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Notations and Abbreviations

N - the set of natural numbers, N = {0, 1, 2, . . .}

N∗ - the set of positive natural numbers, N = {1, 2, . . .}

Z - the set of integers, Z = {. . . ,−2,−1, 0, 1, 2, . . .}

R - the set of real numbers

Zd+ := {(t1, . . . , td) ∈ Zd : ti ≥ 0, i = 1, . . . , d}

Rd
+ := {(x1, . . . , xd) ∈ Rd : xi ≥ 0, i = 1, . . . , d}

Z+ := Z1
+

R+ := R1
+

R2
0 := R2 \ {(0, 0)}

a+ := max(0, a), for a ∈ R.

a− := (−a)+ = max(0,−a), for a ∈ R.

‖x‖ :=
√
x2

1 + x2
2, for x = (x1, x2) ∈ R2.

E = diag(γ1, . . . , γd) denotes the diagonal d× d matrix with entries γ1, . . . , γd on

the diagonal.

C, C(K), denote generic constants, possibly depending on the variables in brack-

ets, which may be different at different locations.

EX denotes the mean of random variable X.

Var(X) denotes the variance of random variable X.

D(α) is the domain of attraction of an α−stable law.

L is the lag operator, X(t− 1) = LX(t).

→d denotes convergence in distribution.

→p denotes convergence in probability.

→Lp denotes convergence of random variables in Lp space. We write ξn →Lp ξ,
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NOTATIONS AND ABBREVIATIONS

if E|ξn − ξ|p → 0.

→Lp(A) denotes conditional convergence of random variables in Lp space. We write

ξn →Lp(A) ξ, if E
[
|ξn − ξ|p

∣∣∣A]→ 0 almost surely.

→fdd denotes weak convergence of finite dimensional distributions.

fdd-lim denotes weak convergence of finite dimensional distributions.

→D[0,1] denotes convergence in Skorohod space with the J1 Skorohod topology.

x ↑ a means that x approaches a from the left.
fdd= denotes equality of finite dimensional distributions.
d= denotes equality of distributions.

1(·) denotes the indicator function.

sign(·) is the sign function.

[x] denotes integer part of real number x.

x ∧ y denotes min(x, y) for real numbers x and y.

x ∨ y denotes max(x, y) for real numbers x and y.

t
mod 2= s means that t+ s is even, for t ∈ Z, s ∈ Z.

t
mod 2
6= s means that t+ s is odd, for t ∈ Z, s ∈ Z.

i.i.d. independent identicaly distributed

i.d. identicaly distributed

r.v. random variable

a.s. almost surely

a.e. almost every

r.h.s. right hand side

l.h.s. left hand side
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1
Introduction

Aggregation as an object of research. The aggregation problem is con-
cerned with the relationship between individual (micro) behaviour and aggre-
gate (macro) statistics. There are different types of aggregation: small-scale,
large-scale, temporal aggregation, aggregation in time and space (see Chapter 2,
page 15, also [19], [42]). We concentrate on the large-scale contemporaneous ag-
gregation. The scheme of contemporaneous aggregation was firstly proposed by
P. Robinson (1978, [90]) and C.W.J. Granger (1980, [41]) in order to obtain the
long memory phenomena in aggregated time series. Suppose we have a group of
N heterogeneous individuals, each of which is described by some model Xi(t),
i = 1, . . . , N . Then the aggregated process is defined as a normalised sum over all
individuals at fixed time point t:

X̄N(t) := 1
AN

N∑
i=1

Xi(t), t ∈ Z, (1.1)

where AN is some normalizing sequence. The fundamental statistical problem of
large-scale contemporaneous aggregation is to determine the limit distribution of
the aggregated process {X̄N(t), t ∈ Z} in (1.1), as the number of individuals N
grows to infinity, and to explore main properties of the limit aggregated process
X(t) := limN→∞ X̄N(t), t ∈ Z. The limit aggregated process {X(t), t ∈ Z}, may
have a completely different structure than the individual processes have. The
most important properties, which the limit aggregated process may admit, are
ergodicity and long memory. Ergodicity is a quality of the stochastic process that
allows estimation of characteristics of the process using only one sufficiently long
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INTRODUCTION

realization of the process, and we do not need to observe separate independent
realizations of this process. Whilemean, the long memory property shows the
dependence of a series at long lags, dependence between observations occurring
now and after an amount of time. In the scientific literature appear various
definitions for long momery (see Section 2.3, page 33). In general, as is written in
[93], the memory is something that lasts.

Another important problem is so called disaggregation problem: having a
sample X(1), X(2), ..., X(n), n ∈ N∗, of the limit aggregated process at hand, to
recover the properties of the individual processes {Xi(t), t ∈ Z}, i = 1, . . . , N . For
example, suppose we have a sample of the limit aggregated process {X(t), t ∈ Z},
which is accumulated from independent AR(1) random processes:

Xi(t) = aiXi(t− 1) + εi(t), t ∈ Z, i = 1, . . . , N, (1.2)

where {εi(t), t ∈ Z} is white noise and ai, i = 1, . . . , N , are random coefficients
with generic distribution a. The aim of the disaggregation problem in this case
is to find a "good" estimate of the density function of random variable a, using
observed data X(1), X(2), ..., X(n).

The (dis)aggregation problem was discussed in [13], [14], [19], [21], [39], [40],
[41], [42], [52], [53], [60], [62], [64], [65], [69], [77], [90], [102], [103], et.al. A short
review of literature is given in Chapter 2, page 15. Almost all of the above-
mentioned papers investigate aggregation schemes when (micro) level data have
finite variance. It is well known the aggregation scheme of independent processes
with finite variance, which leads to the Gaussian case, i.e. the limit aggregated
process is the Gaussian process. The aim of our research was to extend these
results to infinite variance case or finite variance but not necessarily Gaussian
case.

Actuality. Aggregated data is most often found, collected and used in many
areas such as economics, applied statistics, sociology, geography, etc. Whilemean,
disaggregate (panel) data are difficult to obtain and not always available. This
motivates an importance of studying the aggregation and disaggregation problem.

One of the most important reasons why the contemporaneous aggregation be-
come an object of research is the possibility of obtaining the long memory phenom-
ena in processes. The aggregation provides an explanation of the long-memory
effect in time series and a similation method of such series as well. Accumulation of
short-memory non-ergodic random processes can lead to the long memory ergodic
process, that can be used for the forecasts of the macro and micro variables.

Aims and problems. One of the main goals of the PhD thesis is to explore
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INTRODUCTION

the aggregation scheme of random processes and fields with infinite variance.
Another aim of our study is to get a non-Gaussian limit aggregated process by
the aggregation of independent processes with finite variance (in the scientific
literature is given only the aggregation scheme of independent processes, which
leads to the Gaussian case). The disaggregation problem is also the problem of
our interest. More precisely, our aim is to solve the following problems:
• Aggregation of AR(1) models with infinite variance (Chapters 3 and 4).

The main goal of this research is to extend results of P. Zaffaroni paper [102]
from finite variance case to infinite variance case. Following the idea of this
paper, we discuss the aggregation of autoregressive random-coefficient AR(1)
processes with innovations belonging to the domain of attraction of an α-stable
law. We investigate separately the aggregation of AR(1) processes with common
innovations and idiosyncratic innovations. We obtain conditions under which
the limit aggregated process exists and exhibits long memory in a certain sense.
Since in our case the variance of the aggregated process is infinite and second
order properties as spectral density or covariance function are not defined, we
use alternative definitions of long memory which do not require finite variance:
distributional long memory, LRD(SAV) and codifference (see Section 2.3, page
33). Results of this research are given in Chapters 3, 4 and published in papers
[85], [86].
• Aggregation of a triangular array of AR(1) processes (Chapter 5) . The

aim of this research is to investigate the aggregation scheme, which generalize
previous results and leads to the case of the finite variance but not necessary
Gaussian or infinite variance but not necessary stable limit aggregated process
X(t) := limn→∞ X̄N(t), t ∈ Z. For this reason we discuss an aggregation of in-
dependent random-coefficient AR(1) models with innovations belonging to the
domain of attraction of an infinitely divisible law W . We obtain conditions under
which the limit aggregated process exists and is represented as a mixed infinitely
divisible moving average X(t) in (5.4), page 84. Using Cox’s definition of dis-
tributional long memory (Definition 2.3.6, page 36) and assuming that the limit
aggregated process admits finite variance, we investigate its long memory prop-
erties. In short, we study partial sums of the limit aggregated process and show
that these partial sums may exhibit four different limit behaviors depending on
the distribution of random coeffitient of AR(1) model and the Lévy triplet of
infinitely divisible law W 1. Results of this research are given in Chapter 5 and
in submitted paper [82]. But, it should be noted here that this generalisation
problem is not fully finished. The questions for the future: What is the limit of

1. Lévy triplet (µ, σ, π) completely determines the characteristic function of the infinitely
divisible law W , see (5.6), page 84.
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INTRODUCTION

partial sums of the limit aggregated process (5.4) in infinite variance case? What
is the limit aggregated process and what properties it have if we include common
innovations belonging to the domain of attraction of an infinitely divisible law?
What happens if the random coefficient of AR(1) models depends on time?

• Aggregation of random fields (Chapter 6). The goal of this research is to ex-
tend the aggregation scheme from one-dimensional processes to two-dimensional
random fields. The (dis)aggregation problem for finite-variance random fields was
investigated in [60], [61], [65], while we focus on the aggregation of independent
random fields with infinite variance (innovations belong to the domain of attrac-
tion of an α-stable law). First, we explore the aggregation scheme of nearest-
neighbor autoregressive random fields and specify what is the limit aggregated
field. Another question of our interest is the dependence structure of the limit
aggregated field. The dependence structure of random field is more complicated
than in a univariate process case, because dependence for random fields extends in
all directions and can have different intensity in different directions. Since proper-
ties of the limit aggregated random field are highly dependent on the assumptions
put on micro level (individual) fields, we investigate the long memory property
of the limit aggregated field in two special cases of individual models (see (6.14)-
(6.15), page 115). In order to describe the dependence structure of the aggregated
random field we introduce the notion of anisotropic/isotropic distributional long
memory (see Definition 6.2.2, page 119, and Definition 6.2.3, page 119). Results of
this research are given in Chapter 6 and in submitted paper [84]. The new inter-
esting question for the future: the aggregation scheme of autoregressive random
fields with common innovations.

• Disaggregation problem (Section 5.4). The main idea of the disaggregation
problem is: having data from the limit aggregated process at hand to recover
the distribution of individual processes. Suppose we have sample of the limit
aggregated process, which is obtained via aggregation of independent random-
coefficient AR(1) processes. Let φ(a) be an unknown density function of random
coefficient of AR(1) model. The disaggregation problem in this case is to find a
"good" estimator of the density function φ(a). The authors of papers [22], [62]
proposed consistent estimator of this density function via Gegenbauer polynomi-
als, under assumption that the limit aggregated process is Gaussian. Our aim was
to show that this density estimator, proposed in [22], [62] is consistent not only in
Gaussian case. We showed that for the consistency of the density estimator via
Gegenbauer polynomials (or Jacobi polynomials (5.53), page 105) it is enough to
have finite fourth moment of the limit aggregated process. This result is small
extension of the disaggregation problem. It remains many interesting questions
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for the future. The main of them is how to solve disaggregation problem in infinite
variance case.

• Asymptotics of the ruin probability (Chapter 7). The goal of this research is
to find asymptotics of the ruin probability in a discrete time risk insurance model
with stationary claims modeled by the aggregated heavy-tailed process (4.4) in
page 62. Using the asymptotics of the ruin probability, we can describe the long
memory properties of heavy-tailed claims. Results of this research are given in
Chapter 7 and in paper [81].

The novelty of the results presented in this PhD thesis is:
• the scheme of the aggregation of independent autoregressive processes, which
leads to the finite variance but not necessarily Gaussian aggregated process;

• the scheme of the aggregation of autoregressive random processes with infi-
nite variance.

• the scheme of the aggregation of nearest-neighbor autoregressive random
fields with infinite variance.

• The notion of anisotropic/isotropic long memory for random fields on Z2.

These problems have not been investigated before in the scientific literature.

Methods. Methods of probability theory, mathematical statistics, functional
analysis and time series analysis are applied. Used tools: Cramér-Wold device (to
prove finite dimensional convergence), Dominated convergence theorem (to prove
convergence of integrals), Kolmogorov tightness criterion (to prove tightness), Law
of large numbers (to show convergence of the sample average), Moivre-Laplace
theorem (normal approximation to the binomial distribution), Hunt’s interpola-
tion theorem (a result bounding the norms of operators acting in Lp spaces),
well-known inequalities (Minkowski’s, Hölder’s, Jensen’s, Hoeffding’s), and etc.

Approbation of results. The main dissertation results were presented in
the following conferences:
• 50th Conference of the Lithuanian Mathematical Society, Vilnius, Lithuania,
June 18 - 19, 2009.

• 10th international Vilnius conference on probability theory and mathemat-
ical statistics, Vilnius, Lithuania, June 28 - July 2, 2010.

• 1st Conference by Lithuanian Academy of Sciences "Interdisciplinary re-
search in physical and technological sciences", Vilnius, Lithuania, February
8, 2011.
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• 2nd Conference by Lithuanian Academy of Sciences "Interdisciplinary re-
search in physical and technological sciences", Vilnius, Lithuania, February
14, 2012.

• Journée des doctorants, Nantes, France, April 26, 2012.

• 53rd Conference of the Lithuanian Mathematical Society, Klaipėda, Lithua-
nia, June 11 - 12, 2012.

• Conference "Non-stationarity in Statistics and Risk Management", Luminy,
Marseille, France, January 21 - 25, 2013.

• The First German-Polish Joint Conference on Probability Theory and Math-
ematical Statistics, Torun, Poland, June 6-9, 2013.

Publications. The main results are published in the following articles:

1. D. Puplinskaitė, D. Surgailis, Aggregation of random-coefficient AR(1) pro-
cess with infinite variance and common innovations. Lithuanian Math. J.,
49 (4), 446-463, 2009.

2. D. Puplinskaitė, D. Surgailis, Aggregation of a random-coefficient AR(1)
process with infinite variance and idiosyncratic innovations. Adv. Appl.
Probab., 42 (2), 509-527, 2010.

3. K. Perilioglu, D. Puplinskaitė, Asymptotics of the ruin probability with
claims modeled by α-stable aggregated AR(1) process. Turkish J. Math.,
37 (1), 129-138, 2013.

4. A. Philippe, D. Puplinskaitė, D. Surgailis, Contemporaneous aggregation of
triangular array of random-coefficient AR(1) processes. 2013, to appear in
J. Time Ser. Anal.

Structure of the thesis. Dissertation consists of eight chapters and bibliog-
raphy. An introduction and the review of aims and problems is given in Chapter
1. Chapter 2 contains a short review of the scientific literature on this topic.
Chapter 3 provides the aggregation scheme of autoregressive random-coefficient
AR(1) processes with infinite variance and common innovations. Chapter 4 pro-
vides the aggregation scheme of autoregressive random-coefficient AR(1) processes
with infinite variance and idiosyncratic innovations. Chapter 5 is dedicated to the
contemporaneous aggregation of tringular array of random-coefficient AR(1) pro-
cesses. Chapter 6 presents the aggregation scheme of random fields and the notion
of the anisotropic long memory. In Chapter 7 we discuss asymptotics of the ruin
probability with claims modeled by α-stable aggregated AR(1) process. Finally,
the main results of the thesis are summarized in the Chapter 8.
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2
Review of the State of the Art

In this section, firstly we give a brief review of main types of the aggregation,
then we focus on the main results obtained by other authors, which are dealing
with the problem of aggregation and disaggregation of linear models. Finally, in
the last section of this chapter we review different definitions of long memory.

2.1 Aggregation

The aggregation problem is concerned with the relationship between individ-
ual (micro) behaviour and aggregate (macro) statistics. One of the important
properties of aggregation is the possibility to get long memory phenomenon in
the aggregated series. There are several types of aggregation that occur in the
time series analysis: small-scale aggregation, large-scale aggregation, temporal
aggregation, aggregation in time and space.

A small-scale aggregation involves sums of finite number individual processes.
For example, suppose {X1(t), t ∈ Z} is ARMA(p1,q1) process and {X2(t), t ∈ Z}
is ARMA (p2,q2) process:

X1(t) +
p1∑
k=1

akX1(t− k) = ε1(t) +
q1∑
k=1

θkε1(t− k)

X2(t) +
p2∑
k=1

bkX2(t− k) = ε2(t) +
q2∑
k=1

ckε2(t− k),

where (ε1(t), ε2(t))t∈Z is bivariate white noise, then the aggregated process X(t) :=
X1(t) + X2(t), t ∈ Z, is autoregressive ARMA(m,n) process with m ≤ p1 + p2
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and n ≤ max(p1 + q2, p2 + q1), see [42]. The small-scale aggregation helps us to
develop new time series models. Note, that if the number of individual processes
increases, we get more complicated dynamics. And this is the result of large-scale
aggregation. In the context of large-scale aggregation, the aggregated process is
the sum of large number of individual processes.

Another type of aggregation is temporal aggregation. The temporal aggrega-
tion is the relationship between high and low frequency. The problem of temporal
aggregation arises when the data are observed at a lower frequency than the fre-
quency of the data generating model. Suppose that the unit is the basic time
interval for which a time series is generated. If observations are fixed every k,
k > 1, units, then it is said that the series is "systematically sampled". System-
atic sampling is a type of temporal aggregation for "stock" variables (see [42]).
The temporal aggregation for "flow" variable is a summation of observations over
k unit before the systematic sampling. Suppose we have time series {X(i), i ∈ Z},
then the temporal aggregation is summation over k units:

X(t) :=
kt∑

i=k(t−1)+1
X(i), t ∈ Z.

Here arises the question, what model can be used to describe temporal aggregated
series, what properties it has. Such questions of temporal aggregation have been
studied in [23], [24] and in other articles.

The combining both spacial and temporal aggregation creates so called time-
space models (see [37], [83] and references therein), which take into account de-
pendence lagged in time and in space.

The main attention in the thesis is devoted to the crosssectional large-scale
contemporaneous aggregation of linear models, but the aggregation of non-linear
and heteroskedastic models is also an interesting and popular object of research.
Contemporaneous aggregation of heterogeneous heteroscedastic models was dis-
cussed in [29], [39], [53], [64], [103], [104]. It is proved that the contemporane-
ous large-scale aggregation of ARCH/GARCH models do not lead to the long
memory processes in the sense of a non-summable autocovariance function of
the squared aggregate. For the GARCH(1,1) process {Xi(t), t ∈ Z} the limit
of N−1∑N

i=1X
2
i (t) exhibits a summable hyperbolically decaying autocovariance

function under condition for covariance stationarity (see [53], [103]). However,
stochastic volatility models as a nonlinear moving average model (see [103]) and
linear ARCH/GARCH models (see [39]) were found to reproduced the long mem-
ory via contemporaneous aggregation (in the sense of summing and averaging
across observation).
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More detailed review of the types of the aggregation can be found in a doctoral
thesis of D. Celov [19], and in [42]. Now let’s take a look at the main results of
the aggregation of linear models.

2.1.1 Aggregation of ARMA(p, q) processes

First of all, we review here the aggregation of AR(1) processes. Then we
describe the aggregation of AR(p) models and at the end the aggregation of
ARMA(p, q) processes.

Aggregation of AR(1) processes. Observed macroeconomic time series
often represent the result of aggregating over a huge number of heterogeneous
units. An individual (micro) behavior can be described usually by autoregressive
model. This motivates the importance of investigating the asymptotic behaviour
of the aggregated process of heterogeneous autoregressive models. The initial
interest for aggregation was prompted by the possibility of obtaining long memory.
This idea was first introduced by Robinson (1978, [90]) and developed by Granger
(1980, [41]). C.W.J. Granger investigated the contemporaneous aggregation of
autoregressive AR(1) models:

Xi(t) = aiXi(t− 1) + ρiu(t) + εi(t), i = 1, 2, . . . , N, t ∈ Z, (2.1)

where {Xi(t), t ∈ Z} describes an evolution of ith micro-unit, N is the number of
units, {εi(t), t ∈ Z} is a white noise specific to each agent (idiosyncratic innova-
tions) and {u(t), t ∈ Z} is a white noise, which is common to all agents (common
innovations); the coefficients θi := (ai, ρi), i = 1, . . . , N , are i.i.d. drawings from
Θ := [0, 1)×R; ai and ρi are independent and E|ρi| 6= 0, Eρ2

i <∞. Additionally
assume that parameters ai, i = 1, . . . , N , are Beta distributed with the density
function

φ(a) = 2
B(p, q)a

2p−1(1− a2)q−1, a ∈ [0, 1), p > 0, q > 0. (2.2)

C.W.J. Granger showed that in the case of aggregation of independent series

Xi(t) = aiXi(t− 1) + εi(t), i = 1, 2, . . . , N, t ∈ Z,

the aggregated process X̄N(t) := N−1/2∑N
i=1Xi(t) can have long memory prop-

erty, in the sense of non-summable autocovariance function. He showed that the
covariance function of the aggregated process {X̄N(t), t ∈ Z} is equal to

Cov(X̄N(t), X̄N(t+ h)) = σ2
εE
[
a|h|

1− a2

]
=: r(h),
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and the conditional covariance

Cov(X̄N(t), X̄N(t+ h)|A) = σ2
ε

1
N

N∑
i=1

a
|h|
i

1− a2
i

→ r(h), a.s., as N →∞,

here σ2
ε := Var(εi(t)), and A = σ{a1, a2, . . .} denote the σ−algebra generated by

r.v.’s a1, a2, . . . . Assuming that coefficients ai have a density function as in (2.2),
the covariance of the aggregated process decays hyperbolically,

r(h) ∼ Ch1−q, as h→∞. (2.3)

From the last relation (2.3), it follows that if 1 < q < 2, ∑h∈Z r(h) = ∞ and
the process with such covariance function exhibits long memory. 1 Note, that the
decay rate of the covariance function (2.3) does not depend on parameter p. The
long memory property depends on the behavior of ai’s density near unity.

If individual processes have dependent innovations

Xi(t) = aiXi(t− 1) + ρiu(t), i = 1, 2, . . . , N, t ∈ Z,

and assumption (2.2) is satisfied, then the conditional covariance of the aggregated
process X̄N(t) := N−1∑N

i=1Xi(t) converges a.s., as N →∞,

Cov(X̄N(t), X̄N(t+ h)|A) = σ2
u

1
N2

N∑
j=1

N∑
i=1

ρiρj
a
|h|
j

1− aiaj

→ σ2
u(Eρ)2

∞∑
k=0

EakEa|h|+k =: r(h),

where σ2
u := Var(u), and Eak ∼ k−q, as k → ∞. It is not difficult to see, that in

this case r(h) ∼ Ch1−2q, as h→∞, and the process with such covariance function
exhibits long memory, if 0 < q < 1.

As we see, with contemporaneous aggregation scheme (summing and averaging
across observations), based on the AR(1) model near the nonstationarity regime,
Granger provided an explanation of the long-memory effect. He also showed
that the common and idiosyncratic components exhibit a different degree of long
memory.

Zaffaroni (2004, [102]) generalized results obtained in [41]. Rather than limit-
ing the attention to the limit behavior of the autocovariance function, P. Zaffaroni
studies the limit of the aggregated process A−1

N

∑N
i=1Xi(t). The author assumes

that units are generated by AR(1) equations of the form (2.1). He does not put

1. If 0 < q ≤ 1, r(h) is not defined because in this case E[(1− a2)−1] =∞.
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an assumption that ai are Beta distributed, but assumes only that

φ(a) ∼ C(1− a)β, as a ↑ 1, with 0 < C <∞, β ∈ (−1,∞). (2.4)

Define the aggregated process as

X̄N(t) := 1
N

N∑
i=1

Xi(t) = UN,t + EN,t, (2.5)

where
UN,t = 1

N

N∑
i=1

ρi
1

1− aiL
u(t), EN,t = 1

N

N∑
i=1

1
1− aiL

εi(t), (2.6)

are common and idiosyncratic components, respectively. The conditional vari-
ances 2 of the idiosyncratic EN,t and common UN,t components are equal to

V E
N := σ2

ε

N2

N∑
j=1

1
1− a2

j

, V U
N := σ2

u

N2

N∑
h,j=1

ρhρj
1− ahaj

.

P. Zaffaroni studied the behavior of the common component UN,t and the
idiosyncratic component EN,t separately. The following theorems show what is
the limit of common and idiosyncratic components of the aggregated process in
(2.5).

Theorem 2.1.1. ([102], Th.3 (stationary case), p. 84) Assume that εi(t), t ∈ Z,
i ∈ N, are i.i.d. innovations with zero mean and finite variance. Assume, the
density function of random coefficient a satisfies (2.4). If β > 0, then for a.e.
{θi = (ai, ρi), i = 1, 2, . . .},

EN,t√
V E
N

→d Et, as N →∞, (2.7)

where {Et, t ∈ Z} is a stationary zero-mean Gaussian process with long memory
parameter 3 dE = (1− β)/2 and covariance function:

Cov(Et, Et+h) =
(
E
[ 1
1− a2

])−1
E
[ a|h|

1− a2

]
, h ∈ Z. (2.8)

To prove the limit in (2.7), P. Zaffaroni use the Lindeberg-Lévy central limit
theorem (CLT) and calculates the limit of the conditional covariance function of
the idiosyncratic component EN,t. Note, that the Theorem 2.1.1 is proved under

2. With respect to σ-algebra generated by {(ai, ρi), i = 1, 2, . . .}.
3. We say, that the stationary stochastic process {Yt, t ∈ Z} has memory parameter d

(d < 1/2), if Cov(Yt, Yt+u) ∼ cu2d−1, as u → ∞. It is not difficult to see, that Yt have long
memory (in the sense of non-summable autocovariance function), if d > 0.
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assumption, that β > 0. If β ≤ 0, the covariance function in (2.8) is not well
defined, because E[(1 − a2)−1] = ∞. In such case, P. Zaffaroni investigates the
truncation of EN,t:

ẼN,t := 1
N

t−1∑
k=0

N∑
i=1

aki εi(t− k),

which is a non-stationary process. Zaffaroni [102] showed, that the limit of
ẼN,t/

√
VarN(ẼN,t) is the non-stationary Gaussian process. Here,

√
VarN(ẼN,t)

denotes the conditional variance of ẼN,t.
Now let’s take a look at what is the limit of common component UN,t.

Theorem 2.1.2. ([102], Th.5 (stationary case), p. 86). If β > −1
2 , then for a.e.

{θi = (ai, ρi), i = 1, 2, . . .},

UN,t →L2(θ) Ut := Eρ
∞∑
k=0

Eaku(t− k), as N →∞, (2.9)

here →L2(θ) means conditional convergence in L2. The process {Ut, t ∈ Z} has the
long memory parameter dU = −β and is not Gaussian unless the {u(t), t ∈ Z} is
a Gaussian white-noise.

It is not difficult to see, that ∑∞k=0(Eak)2 < ∞ and the moving average Ut in
(2.9) is well defined in L2, if β > −1/2. While for β ≤ −1/2, this moving avegare
is not well defined. Therefore in this case, P. Zaffaroni investigates the truncation
of UN,t:

ŨN,t =
t−1∑
k=0

( 1
N

N∑
i=1

ρia
k
i

)
u(t− k).

Theorem 2.1.3. ([102], Th.5 (non-stationary case), p. 86). Assume that
{u(t), t ∈ Z} are i.i.d. and E|u(t)|q < ∞ for real q > max(2, −2/(2β + 1)).
Set dU := −β. If β < −1/2, then for a.e. {θi = (ai, ρi), i = 1, 2, . . .},

ŨN,t →d Ũt := Eρ
t−1∑
k=0

Eaku(t− k), as N →∞,

and, for any real 0 ≤ r ≤ 1,

tβ+1/2Ũ[rt] →D[0,1] (2dU − 1)U(dU ; r), as t→∞.

The process {Ũt, t ∈ Z} is not Gaussian unless {u(t), t ∈ Z} is Gaussian white-
noise; {U(d; r), r ∈ R+}, 1/2 < d < 1, is type II fractional Brownian motion

U(d; r) =
∫ r

0
(r − s)d−1 dB(s), r > 0,
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Here B(s) denotes standard Brownian motion. The process {U(d; r), r ∈ R+} is
self-similar with Hurst index H = d− 1/2.

Limits of the idiosyncratic and common components have dE = (1− β)/2 and
dU = −β long memory parameters respectively. Therefore it follows, that the the
distribution of the random coefficient a is more concentrated near the unit, the
stronger long memory of the limit aggregated process is. If |a| ≤ α < 1 a.s. for
some constant α, then the limit aggregated process has short memory. Note that
for β > −1/2 the limit of the aggregated process in (2.5) is stationary process and
depends only on the common componet. The idiosyncratic component disappears
in the limit, because its variance V E

N converges a.s. to zero, as N → ∞, for
β > −1/2 (see [102], Th. 1). The spectral density of the limit aggregated process
has the same properties as the spectral density of the Ut process in (2.9):

sU(λ) = σ2
u(Eρ)2

2π

∣∣∣∣∣
∞∑
k=0

Eake− iλk
∣∣∣∣∣
2

∼


Cλ2β, β < 0,
C log

(
1
λ

)
, β = 0,

C, β > 0.

as λ→ 0.

Therefore, in the presence of common innovations, the limit aggregated process
is stationary and exhibits long memory property when −1/2 < β < 0. If we
aggregate independent processes only with idiosyncratic innovations, then the
limit aggregated process Et in (2.7) is stationary and has long memory for 0 <

β < 1.
Following the frame-work of [102], we worked out the aggregation problem

of autoregressive AR(1) processes with innovations belonging to the domain of
attraction of an α−stable law, 0 < α ≤ 2 (see Chapters 3, 4).

Aggregation of AR(p) processes. The aggregation of AR(p) processes was
investigated by G. Oppenheim and M.C. Viano [77]. Assume that the behavior
of unit is described by the stationary autoregressive model of order p:

X(t)−
p∑

k=1
akX(t− k) = ε(t), t ∈ Z, (2.10)

where {ε(t), t ∈ Z} is zero-mean second-order strong white noise with variance σ2
ε .

Let αj, j = 1, . . . , p, denote the inverse of the roots of the polynomial 1−∑p
k=1 akz

k

and D is an open unit disc. Assume that the random vector α = (α1, . . . , αp) is
in Dp almost surely and that α is independent of the innovations {ε(t), t ∈ Z}.
Given α, let Aα(z) be the characteristic polynomial of the autoregressive process
X(t):

Aα(z) =
p∏

k=1
(1− αkz), Aα(z)−1 = 1 +

∞∑
k=1

bkz
k. (2.11)
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The moving avarage representation of X(t) is

X(t) = ε(t) +
∞∑
k=1

bkε(t− k), t ∈ Z. (2.12)

This series converges almost surely 4. {X(t), t ∈ Z} is stationary but not ergodic
process with a covariance function

Cov(X(t), X(t+ h)) = σ2
εE
[ ∞∑
k=1

bkbk+h

]
= σ2

ε

∫ π

−π
e ihλE

∣∣∣Aα(e iλ)
∣∣∣−2

dλ,

and a spectral density

f(λ) = σ2
ε

2πE
∣∣∣Aα(e iλ)

∣∣∣−2
. (2.13)

The process X(t) is in L2, i.e. E(X(t))2 <∞, if and only if

E
∫ π

−π

∣∣∣Aα(e iλ)
∣∣∣−2

dλ <∞.

Now assume, that all units are independent and the behavior of them is de-
scribed by N independent copies of (2.10). Define the aggregated process as
cross-sectional average with normalisation

√
N :

X̄N(t) = 1√
N

N∑
i=1

Xi(t), t ∈ Z. (2.14)

{X̄N(t), t ∈ Z} has the same second order characteristics as {X(t), t ∈ Z} process
(the same covariance function and the same spectral density). In [77] it is proved,
that {X̄N(t), t ∈ Z} converges to zero-mean Gaussian process {X(t), t ∈ Z},

X̄N(t)→fdd X(t). (2.15)

The limit process {X(t), t ∈ Z} is ergodic, has a spectral density as in (2.13) and
can be seasonally long-range-dependent, i.e.

Cov(X(t),X(t+ h)) ∼ |h|−2d−1 β(h), as h→∞,

for some d ∈ (−1/2, 0), where β(h) is an oscillating function. To show that
the limit aggregated process {X(t), t ∈ Z} can obtain seasonal long memory,

4. From the independence hypotheses and because P(|αj < 1|) = 1, the series (2.12) con-
vergece conditionaly a.s. for almost all α, and consequently it convergeces unconditionaly a.s.
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G. Oppenheim and M.C. Viano [77] assumed that

Aαi(z) = (1− αi,1z)(1− αi,2z)
p+1∏
j=3

(1− ρi,je iθjz)(1− ρi,je− iθjz), i = 1, . . . , N,

are the characteristic polynomials of independent AR(2p) processes {Xi(t), t ∈ Z},
i = 1, . . . , N . Here θj, j = 3, . . . , p + 1, are fixed arguments in (−π, π) \ {0};
αi := {αi,1,−αi,2, ρi,3, . . . , ρi,p+1}, i = 1, . . . , N , are independent copies of random
vector α := {α1,−α2, ρ3, . . . , ρp+1}, which components are independent and have
the following density functions:

gj(s) = (1− s)djψj(s), j = 1, . . . , p+ 1,

where ψj(a) is a continuous function at the point s = 1, ψj(1) > 0, 0 < dj < 1.
In this case, the limit aggregated process {X(t), t ∈ Z} in (2.15) is zero-mean
Gaussian process with the covariance function

Cov(X(t),X(t+ h)) = h−d
( ∑
{k: dk=d}

γk cos(hθk) + o(1)
)
, as h→∞,

where d = min(dj, 1 ≤ j ≤ p+ 1) and γk, k = 1, . . . , p+ 1, are some constants.

The obtained result shows that if the characteristic polynomial Aα(z) has
complex conjugate roots, the covariance function of {X(t), t ∈ Z} has an oscillating
component, the spectral density has singular points other than zero, and the limit
aggregated process {X(t), t ∈ Z} obtains seasonal long memory.

Aggregation of ARMA(p, q) processes. P. Zaffaroni [102] noticed that
the results of aggregation of AR(1) processes generalize to the case of aggregation
of ARMA(p, q) processes. The ARMA(p, q) model contains autoregressive AR(p)
and moving average MA(q) models:

A(L)X(t) = Π(L)Z(t), t ∈ Z, (2.16)

where

A(L) = (1− a1L− a2L
2 − · · · − apLp),

Π(L) = (1 + π1L+ π2L
2 + · · ·+ πpL

q).

Assume, that q < p, A(z) has distinct roots, the polynomials A(z) and Π(x) have
no common zeroes and A(z) 6= 0, Π(z) 6= 0 for all z ∈ C such that |z| ≤ 1. Under
these assumptions the process {X(t), t ∈ Z} is causal, invertible and the model
(2.16) can be rewritten as
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X(t) =
(

β1

1− α1L
+ · · ·+ βp

1− αpL

)
Z(t), t ∈ Z, (2.17)

where αj, j = 1, . . . , p, denotes the inverse of the roots of A(z) and βj, j = 1, . . . , p,
are constants depending on αj, j = 1, . . . , p, and πj, j = 1, . . . , q.

Suppose {Xi(t), t ∈ Z}, i = 1, . . . , N , are independent copies of (2.17) with
Zi(t) = ρiu(t) + εi(t), where u(t) is a common noise for all units and εi(t) is a
noise specific to each unit. The aggregated process can be splitted in two parts:

X̄N(t) = 1
N

N∑
i=1

Xi(t) = UN,t + EN,t,

where

UN,t = 1
N

N∑
i=1

ρi

(
βi,1

1− αi,1L
+ · · ·+ βi,p

1− αi,pL

)
u(t),

EN,t = 1
N

N∑
i=1

(
βi,1

1− αi,1L
+ · · ·+ βi,p

1− αi,pL

)
εi(t).

We can see, that UN,t and EN,t are very similar to components in (2.6). The
results of aggregation of AR(1) processes generalize to the case of aggregation of
ARMA(p, q) processes. The properties of the aggregated process depend on the
distribution of the autoregressive root with the more dense near 1.

If q = 0, then the ARMA(p, q) process is the AR(p) process described in (2.10).
In this case, the aggregated process (2.14) is equal to X̄N(t) =

√
NEN,t, t ∈ Z,

and the limit aggregated process {X(t), t ∈ Z} obtains seasonal long memory if
the polynomial A(z) has complex conjugate roots. The autocovariance function of
the limit aggregated process has an oscillating component and the spectral density
has singular points other than zero.

It should be noticed here that the moving average component has no effect on
the memory of the limit aggregated process. In [41], [102] it is shown that if p = 0
and the behavior of units is described by the moving average MA(q) model

Xi(t) = Πi(L)(ρiu(t) + εi(t)), t ∈ Z, i = 1, . . . , N,

then the idiosyncratic component EN,t converges to 0 conditionally in L2 and the
limit of the common component UN,t is equal to

Ut = E(ρ)(u(t) + E(π1)u(t− 1) + · · ·+ E(πq)u(t− q)).
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2.1.2 Aggregation of random fields

Models of random fields were introduced by P. Whittle in 1954, [101]. Basic
results about random fields can be found in [43], [51]. Long memory properties
of random fields was investigated in [57], [58], [59], [61]. And the aggregation
procedure of autoregressive random fields with finite variance was discussed in
[57], [60], [61].

Consider the autoregressive random field

∑
k,l∈D

ak,lX(t− k, s− l) = ε(t, s), (t, s) ∈ Z2, (2.18)

where D is a finite subset of Z2, (ak,l)(k,l)∈D are real random coefficients and
{ε(t, s), (t, s) ∈ Z2} is a white noise in L2 space. Let L1 and L2 be lag operators,
i.e. L1X(t, s) = X(t− 1, s), L2X(t, s) = X(t, s− 1), and denote

P (z1, z2) :=
∑
k,l∈D

ak,lz
k
1z

l
2

Then (2.18) can be rewritten in more compact form

P (L1, L2)X(t, s) = ε(t, s), (t, s) ∈ Z2. (2.19)

If for every (ak,l), P (e iλ1 , e iλ2) 6= 0 for all (λ1, λ2) ∈ [−π, π]2, (2.19) admits unique
stationary solution (see [43], [57]), which is given by the series

X(t, s) =
∑
k,l∈Z2

bk,lε(t− k, s− l), (t, s) ∈ Z2, (2.20)

where (bk,l)(k,l)∈Z2 are random coefficients of the Laurent expantion P (z1, z2)−1 =∑
k,l∈Z2 bk,lz

k
1z

l
2. The series (2.20) converges in L2 if and only if

∑
k,l∈Z2

E(|bk,l|2) <∞.

The spectral density of the random field (2.20) is

f(λ1, λ2) = σ2
ε

(2π)2 E
∣∣∣P (e iλ1 , e iλ2)

∣∣∣−2
, (λ1, λ2) ∈ [−π, π]2, (2.21)

where σ2
ε is the variance of the white noise.

Now suppose we have N independent copies Xj(t, s), j = 1, . . . , N , of (2.19).
Define the aggregated random field
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X̄N(t, s) = 1√
N

N∑
j=1

Xj(t, s), (t, s) ∈ Z2. (2.22)

From the central limit theorem it follows, that the limit of the aggregated process
X̄N(t, s), as N →∞, is a Gaussian random field X(t, s), which has the same spec-
tral density (2.21) as the aggregated field X̄N(t, s) and individual fields Xj(t, s),
j = 1, . . . , N (see [60]).

Long memory properties and the dependence structure of the limit aggregated
random field {X(t, s), (t, s) ∈ Z2} strongly depends on what model of fields one
uses to describe the behavior of individual fields. Lavancier[60] investigates the
long memory properties of the limit aggregated random field {X(t, s), (t, s) ∈ Z2}
under assumption that the individual fields are described by the nearest-neighbor
autoregressive random fields with finite variance 5. Suppose, for example, we have
N independent copies of the nearest-neighbor random field

Xj(t, s) = A

4 (Xj(t−1, s)+Xj(t+1, s)+Xj(t, s−1)+Xj(t, s+1))+εj(t, s), (2.23)

where (t, s) ∈ Z2, j = 1, . . . , N , A is random coefficient and εj(t, s) is white noise
with variance σ2

ε > 0. If |A| < 1 almost surely, (2.23) admits stationary solution 6.
Define the aggregated random field as in (2.22). Then the limit of the aggregated
random field (in the sense of finite dimensional distributions) is Gaussian random
field:

X(t, s) = lim
N→∞

1√
N

N∑
n=1

Xj(t, s), (t, s) ∈ Z2.

Now the main question is: does {X(t, s), (t, s) ∈ Z2} have the long memory
property and in which sense? It is well known, that in finite variance case, the
long memory property of the stationary random field can be described using its
spectral density or covariance function. When the spectral density of the random
field is unbounded or autocovariance function is non-summable, then the random
field is said to exhibit long memory.

Definition 2.1.4. ([57], Def. 1)A stationary random field exhibits isotropic long
memory if it admits a spectral density which is continuous everywhere except at
0, i.e. for λ = (λ1, λ2) ∈ [−π, π]2,

f(λ) ∼ ||λ||αL
( 1
||λ||

)
b
(
λ1

||λ||
,
λ2

||λ||

)
, as ||λ|| :=

√
λ2

1 + λ2
2 → 0, (2.24)

5. In Section 6, we investigate the aggregation of such fields in the case of infinite variance,
i.e. we assume that innovations belong to the domain of attraction of an α−stable law.

6. Such stationary solution converges conditionally in L2. Under additional assumptions, it
converges unconditionally in L2.

26



REVIEW OF THE STATE OF THE ART

where −2 < α < 0, L(·) - slowly varying function at infinity and b(·) is continuous
function on the unit sphere in R2.

Lavancier [60] proved, that the limit aggregated random field {X(t, s), (t, s) ∈
Z2}, accumulated from independent nearest-neighbor random fields (2.23), can
admit isotropic long memory in the sense of Definition 2.1.4. Indeed, assume,
that the density function of the coefficient A has the form

φ(a) ∼ ψ(a)(1− a)β, as a ↑ 1, (2.25)

where ψ(a) is bounded function, continuous at 1 with ψ(1) > 0, β > −1. Then
the spectral density of the limit aggregated field is equal to

f(λ1, λ2) = σ2
ε

(2π)2

∫ 1

0

ψ(a)(1− a)β
(1− 2a(cos(λ1) + cos(λ2)))2 da. (2.26)

In [60], it is proved, that this spectral density satisfies the condition (2.24),

f(λ1, λ2) ∼

C(λ2
1 + λ2

2)β−1, if − 1 < β < 1,

C ln(λ2
1 + λ2

2), if β = 1,
as
√
λ2

1 + λ2
2 → 0,

and the limit aggregated random field X(t, s) exibits isotropic long memory, if
−1 < β < 1. Note, that when β = 1, the asymptotic of the spectral density
does not exactly suit the latter definition, but it is unbounded function of ||λ||.
Therefore, in this case, we could also say, that random field exhibits isotropic long
memory. For β > 1, the spectral density is continuous everywhere and X(t, s) is
short-range dependent.

To describe the dependence structure of a random field is more complicated
than in a univariate process case, since dependence for a random field extends in
all direction, while a univariate time series has only one direction. Actually, in
the scientific literature there are many definitions of long memory property (see
Subsection 2.3 for details). The usual definition of long memory is based on the
spectral density function or the covariance function. However, in infinite variance
case these definitions are not applicable. The best way to describe the dependence
structure of random fields and processes is probably the investigation of partial
sums and its limits under the suitable normalization. In this PhD thesis, the
main definition of long memory is so called distributional long memory (Cox [28]).
We say, that the random process has distributional long memory, if its normalized
partial sums tend to the random process with dependent increments. In Section 6,
we discuss the aggregation of nearest-neighbor autoregressive random fields with
infinite variance and introduce the notion of anisotropic/isotropic distributional
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long memory for random fields on Z2.

2.2 Disaggregation

Studies of the aggregation problem showed that accumulation of short-memory
processes can lead to long memory phenomena and that the aggregated process
may exhibit long memory property. But the weak point of the aggregation is that
by the accumulation of data we lose some information about the attributes of
individual processes and the aggregated data are not so informative as the micro
level data are. It is clear that if we have the samples of the individual processes,
we can easy aggregate them and get an aggregated process. But what we can say
about the behavior of individual processes if we have only a sample of the limiting
aggregated process and samples of the individual processes remain unobserved?
This is an interesting problem, which is so-called disaggregation problem. The
disaggregation problem has been studied in [22], [25], [62], [65], [69] and by other
authors under assumption that the individual processes have known structure,
for instance AR(1), GARCH(1,1) and etc. The recovering the attributes of the
individual behavior from panel data is also called as the disaggregation problem.
Such approach of the disaggregation problem was discussed in [14], [90]. Let’s
now review methods of disaggregation in autoregressive aggregation scheme.

Disaggregation in AR(1) aggregation scheme. Suppose, the behavior of
micro-units is described by AR(1) processes:

Xi(t) = aiXi(t− 1) + εi(t), i = 1, 2, . . . , N, t ∈ Z, (2.27)

where Xi(t) describes an evolution of ith micro-unit; N is the number of units;
εi(t), i = 1, . . . , N , t ∈ Z, are independent identically distributed random variables
with Eεi(t) = 0 and σ2

ε = Eεi(t)2 < ∞; a, ai, i = 1, . . . , N , are i.i.d. random
variables independent of innivations εi(t), supported by [−1, 1] and satisfying

E
[ 1
1− a2

]
<∞. (2.28)

Under these conditions the equation (2.27) admits a stationary solution and the
aggregated process

X̄N(t) = 1√
N

N∑
i=1

Xi(t).

converges to zero mean Gaussian process X(t). Note, that the limit aggregated
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process X(t) and the individual processes Xi(t) have the same covariance function

r(t) := Cov(X(0), X(t)) = Cov(X(0),X(t)) = σ2
ε E

[
a|t|

1− a2

]
. (2.29)

Our goal is to construct an algorithm to estimate the density function φ(a) of
random coefficient a (we call it a mixing density). The way of solution of this
disaggregation problem depends on the assumptions put on the mixing density
function. If we assume, that distribution of random coefficient belongs to some
parametric family of distributions, for example is Beta distributed, then the main
task is to find the estimate of unknown parameters. Robinson [90], Beran et al [14]
gives the solution of this problem under assumption, that the samples of individual
processes are known. Consider a panel of N independent AR(1) processes, each
of length n. Assume also that ai, i = 1, . . . , N , are i.i.d. with a density function

φp,q(a) = 2
B(p, q)a

2p−1(1− a2)q−1, a ∈ [0, 1), p > 1, q > 1, (2.30)

where the parameters p and q are unknown. To construct an estimator of these
parameters, first of all define estimates of random coefficients ai of autoregressive
processesXi(t), i = 1, . . . , N , as truncated version of lag-one correlation coefficient

âi,n,h = min{max{âi,n, h}, 1− h}, h = h(N, n) > 0, h→ 0, as N, n→∞,

where

âi,n =
∑n
t=1Xi(t)Xi(t− 1)∑n

t=1X
2
i (t) , n ≥ 1.

In this way we obtain N "pseudo" observations â1,n,h, â2,n,h, ..., âN,n,h of r.v. a
based on observations Xi(t), i = 1, . . . , N , t = 0, . . . , n. The unobserved AR(1)
coefficients are replaced by their estimates. In the second step, the parameters
p and q of the mixing distribution in (2.30) are estimated by maximizing the
likelihood, viz. (p̂, q̂) = arg maxp,q

∏N
i=1 φp,q(âi,n,h). Beran et al. [14] proved the

consistency in probability of the above maximum likelihood estimator and its
asymptotic normality with the convergence rate

√
N under the following condi-

tions on the sample sizes and the truncation parameter h: n → ∞, N → ∞,
h→ 0, (log(h))2/

√
N → 0,

√
Nhmin(p,q) → 0 and

√
Nh−2n−1 → 0.

Now let us discuss the disaggregation problem under assumption that only
the aggregated data are at hand and samples of the individual processes remain
unobserved. Such disaggregation approach has been studied in [22], [25], [62],
[69].
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Leipus et al [62] assumed the following semiparametric form of the mixing
density:

φ(a) = (1− a)d1(1 + a)d2ψ(a), d1 > 0, d2 > 0, (2.31)

where ψ(a) is continuous on [−1, 1] and does not vanishes at +1, −1, and proposed
an estimator of φ(a), which is based on the expantion of the density function on
the basis of orthogonal Gegenbauer polynomials:

φ̂n(a) := (1− a2)α 1
σ2
ε

Kn∑
k=0

ζ̂n,kG
(α)
k (a), (2.32)

where
• The coefficients ζ̂n,k are defined as follows

ζ̂n,k :=
k∑
j=0

g
(α)
k,j (r̂n(j)− r̂n(j + 2)), (2.33)

where r̂n(j) = 1
n

∑n−j
i=1 X(i)X(i+j) is the sample covariance of the zero mean

aggregated process {X(t), t ∈ Z} and n is the number of observations, X(1),
X(2), ..., X(n).

• G(α)
k (x) = ∑k

j=0 g
(α)
k,j x

j, k = 0, 1, . . . , α > −1, are orthogonal Gegenbauer
polynomials,

∫ 1

−1
G

(α)
j (x)G(α)

k (x)(1− x2)α dx =

1, if j = k,

0, if j 6= k;

• σ2
ε = Var(ε) = Eε2 is known variance of zero mean innovations;

• (Kn) is a nondecreasing sequence which tends to infinity at rate [γ log(n)],
0 < γ < (2 log(1 +

√
2))−1. This assumption on Kn convergence rate is

needed to get convergence to zero of the mean integrated square error of
φ̂n(x), i.e.

lim
n→∞

∫ 1

−1

E(φ̂n(x)− φ(x))2

(1− x2)α dx = 0; (2.34)

It should be noted here, that the estimator (2.32) is correct under assumption that
the individual process and the aggregated process have the same autocovariance
function in (2.29). If micro-units depend on common innovations, these covariance
functions are not the same. Therefore common innovations in this case are not
allowed here.

Leipus et al [62] showed the consistensy of the estimator (2.32) under assump-
tion that the variance of the noise, σ2

ε = r(0) − r(2), is known. But usually in
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practice σ2
ε is unknown and we need to estimate it. Celov et al [22] used the

following eastimator of σ2
ε ,

σ̂2
ε = r̂n(0)− r̂n(2),

where r̂n(h) is a sample covariance function of the aggregated process, and, under
mild conditions on the (semiparametric) form of the mixing density (2.31), proved
the asymptotic normality of the estimator (2.32):

φ̂n(x)− Eφ̂n(x)√
Var(φ̂n(x))

→d N(0, 1),

for every fixed x ∈ (−1; 1), such that φ(x) 6= 0.
Results in [62] and [22] were obtained for a Gaussian aggregated processes. In

Section 5.4, we extend these results to the case when the aggregated process is
a mixed ID moving-average (5.4), page 84. Under the finiteness of 4th moment,
we obtained the weak consistensy of the mixing density estimator in a suitable
L2-space (Theorem 5.4.4, page 109).

As was noticed above, the estimator (2.32) of the mixing density is not cor-
rect in the precence of common innovation, because the covariance functions of
the aggregated process and the underlying process do not coincide. Chong [25]
proposed another estimator of the mixing density φ(x), assuming, that it belongs
to the class of polynomial densities, i.e.

φ(x) =
m∑
k=0

ckx
k1x∈[0,1), m ∈ N, φ(x) ≥ 0,

∫ 1

0
φ(x) dx =

m∑
k=0

ck
k + 1 . (2.35)

It is not difficult to see, that in this case,

Ear =
m∑
k=0

ck
k + r + 1 , r = 1, . . . ,m. (2.36)

In order to have an estimator of mixing density in (2.35), we need to estimate
unknown coefficients ck, k = 0, . . . ,m, and the polynomial order m. Consider the
case of AR(1) aggregation with common innovations,

Xi(t) = aiXi(t− 1) + u(t) + εi(t), i = 1, 2, . . . , N, t ∈ Z.

The limit of the aggregated process X̄N(t) := 1
N

∑N
i=1Xi(t) is

X(t) :=
∞∑
r=0

Earu(t− r) = Φ(L)u(t),
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where Φ(L) := ∑∞
r=0 EarLr. If X(t) is invertible, we can rewrite

X(t) =
∞∑
j=1

AjX(t− j) + u(t).

Since it is impossible to estimate an autoregression of infinite order, we have to
make a truncation at a fixed order H,

X(t) =
H∑
j=1

AjX(t− j) + u(t).

Given the data of the aggregated process X(t), coefficients Aj can be estimated, for
example, by solving the Yule-Walker equations. Then the estimates of µs := Eas

can be found from recursive equations

µ̂s =
s−1∑
r=0

µ̂rÂs−r, µ̂0 = 1.

(The last equality follows from the relation between coefficients of AR and MA
representations.) Having estimators of moments µs := Eas and using the relation
(2.36), it is not difficult to calculate estimates of coefficients ck in (2.35). The
estimate of an unknown polynomial order m could be defined as a value, which
minimize the distance between empirical and theoretical autocorrelation functions
(for more details the reader is referred to [25]).

The Chong’s estimator of the mixing density function φ(x) is justified only for
the class of polynomial densities. But the advantage of this estimator is that it
remains correct in the presence of common innovations, whilemean the estimator
in (2.32) is not valid in this case. The comparison of these estimation methods is
given in [20]. Examining results of Monte-Carlo simulations it is shown (in [20])
that none of the methods was found to outperform another.

Disaggregation of autoregressive fields. The disaggregation problem of
autoregressive random fields was discussed in [65]. N. Leonenko and E. Taufer [65]
extended results of Leipus et al [62] from one-dimensional to spatial autoregressive
processes. The authors assumed that the aggregated Gaussian random field

X(t, s) = lim
N→∞

1√
N

N∑
i=1

Xi(t, s)

is obtained by accumulation of i.i.d. random fields:

Xi(t, s) = θ1,iXi(t− 1, s) + θ2,iXi(t, s− 1)− θ1,iθ2,iXi(t− 1, s− 1) + ε(t, s),

where i = 1, 2, . . . , N , (t, s) ∈ Z2, {ε(t, s), (t, s) ∈ Z2} is a white noise with zero
mean and finite variance σ2; coefficients (θ1,i, θ2,i), i = 1, 2, . . . , N are indepen-
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dent copies of a random vector (θ1, θ2) supported on [−1, 1]2 with density function
φ(θ1, θ2). It is proved under some assumptions in [65], that the mean integrated
square error of the estimator φ̂n(θ1, θ2) (which is based on the expantion of the
density funtion on the basis of two-dimensional orthogonal Gegenbauer polyno-
mials) converge to zero, as in one-dimensional case (2.34). For more details we
refer the reader to [65].

2.3 Long memory

The phenomenon of long memory is a widely studied subject and has long
history. There are many publications addressed to detection of long memory in
the data, limit theorems under long memory, statistical estimation of memory
parameters, simulation of long memory processes, and many others. But the first
main question is what is the long memory. There are many definition of long
memory, they vary from author to author and are not always equivalent. As it
was noted in [93], the history of long memory as a concrete phenomenon begins
in the 1960s with a series of papers of B. Mandelbrot and his co-authors, when
the Hurst phenomenon was explaned. British hydrologist H. Hurst studied the
flow of water in Nile river and wanted to model them so that architects could
construct a reservoir system. In 1951, H. Hurst [49] showed that the aggregated
water flows in year depends not only on the flows in recent year but also on flows
in year before the present year. He introduced the rescaled range statistic R/S:

R

S
(X1, X2, . . . , Xn) = max0≤i≤n(∑n

i=1Xi − iX̄)−min0≤i≤n(∑n
i=1Xi − iX̄)√

1
n

∑n
i=1(Xi − X̄)2

,

where X1, X2, ..., Xn are observations, X̄ = n−1∑n
i=1Xi is sample mean of the

data. H. Hurst got that the empirical rate of growth of R/S statistic on the Nile
river data is close to n0.74. This phenomenon, called Hurst phenomenon, was
explain and advanced by Mandelbrot and co-workers [71], [72], [73]. It is known
that if X1, X2, ..., Xn are finite-variance independent and identically distributed
random variables, then the rate of growth of R/S statistic is n0.5. The idea to
explain the Hurst phenomenon was to take a stationary process {Xt, t ∈ Z} with
slowly decaying covariance function (see [73]). And this idea was successful. It
was proved that for the fractional Gaussian noise (the unit difference of fractional
Brownian motion BH)

Xj := BH(j)−BH(j − 1),
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with the covariance function

Cov(Xj+n, Xj) = σ

2 [(n+ 1)2H + |n− 1|2H − 2n2H ],

the R/S statistic grows at the rate nH . In this way the term of "long memory"
came into beying.

Most of the definitions of long memory are based on the second-order prop-
erties (covariance, spectral density) of a stochastic process {X(t), t ∈ Z}. Such
properties are relatively simple and it is not difficult to estimate them from the
given data. However, when the process does not have finite variance, the usual
definitions of long memory in terms of covariance/spectrum are not applicable.
Among the alternative notions of long memory, which do not require finite vari-
ance, we mention the (decay rate of) codifference (see Samorodnitsky and Taqqu
[94]), distributional long memory (see Cox, [28]), and long-range dependence (sam-
ple Allen variance) (LRD(SAV)) (see Heyde and Yang[45]), also characteristics of
dependence, like covariation or α−covariance, for stable processes expressed in
terms of the spectral measure (Samorodnitsky and Taqqu [94], Paulauskas [79]).

Before introducing detailed definitions of long memory, let us take a look to
some properties of functions.

Definition 2.3.1.
– A positive measurable function L(h) defined on some neighborhood [a,∞) of
infinity is said to be slowly varying if for any c, c > 0,

L(cx)
L(x) → 1, as x→∞.

– Let B ⊆ (0,∞) be a compact set, the total variation of the real-valued func-
tion f on B is

v(f,B) = sup
n∑
i=1
|f(xi)− f(xi−1)| ,

here the supremum is over all finite sequences x0 ≤ x1 ≤ · · · ≤ xn in B.

– A function f is said to be of locally bounded variation on (0,∞), if v(f,B) <
∞ for each compact set B ⊆ (0,∞).

– A positive function f of locally bounded variation on (0,∞) is said to be
quasi-monotone, if for some δ > 0,

∫ x

0
tδ | df(t)| = O(xδf(x)), as x→∞.

Now we can discuss definitions of long memory.
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Definition 2.3.2. A stationary process {X(t), t ∈ Z} has a long memory prop-
erty, if the autocovariance function r(h) = Cov(X(t), X(t + h)) is not absolutely
summable ∑

h∈Z
|r(h)| =∞. (2.37)

Definition 2.3.3. A stationary process {X(t), t ∈ Z} has a long memory prop-
erty, if the autocovariance functions decays hyperbolically, as h→∞,

r(h) ∼ h2d−1L(h), 0 < d < 1/2, (2.38)

where d is long-memory parameter, L(·) is a slowly varying function at infinity.

The covariance function of a stationary process can be written in such form:

r(h) =
∫ π

−π
e ihλ dF (λ),

where the function F is non-decreasing, right-continuous, bounded over [−π, π],
and F (−π) = 0. Such function F is called the spectral distribution, and if

F (λ) =
∫ λ

−π
f(ω) dω,

the function f(·) is called the spectral density of r(·). The spectral density function
can also be used to describe the dependence in time series.

Definition 2.3.4. A stationary process {X(t), t ∈ Z} has a long memory prop-
erty, if its spectral density function satisfies

f(λ) ∼ |λ|−2d L(1/ |λ|), 0 < d < 1/2, as |λ| → 0, (2.39)

and L(·) is a slowly varying function at infinity.

Another definition of long memory is based on the X(t)’s Wold decomposition
X(t) = ∑∞

j=0 ψjε(t− j).

Definition 2.3.5. A stationary time series {X(t), t ∈ Z} is a long memory time
series, if the coefficient ψj in purely non-deterministic part of the X(t)’s Wold
decomposition satisfies

ψj ∼ jd−1L(j), 0 < d < 1/2, (2.40)

where L(h) is a slowly varying function at infinity.

Palma [78] described all above mentioned Definitions 2.3.2 - 2.3.5 of long mem-
ory and compared them. These four definitions are not necessarily equivalent.
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Palma (see [78], Thm 3.1) proved the following relations between these defini-
tions:

– If the process {X(t), t ∈ Z} satisfies (2.38), it also satisfies (2.37).
– If the process {X(t), t ∈ Z} satisfies (2.40), it also satisfies (2.38).
– If the function L(·) in (2.38) is quasi-monotone slowly varying, then (2.38)
implies (2.39).

Let us discuss now two definitions of long memory, which are based on limits
of partial sums of the process.

Definition 2.3.6. (See [28]). A strictly stationary time series {X(t), t ∈ Z}, is
said to have distributional long memory (respectively, distributional short mem-
ory) if there exist some constants An → ∞, n → ∞, and Bn and a stochastic
process {J(t), t ≥ 0} 6≡ 0 with dependent increments (respectively, with indepen-
dent increments), such that

A−1
n

[nt]∑
s=1

(X(s)−Bn) →fdd J(t), (2.41)

Lamperti [56] showed that under mild additional assumptions the normalizing
constant An in (2.41) grows as nH (with some H > 0), more precisely, An =
L(n)nH , where L(n) is a slowly varying function at infinity, and the limit process
{J(t), t ≥ 0} is self-similar with index H.

Definition 2.3.7. (See [45]). A strictly stationary time series {X(t), t ∈ Z}, is
called LRD(SAV) if (∑n

t=1X(t)
)2

∑n
t=1X

2(t) →p ∞; (2.42)

otherwise {X(t), t ∈ Z} is called SRD(SAV).

Now, for a strictly stationary process {X(t), t ∈ Z}, define a quantity

Cod(X(0), X(t)) := log Ee i(X(t)−X(0)) − log Ee iX(t) − log Ee− iX(0), (2.43)

which is called the codifference of random variables’s X(0) and X(t). Long mem-
ory of {X(t), t ∈ Z} can be characterized by the decay rate of Cod(X(0), X(t))
(see [94]).

Definition 2.3.8. A strictly stationary time series {X(t), t ∈ Z} has long mem-
ory property, if its codifference satisfies

∑
h∈Z
|Cod(X(0), X(h))| =∞. (2.44)
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Note that the existence of Cod(X(0), X(t)) does not require any moments.
For stationary stable or heavy tailed moving averages and some other processes
with long memory, the asymptotics of Cod(X(0), X(t)) was investigated in [7],
[9], [55]. In particularly, if {X(t), t ∈ Z}, is a stationary Gaussian process, with
zero mean, unit variance, then Cod(X(0), X(t)) = (1/2)Cov(X(0), X(t)).

The dependence structure of random fields is more complicated than in a
univariate processes, because the intensity of long memory can be different for
different directions. In the case of finite variance, the long memory of the station-
ary random fields can be described using its second order properties (covariance
function or spectral density). We say that a stationary random field X(t1, t2) has
long memory if its covariance function r(h) := Cov(X(t1, t2), X(t1 + h1, t2 + h2)),
h = (h1, h2) ∈ Z2, is not absolutely summable,

∑
h∈Z2

|r(h)| =∞. (2.45)

or behaves at infinity as

r(h) ∼ ‖h‖α−1L
( 1
‖h‖

)
b
(
h

‖h‖

)
, as ‖h‖ → ∞, (2.46)

where 0 < α < 2, ‖.‖ denotes the Euclidean norm, L(·) is a slowly varying function
at infinity and b(·) is continuous function on the unit sphere in R2. An alternative
definition of long memory involves properties of the spectral density function. A
random field is said to exhibit isotropic long memory if its spectral density is
unbounded and

f(λ) ∼ ‖λ‖−αL
( 1
‖λ‖

)
b
(
λ

‖λ‖

)
, as ‖λ‖ → 0, (2.47)

where λ := (λ1, λ2), 0 < α < 2, ‖.‖ denotes the Euclidean norm, L(·) is a slowly
varying function at infinity and b(·) is continuous function on the unit sphere
in R2. Note that conditions (2.47) and (2.46) are not equivalent. The random
field exhibits isotropic long memory and its spectral density satisfies condition
(2.47) if the covariance of random field satisfies the condition (2.46) and the
spectral density is continuous outside 0. If spectral density is unbounded and not
continuous outside 0, then the long memory is non-isotropic, for example, if we
investigate random field

X(t, s) = aX(t+ 1, s− 1) + ε(t, s),

where a is random coefficient with the density function φ(x) ∼ c(1−x)β, as x ↑ 1,
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β > −1, then the spectral density of the random field X(t, s) satisfies

f(λ1, λ2) ∼ c |λ2 − λ1|β−1 , as |λ2 − λ1| → 0.

Therefore, the long memory is non-isotropic in this case (see [57]).
In the Chapter 6 we introduce the new notion of anisotropic/isotropic long

memory for random fields on Z2, which is based on the behavior of partial sums
and does not require finite variance of random field.

The notion of long memory is polysemous, especially for infinite-variance pro-
cesses, and is not limited to the characterization properties mentioned above.
There are many definitions of long memory, and they are not always equivalent.
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3
Aggregation of AR(1) process
with infinite variance and
common innovations

Abstract. Aggregation of random-coefficient AR(1) processes

Xi(t) = aiXi(t− 1) + ε(t), t ∈ Z, i = 1, . . . , N,

with i.i.d. coefficients ai ∈ (−1, 1) and common i.i.d. innovations {ε(t), t ∈ Z}
belonging to the domain of attraction of an α−stable law, 0 < α ≤ 2, is discussed.
Particular attention is given to the case of slope coefficient having probability
density growing regularly to infinity at points a = 1 and a = −1. Conditions are
obtained under which the limit aggregated process X(t) = limN→∞N

−1∑N
i=1Xi(t)

exists and exhibits long memory, in certain sense. In particularly, we show that
suitably normalized partial sums of the X(t)’s tend to fractional α−stable motion,
and that {X(t), t ∈ Z} satisfies the LRD(SAV) property of Heyde and Yang [45],
and can have distributional long memory of Cox [28].

3.1 Introduction

The present chapter extends the results of Zaffaroni [102] on aggregation of
random-coefficient AR(1) processes from finite variance case to infinite variance
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case. Here, we discuss only the case of common innovations of the aggregated
series. The case of idiosyncratic innovations belonging to the domain of attraction
of a stable distribution will be discussed in Chapter 4 (see also [86]).

Let us describe the main results of this Chapter. Suppose, the behavior of
micro units is described by random-coefficient AR(1) processes

Xi(t) = aiXi(t− 1) + ε(t), i = 1, 2, . . . , t ∈ Z,

where {ε(t), t ∈ Z} are common i.i.d. innovations with generic distribution ε, sat-
isfying E|ε|p <∞, for some 0 < p ≤ 2, and Eε = 0, 1 ≤ p ≤ 2; {ai, i = 1, . . . , N}
are i.i.d. r.v.’s independent of {ε(t), t ∈ Z} and having a common distribution
a, a ∈ (−1, 1) almost surely. Theorem 3.2.4 obtains sufficient conditions for con-
vergence in probability of the aggregated process X̄N(t) := N−1∑N

i=1Xi(t) to a
stationary moving average

X(t) =
∞∑
j=0

ājε(t− j), āj = Eaj. (3.1)

In the case 1 ≤ p ≤ 2, the sufficient condition for such convergence is

E
[ 1
(1− |a|p)1/p

]
< ∞. (3.2)

The last condition also implies∑∞j=0(E|aj|)p <∞ so that the process {X(t), t ∈ Z}
is well-defined.

In Sections 3.3 - 3.5, we study the case when the innovations {ε(t), t ∈ Z}
belong to the domain of attraction of an α−stable law, 0 < α ≤ 2, and the
probability density φ of r.v. a ∈ (−1, 1) takes the form

φ(x) = (1− x)−d1(1 + x)−d2ψ(x), −1 < x < 1 (3.3)

where parameters d1, d2 satisfy 0 < d1, d2 < 1 and where ψ ≥ 0 is an inte-
grable function on the interval (−1, 1) having finite limits ψ1 = limx→1 ψ(x),
ψ2 = limx→−1 ψ(x). A particular case of (3.3) is Beta distributed a ∈ (0, 1) with
the density function

φ(x) = B(d1, 1− d1)−1xd1−1(1− x)−d1 , 0 < x < 1.

In the latter case,

āj = 1
B(d1, 1− d1)

∫ 1

0
xd1+j−1(1− x)−d1 dx = Γ(j + d1)

Γ(j + 1)Γ(d1) , j = 0, 1, . . .(3.4)
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are FARIMA(0, d1, 0) coefficients. More generally, if (3.3) holds with 0 < d2 <

d1 < 1, ψ1 > 0, then the coefficients āj decay as jd1−1 similarly as in the case of
FARIMA(0, d1, 0) process (see Proposition 3.3.1, page 49). Section 3.3 introduces
a time domain generalization of I(d) filter (Definition 3.3.3, page 52). We show
that, under some regularity conditions of the function ψ in (3.3) at the ends of
the interval (−1, 1), the ‘mixed’ coefficients āj = Eaj form an I(d1) filter in the
sense of this definition.

The most interesting case which can lead to long memory of the limit aggre-
gated process {X(t), t ∈ Z} in (3.1) is 1 < α ≤ 2. In this case, condition (3.2) for
mixing density in (3.3) with ψi > 0, i = 1, 2 is satisfied if and only if

di < 1− (1/α), i = 1, 2. (3.5)

Section 3.4 studies long memory properties of the corresponding limit aggre-
gated process {X(t), t ∈ Z} in (3.1). Since we are dealing with infinite variance
processes, the usual definitions of long memory in terms of covariance/spectrum
are not applicable. According to Corollary 3.4.2, page 57, if (3.5) holds (and
1 < α ≤ 2, ψ1 > 0), then {X(t), t ∈ Z} enjoys the so-called long-range de-
pendence (sample Allen variance) property of Heyde and Yang [45], and the
distributional long memory of Cox [28]; in particularly, its normalized partial
sums process converges to a fractional stable motion with self-similarity parameter
H = d1 + 1/α ∈ (1/α, 1). See Section 3.4 for definitions and precise formulations.

Section 3.5 considers the case of 1 − (1/α) < d1 < 1, or nonstationary limit
aggregate. In this case, the stationary infinite order moving average process in
(3.1) is not defined. Following Zaffaroni [102], we consider aggregation of random
coefficient AR(1) processes {Yi(t), t = 1, 2, . . .}, i = 1, . . . , N , with zero initial
condition Yi(0) = 0. According to Proposition 3.5.1, page 58, in such case the
limit aggregated process Ȳ (t) = limN→∞N

−1∑N
i=1 Yi(t) is nonstationary and the

normalized process 1
nd1+1/α−1 Ȳ ([nτ ]), τ ∈ [0,∞) converges, in the sense of weak

convergence of finite dimensional distributions, to an α−stable self-similar process
given by a stochastic integral with respect to stable motion.

3.2 The limit of the aggregated process

Consider a random-coefficient AR(1) process

X(t) = aX(t− 1) + ε(t), t ∈ Z, (3.6)
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where {ε, ε(t), t ∈ Z} are i.i.d. r.v.’s and where a is a r.v., independent of innova-
tions {ε(t), t ∈ Z} and satisfying |a| < 1 a.s.

Definition 3.2.1. Write ε ∈ D(α), 0 < α ≤ 2, if
(i) α = 2 and Eε = 0, σ2 := Eε2 <∞, or
(ii) 0 < α < 2 and there exist some constants c1, c2 ≥ 0, c1 + c2 6= 0 such that

lim
x→∞

xαP(ε > x) = c1 and lim
x→−∞

|x|αP(ε ≤ x) = c2.

moreover, Eε = 0 whenever 1 < α < 2, while, for α = 1, we assume that the
distribution of ε is symmetric.

Remark 3.2.2. (i) Condition ε ∈ D(α) means that r.v. ε belongs to the domain
of normal attraction of an α−stable law; in other words,

n−1/α
n∑
i=1

εi →d Z, (3.7)

where Z is an α−stable r.v., see [36]. The characteristic function of r.v. Z is
given by

Ee iθZ = e−|θ|αω(θ), θ ∈ R, (3.8)

where

ω(θ) :=


Γ(2−α)

1−α

(
(c1 + c2) cos(πα/2)− i(c1 − c2)sign(θ) sin(πα/2)

)
, α 6= 1, 2,

(c1 + c2)(π/2), α = 1,
σ2/2, α = 2.

(3.9)

(ii) Condition ε ∈ D(α) implies E|ε|p <∞ for any 0 < p < α.

Proposition 3.2.3. (i) Assume E|ε|p < ∞, for some 0 < p ≤ 2 and Eε = 0,
p ≥ 1. Then there exists a unique strict stationary solution to equation (3.6) given
by the series

X(t) =
∞∑
k=0

akε(t− k). (3.10)

The series in (3.10) converge conditionally a.s. and in Lp, for a.e. a ∈ (−1, 1).
Moreover, if

E
[ 1
1− |a|p

]
< ∞, (3.11)

then the series in (3.10) converge unconditionally in Lp.
(ii) Assume that ε ∈ D(α), for some α ∈ (0, 2], and condition (3.11), for some
0 < p < α. Moreover, if α = 1, assume additionally that E(1− |a|p)−1−2(1−p)/p <

∞ for some 0 < p < 1. Then X(t) ∈ D(α).
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Proof. (i) Let us prove first that equation (3.6) admits a unique stationary solu-
tion. Let {X(t)}, {X ′(t)} be two such solutions. By iteration we have that for
any n > 0

X(0) = ε(0) + aε(−1) + · · ·+ an−1ε(−n+ 1) + anX(−n)

and a similar equation holds for X ′(0). Hence

X(0)−X ′(0) = an(X(−n)−X ′(−n)),

or
|X(0)−X ′(0)| ≤ |a|n(|X(−n)|+ |X ′(−n)|).

For any ε > 0, 0 < δ < 1, K > 0 we can write

P(|X(0)−X ′(0)| > ε) ≤ P(|a| > 1− δ) + P(|X(−n)| > K) + P(|X ′(−n)| > K)

+ P(2(1− δ)nK > ε).

Since |a| < 1 a.s., so P(|a| > 1 − δ) can be made arbitrarily small by a suitable
choice of δ. Next,

P(|X(−n)| > K) = P(|X(0)| > K)

and
P(|X ′(−n)| > K) = P(|X ′(0)| > K)

do not depend on n by stationarity and can be made arbitrarily small by choosing
K large enough. Clearly, P(2(1− δ)nK > ε) = 0 for n large enough. This proves
P(|X(0)−X ′(0)| > 0) = 0.

We shall use the following inequality. Let 0 < p ≤ 2, and let ξ1, ξ2, . . . be
random variables with E|ξi|p < ∞. Moreover, in the case 1 < p ≤ 2 we assume
that the r.v.’s ξi form a martingale difference sequence:

E[ξi+1|ξi, . . . , ξ1] = 0, i = 1, 2, . . . .

Then there exists a constant Cp <∞, which depends only on p, such that

E
∣∣∣∣∑
i

ξi

∣∣∣∣p ≤ Cp
∑
i

E|ξi|p. (3.12)

In fact, inequality (3.12) holds with Cp = 1 for 0 < p ≤ 1 and with Cp = 2 for
1 < p ≤ 2 (see [11]).
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From (3.12), for any a ∈ (−1, 1) we obtain

E
[∣∣∣∣ ∞∑
k=0

akε(t− k)
∣∣∣∣p∣∣∣∣a] ≤ CpE|ε|p

∞∑
k=0
|a|kp = CpE|ε|p

1− |a|p < ∞. (3.13)

This proves the conditional convergence in Lp of the series in (3.10). The a.s.
convergence of (3.10) follows from (3.13). Clearly, (3.13) and (3.11) imply that
(3.10) converges unconditionally in Lp. This proves part (i).

(ii) We need to prove that X(t) ∈ D(α), 0 < α ≤ 2. For this it suffices to
prove, that

EX2(t) <∞, for α = 2, (3.14)

and for 0 < α < 2,

lim
x→∞

xαP(X(t) > x) =
∞∑
j=1

E
[ ∣∣∣aj∣∣∣α {c11(aj > 0) + c21(aj < 0)}

]
= C <∞,(3.15)

lim
x→−∞

|x|α P(X(t) ≤ x) =
∞∑
j=1

E
[ ∣∣∣aj∣∣∣α {c11(aj < 0) + c21(aj > 0)}

]
= C <∞.

Here, (3.14) immediately follows from the condition (3.11). To prove (3.15), we
use Theorem 3.1 of [48]. Accordingly, it suffices to check that there exists ε > 0
such that
∞∑
j=1

E
∣∣∣aj∣∣∣α−ε <∞ and

∞∑
j=1

E
∣∣∣aj∣∣∣α+ε

<∞, for α ∈ (0, 2) \ {1}, (3.16)

E
( ∞∑
j=1

∣∣∣aj∣∣∣α−ε )α+ε
α−ε

<∞, for α = 1. (3.17)

The condition (3.16) is satisfied because of (3.11). And (3.17) follows from

E
( ∞∑
j=1

∣∣∣aj∣∣∣1−ε ) 1+ε
1−ε

= E(1− |a|1−ε)−1− 2(1−(1−ε))
1−ε <∞,

and from the condition of this proposition in part (ii) with p = 1 − ε. Proposi-
tion 3.2.3 is proved. 2

Assume, that the behavior of individuals is described by random-coefficient
AR(1) equations

Xi(t) = aiXi(t− 1) + ε(t), i = 1, 2, . . . , (3.18)

where {ε(t), t ∈ Z} are i.i.d. r.v.’s satisfying the same conditions as in Proposi-
tion 3.2.3, and where {ai} are i.i.d. r.v.’s independent of {ε(t), t ∈ Z} and having
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a common distribution a. Define the aggregated process by

X̄N(t) := N−1
N∑
i=1

Xi(t), t ∈ Z. (3.19)

Let A = σ{a1, a2, . . .} denote the σ−algebra generated by r.v.’s a1, a2, . . . . For
r.v.’s ξ, ξ1, ξ2, . . . , we write ξn →Lp(A) ξ (respectively, ξn →Lp ξ) if E

[
|ξn−ξ|p

∣∣∣A]→
0 a.s. as n→∞ (respectively, E|ξn− ξ|p → 0). Note the convergence ξn →Lp(A) ξ

implies ξn → ξ in probability. (In general, none of the convergences→Lp(A) or→Lp

implies the other.) For real a, denote a+ := max(0, a), a− := (−a)+ = max(0,−a).

Theorem 3.2.4. Assume that E|ε|p < ∞, for some 0 < p ≤ 2, and Eε = 0,
p ≥ 1, as in Proposition 3.2.3 (page 42).
(i) Let 1 ≤ p ≤ 2 and

E
[ 1
(1− |a|p)1/p

]
< ∞. (3.20)

Then for any t ∈ Z, as N →∞,

X̄N(t) →Lp(A) X(t), (3.21)

where the limit process is given by

X(t) :=
∞∑
j=0

ājε(t− j), āj := E[aj]. (3.22)

(ii) Let 0 < p < 1 and

∞∑
j=0

(E|aj|)p < ∞. (3.23)

Then for any t ∈ Z, as N →∞,

X̄N(t) →Lp X(t), (3.24)

where the limit process is given by (3.22).
In both cases (i) and (ii), the limit process {X(t), t ∈ Z} is strict stationary,

ergodic, and the series in (3.22) converges a.s. and in Lp.

Remark 3.2.5. Note that for 1 ≤ p ≤ 2, condition (3.20) implies convergence
of the series in (3.23), while for 0 < p < 1, condition (3.23) implies finiteness
of the expectation in (3.11). To show the first implication, we use Minkowski’s
inequality: let fj ∈ Lp(X , µ), j = 0, 1, . . . , where (X , µ) is a measurable space,
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p ≥ 1. Then

∞∑
j=0

∣∣∣∣ ∫
X
fj(x)µ( dx)

∣∣∣∣p ≤ ( ∫
X

( ∞∑
j=0
|fj(x)|p

)1/p
µ( dx)

)p
. (3.25)

Applying (3.25) with (X , µ) = (Ω,P), fj = aj we obtain

∞∑
j=0

(E|aj|)p ≤
(

E
( ∞∑
j=0
|a|jp

)1/p)p
=

(
E 1

(1− |a|p)1/p

)p
< ∞.

The second implication follows by Jensen’s inequality: since for 0 < p < 1,

(E|a|j)p ≥ E|a|jp,

we have
E
[ 1
1− |a|p

]
=

∞∑
j=0

E|a|jp ≤
∞∑
j=0

(E|a|j)p < ∞.

Remark 3.2.6. Assume ε ∈ D(α), for some α ∈ (0, 2], and condition (3.23), for
some 0 < p < α. Then from Theorem 3.1 of [48] (similarly as in the proof of
Proposition 3.2.3(ii), page 42), follows that X(t) ∈ D(α) and

lim
x→∞

xαP(X(t) > x) =
∞∑
j=0

(
c1(Eaj)α+ + c2(Eaj)α−

)
,

lim
x→−∞

|x|αP(X(t) ≤ x) =
∞∑
j=0

(
c1(Eaj)α− + c2(Eaj)α+

)
.

Proof of Theorem 3.2.4. Note that the series in (3.22) converges in Lp, due to
(3.23) and Remark 3.2.5, and defines a stationary and ergodic process.

(i) Let us prove (3.21). Write

X̄N(t)− X(t) =
∞∑
j=0

ε(t− j)
N∑
i=1

N−1(aji − Eaji ) =
4∑
j=1

YNj, (3.26)

where

YN1 := N−1
s∑
j=0

ε(t− j)
N∑
i=1

(aji − Eaji ),

YN2 := N−1
∞∑

j=s+1
ε(t− j)

N∑
i=1

aji1(0 < ai < 1),

YN3 := N−1
∞∑

j=s+1
ε(t− j)

N∑
i=1

aji1(−1 < ai < 0),
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YN4 := −N−1
∞∑

j=s+1
ε(t− j)

N∑
i=1

Eaji = −
∞∑

j=s+1
ε(t− j)Eaj

and where s ≥ 1 will be chosen later. Here, YN4 does not depend on N and

E
[
|YN4|p

∣∣∣A] ≤ 2E|ε|p
∞∑

j=s+1

∣∣∣Eaj∣∣∣p < ε (3.27)

can be made arbitrary small in view of (3.23) and Remark 3.2.5, by choosing s
large enough. Next,

E
[
|YN2|p

∣∣∣A] ≤ 2N−pE|ε|p
∞∑

j=s+1

∣∣∣∣ N∑
i=1

aji1(0 < ai < 1)
∣∣∣∣p.

Applying Minkowski’s inequality in (3.25), with X = {1, . . . , N} and the counting
measure µ on X , we obtain

∞∑
j=s+1

∣∣∣∣ N∑
i=1

aji1(0 < ai < 1)
∣∣∣∣p ≤ ( N∑

i=1

( ∞∑
j=s+1

ajpi 1(0 < ai < 1)
)1/p)p

=
( N∑
i=1

as+1
i

(1− api )1/p1(0 < ai < 1)
)p

and therefore

E
[
|YN2|p

∣∣∣A] ≤ 2E|ε|p
(
N−1

N∑
i=1

as+1
i

(1− api )1/p1(0 < ai < 1)
)p
.

Note that
ξi(s) := as+1

i (1− api )−1/p1(0 < ai < 1), i = 1, 2, . . .

are i.i.d. r.v.’s, for any s ≥ 1 fixed, and

Eξ1(s) = Eas+1(1− ap)−1/p1(0 < a < 1) ≤ E(1− |a|p)−1/p <∞

according to condition (3.20). Moreover, ξi(s) ≤ ξi(s′) a.s. for any s′ ≤ s and
therefore lims→∞ Eξi(s) = 0 by the dominated convergence theorem. From these
facts and the strong law of large numbers we infer, that, for any ε > 0, there exist
integers s0 ≥ 1 and N0(ω) ≥ 1 such that

N−1
N∑
i=1

as+1
i

(1− api )1/p1(0 < ai < 1) < ε, for any N > N0(ω) and any s > s0.

The above argument applies also to E
[
|YN3|p

∣∣∣A] by symmetry. Consequently, we
obtain that for any 1 ≤ p ≤ 2 and any ε > 0 there exist integers s0 ≥ 1 and
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N0(ω) ≥ 1 such that

E
[
|YNi|p

∣∣∣A] < ε, i = 2, 3, holds for any N > N0(ω) and any s > s0.

(3.28)
Finally, according to (3.12) and the strong law of large numbers,

E
[
|YN1|p

∣∣∣A] ≤ 2E|ε|p
s∑
j=0

∣∣∣∣N−1
N∑
i=1

(aji − Eaji )
∣∣∣∣p → 0 a.s. (3.29)

for any s <∞. It is clear that (3.27), (3.28), and (3.29) imply

E
[∣∣∣X̄N(t)− X(t)

∣∣∣p∣∣∣A]→ 0 a.s., as N →∞,

and relation (3.21). This proves part (i).
(ii) Let us prove (3.24). Consider the decomposition as in (3.26). It suffices to
show that for any s <∞, E|YN1|p → 0, as N →∞, and that E|YNi|p, i = 2, 3, 4,
can be made arbitrary small by an appropriate choice of s uniformly in N . The
first fact follows similarly as in the case (i) above, with the difference that the
strong law of large numbers in (3.29) above must be replaced by the convergence
in Lp. The proof of the second fact for YN2 follows by Jensen’s inequality:

E|YN2|p ≤ E|ε|p
∞∑

j=s+1
E
∣∣∣∣N−1

N∑
i=1

aji1(0 < ai < 1)
∣∣∣∣p

≤ E|ε|p
∞∑

j=s+1

∣∣∣∣EN−1
N∑
i=1

aji1(0 < ai < 1)
∣∣∣∣p

= E|ε|p
∞∑

j=s+1

(
Eaj1(0 < a < 1)

)p
≤ E|ε|p

∞∑
j=s+1

(
E|a|j

)p

and by the convergence of the series in (3.23). Since E|YNi|p, i = 3, 4 can be
similarly estimated, this proves part (ii) and Theorem 3.2.4, too. 2

Remark 3.2.7. (i) If condition (3.20) in Theorem 3.2.4 (i) is replaced by con-
dition (3.11), then similarly as above, the conditional convergence in (3.21) can
be replaced by unconditional convergence as in (3.24). However, condition (3.11)
excludes the case of aggregated process with long memory which is discussed
below.

(ii) For p ≥ 1, the limit process X(t) in Theorem 3.2.4, (3.22) can be defined as
conditional expectation:

X(t) = E[X(t)|ε(t), t ∈ Z], t ∈ Z,
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where {X(t), t ∈ Z} is the random-coefficient AR(1) process in (3.10).

3.3 Asymptotics of the aggregated moving aver-
age coefficients

The most interesting case of aggregation occurs when the mixing density is
singular at points +1 and/or −1. From now on, in this chapter, we shall assume
that the distribution of r.v. a has a density φ of the form

φ(x) = (1− x)−d1(1 + x)−d2ψ(x), −1 < x < 1, (3.30)

where parameters d1, d2 satisfy 0 < d1, d2 < 1 and where ψ ≥ 0 is an integrable
function on the interval (−1, 1) such that the limits

lim
x→1

ψ(x) =: ψ1 ≥ 0 and lim
x→−1

ψ(x) =: ψ2 ≥ 0 (3.31)

exist.
Proposition 3.3.1, below, describes the asymptotics as j → ∞ of the moving

average coefficients āj = Eaj of the limit aggregated process in (3.22) under the
assumption (3.30) on the mixing density. Clearly,

Eaj = Eaj1(0 < a < 1) + (−1)jE(−a)j1(−1 < a < 0)

= Eaj+ + (−1)jEaj−,

so that it suffices to consider the asymptotics of Eaj+ and Eaj−.

Proposition 3.3.1. Let the probability density φ of r.v. a satisfy the assumptions
in (3.30)-(3.31). Moreover, assume that there exist βi ∈ (0, 1], i = 1, 2 such that

ψ(x)− ψ1 = O
(
|1− x|β1

)
, ψ(x)− ψ2 = O

(
|1 + x|β2

)
. (3.32)

Then, as j →∞,

Eaj+ = c(d1, d2)
j1−d1

(
ψ1 +O

(
j−β1

))
, (3.33)

Eaj− = c(d2, d1)
j1−d2

(
ψ2 +O

(
j−β2

))
, (3.34)

where c(d1, d2) := 2−d2Γ(1−d1). If conditions in (3.32) are replaced by conditions
in (3.31), then relations in (3.33), (3.34) hold with O(j−βi) replaced by o(1), i =
1, 2.
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Proof. We shall discuss the asymptotics of Eaj+ only, since Eaj− is analogous.
Write Eaj+ = ∑2

i=1 `i(j), where `1(j) :=
∫ 1
1−ε x

jφ(x) dx, `2(j) :=
∫ 1−ε

0 xjφ(x) dx,
and where 0 < ε < 1 is a small number. Since |`2(j)| ≤ (1− ε)j = o(jd−1) for any
d < 1, it suffices to show the limit

lim
j→∞

j1−d1`1(j) = c(d1, d2)ψ1. (3.35)

Rewrite

j1−d1`1(j) =
∫ εj

0

(
1− z

j

)j
ψ
(

1− z

j

)(
2− z

j

)−d2

z−d1 dz

→ ψ12−d2
∫ ∞

0
e−zz−d1 dz = ψ1c(d1, d2)

by the dominated convergence theorem, proving the limit in (3.35). Next, write

j1−d1`1(j)− ψ1c(d1, d2) =
4∑
i=1

νi(j),

where

ν1(j) := ψ12−d2
∫ εj

0

[(
1− z

j

)j
− e−z

]
z−d1 dz,

ν2(j) := −ψ12−d2
∫ ∞
εj

e−zz−d1 dz,

ν3(j) := 2−d2
∫ εj

0

(
1− z

j

)j(
ψ
(

1− z

j

)
− ψ1

)
z−d1 dz,

ν4(j) :=
∫ εj

0
ψ
(

1− z

j

)(
1− z

j

)j((
2− z

j

)−d2

− 2−d2

)
z−d1 dz.

It suffices to show that

ν1 = O(j−1), ν2 = o(j−1), ν3 = O(j−β1), ν4 = O(j−1). (3.36)

Split ν1 = ν11 + ν12, where

ν11 := ψ12−d2
∫ √εj

0

[(
1− z

j

)j
− e−z

]
z−d1 dz,

ν12 := ψ12−d2
∫ εj

√
εj

[(
1− z

j

)j
− e−z

]
z−d1 dz.

Since
∣∣∣∣(1 − z

j

)j
− e−z

∣∣∣∣ = e−z|ez+j log(1−z/j) − 1| = e−z
∣∣∣eO(z2/j) − 1

∣∣∣ = e−zO(z2/j)
for z ∈ (0,

√
εj), so

ν11 = j−1O
( ∫ ∞

0
z−d1 dz

)
= O(j−1).
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Next, since (1− z/j)j ≤ e−z for z ∈ (0, j), so

ν12 = O
( ∫ ∞
√
εj

e−zz−d1 dz
)

= O(e−
√
εj) = o(j−1)

for any ε > 0 fixed. Similarly, ν2(j) = o(j−1) and

ν3(j) = j−β1O
( ∫ ∞

0
e−zz1−d1 dz

)
= O(j−β1).

Finally,
ν4(j) = j−1O

( ∫ ∞
0

e−zz1−d1 dz
)

= O(j−1)

by Taylor expansion. This proves (3.36) and Proposition 3.3.1, too. 2

Remark 3.3.2. Note, for 1 ≤ p ≤ 2 and mixing density φ as in (3.30),

∫ 1

−1

φ(x) dx
(1− |x|p)1/p ≤ 2

[ ∫ 1

0

ψ(x) dx
(1− x)d1+1/p +

∫ 0

−1

ψ(x) dx
(1 + x)d2+1/p

]
.

Therefore, for 1 ≤ p ≤ 2, condition (3.20) is satisfied if

di < 1− 1
p
, i = 1, 2. (3.37)

Moreover, if ψi > 0 then condition (3.37) is also necessary for (3.20). Also note
that, for 0 < p < 1, conditions (3.20) and (3.23) are not satisfied unless di < 0 or
ψi = 0 hold, i = 1, 2.

Any sequence {aj} = {aj, j = 0, 1, . . .} of real numbers will be called a filter.
Given two filters {aj} and {bj}, their convolution {(a ? b)j} is the filter defined
by (a ? b)j = ∑j

i=0 aibj−i. For d ∈ (−1, 1), the FARIMA(0, d, 0) filter {bj(d)} is
defined by

bj(d) := Γ(j + d)
Γ(j + 1)Γ(d) , j = 0, 1, . . . , (3.38)

or by the generating series:

∞∑
j=0

zjbj(d) = (1− z)−d, |z| < 1.

Clearly, bj(0) = δ0j := 1 (j = 0), := 0 (j ≥ 1) is the trivial filter and {(b(d) ?
b(−d))j} = {bj(0)} for any −1 < d < 1. Since {bj(d)} for 0 < d < 1 is a particular
case of {āj}, see (3.4), Proposition 3.3.1 implies

bj(d) = 1
Γ(d)j

d−1
(

1 +O
(
j−1

))
, 0 < d < 1. (3.39)
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Let us note that relation (3.39) holds for any d ∈ (−1, 1), d 6= 0, which fact easily
follows from (3.38) and the Stirling formula (see also [54]).

The following definition was inspired by Granger [41].

Definition 3.3.3. A filter {aj} is said an I(0) filter if ∑∞j=0 |aj| < ∞ and∑∞
j=0 aj 6= 0 hold. A filter {aj} will be said an I(d) filter (where −1 < d <

1, d 6= 0) if the convolution {a ? b(−d)} is an I(0) filter.

Proposition 3.3.4. Let the mixing density φ have the form as in (3.30), where
0 < di < 1, i = 1, 2, ψ1 > 0, ψ2 = 0 and ψ satisfies conditions in (3.32) with
1 ≥ βi > di, i = 1, 2. Then {āj} is an I(d1) filter.

Proof. Write

āj = āj1 + āj2, āj1 := Eaj+, āj2 := Eaj1(−1 < a < 0) = (−1)jEaj−.

From (3.33), (3.34), and (3.39) we obtain

āj1 = κ1bj(d1)
(

1 +O
(
j−β1

))
= κ1bj(d1) + wj1,

κ1 := ψ1c(d1, d2)Γ(d1), wj1 = O
( 1
j1+β1−d1

)
. (3.40)

Consider the convolution

(ā1 ? b(−d1))k =
k∑
j=0

āj1bk−j(−d1)

= κ1

k∑
j=0

bj(d1)bk−j(−d1) +
k∑
j=0

wj1bk−j(−d1)

= κ1δk +
k∑
j=0

wj1bk−j(−d1).

From (3.39) and (3.40) we obtain

∣∣∣∣ k∑
j=0

wj1bk−j(−d1)
∣∣∣∣ ≤ C

k∑
j=0

1
(j + 1)1+β1−d1

1
(k + 1− j)1+d1

≤ Ck−1−min(d1,β1−d1).

Since min(d1, β1−d1) > 0, this proves the convergence ∑∞k=0

∣∣∣(ā1 ?b(−d1))k
∣∣∣ <∞.

The convergence ∑∞k=0

∣∣∣(ā2 ? b(−d1))k
∣∣∣ < ∞ follows similarly using the fact that

ψ2 = 0.
It remains to show that

A :=
∞∑
k=0

(ā ? b(−d1))k 6= 0. (3.41)
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Consider the power series A(z) := ∑∞
k=0(ā ? b(−d1))kzk, |z| ≤ 1. Since the series

in (3.41) absolutely converges, so

A = lim
z↑1

A(z).

We have

A(z) = (1− z)d1
∞∑
j=0

ājz
j =

∫ 1

−1

(1− z)d1ψ(x) dx
(1− xz)(1− x)d1(1 + x)d2

.

Decompose A(z) =
∫ 1

0 · · · +
∫ 0
−1 · · · =: A1(z) + A2(z). Clearly, limz↑1A2(z) = 0.

Let δ = 1− z ↓ 0. Then

A1(z) ∼ 2−d2ψ1

∫ 1

0

δd1 dy
(1− (1− y)(1− δ))yd1

= 2−d2ψ1

∫ 1/δ

0

du
(1 + u− uδ)ud1

∼ 2−d2ψ1B(d1, 1− d1) 6= 0.

Proposition 3.3.4 is proved. 2

3.4 Long memory properties of the limit aggre-
gated process

In this chapter, we discuss two notions of long memory which do not require
finite variance. The first notion - distributional long memory - was introduced in
Cox [28] (see Definition 2.3.6, page 36). The second notion - long-range dependence
(sample Allen variance) (LRD(SAV)) and its antonym short-range dependence
(sample Allen variance) (SRD(SAV)) - was introduced in Heyde and Yang [45]
(see Definition 2.3.7, page 36).

For 0 < α ≤ 2,−1/α < d < 1− 1/α, d 6= 0, introduce fractional Lévy motion,
Lα,d, written as stochastic integral

Lα,d(t) :=
∫ t

−∞

(
(t− x)d − (−x)d+

)
dZα(x), t ≥ 0, (3.42)

where {Zα(x), x ∈ R} is Lévy α−stable process, with characteristic function

Ee iθZα(x) = e−|θ|αω(θ;α,c1,c2)|x|, θ, x ∈ R, (3.43)

where ω(θ;α, c1, c2) is defined in (3.8). Recall that Lα,d has stationary increments,
α−stable finite dimensional distributions and isH−self-similar with self-similarity
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parameter H = d + 1/α. Moreover, for 1 < α ≤ 2 and 0 < d < 1 − 1/α, the
process Lα,d has a.s. continuous trajectories, while for −1/α < d < 0, trajectories
of Lα,d are a.s. unbounded on any finite interval. See [94] for these and other
properties of fractional Lévy motion.

Proposition 3.4.1. Let {X(t), t ∈ Z} be the limit aggregated process in (3.22),
with i.i.d. innovations ε(t) ∈ D(α), 0 < α ≤ 2.
(i) Let 1 < α ≤ 2 and the distribution of r.v. a have a probability density as in
(3.30), such that d1 > 0, ψ1 > 0, and

di < 1− 1
α
, i = 1, 2. (3.44)

Then

1
nd1+1/α

[nτ ]∑
k=1

X(k) →D[0,1] κ1Lα,d1(τ), (3.45)

where κ1 := ψ1c(d1, d2)/d1.
(ii) Let 0 < α < 2 and ∑∞j=1(E|a|j)p <∞ for some p < α. Then

1
n2/α

[nτ ]∑
k=1

X2(k) →fdd Z+
α/2(τ), (3.46)

where {Z+
α/2(t), t ≥ 0} is a homogeneous α/2−stable Lévy process with positive

jumps and characteristic function

Ee iθZ+
α/2(1) = exp

{
− |θ|α/2Aα/2ω(θ;α/2, c1 + c2, 0)

}
, θ ∈ R, A :=

∞∑
k=0

(Eak)2.

Proof. (i) Denote

āj1 := Eaj1(0 < a < 1), āj2 := Eaj1(−1 < a < 0),

Xi(t) :=
∞∑
j=0

ājiε(t− j), i = 1, 2. (3.47)

Since X(t) = X1(t) + X2(t), for convergence of finite-dimensional distributions in
(3.45), it suffices to check that

1
nd1+1/α

∑[nτ ]
k=1 X1(k) →fdd κ1Lα,d1(τ), (3.48)∑n

k=1 X2(k) = Op(n1/p), p < α. (3.49)
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Relation (3.48) immediately follows from Theorem 1 (ii) of Astrauskas [7] and the
asymptotics of āj1 in Proposition 3.3.1 (page 49).
Theorem 1 of Astrauskas [7]: Let {Xk, k ∈ N} have the form

Xk =
∑
j

a(k − j)εj, k ∈ N,

where εj ∈ D(α), 0 < α ≤ 2.
(i) Assume, that the series ∑j a(j) converges absolutely and A ≡

∣∣∣∣∑j a(j)
∣∣∣∣ > 0.

Then
1
An

[nt]∑
k=1

Xk →fdd Zα(t)

where Zα(t) is α−stable process with independent increments, An =
C1/αAn1/αH1/α

α (n), C = (c1 + c2)Γ(|1 − α|) cos(απ/2), Hα is a slowly varying
function.
(ii)Let α > 1, 1/α < β < 1 and a(k) = 0, for k = 0,−1,−2, . . . . Assume,
a(k) = k−βL(k), for k > 0. Here L is a slowly varying function. Then

1
An

[nt]∑
k=1

Xk →fdd Lα,1−β(t)

where An = |1−β|−1C1/αn1/α+1−βL(n)H1/α
α (n), C = (c1 +c2)Γ(|1−α|) cos(απ/2),

Hα is a slowly varying function, and Lα,1−β(t) is the same as in (3.42).

Next, continuing the proof of Proposition 3.4.1 (i), note that it suffices to
show (3.49) for 1 < p < α and p sufficiently close to α (to have 1/p < d1 + 1/α).
According to inequality (3.12),

E|
n∑
k=1

X2(k)|p ≤ 2E|ε|p
∑
s≤n

∣∣∣∣ n∑
t=max(1,s)

Eat−s1(−1 < a < 0)
∣∣∣∣p

= 2E|ε|p
( ∞∑
s=0
|
n∑
t=1

Eat+s1(−1 < a < 0)|p

+
n∑
s=1
|
n−s∑
i=0

Eai1(−1 < a < 0)|p
)
,

where
∞∑
s=0

∣∣∣∣E n∑
t=1

at+s1(−1 < a < 0)
∣∣∣∣p =

∞∑
s=0

∣∣∣∣Ea1+s(1− an−1)
1− a 1(−1 < a < 0)

∣∣∣∣p
≤ 2

∞∑
s=0

(E|a|s)p <∞,
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and the last series converges in view of Proposition 3.3.1 (page 49), provided p is
chosen so that di < 1− 1/p, i = 1, 2. In a similar way,

n∑
s=1

∣∣∣∣ n−s∑
i=0

Eai1(−1 < a < 0)
∣∣∣∣p =

n−1∑
t=0

∣∣∣∣E t∑
i=0

ai1(−1 < a < 0)
∣∣∣∣p

=
n−1∑
t=0

∣∣∣∣E1− at+1

1− a 1(−1 < a < 0)
∣∣∣∣p

≤ n,

proving (3.49) and the convergence of finite-dimensional distributions in (3.45),
too. The tightness in D[0, 1] follows by the well-known Kolmogorov’s criterion.
Namely, it suffices to show that there exist C,Γ > 0 and p < α such that for any
n ≥ 1 and any 0 ≤ t < t+ h ≤ 1

E
∣∣∣∣ [n(t+h)]∑
k=[nt]+1

X(k)
∣∣∣∣p ≤ Ch1+Γn(d1+1/α)p. (3.50)

By stationarity of {X(t), t ∈ Z}, it suffices to show (3.50) for t = 0 and h =
1. Furthermore, it suffices to check (3.50) separately for {X1(t), t ∈ Z} and
{X2(t), t ∈ Z} as defined in (3.47). Again, for {X1(t), t ∈ Z}, (3.50) follows from
Astrauskas[7] 1, while for {X2(t), t ∈ Z}, we have

E|
n∑
k=1

X2(k)|p ≤ Cn, for any p < α,

implying (3.50) by the fact that 1 < (d1 +1/α)p for suitably chosen p. This proves
part (i).

(ii) Rewrite ∑[nτ ]
k=1 X

2(k) = I1(τ) + 2I2(τ), where

I1(τ) :=
[nτ ]∑
k=1

k∑
j=−∞

(Eak−j)2ε2(j),

I2(τ) :=
[nτ ]∑
k=1

∑
−∞<j<i≤k

Eak−jEak−iε(j)ε(i).

Note ε2 ∈ D(α/2) and ∑k
j=−∞(Eak−j)2 = A <∞. The convergence

n−2/αI1(τ)→fdd Z+
α/2(τ)

1. In the proof of Theorem 2 of [7], A. Astrauskas proves the tightness in C[0, 1] for processes
such as {X1(t), t ∈ Z}. He uses the well-known Kolmogorov criterion.
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follows from (Astrauskas [7], Theorem 1 (i)). Thus, part (ii) follows from

E|I2(1)|p = o(n2p/α). (3.51)

Using (3.12) and Minkowski’s (3.25) inequalities, for any 1 ≤ p < α we obtain

E|I2(1)|p ≤ 2E|ε|p
n∑

i=−∞
E
∣∣∣∣ n∑
k=1∨i

i−1∑
j=−∞

Eak−jEak−iε(j)
∣∣∣∣p

≤ (2E|ε|p)2
n∑

i=−∞

i−1∑
j=−∞

∣∣∣∣ n∑
k=1∨i

Eak−jEak−i
∣∣∣∣p

≤ (2E|ε|p)2
(

n∑
k=1

( n∧k∑
i=−∞

i−1∑
j=−∞

∣∣∣Eak−jEak−i∣∣∣p)1/p)p
≤ (2E|ε|p)2A2

p n
p = O(np),

where Ap := ∑∞
i=0 |Eai|p < ∞. Whence, (3.51) follows for 1 < α < 2. For

0 < α ≤ 1, relation (3.51) follows similarly. Proposition 3.4.1 is proved. 2

Corollary 3.4.2. Let {X(t), t ∈ Z} be the limit aggregated process (3.22) satis-
fying the conditions as in Proposition 3.4.1 (i). Then
(i) {X(t), t ∈ Z} has distributional long memory.
(ii) {X(t), t ∈ Z} is LRD(SAV).

Proof. Part (i) follows from (3.45) and the fact that the limit process, Lα,d1 ,
has dependent increments. Part (ii) follows from (3.45), (3.46) and the fact that
2/α < 2(d1 + 1/α). 2

Remark 3.4.3. A natural question, which remains open, is whether the finite-
dimensional convergence in (3.46) can be replaced by functional convergence in
D[0, 1]. Let us note that the usual J1−topology in D[0, 1] apparently is not
suitable here. See [10].

3.5 Nonstationary limit aggregate

Following Zaffaroni [102], consider aggregation of nonstationary AR(1) pro-
cesses:

Yi(t) :=
t−1∑
j=0

ajiε(t− j), t = 1, 2, . . . , i = 1, . . . , N,

where {ai} and {ε(t), t ∈ Z} satisfy the same conditions as in (3.18). Similarly
to (3.19), define

ȲN(t) := N−1
N∑
i=1

Yi(t), t = 1, 2, . . . .
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Proposition 3.5.1. (i) Assume the same conditions as in Proposition 3.2.3.
Then for any t = 1, 2, . . . ,

ȲN(t)→Lp(A) Ȳ (t) and ȲN(t)→Lp Ȳ (t),

where
Ȳ (t) :=

t−1∑
j=0

ājε(t− j), āj := Eaj.

(ii) Let 1 < α ≤ 2 and let the mixing density have the form as in (3.30) such that
ψ1 > 0 and

1− 1
α
< d1 < 1 and d2 < d1. (3.52)

Then
1

nd1+1/α−1 Ȳ ([nτ ]) →fdd ψ1c(d1, d2)Ud1,α(τ), (3.53)

where
Ud,α(τ) :=

∫ τ

0
(τ − s)d−1 dZα(s), τ ≥ 0 (3.54)

and where Zα is the same Lévy process as in (3.42).

Proof. (i) The proof is analog to the proof of Theorem 3.2.4 (page 45), so we omit
the details.
(ii) Similarly to (3.47), decompose Ȳ (t) = Ȳ1(t) + Ȳ2(t), where

Ȳi(t) :=
t−1∑
j=0

ājiε(t− j) i = 1, 2,

and where āji are defined as in (3.47). Relation (3.53) follows from

1
nd1+1/α−1 Ȳ1([nτ ]) →fdd ψ1c(d1, d2)Uα,d1(τ), (3.55)

Ȳ2(n) = op(nd1+1/α−1). (3.56)

The proof of (3.55) follows the argument in [8] and [18]. As in these papers, it
suffices to show the convergence of one-dimensional distributions in (3.55). To
this end, we write the left-hand side of (3.55) as a ’discrete stochastic integral’

1
nd1+1/α−1 Ȳ1([nτ ]) = 1

nd1+1/α−1

[nτ ]∑
j=1

Ea[nτ ]−j
+ ε(j)

= 1
nd1+1/α−1

∫ [nτ ]+1

1
Ea[nτ ]−[s]

+ ε([s]) ds

=
∫ ∞

0

1
nd1−1 Ea[nτ ]−[ns]

+ 1(s ∈ (1/n, [nτ ]/n])ε([ns])
n1/α dns

=:
∫ ∞

0
fn(τ, s)Zn( ds)
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where Zn(s′, s′′] = n−1/α∑
s′n<t≤s′′n εt is a discrete random measure defined on

finite intervals (s′, s′′] ⊂ (0,∞), and where the integrand fn(τ, ·) is a piecewise
constant function:

fn(τ, s) := 1
nd1−1 Ea[nτ ]−[ns]

+ 1(s ∈ (1/n, [nτ ]/n]).

From Proposition 3.3.1 (page 49), it is clear that for any τ, s > 0, τ 6= s

fn(τ, s) → ψ1c(d1, d2)(τ − s)d1−11(s ∈ (0, τ ]) =: f(τ, s), as n→∞.

Moreover, the last convergence extends to the convergence in Lα±ε(R), for any
sufficiently small ε > 0, i.e.

∫ +∞

−∞
|fn(τ, s)− f(τ, s)|α±ε ds→ 0, as n→∞.

This guarantees the convergence in finite dimensional distributions of the dis-
crete stochastic integral

∫∞
0 fn(τ, s)Zn( ds) towards the limiting α−stable integral∫∞

0 f(τ, s) dZα(s) = ψ1c(d1, d2)Uα,d1(τ) (see [8] for details). Next, (3.56) can be
proved analogously as (3.55), using expression of ’discrete stochastic integral’ and
the fact that d2 < d1. Proposition 3.5.1 is proved. 2

Remark 3.5.2. The process Uα,d in (3.54) is well-defined for any 1 < α ≤ 2,
1 − 1/α < d < 1, as a stochastic integral with respect to Lévy process Zα. It
has α−stable finite-dimensional distributions and is self-similar with index H =
d + 1/α − 1 ∈ (0, 1/α). These facts are easy consequences from the definition of
stochastic integral with respect to α−stable random measure and its properties;
see e.g. [94].

Let us also note that, for α = 2, the process Uα,d is a.s. continuous while for
α < 2, it is a.s. discontinuous and nowhere bounded (a.s. unbounded on every
finite interval). The last fact follows from a general result in [91]. In particularly,
the convergence in (3.53) cannot be replaced by a functional convergence inD[0, 1].

Remark 3.5.3. If inequality d2 < d1 in (3.52) is reversed, then Ȳ2([nτ ]) =
Op(nd2+1/α−1) dominates Ȳ1([nτ ]), and one can ask if the convergence in (3.53)
holds with d1 replaced by d2. Somewhat surprisingly, in turns out that the process
n−d2−1/α+1Ȳ2([nτ ]) does not converge in the sense of finite dimensional distribu-
tions.

The last fact can be observed for α = 2 and Gaussian innovations ε(t) ∼
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N (0, 1), by considering the covariance function

Cov
(
n1/2−d2Ȳ2(n), n1/2−d2Ȳ2(2n)

)
= n1−2d2

n∑
s=1

(−1)n−s(−1)2n−sEan−s− Ea2n−s
−

= (−1)nn1−2d2
n∑
s=1

Ean−s− Ea2n−s
−

∼ C(−1)nn1−2d2
n∑
s=1

(n− s)d2−1(2n− s)d2−1

∼ C(−1)n
∫ 1

0
(1− x)d2−1(2− x)d2−1 dx,

which oscillates with n and has no limit as n→∞.
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4
Aggregation of AR(1) process
with infinite variance and
idiosyncratic innovations

Abstract. Contemporaneous aggregation of N independent copies of random-
coefficient AR(1) process with random coefficient a ∈ (−1, 1) and independent
identically distributed innovations belonging to the domain of attraction of an
α−stable law, 0 < α < 2, is discussed. We show that, under normalization N1/α,
the limit aggregated process exists, in the sense of weak convergence of finite-
dimensional distributions, and is a mixed stable moving average as studied in
[100]. We focus on the case where the slope coefficient a has probability density
vanishing regularly at a = 1 with exponent β ∈ (0, α − 1), for α ∈ (1, 2). We
show that in this case, the limit aggregated process {X(t), t ∈ Z} exhibits long
memory. In particular, for {X(t), t ∈ Z}, we investigate the decay of codifference,
the limit of partial sums, and the long-range dependence (sample Allen variance)
property of Heyde and Yang [45].

4.1 Introduction

In Chapter 3, we discussed contemporaneous aggregation of heterogenous
random-coefficient AR(1) models with common innovations in the domain of at-
traction of α−stable law, 0 < α < 2, and long-memory properties of the limit
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aggregated process. We showed that in such case, the limit aggregated process is
a moving average with independent identilly distributed innovations, whose coef-
ficients decay hyperbolically jd−1, for 0 < d < 1 − 1/α, 1 < α < 2. Let us note
that the above aggregation scheme with a particular choice of beta-distributed
slope coefficient leads to FARIMA(0, d, 0) process with α−stable innovations (see
Chapter 3).

In the present chapter (also in [86]) we discuss contemporaneous aggregation
of infinite-variance heterogeneous AR(1) processes with idiosyncratic innovations
(in other words, aggregation of independent copies of random-coefficient AR(1)
processes). We show that, under some natural assumptions on the AR(1) noise
and distribution of the slope coefficient, the limit aggregated process exists and is
a so-called mixed stable moving average given in (4.4) below. The class of mixed
stable moving average processes, introduced in [100] extends (usual) α−stable
moving average processes, and plays an important role in the general theory of
stationary α−stable processes (see [92]).

Let us describe the main results of this chapter. Let {X(t), t ∈ Z} be a
stationary solution of the AR(1) equation

X(t) = aX(t− 1) + ε(t), (4.1)

where {ε(t), t ∈ Z} are i.i.d. random variables in the domain of the (normal)
attraction of an α−stable law, 0 < α < 2, and where a is an r.v., independent of
{ε(t), t ∈ Z} and satisfying |a| < 1 almost surely. Let the

Xi(t) = aiXi(t− 1) + εi(t), i = 1, 2, . . . , N,

be independent copies of (4.1). If the distribution of a satisfies the condition that,
for some p < α,

E
[ 1
1− |a|p

]
< ∞ (4.2)

then
N−1/α

N∑
i=1

Xi(t) →fdd X(t), (4.3)

in the sense of weak convergence of finite-dimensional distributions, where the
limit process is written as stochastic integral

X(t) =
∑
s≤t

∫
(−1,1)

at−sMs( da), (4.4)

where {Ms, s ∈ Z} are i.i.d. copies of an α−stable random measure M on (−1, 1)
with control measure proportional to the distribution Φ of r.v. a (Theorem 4.2.1,
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page 64). Below, we call Φ the mixing distribution of {X(t), t ∈ Z}. The class of
processes in (4.4) is quite numerous since different mixing distributions Φ yield
different processes {X(t), t ∈ Z} (Proposition 4.2.4, page 66).

The main incentive of the research was answering the question of whether
aggregation of the infinite-variance AR(1) series can lead to long memory. To
this end, similarly to Zaffaroni [102], we assume that the mixing distribution is
concentrated in the interval (0, 1) and has a density φ such that

φ(x) ∼ ψ(1) (1− x)β, as x→ 1, (4.5)

for some ψ(1) > 0, β > −1. In Section 4.3 we study the long-memory properties
of the mixed α−stable moving average in (4.4).

Clearly, the usual definitions of long memory in terms of covariance/spectrum
do not apply in infinite-variance case. Therefore, we use alternative notions of
long memory: the decay rate of codifference (see Samorodnitsky and Taqqu [94],
pp. 103-106), distributional long memory (see Cox, [28]), and the long-range de-
pendence (sample Allen variance) property of Heyde and Yang [45]. These three
properties are established for the aggregated process {X(t), t ∈ Z} in (4.4) under
assumption (4.5) in the parameter range

0 < β < α− 1, 1 < α < 2;

see Theorems 4.3.1, 4.3.2 and 4.3.3 (68, 69 and 69 pages respectively). In par-
ticular, normalized partial sums of {X(t), t ∈ Z} in (4.4) tend to an α−stable
stationary increment process {Λα,β(τ), τ > 0}, which is self-similar with index
H = 1− β/α ∈ (1/α, 1) and is written as a stochastic integral

Λα,β(τ) :=
∫
R+×R

(
f(x, τ − s)− f(x,−s)

)
N( dx, ds), (4.6)

f(x, t) :=

1− e−xt, if x > 0 and t > 0,

0, otherwise,

with respect to an independently scattered α−stable random measure N on
(0,∞) × R with control measure ψ(1)xβ−α dx ds; see Theorem 4.3.1 (page 68)
for precise formulations. The value β = α − 1 seems to separate long memory
and short memory in the above aggregation scheme; indeed, in the case β > α−1
the aggregated process has the short-range dependence (sample Allen variance)
property and its partial sums tend to an α−stable Lévy process with independent
increments (see Section 4.3). Let us note that α−stable self-similar processes of
the type in (4.6) were discussed in [26], [87], [99]. Also, note that (4.6) is dif-
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ferent from the (more usual) α−stable fractional Lévy motion. Since the latter
process arises in a similar context by aggregating AR(1) processes with common
infinite-variance innovations (see Chapter 3), we can conclude that, in the infinite-
variance case, the distinctions between dependent and independent aggregation
schemes are deeper than in the case of finite variance; see also Remark 4.2.6, page
67. On the other hand, there are certain similarities between the two aggregation
schemes and long-memory properties of the limit aggregated processes, including
the relation in (4.21), below, between exponents of the mixing density near a = 1.
See Remarks 4.3.4 and 4.3.5 (page 70).

The notion of long memory is polysemous, especially for infinite-variance pro-
cesses, and is not limited to the three characterization properties mentioned above.
Another interesting characterization of long memory by the behavior of ruin prob-
abilities in risk insurance models with α−stable claims is given in Mikosch and
Samorodnitsky [75]. See Remark 4.3.6, page 71, also Chapter 7.

4.2 Existence of the limit aggregated process

Let {Xi(t), t ∈ Z}, i = 1, 2, . . . , be independent copies of AR(1) process X(t)
in (4.1). From the Proposition 3.2.3, page 42, it follows that the solution of the
equation (4.1) is the series

X(t) =
∞∑
k=0

akε(t− k), (4.7)

which converges conditionally a.s. and in Lp for any p < α and almost every a ∈
(−1, 1). Moreover, if the condition (4.2) is satisfied, the series in (4.7) converges
unconditionally in Lp.

We are interested in the existence and properties of the limit aggregated pro-
cess {X(t), t ∈ Z} defined by (4.3).

Introduce independently scattered α−stable random measure M =
{Ms( da), s ∈ Z, a ∈ (−1, 1)} on Z× (−1, 1) with the characteristic functional

E exp
{

i
∑
s∈Z

θsMs(As)
}

= exp
{
−
∑
s∈Z
|θs|αω(θs)Φ(As)

}
, (4.8)

where θs ∈ R and As ⊂ (−1, 1) are arbitrary Borel sets.
We write ε ∈ D(α), 0 < α ≤ 2, when ε belongs to the domain of normal

attraction of an α-stable law (see Definition 3.2.1, page 42).

Theorem 4.2.1. Let ε ∈ D(α) for some 0 < α ≤ 2, and let condition (4.2)
be satisfied. Then the limit aggregated process {X(t), t ∈ Z} in (4.3) exists. It is
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stationary, ergodic, has α−stable finite-dimensional distributions, and a stochastic
integral representation as in (4.4), where M is an α−stable random measure as
defined in (4.8).

The proof of theorem is given in Section 4.4, page 71.

Remark 4.2.2. If the distribution Φ is concentrated at a finite number of points
a1, . . . , ak ∈ (−1, 1) and φi := P(a = ai) > 0, the process in (4.4) can be written
as a sum of independent α−stable AR(1) processes:

X(t) =
k∑
i=1

Yi(t), Yi(t) :=
∑
s≤t

at−si ζi(s), (4.9)

where {ζi(s) := Ms({ai}), s ∈ Z} is an i.i.d. sequence of α−stable r.v.’s with
Ee iζi(s)θ = e−|θ|αω(θ)φi . For a general mixing distribution Φ, the process in (4.4)
can be approximated by finite sums of AR(1) processes as in (4.9). The process
in (4.4) is well defined (see [100]) if and only if

∑
s∈Z

E|at−s|α1(s ≤ t) =
∞∑
k=0

E|a|αk = E
[ 1
1− |a|α

]
< ∞,

which agrees with (4.2). The characteristic function of (4.4) is given by

E exp
{

i
m∑
t=1

θtX(t)
}

= exp
{
−
∑
s∈Z

E
[∣∣∣∣ m∑
t=1

θta
t−s1(s ≤ t)

∣∣∣∣αω( m∑
t=1

θta
t−s1(s ≤ t)

)]}
.

(4.10)

Remark 4.2.3. For α = 2 the limit process in (4.4) is Gaussian and its covariance
function is given by

cov(X(0),X(t)) = σ2 ∑
s≤0

∫
(−1,1)

at−sa−sΦ( da) = σ2E
[

at

1− a2

]
= cov(X(0), X(t))

(4.11)
and coincides with the covariance of the original series in (4.7). For α = 2, the
statement of Theorem 4.2.1 is well known; see [77] and [102].

It is clear from (4.10) that the distribution (i.e. finite-dimensional distribu-
tions) of {X(t), t ∈ Z} is uniquely determined by the distributions of r.v.’s a and
Z in (3.7), page 42. It is also clear that the distribution of {X(t), t ∈ Z} (par-
ticularly, the marginal α−stable distribution of X(0)) uniquely determines the
parameter α. Part (i) of Proposition 4.2.4, below, shows that the class of mixed
stable moving averages in (4.4) is nonparametric and very large, since different
mixing distributions lead to different processes. Part (ii) says that this class is
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different from (usual) α−stable moving averages, except for a trivial mixing dis-
tribution Φ.

Proposition 4.2.4. Let 0 < α < 2.
(i) The distribution of {X(t), t ∈ Z} in (4.4) uniquely determines the distribution
Φ.

(ii) Let {X(t), t ∈ Z} fdd= {Y (t), t ∈ Z}, Y (t) := ∑∞
j=0 cjζ(t− j), where {ζ(t), t ∈

Z} is an i.i.d. sequence having the same distribution as the α−stable r.v. in (3.7),
page 42, and cj, j ≥ 0, are real coefficients with ∑∞j=0 |cj|α <∞. Then there exist
a0 ∈ (−1, 1) and ε ∈ {−1, 1} such that cj = εaj0 and Φ = δa0.

The proof of the Proposition 4.2.4 is given in Section 4.4, page 73.
Let us note that condition (4.2) is crucial for the existence of nontrivial limit

of aggregated AR(1) processes. Note also that condition (4.2) does not depend
on p > 0 since

sup
0≤a<1

1− aq
1− ap <∞,

for any p, q > 0. Below we show that if condition (4.2) is violated and the mixing
density has a power-law behavior at a = 1 with negative exponent β ∈ (−1, 0),
the limit aggregated process is a random α(1+β)−stable constant whose stability
index α(1 + β) < α. For notational simplicity, we assume that the noise belongs
to the domain of attraction of a symmetric α−stable law.

Proposition 4.2.5. Assume that ε ∈ D(α), 0 < α ≤ 2, and that ω(θ) ≡ 1 in
(4.23), page 71. Moreover, assume that the mixing density has the form

φ(a) = ψ(a)(1− a)β, a ∈ (0, 1), (4.12)

where β ∈ (−1, 0) and ψ is an integrable function on (0, 1) having a limit

ψ(1) := lim
a→1

ψ(a) > 0.

Then
N−1/α(1+β)

N∑
i=1

Xi(t) →fdd Z̃,

where the limit process Z̃ does not depend on t and is an α(1+β)−stable r.v. with
characteristic function Ee iθZ̃ = e−K|θ|α(1+β)

, where K is given in (4.31), page 74.

The proof of the Proposition 4.2.5 is given in Section 4.4, page 74.
Note that, for the mixing density in (4.12) with β > 0, Theorem 4.2.1, page 64,

applies and, therefore, β = 0 is a critical point resulting in completely different
limits of the aggregated process in the cases β > 0 and β < 0. The fact that
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the limit is degenerate in the latter case can be explained as follows. It is clear
that, with β decreasing, the dependence increases in the random-coefficient AR(1)
process {X(t), t ∈ Z}, as well as in the limit aggregated process {X(t), t ∈ Z}. In
Section 4.3 we show that the dependence in {X(t), t ∈ Z} decays hyperbolically
with the lag, with an exponent which depends on β and α and which tends to 0
as β ↓ 0. Therefore, for negative β < 0, the dependence in the aggregated process
becomes extremely strong so that the limit process is degenerate and completely
dependent.

Remark 4.2.6. Let M be the α−stable random measure in (4.8), and {ζ(s) :=
Ms(−1, 1), s ∈ Z} be the corresponding i.i.d. sequence of α−stable r.v.’s. Let
{X(t), t ∈ Z} be the aggregated mixed α−stable moving average in (4.4), and let
1 < α ≤ 2. Then

E[X(t)|ζ(s), s ∈ Z] =
∑
s≤t

E[at−s]ζ(s), t ∈ Z. (4.13)

Relation (4.13) follows from a general ‘interpolation formula’ for independently
scattered random measures (see [96], Proposition 1.3). For the reader’s conve-
nience, we present this formula for the α−stable measure M in Proposition 4.2.7,
below. Recall from Chapter 3 that the right-hand side of (4.13) represents the
limit aggregated process in the AR(1) aggregation scheme with common α−stable
innovations ε(s) = ζ(s), s ∈ Z. Thus, (4.13) establishes a link between the aggre-
gated processes in the two aggregation schemes. It also suggests that the latter
aggregation scheme leads to a simpler aggregated process when compared to the
process (4.4) in the present chapter. In particular, the moving average on the
right-hand side of (4.13) may be invertible (which occurs, e.g. in the case of
FARIMA(0,d,0) coefficients E[at−s] mentioned in the introduction), while, for the
mixed moving average in (4.4) the usual definition of invertibility does not apply
and the possibility of ‘recovering’ Mt(A) from X(s), s ≤ t, seems unlikely. On
the other hand, in the finite-variance case, α = 2, the limit aggregated process
{X(t), t ∈ Z} is Gaussian with covariance given in (4.11); hence, it is also invert-
ible under known conditions on the spectral density. (A particular form of the
mixing density φ leading to the FARIMA(0, d, 0) Gaussian process {X(t), t ∈ Z}
was found in [21].) The above discussion complies with the remark in the in-
troduction that the distinctions between dependent and independent aggregation
schemes in the infinite-variance case are deeper than in the finite-variance case.

Let Lα(Z × (−1, 1)) denote the class of all measurable functions h : Z ×
(−1, 1)→ R with ∑

s∈Z
E|h(s, a)|α <∞, 1 < α ≤ 2.
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The stochastic integral

M(h) :=
∑
s∈Z

∫
(−1,1)

h(s, a)Ms( da)

is well defined for any h ∈ Lα(Z× (−1, 1)); see ([94], Ch. 3, pp. 111-167).

Proposition 4.2.7. Let M and {ζ(s), s ∈ Z} be the same as in Remark 4.2.6,
and let 1 < α ≤ 2. Then, for any h ∈ Lα(Z× (−1, 1)),

E
[
M(h)|ζ(s), s ∈ Z

]
=

∑
s∈Z

h̄(s)ζ(s); h̄(s) := Eh(s, a). (4.14)

The proof of the Proposition 4.2.7 is given in Section 4.4, page 75.

4.3 Long memory properties of the limit aggre-
gated process

Recall the definition of the process {Λα,β(τ), τ ∈ R} in (4.6). This process is
well defined for any 0 < β < α− 1 and α ∈ (1, 2) and its characteristic functional
is given by

E exp
{

i
m∑
i=1

θiΛα,β(τi)
}

= exp
{
− ψ(1)

∫
R

∫
R+

∣∣∣∣ m∑
i=1

θi(f(x, τi − s)− f(x,−s))
∣∣∣∣α

× ω
( m∑
i=1

θi(f(x, τi − s)− f(x,−s))
)
xβ−α ds dx

}
,(4.15)

where τi, θi ∈ R, i = 1, . . . ,m, m = 1, 2, . . . . The process {Λα,β(τ), τ ≥ 0} is
self-similar with index

H = 1− β

α
∈
( 1
α
, 1
)
, (4.16)

which follows from (4.15) by the change of variables s→ λs, x→ x/λ, λ > 0, and
has α−stable finite-dimensional distributions and stationary increments. From
these facts and Kolmogorov’s moment criterion, it follows that {Λα,β(τ), τ ≥ 0}
has a sample continuous version. See also ([99], Corollary 4).

Theorem 4.3.1. Let {X(t), t ∈ Z} be the aggregated process in (4.4) with mixing
density as in (4.12), where β > 0 and ψ is integrable on (0, 1) and has a limit
lima→1− ψ(a) =: ψ(1) > 0.

(i) Let 1 < α < 2 and 0 < β < α− 1. Let H = 1− β/α, as in (4.16). Then

1
nH

[nτ ]∑
t=1

X(t) →fdd Λα,β(τ), (4.17)
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where the limit process is given in (4.6).
(ii) Let 0 < α < 2 and β > max(α− 1, 0). Then

1
n1/α

[nτ ]∑
t=1

X(t) →fdd L(τ), (4.18)

where {L(τ), τ ≥ 0} is an α−stable homogeneous Lévy process with characteristic
function

Ee iθL(τ) = e−K|θ|αω(θ)τ , K :=
∫ 1

0
(1− x)−αφ(x) dx.

The proof of Theorem 4.3.1 is given in Section 4.4, page 76.
Since the process {Λα,β(τ), τ ≥ 0} in (4.17) has dependent increments while

the Lévy process {L(τ), τ ≥ 0} in (4.18) has independent increments, from The-
orem 4.3.1 we conclude that the limit aggregated process {X(t), t ∈ Z} with
mixing density as in (4.12) has distributional long memory (see Definition 2.3.6,
page 36) for 0 < β < α − 1, 1 < α < 2, and distributional short memory for
β > max(α− 1, 0).

Next, we turn to the study of the LRD(SAV) property defined in Heyde and
Yang [45] (see Definition 2.3.7, page 36).

Theorem 4.3.2. Let {X(t), t ∈ Z} satisfy the conditions of Theorem 4.3.1.

(i) Let 1 < α < 2 and 0 < β < α− 1. Then {X(t), t ∈ Z} is LRD(SAV).

(ii) Let 1 < α < 2 and β > α− 1. Then {X(t), t ∈ Z} is SRD(SAV).

The proof of Theorem 4.3.2 is given in Section 4.4, page 78.

The codifference of a strictly stationary process {Y (t), t ∈ Z},

Cod(Y (0), Y (t)) := log Ee i(Y (t)−Y (0)) − log Ee iY (t) − log Ee− iY (0),

can also be used to characterize the long memory of {Y (t), t ∈ Z} (see [94],
pp. 384-387). Theorem 4.3.3, below, gives the decay rate of the codifference of
the mixed stable moving average in (4.4) and the mixing density in (4.19), below.

Theorem 4.3.3. Let {X(t), t ∈ Z} be the aggregated process in (4.4), with char-
acteristic functional as in (4.10), 0 < α < 2, and mixing density

φ(a) = ψ(a)

(1− a)β1 , 0 < a < 1,

(1 + a)β2 , −1 < a ≤ 0,
a ∈ (−1, 1), (4.19)

where 1 > β1 > 0, 1 > β2 > 0, are parameters and ψ is continuous at ±1 with
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lima→±1 ψ(a) =: ψ(±1) ≥ 0. Then, as t→∞,

Cod(X(0),X(t)) =
(
C1 + o(1)

)
t−β1 +

(
C2(t) + o(1)

)
t−β2 , (4.20)

where

C1 := ψ(1)α−1
∫ ∞

0
[ω(1)e−yα + ω(1)(1− (1− e−y)α)]yβ1−1 dy,

C2(t) := ψ(−1)α−1Re(ω(1))
∫ ∞

0
[e−yα + 1− (1− (−1)te−y)α]yβ2−1 dy.

The proof of Theorem 4.3.3 is given in Section 4.4, page 80.

Remark 4.3.4. For 1 < α ≤ 2 and 0 < β < α− 1, introduce the parameter

d := α− 1− β
α

, (4.21)

or β = α−1−αd. Note β = 0 if and only if d = 1−1/α, and β = α−1 if and only
if d = 0. Recall from ([94], Theorem 7.13.4) that, for the FARIMA(0, d, 0) process
{Y (t), t ∈ Z} with α−stable innovations, 0 < d < 1− 1/α, and 1 < α ≤ 2,

Cod(Y (0), Y (t)) ∼ C t1+αd−α as t→∞. (4.22)

Therefore, Theorem 4.3.3 implies that the codifference of the aggregated process
{X(t), t ∈ Z} in (4.4) with the mixing density in (4.12) and 0 < β < α −
1 decays similarly as the codifference of an α−stable FARIMA(0, d, 0) process
with parameter d given in (4.21). From Theorem 4.3.1 we see that the above
similarity between {X(t), t ∈ Z} and FARIMA(0, d, 0) with parameter d in (4.21)
also extends to the normalization exponent H of partial sums of both processes:
for the former process, H = 1 − β/α and, for the latter process, H = d + 1/α.
Clearly, 1− β/α = d+ 1/α is equivalent to (4.21). In other words, if β and d are
related as in (4.21), then partial sums of {X(t), t ∈ Z} and partial sums of the
FARIMA(0, d, 0) process converge under the same normalization and the limits
are self-similar processes with the same parameter H.

Remark 4.3.5. Recall that a second-order stationary process is said to have
covariance long memory if the sum of the absolute values of covariances diverges.
In the case of an infinite-variance process, the divergence of the absolute values of
codifferences also indicates the presence of long memory. From Theorems 4.3.1-
4.3.3 we see that the codifference of {X(t), t ∈ Z} is nonsummable for any 0 <
β < 1, irrespective of the value of α, while at the same time this process may have
the SRD(SAV) property and distributional short memory, provided α−1 < β < 1
and 1 < α < 2. These results might look strange and a peculiarity of the process
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in (4.4) at first glance; however, similar facts also hold for moving averages Y (t) =∑∞
j=0 cjε(t−j) in i.i.d. innovations ε(t) ∈ D(α) with regularly decaying coefficients

cj ∼ jd−1. Indeed, for such {Y (t), t ∈ Z}, the codifference decays as in (4.22),
for any 0 < α < 2 and d < 1 − 1/α, so that ∑∞j=0 |Cod(Y (0), Y (j))| = ∞ and∑∞
j=0 |cj| < ∞ hold for 1 − 2/α < d < 0. Since {Y (t), t ∈ Z} has distributional

short memory for d < 0 and ∑∞j=0 cj 6= 0 (see, e.g. [7]), we have exactly the same
situation as in the case of {X(t), t ∈ Z}, with parameters d and β related as in
(4.21).

Remark 4.3.6. Mikosch and Samorodnitsky [75] discussed the asymptotic be-
havior of the ruin probability

ψ(u) := P
(

sup
n≥0

(X(1) + · · ·+X(n)− nµ) > u
)

as u → ∞, where ‘claims’ {X(t), t ∈ Z} form a stationary α−stable process,
1 < α < 2, and µ > EX(1) is a given constant. They associated the ‘classical’
decay rate ψ(u) = O(u−(α−1)) with short-range dependence and the decay rate
ψ(u) = O(u−ν) with exponent ν < α− 1 with long-range dependence of the claim
sequence {X(t), t ∈ Z}. In the case when the X(t)’s are stationary increments of
a linear α−stable fractional motion with self-similarity parameter H ∈ (1/α, 1),
Mikosch and Samorodnitsky ([75], Proposition 4.4) obtained a decay rate ψ(u) ∼
(constant)u−α(1−H) of the ruin probability. Let us note that increments of an
α−stable fractional motion satisfy the distributional long-memory property and
also exhibit the decay of codifference as in (4.22), with d and H related as in
Remark 4.3.4 (see ([94], pp. 380-387)). Therefore, the above characterization of
long memory via ruin probabilities seems to agree with other characterizations of
long memory discussed in this paper, at least for α−stable moving averages. In
Chapter 7 (see also [81]), we find the asymptotics of the ruin probability, when
’claims’ are modeled by the limit aggregated process {X(t), t ∈ Z} in (4.4).

4.4 Proofs

Proof of Theorem 4.2.1, page 64. The characteristic function of the r.v. ε ∈
D(α) has the following representation in a neighborhood of the origin (see, e.g.
([50], Theorem 2.6.5)): there exists an ε > 0 such that

Ee iθε = e−|θ|αω(θ)h(θ), |θ| < ε, (4.23)

where h is a positive function tending to 1 as θ → 0. Denote
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ϑ(s, a) :=
m∑
t=1

θta
t−s1(s ≤ t). (4.24)

Then N−1/α∑m
t=1 θtX(t) = N−1/α∑

s∈Z ϑ(s, a)ε(s). Since m and θt, t = 1, . . . ,m
are fixed and a is bounded, it is clear that |ϑ(s, a)| ≤ C for a constant C indepen-
dent of a and s, and, therefore, |N−1/αϑ(s, a)| < ε for all N > N0 large enough.
Therefore, using (4.23), we can write

E exp
{

iN−1/α
N∑
i=1

m∑
t=1

θtXi(t)
}

=
(

E exp
{

iN−1/α
m∑
t=1

θtX(t)
})N

=
(

E exp
{
−N−1 ∑

s∈Z

∣∣∣ϑ(s, a)
∣∣∣αh(N−1/αϑ(s, a)

)
ω
(
ϑ(s, a)

)})N
.

Clearly, for any a ∈ (−1, 1),

∑
s∈Z

∣∣∣ϑ(s, a)
∣∣∣αh(N−1/αϑ(s, a)

)
ω
(
ϑ(s, a)

)
→

∑
s∈Z

∣∣∣ϑ(s, a)
∣∣∣αω(ϑ(s, a)

)
(4.25)

as N →∞, and

∣∣∣∣∑
s∈Z

∣∣∣ϑ(s, a)
∣∣∣αh(N−1/αϑ(s, a)

)
ω
(
ϑ(s, a)

)∣∣∣∣ ≤ C

1− |a|α (4.26)

for a constant C <∞ independent of a. Define

ΘN := NE
[

exp
{
−N−1 ∑

s∈Z

∣∣∣ϑ(s, a)
∣∣∣αh(N−1/αϑ(s, a)

)
ω
(
ϑ(s, a)

)}
− 1

]
.

Using (4.25), (4.26), condition (4.2), the fact that 0 ≤ h(θ) ≤ C, the inequality
|ez− 1| ≤ |z| z ∈ C, Rez ≤ 0, and the dominated convergence theorem, we obtain

lim
N→∞

ΘN = −
∑
s∈Z

E[|ϑ(s, a)|αω(ϑ(s, a))].

Therefore,

lim
N→∞

E exp
{

iN−1/α
N∑
i=1

m∑
t=1

θtXi(t)
}

= lim
N→∞

(
1 + ΘN

N

)N
= exp

{
−
∑
s∈Z

E[|ϑ(s, a)|αω(ϑ(s, a))]
}
,
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which coincides with (4.10). The properties of {X(t), t ∈ Z} mentioned in the
statement of the theorem follow from [100]. This completes the proof. 2

Proof of Proposition 4.2.4, page 66. (i) By separately considering the real and
imaginary parts of the logarithm of the characteristic function in (4.10), we see
that it suffices to prove the proposition for the symmetric case ω ≡ 1 only.

Let Lα(Z) be the space of all real sequences g = (gt, t ∈ Z) with

‖g‖αα :=
∑
t∈Z
|gt|α <∞.

Let B(Lα(Z)) be the σ−algebra of Borel sets of Lα(Z). A Borel set A ⊂ Lα(Z)
is said to be symmetric if −A = A and shift invariant if UtA = A for every
t ∈ Z, where Us, s ∈ Z, is the group of shift operators on Lα(Z), (Usg)t := gt−s.
Let Binv(Lα(Z)) denote the class of all open symmetric and shift-invariant sets
A ⊂ Lα(Z).

According to ([100], Theorem 2 and Lemma 1), the characteristic function in
(4.10) uniquely determines the measure

µ(A) :=
∫
Lα(Z)

1
(

g

‖g‖α
∈ A

)
‖g‖αα λ( dg), (4.27)

on open symmetric and shift-invariant sets A ∈ Binv(Lα(Z)) and vice versa; here

λ(A) := P
(
(a−t1(t ≤ 0), t ∈ Z) ∈ A

)
, A ∈ B(Lα(Z)) (4.28)

is a probability measure concentrated on the set

{g = (gt, t ∈ Z) ∈ Lα(Z) : gt = a−t1(t ≤ 0), there exists a ∈ (−1, 1)}

of geometric progressions.
Let V ⊂ (−1, 1) be an open set, and let

A(V ) :=
⋃
s∈Z

⋃
δ=±1

As,δ(V ), (4.29)

As,δ(V ) :=
{
f = (ft, t ∈ Z) ∈ Lα(Z) : ft = δ(1− |v|α)1/αvs−t1(t ≤ s), ∃v ∈ V

}
.

Note that, As,δ(V ) are disjoint sets for distinct pairs (s, δ), the set A(V ) is
open, symmetric and shift invariant and µ(As,δ(V )) = 0 unless (s, δ) = (0, 1).
Moreover,

µ(A(V )) = µ(A(0,1)(V )) = E
[1(a ∈ V )

1− |a|α
]

=
∫
V

Φ( da)
1− |a|α =: G(V )

according to the definitions in (4.27)-(4.28). Therefore, the characteristic function
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in (4.10) uniquely determines the measure G on the interval (−1, 1). Since Φ(V ) =∫
V (1− |a|α)G( da), part (i) of the proposition follows.

(ii) As in (i), it suffices to discuss the case ω ≡ 1. Let µ = µX be defined in
(4.27), and let

µY (A) := ‖c‖αα1
(

c

‖c‖α
∈ A

)
, c := (c−t1(t ≤ 0), t ∈ Z) ∈ Lα(Z),

be the measure on the unit sphere of Lα(Z), corresponding to the moving average
{Y (t), t ∈ Z}. By definition, µY is concentrated on a single element c/‖c‖α ∈
Lα(Z).

As mentioned above in the proof of (i), {X(t)} fdd= {Y (t)} implies that

µY (A) = µX(A), A ∈ Binv(Lα(Z)). (4.30)

Consider the set A = A(−1, 1), as defined in (4.29), consisting of all signed trans-
lations of normalized geometric progressions. Clearly, c/‖c‖α ∈ A(−1, 1) if and
only if cj = εaj0, j ≥ 0 for some a0 ∈ (−1, 1) and ε ∈ {−1, 1}. It also easily follows
from (4.30) that Φ = δa0 . This completes the proof. 2

Proof of Proposition 4.2.5, page 66. Let

ΘN := NE
[

exp
{
−N−1/(1+β) ∑

s∈Z
|ϑ(s, a)|αh

(
N−1/α(1+β)ϑ(s, a)

)}
− 1

]
,

where ϑ(s, a) is defined as in (4.24), i.e.

ϑ(s, a) :=
m∑
t=1

θta
t−s1(s ≤ t).

Then,

E exp
{

iN−1/α(1+β)
N∑
i=1

m∑
t=1

θtXi(t)
}

=
(

1 + ΘN

N

)N
.

Similarly as in the proof of Theorem 4.2.1, it suffices to show that

lim
N→∞

ΘN = −K
∣∣∣∣ m∑
t=1

θm

∣∣∣∣α(1+β)
, K := α−(β+1)ψ(1)

∫ ∞
0

(1− e−z)z−(β+2) dz.

(4.31)
To prove (4.31), split

∑
s∈Z
|ϑ(s, a)|αh(N−1/α(1+β)ϑ(s, a)) =

∑
s≤0
· · ·+

m∑
s=1
· · · =: Σ1 + Σ2.

Note that Σ2 is uniformly bounded in a ∈ [0, 1) and N ≥ 1 and N−1/(1+β) =
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o(N−1) for β < 0. Therefore, it suffices to prove (4.31) for ΘN replaced by

ΘN1 := NE[e−N−1/(1+β)Σ1 − 1].

We have

ΘN1 = N
∫ 1

1−ε

(
exp

{
−N−1/(1+β) 1

α(1− a)

∣∣∣∣ m∑
t=1

θt

∣∣∣∣α}− 1
)

(1− a)βψ(a) da+ o(1)

= N
∫ ε

0

(
exp

{
− 1
αxN1/(1+β)

∣∣∣∣ m∑
t=1

θt

∣∣∣∣α}− 1
)
ψ(1− x)xβ dx+ o(1)

= −KN(θ)
∣∣∣∣ m∑
t=1

θt

∣∣∣∣α(1+β)
+ o(1),

where
KN(θ) := α−(β+1)ψ(1)

∫ ∞
0

1(z > δN(θ))(1− e−z)z−(β+2) dz

and
δN(θ) := (αε)−1N−1/(1+β)|

m∑
t=1

θt|α → 0, as N →∞.

Since limN→∞KN(θ) = K by the dominated convergence theorem, this proves
(4.31) and the proposition. 2

Proof of Proposition 4.2.7, page 68. It suffices to prove the proposition for
simple functions h ∈ Lα(Z × (−1, 1)) of the form h(t, a) = ∑n

i=1 hit1(|t| ≤ n, a ∈
Ai), where Ai ⊂ (−1, 1), i = 1, . . . , n, are disjoint Borel sets. For such h,

M(h) =
∑
|t|≤n

n∑
i=1

hitMt(Ai)

is a finite sum of α−stable r.v.’s. By linearity of both sides of (4.14) in h and
independence of Mt(Ai) and Ms(Aj), s 6= t, it suffices to check (4.14) for h(t, a) =
1(t = s, a ∈ A), or

E[Ms(A)|Ms(−1, 1)] = Φ(A)Ms(−1, 1) (4.32)

for any Borel set A ⊂ (−1, 1). By standard arguments, (4.32) is equivalent to

E[Ms(A)e iθMs(−1,1)] = Φ(A)E[Ms(−1, 1)e iθMs(−1,1)], θ ∈ R. (4.33)

Let κA(θ) := E
[
e iθMs(−1,1)

]
, κ(θ) := κ(−1,1)(θ) and Ac := (−1, 1)\A. Then (4.33)

can be rewritten as
κ′A(θ)κAc(θ) = Φ(A)κ′(θ).

The above equality is immediate from κA(θ)κAc(θ) = κ(θ) and κA(θ) = (κ(θ))Φ(A)
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(the last relation follows from the form of the characteristic functional in (4.8)
and the fact that ω(θ) in (3.9), page 42, depends only on the sign of θ). 2

Proof of Theorem 4.3.1, page 68. (i) We will prove the one-dimensional conver-
gence in (4.17) at τ = 1 only, since the general case in (4.17) follows analogously.
In view of (4.10) and (4.15), it suffices to prove that, for any θ ∈ R,

n−Hα
∑
s∈Z

E
∣∣∣∣ n∑
t=1

at−s1(s ≤ t)
∣∣∣∣αω(θ n∑

t=1
at−s1(s ≤ t)

)
(4.34)

→ c
∫
R

∫
R+
|f(x, 1− s)− f(x,−s)|αω(θ(f(x, 1− s)− f(x,−s)))xβ−α ds dx.

Note that the expressions inside ω on both sides of (4.34) are positive or negative
depending on the sign of θ and ω(θ) = ω(sign(θ)). Therefore, it suffices to show
(4.34) for θ = 1 alone. To this end, let us denote the left- and right-hand sides of
(4.34) (with θ = 1) by Jn and J , respectively. Split J = J1 + J2, where

J1 := ψ(1)ω(1)
∫ 0

−∞
ds
∫ ∞

0
|f(x, 1− s)− f(x,−s)|αxβ−α dx

= ψ(1)ω(1)α−1
∫ ∞

0
(1− e−y)αyβ−α−1 dy,

J2 := ψ(1)ω(1)
∫ 1

0
ds
∫ ∞

0
|f(x, 1− s)|αxβ−α dx

= ψ(1)ω(1)
∫ 1

0
du
∫ ∞

0
(1− e−x(1−u))αxβ−α dx,

according to the definition of f in (4.6). Next, write Jn = Jn1 + Jn2, where

Jn1 := n−Hαω(1)
0∑

s=−∞

∫ 1

0

∣∣∣∣ n∑
t=1

at−s
∣∣∣∣α(1− a)βψ(a) da

= n−Hαω(1)
∫ 1

0

1
1− aα

∣∣∣∣a(1− an)
1− a

∣∣∣∣α(1− a)βψ(a) da

= ω(1)
∫ ∞

0

(1− y/n)α
n(1− (1− y/n)α)

(
1−

(
1− y

n

)n)α
yβ−α

× ψ
(

1− y

n

)
1(0 < y < εn) dy + o(1)

→ ψ(1)ω(1)
α

∫ ∞
0

(1− e−y)αyβ−α−1 dy = J1
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by the dominated convergence theorem as n→∞. In a similar way,

Jn2 := n−Hαω(1)
n∑
s=1

∫ 1

0

∣∣∣∣ n∑
t=1

at−s1(s ≤ t)
∣∣∣∣α(1− a)βψ(a) da

= n−Hαω(1)
∫ 1

0

n∑
s=1

∣∣∣∣1− an−s+1

1− a

∣∣∣∣α(1− a)βψ(a) da

= ω(1)
∫ ∞

0

1
n

n∑
s=1

(
1−

(
1− y

n

)n−s+1)α
yβ−αψ

(
1− y

n

)
1(0 < y < εn) dy + o(1)

→ ψ(1)ω(1)
∫ ∞

0

∫ 1

0

(
1− e−y(1−u)

)α
yβ−α dy du = J2.

This proves part (i).

(ii) Denote by {Ln(τ), τ} the process on the left-hand side of (4.18). It suffices to
prove that, for any m ≥ 1 and any 0 =: τ0 < τ1 < · · · < τm, θ1 ∈ R, . . . , θm ∈ R,

m∑
k=1

θk(Ln(τk)− Ln(τk−1)) →d

m∑
k=1

θk(L(τk)− L(τk−1)).

Rewrite Ln(τk)− Ln(τk−1) = ∆L′n(τk) + ∆L′′n(τk), where

∆L′n(τk) := n−1/α ∑
[nτk−1]<s≤[nτk]

∑
s≤t≤[nτk]

∫ 1

0
at−sMs( da),

∆L′′n(τk) := n−1/α ∑
s≤[nτk−1]

∑
[nτk−1]<t≤[nτk]

∫ 1

0
at−sMs( da).

Since ∆L′n(τk), k = 1, . . . ,m, are independent, it suffices to prove that, for any
k = 1, . . . ,m,

∆L′n(τk)→d L(τk)− L(τk−1), ∆L′′n(τk) = op(1).

Moreover, it suffices to prove the last relations for k = 1 and τk = 1 only; in other
words, to prove that, for any θ ∈ R,

n−1
n∑
s=1

E
( n∑
t=s

at−s
)α
ω
(
θ

n∑
t=s

at−s
)
→ Kω(θ),

n−1 ∑
s≤0

E
( n∑
t=1

at−s
)α
ω
(
θ

n∑
t=1

at−s
)
→ 0.

Similarly as in the proof of (4.17), it suffices to prove the above relations for
ω(θ) ≡ 1, viz.

Jn1 := n−1 ∑
s≤0

E
( n∑
t=1

at−s
)α
→ 0, Jn2 := n−1

n∑
s=1

E
( n∑
t=s

at−s
)α
→ K. (4.35)
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Consider

Jn1 = n−1
∫ 1

0

(1− x)α
1− (1− x)α (1− (1− x)n)αxβ−αψ(1− x) dx.

If β > α then, clearly,

Jn1 ≤ Cn−1
∫ 1

0
xβ−α−1ψ(1− x) dx = O(n−1)

since the last integral converges. Let 0 < β < α. Then, for any ε > 0, similarly
as above

Jn1 = 1
nβ−α+1

∫ εn

0

(1− y/n)α
n(1− (1− y/n)α)

(
1−

(
1− y

n

)n)α
yβ−αψ

(
1− y

n

)
dy +O

( 1
n

)
,

where the last integral tends to

ψ(1)α−1
∫ ∞

0
(1− e−y)αyβ−α−1 dy <∞

implying that Jn1 = O(1/nβ−α+1) = o(1). For β = α, a similar argument yields
Jn1 = O(n−1 log n) = o(1). This proves the first convergence in (4.35).

Next, by the dominated convergence theorem,

Jn2 = n−1
n−1∑
k=0

∫ 1

0
xβ−α(1− (1− x)k)αψ(1− x) dx →

∫ 1

0
xβ−αψ(1− x) dx = K,

proving the second relation in (4.35) and the theorem. 2

Proof of Theorem 4.3.2, page 69. (i) In view of Theorem 4.3.1 (i), it suffices to
show that n−2H∑n

t=1 X
2(t) = op(1), with H as in (4.16). The last relation follows

from H > 1/α and ([70], p. 387). See also ([45], proof of Theorem 1). This proves
part (i).

(ii) According to Theorem 4.3.1(ii), it suffices to show that D−1
n is bounded in

probability, where
Dn := n−2/α

n∑
t=1

X2(t).

Decompose

Dn =
3∑
i=1

Dni,

where Dni are defined in (4.36), below. Then D−1
n = Op(1) follows from the
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following three facts:

(d1) Dn1 = op(1),

(d2) Dn2 ≥ 0, a.s.,

(d3) Dn3 →d Z, where Z > 0 a.s.

To this end, let X(t) = ∑
s≤t Ut,s, Ut,s :=

∫ 1
0 a

t−sMs( da)1(s ≤ t), and

Dn1 := n−2/α
n∑
t=1

∑
s1 6=s2

Ut,s1Ut,s2 , (4.36)

Dn2 := n−2/α
n∑
t=1

∑
s 6=t

U2
t,s, Dn3 := n−2/α

n∑
t=1

U2
t,t.

Fact (d2) is obvious. Fact (d3) holds since Ut,t, t = 1, . . . , n are i.i.d. α−stable
r.v.’s, so that U2

t,t ∈ D(α/2) and Dn3 →d Z, where Z is a strictly positive
α/2−stable r.v.

Let us prove (d1). Write Dn1 = ∑
s≤n Γn,s, where

Γn,s := 2n−2/α
n∑
t=1

∑
v<s

Ut,sUt,v.

Let Fs be the σ−algebra generated by r.v.’s Mv(A), v ≤ s, A ⊂ (−1, 1). Then
{Γn,s,Fs, s ∈ Z} is a martingale difference sequence. Hence, for any 1 < r < α,
we have

E|Dn1|r ≤ 2
∑
s≤n

E|Γn,s|r.

By a similar backward martingale property,

E|Γn,s|r ≤ 2
∑
v<s

n−2r/αE
∣∣∣∣ n∑
t=1

Ut,sUt,v

∣∣∣∣r.
Hence, using independence of Ut,s and Ut,v, v < s, and Hölder’s inequality, for
any 1 < r < α, we obtain

E|Dn1|r ≤ 4n−2r/α ∑
v<s≤n

E
( n∑
t=1

Ut,sUt,v

)r

≤ 4n−2r/αnr−1 ∑
v<s≤n

n∑
t=1

E|Ut,s|rE|Ut,v|r

≤ 4n−2r/αnrQr,
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Where
Qr := (

∑
s≥0

E|Us,0|r)2.

Since r − 2r/α < 0, for (d1), it suffices to show that Qr < ∞. From ([94],
Property 1.2.17) we have

E|Us,0|r ≤ C(E|as|α)r/α,

where
E|as|α ≤ C

∫ 1

0
xβ(1− x)sα dx ≤ Cs−1−β

and, therefore, Qr <∞ for α/(1 + β) < r < α. This completes the proof. 2

Proof of Theorem 4.3.3, page 69. From (4.10) and the definition of the codif-
ference for t ≥ 1, we obtain

Cod(X(0),X(t)) = Re(ω(1))Λ1(t)− i Im(ω(1))Λ2(t), (4.37)

where Λi(t) := ERi, i = 1, 2, and

R1 := 1− |1− at|α + |at|α
1− |a|α ,

R2 :=
∑
s≤0
|at−s − a−s|αsign(at−s − a−s) +

t∑
s=1
|at−s|αsign(at−s).

Next, decompose Λi(t) = ∑4
j=1 Λij(t), where

Λi1(t) := ERi1(1− ε < a < 1), Λi3(t) := ERi1(0 < a < 1− ε),

Λi2(t) := ERi1(−1 < a < −1 + ε), Λi4(t) := ERi1(−1 + ε < a < 0),

and ε > 0 is a small number. It is easy to check that, for any ε > 0,

Λij(t) = O(e−c̃t) = o(t−β1∨β2), i = 1, 2, j = 3, 4, there exists c̃ > 0, (4.38)

decay exponentially and, hence, are negligible in (4.20). Consider the terms
Λij(t), i, j = 1, 2. We have
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Λ11(t) =
∫ 1

1−ε

1− |1− at|α + |at|α
1− |a|α (1− a)β1ψ(a) da

=
∫ ε

0

1− (1− (1− x)t)α + (1− x)tα
1− (1− x)α xβ1ψ(1− x) dx

= C11(t)t−β1 , (4.39)

where

C11(t) := ψ(1)α−1
∫ ∞

0
f(t, y)(1− (1− e−y)α + e−yα)yβ1−1 dy,

f(t, y) := 1− (1− (1− y/t)t)α + (1− y/t)tα
1− (1− e−y)α + e−yα

× α(y/t)
1− (1− y/t)α ·

ψ(1− y/t)
ψ(1) · 1(0 < y < εt).

Observe that f(t, y) → 1, t → ∞, for any y ∈ (0,∞), and, moreover, |f | is
bounded in y ∈ (0,∞) uniformly in t→∞. Hence, by the dominated convergence
theorem,

C11(t) = ψ(1)α−1
∫ ∞

0
(1− (1− e−y)α + e−yα)yβ1−1 dy + o(1). (4.40)

In a similar way,

Λ12(t) =
∫ ε

0

1− (1− (−1)t(1− x)t)α + (1− x)tα
1− (1− x)α xβ2ψ(x− 1) dx

= C12(t)t−β2 , (4.41)

where

C12(t) = ψ(−1)α−1
∫ ∞

0
[e−yα + 1− (1− (−1)te−y)α]yβ2−1 dy + o(1). (4.42)

Next, using sign(at−s) = sign(at)sign(a−s) and

sign(at−s − a−s) = −1, sign(at−s) = +1, for a > 0,

sign(at−s − a−s) = −((−1)−s), sign(at−s) = (−1)t((−1)−s), for a < 0,
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we can rewrite

R2 = 1− (1− at)α − atα
1− aα 1(a > 0) + 1− (1− at)α − (−1)t|at|α

1 + |a|α 1(a < 0).

Whence, similarly as above,

Λ21(t) =
∫ ε

0

1− (1− (1− x)t)α − (1− x)tα
1− (1− x)α xβ1ψ(1− x) dx

= C21(t)t−β1 , (4.43)

where

C21(t) = ψ(1)α−1
∫ ∞

0
(1− (1− e−y)α − e−yα)yβ1−1 dy + o(1). (4.44)

Finally,

Λ22(t) =
∫ ε

0

1− (1− (−1)t(1− x)t)α − (−1)t(1− x)tα
1 + (1− x)α xβ2ψ(x− 1) dx

= C22(t)t−β2−1 = o(t−β2), (4.45)

where C22(t) = ψ(−1)2−1 ∫∞
0 (1− (1− (−1)te−y)α − e−yα)yβ2 dy + o(1).

The asymptotics in (4.20) follows from (4.37) and (4.38) - (4.45). 2
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5
Aggregation of a triangular array
of AR(1) processes

Abstract. We discuss contemporaneous aggregation of independent copies of
a triangular array of random-coefficient AR(1) processes with i.i.d. innovations
belonging to the domain of attraction of an infinitely divisible law W . The limit
aggregated process is shown to exist, under general assumptions on W and the
mixing distribution, and is represented as a mixed infinitely divisible moving-
average {X(t), t ∈ Z} in (5.4). Partial sums process of {X(t), t ∈ Z} is discussed
under the assumption EW 2 < ∞ and a mixing density regularly varying at the
“unit root” x = 1 with exponent β > 0. We show that the above partial sums
process may exhibit four different limit behaviors depending on β and the Lévy
triplet of W . Finally, we study the disaggregation problem for {X(t), t ∈ Z}
in spirit of Leipus et al. (2006, [62]) and obtain the weak consistency of the
corresponding estimator of φ(x) in a suitable L2−space.

5.1 Introduction

The present chapter discusses contemporaneous aggregation of N independent
copies

X
(N)
i (t) = aiX

(N)
i (t− 1) + ε

(N)
i (t), t ∈ Z, i = 1, 2, . . . , N (5.1)
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of random-coefficient AR(1) processX(N)(t) = aX(N)(t−1)+ε(N)(t), t ∈ Z, where
{ε(N)(t), t ∈ Z}, N = 1, 2, . . . is a triangular array of i.i.d. random variables in
the domain of attraction of an infinitely divisible law W :

N∑
t=1

ε(N)(t) →d W (5.2)

and where a is a r.v., independent of {ε(N)(t), t ∈ Z} and satisfying 0 ≤ a < 1
almost surely. The limit aggregated process {X(t), t ∈ Z} is defined as the limit
in distribution:

N∑
i=1

X
(N)
i (t) →fdd X(t). (5.3)

A particular case of (5.1)-(5.3) corresponding to ε(N)(t) = N−1/2ζ(t), where
{ζ(t), t ∈ Z} are i.i.d. r.v.’s with zero mean and finite variance, leads to the
classical aggregation scheme of Robinson (1978, [90]), Granger (1980, [41]) and a
Gaussian limit process {X(t), t ∈ Z}. Chapters 3 and 4 (see also [85], [86]) dis-
cussed aggregation of random-coefficient AR(1) processes with infinite variance
and innovations ε(N)(t) = N−1/αζ(t), where {ζ(t), t ∈ Z} are i.i.d. r.v.’s in the
domain of attraction of an α−stable law W , 0 < α ≤ 2.

The present chapter discusses the existence and properties of the limit process
{X(t), t ∈ Z} in the general triangular aggregation scheme (5.1)-(5.3). Let us
describe our main results. Theorem 5.2.7 (Section 5.2) says that under condition
(5.2) and some mild additional conditions, the limit process in (5.3) exists and is
written as a stochastic integral

X(t) :=
∑
s≤t

∫
[0,1)

xt−sMs( dx), t ∈ Z, (5.4)

where {Ms, s ∈ Z} are i.i.d. copies of an infinitely divisible (ID) random measure
M on [0, 1) with control measure Φ( dx) := P(a ∈ dx) and Lévy characteristics
(µ, σ, π) the same as of r.v. W in (5.2) (denote M ∼ W ), i.e., for any Borel set
A ⊂ [0, 1)

Ee iθM(A) = eΦ(A)V (θ), θ ∈ R. (5.5)

Here and in the sequel, V (θ) denotes the log-characteristic function of r.v. W :

V (θ) := log Ee iθW =
∫
R
(e iθy − 1− iθy1(|y| ≤ 1))π( dy)− 1

2θ
2σ2 + iθµ, (5.6)
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where µ ∈ R, σ ≥ 0 and π is a Lévy measure (see Section 5.2 for details). In the
particular case when W is α−stable, 0 < α ≤ 2, Theorem 5.2.7 agrees with the
Theorem 4.2.1 from Chapter 4. We note that the process {X(t), t ∈ Z} in (5.4) is
stationary, ergodic and has ID finite-dimensional distributions. According to the
terminology in [88], (5.4) is called a mixed ID moving-average.

Section 5.3 discusses partial sums limits and long memory properties of the
aggregated process {X(t), t ∈ Z} in (5.4) under the assumption that the mixing
distribution Φ has a probability density φ varying regularly at x = 1 with exponent
β > 0:

φ(x) ∼ C(1− x)β, x→ 1 (5.7)

for some C > 0. In the finite variance case σ2
W := Var(W ) < ∞ the aggregated

process in (5.4) is covariance stationary provided E(1−a2)−1 <∞, with covariance

r(t) := Cov(X(t),X(0)) = σ2
W E

[∑
s≤0

at−sa−s
]

= σ2
W E

[ at

1− a2

]
(5.8)

depending on σ2
W and the mixing distribution only. It is well-known that for 0 <

β < 1 (5.7) implies that r(t) ∼ Ct−β, t→∞, with some C > 0, in other words, the
aggregated process {X(t), t ∈ Z} has nonsummable covariances ∑t∈Z |r(t)| = ∞,
or covariance long memory.

The main result of Section 5.3 is Theorem 5.3.1 which shows that under
conditions (5.7) and EW 2 < ∞, partial sums of the limit aggregated process
{X(t), t ∈ Z} in (5.4) may exhibit four different limit behaviors, depending on
parameters β, σ and the behavior of the Lévy measure π at the origin. Write

W ∼ ID2(σ, π), if

EW = 0, and EW 2 = σ2 +
∫
R
x2π( dx) <∞,

in which case V (θ) of (5.6) can be written as

V (θ) =
∫
R
(e iθy − 1− iθy)π( dy)− 1

2θ
2σ2. (5.9)

The Lévy measure π is completely determined by two nonincreasing functions

Π+(x) := π({u > x}), Π−(x) := π({u ≤ −x}), x > 0.

Assume that there exist α > 0 and c± ≥ 0, c+ + c− > 0 such that
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lim
x→0

xαΠ+(x) = c+, lim
x→0

xαΠ−(x) = c−. (5.10)

Under these assumptions, the four limit behaviors of Sn(τ) := ∑[nτ ]
t=1 X(t) corre-

spond to the following parameter regions:

(i) 0 < β < 1, σ > 0,

(ii) 0 < β < 1, σ = 0, 1 + β < α < 2,

(iii) 0 < β < 1, σ = 0, 0 < α < 1 + β,

(iv) β > 1.

According to Theorem 5.3.1, the limit process of {Sn(τ), τ ≥ 0}, in respective
cases (i) - (iv), is a

(i) fractional Brownian motion with parameter H = 1− β/2,

(ii) α−stable self-similar process Λα,β with dependent increments and self-
similarity parameter H = 1− β/α, defined in (5.28) below,

(iii) (1 + β)−stable Lévy process with independent increments,

(iv) Brownian motion.

See Theorem 5.3.1 for precise formulations. Accordingly, the process {X(t), t ∈ Z}
in (5.4) has distributional long memory in cases (i) and (ii) and distributional
short memory (see Definition 2.3.6, page 36) in case (iii). At the same time,
{X(t), t ∈ Z} has covariance long memory in all three cases (i)-(iii). Case (iv)
corresponds to distributional and covariance short memory. As α increases from
0 to 2, the Lévy measure in (5.10) increases its “mass” near the origin, the limiting
case α = 2 corresponding to σ > 0 or a positive “mass” at 0. We see from (i)-(ii)
that distributional long memory is related to α being large enough, or small jumps
of the random measure M having sufficient high intensity. Note that the critical
exponent α = 1 + β separating the long and short memory “regimes” in (ii) and
(iii) decreases with β, which is quite natural since smaller β means the mixing
distribution putting more weight near the unit root a = 1.

Since aggregation leads to a natural loss of information about aggregated “mi-
cro” series, an important statistical problem arises to recover the lost informa-
tion from the observed sample of the aggregated process. In the context of the
AR(1) aggregation scheme (5.1)-(5.3) this leads to the so-called the disaggrega-
tion problem, or reconstruction of the mixing density φ(x) from observed sample
X(1), . . . ,X(n) of the aggregated process in (5.4). For Gaussian process (5.4),
the disaggregation problem was investigated in [22] and [62], who constructed an
estimator of the mixing density based on its expansion in an orthogonal poly-
nomial basis. In Section 5.4, we extend the results in [62] to the case when the
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aggregated process is a mixed ID moving-average of (5.4) with finite 4th moment
and obtain the weak consistency of the mixing density estimator in a suitable
L2−space (Theorem 5.4.4).

These results could be developed in several directions. We expect that The-
orem 5.3.1 can be extended to the aggregation scheme with common innovations
and to infinite variance ID moving-averages of (5.4), generalizing the results in
Chapters 3 and 4 ( and in [85], [86]). An interesting open problem is generalizing
Theorem 5.3.1 to the random field set-up of [60] and [84].

5.2 Existence of the limit aggregated process

Consider random-coefficient AR(1) equation

X(t) = aX(t− 1) + ε(t), t ∈ Z, (5.11)

where {ε(t), t ∈ Z} are i.i.d. r.v.’s with generic distribution ε, and a ∈ [0, 1) is a
random coefficient independent of {ε(t), t ∈ Z}. Assume that E|ε|p <∞ for some
0 < p ≤ 2 and Eε = 0, p ≥ 1. Then, acording to the Proposition 3.2.3, page
42, there exists a unique strictly stationary solution to the AR(1) equation (5.11)
given by the series

X(t) =
∞∑
k=0

akε(t− k), (5.12)

which converge conditionally a.s. and in Lp for a.e. a ∈ [0, 1). Moreover, if

E
[ 1
1− a

]
< ∞ (5.13)

then the series in (5.12) converges unconditionally in Lp.
We will write

W ∼ ID(µ, σ, π),

if r.v. W is infinitely divisible having the log-characteristic function in (5.6), where
µ ∈ R, σ ≥ 0 and π is a measure on R satisfying π({0}) = 0 and

∫
R(x2∧1)π( dx) <

∞, called the Lévy measure of W . It is well-known that the distribution of W is
completely determined by the (characteristic) triplet (µ, σ, π) and vice versa. See,
e.g., [95].

Definition 5.2.1. Let {ε(N), N ∈ N∗} be a sequence of r.v.’s tending to 0 in proba-
bility, andW ∼ ID(µ, σ, π) be an ID r.v. We say that the sequence {ε(N), N ∈ N∗}
belongs to the domain of attraction of W , denoted {ε(N), N ∈ N∗} ∈ D(W ), if

(CN(θ))N → Ee iθW, ∀ θ ∈ R, (5.14)
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where CN(θ) := E exp{ iθε(N)}, θ ∈ R, is the characteristic function of ε(N).

Remark 5.2.2. Sufficient and necessary conditions for {ε(N), N ∈ N∗} ∈ D(W )
in terms of the distribution functions of ε(N) are well-known. See, e.g., [95], Ch. 17
of [35]. In particular, these conditions include the convergences

NP(ε(N) > x) → Π+(x), NP(ε(N) < −x) → Π−(x) (5.15)

at each continuity point x > 0 of Π+, Π−, respectively, where Π± are defined
as in (5.10).

Remark 5.2.3. By taking logarithms of both sides, condition (5.14) can be
rewritten as

N log CN(θ) → log Ee iθW = V(θ), ∀ θ ∈ R, (5.16)

with the convention that the l.h.s. of (5.16) is defined for N > N0(θ) sufficiently
large only, since for a fixed N , the characteristic function CN(θ) may vanish at
some points θ. In the general case, (5.16) can be precised as follows: For any
ε > 0 and any K > 0 there exists N0(K, ε) ∈ N∗ such that

sup
|θ|<K

∣∣∣N log CN(θ)− V (θ)
∣∣∣ < ε, ∀N > N0(K, ε). (5.17)

The following definitions introduce some technical conditions, in addition to
{ε(N), N ∈ N∗} ∈ D(W ), needed to prove the convergence towards the aggregated
process in (5.3).

Definition 5.2.4. Let 0 < α ≤ 2 and {ε(N), N ∈ N∗} be a sequence of r.v.’s.
Write {ε(N), N ∈ N∗} ∈ T (α) if there exists a constant C independent of N and
x and such that one of the two following conditions hold: either

(i) α = 2 and Eε(N) = 0, NE(ε(N))2 ≤ C, or

(ii) 0 < α < 2 and NP(|ε(N)| > x) ≤ Cx−α, x > 0; moreover, Eε(N) = 0 whenever
1 < α < 2, while, for α = 1 we assume that the distribution of ε(N) is symmetric.

Definition 5.2.5. Let 0 < α ≤ 2 and W ∼ ID(µ, σ, π). Write W ∈ T (α) if
there exists a constant C independent of x and such that one of the two following
conditions hold: either

(i) α = 2 and EW = 0, EW 2 <∞, or

(ii) 0 < α < 2 and Π+(x)+Π−(x) ≤ Cx−α, ∀x > 0; moreover, EW = 0 whenever
1 < α < 2, while, for α = 1 we assume that the distribution of W is symmetric.
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Corollary 5.2.6. Let {ε(N), N ∈ N∗} ∈ D(W ), W ∼ ID(µ, σ, π). Assume that
{ε(N), N ∈ N∗} ∈ T (α) for some 0 < α ≤ 2. Then W ∈ T (α).

Proof. Let α = 2 and RN denote the l.h.s. of (5.2). Then R2
N →d W

2 and

EW 2 ≤ lim inf
N→∞

ER2
N = lim inf

N→∞
NE(ε(N))2 <∞

follows by Fatou’s lemma. Then, relation

EW = lim
N→∞

ERN = 0

follows by the dominated convergence theorem. For 0 < α < 2, relation Π±(x) ≤
Cx−α at each continuity point x of Π± follows from {ε(N), N ∈ N∗} ∈ T (α) and
(5.15) and then extends to all x > 0 by monotonicity. Verification of the remaining
properties of W in the cases 1 < α < 2 and α = 1 is easy and is omitted. 2

The main result of this section is the following theorem. Recall that {Xi(t) ≡
X

(N)
i (t)}, i = 1, 2, . . . , N are independent copies of AR(1) process in (5.11) with

i.i.d. innovations {ε(t) ≡ ε(N)(t)} and random coefficient a ∈ [0, 1). WriteM ∼ W

if M is an ID random measure on [0, 1) with characteristic function as in (5.5)-
(5.6).

Theorem 5.2.7. Let condition (5.13) holds. In addition, assume that the generic
sequence {ε(N), N ∈ N∗} belongs to the domain of attraction of ID r.v. W ∼
ID(µ, σ, π) and there exists an 0 < α ≤ 2 such that {ε(N), N ∈ N∗} ∈ T (α). Then
the limit aggregated process {X(t), t ∈ Z} in (5.3) exists. It is stationary, ergodic,
has infinitely divisible finite-dimensional distributions, and a stochastic integral
representation as in (5.4), where M ∼ W .

Proof. We follow the proof of Theorem 4.2.1, page 64. Fix m ≥ 1 and
θ(1), . . . , θ(m) ∈ R. Denote

ϑ(s, a) :=
m∑
t=1

θ(t)at−s1(s ≤ t).

Then ∑m
t=1 θ(t)X

(N)
i (t) = ∑

s∈Z ϑ(s, ai)ε(N)
i (s), i = 1, . . . , N , and

E exp
{

i
N∑
i=1

m∑
t=1

θ(t)X(N)
i (t)

}
=
(

E exp
{

i
m∑
t=1

θ(t)X(N)(t)
})N

=
(

1 + Θ(N)
N

)N
,

(5.18)
where

Θ(N) := N
(

E
[ ∏
s∈Z
CN(ϑ(s, a))

]
− 1

)
.
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From definitions (5.4), (5.6) it follows that

E exp
{

i
m∑
t=1

θ(t)X(t)
}

= eΘ, where Θ := E
∑
s∈Z

V(ϑ(s, a)). (5.19)

The convergence in (5.3) to the aggregated process of (5.4) follows from (5.18),
(5.19) and the limit

lim
N→∞

Θ(N) = Θ, (5.20)

which will be proved below.
Note first that

sup
a∈[0,1),s∈Z

|ϑ(s, a)| ≤
m∑
t=1
|θ(t)| =: K

is bounded and therefore the logarithm log CN(ϑ(s, a)) is well-defined for N >

N0(K) large enough, see (5.17), and Θ(N) can be rewritten as

Θ(N) = EN
(

exp
{
N−1 ∑

s∈Z
N log CN(ϑ(s, a))

}
− 1

)
.

Then (5.20) follows if we show that for each a ∈ [0, 1),

lim
N→∞

∑
s∈Z

N log CN(ϑ(s, a)) =
∑
s∈Z

V (ϑ(s, a)), ∀ a ∈ [0, 1), (5.21)

and

∑
s∈Z

∣∣∣N log CN(ϑ(s, a))
∣∣∣ ≤ C

1− aα , ∀ a ∈ [0, 1), (5.22)

where C does not depend on N, a.
Let us prove (5.22). It suffices to check the bound

N |1− CN(θ)| ≤ C|θ|α. (5.23)

Indeed, since |CN(ϑ(s, a))− 1| < ε for N large enough (see above), so

∣∣∣N log CN(ϑ(s, a))
∣∣∣ ≤ CN

∣∣∣1− CN(ϑ(s, a))
∣∣∣

and (5.23) implies

∑
s∈Z

∣∣∣N log CN(ϑ(s, a))
∣∣∣ ≤ C

∑
s∈Z
|ϑ(s, a)|α ≤ C

1− aα , (5.24)
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see ((4.26), page 72), proving (5.22).

Consider (5.23) for 1 < α < 2. Since Eε(N) = 0 so

CN(θ)− 1 =
∫
R
(e iθx − 1− iθx) dFN(x)

and

N |1− CN(θ)| ≤ N
∣∣∣ ∫ 0

−∞
(e iθx − 1− iθx) dFN(x)

∣∣∣
+ N

∣∣∣ ∫ ∞
0

(e iθx − 1− iθx) d(1− FN(x))
∣∣∣

= |θ|
(∣∣∣ ∫ 0

−∞
NFN(x)(e iθx − 1) dx

∣∣∣
+
∣∣∣ ∫ ∞

0
N(1− FN(x))(e iθx − 1) dx

∣∣∣)
≤ C|θ|

∫ ∞
0

x−α((|θ|x) ∧ 1) dx ≤ C|θ|α, (5.25)

since
NFN(x)1(x < 0) +N(1− FN(x))1(x > 0) ≤ C|x|−α

and the integral

∫ ∞
0

x−α((|θ|x) ∧ 1) dx = |θ|
∫ 1/|θ|

0
x1−α dx+

∫ ∞
1/|θ|

x−α dx

= |θ|α−1
( 1

2− α + 1
α− 1

)

converges. In the case α = 2, we have

N |CN(θ)− 1| ≤ 1
2θ

2NE(ε(N))2 ≤ Cθ2

and (5.23) follows.

Next, let 0 < α < 1. Then

N |1− CN(θ)| ≤ N
∫ 0

−∞
|e iθx − 1| dFN(x) +N

∫ ∞
0
|e iθx − 1| | d(1− FN(x))|

=: I1 + I2.

Here,

I1 ≤ 2N
∫ 0

−∞
((|θ| |x|) ∧ 1) dFN(x)

= 2N
∫ −1/|θ|

−∞
dFN(x) + 2N |θ|

∫ 0

−1/|θ|
|x| dFN(x) =: 2(I11 + I12).
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We have I11 = NFN(−1/|θ|) ≤ C|θ|α and

I12 = −|θ|N
∫ 0

−1/|θ|
x dFN(x) = −|θ|N

(
xFN(x)

∣∣∣x=0

x=−1/|θ|
−
∫ 0

−1/|θ|
FN(x) dx

)
= |θ|N

(
− FN(−1/|θ|)

|θ|
+
∫ 0

−1/|θ|
FN(x) dx

)
≤ C|θ|α + C|θ|

∫ 0

−1/|θ|
|x|−α dx ≤ C|θ|α.

Since I2 can be evaluated analogously, this proves (5.23) for 0 < α < 1.
It remains to prove (5.23) for α = 1. Since, by symmetry of ε(N),

∫
{|x|≤1/|θ|}

x dFN(x) = 0,

so CN(θ)− 1 = J1 + J2 + J3 + J4, where

J1 :=
∫ −1/|θ|

−∞
(e iθx − 1) dFN(x),

J2 :=
∫ 0

−1/|θ|
(e iθx − 1− iθx) dFN(x),

J3 :=
∫ 1/|θ|

0
(e iθx − 1− iθx) dFN(x),

J4 :=
∫ ∞

1/|θ|
(e iθx − 1) dFN(x).

We have
N |J1| ≤ 2NFN(−1/|θ|) ≤ C|θ|

and a similar bound follows for Ji, i = 2, 3, 4. This proves (5.23). Then (5.21) and
the remaining proof of (5.20) and Theorem 5.2.7 follow as the proof of Thm. 4.2.1
in page 64. 2

Remark 5.2.8. Theorem 5.2.7 applies in the case of innovations belonging to the
domain of attraction of an α−stable law. Let ε(N) = N−1/αζ, where ζ ∈ D(α),
0 < α ≤ 2 (see Definition 3.2.1, page 42). Then {ε(N), N ∈ N∗} ∈ T (α) and
{ε(N), N ∈ N∗} ∈ D(W ), where W is an α−stable r.v. with the characteristic
function

Ee iθW = e−|θ|αω(θ;α,c1,c2), θ ∈ R, (5.26)

here ω(θ;α, c1, c2) ≡ ω(θ) is defined in (3.9), page 42. In this case, the statement
of Theorem 5.2.7 coincides with Theorem 4.2.1, page 64.
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5.3 Long memory properties of the limit aggre-
gated process

In this section we study partial sums limits and distributional long memory
property of the aggregated mixed ID moving-average in (5.4) under condition (5.7)
on the mixing density φ. More precisely, we shall assume that φ has the form

φ(x) = ψ(x)(1− x)β, x ∈ (0, 1), (5.27)

where β > 0 and ψ(x) is an bounded function having a finite limit ψ(1) :=
limx→1 ψ(x) > 0.

Consider an independently scattered α−stable random measure N( dx, ds) on
(0,∞) × R with control measure ν( dx, ds) := ψ(1)xβ−α dx ds and characteristic
function

Ee iθN(A) = e−|θ|αω(θ;α,c+,c−)ν(A), θ ∈ R,

where A ⊂ (0,∞) × R is a Borel set with ν(A) < ∞ and ω is defined at (3.9),
page 42. For 1 < α ≤ 2, 0 < β < α− 1, introduce the process

Λα,β(τ) :=
∫
R+×R

(
f(x, τ − s)− f(x,−s)

)
N( dx, ds), τ ≥ 0, where (5.28)

f(x, t) :=

1− e−xt, if x > 0 and t > 0,

0, otherwise

defined as a stochastic integral with respect to the above random measure N .
The process Λα,β was also introduced in Chaper 4 (see (4.6), page 63). It has
stationary increments, α−stable finite-dimensional distributions, a.s. continuous
sample paths and is self-similar with parameter H = 1 − β/α ∈ (1/α, 1). Note
that for α = 2, Λ2,β is a fractional Brownian motion.

Theorem 5.3.1. Let {X(t), t ∈ Z} be the limit aggregated process in (5.4), where
M ∼ W ∼ ID2(σ, π) and the mixing distribution satisfies (5.27).

(i) Let 0 < β < 1 and σ > 0. Then

1
n1−β2

[nτ ]∑
t=1

X(t) →D[0,1] BH(τ), (5.29)

where BH is a fractional Brownian motion with parameter H := 1 − β/2 and
variance EB2

H(τ) = σ2ψ(1)Γ(β − 2)τ 2H .

(ii) Let 0 < β < 1, σ = 0 and there exist 1 + β < α < 2 and c± ≥ 0, c+ + c− > 0
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such that (5.10) hold. Then

1
n1− β

α

[nτ ]∑
t=1

X(t) →D[0,1] Λα,β(τ), (5.30)

where Λα,β is defined in (5.28).

(iii) Let 0 < β < 1, σ = 0, π 6= 0 and there exists 0 < α < 1 + β such that
∫
R
|x|απ( dx) <∞. (5.31)

Then
1

n
1

1+β

[nτ ]∑
t=1

X(t) →fdd L1+β(τ), (5.32)

where {L1+β(τ), τ ≥ 0} is an (1 + β)−stable Lévy process with log-characteristic
function given in (5.49) below.

(iv) Let β > 1. Then
1
n1/2

[nτ ]∑
t=1

X(t) →fdd σΦB(τ), (5.33)

where B is a standard Brownian motion with EB2(1) = 1 and σΦ is defined in
(5.50) below. Moreover, if β > 2 and π satisfies (5.31) with α = 4, the convergence
→fdd in (5.33) can be replaced by →D[0,1].

Remark 5.3.2. Note that the normalization exponents in Theorem 5.3.1 decrease
from (i) to (iv):

1− β

2 > 1− β

α
>

1
1 + β

>
1
2 .

Hence, we may conclude that the dependence in the aggregated process decreases
from (i) to (iv). Also note that while {X(t), t ∈ Z} has finite variance in all cases
(i) - (iv), the limit of its partial sums may have infinite variance as it happens
in (ii) and (iii). Apparently, the finite-dimensional convergence in (5.32) cannot
be replaced by the convergence in D[0, 1] with the J1−topology. See ([74], p.40),
([63], Remark 4.1) for related discussion.

Proof. (i) The statement is true if π = 0, or W ∼ N (0, σ2). In the case π 6= 0,
split

X(t) = X1(t) + X2(t),

where X1(t),X2(t) are defined following the decomposition of the measure M =
M1 + M2 into independent random measures M1 ∼ W1 ∼ ID2(σ, 0) and M2 ∼
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W2 ∼ ID2(0, π). Let us prove that

Sn2 :=
n∑
t=1

X2(t) = op(n1−β2 ). (5.34)

Let
V2(θ) := log Ee iθW2 =

∫
R
(e iθx − 1− iθx)π( dx).

Then

|V2(θ)| ≤ Cθ2, ∀ θ ∈ R, and |V2(θ)| = o(θ2), |θ| → ∞. (5.35)

Indeed, for any ε > 0,

|V2(θ)| ≤ θ2I1(ε) + 2|θ|I2(ε),

where

I1(ε) := θ−2
∫
|x|≤ε
|e iθx − 1− iθx|π( dx) ≤

∫
|x|≤ε

x2π( dx)→ 0, ε→ 0,

and

I2(ε) := (2|θ|)−1
∫
|x|>ε
|e iθx − 1− iθx|π( dx) ≤

∫
|x|>ε
|x|π( dx) <∞, ∀ ε > 0.

Hence, (5.35) follows.

Relation (5.34) follows from Jn := log E exp
{

iθn−1+β
2Sn2

}
= o(1). We have

Jn =
∑
s∈Z

∫ 1

0
V2

(
θn−1+β/2

n∑
t=1

(1− z)t−s1(t ≥ s)
)
zβψ(1− z) dz = Jn1 + Jn2,

where

Jn1 :=
∑
s≤0

∫ 1

0
V2(· · · )zβψ(1− z) dz, Jn2 :=

n∑
s=1

∫ 1

0
V2(· · · )zβψ(1− z) dz.

By change of variables: nz = w, n− s+ 1 = nu, Jn2 can be rewritten as

Jn2 =
n∑
s=1

∫ 1

0
V2

(
θ(1− (1− z)n−s+1)

n1−β/2z

)
zβψ(1− z) dz

= 1
nβ

∫ 1

1/n
du
∫ n

0
V2

(
θnβ/2(1− (1− w

n
)[un])

w

)
wβψ

(
1− w

n

)
dw

= θ2
∫ 1

0
du
∫ ∞

0
Gn(u,w)wβ−2ψ

(
1− w

n

)
dw,
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where

Gn(u,w) :=
(
1−(1−w

n
)[un]

)2
κ
(
θnβ/2(1− (1− w

n
)[un])

w

)
1(1/n < u < 1, 0 < w < n)

and where κ(θ) := V2(θ)/θ2 is a bounded function vanishing as |θ| → ∞; see
(5.35). Therefore Gn(u,w)→ 0, n→∞, for any u ∈ (0, 1], w > 0 fixed. We also
have

|Gn(u,w)| ≤ C
(
1− (1− w

n
)[un]

)2
≤ C(1− e−wu)2 =: Ḡ(u,w),

where ∫ 1

0
du
∫ ∞

0
Ḡ(u,w)wβ−2 dw <∞.

Thus, Jn2 = o(1) follows by the dominated convergence theorem. The proof
Jn1 = o(1) using (5.35) follows by a similar argument. This proves Jn = o(1), or
(5.34). The tightness of the partial sums process in D[0, 1] follows from β < 1
and Kolmogorov’s criterion since

E
( n∑
t=1

X(t)
)2

= O(n2−β),

the last relation is an easy consequence of r(t) = O(t−β), see (5.8) and the discus-
sion below it.

(ii) Let Sn(τ) := ∑[nτ ]
t=1 X(t). Let us prove that for any 0 < τ1 < · · · < τm ≤ 1,

θ1 ∈ R, . . . , θm ∈ R,

Jn := log E exp
{

i 1
n1− β

α

m∑
j=1

θjSn(τj)
}
→ J, where (5.36)

J := −ψ(1)
∫
R+×R

∣∣∣∣ m∑
j=1

θj(f(w, τj − u)− f(w,−u))
∣∣∣∣α (5.37)

× ω
( m∑
j=1

θj(f(w, τj − u)− f(w,−u));α, c+, c−
) dw du
wα−β

.

We have

J = log Ee i
∑m

j=1 θjΛα,β(τj)

by definition (5.28) of Λα,β. We shall restrict the proof of (5.36) to m = τ1 = 1,
since the general case follows analogously. Let V (θ) be defined as in (5.9), where

96



AGGREGATION OF TRIANGULAR ARRAY

σ = 0. Then,

Jn =
∑
s∈Z

∫ 1

0
V
(
θ

1
n1− β

α

n∑
t=1

(1− z)t−s1(t ≥ s)
)
zβψ(1− z) dz

=
∑
s≤0

∫ ε

0
V (...)zβψ(1− z) dz +

n∑
s=1

∫ ε

0
V (...)zβψ(1− z) dz

+
∑
s∈Z

∫ 1

ε
V (...)zβψ(1− z) dz =: Jn1 + Jn2 + Jn3,

Similarly, split J = J1 + J2, where

J1 := −|θ|αψ(1)ω(θ;α, c+, c−)
∫ 0

−∞
du
∫ ∞

0
(f(w, 1− u)− f(w,−u))αwβ−α dw,

J2 := −|θ|αψ(1)ω(θ;α, c+, c−)
∫ 1

0
du
∫ ∞

0
(f(w, u))αwβ−α dw.

To prove (5.36) we need to show Jn1 → J1, Jn2 → J2, Jn3 → 0. We shall use the
following facts:

lim
λ→+0

λV
(
λ−1/αθ

)
= −|θ|αω(θ;α, c+, c−), ∀ θ ∈ R (5.38)

and
|V (θ)| ≤ C|θ|α, ∀ θ ∈ R (∃C <∞). (5.39)

Here, (5.39) follows from (5.10),
∫
R x

2π( dx) < ∞ and integration by parts. To
show (5.38), let χ(x), x ∈ R be a bounded continuously differentiable function
with compact support and such that χ(x) ≡ 1, |x| ≤ 1. Then the l.h.s. of (5.38)
can be rewritten as

λV
(
λ−1/αθ

)
=

∫
R
(e iθy − 1− iθyχ(y))πλ( dy) + iθµχ,λ,

where
πλ( dy) := λπ( dλ1/αy), µχ,λ :=

∫
R
y(χ(y)− 1)πλ( dy).

The r.h.s. of (5.38) can be rewritten as

−|θ|αω(θ;α, c+, c−) = V0(θ) :=
∫
R(e iθy − 1− iθyχ(y))π0( dy) + iθµχ,0,

where

π0( dy) := −c+ dy−α1(y > 0) + c− d(−y)−α1(y < 0),

µχ,0 :=
∫
R
y(χ(y)− 1)π0( dy).

Let C\ be the class of all bounded continuous functions on R vanishing in a
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neighborhood of 0. According to ([95], Thm. 8.7), relation (5.38) follows from

lim
λ→0

∫
R
f(y)πλ( dy) =

∫
R
f(y)π0( dy), ∀ f ∈ C\, (5.40)

lim
λ→0

µχ,λ = µχ,0, lim
ε↓0

lim
λ→0

∫
|y|≤ε

y2πλ( dy) = 0. (5.41)

Relations (5.40) is immediate from (5.10) while (5.41) follows from (5.10) by
integration by parts.

Coming back to the proof of (5.36), consider the convergence Jn2 → J2. By
change of variables: nz = w, n− s+ 1 = nu, Jn2 can be rewritten as

Jn2 =
∫ 1

1/n
du
∫ εn

0
n−βV

(
θn

β
α

1− (1− w
n

)[un]

w

)
wβψ

(
1− w

n

)
dw

= −|θ|αω(θ;α, c+, c−)
∫ 1

0
du
∫ ∞

0

(1− e−wu
w

)α
κn2(θ;u,w)wβψ

(
1− w

n

)
dw,

where κn2(u,w) is written as

κn2(θ;u,w) := −
(1− e−wu

w

)−α
n−β

V
(
θn

β
αw−1(1− (1− w

n
)[un])

)
|θ|αω(θ;α, c+, c−)

× 1(n−1 < u ≤ 1, 0 < w < εn)

= λV (λ−1/αθ)
−|θ|αω(θ;α, c+, c−)

(1− (1− w
n

)[un]

1− e−wu
)α

× 1(n−1 < u ≤ 1, 0 < w < εn) (5.42)

with

λ ≡ λn(u,w) := n−β
(

w

1− (1− w
n

)[un]

)α
→ 0

for each u ∈ (0, 1], w > 0 fixed. Hence and with (5.38) in mind, it follows that
κn2(θ;u,w) → 1 for each θ ∈ R, u ∈ (0, 1], w > 0 and therefore the convergence
Jn2 → J2 by the dominated convergence theorem provided we establish a domi-
nating bound

|κn2(θ;u,w)| ≤ C (5.43)

with C independent of n, u ∈ (0, 1], w ∈ (0, εn). From (5.39) it follows that the
first ratio on the r.h.s. of (5.42) is bounded by an absolute constant. Next, for
any 0 ≤ x ≤ 1/2, s > 0 we have

1− x ≥ e−2x =⇒ (1− x)s ≥ e−2xs =⇒ 1− (1− x)s ≤ 2(1− e−xs)
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and hence

1− (1− w
n

)[un]

1− e−wu ≤
1− (1− w

n
)un

1− e−wu ≤ 2, for any 0 ≤ w ≤ n/2, u > 0

so that the second ratio on the r.h.s. of (5.42) is also bounded by 2, provided
ε ≤ 1/2. This proves (5.43) and concludes the proof of Jn2 → J2. The proof of the
convergence Jn1 → J1 is similar and is omitted. Using inequality (5.39) it is not
difficult to prove that |Jn3| < Cnβ−(α−1). Since β − (α − 1) < 0, Jn3 → 0. This
concludes the proof of (5.36), and finite-dimensional convergence in (5.30).

To prove the tightness part of (5.30), it suffices to verify the well-known cri-
terion in ([17], Thm.12.3): there exists C > 0 such that, for any n ≥ 1 and
0 ≤ τ < τ + h ≤ 1

sup
u>0

uαP
(
n
β
α
−1|Sn(τ + h)− Sn(τ)| > u

)
< Chα−β, (5.44)

where α − β > 1. By stationarity of increments of {X(t), t ∈ Z} it suffices to
prove (5.44) for τ = 0, h = 1, in which case it becomes

sup
u>0

uαP
(
|Sn| > u

)
< Cnα−β, Sn := Sn(1). (5.45)

The proof of (5.45), below, requires inequality in (5.46) for tail probabilities of
stochastic integrals with respect to ID random measure. Let Lα(Z× (0, 1)) be the
class of measurable functions g : Z× (0, 1)→ R with

‖g‖αα :=
∑
s∈Z

E|g(s, a)|α <∞.

Also, introduce the weak space Lαw(Z × (0, 1)) of measurable functions g : Z ×
(0, 1)→ R with

‖g‖αα,w := sup
t>0

tα
∑
s∈Z

P(|g(s, a)| > t) <∞.

Note Lα(Z × (0, 1)) ⊂ Lαw(Z × (0, 1)) and ‖g‖αα,w ≤ ‖g‖αα. Let {Ms, s ∈ Z} be
the random measure in (5.4), M ∼ W ∼ ID2(0, π) with zero mean and the Lévy
measure π satisfying the assumptions in (ii). It is well-known (see, e.g., [97]) that
the stochastic integral

M(g) :=
∑
s∈Z

∫
(0,1)

g(s, a)Ms( da)

is well-defined for any g ∈ Lp(Z× (0, 1)), p = 1, 2 and satisfies

EM2(g) = C2‖g‖2
2, and E|M(g)| ≤ C1‖g‖1,
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for some constants C1, C2 > 0. The above facts together with Hunt’s interpolation
theorem, see ([89], Theorem IX.19) imply that M(g) extends to all g ∈ Lαw(Z ×
(0, 1)), 1 < α < 2 and satisfies the bound

sup
u>0

uαP(|M(g)| > u) ≤ C‖g‖αα,w ≤ C‖g‖αα, (5.46)

with some constant C > 0 depending on α,C1, C2 only. Using (5.46) and the
representation Sn = M(g) with

g(s, a) =
n∑
t=1

at−s1(t ≥ s)

we obtain

sup
u>0

uαP
(
|Sn| > u

)
≤ C

∑
s≤n

E
( n∑
t=1

at−s
)α

= O(nα−β),

where the last relation is proved in Chapter 4 (proof of Theorem 4.3.1, page 68).
This proves (5.45) and part (ii).

(iii) It suffices to prove that for any 0 < τ1 < · · · < τm ≤ 1, θ1 ∈ R, . . . , θm ∈ R,

Jn := log E exp
{

i 1
n1/(1+β)

m∑
j=1

θjSn(τj)
}
→ J := log E exp{ i

m∑
j=1

θjL1+β(τj)}.

(5.47)

Similarly as in (i)-(ii), we shall restrict the proof of (5.47) to the case m = 1 since
the general case follows analogously. Then

Jn =
∑
s∈Z

∫ 1

0
V
(
n−1/(1+β)θ

[nτ ]∑
t=1

(1− z)t−s1(t ≥ s)
)
zβψ(1− z) dz = Jn1 + Jn2,

where

Jn1 :=
∑
s≤0

∫ 1

0
V (· · · )zβψ(1− z) dz,

Jn2 :=
[nτ ]∑
s=1

∫ 1

0
V (· · · )zβψ(1− z) dz.

Let θ > 0. By the change of variables: n1/(1+β)z = θ/y, [nτ ]− s+ 1 = nu, Jn2 can
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be rewritten as

Jn2 =
[nτ ]∑
s=1

∫ 1

0
V
(
θ(1− (1− z)[nτ ]−s+1)

n1/(1+β)z

)
zβψ(1− z) dz

= θ1+β
∫ τ

0
du
∫ ∞

0

dy
yβ+2V

(
y(1− (1− θ

n1/(1+β)y
)[un])

)
(5.48)

× ψ
(

1− θ

n1/(1+β)y

)
1(1/n < u < [nτ ]/n], y > θn−1/(1+β)),

where

1n(θ; y, u) := 1(1/n < u < [nτ ]/n], y > θn−1/(1+β))→ 1(0 < u < τ, y > 0).

As (1− θ
n1/(1+β)y

)un → 0 for any u, y > 0 due to n/n1/(1+β) →∞, we see that the
integrand in (5.48) tends to y−β−2V (y)ψ(1). We will soon prove that this passage
to the limit under the sign of the integral in (5.48) is legitimate. Therefore,

Jn2 → J := τ |θ|1+βψ(1)
∫ ∞

0
V (y)y−β−2 dy = −τ |θ|1+βψ(1)ω(θ; 1 + β, π−β , π

+
β ),

(5.49)

π+
β := 1

1 + β

∫ ∞
0

x1+βπ( dx), π−β := 1
1 + β

∫ 0

−∞
|x|1+βπ( dx),

and the last equality in (5.49) follows from the definition of V (y) and ([50],
Thm. 2.2.2).

For justification of the above passage to the limit, note that the function

V (y) =
∫
R
(e iyx − 1− iyx)π( dx)

satisfies |V (y)| ≤ V1(y) + V2(y), where

V1(y) := y2
∫
|x|≤1/|y|

x2π( dx), V2(y) := 2|y|
∫
|x|>1/|y|

|x|π( dx).

We have
∫ ∞

0
(V1(y) + V2(y))y−β−2 dy ≤

∫
R
x2π( dx)

∫ 1/|x|

0
y−β dy

+ 2
∫
R
|x|π( dx)

∫ ∞
1/|x|

y−1−β dy

≤ C
∫
R
|x|1+βπ( dx) < ∞.
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Next,

sup
1/2≤c≤1

V1(cy) ≤ y2
∫
|x|≤2/|y|

x2π( dx) =: V̄1(y), sup
1/2≤c≤1

V2(cy) ≤ V2(y)

and
∫∞
0 V̄1(y)y−β−2 dy <∞. Denote

ζn(θ; y, u) := (1− θn−1/(1+β)y−1)[un].

Then ζn(θ; y, u) ≥ 0 and we split the integral in (5.48) into two parts corresponding
to ζn(θ; y, u) ≤ 1/2 and ζn(θ; y, u) > 1/2, viz., Jn2 = J+

n2 + J−n2, where

J+
n2 := θ1+β

∫ τ

0
du
∫ ∞

0
y−β−2 dyV

(
y(1− ζn(θ; y, u))

)
× ψ

(
1− θ

n1/(1+β)y

)
1(ζn(θ; y, u) ≤ 1/2)1n(θ, y, u),

J−n2 := θ1+β
∫ τ

0
du
∫ ∞

0
y−β−2 dyV

(
y(1− ζn(θ; y, u))

)
× ψ

(
1− θ

n1/(1+β)y

)
1(ζn(θ; y, u) > 1/2)1n(θ; y, u).

Since ∣∣∣V (y(1− ζn(θ; y, u))
)
1(ζn(θ; y, u) ≤ 1/2)

∣∣∣ ≤ V̄1(y) + V2(y)

is bounded by integrable function (see above), so J+
n2 → J by the dominated

convergence theorem. It remains to prove J−n2 → 0. From inequalities 1−x ≤ e−x,
x > 0, and [un] ≥ un/2, u > 1/n, it follows that

ζn(θ; y, u) ≤ e−θun/2n1/(1+β)y

and hence

1(ζn(θ; y, u) > 1/2) ≤ 1(e−θun/2n1/(1+β)y > 1/2) = 1((u/y) < c1n
−γ),

where γ := β/(1 + β) > 0, c1 := (2 log 2)/θ. Without loss of generality, we can
assume that 1 < α < 1 + β in (5.31). Condition (5.31) implies

|V (y)| ≤
∫
|xy|≤1

|yx|απ( dx) + 2
∫
|yx|>1

|yx|απ( dx) ≤ C|y|α, ∀ y ∈ R.

Hence

|J−n2| ≤ C
∫ τ

0
du
∫ ∞

0
1
(u
y
< c1n

−γ
) dy
y2+β−α ≤ Kn−γ(1+β−α) → 0

102



AGGREGATION OF TRIANGULAR ARRAY

where
K := C

∫ τ

0
uα−1−β du <∞.

This proves Jn2 → J , or (5.49). The proof of Jn1 → 0 follows similarly and hence
is omitted.

(iv) The proof of finite-dimensional convergence is similar the proof of Theo-
rem 4.3.1 (ii), page 68. Below, we present the proof of the one-dimensional con-
vergence of n−1/2Sn = n−1/2∑n

t=1 X(t) towards N(0, σ2
Φ) with σ2

Φ > 0 given in
(5.50). Similarly as above, consider

Jn := log E exp{ iθn−1/2Sn} = Jn1 + Jn2,

where

Jn1 :=
∑
s≤0

EV
(
θn−1/2

n∑
t=1

at−s
)
, Jn2 :=

n∑
s=1

EV
(
θn−1/2

n∑
t=s

at−s
)
.

We have

Jn2 =
n∑
k=1

∫ 1

0
V
(
θ

1− (1− z)k
zn1/2

)
φ(1− z) dz

= −θ2σ2
W n−1

n∑
k=1

∫ 1

0
(1− (1− z)k)2z−2κn(θ; k, z)φ(1− z) dz,

where

κn(θ; k, z) := κ
(
θ

1− (1− z)k
zn1/2

)
, κ(y) := −V (y)σ−2

W y−2,

and the function κ(y) satisfies

lim
y→0

κ(y) = 1, sup
y∈R
|κ(y)| <∞.

These facts together with β > 1 imply

n−1
n∑
k=1

∫ 1

0
(1− (1− z)k)2z−2κn(θ; k, z)φ(1− z) dz →

∫ 1

0
z−2φ(1− z) dz

and hence Jn2 → −(1/2)θ2σ2
Φ, with

σ2
Φ := 2σ2

W

∫ 1

0
z−2φ(1− z) dz = 2σ2

WE(1− a)−2. (5.50)

The proof of Jn1 → 0 follows similarly (see Chapter 4 for details). This proves
(5.33).
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Let us prove the tightness part in (iv). It suffices to show the bound

ES4
n ≤ Cn2. (5.51)

We have Sn = M(g), where M is the stochastic integral discussed in the proof of
(ii) above and

g ≡ g(s, a) =
n∑
t=1

at−s1(t ≥ s) ∈ L2(Z× (0, 1)).

Then
EM4(g) = cum4(M(g)) + 3(EM2(g))2,

where EM2(g) = ES2
n satisfies ES2

n ≤ Cn (the last fact follows by a similar
argument as above). Hence, (EM2(g))2 ≤ Cn2 in agreement with (5.51). It
remains to evaluate the 4th cumulant

cum4(Sn) = cum4(M(g)) = π4
∑
s∈Z

Eg4(s, a),

where π4 :=
∫
R x

4π( dx). Then cum4(Sn) = π4(Ln1 + Ln2), where

Ln1 :=
∑
s≤0

E
( n∑
t=1

at−s
)4
, Ln2 :=

n∑
s=1

E
( n∑
t=s

at−s
)4
.

We have

Ln2 ≤ n
n∑
k=1

E
( k∑
t=0

at
)3
≤ n

n∑
k=1

∫ 1

0
zβ−3ψ(1− z) dz ≤ Cn2,

since β > 2. Similarly,

Ln1 ≤ n2 ∑
s≤0

E
( n∑
t=1

at−s
)2
≤ n2

∫ 1

0

zβ−2ψ(1− z) dz
1− (1− z)2 ≤ Cn2.

This proves (5.51) and part (iv). Theorem 5.3.1 is proved. 2

5.4 Disaggregation

Following [62], let us define an estimator of φ, the density of the mixing dis-
tribution Φ. Its starting point is the equality (5.8), implying

σ−2
W (r(k)− r(k + 2)) =

∫ 1

0
xkφ(x) dx, k = 0, 1, . . . , (5.52)
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where r(k) = Cov(X(k),X(0)) and σ2
W = Var(W ) = r(0) − r(2). The l.h.s.

of (5.52), hence the integrals on the r.h.s. of (5.52), or moments of Φ, can be
estimated from the observed sample, leading to the problem of recovering the
density from its moments, as explained below.

For a given q > 0, consider a finite measure on (0, 1) having density w(q)(x) :=
(1 − x)q−1. Let L2(w(q)) be the space of functions h : (0, 1) → R which are
square integrable with respect to this measure. Denote by

{
J (q)
n , n = 0, 1, . . .

}
the orthonormal basis in L2(w(q)) consisting of normalized Jacobi polynomials:

J (q)
n (x) :=

n∑
j=0

g
(q)
n,jx

j, (5.53)

with coefficients

g
(q)
n,j := (−1)n−j

√
2n+ q

Γ(n+ q)
Γ(n+ 1)

Γ(n− j + 1)
Γ(q + n+ j)

Γ(j + 1)2 , (5.54)

0 ≤ j ≤ n. See ([1], p.774, formula 22.2.2). Thus,

∫ 1

0
J

(q)
j (x)J (q)

k (x)w(q)(x) dx =

 1 if j = k,

0 if j 6= k.
(5.55)

Any function h ∈ L2(w(q)) can be expanded in Jacobi’s polynomials:

h(x) =
∞∑
k=0

hkJ
(q)
k (x), (5.56)

with
hk =

∫ 1

0
h(x)J (q)

k (x)w(q)(x) dx =
k∑
j=0

g
(q)
k,j

∫ 1

0
h(x)xjw(q)(x) dx.

Below, we call (5.56) the q-Jacobi expansion of h.

Consider the function

ζ(x) := φ(x)
(1− x)q−1 , with

∫ 1

0
ζ(x)(1− x)q−1 dx =

∫ 1

0
φ(x) dx = 1. (5.57)

Under the condition ∫ 1

0

φ(x)2

(1− x)q−1 dx <∞, (5.58)

the function ζ in (5.57) belongs to L2(w(q)), and has a q−Jacobi expansion with
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coefficients

ζk =
k∑
j=0

g
(q)
k,j

∫ 1

0
φ(x)xj dx = 1

σ2
W

k∑
j=0

g
(q)
k,j (r(j)− r(j + 2)) , k = 0, 1, . . . ;

(5.59)
see (5.52). Equations (5.56), (5.59) lead to the following estimates of the function
ζ(x):

ζ̂n(x) :=
Kn∑
k=0

ζ̂n,kJ
(q)
k (x), ζ̃n(x) :=

Kn∑
k=0

ζ̃n,kJ
(q)
k (x), (5.60)

where Kn, n ∈ N∗ is a nondecreasing sequence tending to infinity at a rate which
is discussed below, and

ζ̂n,k := 1
σ̂2
W

k∑
j=0

g
(q)
k,j(r̂n(j)− r̂n(j + 2)), ζ̃n,k := 1

σ2
W

k∑
j=0

g
(q)
k,j(r̂n(j)− r̂n(j + 2))

(5.61)
are natural estimates of the ζk’s in (5.59) in the case when σ2

W is unknown or
known, respectively. Here and below,

X := 1
n

n∑
k=1

X(k), r̂n(j) := 1
n

n−j∑
i=1

(
X(i)− X

)(
X(i+ j)− X

)
, j = 0, 1, . . . , n

(5.62)
are the sample mean and the sample covariance, respectively, and the estimate of
σ2
W = r(0)− r(2) is defined as

σ̂2
W := r̂n(0)− r̂n(2).

The corresponding estimators of φ(x) is constructed following relation (5.57):

φ̂n(x) := ζ̂n(x)(1− x)q−1, φ̃n(x) := ζ̃n(x)(1− x)q−1. (5.63)

The above estimators were essentially constructed in [62] and [22]. The modi-
fications in (5.63) differ from the original ones in the above mentioned papers
by the choice of a more natural estimate (5.62) of the covariance function r(j),
which allows for non-centered observations and makes both estimators in (5.63)
location and scale invariant. Note also that the first estimator in (5.63) satisfies∫ 1

0 φ̂n(x) dx = 1, while the second one does not have this property and can be used
only if σ2

W is known.

Proposition 5.4.1. Let {X(t), t ∈ Z} be an aggregated process in (5.4) with finite
4th moment EX(0)4 < ∞ and M ∼ W ∼ ID(µ, σ, π). Assume that the mixing
density φ(x) satisfies conditions (5.13) and (5.58), with some q > 0. Let ζ̃n(x) be
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the estimator of ζ(x) as defined in (5.60), where Kn satisfy

Kn = [γ log n] with 0 < γ < (4 log(1 +
√

2))−1. (5.64)

Then ∫ 1

0
E(ζ̃n(x)− ζ(x))2(1− x)q−1 dx → 0. (5.65)

Proof. Denote vn the l.h.s. of (5.65). From the orthonormality property (5.55),
similarly as in ([62], (3.3)),

vn =
Kn∑
k=0

E(ζ̃n,k − ζk)2 +
∞∑

k=Kn+1
ζ2
k , (5.66)

where the second sum on the r.h.s. tends to 0. By the location invariance
mentioned above, w.l.g. we can assume below that EX(t) = 0. Let r̂◦n(j) :=
1
n

∑n−j
i=1 X(i)X(i+ j), 0 ≤ j < n, then Er̂◦n(j)− r(j) = (j/n)r(j) and

E
{
ζ̃n,k − ζk

}2
= σ−4

W E
{ k∑
j=0

g
(q)
k,j

(
r̂n(j)− r̂n(j + 2)− r(j) + r(j + 2)

)}2

= σ−4
W E

{ k∑
j=0

g
(q)
k,j

(
r̂◦n(j)− r̂◦n(j + 2)− r(j) + r(j + 2) + 2n−1X

2

− n−1X
[
X(n− j − 1) + X(n− j) + X(j + 1) + X(j + 2)

])}2

≤ Ck
(

max
0≤j≤k

|g(q)
k,j |
)2 k∑

j=0

(
j2

n2 + Var(r̂◦n(j)− r̂◦n(j + 2)) + C

n2

)
,(5.67)

where we used the trivial bound EX4
< C. The rest of the proof of Proposition

5.4.1 follows from (5.66), (5.67) and Lemmas 5.4.2 and 5.4.3 below. See ([62],
pp.2552-2553) for details. 2

Lemma 5.4.2 generalizes ([62], Lemma 4) for a non-Gaussian aggregated pro-
cess with finite 4th moment.

Lemma 5.4.2. Let {X(t), t ∈ Z} be an aggregated process in (5.4) with EX(0)4 <

∞, EX(0) = 0. There exists a constant C > 0 independent of n, k and such that

Var(r̂◦n(k)− r̂◦n(k + 2)) ≤ C

n
. (5.68)

Proof. Let D(k) := X(k)− X(k + 2). Similarly as in ([62], p.2560),

Var(r̂◦n(k)− r̂◦n(k + 2)) ≤ Cn−2
(

Var
( n−k−2∑

j=1
X(j)D(j + k)

)
+ 1

)
.
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Here,

Var
( n−k−2∑

j=1
X(j)D(j + k)

)
=

n−k−2∑
j,l=1

Cov
(
X(j)D(j + k),X(l)D(l + k)

)
,

where

Cov(X(j)D(j + k),X(l)D(l + k)) = Cum(X(j), D(j + k),X(l), D(l + k))

+ E[X(j)X(l)]E[D(j + k)D(l + k)]

+ E[X(j)D(k + l)]E[X(l)D(j + k)].

The two last terms in the above representation of the covariance are estimated in
[62]. Hence the lemma follows from

n−k−2∑
j,l=1

Cum(X(j), D(j + k),X(l), D(l + k)) ≤ Cn. (5.69)

We have for k1, k2 ≥ 0, l ≥ j,

Cum(X(j),X(j + k1),X(l),X(l + k2)) = π4E
[∑
s≤j

aj−saj−s+k1al−sal−s+k2

]

= π4E
[
ak1+k2+2(l−j)

1− a4

]

and hence

cj,l,k := Cum(X(j), D(j + k),X(l), D(l + k)) = π4E
[
a2k+2(l−j)(1− a2)

1 + a2

]
,

where
π4 :=

∫
R
x4π( dx).

Then

n−k−2∑
j,l=1

|cj,l,k| ≤ C
∑

1≤j≤l≤n
E
[(1− a2)

1 + a2 a2(l−j)
]
≤ C

∑
1≤j≤n

E
[ 1
1 + a2

]
≤ Cn,

proving (5.69) and the lemma, too. 2

Lemma 5.4.3. Consider the coefficients g(q)
n,j (5.54) of the normalized Jacobi poly-

nomial J (q)
n in (5.53). There exists a constant Cq > 0 such that for all sufficiently

large n,

G(q)
n := max

0≤j≤n
|g(q)
n,j| ≤ Cqn

13/2enκ with κ := 2 log(1 +
√

2).
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Proof is similar to ([62], proof of Lemma 5). We have
∣∣∣∣∣∣
g

(q)
n,n−(m+1)

g
(q)
n,n−m

∣∣∣∣∣∣ = R(m), where R(z) := (n− z)2

(z + 1)(q + 2n− z − 1) . (5.70)

The roots z−, z+ of |R(z)| = 1, or (n− z)2− (z+ 1)(q+ 2n− z− 1) = 0, are equal

z± = n+ q − 2
4 ± n

√
2

2

√
1 + p

n
+ q2 + 4q − 4

8n2 .

A straightforward verification shows that for any q > 0 and all sufficiently large
n the following bounds are true:

n

(
1−
√

2
2

)
− (
√

2− 1)p
4 − 1 ≤ z− ≤ n

(
1−
√

2
2

)
− (
√

2− 1)p
4 =: z∗. (5.71)

Since z− is the only root satisfying 0 ≤ z− ≤ n and

|R(z)| ≥ 1 for z ≤ z−; |R(z)| ≤ 1 for z− ≤ z ≤ n, (5.72)

(5.71)–(5.72) imply that

G(q)
n = max

0≤m≤n
|g(q)
n,n−m| = max(|g(q)

n,n−m∗|, |g
(q)
n,n−(m∗+1)|),

where m∗ is the integer satisfying m∗ ≤ z− ≤ m∗+ 1. Hence the statement of the
lemma follows from Stirling’s formula similarly to [62]. Lemma 5.4.3 is proved. 2

The main result of this Section is the following theorem.

Theorem 5.4.4. Let {X(t), t ∈ Z}, φ(x) and Kn satisfy the conditions of Propo-
sition 5.4.1, and φ̂n(x), φ̃n(x) be the estimators of φ(x) as defined in (5.63). Then

∫ 1

0

(φ̂n(x)− φ(x))2

(1− x)q−1 dx →p 0 and
∫ 1

0

E(φ̃n(x)− φ(x))2

(1− x)q−1 dx → 0.

(5.73)

Proof. The second relation in (5.73) is immediate from (5.63) and (5.65). Next,

φ̂n(x)− φ(x) = σ2
W

σ̂2
W

(
φ̃n(x)− φ(x)

)
+ φ(x)

(σ2
W

σ̂2
W

− 1
)
,

where

σ̂2
W = r̂n(0)− r̂n(2) = (g(q)

0,0)−1σ2
W ζ̃n,0 = σ2

W

∫ 1

0
ζ̃n(x)(1− x)q−1 dx,
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see (5.55), (5.56), (5.60), (5.61). Hence the first relation in (5.73) follows from the
second one and the fact that σ̂2

W − σ2
W →p 0. We have

E(σ̂2
W − σ2

W )2 = σ4
WE

( ∫ 1

0
(ζ̃n(x)− ζ(x))(1− x)q−1 dx

)2

≤ σ4
WE

( ∫ 1

0
(ζ̃n(x)− ζ(x))2(1− x)q−1 dx

∫ 1

0
(1− x)q−1 dx

)
= σ4

W

q

∫ 1

0
E(ζ̃n(x)− ζ(x))2(1− x)q−1 dx→ 0, as n→∞,

see (5.65). Theorem 5.4.4 is proved. 2

Remark 5.4.5. The optimal choice of q (minimizing the integrated MISE in
(5.73)) is not clear. If φ satisfies (5.27) then (5.58) is satisfied with any 0 < q <

2 + 2β. Simulations in [62] and [22] show the “optimal” choice of q might be close
to β which is generally unknown.

Remark 5.4.6. An interesting open question is asymptotic normality of the mix-
ing density estimators in (5.63) for non-Gaussian process {X(t)} (5.4), extending
Theorem 2.1 in [22]. The proof of the last result relies on a central limit theorem
for quadratic forms of moving-average processes due to [15]. Generalizing this
theorem to mixed ID moving averages is an open problem at this moment.
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6
Aggregation of autoregressive
random-fields and anisotropic
long memory

Abstract. We introduce the notion of anisotropic long memory for random fields
on Z2 whose partial sums on incommensurate rectangles with sides growing at
different rates O(n) and O(nH1/H2), H1 6= H2 tend to an operator scaling random
field on R2 with two scaling indices H1, H2. The random fields with such behavior
are obtained by aggregating independent copies of a random-coefficient nearest-
neighbor autoregressive random fields on Z2 with i.i.d. innovations belonging to
the domain of attraction of an α−stable law, 0 < α ≤ 2, with a scalar random
coefficient A (the spectral radius of the corresponding autoregressive operator)
having a regularly varying probability density near the ‘unit root’ A = 1. The
proofs are based on a study of scaling limits of the corresponding lattice Green
functions.

6.1 Introduction

Following Biermé et al. [16], a scalar random field {V (x), x ∈ Rd} is called
operator scaling random field (OSRF) if there exist a H > 0 and a d × d real
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matrix E whose all eigenvalues have positive real parts, such that for any λ > 0

{V (λEx)} fdd= {λHV (x)}. (6.1)

(See the end of this section for all unexplained notation.) In the case when E = I

is the unit matrix, (6.1) agrees with the definition of H−self-similar random field
(SSRF), the latter referred to as self-similar process when d = 1. OSRFs may ex-
hibit strong anisotropicity and play an important role in various physical theories,
see [16] and the references therein. Several classes of OSRFs were constructed and
discussed in [16], [27].

It is well-known that the class of self-similar processes is very large, SSRFs
and OSFRs being even more numerous. According to a popular view, the ‘value’
of a concrete self-similar process depends on its ‘domain of attraction’. In the
case d = 1, the domain of attraction of a self-similar stationary increment (sssi)
process {V (τ), τ ≥ 0} is usually defined as the class of all stationary processes
{Y (t), t ∈ Z+} whose normalized partial sums tend to {V (τ), τ ≥ 0}, viz.,

B−1
n

[nτ ]∑
t=1

Y (t) →fdd V (τ), τ ∈ R+. (6.2)

The classical Lamperti’s theorem [56] says that in the case of (6.2), the normal-
izing constants Bn necessarily grow as nH (modulus a slowly varying factor) and
the limit random process in (6.2) is H−sssi. The limit process {V (τ), τ ≥ 0} in
(6.2) characterizes large-scale and dependence properties of {Y (t), t ∈ Z}, leading
to the important concept of distributional short/long memory (Cox [28]). There
exists a large probabilistic literature devoted to studying the partial sums limits
of various classes of strongly and weakly dependent processes and random fields.
See, e.g., the monographs [12], [33], [38] and the references therein. In particu-
lar, several works ([30], [31], [66], [98], [32]) discussed the partial sums limits of
(stationary) random fields indexed by t ∈ Zd:

B−1
n

∑
t∈K[nx]

Y (t) →fdd V (x), x = (x1, . . . , xd) ∈ Rd
+, (6.3)

where K[nx] := {t = (t1, . . . , td) ∈ Zd : 1 ≤ ti ≤ nxi} is a sequence of rectangles
whose all sides increase as O(n). Related results for Gaussian or linear (shot-noise)
and their subordinated random fields, with a particular emphasis on large-time
behavior of statistical solutions of partial differential equations, were obtained
in [2], [3], [4], [66], [68]. Most of the above mentioned studies deal with ‘nearly
isotropic’ models of random fields characterized by a single memory parameter H
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and a limiting SSRF {V (x)} in (6.3).

In this Chapter we study anisotropic distributional long memory, by exhibit-
ing a natural class of models whose partial sums tend to OSRFs. Related no-
tion of anisotropic long memory in spectral domain and its implications is dis-
cussed in [61]. The present study is limited to the case d = 2 and random
fields with the horizontal anisotropicity axis and a diagonal matrix E. Note
that for d = 2 and E = diag(1, γ), 0 < γ 6= 1, relation (6.1) writes as
{V (λx, λγy)} fdd= {λHV (x, y)}, (x, y) ∈ R2, or

{λV (x, y)} fdd= {V (λ1/H1x, λ1/H2y)}, ∀λ > 0, (6.4)

where H1 := H, H2 := H/γ 6= H1. The OSRFs (6.4) discussed in this Chapter are
obtained by taking the partial sums limits

B−1
n

∑
(t,s)∈K

[nx,nH1/H2y]

Y (t, s) →fdd V (x, y), (x, y) ∈ R2
+ (6.5)

on incommensurate rectangles K[nx,nH1/H2y] := {(t, s) ∈ Z2 : 1 ≤ t ≤ nx, 1 ≤ s ≤
nH1/H2y} with sides growing at different rates O(n) and O(nH1/H2). The conver-
gence in (6.5) is established for a natural class of aggregated random-coefficient
autoregressive random fields, see (6.6)-(6.9) below, with finite and infinite vari-
ance.

Consider a nearest-neighbor autoregressive random field {X(t, s), (t, s) ∈ Z2}
satisfying the difference equation

X(t, s) =
∑

|u|+|v|=1
a(u, v)X(t+ u, s+ v) + ε(t, s), (t, s) ∈ Z2, (6.6)

where {ε(t, s), (t, s) ∈ Z2} are i.i.d. r.v.’s whose generic distribution ε belongs to
the domain of (normal) attraction of an α−stable law, 0 < α ≤ 2, and a(t, s) ≥ 0,
|t| + |s| = 1, are random coefficients, independent of {ε(t, s), (t, s) ∈ Z2} and
satisfying the following condition for the existence of a stationary solution of
(6.6):

A :=
∑

|t|+|s|=1
a(t, s) < 1, a.s. (6.7)

(Note, that this condition is sufficient but not necessary, see [80].) The stationary
solution of (6.6) is given by the convergent series

X(t, s) =
∑

(u,v)∈Z2

g(t− u, s− v, a)ε(u, v), (t, s) ∈ Z2, (6.8)
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where a = (a(t, s), |t|+ |s| = 1), and g(t, s, a), (t, s) ∈ Z2, is the (random) lattice
Green function solving the equation

g(t, s, a)−
∑

|u|+|v|=1
a(u, v)g(t+ u, s+ v, a) = δ(t, s),

where δ(t, s) is the delta function (see Section 6.2 for precise statement). Let
{Xi(t, s), (t, s) ∈ Z2}, i = 1, 2, . . . , be independent copies of (6.8). The aggregated
field {X(t, s), (t, s) ∈ Z2} is defined as the limit:

N−1/α
N∑
i=1

Xi(t, s) →fdd X(t, s), (t, s) ∈ Z2. (6.9)

Let Φ denote the distribution of the random vector a = (a(t, s), |t|+|s| = 1) taking
values in A := {a(t, s) ∈ [0, 1), ∑|t|+|s|=1 a(t, s) < 1} ⊂ R4 and called below the
mixing distribution. Under mild additional conditions, the limit in (6.9) exists
and is written as

X(t, s) =
∑

(u,v)∈Z2

∫
A
g(t− u, s− v, a)Mu,v( da), (t, s) ∈ Z2. (6.10)

In (6.10), {Mu,v( da), (u, v) ∈ Z2} are i.i.d. copies of an α−stable random measure
M on A with control measure Φ, see (6.37). The random field {X(t, s), (t, s) ∈ Z2}
in (6.10) is α−stable and a particular case of mixed stable moving-average fields
introduced in [100]. In the case α = 2, or a Gaussian limit in (6.10), the covariance
function and the spectral density of this random field are given by

r(t, s) = σ2∑
(u,v)∈Z2 E

[
g(u, v, a)g(t+ u, s+ v, a)

]
, (t, s) ∈ Z2, (6.11)

and
f(x, y) = σ2

4π2 E|ĝ(x, y, a)|2, (x, y) ∈ [−π, π]2, (6.12)

respectively, where ĝ(x, y, a) =
(
1−∑|t|+|s|=1 a(t, s)e i(xt+ys)

)−1
is the Fourier trans-

form of g(t, s, a) and σ2 := Eε2.

It is not surprising that large-scale and long memory properties of the aggre-
gated field {X(t, s), (t, s) ∈ Z2} strongly depend on the behavior of Φ near the
‘unit root’ A = 1. We assume in Sections 6.4 and 6.5 that A ∈ [0, 1) is random
and has a regularly varying probability density φ at a = 1:

φ(a) ∼ φ1(1− a)β, a ↑ 1, ∃φ1 > 0, 0 < β < α− 1, 1 < α ≤ 2. (6.13)

The case 0 < α < 1 apparently cannot lead to long-range dependence (see Chap-
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ters 3, 4 and papers [85], [86]). The long memory properties of the limit aggregated
random field {X(t, s), (t, s) ∈ Z2} strongly depend also on the model, which de-
scribes the behavior of individual fields. We investigate long memory properties
of the limit aggregated field in two special cases of individual fields:

X(t, s) = A

3
(
X(t− 1, s) +X(t, s+ 1) +X(t, s− 1)

)
+ ε(t, s), (6.14)

X(t, s) = A

4
(
X(t− 1, s) +X(t+ 1, s) +X(t, s+ 1) +X(t, s− 1)

)
+ ε(t, s). (6.15)

In the sequel, we refer to (6.14) and (6.15) as 3N and 4N models, N standing for
‘Neighbor’. Stationary solution of the above equations in these two cases is given
by (6.8), the Green function being written as

g(t, s, a) =
∞∑
k=0

Akpk(t, s), (t, s) ∈ Z2, a ∈ A, (6.16)

where pk(t, s) = P(Wk = (t, s)|W0 = (0, 0)) is the k−step probability of the
nearest-neighbor random walk {Wk, k = 0, 1, . . .} on the lattice Z2 with one-step
transition probabilities shown in Figure 6.1 (b), (c).

1/2

1/2

à̀̀̀̀̀à̀̀̀̀̀à̀̀̀̀̀
à̀̀̀̀̀à̀̀̀̀̀
à̀̀̀̀̀à̀̀̀̀̀à̀̀̀̀̀

à̀̀̀̀̀ -6

(a) 2N

1/3

1/3

1/3

à̀̀̀̀̀à̀̀̀̀̀à̀̀̀̀̀
à̀̀̀̀̀à̀̀̀̀̀
à̀̀̀̀̀à̀̀̀̀̀à̀̀̀̀̀

à̀̀̀̀̀ -6
?

(b) 3N

1/4

1/4

1/4

1/4

à̀̀̀̀̀à̀̀̀̀̀à̀̀̀̀̀
à̀̀̀̀̀à̀̀̀̀̀
à̀̀̀̀̀à̀̀̀̀̀à̀̀̀̀̀

à̀̀̀̀̀ -6
?

�

(c) 4N

Figure 6.1: One-step transition probabilities

Relation (6.12) implies (see also Remark 6.3.4 below) that for these two mod-
els (3N and 4N), α = 2, and a mixing density as in (6.13), the aggregated spectral
density f(x, y) in (6.12) is unbounded for all 0 < β < 1, meaning that the cor-
responding Gaussian random field in (6.10) has long memory. [61] obtained the
asymptotics of f(x, y), as (x, y)→ (0, 0), in an arbitrary way and showed that the
3N model satisfies spectral anisotropic long memory property (a spectral analog
of the anisotropic distributional long memory property of Definition 6.2.2, page
119), in contrast to the 4N model having isotropic long memory spectrum ([60],
[61]). The above mentioned works use the spectral approach which is applicable
in the case α = 2 only. Asymptotics of spectral density and covariance functions
for some long-range dependent random fields was also studied in [67].
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In this Chapter, we study also the asymptotics of the lattice Green function
in (6.16) for models 3N and 4N, using classical probabilistic tools (the Moivre-
Laplace theorem and the Hoeffding inequality for tails of binomial distribution,
see [35], [36], [46]). In particular, Lemmas 6.4.2 and 6.5.1 obtain the following
point-wise convergences: as λ→∞,

– for t > 0, s ∈ R, z > 0,

√
λg3

(
[λt], [

√
λs], 1− z

λ

)
→ h3(t, s, z), (6.17)

– for (t, s) ∈ R2 \ {(0, 0)}, z > 0,

g4
(
[λt], [λs], 1− z

λ2

)
→ h4(t, s, z), (6.18)

respectively, together with dominating bounds of the left-hand sides of (6.17),
(6.18) (see (6.49), page 127, and (6.75), page 142). Here, g3 and g4 denote the
Green functions of the 3N and 4N models, respectively, and the limit functions h3

and h4 in (6.17)-(6.18) are given by

h3(t, s, z) := 3
2
√
πt

e−3zt− s
2

4t , h4(t, s, z) := 2
π
K0
(
2
√
z(t2 + s2)

)
, (6.19)

where K0 is the modified Bessel function of second kind. Note that h3 in (6.19)
is the Green function of one-dimensional heat equation (modulus constant coeffi-
cients), while h4 is the Green function of the Helmholtz equation in R2. Kernels h3

and h4 appear in the stochastic integral representation of scaling limits of models
(6.14)-(6.15).

Let us summarize the remaining contents of the Chapter. Section 6.2 intro-
duces the notions of anisotropic/isotropic distributional long memory, in terms
of scaling behavior of partial sums limits (6.3), (6.5). An important feature of
Definitions 6.2.2 and 6.2.3 is the requirement of dependence of increments of
the limit random field in arbitrary direction. This requirement is analogous to
the dependence of increments requirement in the definition of distributional long
memory for processes indexed by t ∈ Z, and helps to separate between isotropic
and anisotropic scaling behaviors. See also Proposition 6.4.6.

Section 6.3 discusses the existence of stationary solution in Lp, 0 < p ≤ 2, of
the nearest-neighbor random-coefficient equation (6.6), and the limit aggregated
field in (6.9) as a mixed α−stable moving average field of (6.10). Sections 6.4
and 6.5 are devoted to the study of scaling limits of the aggregated 3N and 4N
models, respectively. The convergence in (6.5) with Bn = nH1 , H1 :=

1
2 +α−β
α

,
H2 := 2H1 and the anisotropic long memory property are established in Theo-
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rem 6.4.3 for the aggregated 3N model {X(t, s) ≡ X3(t, s)} of (6.10). The limit
random field {V3(x, y), (x, y) ∈ R2

+} is an α−stable OSRF and satisfies (6.1). It is
represented in (6.46) as a stochastic integral with respect to an α−stable random
measure with integrand involving the kernel h3 in (6.19). For the same random
field {X3(t, s), (t, s) ∈ Z2}, Theorem 6.4.4 obtains a ‘commensurate’ scaling limit
of (6.3) towards a different random field {V3?(x, y), (x, y) ∈ R2

+} in (6.60), which
is self-similar with H∗ := 1+α−β

α
and has independent increments in the vertical

direction (see Definition 6.2.1). In the finite variance case α = 2, Proposition 6.4.7
obtains the asymptotic decay of the covariance

r3(t, s) = E[X3(0, 0)X3(t, s)]

as t → ∞ and s = O(
√
t) increase ‘parabolically’, complementing the result in

[61] on anisotropic asymptotics of the spectral density.

Section 6.5 discusses the lattice isotropic aggregated 4N model
{X4(t, s), (t, s) ∈ Z2}. We show that this field satisfies the isotropic dis-
tributional long memory property of Definition 6.2.3 and its scaling limit
{V4(x, y), (x, y) ∈ R2

+} is an α−stable SSRF with exponent H = 2(α−β)
α

, see
Theorem 6.5.2 and Proposition 6.5.3. The isotropic covariance long memory
property for {X4(t, s), (t, s) ∈ Z2} and α = 2 is proved in Proposition 6.5.4. In
the Gaussian case α = 2, Theorem 6.5.2 and Proposition 6.5.4 agree with [60].
Section 6.6 (Appendix) contains the proofs of the technical Lemmas 6.4.2 and
6.5.1.

Notation. For λ > 0 and a d × d matrix E, λE := eE log λ, where eA =∑∞
k=0A

k/k! is the matrix exponential. E = diag(γ1, . . . , γd) denotes the diago-
nal d×d matrix with entries γ1, . . . , γd on the diagonal. Figure 6.2 shows a simple
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1
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Figure 6.2: Linear scaling x 7→ λEx, where E = diag(1, 1/2)

scaling example when E =
 1 0

0 1/2

. Blue lines show the transformation of
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black one for different values of λ.
For integers t, s, t mod 2= s and t

mod 2
6= s means that t + s is even and odd,

respectively. All equalities and inequalities between random variables are assumed
to hold almost surely.

6.2 Isotropic and anisotropic long memory of
random fields in Z2

Let ` = {(x, y) ∈ R2 : ax + by = c} be a line in R2. A line `′ = {(x, y) ∈ R2 :
a′x+b′y = c′} is said perpendicular to ` (denoted `′⊥`) if aa′+bb′ = 0. A rectangle
is a set K(u,v);(x,y) := {(s, t) ∈ R2

+ : u < s ≤ x, v < t ≤ y}; Kx,y := K(0,0);(x,y).
We say that two rectangles K = K(u,v);(x,y) and K ′ = K(u′,v′);(x′,y′) are separated
by line `′ if they lie on different sides of `′, in which case K and K ′ are necessarily
disjoint: K ∩K ′ = ∅ (see Fig. 6.3 below).

Let {V (x, y)} = {V (x, y), (x, y) ∈ R2
+} be a random field and K =

K(u,v);(x,y) ⊂ R2
+ be a rectangle. By increment of {V (x, y)} on rectangle K we

mean the difference

V (K) := V (x, y)− V (u, y)− V (x, v) + V (u, v).

Definition 6.2.1. Let {V (x, y), (x, y) ∈ R2
+} be a random field with V (x, 0) =

V (0, y) ≡ 0, x, y ≥ 0, and ` ⊂ R2, be a given line passing through the origin. We
say that {V (x, y)} has independent increments in direction ` if for any orthogonal
line `′⊥` and any two rectangles K,K ′ ⊂ R2

+ separated by `′, increments V (K)
and V (K ′) are independent. Else, we say that {V (x, y)} has dependent increments
in direction `.

Figure 6.3: Independent increments
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Definition 6.2.2. We say that a stationary random field {Y (t, s), (t, s) ∈ Z2} has
anisotropic distributional long memory with parameters H1, H2 > 0, H1 6= H2 if

n−H1
[nx]∑
t=1

[nH1/H2y]∑
s=1

Y (t, s) →fdd V (x, y), (x, y) ∈ R2
+, (6.20)

where {V (x, y)} is a random field having dependent increments in arbitrary direc-
tion.

Definition 6.2.3. We say that a stationary random field {Y (t, s), (t, s) ∈ Z2} has
isotropic distributional long memory with parameter H > 0 if

n−H
[nx]∑
t=1

[ny]∑
s=1

Y (t, s) →fdd V (x, y), (x, y) ∈ R2
+, (6.21)

where {V (x, y)} is a random field having dependent increments in arbitrary direc-
tion.

Proposition 6.2.4. (i) Let {Y (t, s), (t, s) ∈ Z2} has anisotropic distributional
long memory with parameters H1 6= H2. Then the limit random field {V (x, y)} in
(6.20) satisfies the self-similarity property (6.4). In particular, {V (x, y)} is OSRF
corresponding to H := H1, E := diag(1, H1/H2).

(ii) Let {Y (t, s), (t, s) ∈ Z2} has isotropic distributional long memory with param-
eter H. Then the limit random field {V (x, y)} in (6.21) satisfies the self-similarity
property (6.4) with H1 = H2 := H, i.e., {V (x, y)} is SSRF with parameter H.

Proof. Fix λ > 0 and let m := [nλ1/H1 ]. We have

V (λ1/H1x, λ1/H2y) = fdd-lim 1
nH1

∑
0<t≤xλ1/H1n, 0<s≤yλ1/H2nH1/H2

Y (t, s)

= fdd-lim λ

mH1

∑
0<t≤xm, 0<s≤ymH1/H2

Y (t, s)

fdd= λV (x, y).

Proposition 6.2.4 is proved. 2

6.3 The existence of the limit aggregated ran-
dom field

We first discuss the solvability of the nearest-neighbor random-coefficient au-
toregressive equation (6.6) and the convergence of the series (6.8). The Green
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function of (6.6) is written as

g(t, s, a) =
∞∑
k=0

a? k(t, s), (6.22)

where a? k(t, s) is the k−fold convolution of the function a(t, s), (t, s) ∈ Z2,
a(t, s) := 0, |t|+ |s| 6= 1, defined recursively by

a? 0(t, s) = δ(t, s) :=

1, (t, s) = (0, 0),

0, (t, s) 6= (0, 0),

a? k(t, s) =
∑

(u,v)∈Z2

a? (k−1)(u, v)a(t− u, s− v), k ≥ 1.

Note that (6.22) can be rewritten as (6.16), where

pk(t, s) = P(Wk = (t, s)|W0 = (0, 0))

is the k−step probability of the nearest-neighbor random walk {Wk, k = 0, 1, . . .}
on Z2 with one-step transition probabilities

p(t, s) ≡ p(t, s, a) = p1(t, s) :=


a(t,s)
A
, (t, s) ∈ Z2, |t|+ |s| = 1

0, (t, s) ∈ Z2, |t|+ |s| 6= 1.
(6.23)

Generally, the pk(t, s)’s depend also on a = (a(t, s), |t| + |s| = 1) ∈ A but this
dependence is suppressed for brevity. Write ε for generic ε(t, s), (t, s) ∈ Z2. Let

q1 := p(0, 1) + p(0,−1) = 1− p(1, 0)− p(−1, 0) =: 1− q2, q := min(q1, q2).
(6.24)

Note qi ∈ [0, 1] and q1 = 0 (respectively, q2 = 0) means that the random walk
{Wk} is concentrated on the horizontal (respectively, vertical) axis of the lattice
Z2.

Proposition 6.3.1. (i) Assume there exists 0 < p ≤ 2 such that

E|ε|p <∞ and Eε = 0 for 1 ≤ p ≤ 2, (6.25)

and condition (6.7). Then there exists a stationary solution of random-coefficient
equation (6.6) given by (6.8), where the series converges conditionally a.s. and in
Lp for every a ∈ A.
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(ii) In addition to (6.25), assume that q > 0 a.s. and


E
[ 1
q2(p−1)(1−A)

]
< ∞, if 1 < p ≤ 2,

E
[ 1

(1−A)3−2p

]
< ∞, if 0 < p ≤ 1.

(6.26)

Then the series in (6.8) converges unconditionally in Lp.

Proof. (i) Let us prove the convergence of (6.8). We shall use the following
inequality. Let 0 < p ≤ 2, and let ξ1, ξ2, . . . be random variables with E|ξi|p <∞.
For 1 ≤ p ≤ 2, assume in addition that the ξi’s are independent and have zero
mean Eξi = 0. Then

E
∣∣∣∣∑
i

ξi

∣∣∣∣p ≤ 2
∑
i

E|ξi|p. (6.27)

Accordingly,

E
[
|X(t, s)|p

∣∣∣a] ≤ 2E|ε|p
∑

(u,v)∈Z2

|g(u, v, a)|p. (6.28)

By (6.16),

0 ≤ g(t, s, a) ≤
∞∑

k=|t|+|s|
Akpk(t, s) ≤

A(|t|+|s|)

1− A (6.29)

From above we obtain

E
[
|X(t, s)|p

∣∣∣a] ≤ C
∑

(u,v)∈Z2

Ap(|u|+|v|) ≤ C
∞∑
k=0

Apk(4k + 1) < ∞, (6.30)

proving the conditional convergence in Lp of the series in (6.8).
Let prove part (ii). According to the bound in (6.28), it suffices to prove that

E
∑

(t,s)∈Z2

|g(t, s, a)|p < ∞. (6.31)

Let
â(x, y) :=

∑
|t|+|s|=1

e− i(tx+sy)a(t, s), (x, y) ∈ Π2, Π := [−π, π].

Then
a(t, s) = 1

4π2

∫
Π2

e i(tx+sy)â(x, y) dx dy

and

g(t, s, a) = 1
(2π)2

∫
Π2

e i(tx+sy) dx dy
1− â(x, y) = 1

(2π)2

∫
Π2

e i(tx+sy) dx dy
1− Ap̂(x, y) ,
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where
p̂(x, y) := â(x, y)

A
=

∑
|t|+|s|=1

e− i(tx+sy)p(t, s)

satisfies |p̂(x, y)| ≤ ∑|t|+|s|=1 p(t, s) = 1. From Parseval’s identity,

∑
(t,s)∈Z2

|g(t, s, a)|2 = C
∫

Π2

dx dy
|1− Ap̂(x, y)|2 . (6.32)

We shall need the inequality

|1− Ap̂(x, y)| ≥ q

24
[
(1− A) + x2 + y2

]
, (x, y) ∈ Π2, (6.33)

which is proved below. We have

1− Ap̂(x, y) = (1− A) + A
∑

|t|+|s|=1
p(t, s)(1− e i(tx+sy))

= (1− A) + A
[
q2(1− cos(x)) + q1(1− cos(y))

]
− iA

∑
|t|+|s|=1

p(t, s) sin(tx+ sy)

and therefore

|1− Ap̂(x, y)| ≥ (1− A) + Aq
[
(1− cos(x)) + (1− cos(y))

]
,

proving (6.33) (we used the inequalities 1− cos(x) ≥ x2/8 and x2 ≤ 10, |x| ≤ π).
From (6.32) and (6.33) we obtain

∑
(t,s)∈Z2

|g(t, s, a)|2 ≤ C

q2

∫
Π2

dx dy(
(1− A) + x2 + y2

)2

≤ C

q2

∫ ∞
0

r dr(
(1− A) + r2

)2 = C

q2(1− A) . (6.34)

On the other hand, (6.16) immediately gives

∑
(t,s)∈Z2

|g(t, s, a)| =
∞∑
k=0

Ak
∑

(t,s)∈Z2

pk(t, s) =
∞∑
k=0

Ak = 1
1− A.

Therefore for any 1 < p < 2, by Hölder’s inequality,

∑
(t,s)∈Z2

|g(t, s, a)|p ≤
∑

(t,s)∈Z2

|g(t, s, a)|2(p−1)|g(t, s, a)|2−p1(|g(t, s, a)| > 1)

+
∑

(t,s)∈Z2

|g(t, s, a)|1(|g(t, s, a)| ≤ 1)
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≤
( ∑

(t,s)∈Z2

|g(t, s, a)|2
)p−1( ∑

(t,s)∈Z2

|g(t, s, a)|1(|g(t, s, a)| > 1)
)2−p

+
∑

(t,s)∈Z2

|g(t, s, a)|,

Therefore, using (6.34),

∑
(t,s)∈Z2

|g(t, s, a)|p ≤ C
( 1
q2(1− A)

)p−1( ∑
(t,s)∈Z2

|g(t, s, a)|
)2−p

+
∑

(t,s)∈Z2

|g(t, s, a)|

≤ C

q2(p−1)(1− A) + C

1− A ≤
C

q2(p−1)(1− A) ,

proving (6.31) and the unconditional convergence of (6.8) under the first condition
in (6.26).

Next, consider the case 0 < p ≤ 1. Using (6.16) and Hölder’s inequality, we
obtain

∑
(t,s)∈Z2

|g(t, s, a)|p ≤
∞∑
k=0

Akp
∑

|t|+|s|≤k
ppk(t, s)

≤
∞∑
k=0

Akp
{ ∑
|t|+|s|≤k

pk(t, s)
}p{ ∑

|t|+|s|≤k
1
}1−p

≤ C
∞∑
k=0

Akpk2(1−p) ≤ C

(1− Ap)3−2p ≤
C

(1− A)3−2p .

This completes the proof of part (ii) and the proposition. 2

In this chapter, we also use the notation ε ∈ D(α), 0 < α ≤ 2 (see Definition
3.2.1, page 42), which means that innovations belong to the domain of normal
attraction of an α-stable law.

Remark 6.3.2. Condition ε ∈ D(α) implies that the r.v. ε belongs to the domain
of normal attraction of an α−stable law; in other words,

N−1/α
N∑
i=1

εi →d Z, (6.35)

where Z is an α−stable r.v., see ([35], pp.574-581). The characteristic function of
the r.v. Z in (6.35) is given by

Ee iθZ = e−|θ|αω(θ), θ ∈ R,
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where

ω(θ) :=


Γ(2−α)

1−α

(
(c1 + c2) cos

(
πα
2

)
− i(c1 − c2)sign(θ) sin

(
πα
2

))
, α 6= 1, 2,

(c1 + c2)π2 , α = 1,
σ2

2 , α = 2.
(6.36)

Introduce independently scattered α−stable random measure M on Z2 × A

with characteristic functional

E exp
{

i
∑

(t,s)∈Z2

θt,sMt,s(As)
}

= exp
{
−

∑
(t,s)∈Z2

|θt,s|αω(θt,s)Φ(At,s)
}
, (6.37)

where θt,s ∈ R and At,s ⊂ A are arbitrary Borel sets.

Proposition 6.3.3. Let ε ∈ D(α), 0 < α ≤ 2. Assume that the mixing distribu-
tion satisfies condition (6.26) of Proposition 6.3.1 (ii) with some 0 < p ≤ 2 and
such that 

p > α, if 1 < α < 2,
p < α, if 0 < α < 1,
p = 2, if α = 2.

(6.38)

In the case α = 1 we assume that

E 1
(1− A)p < ∞ for some p > 1. (6.39)

Then the limit aggregated random field in (6.9) exists and has the stochastic inte-
gral representation of (6.10).

Proof. Let T ⊂ Z2 be a finite set, θt,s ∈ R, (t, s) ∈ T . It suffices to prove that
SN →d S, where S := ∑

(t,s)∈T θt,sX(t, s) is a α−stable r.v. with characteristic
function

Ee iwS = exp
{
− |w|α

∑
(u,v)∈Z2

E
[∣∣∣G(u, v, a)

∣∣∣αω(wG(u, v, a)
)]}

,

G(u, v, a) :=
∑

(t,s)∈T
θt,sg(t− u, s− v, a),

and SN = N−1/α∑N
i=1 Ui is a sum of i.i.d. r.v.’s with common distribution

U :=
∑

(t,s)∈T
θt,sX(t, s) =

∑
(u,v)∈Z2

G(u, v, a)ε(u, v).
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It suffices to prove that r.v. U belongs to the domain of attraction of r.v. S (in
the sense of (6.35)); in other words, that

EU2 = ES2 <∞ for α = 2, (6.40)

and, for 0 < α < 2,

lim
x→∞

xαP(U > x) =
∑

(u,v)∈Z2

E
[∣∣∣G(u, v, a)

∣∣∣α{c11(G > 0) + c21(G < 0)
}]
,(6.41)

lim
x→−∞

|x|αP(U ≤ x) =
∑

(u,v)∈Z2

E
[∣∣∣G(u, v, a)

∣∣∣α{c11(G < 0) + c21(G > 0)
}]
,

where, 1(G > 0) ≡ 1(G(u, v, a) > 0) and 1(G < 0) ≡ 1(G(u, v, a) < 0). Here,
(6.40) follows from definitions of U and S. To prove (6.41), we use ([48], Theo-
rem 3.1). Accordingly, it suffices to check that there exists ε > 0 such that

∑
(u,v)∈Z2

E
∣∣∣G(u, v, a)

∣∣∣α+ε
<∞ and

∑
s∈Z2

E
∣∣∣G(u, v, a)

∣∣∣α−ε <∞, for α ∈ (0, 2) \ {1}

(6.42)

E
( ∑

(u,v)∈Z2

∣∣∣G(u, v, a)
∣∣∣α−ε)α+ε

α−ε
<∞, for α = 1.

Since T ⊂ Z2 is a finite set, it suffices to show (6.42) with G(u, v, a) replaced by
g(u, v, a). Let 1 < α < 2 and p = α + ε > α in (6.38). Then

∑
(u,v)∈Z2

E
∣∣∣g(u, v, a)

∣∣∣α+ε
≤ CE[q−2(α+ε−1)(1− A)−1] <∞

follows from (6.35) and (6.38). Similarly, if 1 < α < 2 and 1 < p = α− ε ∈ (1, α),
then

∑
(u,v)∈Z2

E
∣∣∣g(u, v, a)

∣∣∣α−ε ≤ CE[q−2(α−ε−1)(1−A)−1] ≤ CE[q−2(α+ε−1)(1−A)−1] <∞,

thus proving (6.42) for 1 < α < 2. In the case 0 < α < 1, relations (6.42)
immediately follow from (6.35) and (6.38) with p = α ± ε ∈ (0, 1). Finally, for
α = 1, (6.42) follows from (6.35) and (6.39). 2

Remark 6.3.4. For the 3N and 4N models in (6.14) and (6.15), we have q = 1/3
and q = 1/2, respectively. Hence, for 1 < α ≤ 2, condition (6.38) of Proposi-
tion 6.3.3 for the existence of the aggregated random field {X(t, s), (t, s) ∈ Z2} in
(6.10) reduces to

E(1− A)−1 =
∫

[0,1)
(1− a)−1Φ( da) < ∞. (6.43)
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For regularly varying mixing density as in (6.13), condition (6.43) is equivalent
to β > 0. In the Gaussian case α = 2 the spectral density f of (6.9) is given in
(6.12). For the 3N and 4N models we have that

f(x, y) = σ2

(2π)2

∫
[0,1)

1
|1− ap̂(x, y)|2 Φ( da)

and hence f(x, y) is bounded at the origin if and only if

f(0, 0) = (σ/2π)2E(1− A)−2 < ∞. (6.44)

In particular, for Φ as in (6.13) and any 0 < β ≤ 1, the spectral density f of the
aggregated random field is unbounded.

6.4 Aggregation of the 3N model

In this section we prove the anisotropic long memory properties, in the sense
of Definition 6.2.2 (page 119), of the aggregated 3N model given by

X3(t, s) =
∑

(u,v)∈Z2

∫ 1

0
g3(t− u, s− v, a)Mu,v( da), (t, s) ∈ Z2, (6.45)

where {Mu,v( da), (u, v) ∈ Z2} are i.i.d. copies of α−stable random measureM on
[0, 1) with control measure Φ( da) = P(A ∈ da) and the characteristic function
Ee iθM(B) = e−|θ|αω(θ)Φ(B), B ⊂ [0, 1), see (6.36), (6.37); and where g3(t, s, a) is
the Green function of the random walk {Wk} on Z2 with one-step transition
probabilities shown in Figure 6.1 (b). For 1 < α ≤ 2, (6.45) is well-defined,
provided the mixing distribution satisfies (6.43).

Introduce a random field {V3(x, y), (x, y) ∈ R2
+} as a stochastic integral

V3(x, y) :=
∫
R2×R+

M( du, dv, dz)
∫ x

0

∫ y

0
h3(t− u, s− v, z) dt ds, (6.46)

whereM is an α−stable random measure on R2 × R+ with the control measure
dµ(u, v, z) := φ1 z

β du dv dz and characteristic function Ee iθM(B) = e−|θ|αω(θ)µ(B),

where B ⊂ R2 × R+ is a measurable set with µ(B) < ∞. As shown in the proof
of Theorem 6.4.3 below, the stochastic integral in (6.46) is well-defined. The
random field in (6.46) has α−stable finite-dimensional distributions and stationary
increments in the sense that for any (u, v) ∈ R2

+

{V3(x, y)} fdd= {V3(u+ x, v + y)− V3(u, v + y)− V3(u+ x, v) + V3(u, v)}. (6.47)
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Moreover, (6.46) is OSRF and satisfies (6.4), viz.,

{V3(λx,
√
λy)} fdd= {λHV3(x, y)}, (6.48)

with H given in (6.51). Property (6.48) is immediate from the scaling properties

h3(λu,
√
λv, λ−1z) = λ−1/2h3(u, v, z)

and
{M( dλu, d

√
λv, dλ−1z)} fdd= {λ

1
2−β
α M( du, dv, dz)},

the last property being a consequence of the scaling property

µ( dλu, d
√
λv, dλ−1z) = λ

1
2−βµ( du, dv, dz)

of the control measure µ.

Remark 6.4.1. The random field (6.46) is different from the class of α−stable
OSRFs defined in ([16], (3.1)) because the latter fields satisfy a different station-
ary increment property, see ([16], (3.5)). Moreover, (6.46) have a mixed moving
average representation in contrast to the moving average representation in ([16],
(3.1)).

The main result of this Section is Theorem 6.4.3. Its proof is based on the
asymptotics of the Green function g3 in Lemma 6.4.2, below. The proof of
Lemma 6.4.2 is given in Section 6.6, page 154.

Lemma 6.4.2. For any (t, s, z) ∈ (0,∞)×R× (0,∞) the point-wise convergence
in (6.17) holds. This convergence is uniform on any relatively compact set

{ε < t < 1/ε, ε < |s| < 1/ε, ε < z < 1/ε} ⊂ (0,∞)× R× (0,∞), ε > 0.

Moreover, there exist constants C, c > 0 such that for all sufficiently large λ and
any (t, s, z), t > 0, s ∈ R, 0 < z < λ the following inequality holds:

√
λg3

(
[λt], [

√
λs], 1− z

λ

)
< C

(
h̄3(t, s, z) +

√
λe−zt−c(λt)1/3−c(

√
λ|s|)1/2)

, (6.49)

where h̄3(t, s, z) := 1√
t
e−zt− s2

16t , (t, s, z) ∈ (0,∞)× R× (0,∞).

Theorem 6.4.3. Assume that the mixing density φ is bounded on [0, 1) and sat-
isfies (6.13), where

0 < β < α− 1, 1 < α ≤ 2. (6.50)
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Let {X3(t, s), (t, s) ∈ Z2} be the aggregated random field in (6.45). Then

n−H
[nx]∑
t=1

[
√
ny]∑

s=1
X3(t, s)→fdd V3(x, y), x, y > 0, H :=

1
2 + α− β

α
. (6.51)

Proof. Write Sn(x, y) for the l.h.s. of (6.51). We prove the convergence of one-
dimensional distributions in (6.51) at x = y = 1 only, since the general case of
(6.51) is completely analogous. We have

Ee iθV3(1,1) = exp
{
− |θ|α

∫
R2×R+

(G(u, v, z))αω
(
θG(u, v, z)

)
dµ(u, v, z)

}
,

Ee iθSn(1,1) = exp
{
− |θ|αn−Hα

∑
(u,v)∈Z2

E
[
Gαn (u, v, A)ω

(
θGn(u, v, A)

)]}
, θ ∈ R,

where

G(u, v, z) :=
∫ 1

0

∫ 1

0
h3(t− u, s− v, z) dt ds, (6.52)

Gn(u, v, a) :=
∑

1≤t≤n, 1≤s≤[
√
n]
g3(t− u, s− v, a).

Since ω(θ) in (6.36) depends on the sign of θ only and G ≥ 0, Gn ≥ 0, in the rest
of the proof we can assume ω(·) ≡ 1 without loss of generality, c.f. (Chapter 4,
proof of Theorem 4.3.1, page 68). Hence, it suffices to show

Jn := n−Hα
∑

(u,v)∈Z2

E(Gn(u, v, A))α →
∫
R2×R+

(G(u, v, z))α dµ =: J. (6.53)

Let us first check that J < ∞, i.e., that V3(1, 1) is well-defined as a stochastic
integral with respect toM. We have

J = C
∫
R2×R+

( ∫ 1

0

∫ 1

0

1√
(t− u)

e−(s−v)2/4(t−u)e−3z(t−u) 1(u < t) dt ds
)α
zβ du dv dz

= C(J1 + J2),

where, by Minkowski’s inequality,

128



AGGREGATION OF RANDOM FIELDS

J1 :=
∫ ∞

0
du
∫
R

dv
∫ ∞

0
zβ dz

( ∫ 1

0

∫ 1

0

1√
(t+ u)

e−(s−v)2/4(t+u)e−3z(t+u) dt ds
)α

≤
{ ∫ 1

0

∫ 1

0
dt ds

( ∫ ∞
0

du
∫
R

dv
∫ ∞

0
zβ dz 1

(t+ u)α/2 e−α(s−v)2/4(t+u)e−3αz(t+u)
)1/α}α

= C
{ ∫ 1

0
dt
( ∫ ∞

0
du
∫ ∞

0
zβ dz 1

(t+ u)α−1
2

e−3αz(t+u)
)1/α}α

= C
{ ∫ 1

0
dt
( ∫ ∞

0

du
(t+ u)α−1

2 +1+β

)1/α}α

= C
{ ∫ 1

0
dt
( 1
t
α−1

2 +β

)1/α}α
< ∞

since
α−1

2 +β
α

< 1 holds because of (6.50) and α < 3. Next,

J2 :=
∫ 1

0
dy
∫
R

dv
∫ ∞

0
zβ dz

{ ∫ 1

0
ds
∫ y

0

1√
x

e−(s−v)2/4xe−3zx dx
}α

=
∫ 1

0
dy
∫
|v|≤2

dv
∫ ∞

0
zβ dz

{
· · ·

}α
+
∫ 1

0
dy
∫
|v|>2

dv
∫ ∞

0
zβ dz

{
· · ·

}α
=: J21 + J22.

Here,

J21 ≤ C
∫ ∞

0
zβ dz

{ ∫ 1

0
e−3zx dx

}α
= C

∫ ∞
0

zβ−α
(
1− e−z

)α
dz < ∞

since α > 1 + β. Finally, since (s− v)2 ≥ v2/4 for |s| < 1, |v| > 2, so
∫ 1

0
e−(s−v)2/4x ds ≤ e−v2/16x ≤ C

x

v2 , |v| > 2, 0 < x < 1,

and

J22 ≤ C
∫
|v|>2
|v|−2α dv

∫ ∞
0

zβ dz
{ ∫ 1

0
x1/2 e−3zx dx

}α
≤ C

{ ∫ 1

0
x1/2 dx

( ∫ ∞
0

e−3αzxzβ dz
)1/α}α

= C
{ ∫ 1

0

x1/2 dx
x

1+β
α

}α
< ∞,

since −1
2 + 1+β

α
< 1. This proves J <∞, or G ∈ Lα(µ).

Let us prove the convergence in (6.53). For notational simplicity we can assume
φ(a) = (1− a)β, c.f. (Chapter 4, proof of Theorem 4.3.1, page 68). Then

Jn =
∫
R2×R+

(Gn(u, v, z))α dµ(u, v, z),
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where

Gn(u, v, z) :=
∫

(0,1]2

√
ng3

(
[nt]− [nu], [

√
ns]− [

√
nv], 1− z

n

)
1(0 < z < n) dt ds.

Let
Wε := {(u, v, z) ∈ R2 × R+ : |u|, |v| < 1/ε, ε < z < 1/ε}.

We claim that

lim
n→∞

sup
(u,v,z)∈Wε

|Gn(u, v, z)−G(u, v, z)| = 0, ∀ ε > 0. (6.54)

To show (6.54), for given ε1 > 0 split

Gn(u, v, z)−G(u, v, z) =
3∑
j=1

Γnj(u, v, z),

where, for 0 < z < n,

Γn1(u, v, z) :=
∫

(0,1]2∩D(ε1)

{√
ng3

(
[nt]− [nu], [

√
ns]− [

√
nv], 1− z

n

)
−

− h3(t− u, s− v, z)
}

dt ds,

Γn2(u, v, z) :=
∫

(0,1]2∩D(ε1)c

√
ng3

(
[nt]− [nu], [

√
ns]− [

√
nv], 1− z

n

)
dt ds,

Γn3(u, v, z) := −
∫

(0,1]2∩D(ε1)c
h3(t− u, s− v, z) dt ds,

and where the sets D(ε), D(ε)c (depending on u, v) are defined by

D(ε) := {(t, s) ∈ (0, 1]2 : t− u > ε, |s− v| > ε},

D(ε)c := (0, 1]2 \D(ε).

To show (6.54), it suffices to verify that for any ε > 0, δ > 0 there exists ε1 >
0, n1 ≥ 1 such that

lim
n→∞

sup
(u,v,z)∈Wε

Γn1(u, v, z) = 0, (6.55)

sup
(u,v,z)∈Wε

|Γni(u, v, z)| < δ, i = 2, 3, ∀n ≥ n1. (6.56)

Relation (6.55) follows from Lemma 6.4.2. Next,

|Γn3(u, v, z)| ≤ C
∫ ε1

0
t−1/2 dt+ C

∫ 1

ε1
t−1/2 dt

∫
|s|<ε1

ds = O(√ε1),
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implying (6.56) for i = 3 with ε1 = Cδ2. Finally, using (6.49) we obtain

|Γn2(u, v, z)| ≤ C
√
ε1 + C

√
n
∫ 1

0
e−c(nt)1/3 dt ≤ C

√
ε1 + C/

√
n < δ

provided √ε1 < δ/(2C), n > n1 = (2C/δ)2 hold. This proves (6.56) for i = 2 and
hence (6.54), too.

Let

G′n(u, v, z) :=
√
n1(0 < z < n)

∫
(0,1]2

e−z(t−u)−c(n(t−u))1/3−c(
√
n|s−v|)1/21(t > u) dt ds,

where c > 0 is the same as in (6.49). Let us show that

J ′n :=
∫
R2×R+

(G′n(u, v, z))α dµ = o(1). (6.57)

Split J ′n = ∑3
i=1 Ini, where

In1 :=
∫

(−∞,0]×R+×R+
(G′n)α dµ, In2 :=

∫
(0,1]×[−2,2]×R+

(G′n)α dµ,

In3 :=
∫

(0,1]×[−2,2]c×R+
(G′n)α dµ,

[−2, 2]c := R\[−2, 2]. Using the fact that
∫
R e−cn1/4|s−v|1/2 dv = C/

√
n and

Minkowski’s inequality,

In1 ≤ Cnα/2
{ ∫

(0,1]2
dt ds

( ∫
R+×R×R+

e−αz(t+u)−cα(n(t+u))1/3−cα(
√
n|s−v|)1/2

zβ du dv dz
)1/α}α

≤ Cn
α−1

2

{ ∫ 1

0
dt
( ∫ ∞

0
e−cα(n(t+u))1/3 du

(t+ u)1+β

)1/α}α
≤ Cn−(α+1

2 −β)I,

where α+1
2 − β > 0 and

I :=
{ ∫ ∞

0
dt
( ∫ ∞

0
e−cα(t+u)1/3(t+ u)−1−β du

)1/α}α
<∞.

Next,

In2 ≤ Cnα/2
∫ ∞

0
zβ dz

{ ∫
(0,4]2

e−zt−c(nt)1/3−c(
√
n|s|)1/2 dt ds

}α
≤ C

{ ∫ 4

0
e−c(nt)1/3 dt

( ∫ ∞
0

e−αztzβ dz
)1/α}α

≤ C
{ ∫ ∞

0
e−c(nt)1/3

t−
1+β
α dt

}α
≤ Cn−(α−1−β) = o(1).
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Finally, using e−c(
√
n|s−v|)1/2 ≤ e−(c/2)(

√
n|v|)1/2 for |v| ≥ 2, |s| ≤ 1, it easily follows

In3 = O(e−c′n1/4) = o(1), ∃ c′ > 0, thus completing the proof of (6.57).
With (6.54) and (6.57) in mind, write

|Jn − J | ≤
∫
Wε

|Gα
n −Gα| dµ+

∫
W c
ε

|Gn|α dµ+
∫
W c
ε

|G|α dµ (6.58)

≤
∫
Wε

|Gα
n −Gα| dµ+ C

∫
R2×R+

|G′n|α dµ+ C
∫
W c
ε

|Ḡ|α dµ+
∫
W c
ε

|G|α dµ,

where Ḡ(u, v, z) :=
∫ 1

0
∫ 1

0 h̄3(t − u, s − v, z) dt ds, W c
ε := R2 × R+ \ Wε. Since

G, Ḡ ∈ Lα(µ), the third and fourth terms on the r.h.s. of (6.58) can be made
arbitrary small by choosing ε > 0 small enough. Next, for a given ε > 0, the first
term on the r.h.s. of (6.58) vanishes in view of (6.54), and the second term tends
to zero, see (6.57). This proves (6.53), thus concluding the proof Theorem 6.4.3.
2

The next Theorem 6.4.4 shows that when partial sums of {X3(t, s), (t, s) ∈ Z2}
in (6.45) are taken on ‘commensurate’ rectangles (the number of summands in the
horizontal and the vertical directions grow at the same rate O(n)) the limit field
is different.

Theorem 6.4.4. Assume the conditions and notation of Theorem 6.4.3. Then

n−H∗
[nx]∑
t=1

[ny]∑
s=1

X3(t, s)→fdd V3?(x, y), x, y > 0, H∗ := 1 + α− β
α

(6.59)

where

V3?(x, y) :=
∫
R2×R+

M( du, dv, dz)1(0 < v ≤ y)
∫ x

0
h3?(t− u, z) dt, (6.60)

h3?(u, z) :=
∫
R
h3(u, v, z) dv = 12e−3uz1(u > 0), (6.61)

whereM is the same as in Theorem 6.4.3.

Proof. Similarly as in the case of Theorem 6.4.3, we prove one-dimensional con-
vergence in (6.59) at x = y = 1 only, and assume Φ( da) = (1 − a)β da. Corre-
spondingly, it suffices to show the limit lim Jn? = J?, where

Jn? :=
∫
R2×R+

(Gn?(u, v, z))α dµ(u, v, z), J? :=
∫
R2×R+

(G?(u, v, z))α dµ(u, v, z),

where

G?(u, v, z) := 1(0 < v < 1)
∫ 1

0
dt
∫
R

ds h3(t− u, s, z),
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Gn?(u, v, z) :=
∫ 1

0
dt

n∑
s=1

g3
(
[nt]− [nu], s− [nv], 1− z

n

)
1(0 < z < n),

=
∫ 1

0
dt
∫
R

ds
√
n g3

(
[nt]− [nu], [

√
ns], 1− z

n

)
× 1(0 < z < n, 1− [nv] ≤ [

√
ns] ≤ n− [nv]),

=:
∫ 1

0
dt
∫
R

ds fn(t, s, u, v, z).

Define
J ′n? :=

∫
R2×R+

(Gn?(u, v, z))α1(|v| ≤ 3) dµ,

J ′′n? :=
∫
R2×R+

(Gn?(u, v, z))α1(|v| > 3) dµ,

J ′n? + J ′′n? = Jn?.

Then lim Jn? = J? follows from lim J ′n? = J? and lim J ′′n? = 0.

Note that for any u ∈ R, u < t, v ∈ R\{0, 1}, s, z > 0, we have pointwise
convergence

1(1− [nv] ≤ [
√
ns] ≤ n− [nv]) → 1(0 < v < 1), as n→∞,

√
n g3

(
[nt]− [nu], [

√
ns], 1− z

n

)
1(0 < z < n) → h3(t− u, s, z), as n→∞,

and therefore

fn(t, s, u, v, z)→ h3(t− u, s, z)1(0 < v < 1), as n→∞. (6.62)

We claim that for any u ∈ R, v ∈ R\{0, 1}, z > 0,

Gn?(u, v, z)→ G?(u, v, z), as n→∞. (6.63)

To show (6.63), for given ε1 > 0 split

Gn?(u, v, z)−G?(u, v, z) =
3∑
j=1

Γ?nj(u, v, z),

where, for 0 < z < n,

Γ?n1(u, v, z) :=
∫ 1

0

∫
|s|>ε1

(
fn(t, s, u, v, z)− h3(t− u, s, z)1(0 < v < 1)

)
dt ds,

Γ?n2(u, v, z) :=
∫ 1

0

∫
|s|≤ε1

fn(t, s, u, v, z) dt ds,
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Γ?n3(u, v, z) := −
∫ 1

0

∫
|s|≤ε1

h3(t− u, s, z)1(0 < v < 1) dt ds,

To show (6.63), it suffices to verify that for any ε > 0, δ > 0 there exists ε1 >
0, n1 ≥ 1 such that

lim
n→∞

Γ?n1(u, v, z) = 0, (6.64)

|Γ?ni(u, v, z)| < δ, i = 2, 3, ∀n ≥ n1. (6.65)

Relation (6.65) follows from Lemma 6.4.2,

|Γ?n2(u, v, z)| ≤ Cuε1 + Cuε1
√
n
∫ 1

0
e−c(nt)1/3 dt

≤ Cuε1 + Cuε1/
√
n < δ

provided ε1 < δ/(2Cu). |Γ?n3(u, v, z)| ≤ Cuε1, implying (6.65) for i = 3 with ε1 =
δ/Cu. Relation (6.64) follows from (6.62) and the dominated convergence theorem.
For this we need to find the dominated integrable function for fn(t, s, u, v, z).
Using inequality from Lemma 6.4.2 and inequalities

e−x ≤ x−3/2, for x > 0, and
√
xe−x ≤ e−x/2, for x > 0,

we have for fixed u, t− u > 0, v, z:

|fn(t, s, u, v, z)| ≤ C
1√

[nt]−[nu]
n

e
− s2

16 [nt]−[nu]
n + C

√
ne−cn1/3(t−u)1/3−c|s|1/2

≤ C
1
|s|

e
− s2

24 [nt]−[nu]
n + C

√
n(n1/3(t− u)1/3)−3/2e−c|s|1/2

≤ 1
|s|

e−
s2

24(1+|u|) + C(t− u)−1/2e−c|s|1/2 =: f̄(t, s).

It is not difficult to see, that
∫ 1

0

∫
|s|>ε1

f̄(t, s) dt ds <∞.

Therefore pointwise convergence in (6.63) is proved. Using (6.49), we also get

Gn?(u, v, z) =
∫ 1

0
dt
∫
R

ds fn(t, s, u, v, z)

≤
∫ 1

0
dt
∫
R

ds
(
h̄3

( [nt]− [nu]
n

, s, z
)

+
√
ne−z

[nt]−[nu]
n

−c([nt]−[nu])1/3−c(
√
n|s|)1/2)

≤ C
∫ 1

0
dt e−z(t−u)1(u < t)
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The integral of the function on the right side of last inequality is finite. Indeed,

∫
R2×R+

( ∫ 1

0
dt e−z(t−u)

)α
1(u < t, |v| ≤ 3)zβ du dv dz ≤

≤ C
∫
R

du
∫ ∞

0
dz zβ

( ∫ 1

0
dt e−z(t−u)

)α
1(u < t) =: I1 + I2,

where

I1 ≤ C
∫ 1

0
du
∫ ∞

0
dz zβ

( ∫ 1

u
dt e−z(t−u)

)α
≤ C

∫ 1

0
du
∫ ∞

0
dz zβ−α

(
1− e−z(1−u)

)α
≤ C

∫ ∞
0

zβ−α
(

1− e−z
)α

dz ≤ C,

I2 ≤ C
∫ +∞

0
du
∫ ∞

0
dz zβ

( ∫ 1

0
dt e−z(t+u)

)α
≤ C

{ ∫ 1

0
dt
( ∫ +∞

0
du
∫ ∞

0
dz zβ e−αz(t+u)

)1/α}α
≤ C

{ ∫ 1

0
dt
( ∫ +∞

0
(u+ t)−1−β du

)1/α}α
≤ C

{ ∫ 1

0
t−β/α dt

}α
≤ C, since 1− β/α > 0.

From the last fact, the limit in (6.63) and the dominated convergence theorem
follows lim J ′n? = J?. Now we will show lim J ′′n? = 0. Again using inequality in
(6.49), we have J ′′n? ≤ I1,n + I2,n, where

I1,n :=
∫
R

du
∫
|v|>3

dv
∫ ∞

0
dz zβ

×
( ∫ 1

0
dt
∫
R

ds
√
ne−z

[nt]−[nu]
n

−c([nt]−[nu])1/3−c(
√
n|s|)1/2

)α
1n(t, u, z, s, v),

I2,n :=
∫
R

du
∫
|v|>3

dv
∫ ∞

0
dz zβ

( ∫ 1

0
dt
∫
R

dsh̄3

( [nt]− [nu]
n

, s, z
))α

1n(t, u, z, s, v),

here

1n(t, u, z, s, v) := 1([nt]− [nu] > 0, 0 < z < n, 1− [nv] ≤ [
√
ns] ≤ n− [nv]).

Note that

∫
R

ds e−c(
√
n|s|)1/21(1− [nv] ≤ [

√
ns] ≤ n− [nv], |v| > 3) ≤

≤ C
√
ne−c

√
n(min(|v|, |v−2|))1/21(|v| > 3).
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Therefore,

I1,n ≤ Cnα
∫
|v|>3

e−cα
√
n(min(|v|, |v−2|)1/2 dv

×
∫
R

du
∫ ∞

0
dzzβ

( ∫ 1

0
dt e−z(t−u)−c(t−u)1/3

)α
1(t− u > 0, 0 < z < n)

≤ Cnα+β+1
∫
|v|>1

e−cα
√
n|v|1/2 dv

∫
R

du
( ∫ 1

0
dt e−c(t−u)1/3

)α
1(t− u > 0)

≤ Cnα+βe−c
√
n → 0, as n→∞,

I2,n ≤ Cn
α
2

∫
R

du
∫
|v|>1

dv
∫ ∞

0
dzzβ

( ∫ 1

0
dt 1√

t− u
e−z(t−u)−cnv

2
t−u

)α
× 1(t− u > 0, 0 < z < n)

≤ Cn
α
2

( ∫ 1

0
dt
( ∫

R
du
∫
|v|>1

dv
∫ ∞

0
dz zβ(t− u)−α2 e−zα(t−u)−cαnv

2
t−u

) 1
α
)α

× 1(t− u > 0, 0 < z < n)

≤ Cn
α
2

( ∫ 1

0
dt
( ∫

R
du
∫
|v|>1

dv (t− u)−α2−β−1 e−cα
nv2
t−u

) 1
α
)α

1(t− u > 0)

≤ Cn−β
∫
v>1

dv v−2(α2 +β)
∫ ∞

0
dy y−α2−β−1 e−

cα
y = Cn−β → 0, as n→∞,

since 1 − 2(α2 + β) < 0 and
∫∞

0 y−
α
2−β−1 e−cα

1
y dy < ∞. This proves lim J ′′n? = 0

and Theorem 6.4.4 too. 2

Remark 6.4.5. It is not difficult to show that the random fields {V3(x, y)} and
{V3?(x, y)} in Theorems 6.4.3 and 6.4.4 are related by

λ−1/αV3(x, λy)→fdd V3?(x, y), x, y > 0, λ→∞.

Proposition 6.4.6. Let the conditions of Theorem 6.4.3 be satisfied. Then:

(i) The random field {X3(t, s), (t, s) ∈ Z2} in (6.45) has anisotropic distributional
long memory with parameters H1 = H =

1
2 +α−β
α

, H2 = 2H1.

(ii) The random field {X3(t, s), (t, s) ∈ Z2} in (6.45) does not have isotropic
distributional long memory.

Proof. (i) With Theorem 6.4.3 in mind, it suffices to check that the random field
{V3(x, y)} in (6.46) has dependent increments in arbitrary direction. To this end,
consider arbitrary rectangles Ki = K(ξi,ηi);(xi,yi) ⊂ R2

+, i = 1, 2. Then

V3(Ki) =
∫
R2×R+

GKi(u, v, z) dM,
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where
GKi(u, v, z) :=

∫
Ki
h3(t− u, s− v, z) dt ds.

Note GKi ≥ 0 and GKi(u, v, z) > 0 for any u < xi implying

supp(GK1) ∩ supp(GK2) 6= ∅.

Hence and from ([94], Th 3.5.3, p. 128) it follows that the increments V3(Ki), i =
1, 2 on arbitrary nonempty rectangles K1, K2 are dependent, thus concluding the
proof of (i).
(ii) With Theorem 6.4.4 in mind, it suffices to check that the random field
{V3?(x, y)} in (6.60) has independent increments in the vertical directions. Simi-
larly as in the proof of (i), for any rectangle K = K(ξ,η);(x,y) ⊂ R2

+,

V3?(K) =
∫
R2×R+

G?
K(u, v, z) dM,

where
G?
K(u, v, z) := 1(η < v ≤ y)

∫ η

ξ
h3?(t− u, z) dt.

Clearly, if Ki, i = 1, 2 are two rectangle separated by a horizontal line, then

supp(GK1) ∩ supp(GK2) = ∅,

implying the independence of V3?(K1) and V3?(K2). Proposition 6.4.6 is proved.
2

Let α = 2 and r3(t, s) = EX3(t, s)X3(0, 0) be the covariance function of the
aggregated Gaussian random field in (6.45). Using the representation of r3(t, s)
in (6.11) and Lemma 6.4.2, the following proposition obtains the asymptotics of
r3(t, s) as |t|+ |s| → ∞.

Proposition 6.4.7. Assume α = 2 and the conditions of Theorem 6.4.3. Then
for any (t, s) ∈ R2

0

lim
λ→∞

λβ+1/2r3([λt], [
√
λs]) = ρ(t, s) :=


C3|s|−2β−1γ(β + 1/2, s2/4|t|), t 6= 0, s 6= 0,

C3|s|−2β−1Γ(β + 1/2), t = 0,

C4|t|−β−1/2, s = 0
(6.66)

and

lim
λ→∞

λβ+1/2r3([λt], [λs]) = ρ∗(t, s) :=

0, s 6= 0,

C4|t|−β−1/2, s = 0, t 6= 0,
(6.67)
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where γ(α, x) :=
∫ x

0 y
α−1e−y dy is incomplete gamma function and

C3 = π−
1
2 22β−131−βσ2φ1Γ(β + 1), C4 = 4− 1

2−β(β + 1/2)−1C3.

Notice that under the ‘parabolic scaling’ in (6.66) we have a non-degenerated
limit ρ(t, s) which is a generalized homogeneous function (see, e.g., [44] for a
general account) satisfying

λ
2(1+H1

H2
−H1)

ρ(λt, λH1/H2s) = ρ(t, s), ∀λ > 0,

with H1, H2 as in Proposition 6.4.6 (i) (α = 2). On the other hand, the ‘isotonic
scaling’ in (6.67) leads to a degenerated limit concentrated on the anisotropicity
axis s = 0 of the 3N model and vanishing elsewhere. It is clear that the corre-
sponding integrated Gaussian random field must have independent increments in
the vertical direction, in accordance with Proposition 6.4.6 (ii).

Proof of Proposition 6.4.7. We have

r3(t, s) = σ2 ∑
(u,v)∈Z2

∫
[0,1)

g3(t+ u, s+ v, a)g3(u, v, a)Φ( da), (t, s) ∈ Z2, (6.68)

where σ2 = Eε2. For ease of notation, assume φ(a) = (1 − a)β, a ∈ [0, 1), in the
rest of the proof. Then

r3([λt], [
√
λs]) = σ2

∫ ∞
0

du
∫
R

dv
∫ 1

0
(1− a)β da g3([u], [v], a)

× g3([λt] + [u], [
√
λs] + [v], a)

= λ1/2−βσ2
∫ ∞

0
dx
∫
R

dy
∫ λ

0
zβ dz g3([λx], [

√
λy], 1− z

λ
)

× g3([λt] + [λx], [
√
λs] + [

√
λy], 1− z

λ
).

Hence,

λβ+1/2r3([λt], [
√
λs]) =

∫ ∞
0

∫
R

∫ ∞
0
Kλ(x, y, z) dµ,

where dµ(x, y, z) = zβ dx dy dz and

Kλ(x, y, z) := λσ2g3([λx], [
√
λy], 1−z

λ
)g3([λt]+[λx], [

√
λs]+[

√
λy], 1−z

λ
)1(0 < z < λ).

By Lemma 6.4.2, for any (x, y, z) ∈ (0,∞)× R× (0,∞) fixed,

Kλ(x, y, z)→ K(x, y, z) := σ2h3(x, y, z)h3(x+ t, y + s, z),
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where the integral IK :=
∫
R+×R×R+

K(x, y, z) dµ is equal to

IK = σ2
∫ ∞

0
dx
∫
R

dy
∫ ∞

0
zβ dz 3

2
√
πx

e−3zx− y
2

4x
3

2
√
π(t+ x)

e−3z(t+x)− (s+y)2
4(t+x)

= 9σ2

4π

∫ ∞
0

dx
{ ∫ ∞

0
zβe−3z(2x+t) dz

}{ ∫
R

1√
x(t+ x)

e−
y2
4x e−

(s−y)2
4(t+x) dy

}

= 9σ2

4π

∫ ∞
0

dx
{ Γ(β + 1)

(3(2x+ t))1+β

}{ 2
√
π√

2x+ t
e−

s2
4(2x+t)

}

and, continuing equality,

IK = 9σ2Γ(β + 1)
2
√
π31+β

∫ ∞
0

1
(2x+ t)3/2+β e−

s2
4(2x+t) dx

= 31−βσ2Γ(β + 1)
4
√
π

∫ ∞
t

1
x3/2+β e− s

2
4x dx

=


31−βσ2Γ(β+1)

41/2−β√π |s|
−2β−1γ(β + 1/2, s2/4t), s 6= 0,

31−βσ2Γ(β+1)
4
√
π( 1

2 +β) t−β−1/2, s = 0.

The legitimacy of the passage to the limit λ → ∞ under the sign of the integral
follows from Lemma 6.4.2. Indeed, the bound (6.49) implies

|Kλ(x, y, z)| ≤ C(K′(x, y, z) +K′′λ(x, y, z)),

where
0 ≤ K′(x, y, z) := h̄3(x, y, z)h̄3(x+ t, y + s, z)

does not depend on λ and satisfies
∫
R+×R×R+

K′(x, y, z) dµ <∞, see above, while

0 ≤ K′′λ(x, y, z) := λ e−zx−c(λx)1/3−c(
√
λ|y|)1/2e−z(x+t)−c(λ(x+t))1/3−c(

√
λ|s+y|)1/2

satisfies limλ→∞
∫
R+×R×R+

K′′λ(x, y, z) dµ = 0 for any (t, s) ∈ R2
0 fixed. The last

fact can be easily verified by separately considering the two cases t > 0 and
t = 0, s 6= 0. E.g., in the first case, we have

K′′λ(x, y, z) ≤ λ e−c(λt)1/3e−zx−c(λx)1/3−c(
√
λ|y|)1/2

and ∫
R+×R×R+

K′′λ(x, y, z) dµ ≤ Ce−c′(λt)1/3
, 0 < c′ < c

easily follows. The convergence in (6.67) can be proved in a similar way. Propo-
sition 6.4.7 is proved.
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Remark 6.4.8. Suppose, the individual behavior is described by two-neighbor
(2N) random field:

X(t, s) = A

2
(
X(t− 1, s) +X(t, s− 1)

)
+ ε(t, s), (t, s) ∈ Z2,

where ε ∈ D(α), 1 < α ≤ 2, and A is random coefficient with the mixing density
φ satisfying (6.13), where 0 < β < α− 1. The stationary solution of this equation
is given by (6.8), with the Green function:

g2(t, s, a) =
∞∑
k=0

Akpk(t, s) =

a
t+sb

(
t, t+ s, 1

2

)
, t+ s ≥ 0, |t− s| ≤ t+ s,

0, otherwise,

where pk(t, s) = P(Wk = (t, s)|W0 = (0, 0)) is the k−step probability of the
nearest-neighbor random walk {Wk, k = 0, 1, . . .} on the lattice Z2 with one-step
transition probabilities shown in Figure 6.1 (a), page 115, and

b(t; k, p) := k!
t!(k − t)!p

t(1− p)k−t, k = 0, 1, . . . , t = 0, 1, . . . , k.

is the binomial probability.

Using the Moivre-Laplace theorem (see [36], vol.I, ch.7, §2, Thm.1), similarly
as in the proof of Lemma 6.4.2 we can show, that for t > 0, s ∈ R, z > 0,

√
λg2

( [λt] + [
√
λs]

2 ,
[λt]− [

√
λs]

2 , 1− z

λ

)
1([λt] mod 2= [

√
λs])→ h2(t, s, z),

as λ→∞, where

h2(t, s, z) :=
√

2
πt

e−zt− s
2

2t . (6.69)

The obvious similarity between kernels h2 in (6.69) and h3 in (6.19) suggest
that large-scale properties of the 2N and 3N models should be similar, modulus
a rotation of the plane by angle π/4. We can show, that in 2N case the partial
sums of the limit aggregated process

X2(t, s) =
∑

(u,v)∈Z2

∫ 1

0
g2(t− u, s− v, a)Mu,v( da), (t, s) ∈ Z2, (6.70)

(the general form of the limit aggregated field is given in (6.10)) have the following
limits:
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•

n−H
∑

1 ≤ t+ s ≤ [nx],
1 ≤ t− s ≤ [

√
ny]

X2(t, s)→fdd L2(x, y), x, y > 0, H :=
1
2 + α− β

α
,

where

L2(x, y) := 1
2

∫
R2×R+

{ ∫ x

0

∫ y

0
h2(t− u, s− v, z) dt ds

}
M( du, dv, dz);

•

n−H?
∑

1 ≤ t+ s ≤ [nx],
1 ≤ t− s ≤ [ny]

X2(t, s)→fdd L2?(x, y), x, y > 0, H? := 1 + α− β
α

,

where

L2?(x, y) := 1
2

∫
R2×R+

M( du, dv, dz)1(0 < v < y)
∫ x

0
2e−(t−u)z1(t− u > 0) dt,

hereM is an α−stable random measure on R2 × R+.

The random field L2(x, y) has dependent increments in arbitrary direction,
while the random field L2?(x, y) has independent increments in vertical direction.
Therefore, we can conclude that the limit aggregated field {X2(t, s), (t, s) ∈ Z2}
in (6.70) has anisotropic distributional long memory with parameters H1 = (1/2+
α− β)/α, H2 = 2H1.

We do not give proofs of these results here, because after the change of coor-
dinates

u = t+ s, v = t− s,

the proof of these results is quite similar to the proofs of Theorem 6.4.3 and
Theorem 6.4.4.

6.5 Aggregation of the 4N model

The stationary solution of (6.15) is given by

X4(t, s) =
∑

(u,v)∈Z2

g4(t− u, s− v, A)ε(u, v), (t, s) ∈ Z2, (6.71)
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where

g4(t, s, a) =
∞∑
k=0

akpk(t, s), pk(t, s) = P(Wk = (t, s)|W0 = (0, 0)) (6.72)

and {Wk} is a random walk on Z2 with one-step transition probabilities in
Fig. 6.1 (c). Under the assumptions of Proposition 6.3.3, page 124, the aggre-
gated random field of (6.71) exists and is written as

X4(t, s) =
∑

(u,v)∈Z2

∫ 1

0
g4(t− u, s− v, a)Mu,v( da), (t, s) ∈ Z2, (6.73)

where {Mu,v( da), (u, v) ∈ Z2} is the same α−stable random measure as in Sec-
tion 6.4. For 1 < α ≤ 2 and a regularly varying mixing density as in (6.13), the
random field in (6.73) is well-defined under the same condition 0 < β < α− 1 as
in Theorem 6.4.3, page 127. Recall R2

0 = R2 \ {(0, 0)}.

Lemma 6.5.1. For any (t, s, z) ∈ R2
0 × (0,∞),

lim
λ→∞

g4
(
[λt], [λs], 1− z

λ2

)
= h4(t, s, z) = 2

π
K0
(
2
√
z(t2 + s2)

)
. (6.74)

The convergence in (6.74) is uniform on any relatively compact set

{ε < |t|+ |s| < 1/ε} × {ε < z < 1/ε} ⊂ R2
0 × R+, ε > 0.

Moreover, there exists constants C, c > 0 such that for all sufficiently large λ and
any (t, s, z) ∈ R2

0 × (0, λ2) the following inequality holds:

g4
(
[λt], [λs], 1− z

λ2

)
< C

{
h4(t, s, z) + e−c

√
λ(|t|1/2+|s|1/2)

}
. (6.75)

The proof of this lemma is given in Section 6.6, page 154. The main result of
this Section is Theorem 6.5.2 below.

Theorem 6.5.2. Let {ε(t, s), (t, s) ∈ Z2} and Φ satisfy the same conditions as in
Theorem 6.4.3 (page 127), and {X4(t, s), (t, s) ∈ Z2} be the aggregated 4N random
field in (6.73). Then

n−H
[nx]∑
t=1

[ny]∑
s=1

X4(t, s) →fdd V4(x, y), x, y > 0, (6.76)

where H := 2(α−β)
α

and

V4(x, y) :=
∫
R2×R+

M( du, dv, dz)
∫ x

0

∫ y

0
h4(t− u, s− v, z) dt ds (6.77)
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and where M is the same α−stable random measure on R2 × R+ as in Theo-
rem 6.4.3 and h4(t, s, z) is given in (6.74).

Proof. As in all previous theorems, we prove the convergence of one-dimensional
distributions in (6.76) at x = y = 1. Accordingly, it suffices to show the limit
lim Jn = J , where

Jn := 1
nHα

∑
(u,v)∈Z2

E
( n∑
t,s=1

g4(t− u, s− v,A)
)α
,

J :=
∫
R2×R+

( ∫
(0,1]2

h4(t− u, s− v, z) dt ds
)α

dµ.

Let us first check that

J = C
∫
R2×R+

( ∫
(0,1]2

K0(2
√
z‖v − w‖) dv

)α
zβ dw dz <∞,

here, ‖x‖2 := x2
1 + x2

2, for x = (x1, x2) ∈ R2. To this end, split J = J1 + J2, where

J1 :=
∫
{‖w‖≤

√
2}×R+

( ∫
(0,1]2

K0(2
√
z‖v − w‖) dv

)α
zβ dw dz,

J2 :=
∫
{‖w‖>

√
2}×R+

( ∫
(0,1]2

K0(2
√
z‖v − w‖) dv

)α
zβ dw dz.

By Minkowski inequality,

J2 ≤ C
{ ∫
{‖v‖≤

√
2}

dv
[ ∫
{‖w‖>

√
2}×R+

Kα
0 (2
√
z‖v − w‖)zβ dz dw

]1/α}α
≤ C

{ ∫
{‖v‖≤

√
2}

dv
[ ∫
{‖w‖>

√
2}
‖v − w‖−2−2β dw

]1/α}α
≤ C

{ ∫
{‖v‖≤

√
2}

(
√

2− ‖v‖)−2β/α dv
}α

< ∞,

where we used the facts that
∫ ∞

0
Kα

0 (2
√
z)zβ dz <∞ and 0 < β < α− 1 ≤ 2.

Next,

J1 ≤ C
∫
{‖w‖≤

√
2}

dw
∫ ∞

0
zβ dz

( ∫
{‖v‖≤

√
2}
K0(2

√
z‖v‖) dv

)α
≤ C

∫ ∞
0

zβ dz
( ∫ √2

0
K0(2

√
zr)r dr

)α
≤ C

∫ ∞
0

zβ
(
z−α/21(0 < z < 1) + z−α1(z ≥ 1)

)
dz < ∞,
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where we used 0 < β < α− 1 and the inequality

∫ √2

0
K0(2

√
zr)r dr ≤ C

z
−1/2, 0 < z ≤ 1,

z−1, z > 1,

which is a consequence of the fact that the function r 7→ rK0(r) is bounded and
integrable on (0,∞). This proves J <∞.

Next, we prove the convergence Jn → J . The proof uses Lemma 6.5.1. Assume
for simplicity φ(a) = (1− a)β. Then

Jn =
∫
R2×R+

(Gn(u, v, z))α dµ(u, v, z), J =
∫
R2×R+

(G(u, v, z))α dµ(u, v, z),

where
G(u, v, z) :=

∫
(0,1]2

h4(t− u, s− v, z) dt ds,

Gn(u, v, z) :=
∫

(0,1]2
g4
(
[nt]− [nu], [ns]− [nv], 1− z

n2

)
dt ds.

Let G′n(u, v, z) := 1(0 < z < n2)
∫

(0,1]2 e−c(
√
n|t−u|+

√
n|s−v|) dt ds, where c > 0 is

the same as in (6.75). Then

J ′n :=
∫
R2×R+

(G′n(u, v, z))α dµ(u, v, z) = O(n2(β−α+1)) = o(1). (6.78)

Indeed, J ′n ≤ Cn2β+2
{ ∫

R

( ∫ 1
0 e−c

√
n|t−u| dt

)α
du
}2
, where

∫
R

( ∫ 1

0
e−c
√
n|t−u| dt

)α
du ≤

∫
{|u|<2}

( ∫ 1

0
e−c
√
n|t−u| dt

)α
du

+
∫
{|u|≥2}

( ∫ 1

0
e−c
√
n|t−u| dt

)α
du =: i′n + i′′n.

Here, i′n ≤ C
( ∫ 3

0 e−c
√
nv dv

)α
≤ C/nα and i′′n ≤ C

∫∞
2 e−cα

√
n(u−1) du = O(e−c′

√
n),

c′ > 0. This proves (6.78). The rest of the proof is similar as in the case of
Theorem 6.4.3. Theorem 6.5.2 is proved. 2

Proposition 6.5.3. Let the conditions of Theorem 6.5.2 be satisfied. Then the
random field {X4(t, s)} in (6.73) has isotropic distributional long memory.

Proof. Similar to the proof of Proposition 6.4.6 (page 136) we need to show
that the random field {V4(x, y)} in (6.77) has dependent increments in arbitrary
direction. Consider arbitrary rectangles Ki = K(ξi,ηi);(xi,yi) ⊂ R2

+, i = 1, 2. Then
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V4(Ki) =
∫
R2×R+

GKi(u, v, z) dM, i = 1, 2, where

GKi(u, v, z) :=
∫
Ki
h4(t− u, s− v, z) dt ds

=
∫
Ki

( 1
π

∫ ∞
0

1
x

exp
{
− zx− (t− u)2 + (s− v)2

x

}
dx
)

dt ds > 0.

Therefore supp(GK1) ∩ supp(GK2) 6= ∅. Hence it follows that the increments
V4(Ki), i = 1, 2, on arbitrary nonempty rectangles K1, K2 are dependent and
random field in (6.77) has isotropic long memory. 2

The following proposition obtains an asymptotic behavior of the covariance
function of the Gaussian aggregated random field in (6.77) (α = 2). The proof of
Proposition 6.5.4 uses Lemma 6.5.1 and is omitted.

Proposition 6.5.4. Assume α = 2 and the conditions of Theorem 6.5.2. Then
for any (t, s) ∈ R2

0,

lim
λ→∞

λ2βr4([λt], [λs]) = σ2φ1Γ(β + 1)Γ(β)
π

(t2 + s2)−β. (6.79)

6.6 Appendix. Proofs of Lemmas.

Let us note that the asymptotics of some lattice Green functions as |t|+ |s| →
∞ and a ↑ 1 simultaneously was derived in Montroll and Weiss [76] using Laplace’s
method, see, e.g., ([76], (II.16)), ([47], (3.185)), however in the literature we did
not find dominating bounds needed for our purposes. As noted in Section 6.1, our
proofs use probabilistic tools and are completely independent.

Proof of Lemma 6.4.2. Let us first explain the idea behind the derivation of
(6.17). Write Wk = (W1k,W2k) ∈ Z2. Note W1k has the binomial distribution
with success probability 1/3 and, conditioned on W1k = t, W2k is a sum of k − t
Bernoulli r.v.’s taking values ±1 with probability 1/2. Hence for k ≥ t, k− t ≥ |s|
and k − t+ s even,

pk(t, s) = P(W1k = t,W2k = s) = P(Wk1 = t)P(Wk2 = s|Wk1 = t)

= b
(
t; k, 1

3
)
p(k − t, s). (6.80)

Here and below, b(t; k, p) denote the binomial distribution with success probability
p ∈ (0, 1):

b(t; k, p) := k!
t!(k − t)!p

t(1− p)k−t, k = 0, 1, . . . , t = 0, 1, . . . , k, (6.81)
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and

p(u, v) := b
(
u+ v

2 ;u; 1
2

)
=


1

2u
u!(

u+v
2

)
!
(
u−v

2

)
!
, if u ≥ 0, |v| ≤ u, u+ v is even,

0, otherwise.
(6.82)

We shall need the following version of the Moivre-Laplace theorem (see [36], vol.I,
ch.7, §2, Thm.1): There exists a constant C such that when k → ∞ and t → ∞
vary in such a way that

(t− pk)3

k2 → 0, (6.83)

then ∣∣∣∣∣ b(t; k, p)
1√

2πkp(1−p)
exp{− (t−kp)2

2kp(1−p)}
− 1

∣∣∣∣∣ <
C

k
+ C|t− pk|3

k2 . (6.84)

For p(u, v) in (6.82), (6.83)-(6.84) imply that there exist K0 > 0 and C > 0 such
that

sup
u>0, v∈Z

∣∣∣∣∣ p(u, v)√
2
πu

e−v2/2u
− 1

∣∣∣∣∣1(u2 > K|v|3, u > K, u
mod 2= v

)
<

C

K
, ∀ K > K0.

(6.85)
Using (6.80) and the Moivre-Laplace approximation in (6.84), we can write

√
λg3([λt], [

√
λs], 1− λ−1z)

=
√
λ
∞∑

k=[λt]

(
1− z

λ

)k
pk([λt], [

√
λs])

∼ 3
2λ

∞∑
k=[λt]

e−z(k/λ)

√√√√ λ

4π( k
λ
)

e
− (3λt−k)2

12λt k
3λt

1√
(π/2)( k

λ
− t)

e
−

( s2 )2

(1/2)( k
λ
−t)

∼ 3
2

∫ ∞
t

e−zx
√

λ

4πx e−
λ(3t−x)2

4x
1√

(π/2)(x− t)
e−

( s2 )2

(1/2)(x−t) dx

∼ 3
2

∫ ∞
t

e−zx
√

λ

12πt e−
λ(3t−x)2

12t
1√

(π/2)(x− t)
e−

( s2 )2

(1/2)(x−t) dx

∼ 3
2
√
πt

e−3zt− s
2

4t = h3(t, s, z). (6.86)

Here, factor 1
2 in front of the second sum comes from the fact that pk(t, s) = 0 for

k − t
mod 2
6= s, while factor

√√√√ λ

4π( k
λ
)

exp{− (3λt− k)2

(12λt)( k
3λt)
} ∼

√
λ

12πt exp{−λ(3t− x)2

12t }
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behaves as a delta-function in a neighborhood of k = 3λt or x = 3t, resulting in
the asymptotic formula (6.86).

Let us turn to the rigorous proof of (6.86) and Lemma 6.4.2. Split

hλ(t, s, z) :=
√
λg3([λt], [

√
λs], 1− λ−1z) =

5∑
i=0

hλi(t, s, z), (6.87)

where

hλ0(t, s, z) :=
√
λ
∞∑

k=[λt]

(
1− z

λ

)k
pk([λt], [

√
λs])1(λt ≤ K),

hλ1(t, s, z) :=
√
λ
∞∑

k=[λt]

(
1− z

λ

)k
pk([λt], [

√
λs])1(K|3λt− k|3 ≥ k2, λt > K),

hλ2(t, s, z) :=
√
λ
∞∑

k=[λt]

(
1− z

λ

)k
b([λt]; k, 1

3)
{
p(k − [λt], [

√
λs])− p̄([2λt], [

√
λs])

}
× 1(K|3λt− k|3 < k2, λt > K),

hλ3(t, s, z) :=
√
λ p̄([2λt], [

√
λs])

∞∑
k=[λt]

{(
1− z

λ

)k
−
(
1− z

λ

)3λt
}
b([λt]; k, 1

3)

× 1(K|3λt− k|3 < k2, λt > K),

hλ4(t, s, z) :=
√
λ p̄([2λt], [

√
λs])

(
1− z

λ

)3λt
(Vλ(t)− 3),

hλ5(t, s, z) := 3
√
λ p̄([2λt], [

√
λs])

(
1− z

λ

)3λt
,

and where p̄(t, s) := (p(t, s) + p(t, s+ 1))/2, t ∈ N, s ∈ Z and

Vλ(t) :=
∞∑

k=[λt]
b([λt]; k, 1

3)1(K|3λt− k|3 < k2, λt > K).

Here, hλ5 is the main term and hλi, i = 0, 1, . . . , 4 are remainder terms. In
particular, we shall prove that

lim
K→∞

lim sup
λ→∞

sup
ε<t,|s|,z<1/ε

|hλi(t, s, z)| = 0, ∀i = 0, 1, 2, 3, 4, ∀ε > 0. (6.88)

Relations (6.88) are used to prove (6.17). The proof of (6.49) also uses the de-
composition (6.87), with K > 0 a fixed large number.

Step 1 (estimation of hλ5). For any ε > 0,

lim
λ→∞

sup
ε<t,|s|,z<1/ε

|hλ5(t, s, z)− h3(t, s, z)| = 0. (6.89)

Moreover, there exist constants C, c > 0 such that for all sufficiently large λ and
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any (t, s, z) ∈ R3, t > 0, s ∈ R, 0 < z < λ the following inequality holds

|hλ5(t, s, z)| < C
(
h̄3(t, s, z) +

√
λe−zt−c(λt)1/3−c(

√
λ|s|)1/2)

. (6.90)

Relations (6.85) and limλ→∞ supε<t,z<1/ε |(1 − z
λ
)3λt − e−3zt| = 0 easily imply

(6.89).

Consider (6.90). Split

hλ5(t, s, z) ≤
3∑
i=1

hiλ5(t, s, z),

where

h1
λ5(t, s, z) := hλ5(t, s, z)1

(√
λt2 > K|s|3, λt > K),

h2
λ5(t, s, z) := hλ5(t, s, z)1

(√
λt2 ≤ K|s|3, λt > K),

h3
λ5(t, s, z) := hλ5(t, s, z)1

(
λt ≤ K).

Then, (6.85) together with 0 ≤ 1− z
λ
≤ e−z/λ, 0 < z < λ imply that

h1
λ5(t, s, z) < C√

t
e−3zt− [

√
λs]2

4λt
(
1 + 1

K

)
, ∀K > K0, ∀ t > 0, s ∈ R, 0 < z < λ.

(6.91)
Note that

√
λ|s| ≥ 2 implies [

√
λs]2 ≥ (1/4)λs2, while

√
λ|s| < 2 and λt > K ≥ 1

imply e−s2/16t > e−1/4. Hence and from (6.91) we obtain

h1
λ5(t, s, z) < Ch̄3(t, s, z), ∀ t > 0, s ∈ R, 0 < z < λ. (6.92)

To estimate h2
λ5, we use the well-known Hoeffding’s inequality [46]. Let b(t; k, p)

be the binomial distribution in (6.81). Then for any τ > 0

∑
|t−kp|>τ

√
k

b(t; k, p) ≤ 2e−2τ2
. (6.93)

In terms of p(u, v) of (6.82), inequality (6.93) writes as

∑
|v|>2τ

√
u

p(u, v) ≤ 2e−2τ2
, ∀ τ > 0. (6.94)

We shall also use the following bound

p(u, v) ≤ 2e−v2/2u, ∀u, v ∈ Z, u ≥ 0, |v| ≤ u, (6.95)

which easily follows from (6.94). Using (6.95), for any t > 0, s ∈ R, 0 < z < λ,
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λ > 0, K > 0 we obtain

h2
λ5(t, s, z) < 2

√
λe−3zt− [

√
λ|s|]2

2[2λt] 1
(√

λt2 ≤ K|s|3, λt > K)

≤ C(K)
√
λ exp

{
− 3zt− (1/16) max

((λt)1/3

K2/3 ,
(
√
λ|s|)1/2

K1/2

)}
≤ C(K)

√
λ exp

{
− 3zt− (λt)1/3

32K2/3 −
(
√
λ|s|)1/2

32K1/2

}
. (6.96)

Indeed, [
√
λ|s|] ≥

√
λ|s| − 1 ≥

√
λ|s|
2 for |s| > 2/

√
λ and hence

[
√
λ|s|]2

2[2λt] ≥
s2

16t ≥
1
16 max

((λt)1/3

K2/3 ,
(
√
λ|s|)1/2

K1/2

)
≥ (λt)1/3

32K2/3 + (
√
λ|s|)1/2

32K1/2 (6.97)

holds for
√
λt2 ≤ K|s|3, |s| > 2/

√
λ. On the other hand,

(√λt2
K

)1/3
< |s| < 2/

√
λ

implies λt < 23/2K1/2 in which case the r.h.s. of (6.97) does not exceed
√

2
32
(
1 + 1√

K

)
=: c(K)

and (6.96) holds with C(K) = 2ec(K). A similar bound as in (6.96) follows for
h3
λ5(t, s, z), using

h2
λ5(t, s, z) ≤ C

√
λe−3zt(p([λt], [

√
λs]) + p([λt], [

√
λs] + 1))1(λt ≤ K)

≤ C
√
λe−3zt1(λt ≤ K, |[

√
λs]| ≤ K).

The desired inequality in (6.90) now follows by combining (6.92) and (6.96) and
taking K > K0 a fixed and sufficiently large number.

Step 2 (estimation of hλ4). Let us show (6.88) for i = 4 and that there exist
constants C, c > 0 such that for all sufficiently large λ and any (t, s, z) ∈ R3,
t > 0, s ∈ R, 0 < z < λ the following inequality holds:

|hλ4(t, s, z)| < C
(
h̄3(t, s, z) +

√
λe−zt−c(λt)1/3−c(

√
λ|s|)1/2)

. (6.98)

Indeed,
|hλ4(t, s, z)| ≤ Chλ5(t, s, z)|Vλ(t)− 3|.

Therefore the above facts ((6.88) for i = 4 and (6.98)) follow from Step 1 and the
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following bound: There exist C, c > 0 and K0 > 0 such that

|Vλ(t)− 3| < C
(
K−1/3 + e−c(

√
λt/K)2/3)

, ∀ λ > 0, t > 0, λt > K, K > K0.

(6.99)
To show (6.99) we use the Moivre-Laplace approximation in (6.84). Accordingly,
Vλ(t) = Vλ1(t) + Vλ2(t), where

Vλ1(t) := 3
2
√
π

∞∑
k=[λt]

1√
k

e−(3[λt]−k)2/4k1(K|3λt− k|3 < k2, λt > K)

and where Vλ2(t) satisfies
|Vλ2(t)| < C

K
Vλ1(t)

for all λ > 0, t > 0, λt > K, K > K0 and some C > 0 and K0 > 0 independent
of λ, t, and K. Hence, it suffices to prove (6.99) for Vλ1(t) instead of Vλ(t).

Let
DK(τ) := {k ∈ N : K|3τ − k|3 < k2}, τ > 0.

There exist C > 0 and τ0 > 0 such that k ∈ DK(τ) implies

|k − 3τ | < Cτ 2/3/K1/3 and 2τ < k < 4τ, ∀ τ > τ0. (6.100)

Indeed, let k ≤ 3τ . Then

|k − 3τ | < k2/3/K1/3 ≤ 32/3τ 2/3/K1/3

and the first inequality in (6.100) holds with C = 32/3. Next, let k > 3τ . Then
k2/3/K1/3 < k/4 for τ > τ0 and some τ0 > 0 and hence k − 3τ < k/4 implying
k < 4τ . In turn this implies |k − 3τ | < (4τ)2/3/K1/3 and (6.100) holds with
C = 42/3.

Consider
1√
k
− 1√

3λt
= 1√

3λt

( 1√
1 + k−3λt

3λt

− 1
)
.

Using |1− 1√
1+x | ≤ |x| and |1−

1
1+x | ≤ 2|x| for |x| ≤ 1/2 we obtain

∣∣∣ 1√
k
− 1√

3λt

∣∣∣ ≤ C√
λt

1
K1/3(λt)1/3 <

C√
λtK2/3

,
∣∣∣1
k
− 1

3λt
∣∣∣ < C

(λt)4/3K1/3 ,

(6.101)
for some constant C < ∞ and all |k − 3λt| < C(λt)2/3/K1/3, λt > K > K0 and
K0 > 0 large enough. From (6.101) and (6.100), for the above values of k, λ, t,K
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we obtain
∣∣∣ 1√
k

e−(3[λt]−k)2/4k − 1√
3λt

e−(3[λt]−k)2/12λt
∣∣∣ < C

K1/3
1√
λt

e−(3[λt]−k)2/12λt.

Hence, |Vλ1(t)− 3| ≤ |Uλ1(t)− 3|+ Uλ2(t) +
(

C
K1/3

)
Uλ3(t), where

Uλ1(t) := 3
2
√

3πλt

∞∑
k=[λt]

e−(3[λt]−k)2/12λt1(λt > K),

Uλ2(t) := 3
2
√

3πλt

∞∑
k=[λt]

e−(3[λt]−k)2/12λt1(K|3λt− k|3 ≥ k2, λt > K),

Uλ3(t) := 1√
λt

∑
k∈Z

e−k2/12λt1(λt > K).

It is easy to show that Uλ3(t) < C and

|Uλ1(t)− 3| =
∣∣∣Uλ1(t)− 3

2
√

3π

∫
R

e−x2/12 dx
∣∣∣ < C/

√
λt < C/K1/2

uniformly in λ > 0, t > 0, K > K0. Next, with j = k − 3[λt] and using the fact
that k2 = (j + 3[λt])2 ≥ [λt]2 ≥ (λt)2/2

|Uλ2(t)| ≤ C√
λt

∑
j≥−2[λt]

e−( j√
λt

)2/121
(
K| j√

λt
|3 ≥ (λt)2

2(λt)3/2

)

≤ C
∫

1(K|x|3 >
√
λt/2)e−x2 dx ≤ Ce−c(

√
λt/K)2/3

.

This proves (6.99) and hence (6.98), too.

Step 3 (estimation of hλ3). First we estimate the difference inside the curly brack-
ets. There exist C,K0, τ0 > 0 such that k ∈ DK(τ), K > K0, τ > τ0 imply

|ak − a3τ | ≤ Ca2τ τ
2/3

K1/3 |1− a|, ∀ a ∈ [0, 1]. (6.102)

Indeed, let k ≤ 3τ . Using (6.100) and

1− aτ ≤ (1 + τ)(1− a), ∀ τ ≥ 0, ∀ a ∈ [0, 1],

for sufficiently large τ > K we obtain

|ak − a3τ | ≤ ak|a3τ−k − 1| ≤ a2τ |3τ − k + 1||1− a|

≤ Ca2τ τ
2/3 + 1
K1/3 |1− a| <

C

K1/3a
2ττ 2/3|1− a|.

The case k > 3τ in (6.102) follows analogously. Using (6.102) and (6.99), together
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with the inequality ze−2z < Ce−z, z > 0, we obtain

|hλ3(t, s, z)| <
√
λ p̄([2λt], [

√
λs])

(
1− z

λ

)2λt (λt)2/3(z/λ)
K1/3 Vλ(t)

< C
√
λ p̄([2λt], [

√
λs])e−2zt (λt)2/3(zt)

λt

<
C

(λt)1/3

√
λ p̄([2λt], [

√
λs])e−zt.

Therefore as in Step 2 we obtain the convergence in (6.88) for i = 3 together with
the bound

|hλ3(t, s, z)| < C
(
h̄3(t, s, z) +

√
λe−zt−c(λt)1/3−c(

√
λ|s|)1/2)

. (6.103)

Step 4 (estimation of hλ2). First we estimate the difference inside the curly brack-
ets. There exist C > 0 and K0 > 0 such that for any λ, t, s, k,K satisfying

λ > 0, t > 0, s ∈ R, k ∈ N, K > K0, λt > K, K|k− 3λt|3 ≤ k2, λ1/2t2 > K|s|3,
(6.104)

the following inequality holds

∣∣∣p̄(k − [λt], [
√
λs])− p̄([2λt], [

√
λs])

∣∣∣ ≤ C

(λt)1/2K2/3 e−s2/10t. (6.105)

In the proof of (6.105), below, assume that k − [λt] mod 2= [
√
λs], [2λt] mod 2= [

√
λs];

the remaining cases can be discussed analogously. Using the Moivre-Laplace for-
mula (6.85) we have that

p(k − [λt], [
√
λs])− p([2λt], [

√
λs]) = 2√

2π(k − [λt])
e−

[
√
λs]2

2(k−[λt])

(
1 +O

( 1
K

))

− 2√
2π[2λt]

e−
[
√
λs]2

2[2λt]

(
1 +O

( 1
K

))
.

As in (6.101),

∣∣∣ 1√
k − [λt]

− 1√
[2λt]

∣∣∣ ≤ C

(λt)1/2K2/3 ,
∣∣∣ 1
k − [λt] −

1
[2λt]

∣∣∣ ≤ C

(λt)4/3K1/3 .

Hence it easily follows
e−

[
√
λs]2

2(k−[λt]) < Ce− s2
10t ,

where the arguments satisfy (6.104). The above facts imply (6.105). Using (6.105)
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for s satisfying (6.104) we can write

|hλ2(t, s, z)| <
C

t1/2K2/3 e−s2/10t
∞∑

k=[λt]

(
1− z

λ

)k
b
(
[λt]; k, 1

3
)

× 1(K|3λt− k|3 < k2, λt > K)

<
C

K2/3 h̄3(t, s, z)Vλ(t) <
C

K2/3 h̄3(t, s, z), (6.106)

see (6.99).

Next we will evaluate hλ2(t, s, z) for λ1/2t2 < K|s|3 (and λ, t, k,K satisfying
(6.104)). Using the inequality in (6.95), the bound k < 4λt, see (6.100), and
arguing as in (6.97) we have that

[
√
λs]2

2(k − [λt]) >
s2

6t > max
{(
√
λs)1/2

6K1/2 ,
(λt)1/3

6K2/3

}

and hence
p([λt], [

√
λs]) ≤ Ce−c(K)(λt)1/3−c(K)(

√
λ|s|)1/2

,

where c(K) > 0 depends only on K. Therefore,

|hλ2(t, s, z)| < C
√
λe−2zt−c(K)(λt)1/3−c(K)(

√
λ|s|)1/2

Vλ(t)

< C
√
λe−2zt−c(K)(λt)1/3−c(K)(

√
λ|s|)1/2

. (6.107)

The resulting bound

|hλ2(t, s, z)| < C
(
h̄3(t, s, z) +

√
λe−zt−c(λt)1/3−c(

√
λ|s|)1/2) (6.108)

follows from (6.106) and (6.107) by taking K > K0 sufficiently large but fixed.

Step 5 (estimation of hλ1). From (6.93), we have

b([λt]; k, 1/3) ≤ 2e−(2/9)|3[λt]−k|2/k.

Using this and a similar inequality (6.95) for p(k − [λt], [
√
λs]) we see that

|hλ1(t, s, z)| < C
√
λe−zt

∞∑
k=[λt]

e−(2/9) |3[λt]−k|2
k e−(1/2) [

√
λs]2

k−[λt] 1(K|3λt− k|3 ≥ k2, λt > K)

< C
√
λe−zt

∑
k≥λt

e−ck1/3−c (
√
λs)2

k−λt
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for some positive constant c > 0 depending on K. Split the sum

∑
k≥λt

e−ck1/3−c (
√
λs)2

k−λt =
∑

λt<k≤λt+(
√
λ|s|)3/2

e−ck1/3−c (
√
λs)2

k−λt +
∑

k>λt+(
√
λ|s|)3/2

e−ck1/3−c (
√
λs)2

k−λt

=: Σ1 + Σ2.

Then
Σ1 < Ce−c(

√
λ|s|)1/2 ∑

k≥λt
e−ck1/3

< Ce−c(λt)1/3−c(
√
λ|s|)1/2

and

Σ2 < C
∑

k≥λt+(
√
λ|s|)3/2

e−ck1/3
< Ce−c(λt+(

√
λ|s|)3/2)1/3

< Ce−c(λt)1/3−c(
√
λ|s|)1/2

.

By taking K > K0 sufficiently large but fixed the above calculations lead to the
bound

|hλ1(t, s, z)| < C
√
λe−zt−c(λt)1/3−c(

√
λ|s|)1/2

. (6.109)

Step 6 (estimation of hλ0). Similarly as in Step 5 we obtain

|hλ0(t, s, z)| < C
√
λe−zt−c(λt)1/3−c(

√
λ|s|)1/2

. (6.110)

The proof of Lemma 6.4.2 follows from Steps 1 - 6. 2

Proof of Lemma 6.5.1. Let Wk = (W1k,W2k) ∈ Z2 and

W̃1k := W1k +W2k, W̃1k := W1k −W2k.

Then W̃k = (W̃1k, W̃2k), k = 0, 1, . . . , is a random walk on the even lattice

Z̃2 := {(u, v) ∈ Z2 : u+ v is even} = {(u, v) ∈ Z2 : u mod 2= v} (6.111)

with one-step transition probabilities

P(W̃1 = (i, j)|W̃0 = (0, 0)) = 1/4, i, j = ±1.

Note that {W̃1k} and {W̃2k} are independent symmetric random walks on Z and
therefore

p̃k(u, v) := P(W̃k = (u, v)|W̃0 = (0, 0)) = p(k, u)p(k, v), (u, v) ∈ Z̃2, k = 0, 1, . . . ,

where p(u, v) is the u−th step transition probability for the symmetric random

154



AGGREGATION OF RANDOM FIELDS

walk on Z as given in (6.82). The above facts imply the following factorization
property:

pk(t, s) = p̃k(t+s, t−s) = p(k, t+s)p(k, t−s), t, s ∈ Z, k = 0, 1, . . . . (6.112)

In particular, pk(t, s) = 0 if k
mod 2
6= t+ s. Split

g4([λt], [λs], 1− z

λ2 ) =
3∑
i=1

γλi(t, s, z),

where

γλi(t, s, z) := λ2
∫ ∞

0

(
1− z

λ2

)[λ2x]
p[λ2x]([λt], [λs])1(x ∈ Iλi(t, s)) dx, i = 1, 2, 3,

and where

Iλ1(t, s) :=
{
x > 0 : λx2 > K(|t|3 + |s|3), λ2x > K, [λ2x] mod 2= [λt] + [λs]

}
,

Iλ2(t, s) :=
{
x > 0 : λx2 ≤ K(|t|3 + |s|3), λ2x > K, [λ2x] mod 2= [λt] + [λs]

}
,

Iλ3(t, s) :=
{
x > 0 : λ2x ≤ K, [λ2x] mod 2= [λt] + [λs]

}

satisfy ⋃3
i=1 Iλi(t, s) = Iλ0(t, s) :=

{
x > 0 : [λ2x] mod 2= [λt] + [λs]

}
. Also split

h4(t, s, z) = π−1
∫ ∞

0
x−1e−zx−

t2+s2
x dx =

3∑
i=0

hλi(t, s, z),

where

hλ0(t, s, z) := π−1
∫ ∞

0
x−1e−zx−

t2+s2
x (1− 21(x ∈ Iλ0(t, s))) dx,

hλi(t, s, z) := 2π−1
∫ ∞

0
x−1e−zx−

t2+s2
x 1(x ∈ Iλi(t, s)) dx, i = 1, 2, 3.

We shall prove below

lim
λ,K→∞

sup
ε<|t|+|s|<1/ε, ε<z<1/ε

(|γλ1(t, s, z)−hλ1(t, s, z)|+ |hλ0(t, s, z)|) = 0, ∀ ε > 0,

(6.113)
and that for any sufficiently large K > K0 there exist c(K), C(K) < ∞ inde-
pendent of t, s, z, λ and such that for any (t, s) ∈ R2

0, 0 < z < λ2 the following
inequalities hold:

γλ1(t, s, z) + |hλ0(t, s, z)| ≤ C(K)h4(t, s, z), (6.114)
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γλi(t, s, z) + hλi(t, s, z) ≤ C(K)e−c(K)(|λt|1/2+|λs|1/2), i = 2, 3. (6.115)

Relations (6.114)-(6.115) imply statement (6.75) of the lemma. Statement (6.74)
follows from

|g4([λt], [λs], 1− z

λ2 )− h4(t, s, z)| ≤ |hλ0(t, s, z)|+ |γλ1(t, s, z)− hλ1(t, s, z)|

+
3∑
i=2

(γλi(t, s, z) + hλi(t, s, z))

and using (6.113) and the bounds in (6.114)-(6.115).

Let us prove (6.114). Clearly, |hλ0(t, s, z)| ≤ 2h4(t, s, z) by the definition of
hλ0 so that we need to estimate γλ1 only. Note (6.85) and (6.112) imply

sup
x,t,s

∣∣∣∣∣ p[λ2x]([λt], [λs])
2

π[λ2x]e
− [λt]2+[λs]2

[λ2x]

− 1
∣∣∣∣∣1(x ∈ Iλ1(t, s)) < C

K
, ∀K > K0. (6.116)

We also need the bound

sup
x,t,s

∣∣∣∣∣
2

π[λ2x]e
− [λt]2+[λs]2

[λ2x]

2
πλ2x

e− t
2+s2
x

− 1
∣∣∣∣∣1(x ∈ Iλ1(t, s)) < C

K2/3 , ∀K > K0. (6.117)

which follows from∣∣∣∣ λ2x

[λ2x] − 1
∣∣∣∣ < C1/K,

∣∣∣∣t2 + s2

x
− [λt]2 + [λs]2

[λ2x]

∣∣∣∣ < C2/K
2/3,

for x ∈ Iλ1(t, s), with C1, C2 independent of x, t, s, λ,K. From (6.116) and (6.117)
we obtain

χ(λ,K) := sup
x,t,s

∣∣∣∣∣p[λ2x]([λt], [λs])
2

πλ2x
e− t

2+s2
x

− 1
∣∣∣∣∣1(x ∈ Iλ1(t, s)) < C

K2/3 , ∀K > K0.

(6.118)
Using (6.118) and

(
1− z

λ2

)[λ2x]
≤ ez/λ2−z[λ2x]/λ2 ≤ Ce−zx, 0 < z < λ2,

we obtain

γλ1(t, s, z) ≤ Cλ2
∫ ∞

0
e−zx 2

πλ2x
e−

t2+s2
x

(
1 + χ(λ,K)

)
1(x ∈ Iλ1(t, s)) dx

≤ Chλ1(t, s, z) ≤ Ch4(t, s, z), K > K0,

proving (6.114), with C(K) independent of K > K0. Similarly using (6.118) we
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obtain

|γλ1(t, s, z)− hλ1(t, s, z)| ≤

≤
∣∣∣∣ ∫ ∞

0

(
1− z

λ2

)[λ2x]{
λ2p[λ2x]([λt], [λs])−

2
πx

e−
t2+s2
x

}
1(x ∈ Iλ1(t, s)) dx

∣∣∣∣
+ 2

∣∣∣∣ ∫ ∞
0

{(
1− z

λ2

)[λ2x]
− e−zx

}
π−1x−1e−

t2+s2
x 1(x ∈ Iλ1(t, s)) dx

∣∣∣∣
≤ Cχ(λ,K)h4(t, s, z) + C

∫ ∞
0

θλ(z, x)x−1e−
t2+s2
x dx

where
θλ(z, x) :=

∣∣∣(1− z

λ2

)[λ2x]
− e−zx

∣∣∣→ 0, as λ→∞,

for any z > 0, x > 0 fixed, and |θλ(z, x)| ≤ Ce−xz for any x, z, λ > 0; see above.
Therefore by the dominated convergence theorem,

∫ ∞
0

θλ(z, x)x−1e−
t2+s2
x dx→ 0, as λ→∞,

and the last convergence is uniform in ε < |t| + |s| < 1/ε, ε < z < 1/ε for any
given ε > 0. Together with (6.118) this proves (6.113) for the difference |γλ1−hλ1|.
Relation (6.113) for |hλ0| follows by the mean value theorem, implying

∣∣∣x−1e−zx−
t2+s2
x − y−1e−zy−

t2+s2
y

∣∣∣ ≤ C(ε)|x− y|x−1e−zx−
t2+s2
x (1 + x−2)

for 0 < x < y, 0 < z < 1/ε, |t|+ |s| < 1/ε. Therefore,

sup
ε<|t|+|s|<1/ε, ε<z<1/ε

|hλ0(t, s, z)| ≤ C/λ2 = o(1),

where

C := sup
ε<|t|+|s|<1/ε, z>ε

∫ ∞
0

x−1e−zx−
t2+s2
x (1 + x−2) dx <∞.

It remains to prove (6.115). Note γλ2(t, s, z) ≤ γ̄2([λt], [λs]), 0 < z < λ2,
where

γ̄2(t, s) :=
∑

pk(t, s) 1(K < k <
√
K(|t|3 + |s|3)), t, s ∈ Z.

Note K < k <
√
K(|t|3 + |s|3) implies

(|t+ s|+ |t− s|)4

k2 ≥ (t+ s)4 + (t− s)4

K(|t|3 + |s|3) ≥ 2(t4 + s4)
K(|t|3 + |s|3) ≥

1
4K (|t|1/2+|s|1/2)2.
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Hence and using (6.95) we obtain

γ̄2(t, s) ≤
∑

K<k<
√
K(|t|3+|s|3)

p(k, t+ s)p(k, t− s)

≤ 4
∑

K<k<
√
K(|t|3+|s|3)

exp
{
− |t|

1/2 + |s|1/2

4
√
K

}

< C(K) e−c(K)(|t|1/2+|s|1/2), (6.119)

where constants C(K) > 0, c(K) > 0 depend only onK <∞. This proves (6.115)
for γλ2. The last bound in (6.119) holds for

γ̄3(t, s) :=
K∑
k=0

p(k, t+ s)p(k, t− s) ≤ (K + 1)1(|t+ s| ≤ K, |t− s| ≤ K),

too, dominating γλ3(t, s, z) ≤ γ̄3([λt], [λs]), 0 < z < λ2. The remaining bounds in
(6.115) follow easily. Lemma 6.5.1 is proved.
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7
Ruin probability with claims
modeled by α−stable aggregated
AR(1) process

Abstract. We study the asymptotics of the ruin probability in a discrete time
risk insurance model with stationary claims following the aggregated heavy-tailed
AR(1) process discussed in Chapter 4. The present work is based on the gen-
eral characterization of the ruin probability with claims modeled by stationary
α−stable process in Mikosch and Samorodnitsky (2000, [75]). We prove that for
the aggregated AR(1) claims’ process, the ruin probability decays with exponent
α(1−H), where H ∈ [1/α, 1) is the asymptotic self-similarity index of the claim
process, 1 < α < 2. This result agrees with the decay rate of the ruin proba-
bility with claims modeled by increments of linear fractional motion in [75] and
also with other characterizations of long memory of the aggregated AR(1) process
with infinite variance in Chapter 4.

7.1 Introduction and the main result

In this Chapter we study the asymptotics of the ruin probability

ψ(u) := P
(

sup
n≥1

(
n∑
t=1

Y (t)− cn) > u
)
, as u→∞, (7.1)
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where ‘claims’ {Y (t), t ∈ Z} form a stationary, α−stable process of a certain
type, 1 < α < 2, obtained by aggregating independent copies of random-coefficient
AR(1) heavy-tailed processes. In (7.1), c > 0 is interpreted as a constant determin-
istic premium rate and u is the initial capital. The above problem was investigated
in [75] for stable processes {Y (t), t ∈ Z}. Applying large deviations methods for
Poisson point processes, authors proved the asymptotics ψ(u) ∼ ψ0(u), where
f(u) ∼ g(u) means that f(u)/g(u)→ 1 as u→∞, and the function ψ0 is written
in terms of the kernel and the control measure of stochastic integral represen-
tation of {Y (t), t ∈ Z} (see (7.15), page 163), below, in the special case when
{Y (t), t ∈ Z} is a mixed stable moving average). Using the above result, Mikosch
and Samorodnitsky [75] obtained the ‘classical’ decay rate ψ(u) ∼ C u−(α−1), see
e.g. [34], for a wide class of weakly dependent symmetric α−stable (SαS) station-
ary claims, and a markedly different decay rate ψ(u) ∼ C u−α(1−H) for increments
of fractional SαS motion with self-similarity index H ∈ (1/α, 1). In view of these
findings, Mikosch and Samorodnitsky ([75], p.1817) propose the decay rate of the
ruin probability as an alternative characteristic of long-range dependence of a SαS
process. See also [5], [6].

The present Chapter complements the results in [75], by obtaining the charac-
teristic decay of the ruin probability when claims are modeled by the mixed SαS
process studied in Chapter 4. The latter process arises in the result of aggrega-
tion of independent copies of random-coefficient AR(1) processes with heavy-tailed
innovations, following the classical scheme of contemporaneous aggregation (see
[41]). Aggregation is a common procedure in statistical and econometric modeling
and can explain certain empirical ‘stylized facts’ of financial time series (such as
long memory) from simple heterogeneous dynamic models describing the evolution
of individual ‘agents’. See [29], [39], [102], [103], [104], among others.

In Chapters 3 and 4, we discussed aggregation of infinite variance random-
coefficient AR(1) processes and long-memory properties of the limit aggregated
process. Let us recall the main results from the Chapter 4. Let {X(t), t ∈ Z} be
a stationary solution of the AR(1) equation

X(t) = aX(t− 1) + ε(t), (7.2)

where {ε(t), t ∈ Z} are i.i.d. r.v.’s in the domain of the (normal) attraction of an
α−stable law, 0 < α < 2, and where a ∈ (−1, 1) is a r.v., independent of {ε(t), t ∈
Z} and satisfying some mild additional condition. Let the Xi(t) = aiXi(t− 1) +
εi(t), i = 1, 2, . . . , be independent copies of (7.2). Then the aggregated process{
N−1/α∑N

i=1Xi(t), t ∈ Z
}
tends, as N → ∞, in the sense of weak convergence

of finite-dimensional distributions, to a limit process {X(t), t ∈ Z} written as a
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stochastic integral
X(t) =

∑
s≤t

∫
(−1,1)

at−sMs( da), (7.3)

where {Ms, s ∈ Z} are i.i.d. copies of an α−stable random measure M on (−1, 1)
with control measure proportional to the distribution Φ( dx) = P(a ∈ dx) of r.v.
a (see (4.4), page 62). In the case when 1 < α < 2 and the mixing distribution Φ
is concentrated in the interval (0, 1) having a density φ such that

φ(a) ∼ φ1 (1− a)β as a ↑ 1, for some φ1 > 0, 0 < β < α− 1, (7.4)

we proved that the aggregated process in (7.3) has long memory. In particular,
it was shown that normalized partial sums of {X(t), t ∈ Z} in (7.3) tend to an
α−stable stationary increment process {Λα,β(τ)}, which is self-similar with index
H = 1− (β/α) ∈ (1/α, 1) and is written as a stochastic integral

Λα,β(τ) :=
∫

(0,∞)×R

(
f(x, τ − s)− f(x,−s)

)
N( dx, ds), (7.5)

f(x, t) :=

1− e−xt, ifx > 0 and t > 0,

0, otherwise,

with respect to an α−stable random measure N( dx, ds) on (0,∞)×R with con-
trol measure φ1x

β−α dx ds. Let us note that (7.5) is different from the α−stable
fractional motion discussed in [75], which arises in a similar context by aggre-
gating AR(1) processes with common infinite-variance innovations; see Chapter
3. Under the same assumptions (7.4), in Chapter 4 we established further long
memory properties of {X(t), t ∈ Z} in (7.3), namely, a (hyperbolic) decay rate of
codifference and the long-range dependence (sample Allen variance) property of
Heyde and Yang (see [45]). We also showed that the value β = α − 1 separates
long memory and short memory in the above aggregation scheme; indeed, in the
case β > α − 1 the aggregated process has the short-range dependence (sample
Allen variance) property and its partial sums tend to an α−stable Lévy process
with independent increments (see Chapter 4).

In the rest of this Chapter, we assume that {X(t), t ∈ Z} is the mixed moving
average in (7.3), where Ms( da) is a SαS random measure with characteristic
function Ee iθMs(A) = e−ωα|θ|αΦ(A), θ ∈ R, where 1 < α < 2, ωα > 0 and A ⊂ (0, 1)
is any Borel set. This means that all finite-dimensional distributions of {X(t), t ∈
Z} are SαS. In particular,

Ee iθX(0) = e−σα|θ|α , θ ∈ R, where σα := ωα
∞∑
k=0

E|a|αk = ωαE
[ 1
1− |a|α

]
.
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Let Cα > 0 be the constant determined from the relation

lim
u→∞

uαP(X(0) > u) = 1
2Cασ

α. (7.6)

The constant Cα depends only on α and is explicitly written in [94]

Cα = 1− α
Γ(2− α) cos(πα/2) .

Also define

g(z) := sup
w>0

1− e−w
w + z

, z > 0. (7.7)

The function g is continuous in the interval (0,∞) and satisfies the following
conditions

lim
z→0

g(z) = 1, lim
z→∞

zg(z) = 1. (7.8)

The main result of this chapter is the following theorem.

Theorem 7.1.1. Assume that the mixing distribution Φ(A) = P(a ∈ A) is abso-
lutely continuous having a density

φ(a) = ϕ(a)(1− a)β, a ∈ (0, 1), (7.9)

where β > 0 and ϕ is integrable on (0, 1) and has a limit lima→1 ϕ(a) =: φ1 > 0.
Let ψ(u) be the ruin probability in (7.1) corresponding to {Yt ≡ X(t)}.
(i) Let 0 < β < α− 1. Then

ψ(u) ∼ CαK(α, β)
2cHα u−α(1−H), u→∞, (7.10)

where H = 1− (β/α) ∈ (1/α, 1) and

K(α, β) := φ1

α

∫ ∞
0

zβ−1gα(z) dz + φ1

β

∫ ∞
0

zβgα(z) dz. (7.11)

(ii) Let β > α− 1. Then

ψ(u) ∼ CαK(α,Φ)
2c u−(α−1), u→∞, (7.12)

where
K(α,Φ) := 1

α− 1E
[ 1
(1− a)α

]
. (7.13)

In what follows, C stands for a constant whose precise value is unimportant
and which may change from line to line.
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7.2 Proof of Theorem 7.1.1.

The proof of Theorem 7.1.1 is based on Theorem 7.2.1, below, due to [75],
Theorem 2.5. For our purpose, we formulate the above mentioned result in a spe-
cial case of mixed SαS moving average in (7.14). For terminology and properties
of stochastic integrals with respect to stable random measures, we refer to [94].

Let {Y (t)} = {Y (t), t = 1, 2, . . .} be a stationary SαS process, 1 < α < 2,
having the form

Y (t) =
∫
W×R

f(v, x− t)M( dv, dx), t = 1, 2, . . . , (7.14)

where M is a SαS random measure on a measurable product space W × R with
control measure ν × Leb, ν is a σ−finite measure on W , Leb is the Lebesgue
measure, and f ∈ Lα(W × R) is a measurable function with

∫
W×R

|f(v, x)|αν( dv) dx <∞.

Introduce
mn := C1/α

α

( ∫
W×R

∣∣∣ n∑
t=1

f(v, x− t)
∣∣∣αν( dv) dx

)1/α

and a function ψ0 : (0,∞)→ (0,∞) by

ψ0(u) := Cα
2

∫
W×R

sup
n≥1

(∑n
t=1 f(v, x− t)

)α
+

(u+ nc)α ν( dv) dx (7.15)

+ Cα
2

∫
W×R

sup
n≥1

(∑n
t=1 f(v, x− t)

)α
−

(u+ nc)α ν( dv) dx;

where x+ := max(x, 0), x− := max(−x, 0) and where the constant Cα is the same
as in (7.6).

Theorem 7.2.1. (see [75]). Let {Yt} be given as in (7.14). Assume that mn =
O(nγ) for some γ ∈ (0, 1). Then

ψ(u) ∼ ψ0(u), as u→∞.

Proof of Theorem 7.1.1. In order to use Theorem 7.2.1, we first rewrite the process
in (7.3) in the form of (7.14):

X(t) =
∫

(0,1)×R
f(a, t− x)M( da, dx), (7.16)

163



ASYMPTOTICS OF THE RUIN PROBABILITY

where

f(a, x) := a[x]1(x ≥ 0) =

a
[x], x ≥ 0,

0, x < 0,
(a, x) ∈ (0, 1)× R,

and M( da, dx) is a SαS random measure on (0, 1) × R with control measure
Φ× Leb.

Condition mn = O(nγ) of Theorem 7.2.1 for the process in (7.3) is verified in
(4.34), with γ = H = 1 − (β/α) ∈ (1/α, 1). Therefore it suffices to show (7.10)
with ψ(u) replaced by ψ0(u) as defined in (7.15). We have

ψ0(u) = Cα
2

∫
(0,1)×R

sup
n≥1

(∑n
t=1 a

[t−x]1(t ≥ x)
)α

(u+ nc)α Φ( da) dx

= Cα
2

(
E
[ 0∑
x=−∞

sup
n≥1

(∑n
t=1 a

t−x
)α

(u+ nc)α
]

+ E
[ ∞∑
x=1

sup
n≥x

(∑n
t=x a

t−x
)α

(u+ nc)α
])

=: Cα
2
(
I1 + I2

)
. (7.17)

Consider first the expectation

I2 = E
[ ∞∑
x=1

1
(1− a)α sup

k≥1

( 1− ak
u+ (k − 1 + x)c

)α]
,

which can be rewritten as

I2 = c−α
∫ 1

0
y−αφ(1− y) dy

∞∑
x=1

sup
k≥1

( 1− (1− y)k
(u/c) + k − 1 + x

)α

= c−α
{ ∫ ε

0
y−αφ(1− y) dy

∞∑
x=1

sup
k≥1

( 1− (1− y)k
(u/c) + k − 1 + x

)α

+
∫ 1

ε
y−αφ(1− y) dy

∞∑
x=1

sup
k≥1

( 1− (1− y)k
(u/c) + k − 1 + x

)α}
=: c−α

{
I21 + I22

}
. (7.18)

Clearly, in view of (7.9), we can replace φ(1− y) by φ1y
β in the integral I21. For

notational simplicity, assume that φ(1− y) = φ1y
β, 0 < y < ε. Then uβI21 can be
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rewritten as

uβI21 = φ1u
β
∫ ε

0
yβ−α dy

∞∑
x=1

sup
k≥1

( 1− (1− y)k
(u/c) + k − 1 + x

)α

= φ1u
β
∫ ε

0
yβ dy

∞∑
x=1

sup
k≥1

( 1− (1− y)k
y((u/c) + x− 1) + yk

)α

= φ1u
β
∫ ε((u/c)+x−1)

0

zβ

((u/c) + x− 1)β d
(

z

(u/c) + x− 1

)

×
∞∑
x=1

sup
k≥1

(1−
(
1− z

(u/c)+x−1

)k
z + zk

(u/c)+x−1

)α

= φ1

∞∑
x=1

uβ

((u/c) + x− 1)β+1

∫ ε((u/c)+x−1)

0
zβ(gu,x(z))α dz, (7.19)

where

gu,x(z) := sup
k≥1

1−
(
1− z

(u/c)+x−1

)k
z + zk

(u/c)+x−1
1(0 < z < ε((u/c) + x− 1)). (7.20)

According to Lemma 7.2.2, below, the function gu,x(z) tends to g(z) in (7.7),
as u → ∞, and satisfies condition (7.25), therefore, by dominated convergence
theorem, the integral in (7.19) tends to

∫ ∞
0

zβgα(z) dz <∞

uniformly in x ≥ 1. We also have that

∞∑
x=1

uβ

((u/c) + x− 1)β+1 =
∞∑
x=0

1
u

1(
(1/c) + (x/u)

)β+1 →
∫ ∞

0

dx
((1/c) + x)β+1 = cβ

β
.

Whence and from (7.19) we obtain that

lim
u→∞

uβI21 = φ1c
β

β

∫ ∞
0

zβgα(z) dz. (7.21)

On the other hand,

|I22| ≤ CE
[
(1− a)−α1(0 < a < 1− ε)

∞∑
x=1

sup
k≥1

( 1− ak
(u/c) + k − 1 + x

)α]

≤ C
∞∑
x=1

( 1
(u/c) + x

)α
= O(u−(α−1))

implying limu→∞ u
βI22 = 0 thanks to condition β < α− 1.
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Consider the term I1 in (7.17):

I1 = E
0∑

x=−∞
sup
n≥1

(∑n
t=1 a

t−x
)α

(u+ nc)α = E
0∑

x=−∞
sup
n≥1

a(1−x)α(1− an)α
(1− a)α(u+ nc)α

= c−α
∫ 1

0
dy y−αφ(1− y)

0∑
x=−∞

(1− y)(1−x)α sup
n≥1

(1− (1− y)n
(u/c) + n

)α

= c−α
{ ∫ ε

0
dy y−αφ(1− y)

0∑
x=−∞

(1− y)(1−x)α sup
n≥1

(1− (1− y)n
(u/c) + n

)α

+
∫ 1

ε
dy y−αφ(1− y)

0∑
x=−∞

(1− y)(1−x)α sup
n≥1

(1− (1− y)n
(u/c) + n

)α}
=: c−α

{
I11 + I12

}
.

For notational simplicity, assume that φ(1 − y) = φ1y
β, 0 < y < ε. Then uβI11

can be rewritten as

uβI11 = uβφ1

∫ ε

0
dy yβ−α

0∑
x=−∞

(1− y)(1−x)α sup
n≥1

(1− (1− y)n
(u/c) + n

)α
= uβφ1

∫ ε

0
dy yβ (1− y)α

1− (1− y)α sup
n≥1

(1− (1− y)n
(yu/c) + yn

)α
= cβφ1

∫ εu/c

0
dz
( c
u

) (1− cz/u)α
1− (1− cz/u)α z

β sup
n≥1

(1− (1− cz/u)n
z + czn/u

)α
= cβφ1

∫ εu/c

0
dz
(cz
u

) (1− cz/u)α
1− (1− cz/u)α z

β−1(gu,1(z))α,

Using Lemma 7.2.2, below, and the facts that

lim
x→0

x(1− x)α/(1− (1− x)α) = 1/α

and
0 ≤ x(1− x)α/(1− (1− x)α) ≤ 1/α

for all x ∈ (0, 1], we have that

lim
u→∞

uβI11 = φ1c
β

α

∫ ∞
0

zβ−1gα(z) dz. (7.22)

Next,

I12 = E
[
(1− a)−α1(0 < a < 1− ε)

0∑
x=−∞

a(1−x)α sup
n≥1

( 1− an
(u/c) + n

)α]

≤ cαE
[
(1− a)−α1(0 < a < 1− ε) aα

1− aα
]
u−α

= Cu−α.
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Since β < α− 1, we have limu→∞ u
βI12 = 0. This proves part (i).

(ii) We use Theorem 7.2.1 as in part (i). Conditionmn = O(nγ) is proved in (4.35),
with γ = 1/α ∈ (0, 1). Therefore it suffices to show (7.10) for ψ0(u). Consider the
expectation I2 in (7.17). Then

uα−1I2 = uα−1c−αE
[

1
(1− a)α

∞∑
x=1

1
((u/c) + x− 1)α q

α
u (a, x)

]
,

where
qu(a, x) := sup

k≥1

1− ak

1 + k
(u/c)+x−1

.

Note 0 ≤ qu(a, x) ≤ 1 and qu(a, x) → 1, u → ∞, for any 0 < a < 1, x ≥ 1 fixed.
Indeed,

qu(a, x)− 1 = sup
k≥1

−ak − k
(u/c)+x−1

1 + k
(u/c)+x−1

= − inf
k≥1

ak + k
(u/c)+x−1

1 + k
(u/c)+x−1

→ 0

follows by taking e.g. k = [log u] in the last infimum. Therefore by the dominated
convergence theorem

lim
u→∞

uα−1I2 = c−α lim
u→∞

E
[

1
(1− a)α

∞∑
x=1

uα−1

((u/c) + x− 1)α

]

= 1
c(α− 1)E

[ 1
(1− a)α

]
= c−1K(α,Φ), (7.23)

where we used the fact that the last expectation is finite.

Next, consider

I1 = E
[

aα

(1− aα)(1− a)α
(

sup
n≥1

1− an
u+ nc

)α]
.

We claim that I1 = o(u−(α−1)) and therefore part (ii) follows from the limit in
(7.23). To prove the last claim, split the expectation I1 = I11 + I12 according to
whether 0 < a < 1− ε or 1− ε < a < 1 holds, similarly to (7.18). It is clear that
I11 = O(u−α) = o(u−(α−1)). Therefore it suffices to estimate I12 only. Then using
(7.26), below, and the inequality |1− (1− y)α| > Cy, 0 < y < ε, we obtain

I12 ≤ C
∫ ε

0

yβ−α dy
1− (1− y)α

(
sup
n≥1

1− (1− y)n
u+ nc

)α
≤ C

∫ ε

0
yβ−1 dy

(
sup
n≥1

1− (1− y)n
y(u/c) + ny

)α
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≤ C
∫ ε

0
yβ−1 dy

(
sup
n≥1

1− e−ny
y(u/c) + ny

)α
≤ C

∫ ε

0
yβ−1gα(yu/c) dy

≤ C
∫ ε

0

yβ−1

(1 + yu)α dy = Cu−β
∫ εu

0

zβ−1

(1 + z)α dz,

where the last inequality follows from (7.8). If α > β, the last integral is bounded
and hence I12 = O(u−β) = o(u−(α−1)). On the other hand, if β ≥ α, we easily ob-
tain I21 = O(u−α log(u)) = o(u−(α−1)). This concludes the proof of Theorem 7.1.1.

Lemma 7.2.2. Let g(z), gu,x(z) be defined at (7.7), (7.20), respectively. Then

lim
u→∞

gu,x(z) = g(z), ∀ z > 0, ∀x ≥ 1, (7.24)

gu,x(z) ≤ Cg(z), ∀ z > 0, ∀u ≥ 1, ∀x ≥ 1, (7.25)

where the constant C is independent of u, x, z. The function g(z) satisfies (7.8).

Proof. Let τk(y) := (1− (1− y)k)/(1− e−ky), 0 < y < 1, k = 1, 2, . . . . Let us first
prove the elementary inequality: for any 0 < ε < 1 there exists a constant C > 0,
independent of 0 < ε < 1, k ≥ 1 and such that

|τk(y)− 1| ≤ C(ε+ k−1), ∀ 0 < y < ε, ∀ k = 1, 2, . . . . (7.26)

Indeed, let 0 < y ≤ 1/(2k). Since 1− e−x ≥ x/2, 0 < x < 1/2 so

|τk(y)− 1| ≤ 2 |e
−ky − (1− y)k|

ky
≤ C

k|e−y − 1 + y|
ky

≤ Cy ≤ C/k.

Next, let 1/(2k) < y < ε < 1. Then 1 − e−ky ≥ 1 − e−1/2 > 0 and log(1 − y) ≤
−y(1− ε). Therefore

|τk(y)− 1| ≤ C|e−ky − (1− y)k| ≤ C sup
k≥1, 1/2<x≤εk

|ek log(1−x
k

) − e−x|

≤ C sup
x>1/2

(
e−x(1−ε) − e−x

)
≤ Cε

since supx≥1/2 xe−x(1−ε) <∞. This proves (7.26).
Using (7.26) we can write

gu,x(z) := sup
k≥1

τk

(
z

(u/c) + x− 1

)1− e−
zk

(u/c)+x−1

z + zk
(u/c)+x−1

1(0 < z < ε((u/c) + x− 1))

≤ C sup
k≥1

1− e−
zk

(u/c)+x−1

z + zk
(u/c)+x−1

≤ Cg(z), (7.27)

thus proving the bound in (7.25). The convergence (7.24) follows similarly from
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(7.27) and (7.26).
To show (7.8), note that ω 7→ 1−e−ω

z+ω increases on the interval (0, ω∗) and
decreases on (ω∗,∞), where ω∗ = ω∗(z) > 0 is the unique solution of ω + z + 1 =
eω. Thus, g(z) = 1

z+1+ω∗ . It is clear that ω∗ → 0, as z → 0, and therefore
limz→0 g(z) = 1. Moreover, ω∗ → ∞, as z → ∞, and ω∗ ≤ log(1 + z), implying
limz→∞ zg(z) = limz→∞

z
z+1+ω∗ = 1. Lemma 7.2.2 is proved.
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8
Conclusions

The main conclusions of the thesis research:
• We have extended the aggregation scheme of random-coefficient AR(1) pro-

cesses from finite variance to infinite variance case. Under assumptions, that
innovations belong to the domain of normal attraction of an α−stable law and
that the density function of a random coefficient is regularly varying at the "unit
root" a = 1 with exponent β > −1, 1

φ(a) ∼ C(1− a)β, as a ↑ 1, (8.1)

we found conditions under which the limit aggregated process exists and can be
represented as a moving-average (3.22) in common innovations case and a mixed
α−stable moving-average (4.4) in idiosyncratic innovations case (see Table 8.1.,
page 175). The long memory properties of the limit aggregated processes depend
on parameters β and α, 0 < α ≤ 2. The β is smaller, the dependence in the
limit aggregated process is stronger. Smaller β means the mixing distribution 2

is putting more weight near the unit root a = 1. Note, that in the case of
common innovations, the limit aggerated process is moving average, which is
well defined for 1/α − 1 < β. If β > 0, coefficients of this moving-average are
absolutely summable. Therefore, it’s partial sums will converge to the process with
independent increments and the moving average will admit distributional short
memory. In the case of idiosyncratic innovations, the limit aggregated process is

1. Note, that in the Chapter 3, the mixing density (3.3) depends on parameters d1, d2. Here
we give results for d1 := β, assuming, that a ∈ [0, 1) a.s.

2. The distribution of the random coefficient a is called the mixing distribution.
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the mixed α−stable moving average, which is well defined for β > 0. We proved,
that for 0 < α ≤ 1, partial sums of the mixed α−stable moving average will also
converge to the process with independent increments. It follows, that the case
0 < α ≤ 1 can not lead to the long memory. Only for 1 < α ≤ 2 we can (expect
to) get long memory. These facts are illustrated in the Figure 8.1 and in the
Table 8.1 (page 175) too.

Figure 8.1: Distributional LM areas

• The second aim was to describe the aggregation scheme of independent AR(1)
processes, which leads to the case of finite variance but not necessary Gaussian 3

or infinite variance but not necessary stable limit aggregated process. For this
reason, we discussed the contemporaneous aggregation of independent copies of
a triangular array of random-coefficient AR(1) processes with independent in-
novations belonging to the domain of attraction of an infinitely divisible law W .
Under general assumptions onW and the mixing distribution, we showed that the
limit aggregated process exists and is represented as a mixed infinitely divisible
moving-average (5.4), page 84.

The long memory properties of the limit aggregated process were studied under
assumption, that the mixing density is regularly varying at the “unit root” a = 1
with exponent β > 0 (see (8.1)), and that EW 2 < ∞. We showed that the

3. In the scientific literature is described the aggregation scheme of independent AR(1) pro-
cesses, which leads to the Gaussian case.
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partial sums of the mixed infinitely divisible moving-average (5.4) may exhibit
four different limit behaviors depending on β and the Lévy triplet (µ, σ, π) of W
(see (5.6)). Note, that the behavior of Lévy measure at the origin

lim
x→0

xα0π({u > x}) = c+, lim
x→0

xα0π({u ≤ −x}) = c−.

is very important for the limits of partial sums. The four limit behaviors of
Sn(τ) := ∑[nτ ]

t=1 X(t) are:

(i) if 0 < β < 1, σ > 0, the limit is fractional Brownian motion with self-
similarity parameter H = 1− β/2,

(ii) if 0 < β < 1, σ = 0, 1+β < α0 < 2, the limit is α0−stable self-similar process
with dependent increments and self-similarity parameter H = 1− β/α0,

(iii) if 0 < β < 1, σ = 0, 0 < α0 < 1 + β, the limit is (1 + β)−stable Lévy
process with independent increments,

(iv) if β > 1, the limit is Brownian motion.

Accordingly, the process {X(t), t ∈ Z} in (5.4) has distributional long memory
in cases (i) and (ii) and distributional short memory in case (iii). At the same
time, {X(t), t ∈ Z} has covariance long memory in all three cases (i)-(iii). Case
(iv) corresponds to distributional and covariance short memory. See generalizing
Table 8.2, page 176.
• And finally, we extended the aggregation scheme from one-dimensional pro-

cesses to two-dimensional random fields. We described the aggregation scheme
of independent nearest-neighbor random fields with innovations belonging to the
domain of attraction of an α−stable law and showed that the limit aggregated
random field is mixed stable moving average in (6.10). Since the properties of
the limit aggregated random field are highly dependent on individual models, we
studied partial sums of the limit aggregated field in two special cases. Assuming
that individuals are described by 3N and 4N models (see (6.14) and (6.15)), we
showed that the partial sums of the limit aggregated random field converge to op-
erator scaling random fields. In order to explain these results and the dependence
structure of random fields, we introduced the notion of anisotropic/isotropic long
memory for random fields on Z2, whose partial sums on incommensurate rect-
angles with sides growing at different rates O(n) and O(nH1/H2), H1 6= H2, tend
to an operator scaling random field on R2 with two scaling indices H1, H2. We
proved, that the limit aggregated random field has anisotropic distributional long
memory with parameters H1 = (1/2+α−β)/α, H2 = 2H1, if micro behavior is de-
scribed by 3N model. And the limit aggregated random field will admit isotropic
distributional long memory with parameter H = 2(α − β)/α, if individuals are
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described by 4N model. See the Table 8.3, page 177.
Note, that the definition of anisotropic/isotropic distributional long memory

is new. Using this definition we described the depencence structure of the limit
aggregated random field in two special cases. In the future, we expect to prove,
that the random field {Y (t, s), (t, s) ∈ Z2} can have anisotropic distributional long
memory with only one combination of parameters H1, H2, i.e. if {Y (t, s), (t, s) ∈
Z2} has anisotropic distributional long memory with parameters H1, H2, then,
for parameters H̃1 := H1 and H̃2 6= H2, the limit of partial sums

n−H̃1
[nx]∑
t=1

[nH̃1/H̃2y]∑
s=1

Y (t, s) →fdd V (x, y), (x, y) ∈ R2
+,

will have independent increments in some direction and random field will not
admit anisotropic distributional long memory with parameters H̃1 := H1 and
H̃2 6= H2. But this is an open question today.
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Aggregation of AR(1) processes, ε(t) ∈ D(α), 0 < α ≤ 2
Common innovations Idiosyncratic innovations
Individuals:

Xi(t) = aiXi(t−1)+ε(t), i = 1, . . . , N. Xi(t) = aiXi(t−1)+εi(t), i = 1, . . . , N.

Aggregated process:

X̄N(t) := 1
N

N∑
i=1

Xi(t), t ∈ Z. X̄N(t) := 1
N1/α

N∑
i=1

Xi(t), t ∈ Z.

The limit aggregated process: The limit aggregated process:
if 1/α− 1 < β,

X(t) =
∞∑
j=0

E[aj]ε(t− j), t ∈ Z,

if 0 < β,

X(t) =
∑
s≤t

∫ 1

0
at−sMs(da), t ∈ Z,

whereMs(·), s ∈ Z, are i.i.d. copies of
an α−stable random measure.

if −1 < β < 1/α − 1, the moving av-
erage is not defined.

If −1 < β < 0, X̄N(t) →fdd Z̃, where
Z̃ is α(1 + β)−stable r.v., which does
not depend on t.

Long memory properties: : Long memory properties:

if β > 0, if β > max(α− 1, 0),
X(t) has distributional short memory, X(t) has distributional short memory,

if 1/α− 1 < β < 0, if 0 < β < max(α− 1, 0),
X(t) has distributional long memory. X(t) has distributional long memory.

Finite variance case:
α = 2, β > −1/2:

r(h) ∼ Ch−2β−1, as h→∞.

Covariance long memory:

α = 2, β > 0:

r(h) ∼ Ch−β, as h→∞.

Covariance long memory:
if −1/2 < β < 0. if 0 < β < 1.

Table 8.1: Aggregation of AR(1) processes, ε(t) ∈ D(α), 0 < α ≤ 2
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Aggregation of AR(1) processes, {ε(N), N ∈ N∗} ∈ D(W )
Common Idiosyncratic innovations
innovations

Individuals:

X
(N)
i (t) = aiX

(N)
i (t− 1) + ε

(N)
i (t), t ∈ Z, i = 1, 2, . . . , N

Aggregated process:

X̄N(t) :=
N∑
i=1

X
(N)
i (t), t ∈ Z.

The limit aggregated process:
OPEN
QUESTION

for β > 0,

X(t) =
∑
s≤t

∫ 1

0
at−sMs(da), t ∈ Z,

where Ms(·), s ∈ Z, are i.i.d. copies of an infinitely divisible
random measure.
Long memory properties (finite variance case, EW 2 <∞ ):

if 0 < β < 1, σ = 0, 0 < α0 < 1 + β, or
if β > 1,
X(t) has distributional short memory,

if 0 < β < 1, σ > 0, or
if 0 < β < 1, σ = 0, 1 + β < α0 < 2,
X(t) has distributional long memory,

Covariance function:

r(h) ∼ Ch−β, as h→∞.

Covariance long memory: if 0 < β < 1.
Long memory properties (infinite variance case):

OPEN QUESTION

Table 8.2: Aggregation of AR(1) processes, {ε(N), N ∈ N∗} ∈ D(W )
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Aggregation of nearest-neighbor random fields, ε(t, s) ∈ D(α)
Common Idiosyncratic innovations
innovations

Individuals: (t, s) ∈ Z2,

Xi(t, s) =
∑

|u|+|v|=1
ai(u, v)Xi(t+u, s+v)+εi(t, s), i = 1, . . . , N,

Aggregated field:

X̄N(t, s) := N−1/α
N∑
i=1

Xi(t, s), (t, s) ∈ Z2.

The limit aggregated field:
OPEN
QUESTION

X(t, s) =
∑

(u,v)∈Z2

∫
A
g(t− u, s− v, a)Mu,v( da), (t, s) ∈ Z2,

where Mu,v(·), (u, v) ∈ Z, are i.i.d. copies of an α−stable
random measure. g(t, s, a) is a lattice Green function, and
A := {a(t, s) ∈ [0, 1), ∑|t|+|s|=1 a(t, s) < 1} ⊂ R4.
Long memory properties:

New notion of long memory for random fields on Z2 -
Anisotropic/isotropic distributional long memory.

3N case:
for 1 < α ≤ 2, 0 < β < α− 1,
X(t, s) has anisotropic distributional long memory with param-
eters H1 = (1/2 + α− β)/α, H2 = 2H1,

4N case:
for 1 < α ≤ 2, 0 < β < α− 1,
X(t, s) has isotropic distributional long memory with parame-
ter H = 2(α− β)/α.

Table 8.3: Aggregation of nearest-neighbor random fields, ε(t, s) ∈ D(α)
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