→ DΘ (DES)

• Θ is empty or only one formula.

• Γ - set of the formulas obtained from IΓ or DΓ by removing the most outer I or
D occurence respectively.

Definition 5.1.4 The sequent calculus with a loop-axiom and with an axiom
φ,Γ→ φ,∆, logical rules, rule (Weak) and modal rules (BEL), (INT), (DES), (◦),
(AU-L), (AU-R), (EU-L), (EU-R) we define sequent calculus BDIinit .

We say, that BDIinit is an initial sequent calculus for BDI logic. This sequent
calculus contains non invertable (and non semi-invertable) rule (Weak), and semi-
invertable rules (INT), (DES), (◦). Therefore, at least some derivation tactics is
necessary to get decidability.

Theorem 5.1.1 Sequent calculus BDIinit is sound and complete calculus for BDI
logic.

Proof.
The proof was presented by N. NIDE and T. Shiro in [39].
We have sound and complete system for BDI logic based on the sequent calculus.

It is a cut free sequent calculus, which uses loop-check to get decidability. Decision
procedure based on the sequent calculus BDIinit uses inefficient (direct) loop-check
(together with special derivation tactics). The authors mentioned, that the purpose was
to get soundness and completeness, but efficiency was not the main goal. In this chap-
ter, we present new sequent calculus, which is much more efficient and is equivalent to
the sequent calculus BDIinit .

5.2 Sequent Calculus With an Efficient Loop-check for

BDI Logic

In this section, new sequent calculus with an efficient loop-check for monoagent BDI
logic is introduced. Introduced sequent calculus is a combination of the loop-check
free sequent calculus forKD45 logic introduced in Chapter 3, loop-check free sequent
calculus for KD logic (well known calculus) and sequent calculus with an efficient
loop-check for branching time logic introduced in Chapter 4.
First of all we present weak free sequent calculus for BDI logic which contains

only invertable or semi-invertable rules.

85

We use the proven fact (in [39]), that any two different loops (in the sequent calculus
BDIinit) cannot overlap. This fact enables us to apply restrictions, presented forKD45

logic and for branching time logic, for BDI logic as well.
Sequent calculus BDIwf (and BDIinit) do not use marked modal operator B∗,

but such a marked operator is used in the sequent calculus BDIelc (introduced later).
Therefore, we also use marked modal operator B∗ in the following definitions, since
they are applicable for the both calculi.

Definition 5.2.1 We say that sequent
Σ,BΓ1,B

∗Γ′
1,DΓ2, IΓ3, ◦Γ4 → Π,B∆1,B

∗∆′
1,D∆2, I∆3, ◦∆4

is a primal sequent for BDI logic if:

• Σ,Π - finite (may be empty) sets of propositional variables, Σ ∩ Π = ∅.

Definition 5.2.2 We say that sequents:

• BΓ,B∗Γ′ → B∆,B∗∆′,

• DΓ→ D∆,

• IΓ→ I∆,

• ◦Γ→ ◦∆,

are strict-primal sequents for BDI logic.

Definition 5.2.3 Sequent calculus rule (Weak∗) is:

BΓ1 → B∆1 || DΓ2 → D∆2 || IΓ3 → I∆3 || ◦ Γ4 → ◦∆4

Σ,BΓ1,DΓ2, IΓ3, ◦Γ4 → Π,B∆1,D∆2, I∆3, ◦∆4
(Weak∗)

• Σ,Π - finite (may be empty) sets of propositional variables, Σ ∩ Π = ∅.

Simple speaking, rule (Weak∗) is just a rule (Weak), which is restricted to be used
only for primal sequent.

Definition 5.2.4 Sequent calculus rule (BELor) is:

Γ,BΓ→ φ1,Bφ1, . . . ,Bφn || . . . || Γ,BΓ→ φn,Bφ1, . . . ,Bφn

BΓ→ Bφ1, . . . ,Bφn
(BELor)

• The case n = 0 is allowed and then rule transforms into:
Γ,BΓ→
BΓ→ (BELor)

• Γ - set of the formulas obtained from BΓ by removing the most outer B oc-
curence.

86

This is the same rule used for KD45 logic (see Definition 3.2.4). In this chapter
we deal with several operators, so, we use operator B instead of 2 and rule (BELor)

instead of the rule (2or).

Definition 5.2.5 Sequent calculus rules (INT or) and (DESor) are:

Γ→ φ1 || Γ→ φ2 || . . . || Γ→ φn

IΓ→ Iφ1, . . . , Iφn
(INT or)

Γ→ φ1 || Γ→ φ2 || . . . || Γ→ φn

DΓ→ Dφ1, . . . ,Dφn
(DESor)

• The case n = 0 is allowed and then rules transforms into:

Γ→
IΓ→ (INT or) and Γ→

DΓ→ (DESor)

• Γ - set of the formulas obtained from IΓ or DΓ by removing the most outer I or
D occurence.

Definition 5.2.6 The sequent calculus with a loop-axiom and with an axiom
φ,Γ → φ,∆, logical rules, rule (Weak∗) and modal rules (BELor), (INT or),
(DESor), (◦or), (AU-L), (AU-R), (EU-L), (EU-R) we define sequent calculus
BDIwf .

We say, that BDIwf is a weak free sequent calculus for BDI logic. This sequent
calculus contains semi-invertable rules: (Weak∗), (INT or), (DESor), (◦or). All the
rest rules are invertable.

Theorem 5.2.1 Sequent S is derivable in the sequent calculus BDIinit if and only if
sequent S is derivable in the sequent calculus BDIwf .

Proof.
If a sequent S is derivable in the BDIinit , then we have a derivation tree which

uses rules (¬L), (¬R), (∨L), (∨R), (&L), (&R), (BEL), (DES), (INT), (AU-L),
(AU-R), (EU-L), (EU-R), (◦), and (Weak). First, we have to eliminate every rule
(Weak) application from the inference tree. There are the following cases of the rule
(Weak) application:

1. The premise sequent of the rule (Weak) application is an axiom. Then we can
delete such a rule (Weak) application at all, since the conclusion sequent of the
rule (Weak) application is also an axiom.

2. Rule (Weak) is consecutively applied two times. Then we can transform such a
part of the tree to use only one application of the rule (Weak). For this purposes
we use the transformation Trans1 as in the proof of the Theorem 3.2.1.

87

3. Rules (Weak) and (BEL) are consecutively applied (in the bottom-up direc-
tion). In this case, we change the rule (BEL) application by the new rules
(Weak∗) and (BELor) applications. For this purposes we use the transformation
Trans3 as in the proof of the Theorem 3.2.1, but we use rule (Weak∗) instead of
the rule (Weak∗KD45) to get a strict-primal sequent. Note that rule (2) (used in
the Trans3) is the same rule (BEL).

4. Rules (Weak) and (DES) are consecutively applied (in the bottom-up direc-
tion). In this case, we change the rule (DES) application by the new rules
(Weak∗) and (DESor) applications. We denote the main formula of the rule
(DES) application by Dφ1 (may be empty). We denote all other not deleted
modalized formulas by D∆ = Dφ2, . . . ,Dφk and all deleted modalized formu-
las byD∆′ = Dφk+1, . . . ,Dφn. Then the transformation is:

. . .
Γ→ φ1

DΓ2 → Dφ1
(DES)

Σ,BΓ1,DΓ2,DΓ′
2, IΓ3, ◦Γ4 → Π,B∆1,Dφ1, . . . ,Dφn, I∆3, ◦∆4

(Weak)

⇓

. . .
S1 ||

. . .
Γ2 → φ1

Γ2,Γ
′
2 → φ1

(Weak)|| . . . ||
(redundant)

. . .
Γ2,Γ

′
2 → φn

DΓ2,DΓ′
2 → Dφ1, . . . ,Dφn

(DESor) ||
. . .
S3 ||

. . .
S4

Σ,BΓ1,DΓ2,DΓ′
2, IΓ3, ◦Γ4 → Π,B∆1,Dφ1, . . . ,Dφn, I∆3, ◦∆4

(Weak∗)

Here:

(redundant)
. . .

BΓ1 → B∆1

S1 ,

(redundant)
. . .

IΓ3 → I∆3

S3 ,

(redundant)
. . .

◦Γ4 → ◦∆4

S1 .

Sequents S1; S3; S4; Γ2,Γ
′
2 → φ2; Γ2,Γ

′
2 → φ3; . . . ; Γ2,Γ

′
2 → φn are some

unused or-branches of the derivation tree, because we get a derivation tree (in
the calculus BDIinit) by choosing formulaDφ1 as the main for the rule (DES)

application.

5. Rules (Weak) and (INT) are consecutively applied (in the bottom-up direction).
We use analogous transformations as in the Case 4.

6. Rule (Weak) and rule R is consecutively applied (in the bottom-up direction)
(rule R is one of the (¬L), (¬R), (∨L), (∨R), (&L), (&R), (AU-L), (AU-R),
(EU-L), (EU-R)). We can change the order of these rules applications (the rule
(Weak) will appear above the rule R application). For this purposes we use
analogous transformations to the Trans2 and the Trans5 as in the proof of the
Theorem 3.2.1 and in the proof of the Theorem 4.2.1.

88

7. Rules (Weak) and (◦) are consecutively applied (in the bottom-up direction). In
this case, we change rule (◦) application by the new rules (Weak∗) and (◦or)

applications. For this purposes we use transformation Trans6 as in the proof of
the Theorem 4.2.1, but we use rule (Weak∗) instead of the rule (Weak∗PTL) to
get a strict-primal sequent.

By applying such a transformations in the bottom-up direction, we eliminate all
applications of the rule (Weak) from the sequent S derivation tree. After these trans-
formations, we get a derivation tree for the sequent calculusBDIwf , therefore, sequent
S is also derivable in the calculus BDIwf .
If a sequent S is derivable in the BDIwf , then we have derivation tree, which uses

rules (¬L), (¬R), (∨L), (∨R), (&L), (&R), (BELor), (DESor), (INT or), (AU-L),
(AU-R), (EU-L), (EU-R), (◦or), and (Weak∗)We can apply another transformations:

1. We change rule (Weak∗) application into the rule (Weak) application.

2. We change rule (BELor) application into (BEL) rule application as it is done
with transformation Trans4 in the proof of the Theorem 3.2.1.

3. We change rule (◦or) application into (◦) rule application as it is done with trans-
formation Trans7 in the proof of the Theorem 4.2.1.

4. We change rule (DESor) application into (DES) rule application using the fol-
lowing transformation. After rule (DESor) application, we can get n sequents.
At least one of them is derivable if the father sequent is derivable. If the ini-
tial sequent S is derivable, then we can leave only one branch from or-branches
which is derivable in the BDIwf . Suppose that we have chosen such a derivable
branch and marked it as derivable. All other or-branches become redundant and,
therefore, we mark them as redundant. Suppose that derivable branch is obtained
by taking premise with Dφ1 (for the case n = 0, Dφ1 and φ1 denotes an empty
sequents) and apply transformation:

(derivable)
. . .

Γ→ φ1 ||
(redundant)

. . .
Γ→ φ2 || . . . ||

(redundant)
. . .

Γ→ φn

DΓ→ Dφ1,Dφ2, . . . ,Dφn
(DESor)

⇓
(derivable)

. . .
Γ→ φ1

DΓ→ Dφ1
(DES)

DΓ→ Dφ1,Dφ2, . . . ,Dφn
(Weak)

5. We change rule (INT or) application into (INT) rule application using analo-
gous transformations as in the Case 4.

89

By applying such a transformations, we eliminate all the applications of the rules
(Weak∗), (BELor) (DESor) (INT or), (◦or) from the derivation tree. After these
transformations, we get a derivation tree for the sequent calculus BDIinit , therefore,
sequent S is also derivable in the BDIinit .

Definition 5.2.7 We say that loop S ; S ′ is a Belief type loop if at least one (BELor)

(or (BEL∗), (BELor
i), (BEL∗

i)) rule is applied between sequents S and S
′.

Definition 5.2.8 We say that loop S ; S ′ is a Until type loop if at least one (◦or) (or
(◦+)) rule is applied between sequents S and S ′.

Lemma 5.2.1 If S ; S ′ is a loop in a the sequent calculus BDIwf , then there is no
rules (DESor), (INT or) applications between sequents S and S ′.

Proof.
The precise proof is placed in [39]. Briefly, any rule (DESor) (or (INT or)) appli-

cation decrease the number of the D (or I) modal operators. There is no rule, which
may increase the number of the D (or I) modal operators. Therefore, we get a contra-
diction for loop S ; S ′ existence.

Lemma 5.2.2 Any loop S ; S ′ in the sequent calculus BDIwf is either a Belief type
loop or Until type loop (and not both types at the same time).

Proof.
The precise proof is placed in [39]. Briefly, any Belief type loop-starting sequent S

contains some B modalized formula and any rule (◦or) may by applied only after rule
(Weak∗) application, which deletes all B modalized formulas from that premise, and
we get a contradiction for loop S ; S ′ existence. Any Until type loop-starting sequent
S contains some extended AE formula and any rule (BELor)may by applied only after
rule (Weak∗) application which deletes all extended AE formulas from that premise,
and we get a contradiction for loop S ; S ′ existence.
Lemma 5.2.1 and Lemma 5.2.2 says, that if we have a loop it is either a loop for

KD45 logic modality (Belief type loop), or a loop for branching time logic modality
(Until type loop). We know how to eliminate KD45 loop-check and how to make an
efficient loop-check for branching time logic. According to the Lemma 5.2.2, all our
restrictions for the loop-check are valid for the sequent calculus BDIwf as well.

Definition 5.2.9 Sequent calculus rule (Weak∗+) is:

BΓ1,B
∗Γ′

1
+→ B∆1,B

∗∆′
1 || DΓ2

+→ D∆2 || IΓ3
+→ I∆3 || ◦ Γ4 → ◦∆4

Σ,BΓ1,B
∗Γ′

1,DΓ2, IΓ3, ◦Γ4 → Π,B∆1,B
∗∆′

1,D∆2, I∆3, ◦∆4

90

• Σ,Π - finite (may be empty) sets of propositional variables, Σ ∩ Π = ∅.

Definition 5.2.10 Sequent calculus rule (BEL∗) is:

Γ,Γ1,B
∗Γ,B∗Γ1 → φ1,B

∗φ1, . . . ,2
∗φn||. . . ||Γ,Γ1,B

∗Γ,B∗Γ1 → φn,B
∗φ1, . . . ,B

∗φn

BΓ,B∗Γ1 → Bφ1, . . . ,Bφk,B
∗φk+1, . . . ,B

∗φn

(BEL∗) can be applied only if BΓ ∪Bφ1 ∪ . . . ∪Bφk 6= ∅.

• The case n = 0 is allowed, and then rule transforms into:
Γ,Γ1,B

∗Γ,B∗Γ1 →
BΓ,B∗Γ1 → (BEL∗).

• B∗Γ - set of the formulas obtained from BΓ by replacing every most outer B
occurence with B∗.

This is the same rule used for KD45 logic (see Definition 3.2.7). In this chapter,
we deal with several operators, and, therefore, we use operator B instead of 2 and rule
(BEL∗) instead of the rule (2∗).

Definition 5.2.11 The sequent calculus with a loop-axiom and with an axiom
φ,Γ → φ,∆, logical rules, rule (Weak∗+) and modal rules (BEL∗), (DESor),
(INT or), (◦+), (AU-L+), (AU-R+), (EU-L+), (EU-R+) we define sequent calculus
BDIelc .

We say, that BDIelc is a sequent calculus with an efficient loop-check for BDI
logic. This sequent calculus contains semi-invertable rules: (Weak∗+), (DESor),
(INT or), (◦+). All the rest rules are invertable.
All premises of the rule (Weak∗+), except one ◦Γ4 → ◦∆4, are marked by +,

since these premises do not contain any extended AE formula and every Until type loop
contains at least one extended AE formula (which is ground).

Theorem 5.2.2 Sequent S is derivable in the sequent calculus BDIwf if and only if
sequent S is derivable in the sequent calculus BDIelc .

Proof.
According to the Lemma 5.2.2, every lemma, for loops for KD45 logic, may be

applied for Belief type loops. Therefore, we can use rule (BEL∗) instead of the rule
(BELor) without loosing derivability (see the proof of the Theorem 3.2.2).
According to the Lemma 5.2.2, every lemma, for loops for branching time logic,

may be applied for Until type loops. Therefore, we can use rules (◦+), (AU-L+),
(AU-R+), (EU-L+), (EU-R+) instead of the rules (◦or), (AU-L), (AU-R), (EU-L),
(EU-R) without loosing derivability (see proof of the Theorem 4.2.3 and the Corol-
lary 4.2.1).

91

Theorem 5.2.3 Sequent calculus BDIelc is sound and complete calculus for BDI
logic.

Proof.
The proof goes straightforward from the Theorems 5.1.1, 5.2.1, 5.2.2.
Inference tree construction in the sequent calculus BDIelc always terminates, be-

cause every rule application contains only the finite premises count, and every sequent
in the inference tree contains only subformulas of the initial sequent, and derivation is
not proceed for every loop-ending sequent.
We constructed sequent calculus for BDI logic, which contains only invertable,

or semi-invertable rules. This sequent calculus deals only with Until type loops, since
Belief type loops were eliminated. We use restricted loop-check for detecting Until type
loops. According to provided restrictions:

• Loop-check is used only for Until type loops.

• Loop-check is used not for every sequent in the inference tree, but only for special
marked sequents (marked by ◦).

• During loop-check, only special marked sequents (marked by ◦) are tested.

• Only the sequents between the current sequent and the first sequent marked by +

(in the top-down direction) are tested.

5.3 Multiagent BDI Logic

In this section, multiagent BDI logic is discussed. Hilbert style axiomatization, sound
and complete sequent calculus for multiagent BDI logic are presented.
If environment contains not a single agent or we need several agents, then monoa-

gent BDI logic is not applicable. We need to use multiagent case of the BDI logic.
In the multiagent BDI logic we may have several agents and every agents has its own
beliefs, desires and intentions. Therefore, every agent needs separateB,D and Imodal
operators in calculus for BDI logic. We still need only one ◦ operator and until opera-
tors (A(φ ∪ ψ), E(φ ∪ ψ)), since all agents acts in the same environment.
Multiagent BDI logic uses (n is a finite number):

• n modal operators for Belief modality (B1,B2, . . . ,Bn),

• n modal operators for Desire modality (D1,D2, . . . ,Dn),

• n modal operators for Intend modality (I1, I2, . . . , In).

92

The full Hilbert style system for multiagent BDI logic is the following ([52]).

Definition 5.3.1 Hilbert type calculus for multiagent BDI logic is calculus with clas-
sical non modal axioms and modal axioms as follows:

• (B-K) Bi(φ→ ψ)→ (Biφ→ Biψ),

• (B-D) Biφ→ ¬Bi¬φ,

• (B-4) Biφ→ BiBiφ,

• (B-5) ¬Biφ→ Bi¬Biφ,

• (D-K) Di(φ→ ψ)→ (Diφ→ Diψ),

• (D-D) Diφ→ ¬Di¬φ,

• (I-K) Ii(φ→ ψ)→ (Iiφ→ Iiψ),

• (I-D) Iiφ→ ¬Ii¬φ,

• EXtrue&AXtrue,

• AG(ξ → (¬ψ&EXξ))→ (ξ → ¬A(φ ∪ ψ),

• AG(ξ → (¬ψ&EXξ))→ (ξ → ¬AFψ),

• AG(ξ → (¬ψ&(φ→ AXξ)))→ (ξ → ¬E(φ ∪ ψ)),

• AG(ξ → (¬ψ&AXξ))→ (ξ → ¬EFψ),

• AG(φ→ ψ)→ (EXφ→ EXψ),

and rules:

φ, φ→ ψ
ψ

,
φ

Bi φ
,

φ
Di φ

,
φ

Ii φ
,

φ
AG φ

.

Here

• EFφ ≡ E(true ∪ φ),

• AGφ ≡ ¬EF¬φ,

• AFφ ≡ A(true ∪ φ),

• EGφ ≡ ¬AF¬φ,

• EX(φ ∨ ψ) ≡ EXφ ∨ EXψ,

93

• AXφ ≡ ¬EX¬φ,

• E(φ ∪ ψ) ≡ ψ ∨ (ψ&EXE(φ ∪ ψ)),

• A(φ ∪ ψ) ≡ ψ ∨ (ψ&AXA(φ ∪ ψ)),

• modal operator AX stands for ◦ operator.

Hilbert style axiomatization for multiagent BDI logic is almost the same as for
monoagent BDI logic (only index of an agent is added). Therefore, sequent calculus
or multiagent BDI logic follows from the sequent calculus for BDI logic (presenetd
in [39]).

Definition 5.3.2 Sequent calculus rule (BELi) is:

Γ,BiΓ→ Θ,BiΘ,Bi∆
BiΓ→ BiΘ,Bi∆

(BELi) (i = 1, 2, . . . n)

• Θ is empty or only one formula.

• Γ - set of the formulas obtained from BiΓ by removing the most outer Bi oc-
curence.

Definition 5.3.3 Sequent calculus rules (INTi) and (DESi) are:

Γ→ Θ
IiΓ→ IiΘ

(INTi)
Γ→ Θ

DiΓ→ DiΘ
(DESi) (i = 1, 2, . . . n)

• Θ is empty or only one formula.

• Γ - set of the formulas obtained from IiΓ or DiΓ by removing the most outer Ii

orDi occurence respectively.

Definition 5.3.4 The sequent calculus with a loop-axiom and with an axiom
φ,Γ → φ,∆, logical rules, rule (Weak) and modal rules (BELi), (INTi), (DESi),
(◦), (AU-L), (AU-R), (EU-L), (EU-R) we define sequent calculus BDIn

init .

We say, that BDIn
init is an initial sequent calculus for multiagent BDI logic. This

sequent calculus contains non invertable (and non semi-invertable) rule (Weak) and
semi-invertable rules (INTi), (DESi), (◦). Therefore, at least some derivation tactics
is necessary to get decidability.

Theorem 5.3.1 Sequent calculusBDIn
init is sound and complete calculus for multiagent

BDI logic.

Proof.
The proof for monoagent BDI logic is presented by N. NIDE and T. Shiro in [39].

Authors claim that it is the same for multiagent case (it follows from the Hilbert style
axiomatizations for monoagent and multiagent BDI logics, those are very similar).

94

5.4 Sequent Calculus With an Efficient Loop-check for

Multiagent BDI Logic

In this section, sequent calculus for multiagent BDI logic is introduced. Calculus uses
efficient loop-check to get decidability. Sequent calculus for multiagent BDI logic is
constructed in the way analogous to the one used for the sequent calculus for monoagent
BDI logic and is based on the loop-check free sequent calculus for KD45 logic and
sequent calculus with an efficient loop-check for branching time logic presented in the
previous chapters.
Sequent calculus BDIn

wf (and BDI
n
init) do not use marked modal operator B

∗
i ,

but such a marked operator is used in the sequent calculus BDIn
elc (introduced later).

Therefore, we also use marked modal operator B∗
i in the following definitions, since

they are applicable for the both calculi.

Definition 5.4.1 We say that sequent
Σ,B1...nΓ1,D1...nΓ2, I1...nΓ3, ◦Γ4 → Π,B1...n∆1,D1...n∆2, I1...n∆3, ◦∆4

is primal sequent for multiagent BDI logic if:

• Σ,Π - finite (may be empty) sets of propositional variables, Σ ∩ Π = ∅.

• B1...nΓ1 = B1Γ
1
1,B

∗
1Γ

′1
1 , . . . ,BnΓn

1 ,B
∗
nΓ

′n
1 ;

B1...n∆1 = B1∆
1
1,B

∗
1∆

′1
1 , . . . ,Bn∆n

1 ,B
∗
n∆

′n
1 .

• D1...nΓ2 = D1Γ
1
2, . . . ,DnΓn

2 ; D1...n∆2 = D1∆
1
2, . . . ,Dn∆n

2 .

• I1...nΓ3 = I1Γ
1
3, . . . , InΓn

3 ; I1...n∆3 = I1∆
1
3, . . . , In∆n

3 .

Definition 5.4.2 We say that sequents:

• BiΓ,B
∗
i Γ

′ → Bi∆,B
∗
i ∆

′,

• DiΓ→ Di∆,

• IiΓ→ Ii∆,

• ◦Γ→ ◦∆,

are strict-primal sequents for multiagent BDI logic.

Definition 5.4.3 Sequent calculus rule (Weak∗i) is:

S1
1 || . . . ||Sn

1 || S1
2 || . . . ||Sn

2 || S1
3 || . . . ||Sn

3 || ◦ Γ4 → ◦∆4

Σ,B1...nΓ1,D1...nΓ2, I1...nΓ3, ◦Γ4 → Π,B1...n∆1,D1...n∆2, I1...n∆3, ◦∆4
(Weak∗i)

95

• Si
1 = BiΓ

i
1 → Bi∆

i
1; Si

2 = DiΓ
i
2 → Di∆

i
2; Si

3 = IiΓ
i
3 → Ii∆

i
3,

for every i = 1, 2, . . . n.

• Σ,Π - finite (may be empty) sets of propositional variables, Σ ∩ Π = ∅.

• B1...nΓ1 = B1Γ
1
1, . . . ,BnΓn

1 ; B1...n∆1 = B1∆
1
1, . . . ,Bn∆n

1 .

• D1...nΓ2 = D1Γ
1
2, . . . ,DnΓn

2 ; D1...n∆2 = D1∆
1
2, . . . ,Dn∆n

2 .

• I1...nΓ3 = I1Γ
1
3, . . . , InΓn

3 ; I1...n∆3 = I1∆
1
3, . . . , In∆n

3 .

Definition 5.4.4 Sequent calculus rule (BELor
i) is:

Γ,BiΓ→ φ1,Biφ1, . . . ,Biφn || . . . || Γ,BiΓ→ φn,Biφ1, . . . ,Biφn

BiΓ→ Biφ1, . . . ,Biφn
(BELor

i)

(i = 1, 2, . . . , n)

• The case n = 0 is allowed and then rule transforms into:
Γ,BiΓ→
BiΓ→ (BELor

i)

• Γ - set of the formulas obtained from BiΓ by removing the most outer Bi oc-
curence.

This is the same rule (BELor) used for monoagent BDI logic, which is adapted
for the multiagent case.

Definition 5.4.5 Sequent calculus rules (INT or
i) and (DESor

i) are:

Γ→ φ1 || Γ→ φ2 || . . . || Γ→ φn

IiΓ→ Iiφ1, . . . , Iiφn
(INT or

i) (i = 1, 2, . . . , n)

Γ→ φ1 || Γ→ φ2 || . . . || Γ→ φn

DiΓ→ Diφ1, . . . ,Diφn
(DESor

i) (i = 1, 2, . . . , n)

• The case n = 0 is allowed and then rules transforms into:
Γ→
IiΓ→ (INT or

i) and Γ→
DiΓ→ (DESor

i)

• Γ - set of the formulas obtained from IiΓ or DiΓ by removing the most outer Ii

orDi occurence.

This is the same rules (DESor) and (INT or) used for monoagent BDI logic
adapted for multiagent case.

Definition 5.4.6 The sequent calculus with a loop-axiom and with an axiom
φ,Γ → φ,∆, logical rules, rule (Weak∗i) and modal rules (BELor

i), (INT or
i),

(DESor
i), (◦or), (AU-L), (AU-R), (EU-L), (EU-R) we define sequent calculus

BDIn
wf .

96

We say, thatBDIn
wf is a weak free sequent calculus for multiagentBDI logic. This

sequent calculus contains semi-invertable rules: (Weak∗i), (INT
or
i), (DESor

i), (◦or).
All the rest rules are invertable.

Theorem 5.4.1 Sequent S is derivable in the sequent calculus BDIn
init if and only if

sequent S is derivable in the sequent calculus BDIn
wf .

Proof.
The proof is the same as for monoagent case (see the Theorem 5.2.1). In this case,

we have to change rule (Weak∗) application with the rule (Weak∗i application, rule
(BEL) application with the rule (BELi) application, rule (DES) application with
the rule (DESi) application, rule (INT) application with the rule (INTi) applica-
tion, rule (BELor) application with the rule (BELor

i) application, rule (DESor) ap-
plication with the rule (DESor

i) application, rule (INT or) application with the rule
(INT or

i) application. Rule (Weak∗i) application have more redundant or-branches then
rule (Weak∗) application, but it do not impact the given proof.

Lemma 5.4.1 If S ; S ′ is a loop in the sequent calculusBDIn
wf , then there is no rules

(DESor
i), (INT or

i) applications between sequents S and S ′.

Proof.
Rule (DESor

i) (or (INT or
i)) application decrease the number of the Di (or Ii)

modal operators.
Suppose that we have a loop S ; S ′. Suppose that sequents S1, S

′
2 are inside a

loop and S1 is a conclusion and S2 is a premise of the rule (DESor
i) (or (INT or

i))
application. Then S1 contains only formulas of the shape Diφ (or Iiφ). Suppose, that
Diψ (or Iiψ) is such of them, that its length is greater or equal then any other formula
in the sequent S1. Therefore, formula Diψ (or Iiψ) is a subformula in the sequent
S1, but it is not a subformula in the sequent S2. Since any rule premise contains only
subformulas of the conclusion, formulaDiψ (or Iiψ) is a subformula in the sequent S,
but it is not a subformula in the sequent S ′. We get a contradiction, because S ; S ′ is
a loop and S ′ contains all formulas from S.

Lemma 5.4.2 Any loop S ; S ′ in the sequent calculus BDIn
wf is either a Belief type

loop or Until type loop (and not both types at the same time).
Moreover, any Belief type loop S ; S ′ in the sequent calculus BDIn

wf is either a
loop for one agent’s belief modality or a loop for another agent’s belief modality (and
not a loop for the both agents at the same time).

Proof.

97

Suppose that we have an Until type loop S ; S ′. Suppose that sequents S1, S
′
2

are inside a loop and S1 is a conclusion and S2 is a premise of the rule (BELor
i)

application. Since every sequent inside Until type loop contains at least one extended
AE formula (not subformula), and S1 does not contain extended AE formulas (because
it is a conclusion of the rule (BELor

i)), we get a contradiction. Therefore, no rule
(BELor

i) application exists inside Until type loop.
Suppose that we have a Belief type loop S ; S ′. Suppose that sequents S1, S

′
2 are

inside a loop and S1 is a conclusion and S2 is a premise of the rule (◦or) application.
Since every sequent inside Belief type loop S ; S ′ contains at least one Bi modalized
formula, and S1 do not containBi modalized formula (because it is a conclusion of the
rule (◦or)), we get a contradiction. Therefore, no rule (◦or) application exists inside
Belief type loop.
Suppose that we have a Belief type loop S ; S ′ and sequent S contains formula

having the shape Bwφ, and w 6= i (S ; S ′ is also a Belief type loop for agent w).
Suppose that sequents S1, S2 are inside a loop and S1 is a conclusion and S2 is a premise
of the rule (BELor

i) application (and i 6= w). Since every sequent inside Belief type
loop S ; S ′ contains at least one formula having the shape Bwφ, and S1 do not
contain formula having the shape Bwφ (because it is a conclusion of the rule (BELor

i)

and i 6= w), we get a contradiction. Therefore, any Belief type loop S ; S ′ in the
sequent calculus BDIn

wf is either a loop for one agent’s belief modality or a loop for
another agent’s belief modality.
Lemma 5.4.1 and Lemma 5.4.2 says, that if we have a loop it is either a loop for

KD45 logic modality (Belief type loop for other particular agent), or a loop for branch-
ing time logic modality (Until type loop). We now how to eliminateKD45 loop-check
and how to make an efficient loop-check for branching time logic. According to the
Lemma 5.4.2, all our restrictions for the loop-check are valid for the sequent calculus
BDIn

wf as well.

Definition 5.4.7 Sequent calculus rule (Weak∗+i) is:

S1
1 || . . . ||Sn

1 || S1
2 || . . . ||Sn

2 || S1
3 || . . . ||Sn

3 || ◦ Γ4 → ◦∆4

Σ,B1...nΓ1,D1...nΓ2, I1...nΓ3, ◦Γ4 → Π,B1...n∆1,D1...n∆2, I1...n∆3, ◦∆4

• Si
1 = BiΓ

i
1,B

∗
i Γ

′i
1

+→ Bi∆
i
1,B

∗
i ∆

′i
1 ;

Si
2 = DiΓ

i
2

+→ Di∆
i
2;

Si
3 = IiΓ

i
3

+→ Ii∆
i
3, for every i = 1, 2, . . . n.

• Σ,Π - finite (may be empty) sets of propositional variables, Σ ∩ Π = ∅.

• B1...nΓ1 = B1Γ
1
1,B

∗
1Γ

′1
1 , . . . ,BnΓn

1 ,B
∗
nΓ

′n
1 ;

B1...n∆1 = B1∆
1
1,B

∗
1∆

′1
1 , . . . ,Bn∆n

1 ,B
∗
n∆

′n
1 .

98

• D1...nΓ2 = D1Γ
1
2, . . . ,DnΓn

2 ; D1...n∆2 = D1∆
1
2, . . . ,Dn∆n

2 .

• I1...nΓ3 = I1Γ
1
3, . . . , InΓn

3 ; I1...n∆3 = I1∆
1
3, . . . , In∆n

3 .

Definition 5.4.8 Sequent calculus rule (BEL∗
i) is:

Γ,Γ1,B
∗
i Γ,B

∗
i Γ1 → φ1,B

∗
iφ1, . . . ,B

∗
iφn||. . . ||Γ,Γ1,B

∗
i Γ,B

∗
i Γ1 → φn,B

∗
iφ1, . . . ,B

∗
iφn

BiΓ,B
∗
i Γ1 → Biφ1, . . . ,Biφk,B

∗
iφk+1, . . . ,B

∗
iφn

(i = 1, 2, . . . n)

(BEL∗
i) can be applied only if BiΓ ∪Biφ1 ∪ . . . ∪Biφk 6= ∅.

• The case n = 0 is allowed, and then rule transforms into:
Γ,Γ1,B

∗
i Γ,B

∗
i Γ1 →

BiΓ,B
∗
i Γ1 → (BEL∗

i).

• B∗
i Γ - set of the formulas obtained from BiΓ by replacing every most outer Bi

occurence with B∗
i .

This is the same rule (BEL∗) used for monoagent BDI logic adapted for multia-
gent case.

Definition 5.4.9 The sequent calculus with a loop-axiom and with an axiom
φ,Γ → φ,∆, logical rules, rule (Weak∗+i) and modal rules (BEL∗

i), (INT or
i),

(DESor
i), (◦+), (AU-L+), (AU-R+), (EU-L+), (EU-R+) we define sequent calculus

BDIn
elc .

We say, thatBDIn
elc is a sequent calculus with an efficient loop-check for multiagent

BDI logic. This sequent calculus contains semi-invertable rules: (Weak∗+i), (INT or
i),

(DESor
i), (◦+). All the rest rules are invertable.

All premises of the rule (Weak∗+i), except one ◦Γ4 → ◦∆4, are marked by +,
since these premises do not contain any extended AE formula and every Until type loop
contains at least one extended AE formula (which is ground).

Theorem 5.4.2 Sequent S is derivable in the sequent calculus BDIn
elc if and only if

sequent S is derivable in the sequent calculus BDIn
wf .

Proof.
The proof goes straightforward from the Lemma 5.4.2 and the proof of the Theo-

rem 5.2.2 for monoagent BDI logic.

Theorem 5.4.3 Sequent calculusBDIn
elc is sound and complete calculus for multiagent

BDI logic.

99

Proof.
The proof goes straightforward from the Theorems 5.3.1, 5.4.1, 5.4.2.
Inference tree construction in the sequent calculus BDIn

elc always terminates, be-
cause every rule application contains only the finite premises count, and every sequent
in the inference tree contains only subformulas of the initial sequent, and derivation is
not proceed for every loop-ending sequent.
We constructed sequent calculus for multiagent BDI logic, which contains only

invertable, or semi-invertable rules. This sequent calculus deals only with Until type
loops, since all Belief type loops were eliminated. We use restricted loop-check for
detecting Until type loops. According to the restrictions, only special marked (by +)
sequents are used for the loop-check (loop-check is performed only for such a sequents,
and only such a sequents are tested). Moreover, these restrictions allows us to test only
the sequents, those are ancestors of the current sequent, but are not the ancestors of any
special marked (by +) sequent.

Example 5.4.1 Suppose we have a sequent S:
B1A(B1φ ∪B2ψ), I1 ◦ A(B2A(B1φ ∪B2ψ) ∪ I1ψ)→ A(B1φ ∪B2ψ), ◦B2ψ.
Sequent S with indexed formulas is:

B1A
1
{2}(B1φ∪B2ψ), I1 ◦A2

∅(B2A
1
{2}(B1φ∪B2ψ)∪I1ψ)→ A1

{2}(B1φ∪B2ψ), ◦B2ψ.
The following short formula notation is used to denote formulas:

• G′
1 = A1

{2}(B1φ ∪B2ψ), G1 = A1
∅(B1φ ∪B2ψ),

• G2 = A2
∅(B2G

′
1 ∪ I1ψ) = A2

∅(B2A
1
{2}(B1φ ∪B2ψ) ∪ I1ψ).

Sequent S = B1G
′
1, I1 ◦G2 → G′

1, ◦B2ψ inference tree may be the following:

S1

B1G
′
1

+→ B1φ ||

(final)
→ ψ,B∗

2ψ

↑ (BEL∗
2)

+→ B2ψ ||
S3

I1 ◦G2
+→ ||

(final)
→ ψ,B∗

2ψ
◦→ B2ψ

(BEL∗
2)

→ ◦B2ψ
(◦+)

B1G
′
1, I1 ◦G2 → B1φ,B2ψ, ◦B2ψ

(Weak∗+i)

S2

B1G
′
1

+→ ||

(final)
→ ψ,B∗

2ψ

↑ (BEL∗
2)

+→ B2ψ ||
S3

I1 ◦G2
+→ ||

S5

→ ◦G′
1, ◦B2ψ

B1G
′
1, I1 ◦G2 → B2ψ, ◦G′

1, ◦B2ψ
(Weak∗+i)

↑
↑
↑
↑
↑
↑
↑

B1G
′
1, I1 ◦G2 → A1

{2}(B1φ ∪B2ψ), ◦B2ψ
(AU-R+)

B1G
′
1, I1 ◦G2 → G′

1, ◦B2ψ

100

Inference tree fragment for the sequent S1 is

(final)
B∗

1G1
+→ B∗

1φ ||

(final)
ψ,B∗

2ψ →
B2ψ

+→
(BEL∗

2)

B2ψ,B
∗
1G1

+→ φ,B∗
1φ

(Weak∗+i)

↑
↑

⊕
B1φ, ◦A1

{2}(B1φ ∪B2ψ),B∗
1G

′
1 → φ,B∗

1φ

A1
{2}(B1φ ∪B2ψ),B∗

1G
′
1 → φ,B∗

1φ
(AU-L+)

G′
1,B

∗
1G

′
1 → φ,B∗

1φ

B1G
′
1

+→ B1φ
(BEL∗

1)

S1

Inference tree fragment for the sequent S2 is

(final)
B∗

1G1
+→ ||

(final)
ψ,B∗

2ψ →
B2ψ

+→
(BEL∗

2)

B2ψ,B
∗
1G1

+→
(Weak∗+i)

(final)
B∗

1φ,B
∗
1G

′
1

+→ ||

(final)
ψ,B∗

2ψ →
B2ψ

+→
(BEL∗

2)

φ,B2ψ,B
∗
1φ,B

∗
1G

′
1 →

(Weak∗+i)

(final)
B∗

1φ,B
∗
1G

′
1

+→ ||
S4

◦G′
1 →

φ,B∗
1φ, ◦G′

1,B
∗
1G

′
1 →

(Weak∗+i)

φ,A1
{2}(B1φ ∪B2ψ),B∗

1φ,B
∗
1G

′
1 →

(AU-L+)

φ,G′
1,B

∗
1φ,B

∗
1G

′
1 →

B1φ,B
∗
1G

′
1

+→
(BEL∗

1)
||

S4

◦G′
1 →

↑
↑
↑
↑

B1φ, ◦G′
1,B

∗
1G

′
1 →

(Weak∗+i)

A1
{2}(B1φ ∪B2ψ),B∗

1G
′
1 →

(AU-L+)

G′
1,B

∗
1G

′
1 →

B1G
′
1

+→
(BEL∗

1)

S2

101

Inference tree fragment for the sequent S3 is

(final)
ψ →

I1ψ
+→

(INT or
1)

(final)
ψ,B∗

2ψ,B
∗
2G1

+→

(final)
φ,B∗

1φ→
↑ (BEL∗

1)

B1φ
+→ ||

(final)
B∗

2ψ,B
∗
2G

′
1

+→ ||
S4

◦G′
1 →

ψ,B1φ, ◦G′
1,B

∗
2ψ,B

∗
2G

′
1 →

(Weak∗+i)

ψ,A1
{2}(B1φ ∪B2ψ),B∗

2ψ,B
∗
2G

′
1 →

(AU-L+)

ψ,G′
1,B

∗
2ψ,B

∗
2G

′
1 →

↑ (BEL∗
2)

↑
↑
↑
↑
↑

B2ψ,B
∗
2G

′
1

+→

(final)
φ,B∗

1φ→
↑ (BEL∗

1)

B1φ
+→ ||

(final)
B∗

2G
′
1

+→ ||
S4

◦G′
1 →

B1φ, ◦G′
1,B

∗
2G

′
1 →

(Weak∗+i)

A1
{2}(B1φ ∪B2ψ),B∗

2G
′
1 →

(AU-L+)

B2A
1
{2}(B1φ ∪B2ψ)

+→
(BEL∗

2)
||

(◦-loop)⊕
G2

◦→
◦G2 →

(◦+)

B2A
1
{2}(B1φ ∪B2ψ), ◦G2 →

(Weak∗+i)

↑
A2

∅(B2A
1
{2}(B1φ ∪B2ψ) ∪ I1ψ)

◦→
(AU-L+)

◦A2
∅(B2A

1
{2}(B1φ ∪B2ψ) ∪ I1ψ)→

(◦+)

I1 ◦ A2
∅(B2A

1
{2}(B1φ ∪B2ψ) ∪ I1ψ)

+→
(INT or

1)

I1 ◦G2
+→

S3

Inference tree fragment for the sequent S4 is

(final)
ψ,B∗

2ψ →
B2ψ →

(BEL∗
2)

(final)
φ,B∗

1φ→
B1φ

+→
(BEL∗

1)
||

(◦-loop)⊕
G1

◦→
◦G1 →

(◦+)

◦A1
∅(B1φ ∪B2ψ)→

B1φ, ◦A1
∅(B1φ ∪B2ψ)→ (Weak∗+i)

A1
∅(B1φ ∪B2ψ)

+◦→
(AU-L+)

◦A1
{2}(B1φ ∪B2ψ)→

(◦+)

◦G′
1 →
S4

102

Inference tree fragment for the sequent S5 is

(final)
→ φ,B∗

1φ

↑ (BEL∗
1)

+→ B1φ ||

(final)
→ ψ,B∗

2ψ
+→ B2ψ

(BEL∗
2)

→ B1φ,B2ψ
(Weak∗+i)

(final)
→ ψ,B∗

2ψ
+→ B2ψ

(BEL∗
2)
||

(◦-loop)
◦→ G1

→ ◦G1
(◦+)

→ B2ψ, ◦G1
(Weak∗+i)

↑
↑
↑

◦→ A1
∅(B1φ ∪B2ψ)

(AU-R+)

→ ◦A1
∅(B1φ ∪B2ψ)

(◦+)

(final)
→ φ,B∗

1φ

↑ (BEL∗
1)

+→ B1φ ||

(final)
→ ψ,B∗

2ψ
+→ B2ψ

(BEL∗
2)

→ B1φ,B2ψ
(Weak∗+i)

(final)
→ ψ,B∗

2ψ
+→ B2ψ

(BEL∗
1)
||

↑
↑
↑
↑
↑

→ B2ψ, ◦A1
∅(B1φ ∪B2ψ)

(Weak∗+i)

+◦→ A1
∅(B1φ ∪B2ψ),B2ψ

(AU-R+)

+◦→ G1,B2ψ

→ ◦G′
1, ◦B2ψ

(◦+)

S5

Since we use short formula notation (using G1, G′
1, G2) to denote formulas, there

are used nodes without any rule application. These nodes just rewrites the same sequent
using other notation (short notation instead of the full notation, or conversely) and, in
fact, they are not the part of the inference tree.
We write ⊕ to denote axioms, we write ‘(final)’ to denote final sequents and we

write ‘(◦-loop)’ to denote loop-ending sequents. There are a lot of leafs those contain
marked modalized formulas (B∗

1φ or B
∗
2ψ). Technically, most of them are not final

sequents, because rule (Weak∗+i) may be applied. In order to make it readable, we
mark such a branches by ‘final’ (and we skip last rule (Weak∗+i) application). We may
bypass redundant rule (Weak∗+i) applications, if we use conatenated rules ((Weak∗+i)

with (BEL∗
i), (DES

or
i), (INT or

i) and (◦+)) instead of the given ones as it is done
in the previous chapters. For the BDI logics, concatenated rules are simple, but very
large, and we do not use them just to make it more clear.
We presented full sequent S inference tree. It is obviously, that some tree branches

may be left unfinished, since we can show that sequent S is non derivable in the sequent
calculus BDIn

elc even if some branches are left unfinished.
It is evident, that sequent S is non derivable in sequent calculus BDIn

elc . There
are a lot of or-branches in the sequent S inference tree, but most of them are very
simple, since rule (Weak∗+i) contain several premises, but sum of premises lengths is
less or equal then conclusion lenght. Moreover, almost every rule (Weak∗+i) premise
is marked by +, and, therefore, loop-check is restriced on these premises.

103

5.5 Complexity Results for Sequent Calculus BDInelc
In this section, complexity results for the introduced sequent calculus BDIn

elc are pre-
sented. Sequent calculus for multiagent BDI logic was based on the loop-check free
sequent calculus forKD45 logic and the sequent calculus with an efficient loop-check
for branching time logic. Complexity results given in this section are obtained by sum-
marizing results obtained in the Chapter 3 and in the Chapter 4.
We use different modalized formulas counts and formulas modality depth (see De-

finition 2.1.10) to evaluate sequent calculus BDIn
elc complexity.

For the transparency, we ignore rule (Weak∗+i) applications in calculations at all,
because rule (Weak∗+i) may be applied only together with one of the modal rules:
(BEL∗

i), (DES
or
i), (INT or

i), (◦+).
In this section, if S is an initial sequent, then

• mb denotes the count of the different modalized subformulas of the shape Biφ

(B∗
iφ),

• md denotes the count of the different modalized subformulas of the shapeDiφ,

• mi denotes the count of the different modalized subformulas of the shape Iiφ,

• ma denotes the count of the different AE subformulas (formulas having the shape
Aβ

α(φ ∪ ψ) or Eβ
α(φ ∪ ψ)),

• m◦ denotes the count of the different modalized subformulas having the shape
◦φ, those are not extended AE formulas,

• m = ma +m◦,

• k′ denotes logical operators count,

• k = k′ + 3 ·ma (maximum count of the logical and until ((AU-L+), (AU-R+),
(EU-L+), (EU-R+)) rules applied consecutively),

• d denotes initial sequent S modality depth.

As in the previous section, we have to mention, thatma counts onlyAE subformulas
(not every extended AE formula) andm◦ does not include extended AE subformulas.

Lemma 5.5.1 Suppose that a sequent S has modality depth d and contains m different
modalized subformulas (AE subformulas or subformulas having the shape ◦φ, those
are not extended AE formulas), then any weak ◦-loop S ; S ′ in the sequent calculus
BDIn

elc contains at most (
m
d
)d−1 rule (◦+) applications.

104

Proof.
Since every weak ◦-loop S ; S ′ in the sequent calculus BDIn

elc is an Until type
rule, then, according to the Lemma 4.3.4., ◦-loop S ; S ′ in the sequent calculus
BDIn

elc contains at most (
m
d
)d−1 rule (◦+) applications.

Lemma 5.5.2 Suppose that a sequent S contains, k′ logical operators, md different
modalized subformulas having the shapeDiφ andmi different modalized subformulas
having the shape Iiφ, then there may be at most k′+(md+mi) rule (DESor

i), (INT or
i)

and logical rules applied consecutively.

Proof.
The proof goes straightforward from the fact, that premise of any rule ((DESor

i),
(INT or

i) or logical rule), contains less operators (Di, Ii or logical) then conclusion.

Lemma 5.5.3 Suppose that a sequent S has modality depth d and contains

• ma differentAE subformulas (formulas having the shapeAβ
α(φ∪ψ) orEβ

α(φ∪ψ)),

• m◦ different modalized subformulas having the shape ◦φ, those are not extended
AE formulas, andm = ma +m◦,

• k′ logical operators, and k = k′ + 3 ·ma,

• mb different modalized subformulas having the shape Biφ (B∗
iφ),

• md different modalized subformulas having the shapeDiφ,

• mi different modalized subformulas having the shape Iiφ.

Then any branch in a sequent S inference tree (in the sequent calculus BDIn
elc) has

height ≤ (k +md +mi) ·mb · (m
d
)d = (k′ + 3 ·ma +md +mi) ·mb · (ma+m◦

d
)d.

Proof.
The proof goes straightforward from the proves of the Lemmas 3.3.1, 4.3.3, 5.5.2.
Since sequent length l > k′+ma +m◦+mb +md +mi, height of the inference tree

in the sequent calculus BDIn
elc is even less then for the one obtained for the sequent

calculus PTLrlc or BDIn
elc (ma +m◦ is a smaller part of the initial sequent length). In

other words, complexity of the sequent calculus BDIn
elc is not greater then complexity

of the sequent calculus PTLrlc .

105

Chapter 6

Conclusion

In this thesis, there are presented some new sequent calculi for BDI logics and their
fragments. Presented calculi are either loop-check free sequent calculi (for KD45

logic) or sequent calculi with an efficient loop-check (for branching time and BDI
logics). BDI logics and their fragments are widely used in multiagent agent systems
implementation. Results, presented in this thesis, are very useful for such a multiagent
systems implementation.
Results obtained for the fragments of the BDI logics (namely KD45 logic and

branching time logic) are important not only for agent systems based on the BDI log-
ics. KD45 logic is used to represent agents belief modality, which is one of the most
popular modalities used in various agent systems. Branching time temporal logic is
even more important, since temporal logics (Linear and branching time logics) are used
almost in any agent system.
These are the main contribution of the thesis:

1. Created loop-check free sequent calculus for KD45 logic, which is used to rep-
resent agents beliefs in BDI architecture. Or-rules usage instead of the simple
backtracking and some proven properties for KD45 logic enables us to use a
new approach to the inference tree construction. If particular conditions are hold,
some sequent on the inference tree, irrespective of the fact that the sequent is
derivable or not by itself, may be treated as non derivable and its derivation are
not proceeded. In this case, sequent derivability depends not only on the sequent
itself, but on the other or-branches of the inference tree. This approach together
with used marked modal operators enables us to construct loop-check free se-
quent calculus for KD45 logic.

2. Created sequent calculus with an efficient loop-check for branching time logic.
Temporal logics are widely used, but complex logics. Inference trees in the intro-
duced sequent calculus have the same size, but applied loop-check was strongly

106

restricted. Usual loop-check tests all ancestor sequents till the root. The main
idea of the used restrictions is to use not all but several special marked sequents.
Loop-check is performed only for these special sequents and only such a se-
quents are tested. Moreover, during inference tree construction, some sequents
are marked by +. During loop-check, only the marked sequents placed above the
sequents marked by + must be tested. Indexes are used to determine sequents,
those must be marked by +. These restrictions leads to the efficient loop-check.

3. Created sequent calculus with an efficient loop-check for monoagent BDI logic.
Since BDI logic is a combination of some other modal logics, we applied ob-
tained results for the fragments of theBDI logics to get efficient sequent calculus
for BDI logic.

4. Created sequent calculus with an efficient loop-check for multiagent BDI logic.
All intermediate results were summarized to construct full system for multiagent
BDI logic, based on the sequent calculus with an efficient loop-check. Intro-
duced sequent calculus is an efficient, sound and complete system applicable for
the multiagent systems implementation.

107

Bibliography

[1] P. Abate, R.Gore, The Tableau WorkBench (TWB),
www [date: 2009-12-05]: http://twb.rsise.anu.edu.au,
Prover for propositional modal logic KD45,
www [date: 2009-12-05]:
http://twb.rsise.anu.edu.au/propositional modal logic kd45.

[2] P. Abate, R.Gore, The Tableau WorkBench (TWB), Electronic Notes in Theoreti-
cal Computer Science, 2003

[3] M. Baaz, A. Leitsch, R. Zach, Completeness of a First order Temporal Logic with
Time Gaps, Theoretical Computer Science, vol. 160, 1996, pp. 241–270.

[4] C.C. Bark, I.W. Geoffrey, Using Decision Trees for Agent Modeling: Improving
Prediction Performance, User Modeling and User-Adapted Interaction archive,
vol. 8, issue 1-2, 1998, pp. 131–152.

[5] A. Birštunas, Efficient decision procedure for Belief modality, Lithuanian Math-
ematical Journal, vol 45, spec. issue, 2005, pp. 321–325.

[6] A. Birštunas, Sequent calculus usage for BDI agent implementation,
Lithuanian Mathematical Journal, vol 46, spec. issue, 2006, pp. 232–237.

[7] A. Birštunas, Efficient loop-check for KD45 logic, Lithuanian Mathematical
Journal, vol 46, No. 1, 2006, pp. 44–53, Springer, New York.

[8] A. Birštunas, Efficient loop-check for multimodal KD45n logic, Lithuanian
Mathematical Journal, vol 47, spec. issue, 2007, pp. 351–355.

[9] A. Birštunas, PSPACE complexity of modal logicKD45n, Lithuanian Mathemat-
ical Journal, vol 48, No. 2, 2008, pp. 174–187, Springer, New York.

[10] A. Birštunas, Restrictions for loop-check in sequent calculus for temporal logic,
Lithuanian Mathematical Journal, LMD works, vol 48-49, 2008, pp. 269–274.

108

[11] A. Birštunas, Restrictions for loop-check in sequent calculus for temporal logic
with until operator, Lithuanian Mathematical Journal, LMD works, vol 50, 2009,
pp. 247–252.

[12] A. Bolotov, M. Fisher, A resolution method for CTL branching-time temporal
logic, in: Proc. of the 4th International Workshop on Temporal Representation
and Reasoning (TIME ’97), 1997, pp. 20–27

[13] H. Bordini, J.F. Hübner, BDI agent programming in AgentSpeak using Jason, in:
CLIMA VI (Tutorial Paper), 2005, pp. 143–164.

[14] M.M. Cheikhrouhou, BDI-oriented agents for network management,
in: GLOBECOM’99, vol 3, 1999, pp. 1964–1968.

[15] L. Chuchang, M.A. Ozols, M.A. Orgun, A fibred belief logic for multi-agent sys-
tems, Lecture Notes in Computer Science, vol. 3809, 2005, pp. 29–38.

[16] S. Coffey, D. Gaertner, Using pheromones, broadcasting and negotiation for agent
gathering tasks, in: CLIMA VI, 2005, pp. 267–273.

[17] M. Dastani, F. Dignum, J.J. Meyer, 3APL: A Programming Language for cog-
nitive agents, ERCIM News, European Research Consortium for Informatics and
Mathematics, No. 53, spec. issue on Cognitive Systems, 2003.

[18] M. Dastani, J. Dix, The first contest on multi-agent systems based on computa-
tional logic, in: CLIMA VI, 2005, pp. 261–266.

[19] A. Cau, B. Moszkowski, H. Zedan, Interval Temporal Logic, 2009,
www [date: 2009-12-07]:http://www.cse.dmu.ac.uk/STRL/ITL//.

[20] C. Dixon, F. Gago, M. Fisher, W. Hoek, Using temporal logics of knowledge in
the formal verification of security protocols, Technical report ULCS-03-022.

[21] C. Dixon, M. Fisher, A Bolotov, Clausal resolution in a logic of rational agency,
Artificial Intelligence archive, vol. 139, 2002, pp. 47–89.

[22] E.A. Emerson, Temporal and modal logic, in J. van Leeuwen (eds.), Handbook
of Theoretical Computer Science, vol. B Formal Models and Semantics, 1990,
pp. 995–1072.

[23] J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro, F. Orejas, A cut-free and
invariant-free sequent calculus for PLTL, Lecture Notes in Computer Science,
vol. 4646, 2007, pp. 481–495, Springer, Berlin/Heidelberg.

109

[24] R. Goldblatt, Mathematical Modal Logic: a View of its Evolution, Journal of
Applied Logic, vol. 1, No. 5-6, 2003, pp. 309-392.

[25] R. Gore, Tableau Methods for Modal and Temporal Logics, in M. D’Agostino,
R. Gabbay, R. Hähnle, J. Posegga (eds.), Handbook for Tableau Methods, 1999,
pp. 297–396.

[26] R. Fagin, J.Y. Halpern, Y. Moses, M.Y. Vardi, Reasoning About Knowledge, The
MIT Press, 1995.

[27] M. Fitting, Proof Methods for Modal and Intuitionistic Logics, 1983, D. Reidel,
Dordrecht, Holland: Synthese Library.

[28] J.Y. Halpern, Y.O. Moses, Knowledge and common knowledge in a distributed
environment, Journal of the Association for Computing Machinery, 37, 1990,
pp. 549–587.

[29] A. Heuerding, M. Seyfried, and H. Zimmermann, Efficient loop-check for back-
ward proof search in some non-classical propositional logics, in: P. Miglioli,
U. Moscato, D. Mundici, M. Ornaghi (eds.), Tableaux 96, LNCS 1071, 1996,
pp. 210–225.

[30] J.M. Howe, Two loop detection mechanisms: a comparison, in:
Proc. of TABLEAUX’97, LNAI 1227, 1997, pp. 188-200.

[31] N. Jennings, M. Wooldridge, Applications of intelligent agents, in: N. Jennings,
M. Wooldridge (eds.), Agent Technology: Foundations, Applications, and Mar-
kets, 1998, pp. 3–28, Springer.

[32] R.A. Kowalski, F. Sadri, From logic programming towards multi-agent systems,
Annals of Mathematics and Articial Intelligence, 25(3-4), 1999, pp. 391–419.

[33] S. Kraus, V.S. Subrahmanian, Multiagent reasoning with probability, time, and
beliefs, International journal of intelligent systems, vol. 10, issue 5, 2007, pp. 459–
499.

[34] F. Laroussinie, Ph. Schnoebelen, A hierarchy of temporal logics with past, Theo-
retical Computer Science, vol. 148, 1995, pp 303–324 .

[35] B. van Linder, W. van der Hoek, J.J. Ch. Meyer, Formalising motivational atti-
tudes of agents: On preferences, goals and commitments, Intelligent Agents II,
vol. 1037, 1996, pp. 17—32.

[36] J.J. Meyer, F. de Boer, R.van Eijk, K. Hindriks, W. van der Hoek, On program-
ming KARO agents, Journal of KGPL, 9(2), 2001, pp.245–256.

110

[37] F. Massacci, Single step tableaux for modal logics. Computational Properties,
Complexity and Methadology, Journal of Automated Reasoning, 24(3), 2000,
pp. 319–364.

[38] M. Mouri, Constructing counter-models for modal logic K4 from refutation trees,
Bull. Section of Logic, vol 31 No. 2, 2002, pp. 81–90.

[39] N. Nide and S. Takata, Deduction systems for BDI logic using sequent calculus,
in: Proc. AAMAS’02, 2002, pp. 928–935.

[40] R. Pliuskevicius, A. Pliuskeviciene, Decision procedure for a fragment of mutual
Belief logic with quantified agent variables, LNAI 3900, in: Proc. CLIMA VI,
2006, pp. 57–72.

[41] R. Pliuskevicius, A. Pliuskeviciene, Termination of derivations in a fragment of
transitive distributed knowledge logic, Informatica, vol. 1, issue 4, 2008, pp. 597–
616.

[42] M. Reynolds, Towards a CTL* Tableau, Lecture Notes in Computer Science,
vol. 3821, 2005, pp. 384–395.

[43] O. Rana, M. Winikoff, L. Padgham, J. Harland, Applying conflict management
strategies in BDI agents for resource management in computational grids, in:
Proc. of the Australasian Conference on Computer Science, 2002, Melbourne,
Australia, ACM Press.

[44] A.S. Rao, M. Georgeff, BDI agents: from theory to practice, in: Proc. of the First
International Conference on Multi-Agent Systems (ICMAS-95), 1995, pp. 312–
319, S. Francisco, CA.

[45] A.S. Rao, M. Georgeff, Decision Procedures for BDI Logics, Journal of Logic
and Computation, 8(3), 1998, pp. 293–343

[46] A.S. Rao, AgentSpeak(L): BDI Agents speak out in a logical computable lan-
guage, in: MAAMAW’96: 7th European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, LNAI 1038, 1996, Springer.

[47] J. Sakalauskaite, Sequent calculi with analytic cut for logics of time and knowl-
edge with perfect recall, Lithuanian Mathematical Journal, vol. 44, No. 2, 2004,
pp.209–224.

[48] F. Shvarts, Gentzen style systems for K45 and KD45, in: Lecture Notes in Com-
puter Science 363, 1989, pp. 245–256.

111

[49] A. Schmidt, D. Tishkovsky, U. Hustadt, Interactions between knowledge, ac-
tion and commitment within agent dynamic logic, Journal Studia Logica, 2005,
pp. 381–415.

[50] J.A. Torres, L.P. Nedel, R.H. Bordini, Using the BDI architecture to produce au-
tonomous characters in virtual worlds, in Proc. of 4th International Workshop on
Intelligent Virtual Agents, 2003, pp. 197–201.

[51] W. Wajs, M. Swiecicki, Neural Network Model of Autonomous Agent for Deci-
sion Support System, Modeiling and Simulation MODSIM 97, 1997.

[52] M. Wooldridge, Reasoning about Rational Agents, The MIT Press, 2000.

[53] M. Wooldridge, N. Jennings, Intelligent agents: theory and practice, The Knowl-
edge Engineering Review, vol. 10, no. 2, 1995, pp. 115–152, Cambridge University
Press.

[54] Ch. Yong, I.Y. Suk, Multi-agent Web Information Retrieval: Neural Network
Based Approach, emphIDA 1999, pp. 499–512.

112

Appendix A

Decision Algorithm for KD45 Logic

In this appendix, we present decision algorithm, which is based on the loop-check free
sequent calculusKD45lcf . Algorithm determines whether sequent is derivable or not.
We use pseudocode to present this algorithm.
We use deep first search algorithm to create and examine inference tree in the se-

quent calculusKD45lcf . We use Stack to store nodes of the inference tree. Every node
of the constructed tree contains: sequent, it’s depth in the tree, operator (with possible
values: AND, OR) and flag (with possible values: YES, NO, UNKNOWN). We can
define structure of the node with the following pseudocode:
1. Node {
2. Sequent Sequent;
3. Depth Integer;
4. Operator {AND, OR};
5. Flag {YES, NO, UNKNOWN};
6. }
Suppose that sequents S1, S2, . . . , Sk are premises and S is conclusion of the in-

ference rule application. Sequents S1, S2, . . . , Sk have Depth equal to the sequent S
Depth +1. If applied inference rule is (2LCF) when Operator is set to OR, otherwise
Operator is set to AND. So, Operator defines the type of the branches. Flag is set to
YES, if sequent on this node is derivable, Flag is set to NO, if it is non derivable, and
Flag is set to UNKNOWN, if we still do not know whether it is derivable or not.
Now we introduce pseudocode of the algorithm which is based on the sequent cal-

culus KD45lcf :
1. function deriveSequent(Sequent S) {
2. Node N = new Node();
3. N.Sequent = S;
4. N.Depth = 0;
5. N.Operator = AND;

113

6. N.Flag = UNKNOWN;
7. do {
8. N = performOneNode(N);
9. } while (N.Depth > 0);
10. writeResult(N.Flag);
11. }
In lines 2-6, we create the root node of the tree.
In lines 7-9, we check nodes of the tree till we reach the root node (with a result set

in it).
In line 10, we write obtained result.
The main work is performed in the function performOneNode. This function gets

the node with a sequent as a parameter. If the node contains untested sequent (Flag
= UNKNOWN), then it applies suitable rule, creates child nodes and puts them in to
the Stack (creates new branches of the inference tree). If the node contains already
tested sequent (Flag = YES, or NO), then it makes backtracking (throws nodes from the
Stack).
Pseudocode of this function is listed bellow:

1. function Node performOneNode(Node N) {
2. if (N.Flag == UNKNOWN) {
3. if (isAxiom(N)) {
4. N.Flag = YES;
5. return N;
6. } else {
7. Rule R = getPossibleRule(N);
8. if (R != null) {
9. Stack.put(N);
10. Node[] newN = applyRule(N.Sequent, R);
11. for (int i = 0; i < newN.length; i ++) {
12. newN[i].Depth = N.Depth + 1;
13. newN[i].Operator = getOperatorType(R);
14. newN[i].Flag = UNKNOWN;
15. Stack.put(newN[i]);
16. }
17. Node M = Stack.get();
18. return M;
19. } else { // - rules cannot be applied
20. N.Flag = NO;
21. return N;
22. }

114

23. }
24. } else if (N.Flag == YES) {
25. if (N.Operator == AND) {
26. Node M = Stack.get();
27. return M;
28. } else { // if (N.Operator = OR)
29. Node M;
30. do {
31. M = Stack.get();
33. } while(M.Depth == N.Depth);
33. M.Flag = YES;
34. return M;
35. }
36. } else { // if (N.Flag == NO)
37. if (N.Operator == AND) {
38. Node M;
39. do {
40. M = Stack.get();
41. } while(M.Depth == N.Depth);
42. M.Flag = NO;
43. return M;
44. } else { // if (N.Operator = OR)
45. Node M = Stack.get();
46. return M;
47. }
48. }
49. }
In lines 2-23, we check sequents derivability.
In line 3, we check if it is an axiom.
In lines 4-5, we return positive result, because it is an axiom, and, therefore, node

sequent is derivable.
In lines 7-18, we creates new branches of the inference tree.
Function getPossibleRule returns the rule, which can be applied for the sequent, or

null if there is no such a rule. All loop-check is performed within this function, because
if no rule can be applied, then we know, that some loop exist.
Function applyRule applies selected rule and returns obtained sequents.
Function getOperatorType returns OR, if rule was (2LCF), and AND, otherwise.
In lines 20-21, we return negative result, because no rules can be applied and we

treat such a node sequent as non derivable.

115

In lines 24-35, we backtrack then child node was derivable.
In lines 36-48, we backtrack then child node was non derivable.

116

