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Abstract: This paper investigates the randomly stopped sums, minima and maxima of heavy-
and light-tailed random variables. The conditions on the primary random variables, which are
independent but generally not identically distributed, and counting random variable are given in
order that the randomly stopped sum, random minimum and maximum is heavy/light tailed. The
results generalize some existing ones in the literature. The examples illustrating the results are provided.
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1. Introduction

This paper is devoted to the randomly stopped sums, minima and maxima of heavy-
and light-tailed random variables (r.v.s). Such objects appear when the number of the ran-
dom variables under consideration is unknown and is described by some random integer.
In particular, randomly stopped sums appear in such fields as insurance and financial
mathematics, survival analysis, risk theory, computer and communication networks, etc.
The area of randomly stopped sums for heavy-tailed r.v.s has been well developed for more
than 50 years and covers mainly the case of independent identically distributed (i.i.d.) r.v.s.
In this paper, we consider the case where the underlying r.v.s are not necessarily identically
distributed, although they are independent.

Specifically, suppose that X1, X2, . . . are r.v.s defined on the probability space (Ω,F ,P).
Define a sequence of partial sums {Sn, n ≥ 0} by

S0 := 0, Sn := X1 + · · ·+ Xn, n ≥ 1. (1)

The main subject of the paper lies in the study of randomly stopped sums:

Sν := X1 + · · ·+ Xν,

where n in (1) is replaced by a random variable ν, taking values in N0 := {0, 1, 2, . . . }.
Throughout this paper, we assume that ν is not degenerate at zero, i.e., P(ν > 0) > 0. We
will call such ν a counting random variable.

Further, we will assume that r.v.s X1, X2, . . . are independent and counting r.v. ν is
independent of the sequence {X1, X2, . . . }. In general, r.v.s X1, X2, . . . can be not identically
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distributed, each having a distribution function (d.f.) FXk (x) = P(Xk ≤ x), respectively.
Consider the d.f.

FSν
(x) = P(Sν ≤ x) =

∞

∑
n=0

P(Sn ≤ x)P(ν = n).

The main task considered in this paper is to give conditions guaranteeing that FSν
is

heavy-/light-tailed, provided that some of the d.f.s FXk or Fν are heavy-/light-tailed.
Other objects of the paper are the randomly stopped minima and maxima. By the

randomly stopped minimum of sums, we call the minimum of partial sums:

S(ν) =

{
min{S1, . . . , Sν}, ν ≥ 1,
0, ν = 0,

and by the rrandomly stopped maximum of sums, we call the maximum of partial sums:

S(ν) = max{0, S1, . . . , Sν}.

Also, we provide some results for the randomly stopped minimum,

X(ν) =

{
min{X1, . . . , Xν}, ν ≥ 1,
0, ν = 0,

and the randomly stopped maximum,

X(ν) = max{0, X1, . . . , Xν}.

Similarly, we are interested in when FX(ν)
, FX(ν) , FS(ν) and FS(ν) are heavy-tailed or light-

tailed. The most attention we pay is to the closure of heavy-tailed and light-tailed classes of
distributions with respect to random transformations under consideration. For example,
Proposition 1 (see parts (iii), (iv)) below implies that a randomly stopped sum remains
heavy-tailed if at least one of the primary r.v.s {X1, X2, . . .} reached by the counting r.v. ν is
heavy-tailed. Proposition 2 (see parts (i), (ii)) shows that the randomly stopped maximum
has an analogous property. Meanwhile, Proposition 3 (i) shows that the randomly stopped
minimum remains heavy-tailed if the first primary r.v. X1 is heavy-tailed, and the tails of
other primary r.v.s are asymptotically compared to the distribution tail of the first primary
r.v. Proposition 5 (iii) implies that the randomly stopped maximum of sums for any counting
r.v. remains heavy-tailed if the first primary r.v. X1 is heavy tailed. Meanwhile, according
to Proposition 4 (i), in order for the randomly stopped maximum to remain heavy-tailed,
it is necessary that the other primary r.v.s {X2, X3, . . .} obtain some nonnegative values.
Similar facts about the closure of the class of light-tailed distributions with respect to the
considered transformations can also be obtained from Propositions 1–5 below. For various
distribution classes, similar questions on the closure with respect to various transformations
have been studied in [1–30]. In particular, regularly varying distributions were considered
in [23], consistently varying distributions in [2,15], long-tailed distributions in [18,19,21]
and dominatedly varying distributions in [6,18,19]. Maxima and sums of nonstationary
random-length sequences of random variables with regularly varying tails were studied
in [31]. We mention also paper [32], where two independent heavy-tailed r.v.s, such that
their minimum is not heavy tailed, were constructed.

One of the incentives to study the randomly stopped structures is related to the
models describing the insurance business. According to the well-known Sparre Andersen
model [33], the insurer’s wealth Wu(t) is described by the risk renewal model:

Wu(t) = u + pt−
Nθ(t)

∑
k=1

Zk, t ≥ 0,
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where u ≥ 0 is the initial capital, p > 0 is a constant premium rate, Nθ(t) is a counting
process generated by a sequence of not negative r.v.s {θ1, θ2, . . .} and {Z1, Z2, . . .} is a
sequence of independent random claims. Due to such a model, the behavior of the insurer’s
wealth Wu(t) is driven by the randomly stopped sums

Sθ(t) =
Nθ(t)

∑
k=1

Zk, t ≥ 0,

and the model ruin probability,

ψ(u) = P
(

inf
t>0

Wu(t) < 0
)

is related to maximum of the randomly stopped sums

max
0<t≤T

Sθ(t).

It is well known that the behavior of Sθ(t), the selection of the premium rate p and the
estimation of the ruin probability depends on whether the generating elements{θ1, θ2, . . .},
{Z1, Z2, . . .} and Sθ(t) have light tails or heavy tails, even in the case that the distributions
generating the model are identically distributed. For details, see [34–38].

We also note the well known duality of the homogeneous risk renewal model and
the G/G/1 model from queuing theory, where the arrivals follow the counting process
generated by distribution Fθ and service times have distribution FZ. Then the probability
of ruin ψ(u) coincides with the probability that the stationary waiting time exceeds u. For
details see [34].

The structure of the paper is as follows. In Section 2, we introduce heavy- and light-
tailed distributions and formulate two auxiliary lemmas. The main results are formulated
in Section 3. Some examples of nonstandard heavy-tailed and light-tailed distributions
are presented in Section 4. The heaviness of the distribution tails presented in Section 4 is
determined on the basis of the statements formulated in Section 3. The proofs of the main
results are presented in Section 5. The last section 6 is devoted to the discussion of the obtained
results in the broadest context together with the highlighting of future research directions.

2. Heavy-Tailed and Light-Tailed Distributions

For any distribution F, define its Laplace–Stieltjes transform as

F̂(λ) :=
∫ ∞

−∞
eλxdF(x), λ ∈ R.

A distribution F is said to be heavy-tailed, denoted F ∈ H, if

F̂(λ) = ∞ for any λ > 0.

Otherwise, F is said to be light-tailed. Common examples of heavy-tailed distributions
are Pareto, log-normal, Weibull with shape parameter τ ∈ (0, 1), Burr and Student’s t
distributions. For a detailed exposition of the heavy-tailed distributions and their properties,
we refer to monographs [36,39–44].

We formulate two lemmas that will be used in the proofs of several main propositions.
Although the results of the lemmas are well known and can be found, e.g., in [41,43,44], we
provide the proofs for the sake of convenience. The first lemma gives equivalent conditions
for the distribution F to be heavy-/light-tailed.

Lemma 1. Suppose that F is a d.f. of a real-valued r.v. The following statements are equivalent:

(i) F is heavy-tailed,
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(ii) lim sup
x→∞

eλxF(x) = ∞ for any λ > 0,

(iii) lim sup
x→∞

x−1 log F(x) = 0.

Similarly, the equivalent are the following statements:

(i’) F is light-tailed,
(ii’) lim sup

x→∞
eλx F(x) < ∞ for some λ > 0,

(iii’) lim sup
x→∞

x−1 log F(x) < 0.

Proof. We prove only the first part of the lemma.
(i)⇒ (iii). Suppose that F̂(λ) = ∞ for any λ > 0. Let, on the contrary,

lim sup
x→∞

log F(x)
x

< 0.

Then, there exist constants c > 0 and xc > 0 such that x−1 log F(x) ≤ −c for x ≥ xc,
or, equivalently,

F(x) ≤ e−cx, x ≥ xc. (2)

For any δ ∈ (0, c), using (2) and the alternative expectation formula (see [45], for
instance), we obtain∫

[0,∞)
eδudF(u) = 1 + δ

∫ ∞

0
eδuF(u)du

= 1 +
( ∫ e δxc

1
+
∫ ∞

e δxc

)
F
(
δ−1 log u

)
du

≤ eδxc +
∫ ∞

eδxc
e−cδ−1 log udu

= eδxc +
∫ ∞

e δxc
u−cδ−1

du.

Since cδ−1 > 1, the last integral is finite; hence,

F̂(δ) ≤ F(0) +
∫
[0,∞)

eδudF(u) < ∞,

leading to a contradiction.
(iii)⇒ (ii). From the condition

lim sup
x→∞

x−1 log F(x) = 0

we obtain that there exists an infinitely increasing sequence {xn} such that

lim
n→∞

x−1
n log F(xn) = 0.

For any given λ > 0, this implies that there exists nλ ≥ 1 such that

x−1
n log F(xn) ≥ −λ/2

for all n ≥ nλ. Equivalently,

eλxn F(xn) ≥ eλxn/2, n ≥ nλ.
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Hence, eλxn F(xn) tends to infinity as n→ ∞, and thus,

lim sup
x→∞

eλxF(x) ≥ lim
n→∞

eλxn F(xn) = ∞.

Since this holds for any λ > 0, we have (ii).
(ii)⇒ (i). Let

lim sup
x→∞

eλxF(x) = ∞

for any λ > 0. For x ∈ R, write∫ ∞

−∞
eλudF(u) ≥

∫
(x,∞)

eλudF(u) ≥ eλxF(x).

Thus,

F̂(λ) ≥ lim sup
x→∞

eλxF(x) = ∞ for any λ > 0,

and Lemma 1 is proved.

The next lemma implies thatH andHc are closed with respect to weak tail equivalence.

Lemma 2. Let F and G be two distributions of real-valued r.v.s.

(i) If F ∈ H and

lim inf
x→∞

G(x)
F(x)

> 0, (3)

then G ∈ H.
(ii) If F ∈ Hc, and G(x) ≤ c̃ F(x) for some c̃ > 0 and large x (x > xc̃), then G ∈ Hc.

Proof. Consider part (i). By condition (3), we obtain that

G(x) ≥ ĉ F(x)

for some ĉ and sufficiently large x (x > xĉ). Therefore,

lim sup
x→∞

eλx G(x) ≥ ĉ lim sup
x→∞

eλx F(x) = ∞

for any positive λ implying G ∈ H by Lemma 1 (ii).
The proof of part (ii) can be constructed in a similar way by using Lemma 1 (ii’), showing

that

lim sup
x→∞

eλx G(x) < ∞

for some λ > 0. Lemma 2 is proved.

3. Main Results

In this section, we formulate the main results of the paper. We start with the randomly
stopped sums. We notice that the d.f. FSν

can become heavy-tailed because of the heavy
tail of some element in {FX1 , FX2 , . . .} or because of the heavy tail of the counting random
variable ν.

Proposition 1. Let X1, X2, . . . be independent real-valued r.v.s and let ν be a counting r.v. indepen-
dent of the sequence {X1, X2, . . .}. Distribution FSν

is heavy-tailed if at least one of the following
conditions is satisfied:

(i) inf
k≥1

E eλXk > 1 for any λ > 0, and Fν ∈ H;
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(ii) inf
k≥1

P(Xk ≥ a) = 1 for some a > 0, and Fν ∈ H;

(iii) FXκ ∈ H for some κ ≥ 1, and Fν(x) > 0 for all x ∈ R;
(iv) FXκ ∈ H for some 1 ≤ κ ≤ max{supp(ν)} and supp(ν) < ∞.

Distribution FSν
is light-tailed if at least one of the following conditions is satisfied:

(v) FX1 ∈ Hc, Fν ∈ Hc, FX1(x) > 0 for all x ∈ R and

lim sup
x→∞

sup
k≥1

FXk (x)
FX1(x)

< ∞; (4)

(vi) sup
k≥1

E eλXk < ∞ for some λ > 0, and Fν ∈ Hc.

Our next statement is about the randomly stopped maximum of r.v.s. We observe that
some conditions under which the distribution of the randomly stopped maximum FX(ν)

becomes heavy-tailed are the same as in Proposition 1. Unfortunately, we did not find how
to make a heavy-tailed distribution FX(ν) from the light-tailed primary r.v.s {X1, X2, . . .}.

Proposition 2. Let X1, X2, . . . be independent real-valued r.v.s and let ν be a counting r.v. inde-
pendent of the sequence {X1, X2, . . .}.
(i) If FXκ ∈ H for some κ ≥ 1 and Fν(x) > 0 for all x ∈ R, then FX(ν) ∈ H;
(ii) If FXκ ∈ H for some κ ≤ max{supp(ν)} < ∞, then FX(ν) ∈ H;
(iii) Distribution FX(ν) belongs to the class Hc if FX1 ∈ Hc, FX1(x) > 0 for all x ∈ R, Eν < ∞

and

lim sup
x→∞

sup
n≥1

1
n

n

∑
k=1

FXk (x)
FX1(x)

< ∞. (5)

The statement below is on the distribution of the randomly stopped minimum of r.v.s.
From the formulation below, we observe that the tail of the d.f. FX(ν)

has much less chance
of becoming heavy compared to the d.f.s FSν

and FX(ν) .

Proposition 3. Let X1, X2, . . . be independent real-valued r.v.s and let ν be a counting r.v. inde-
pendent of the sequence {X1, X2, . . .}.
(i) If FX1 ∈ H and

lim inf
x→∞

min
1≤k≤κ

FXk (x)
FX1(x)

> 0

for κ = min{supp(ν) \ {0}}, then FX(ν)
∈ H and

FX(ν)
(x) ∼

x→∞
P(ν = κ) FX(κ)(x);

(ii) If FXk ∈ H
c for 1 ≤ k ≤ κ = min{supp(ν) \ {0}}, then FX(ν)

∈ Hc.

The next two statements are on the heaviness of randomly stopped minimum of sums
and randomly stopped maximum of sums. It can be seen from the presented formulations
that some of the conditions were already present in the previous statements. However, for
the sake of clarity, we present the full statements on the heaviness of FS(ν) and FS(ν) .

Proposition 4. Let X1, X2, . . . be independent real-valued r.v.s and let ν be a counting r.v. inde-
pendent of the sequence {X1, X2, . . .}.
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(i) If FX1 ∈ H and min
1≤k≤κ

P(Xk ≥ 0) > 0 for κ = min
{

supp(ν) \ {0}
}

, then FS(ν) ∈ H and

FS(ν)(x) �
x→∞

FX1(x). (6)

(ii) If FX1 ∈ Hc, then FS(ν) ∈ H
c for any r.v. ν.

Proposition 5. Let {X1, X2, . . .} and ν be r.v.s. such as in Propositions 1–4. Then FS(ν) ∈ H if at
least one of the following conditions is satisfied:

(i) inf
k≥1

E eλXk > 1 for all λ > 0 and Fν ∈ H;

(ii) inf
k≥1

P(Xk ≥ a) = 1 for some a > 0 and Fν ∈ H;

(iii) FX1 ∈ H;
(iv) FXκ ∈ H for someκ ≥ 1 in the case of infinite supp(ν) or for some 1 ≤ κ ≤ max{supp(ν)}

in the case of finite supp(ν).

Distribution FS(ν) is light-tailed if:

(v) sup
k≥1

E eλXk < ∞ for some λ > 0 and Fν ∈ Hc.

In the i.i.d. case, Proposition 1 immediately implies the following corollaries. Note
that the first two corollaries can be found in monograph [41] as Problems 2.12 and 2.13.

Corollary 1. Let X1, X2, . . . be i.i.d. real-valued r.v.s with common distribution FX1 , and let ν be a
counting r.v. independent of {X1, X2, . . .}. If FX1 ∈ Hc and Fν ∈ Hc, then FSν

∈ Hc.

Corollary 2. Let X1, X2, . . . be i.i.d. nonnegative not degenerate at zero r.v.s, and let ν be a counting
r.v. independent of {X1, X2, . . .}. If Fν ∈ H, then FSν

∈ H.

Corollary 3. Let X1, X2, . . . be i.i.d. real-valued r.v.s with common distribution FX1 , and let ν be a
counting r.v. independent of {X1, X2, . . .}. If FX1 ∈ H then FSν

∈ H.

Analogous corollaries can be formulated for randomly stopped minima and maxima.

4. Examples

In this section, we present two examples showing how one concretely can construct
heavy-tailed distributions by using the above randomly stopped structures.

Example 1. Let {X1, X2, . . .} be a sequence of independent r.v.s such that the first member X1 has
the Pareto distribution

FX1(x) =
(

1− 1
(1 + x)3

)
1[0,∞)(x),

and other elements of the sequence are identically exponentially distributed:

FXk (x) =
(
1− e−x)

1[0,∞)(x), k ∈ {2, 3, . . .}

According to Proposition 1 (parts (iii) and (iv)) and Proposition 5 (iii), distributions FSν

and FS(ν) are heavy-tailed for any counting r.v. independent of the sequence {X1, X2, . . .}.
This is due to the fact that the first of all primary distributions has a significantly heavier
tail than the other elements of the infinite primary sequence. For instance, in the case of
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the discrete uniform counting r.v. with parameter N ≥ 2, we have that distributions with
the tail

FSν
(x) = FS(ν)(x)

= 1(−∞,0)(x) +
( 1
(1 + x)3 +

1
N

N−1

∑
k=1

1
(k− 1)!

∫ x

0

yk−1e−y

(1 + (x− y))3 dy
)
1[0,∞)(x)

belong to the classH. Proposition 2 (ii) implies that distribution FX(ν) belongs to the class
H for any counting r.v. ν independent of {X1, X2, . . .}. Meanwhile Proposition 3 (i) and
Proposition 4 (i) imply that FX(ν)

and FS(ν) are heavy-tailed for counting r.v. under condition
1 ∈ supp(ν). In the case of the discrete uniform counting r.v. ν with parameter N = 3, we
have that FS(ν) = FX1 and distributions with the following tails are heavy-tailed:

FX(ν)(x) = 1(−∞,0)(x) +
(

1
(1 + x)3 +

(
e−x − e−2x

3

)(
1− 1

(1 + x)3

))
1[0,∞)(x),

FX(ν)
(x) = 1(−∞,0)(x) +

1
3(1 + x)3

(
1 + e−x + e−2x)

1[0,∞)(x).

Example 2. Let {X1, X2, . . .} be a sequence of independent r.v.s uniformly distributed on the
interval [0, 1], i.e.,

FXk (x) = x1[0,1)(x) + 1[1,∞)(x)

for each k ∈ N.

Obviously,

E eλXk =
eλ − 1

λ
> 1

for any λ > 0 and all k ∈ N. Therefore, by Proposition 1 (i) and Proposition 5 (i), we obtain
that distributions FSν

and FS(ν) are heavy-tailed for an arbitrary heavy-tailed counting r.v. ν
independent of {X1, X2, . . .}. Suppose that counting r.v. ν is distributed according to the
zeta distribution with parameter 2:

P(ν = n) =
1
n2

1
ζ(2)

, n ∈ N,

where

ζ(s) =
∞

∑
n=1

1
ns , s ∈ C,

denotes the Riemann zeta function. Such ν is heavy-tailed. Propositions 1 (i) and 5 (i) imply
that distribution

FSν
(x) = FS(ν)(x) =

1
ζ(2)

∞

∑
n=1

1
n2 F∗nX1

(x)1[0,n](x)

belongs to classH, where

F∗nX1
(x) =

1
n!

bxc

∑
k=0

(−1)k
(

n
k

)
(x− k)n

is the well-known Irwin–Hall distribution with parameter n; see [46,47] or Section 26.9
in [48]. Meanwhile, Propositions 3 (ii) and 4 (ii) imply that distributions with tails

FS(ν)(x) = FX1(x),

FX(ν)
(x) = 1(−∞,0)(x) +

1
ζ(2)

∞

∑
n=1

1
n2 (1− x)n

1[0,1)(x)
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are light-tailed despite the fact that the counting r.v. ν distributed according to the zeta
distribution is heavy-tailed.

Example 3. Let {X1, X2, . . .} be a sequence of independent r.v.s distributed according to the Burr
type XII law, i.e.,

FXk (x) =
(

1−
( 1

1 +
√

kx

)3/2
)
I[0,∞)(x), k = 1, 2, . . . ,

and let the counting r.v. ν be independent of {X1, X2, . . .} and distributed according to the shifted
Poisson law, i.e.,

P(ν = k) =
1

e(k− 3)!
, k = 3, 4, . . . . (7)

Since FX1 ∈ H and

lim inf
x→∞

min
1≤k≤3

FXk (x)
FX1(x)

= min
1≤k≤3

( 1√
k

)3/2
= 3−3/4 > 0,

we obtain from Proposition 3 (i) that FX(ν)
∈ H and

FX(ν)
(x) ∼

x→∞

1
e

FX(3)
(x) (8)

with
FX(3)

(x) =
(

1
(1 +

√
x)(1 +

√
2x)(1 +

√
3x)

)3/2

,

FX(ν)
(x) =

1
e

∞

∑
n=3

1
(n− 3)!

n

∏
k=1

( 1

1 +
√

kx

)3/2
.

A graphical representation of the asymptotic (8) is shown in Figure 1.

Figure 1. Comparison of tails FX(ν)
(blue line) and FX(3)

(red line) from Example 3.
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We note that Proposition 3 (i) can also be applied to other Burr type XII distributions
whose distribution functions have the form

F(x) =
(

1−
(

1 +
( x

β

)α)−γ
)
I[0,∞)(x),

where α, β, γ are positive parameters; see [49], for instance.

Example 4. Let {X1, X2, . . .} be a sequence of independent r.v.s such that FX1 is distributed
according to the Weibull law with the scale parameter 1 and the shape parameter 1/2, i.e.,

FX1(x) = I(−∞,0)(x) + e−
√

x I[0,∞)(x).

Since FX1 ∈ H, due to Proposition 4 (i), we obtain that the d.f. of the randomly stopped
minimum of sums FS(ν) is heavy-tailed and

FS(ν)(x) �
x→∞

FX1(x)

if min
2≤k≤κ

P(Xk ≥ 0) > 0 for κ = min{supp(ν) \ {0}}.
For example, if

P(Xk = −1) = P(Xk = 1) =
1
2

, k ∈ {2, 3, . . .},

and ν is distributed according to the shifted Poisson law (7), then FS(ν) ∈ H and

FS(ν)(x) �
x→∞

e−
√

x.

A graphical representation of the last relation is shown in Figure 2, having in mind
that

1
4e

e−
√

x ≤ FS(ν)(x) ≤ e−
√

x, x ≥ 0,

and

FS(ν)(x) =
1
e

∞

∑
n=3

P
( n⋂

k=1

{Sk > x}
)

1
(n− 3)!

=
1
e

∞

∑
n=3

∆n(x)
(n− 3)!

,

where

∆2m(x) =
1

22m−1

m−1

∑
k=0

(
2m− 1

k

)(
e−
√

x+2(m−k)−1 + e−
√

x+2(m−k)−2
)

, m ∈ {2, 3, . . . };

∆2m+1(x) =
1

22m

m−1

∑
k=0

(
2m
k

)(
e−
√

x+2(m−k) + e−
√

x+2(m−k)−1
)

+
1

22m

(
2m
m

)
e−
√

x, m ∈ {1, 2, . . .}.
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Figure 2. Tail of d.f. FS(ν)
(blue line) and its bounds (red lines) from Example 4.

5. Proofs of the Main Results

In this section, we present the proofs of all main propositions. We assign a separate
subsection to the proof of each proposition.

5.1. Proof of Proposition 1

Proof of part (i). For any λ > 0 and an arbitrary K ≥ 1, we have

E eλSν = E
(

eλSν

∞

∑
n=0

1{ν=n}

)
= E

( ∞

∑
n=0

eλSn1{ν=n}

)

≥ E
( K

∑
n=0

eλSn1{ν=n}

)

=
K

∑
n=0

E eλSnP(ν = n). (9)

From the condition
inf
k≥1

E eλXk > 1

we derive that the estimate
min

1≤k≤K
E eλXk ≥ ∆

holds for some ∆ = ∆(λ) > 1. Therefore, for all n ∈ {1, . . . , K}, we obtain

E eλSn =
n

∏
k=1

E eλXk ≥ ∆n. (10)

This, together with (9), implies that

E eλSν ≥
K

∑
n=0

∆nP(ν = n).
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Since Fν ∈ H, we have

K

∑
n=0

∆nP(ν = n) = E eν log ∆I{ν≤K} →K→∞
∞.

Hence, E eλSν = ∞ implying FSν
∈ H by definition. Part (i) of the proposition is proved.

Proof of part (ii). Let us fix an arbitrary λ > 0. Due to the conditions of part (ii), for such
λ, we have

inf
k≥1

E eλXk = inf
k≥1

(
E eλXk1{Xk≥a} +E eλXk1{Xk<a}

)
≥ inf

k≥1
E eλXk1{Xk≥a}

≥ inf
k≥1

eλa P(Xk ≥ a)

= e λa > 1.

Hence, the assertion of part (ii) follows from part (i) of the proposition.

Proof of part (iii). The requirement Fν(x) > 0 for all x ∈ R implies that counting r.v. ν has
an unbounded support. Thus, we can find K ≥ κ such that P(ν = K) > 0. Let λ be any
positive number and M ≥ 1. Then,

E eλSK ≥ E exp
{

λ
K

∑
k=1

XkI{Xk≤M}

}

= E eλXκI{Xκ≤M}
K

∏
k=1
k 6=κ

E eλXkI{Xk≤M} →
M→∞

∞

because Fκ ∈ H and EeλXk > 0 for each k ∈ {1, . . . , K}. Therefore, FSK ∈ H. By representa-
tion (9), we obtain that

E eλSν ≥ P(ν = K)E eλSK

implying FSν
∈ H. This completes the proof of part (iii) of the proposition.

Proof of part (iv). Let K be such that P(ν = K) > 0 and κ ≤ K. Clearly, the conditions of
part (iv) imply the existence of such K. To finish the proof of this part, it is sufficient to
repeat the arguments of part (iii).

Proof of part (v). Suppose that 0 < δ ≤ λ, and λ > 0 is such that E eλX+
1 < ∞ with

X+
1 := X1I{X1≥0}. By the standard representation (9), we have

E eδSν =
∞

∑
n=0

E eδSnP(ν = n)

≤
∞

∑
n=0

E eδS+
n P(ν = n), (11)

where S+
0 = 0 and

S+
n =

n

∑
k=1

X+
k =

n

∑
k=1

XkI{Xk≥0}, n ∈ {1, 2, . . .}.



Axioms 2024, 13, 355 13 of 21

Condition (4) implies

FXk (x) ≤ c1FX1(x) (12)

for some c1 > 0, all k ≥ 1 and all x ∈ R. Therefore, by the alternative expectation formula
(see, for instance, [45]), we derive from (12) that

E eδX+
k = 1 + δ

∫ ∞

0
eδu FX+

k
(u)du

≤ 1 + δc1

∫ ∞

0
eλu FX1(u)du

= 1 +
δ

λ
c1

(
E eλX+

1 − 1
)

:= c2(δ)

for any k ≥ 1, where 1 < c2(δ) < ∞ for 0 < δ ≤ λ, and

lim
δ↓0

c2(δ) = 1.

Since X+
1 , X+

2 , . . . are independent r.v.s, we obtain

E eδS+
n =

n

∏
k=1

E eδX+
k ≤

(
c2(δ)

)n.

Hence, by inequality (11) and condition Fν ∈ Hc we derive that

E eδSν ≤
∞

∑
n=0

(
c2(δ)

)n P(ν = n) = E eν log c2(δ) < ∞

if δ ∈ (0, λ] is chosen as sufficiently small.
This implies that FSν

∈ Hc.

Proof of part (vi). The statement of this part can be proved analogously to the statement
of part (v). Namely, the conditions of part (vi) imply that

sup
k≥1

E eλX+
k = cλ

for some constants λ > 0 and cλ ≥ 1. Therefore, using the alternative expectation formula,
we derive

E eδX+
k = 1 + δ

∫
[0,∞)

eδuFXk (u)du

≤ 1 +
δ

λ

(
λ
∫
[0,∞)

eλuFXk (u)du
)

= 1 +
δ

λ

(
cλ − 1

)
for all δ ∈ (0, λ) and k ≥ 1. The last estimation and inequality (11) imply that

E eδSν ≤
∞

∑
n=0

n

∏
k=1

E eδX+
k P(ν = n) ≤ E e

ν log
(

1+ δ
λ (cλ−1)

)
.

If δ ∈ (0, λ] is sufficiently small, then the last expectation is finite because of Fν ∈ Hc.
Hence, FSν

∈ Hc as well. Part (vi) of the proposition is proved.
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5.2. Proof of Proposition 2

Proof of part (i). By the standard representation, we have

FX(ν)(x) =
∞

∑
n=1

P(X(n) > x)P(ν = n)

≥ P(X(K) > x)P(ν = K) (13)

for x > 0 and any K such that P(ν = K) > 0, K ≥ κ. Due to the conditions of part (ii), there
exists a sequence of numbers K with the above property. Obviously,

P(X(K) > x) = P(max{0, X1, . . . , XK} > x)

≥ P(Xκ > x). (14)

Consequently, for an arbitrary λ > 0, we obtain from (13) and (14)

lim sup
x→∞

eλx FX(ν)(x) ≥ P(ν = K) lim sup
x→∞

eλx FXκ (x).

The assertion of part (i) follows now by Lemma 1.

Proof of part (ii). The proof of this part is similar to the proof of part (i), because the condi-
tions of part (ii) imply that there exists at least one K such that K ≥ κ and P(ν = K) > 0.

Proof of part (iii). The standard representation implies that

FX(ν)(x) =
∞

∑
n=1

P(X(n) > x)P(ν = n) (15)

=
∞

∑
n=1

P
( n⋃

k=1

{Xk > x}
)
P(ν = n)

≤
∞

∑
n=1

P(ν = n)
n

∑
k=1

FXk (x) (16)

for positive x.
Due to Lemma 1, there is λ > 0 such that

lim sup
x→∞

eλx FX1(x) < ∞. (17)

It follows from the estimate (15) that

lim sup
x→∞

eλx FX(ν)(x) ≤ lim sup
x→∞

eλx
∞

∑
n=1

P(ν = n)
n

∑
k=1

FXk (x).

Condition (5) of part (iii) implies that

n

∑
k=1

FXk (x) ≤ c4nFX1(x) (18)

for all n ≥ 1, for some c4 > 0 and for sufficiently large x (x ≥ x1). Therefore, by (17) and
(18), we obtain that

lim sup
x→∞

eλx FX(ν)(x) ≤ c4Eν lim sup
x→∞

eλx FX1(x) < ∞.

The assertion of part (iii) follows now by Lemma 1.
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5.3. Proof of Proposition 3

Proof of part (i). By the standard representation we have

FX(ν)
(x) =

∞

∑
n=1

P
(

min{X1, . . . , Xn} > x
)
P(ν = n)

=
∞

∑
n=1

P(ν = n)
n

∏
k=1

FXk (x)

= FX(κ)(x)P(ν = κ) +
∞

∑
n=κ+1

P(ν = n)FX(κ)(x)
n

∏
k=κ+1

FXk (x)

≤ FX(κ)(x)P(ν = κ)
(

1 + FXκ+1(x)
P(ν > κ)
P(ν = κ)

)
, (19)

and

FX(ν)
(x) ≥ FX(κ)(x)P(ν = κ)

for each positive x. In addition, conditions of part (i) give that FX(κ)(x) > 0 for all positive
x. Therefore,

FX(ν)
(x) ∼

x→∞
P(ν = κ)FX(κ)(x).

We obtain from this, by using Lemma 2, that FX(ν)
∈ H if FX(κ) ∈ H. Hence, to prove

the assertion of part (i) it is enough to prove that FX(κ) ∈ H for 1 ≤ κ ≤ min{supp(ν) \
{0}}.

Due to the condition FX1 ∈ H and Lemma 1, we have

lim sup
x→∞

eλx FX1(x) = ∞ (20)

for an arbitrary λ > 0. The requirement

lim inf
x→∞

min
16k6κ

FXk (x)
FX1(x)

> 0

implies that
FXk (x) ≥ c5FX1(x)

for some positive c5, sufficiently large x (x ≥ x2) and for all 1 ≤ k ≤ κ. Therefore, for any
positive λ and large x (x ≥ x2) we obtain

eλx FX(κ)(x) = eλx
κ
∏
k=1

FXk (x)

≥ cκ5 eλx (FX1(x))κ

=
(
c5 e λx/κ FX1(x)

)κ .

By relation (20) we derive that

lim sup
x→∞

eλx FX(κ)(x) = ∞

implying that FX(κ) ∈ H. Part (i) of the proposition is proved.
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Proof of part (ii). According to inequality (19) and Lemma 2, FX(ν)
∈ Hc if FX(κ) ∈ H

c.
Since κ is finite, conditions FXk ∈ H

c, k ∈ {1, 2, . . . ,κ} and Lemma 1 imply that

lim sup
x→∞

eλx FXk (x) < ∞ (21)

for some λ > 0 and each k ∈ {1, 2, . . . ,κ}. For this λ and an arbitrary positive x, we have

eλx FX(κ)(x) =
κ
∏
k=1

(
eλx/κFXk (x)

)
.

Since λ/κ ≤ λ, due to (21),

lim sup
x→∞

eλx/κ FXk (x) < ∞

for each k ∈ {1, 2, . . . ,κ}. Therefore,

lim sup
x→∞

eλx FX(κ)(x) < ∞

implying that FX(κ) ∈ H
c by Lemma 1. Hence, FX(ν)

∈ Hc as well, and part (ii) of the
proposition is proved.

5.4. Proof of Proposition 4

Proof of part (i). If κ = 1, then for x > 0, we have

FS(ν)(x) = ∑
n∈ supp(ν)\{0}

FS(n) (x)P(ν = n)

≥ FS(1) (x)P(ν = 1)

= FX1(x)P(ν = 1),

and

FS(ν)(x) =
∞

∑
n=1

FS(n) (x)P(ν = n)

=
∞

∑
n=1

P(min{S1, . . . , Sn} > x)P(ν = n)

=
∞

∑
n=1

P
(

n⋂
k=1

{Sk > x}
)
P(ν = n)

≤
∞

∑
n=1

P(S1 > x)P(ν = n)

= FX1(x)P(ν ≥ 1).

The derived estimates imply the asymptotic relation (6) in the case κ = 1.
Let us now suppose that κ > 1. Due to the conditions of part (i)

P(Xk ≥ 0) ≥ c6
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for some c6 > 0 and all 1 ≤ k ≤ κ. Hence, by the standard decomposition, we obtain that
for positive x

FS(ν) (x) =
∞

∑
n=1

FS(n)(x)P(ν = n)

≥ FS(κ)(x)P(ν = κ)

= P(min{S1, . . . , Sκ} > x)P(ν = κ)

= P
( κ⋂

k=1

{X1 + . . . + Xk > x}
)
P(ν = κ)

≥ P(X1 > x, X2 ≥ 0, . . . , Xκ ≥ 0)P(ν = κ)

= P(X1 > x)
κ
∏
k=2

P(Xk ≥ 0)P(ν = κ)

≥ cκ−1
6 P(ν = κ) FX1(x). (22)

On the other hand, similarly, as in the case κ = 1, we have

FS(ν)(x) = ∑
n∈ supp(ν)\{0}

P
( n⋂

k=1

{Sk > x}
)
P(ν = n)

≤ ∑
n∈ supp(ν)\{0}

P(S1 > x)P(ν = n)

= FX1(x)P(ν ≥ κ). (23)

Estimates (22) and (23) imply that the asymptotic relation (6) holds for any possible κ.
In addition, we observe that, by Lemma 2, distribution FS(ν) belongs toH together with FX1 .
Part (i) of the proposition is proved.

Proof of part (ii). The statement of this part follows immediately from the estimate (23)
and Lemma 1 because

lim sup
x→∞

eλx FS(ν)(x) ≤ P(ν ≥ 1) lim sup
x→∞

eλx FX1(x)

for any λ > 0.

5.5. Proof of Proposition 5

Proof of part (i). Proof of this part is similar to the proof of part (i) of Proposition 1. Namely,
for λ > 0 and K ≥ 2 by using (10), we obtain that

E eλS(ν) ≥ E
(

eλS(ν)
1{ν≤K}

)
=

K

∑
n=0

E eλS(n)P(ν = n)

≥
K

∑
n=0

E eλSnP(ν = n)

≥
K

∑
n=0

∆nP(ν = n)

= E
(
eν log ∆

1{ν≤K}
)
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with ∆ = ∆(λ)= inf
k≥1

EeλXk > 1. The condition Fν ∈ H implies that

lim
K→∞

E
(
eν log ∆

1{ν≤K}
)
= ∞.

Therefore, EeλS(ν)
= ∞ for an arbitrary λ > 0, i.e., FS(ν) ∈ H. Part (i) of the proposition

is proved.

Proof of part (ii). The assertion of this part is obvious because condition inf
k≥1

P(Xk ≥ a) = 1

with a > 0 implies that inf
k≥1

EeλXk > 1 for any λ > 0. The details of this implication are

presented in the proof of Proposition 1 (ii).

Proof of part (iii). For positive x, we have

FS(ν)(x) =
∞

∑
n=1

FS(n)(x)P(ν = n)

=
∞

∑
n=1

P
( n⋃

k=1

{Sk > x}
)
P(ν = n)

≥
∞

∑
n=1

P(S1 > x)P(ν = n)

= FX1(x)P(ν ≥ 1). (24)

The assertion of part (iii) follows now from Lemma 1 because by (24)

lim sup
x→∞

eλx FS(ν)(x) ≥ P(ν ≥ 1) lim sup
x→∞

eλx FX1(x)

for an arbitrary positive λ.

Proof of part (iv). Conditions of this part and and Proposition 1 (parts (iii) and (iv)) imply
that FSν

∈ H. In addition, for positive x,

FS(ν)(x) =
∞

∑
n=1

P
(

max{S1, S2, . . . , Sn} > x
)
P(ν = n)

≥
∞

∑
n=1

P(Sn > x)P(ν = n)

= FSν
(x).

Hence, FS(ν) ∈ H, according to the Lemma 2. Part (iv) of the proposition is proved.

Proof of part (v). Let λ > 0 be a positive number from the condition of part (v), i.e.,

sup
k≥1

E eλXk = ĉλ

with some positive constant ĉλ. For this λ, we have

sup
k≥1

E eλX+
k = sup

k≥1
E
(

eλX+
k 1{Xk≥0} + eλX+

k 1{Xk<0}

)
= sup

k≥1
E
(

eλXk1{Xk≥0} + 1{Xk<0}

)
≤ ĉλ + 1,

where X+
k = XkI{Xk≥0} for k ∈ {1, 2, . . . , }. Due to Proposition 1(vi), d.f. FS+

ν
belongs to the

classHc with r.v. S+
ν = X+

1 + . . . + X+
ν .
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According to the standard representation, for positive x, we have

FS(ν)(x) =
∞

∑
n=1

P
(

max{S1, S2, . . . , Sn} > x
)
P(ν = n)

≤
∞

∑
n=1

P
(

max{S+
1 , S+

2 , . . . , S+
n } > x

)
P(ν = n)

=
∞

∑
n=1

P(S+
n > x)P(ν = n)

= FS+
ν
(x).

By applying Lemma 2, we obtain that d.f. FS(ν) is light-tailed due to the light tail of d.f.
FS+

ν
. Part (v) of the proposition is proved.

6. Concluding Remarks

In this paper, we show that both heavy-tailed and light-tailed classes of distributions
have quite a number of interesting properties related to the randomly stopped structures.
Based on our results, various heavy-tailed or light-tailed distributions can be constructed.
On the other hand, according to the propositions we proved, in most cases, it is easier to
determine whether the considered distribution is light-tailed or heavy-tailed. The main
novelty of our work consists in the fact that we study randomly stopped structures in
a set of independent but possibly differently distributed primary random variables. In
Section 1, it was mentioned that randomly stopped structures together with heavy-tailed
distributions appear in such fields as insurance and financial activity, survival analysis,
risk management, computer and communication networks, etc. Recently, many articles
have been written on the heavy-tailed distributions, both in scientific and popular science
journals. Let us mention a few such works. Heavy-tailed distributions applied to financial
losses and stochastic returns are described and discussed in [50–52]. The influence of
heavy-tailed distributions on actuarial statistics is examined in [53–56]. The performance
of heavy-tailed distributions in social and medical research is discussed in [57,58]. The
application of heavy-tailed distributions of a special form to study computer systems
and telecommunication networks is presented in [59–61]. More concretely, the results
of the current paper related to the randomly stopped sums are applied not only to the
standard areas such as insurance models ([62,63], etc.), but also to information ranking
algorithms ([64,65]) and teletraffic arrivals [66].

From the content of the mentioned works, it can be seen that in many cases, it is
quite difficult to fit heavy-tailed distributions to the real data. Therefore, our proposed
transformations of heavy-tailed distributions increase the chances of choosing the right
distribution. So, in our opinion, it makes sense to continue research on transformations for
heavy-tailed distributions. In addition to the randomly stopped structures examined in
this paper, moment transformations, random effects, and randomly stopped products can
be considered, for instance.
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