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Abstract

In this document, the author collected his work that ranges through the years 2006 −
2013. The common theme that occurs in its five separate parts is that of families of
algebraic curves defined over the rational numbers with points over a number field or
over its ring of integers. In the first part, average number of rational points of small
height on hyperelliptic curves of fixed genus is described. In the second part, this result
is extended to describing how often, on average, values of homogeneous polynomials at
pairs of small coprime integers are values of a given univariate polynomial with integer
coefficients. Further, small families of curves that are defined over the rational numbers
and do not have points over a given number field are constructed. In the subsequent
part, congruent number curves are investigated. It is shown that, given a cyclic number
field K, at least half of the prime numbers p that remain inert in K correspond to curves
16p2 = x4−y2 that do not have nontrivial points over the ring of integers of K. In the last
part, a short exposition to a classical technique of showing that a particular curve does not
have integral points is given.
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Chapter 1

Notation

A×B - the cartesian product of sets A and B

x, y, z, t - free variables

Z - the set of all integers

Q - the set of all rational numbers

K,L - number fields

K/Q, L/K - field extensions

[L : K] - degree of the field extension L/K

Gal(L/K) - the Galois group of a Galois field extension L/K

K(t) - field extension of K that is generated by t

OK - the set of all integral elements of a number field K

P1(Q) - the projective line over the field of rational numbers

R - the set of all real numbers

C - the set of all complex numbers

i - the complex number
√
−1

||v|| - the L2-norm of a vector v
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O(f) - the set of all functions g that are bounded by a constant multiple of f for all large
enough arguments

ϕ - the Euler’s totient function

4



Chapter 2

Introduction

In this document, the author collected his work that ranges through the years 2006-2013.
The common theme that occurs in its separate parts is that of families of algebraic curves
defined over the rational integers with points over a number field or over its ring of integers.
In general, this theme is a very rich and may give rise to problems that can be very difficult.
The ones that are adressed here are but very modest. We will try to describe below some
of the general as well as more immediate context in which these questions occur.

2.1 Literature review

Given an irreducible polynomial F (x, y) ∈ Z[x, y] in two variables x, y, the equation
F (x, y) = 0 defines an algebraic curve. The problem of determining all integral or all
rational solutions to the equation is an instance of a Diophantine problem. In 1900, D.
Hilbert raised the famous question that asked for an algorithm that would solve any spec-
ified Diophantine problem. 70 years later a proof was given that no such algorithm exists.
Thus, in a sense, the question "How to solve Diophantine equations?" has no answer. If,
however, one restricts the question to a subfamily of Diophantine problems, then such an
algorithm may sometimes be expected. The answer to this question for Diophantine equa-
tions in two variables, i.e., curves, up to this point is not known. However, according to
[27], "there are quite good reasons to believe that there should be a positive answer".

By viewing curves over the complex numbers, one obtains an important topological classi-
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fication. When the curve F (x, y) = 0 is nonsingular and irreducible in C[x, y], its complex
points have a natural structure of a Riemann surface in C2. The surface can be turned into
a compact Riemann surface by adding at most two additional points. The natural invariant
of this surface - its genus - is then also an invariant of the curve and, as it turns out, can
be a basis to infer information about rational or integral points on it. First, while curves
of genus zero have rational parametrizations (that is, there exist functions x(t), y(t) ∈ C(t)

that satisfy F (x(t), y(t)) = 0), it is not very difficult to show that curves of genus one or
larger do not. Secondly, Siegel’s theorem tells that a curve of genus one or larger has at
most finitely many points over the ring of integers of a number field. Due to the work of
Baker, the height of these points can be bounded in terms of the coefficients of the defining
equation. Further, the theorem of Faltings says that a curve of genus at least two has at
most finitely many points over a number field.

While, given a number field K, the K-rational points on a curve of genus zero can be
parametrized by rational functions, the structure of K-rational points on curves of positive
genus is more difficult to see. For a curve of genus one defined by the equation

y2 = ax3 + bx2 + cx+ d,

one has a natural addition operation on it that is induced by mapping the sum of any
three collinear points to the point at infinity. One can show that this gives the curve the
structure of an abelian group. The theorem of Mordell-Weil tells that the subgroup of its
K-rational points is finitely generated. Rational points of finite order can be determined
due to the theorem of Nagell-Lutz. In this case, all possible subgroups of points of finite
order are described by the theorem of Mazur. The theorem of Merel says that K-rational
points of finite order have order no larger than d3d2 , where d = [K : Q] is the degree of the
field extension K/Q. The rank of the group of K-rational points can be arbitrarily large
when K varies. It is also conjectured that there exist curves with arbitrarily large rank
when K = Q.

When the equation that defines the curve is more general (for instance, when genus of the
curve is larger than one), there need not be very obvious group structure. However, when
the genus is positive, the complex points on a curve can be embedded to a variety J that
is called the Jacobian of the curve and has a group structure. Analogously to the above,
the K-rational points on J comprise a finitely generated subgroup, as the Mordell-Weil
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theorem guarantees. Analogues of theorems of Mazur and Merel are not known in this
generality.

Given a curve and a number field K, knowledge about K-rational points on it can be
obtained by studying the curve modulo powers of a prime ideal of OK . Obviously, if the
curve has no points over the respective local field, then it does not have points over K.
The Hasse principle ensures that the converse for curves of genus zero is also true: if the
curve has a point over each local field, then it has a point over K. However, this principle
needs not hold for curves of higher genus: as is asserted in [24], for every number field K
there exists a curve defined over K that violates the Hasse principle.

Aside from when a given curve does not have points in some p-adic field, other well-known
obstructions from it having (K-)rational points is descent, that is known at least since
Fermat’s proof that perfect squares are not congruent numbers, and the Brauer-Manin
obstruction.

2.2 Methods

The work can be loosely divided into two parts: the first one, that is comprised of the first
two chapters, investigates the average number of solutions of bounded height. The second
part is concerned with showing that certain curves do not have points in a fixed ring or a
field. The employed methods can be grouped into two parts according to this division as
well.

The central idea of the first part is geometric and belongs to author’s former supervisor
prof. Michael Stoll. The geometric structure of hyperelliptic curves that have a fixed
rational point is that of a translated lattice. By the method of geometry of numbers, one
can estimate the number of intersection points of a translated lattice with a ball in the
Euclidean space in terms of radius of the ball, the covolume (determinant) of the lattice, the
length of its longest diagonal and its distance from the origin. When the radius of the ball
is large compared to the length of the diagonals of the lattice, one obtains a good estimate
for the number of points. The covolume of the lattice that is needed for this estimation
can be expressed in terms of the x-coordinate of the rational point by using the recurrence
for the determinants of tridiagonal matrices. The summation over all translations of a
fixed lattice then is approximated by an integral. The convergence of the density constants
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γ(H) is proved by exploiting a suitable summation order. In the second work of the first
part, a more general setting is considered. In order to be able to apply the methods of the
first work, an additional lemma that bounds the difference of two integrals in terms of a
derivative of a certain function is proved.

In the statements of the second part, a number of known results are used. In the proof of the
existence of a genus four curve defined over the rationals without points over a number field
9, borrowed are Faltings’ theorem and Schinzel’s genralization of Hilbert’s irreducibility
theorem. In the subsequent theorem that proves a similar result for curves of genus zero,
the Chebotarev density theorem and the unique factorization of ideals in rings of integers of
number fields are employed. In the proof of the statement about congruent number curves
over rings of integers of odd degree cyclic number fields, in addition to the Chebotarev
density theorem and unique factorization of ideals, also is used Dirichlet’s unit theorem
as well as two recent results: the theorem of Green and Tao on arithmetic progressions in
prime numbers and a theorem of Jarden and Narkiewicz that asserts existence of many
terms in arithmetic progressions that are not sums of units of a finitely generated integral
domain of zero characteristic. In the last chapter, the fact that the ring of Gaussian integers
is a unique factorization domain plays a role.

2.3 Actuality and Novelty

The work "On the average number of rational points of bounded height on hyperelliptic
curves" is a heuristic of a conjecture of Stoll (Conjecture 1 in [28]). It demonstrates that
points of small height on hyperelliptic curves are "few". By now, major advnacements in
the direction of the conjecture have been made by [1], [2], [23].

The subsequent work "How many integer homogeneous polynomials at small coprime in-
tegers have value of a univariate polynomial?" investigates how the average number of
solutions changes in a slightly more general setting than that in the preceeding work.

In the next chapter, constructed are some special curves defined over the rational numbers
that have no points over a given number field K. An analogous question for elliptic curves
defined over number fields has been adressed in Theorem 1.1 of [20].

Further, the classical congruent number problem is investigated over rings of integers of
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some number fields. It has been recently demonstrated in [16] that, conditionally on the
Birch and Swinnerton-Dyer conjecture, every congruent number curve has a point over the
number field Q(

√
3,
√

5). Here, it is shown that there are many congruent number curves
that do not have nontrivial points over the ring of integers of a cyclic number field.

In the last chapter, a short exposition to a classical technique of showing that a particular
curve does not have integral points is given.

2.4 Results and conclusions

As a heuristic of the conjecture of Stoll (Conjecture 1 in [28]) that most hyperelliptic curves
do not have points over the rational numbers, we prove the following about the average
number of rational points of small height:

let #CN denote the number of hyperelliptic curves of genus (n − 2)/2 and size at most
N , where the size of a hyperelliptic curve y2 = fnx

n + fn−1x
n−1 + ... + f0 is defined to be

N(f) =
√
f 2
n + f 2

n−1 + ...+ f 2
0 and denote by #RN(H) the number of rational points of

height at most H on them, counted with multiplicities. Then

Theorem 1. For any natural numbers H,N such that H
√
n < N holds

√
N

#RN(H)

#CN
= γ(H) +O(N−

1
2H2 +N−1H3), (2.1)

where γ(H) does not depend on N .

Moreover, we show that γ(H) converges when H tends to infinity. Subsequently, we extend
this result to the following:

Theorem 2. Let a polynomial p of degree m > 0 be fixed. Then for any natural numbers
H,N such that H

√
n < N holds

#{(a/b ∈ Q, c ∈ Z, f)| height(a/b) ≤ H,N(f) ≤ N, p(c) = bnf(a/b)}

= γp(H)Nn+1/m +O(Nn+1/m−1H3 +NnH2),

where γp(H) does not depend on N .
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More generally, one may expect that most hyperelliptic curves do not have points over any
number field. We construct curves that do not have points over a given number field in
the next chapter. In particular, we show that

Theorem 3. Given a Galois extension K of the field of rational numbers, of finite degree
d, the lower density of prime numbers p such that for any a ∈ Z that is not a square
modulo p, the curve y2 = px2 + a has no points over K, is at least 1/d in the set of all
prime numbers.

Further, we investigate a family of curves that arises from the congruent number problem.
Conditionally on the conjecture of Birch and Swinnerton-Dyer, all of these curves have
points over the number field Q(

√
3,
√

5). We show that many of them do not have nontrivial
points over rings of integers of cyclic number fields. Namely,

Theorem 4. Let K be a finite Galois extension of the field of rational numbers with cyclic
Galois group. Then, asymptotically, at least half of the prime numbers p that are inert in
K correspond to curves

16p2 = x4 − y2

that do not have points over OK with x 6= 0.

2.5 Approbation

The work that is presented in this thesis has appeared in the following papers:

• Zinevičius A., On the average number of rational points of bounded height on hyper-
elliptic curves, Beiträge zur Algebra und Geometrie/Contributions to Algebra and
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• —, How many integer homogeneous polynomials at small coprime integers have value
of a univariate polynomial?, Lithuanian Mathematical Journal 52(4), 477-487 (2012),
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(2012).
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Chapter 3

On the average number of rational
points of bounded height on
hyperelliptic curves

3.1 Introduction

Fix an integer g ≥ 2. Let n = 2g + 2. Consider the equation

y2 = fnx
n + fn−1x

n−1 + ...+ f0 (3.1)

with integral coefficients fn, ..., f0. For the above to define a hyperelliptic curve of genus g
we must impose two restrictions on the polynomial f(x) = fnx

n + ...+ f0, namely, at least
one of the coefficients fn, fn−1 must be nonzero (C1) and f cannot have multiple roots
(C2). Rational points on a curve given by (3.1) correspond to solutions of

y2 = znf(
x

z
) = fnx

n + fn−1x
n−1z + ...+ f0z

n = Ff (x, z) (3.2)

in integers y, x, z with x coprime to z. The theorem of Faltings [12], proved in 1983, yields
that the number of rational points on any hyperelliptic curve is finite. This fact gives rise
to questions about the cardinality of rational points on varying families of curves. The
Uniformity Conjecture stated in the work of Caporaso, Harris and Mazur [3] predicts the
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existence of a uniform bound on the number of rational points a curve of genus g ≥ 2

may have. In another direction, there arises a question of how many rational points "on
average" there are on hyperelliptic curves of fixed genus, which can be made precise in the
following way:

given the L2-norm
N(f) =

√
f 2
n + f 2

n−1 + ...+ f 2
0

on the set of polynomials of degree at most n, let

CN = {f ∈ Z[x] | f satisfies (C1), (C2), N(f) ≤ N}

be the set of those polynomials that we can identify with curves of genus g by writing
y2 = f(x).

Let
RN = {(f, (a : b)) ∈ CN × P1(Q)|Ff (a, b) = y2 for some y ∈ Z}

be the subset of CN × P1(Q) that consists of curves with rational points, each curve being
taken as many times as there are rational points with different x-coordinates on it (we
will further refer by a "rational point" to the x-coordinate (a : b) only). In question then
is the behaviour of the ratio #RN

#CN
when N tends to infinity. Conjecture 1 given in the

work of Stoll [28] states that this ratio should be asymptotically equivalent to γ√
N

for some
constant γ = γ(g).

In this note we estimate the average number of rational points of small height. More
precisely,

define the height of a rational point (a : b) ∈ P1(Q) as

H(a : b) = max{|a|, |b|}.

Denote by RN(H) the subset of RN consisting of curves that have a rational point (a : b)

of height H(a : b) ≤ H, each curve taken with respective multiplicity. We look at the ratio
#RN (H)

#CN
and, in what follows, prove that

Theorem 5. For any H,N such that H
√
n < N holds

√
N

#RN(H)

#CN
= γ(H) +O(N−

1
2H2 +N−1H3), (3.3)
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where γ(H) does not depend on N .

Consequently, we will obtain the following bound for the lower limit:

Theorem 6.
lim inf
N→∞

√
N

#RN

#CN
≥ γ, (3.4)

where γ = limH→∞ γ(H).

3.2 Counting CN

Let us prove the following lemma that will reocurr throughout the estimations of this
paper:

Lemma 1. Let Λ = Zw1 + Zw2 + ... + Zwk ⊂ Rk be a k-dimensional lattice generated by
the vectors w1, ...wk. Then, for N > δ, we have

vol(Bk
N−δ)

∆
≤ #(Λ ∩Bk

N) ≤
vol(Bk

N+δ)

∆

where Bk
R is the k-dimensional ball of radius R, ∆ is covolume of the lattice and δ is half

the length of the longest diagonal of the fundamental parallelotope of Λ.

Proof. Let

Λ′ =
1

2
(w1 + w2 + ...+ wn) + Λ,

then Λ′ is a translation of Λ, and each of the parallelotopes that Λ′ partitions Rk into,
has at its centre a point of Λ. Call a parallelotope P cut by Λ′ inner if the point of Λ

at the centre of P lies inside the ball Bk
N , and outer otherwise. Moreover, if P intersects

the boundary of Bk
N , call P inner boundary parallelotope (outer boundary parallelotope

respectively).

We claim thatBk
N−δ contains no interior point of any outer boundary parallelotope. Assume

it contained such a point. Then, since that point is distanced from the centre of the
parallelotope by a distance less than δ, increasing the radius of the ball by δ would also
make the centre point of the parallelotope a point of Bk

N , contradicting the assumption
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that it is an outer parallelotope. Therefore the volume of Bk
N−δ is bounded by the sum of

volumes of inner parallelotopes, which leads to

#(Λ ∩Bk
N) ≥

vol(Bk
N−δ)

∆
.

In the same way we deduce thatBk
N+δ contains completely all inner boundary parallelotopes

of Bk
N to get the second inequality.

Now, due to the lemma, without restrictions (C1), (C2), the set of polynomials

PN = {f |f - polynomial of degree deg(f) ≤ n,N(f) ≤ N}

satisfies
vol(Bn+1

N−δ) ≤ #PN ≤ vol(Bn+1
N+δ),

where δ =
√
n+1
2

is half of the diagonal length of n+ 1-dimensional unit cube.

Let P ′N be the set of polynomials of degree deg(f) ≤ n − 2 in PN . In the same way we
infer from Lemma 1 that

#P ′N ≤ vol(Bn−1
N+
√
n−1/2

).

Next, let
P ′′N = {f ∈ PN |disc(f) = 0}

be the set of polynomials with zero discriminant. The following lemma will allow us to see
that #P ′′N = O(Nn) :

Lemma 2. Let f(x1, x2, ...xm) ∈ C[x1, x2, ...xm] be a polynomial of degree d > 0. Then the
number of its integral zeroes in [−N,N ]m does not exceed md(2N + 1)m−1.

Proof. We proceed by induction on m:

when m = 1, f is a one variable polynomial, thus the number of its zeroes does not exceed
d, which gives the inequality.

Assumed that the inequality is true for m ≤ k, consider m = k+1. Fix xk+1 at any integer
in [−N,N ]. There are at most d values of xk+1 for which f turns into the zero polynomial
(were there more, f(x1, x2, ...xm) had to be the zero polynomial itself). These values give
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at most d(2N + 1)k zeroes of f . The remaining values, by the inductive hypothesis, yield
no more than (2N + 1)kd(2N + 1)k−1 zeroes. Thus in total there are no more than

d(2N + 1)k + (2N + 1)kd(2N + 1)k−1 = (k + 1)d(2N + 1)k

integral zeroes in the hypercube [−N,N ]k+1, which completes the inductive step.

As disc(f) is a homogeneous polynomial of degree d = 2n−2 in n+1 variables fn, fn−1, ...f0,
Lemma 2 now guarantees that its zero set in the hypercube [−N,N ]n+1 is of order O(Nn).

We can now estimate the size of CN :

vol(Bn+1
N+
√
n+1/2

) ≥ #CN ≥ #PN−#P ′N−#P ′′N ≥ vol(Bn+1
N−
√
n+1/2

)−vol(Bn−1
N+
√
n−1/2

)−O(Nn)

and hence

#CN = vol(Bn+1
N ) +O(Nn) = Nn+1(vol(Bn+1

1 ) +O(
1

N
)). (3.5)

3.3 Counting RN(H)

Fix (a : b) ∈ P1(Q). Set

PN(a : b) = {f ∈ PN |f has (a : b) as a rational point}.

The linear map M : Rn+1 −→ R defined by f 7→ Ff (a : b) has n-dimensional kernel
spanned by the vectors

v1 = (a,−b, 0, 0, ..., 0),

v2 = (0, a,−b, 0, ..., 0),

...

vn = (0, 0, ..., 0, a,−b).
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It is easy to see that ker(M|Zn+1) is the n-dimensional lattice

Λ(a : b) = Zv1 + Zv2 + ...+ Zvn

(the inclusion ker(M|Zn+1) ⊂ Λ(a : b) is immediate from the fact that gcd(a, b) = 1). More
generally, the hyperplane

hy(a : b) = {f ∈ Rn+1|Ff (a, b) = y2}

is a translation of ker(M) and its integral points have the same structure as Λ(a : b).

Let ∆(a : b) denote the covolume of Λ(a : b).

Claim 1. ∆(a : b) =
√
a2n + a2n−2b2 + ...+ b2n.

Proof. Let

A =


a −b 0 0 ... 0

0 a −b 0 ... 0
...

0 0 ... 0 a −b

 .

The covolume of Λ(a : b) is given by

∆(a : b) =
√

det(AAT ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a2 + b2 −ab 0 0 ... 0

−ab a2 + b2 −ab 0 ... 0

0 −ab a2 + b2 −ab ... 0

... ... ... ... ... ...

0 ... 0 −ab a2 + b2 −ab
0 ... ... 0 −ab a2 + b2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2

.

By expanding the determinant with respect to the n-th row we get the recurrence relation

det(Tn) = (a2 + b2) det(Tn−1)− a2b2 det(Tn−2),
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where Tk is a k × k tridiagonal matrix of the same form. We leave it as an easy exercise
for the reader to see inductively that det(Tk) = a2k + a2k−2b2 + ...+ b2k.

Now, by Lemma 1, for N > δ we have

vol(hy(a : b) ∩Bn+1
N−δ)

∆(a : b)
≤ #(PN ∩ hy(a : b)) ≤

vol(hy(a : b) ∩Bn+1
N+δ)

∆(a : b)
.

Summing this over y gives∑∞
y=0 vol(hy(a : b) ∩Bn+1

N−δ)

∆(a : b)
≤ #PN(a : b) ≤

∑∞
y=0 vol(hy(a : b) ∩Bn+1

N+δ)

∆(a : b)
. (3.6)

Here δ can be taken to be half the length of the longest diagonal of the paralellotope

F = {t1v1 + ...+ tnvn|(t1, ..., tn) ∈ [0, 1]n}.

Clearly, it is at most
√
a2+(n−2)(|a|+|b|)2+b2

2
≤ H

√
4n−6
2

. We allow ourselves to set δ = H
√

4n−6
2

uniformly for all (a : b) with H(a : b) ≤ H and assume N ≥ H
√
n here and for the rest of

our considerations in order for N > δ to hold.

Let e = 1
∆(a:b)

(an, an−1b, ...bn) and let v(ρ) denote the n-dimensional volume of the inter-
section of Bn+1

1 with the hyperplane {x|e · x = ρ2}. Then

vol(hy(a : b) ∩Bn+1
t ) = tnv(

y√
t∆(a : b)

)

and therefore

∑∞
y=0 vol(hy(a : b) ∩Bn+1

t )

∆(a : b)
=

tn

∆(a : b)

∞∑
y=0

v(
y√

t∆(a : b)
).

The last sum is monotonically decreasing. Therefore one can approximate it by an integral
as follows:

18



∞∑
y=0

v(
y√

t∆(a : b)
) =

∫ ∞
0

v(
ρ√

t∆(a : b)
)dρ+O(1) =

√
t∆(a : b)

∫ ∞
0

v(ρ)dρ+O(1).

Notice that
∫∞

0
v(ρ)dρ = vol(Bn+1

1 )/2. Hence we can write:

tn

∆(a : b)

∞∑
y=0

v(
y√

t∆(a : b)
) = tn+ 1

2 vol(Bn+1
1 )γ(a : b) +O(

tn

∆(a : b)
), (3.7)

where γ(a : b) := 1

2
√

∆(a:b)
.

We now use the last equality to rewrite (3.6) into

(N − δ)n+ 1
2 vol(Bn+1

1 )γ(a : b) +O(
(N − δ)n

∆(a : b)
) ≤ #PN(a : b)

≤ (N + δ)n+ 1
2 vol(Bn+1

1 )γ(a : b) +O(
(N + δ)n

∆(a : b)
).

From this we deduce that

#PN(a : b) = Nn+ 1
2 vol(Bn+1

1 )γ(a : b) +O(Nn− 1
2H +Nn).

By summing up the last equality over all points (a : b) that satisfy H(a : b) ≤ H we get

#PN(H) =
∑

H(a:b)≤H

#PN(a : b)

= Nn+ 1
2 vol(Bn+1

1 )
∑

H(a:b)≤H

γ(a : b) +O(Nn− 1
2H3 +NnH2). (3.8)

Define γ(H) :=
∑

H(a:b)≤H γ(a : b), then

#PN(H) = Nn+ 1
2 vol(Bn+1

1 )γ(H) +O(Nn− 1
2H3 +NnH2). (3.9)
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From (3.5), we can see that the difference between #PN(H) and #RN(H) is bounded by
O(NnH2). That enables us to replace PN(H) by RN(H) in (3.9) to obtain

#RN(H) = Nn+ 1
2 vol(Bn+1

1 )γ(H) +O(Nn− 1
2H3 +NnH2). (3.10)

3.4 Evaluation of the ratio

Proof of Theorem 1. From (3.5) and (3.10) we obtain

#RN(H)

#CN
=

vol(Bn+1
1 )γ(H)

vol(Bn+1
1

√
N) +O( 1√

N
)

+
O(Nn− 1

2H3 +NnH2)

Nn+1 vol(Bn+1
1 ) +O(Nn)

=
γ(H)√
N

+O(N−
3
2 ) +

O(Nn− 1
2H3 +NnH2)

Nn+1 vol(Bn+1
1 ) +O(Nn)

=
γ(H)√
N

+O(N−
3
2 ) +O(N−

3
2H3 +N−1H2),

hence it follows that

√
N

#RN(H)

#CN
= γ(H) +O(N−

1
2H2 +N−1H3), (3.11)

as claimed.

Proof of Theorem 2. We first show that limH→∞ γ(H) <∞:

γ(H) =
∑

H(a:b)≤H

γ(a : b) =
1

2

∑
H(a:b)≤H

1
4
√
a2n + a2n−2 + ...+ b2n

<
1

2

∑
H(a:b)≤H

1
4
√

max{|a|2n, |b|2n}
.

To prove that the sum is bounded when H tends to infinity, we can allow ourselves to drop
the condition that a is coprime to b, which leads to the following inequality:
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γ(H) ≤ 1

2

∑
(a,b):H(a:b)≤H

1

max{|a|n2 , |b|n2 }
=

1

2

H∑
m=1

8m

m
n
2

= 4
H∑
m=1

1

mg
.

Since g ≥ 2, the last sum converges. This implies that the limit γ := limH→∞ γ(H) is
finite.

Now, let H = N1/4−u, 1
4
> u > 0, then (3.11) turns into

√
N

#RN(H)

#CN
= γ(H) +O(N−

1
4
−3u +N−2u)

and the claim is immediate: pick any ε > 0, then for N > 0 big enough both O(N−1/4−3u+

N−2u) < ε
2
and γ − γ(N1/4−u) < ε

2
hold simultaneously. Therefore

lim inf
N→∞

√
N

#RN

#CN
≥ lim inf

N→∞

√
N

#RN(N1/4−u)

#CN
> γ(N1/4−u)− ε

2
> (γ − ε

2
)− ε

2
= γ − ε,

which completes the proof.
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Chapter 4

How many integer homogeneous
polynomials at small coprime integers
have value of a univariate polynomial?

4.1 Introduction

Given a polynomial f(x) ∈ Z[x] with integer coefficients, an interesting and possibly very
difficult question is to determine all rational values of x for which the value of the polyno-
mial is a square of a rational number. If a/b (where a ∈ Z, b ∈ N are coprime) is such a
value of x, then bdeg(f)+(deg(f) mod 2)f(a/b) is a square of an integer. We are lead in this way
into investigating values of a two-variable homogeneous polynomial at coprime integers.

Let n ∈ N be a fixed natural number throughout this note. We denote by Pn the Z-module

Zxn + Zxn−1 + ...+ Z ⊂ Z[x]

of polynomials, coefficients of which are integers and degree is at most n. Let us further
identify Pn with Zn+1 (by identifying xn, xn−1, ..., 1 with the standard basis of Zn+1). When
a rational number a/b is fixed, polynomials f ∈ Pn that have it as a root comprise an n-
dimensional lattice Λ(a : b) ⊂ Zn+1 (see Section 2). If we vary a/b over the rational
numbers, the disjoint union of the resulting lattices corresponds to polynomials f ∈ Pn
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that have a rational root taken with multiplicities equal to the number of distinct rational
roots that they have. It is well-known that for n > 1 this set, viewed as a weighted subset
of Zn+1, has zero density (this can be derived from estimates for the number of reducible
polynomials, for instance, from [22]).

When a rational number a/b is fixed, polynomials f ∈ Pn that satisfy y2 = bnf(a/b) for an
integer value of y comprise a union of translations of Λ(a : b) by distances proportional to
y2 along the direction va,b (see Section 2). If we again vary a/b over the rational numbers,
the disjoint union of the resulting unions of translations of Λ(a : b) correspond to those
polynomials that are squares of a rational number at some rational value of x taken with
the occuring (possibly infinite) multiplicities.

If n = 6 and we discard from the above set those polynomials f ∈ P6 that are of degree
less than 5 or have a multiple root, then the equation y2 = f(x) defines a hyperelliptic
curve. Due to the theorem of Faltings, there are at most finitely many rational points
on such a curve. Therefore, the multiplicities of the remaining polynomials are finite. It
was conjectured in [28] that this set, viewed as a weighted subset of Z7, has zero density.
Uniformity Conjecture, stated in [3], predicts a uniform bound on the multiplicities.

Let H(a/b) = max{|a|, |b|} denote the height of a rational number. It may be interesting
to see what one can say about the cardinality of the above set when only the rational
numbers a/b of height at most H are taken. Let N(f) denote the Euclidean norm of the
vector that corresponds to the polynomial f ∈ Pn and let #S denote the cardinality of a
set S. In (9) of [33] we showed that for any natural numbers H,N such that H

√
n < N

holds

#{(a/b ∈ Q, c ∈ Z, f ∈ Pn)|H(a/b) ≤ H,N(f) ≤ N, c2 = bnf(a/b)} = γn(H)Nn+1/2+

O(Nn−1/2H3 +NnH2),

where the number γn(H) does not depend on N and the implied constant does not depend
on any of H,N . We also showed that for n ≥ 6 the number γn(H) converges when H tends
to infinity (Theorem 2 of [33]).

In this work we look at the setting when y2 is replaced by an arbitrary polynomial p(y) of
degree m > 0. We show the following.
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Theorem 7. Let a natural number n and a polynomial p of degree m > 0 be fixed. Then
for any natural numbers H,N such that H

√
n < N holds the equality

#{(a/b ∈ Q, c ∈ Z, f ∈ Pn)|H(a/b) ≤ H,N(f) ≤ N, p(c) = bnf(a/b)} = γn,p(H)Nn+1/m+

O(Nn+1/m−1H3 +NnH2),

where the number γn,p(H) does not depend on N and the implied constant does not depend
on any of H,N .

Notice that when p(y) = y2, we recover the previous result. Furthermore, notice that the
larger the degree m of the polynomial p is, the sparser is the set

{(a/b ∈ Q, c ∈ Z, f ∈ Pn)|H(a/b) ≤ H, p(c) = bnf(a/b)}.

In particular, for p of degree at least 2 it has zero density. If, additionally, n > 2m/(m−1)

is satisfied, then γn,p(H) (which is a strictly increasing function of variable H ∈ N, as can
be seen from (4.10)) converges to a constant γn,p when H → ∞ (the proof is the same as
that for γ(H) in Theorem 2 of [33]). If we also discard a/b = 0/1, the resulting constant
γ′n,p converges to zero if we let n tend to infinity and keep p fixed (this can be seen from
(4.10) as well). For any fixed n, p, the number γn,p(H) is trivially O(H2). This tells that
the contribution of polynomials f with degree smaller than n to the cardinality of Theorem
1 is in its "error term". When N → ∞, N � Hmax{3,2m}, the term γn,p(H)Nn+1/m is an
asymptotic for the cardinality in the theorem. The restriction that the height H is not
too large compared with N is an essential limitation of our proof (we cannot use Lemma
1 for lattices with long diagonals). Finally, a variant of Theorem 1 with b = 1 may also be
mentioned.

Theorem 8. Let a natural number n and a polynomial p of degree m > 0 be fixed. Then
for any natural numbers N,H such that N > H

√
n holds the equality

#{(a, c ∈ Z, f ∈ Pn)|H(a) ≤ H,N(f) ≤ N, p(c) = f(a)} = γ′′n,p(H)Nn+1/m+

O(Nn+1/m−1H2 +NnH),

where the number γ′′n,p(H) does not depend on N .

We remark that γ′′n,p(H) equals the sum in (4.10) with the restriction b = 1.
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The structure of the proof of Theorem 1 is as follows: in Section 2 we estimate, by standard
technique, the number of points of a fixed lattice in a ball. Further, we sum the obtained
inequality over translations of the lattice. The sum then is replaced by an integral, an
asymptotic of which is described in Section 4. In Section 5 we use this asymptotic to
obtain the theorem. In comparison to the proof of (9) in [33], Lemma 2 proved in Section
4 is the main novelty that appears in this note.

4.2 Estimating the number of points of a lattice in a

ball

In this section we fix a rational number a/b ∈ Q (where a ∈ Z, b ∈ N, gcd(a, b) = 1) of
height H(a/b) ≤ H and an integer c ∈ Z. We identify polynomials f ∈ Pn with points of
Zn+1. Then all f that satisfy f(a/b) = 0 comprise a lattice Λ(a : b). Let

v1 = (b,−a, 0, 0, ..., 0),

v2 = (0, b,−a, 0, ..., 0),

...

vn = (0, 0, ..., 0, b,−a).

Then
Λ(a : b) = Zv1 + Zv2 + ...+ Zvn

(the inclusion Λ(a : b) ⊂ Zv1+Zv2+...+Zvn is immediate from the fact that gcd(a, b) = 1).
All polynomials f that satisfy

p(c) = bnf(a/b)

comprise the translated lattice

Λp(c)(a : b) := (p(c)u, 0, ..., 0, p(c)v) + Λ(a : b),
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where u, v ∈ Z are such that uan + vbn = 1.

Let va,b = (an, an−1b, ..., bn). The translated lattice lies in the real hyperplane

hp(c)(a : b) = {x ∈ Rn+1|x · va,b = p(c)}.

Let ∆(a : b) denote the covolume of Λ(a : b).

Claim 2. ∆(a : b) =
√
a2n + a2n−2b2 + ...+ b2n.

Proof. See Claim 1 of [33].

Lemma 3. Let Λ = Zw1 + Zw2 + ... + Zwk ⊂ Rk be a k-dimensional lattice generated by
the vectors w1, w2, ..., wk. Then, for N > δ, we have

vol(Bk
N−δ)

∆
≤ #(Bk

N ∩ Λ) ≤
vol(Bk

N+δ)

∆
, (4.1)

where Bk
R is a k-dimensional Euclidean ball of radius R, ∆ is covolume of the lattice and

δ is half the length of the longest diagonal of the fundamental parallelotope of Λ.

Proof. See Lemma 1 of [33]. From Lemma 1, for N > δ, one has

vol(Bn+1
N−δ ∩ hp(c)(a : b))

∆(a : b)
≤ #(Bn+1

N ∩ Λp(c)(a : b)) ≤
vol(Bn+1

N+δ ∩ hp(c)(a : b))

∆(a : b)
. (4.2)

Here, δ can be taken to be H
√
n (as each diagonal is a difference between a pair of ver-

tices of the fundamental parallelotope, each coordinate of a diagonal vector is in absolute
value at most max{|2a|, |2b|} ≤ 2H; in addition, the first and the last coordinates are in
absolute value each at most max{|a|, |b|} ≤ H. Hence the length of a diagonal is at most√

4H2(n− 1) + 2H2 < 2H
√
n).
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4.3 Summing over translations and approximating by

an integral

Next, we sum the inequality (4.2) over the translated lattices (notice that since |p(c)| tends
to infinity, the sum has only finitely many nonzero terms):

1

∆(a : b)

∞∑
c=−∞

vol(Bn+1
N−δ ∩ hp(c)(a : b)) ≤

∞∑
c=−∞

#(Bn+1
N ∩ Λp(c)(a : b)) ≤ (4.3)

1

∆(a : b)

∞∑
c=−∞

vol(Bn+1
N+δ ∩ hp(c)(a : b)).

For a vector v ∈ Rk+1 of Euclidean length ||v|| = 1, denote by

Volk(t, ρ) = vol(Bk+1
t (0) ∩ {x|x · v = ρ})

the k-dimensional volume of the intersection of k + 1-dimensional Euclidean ball of radius
t centered at the origin with the hyperplane that is perpendicular to v at the distance ρ
along the direction v from the origin.

When

v =
va,b
||va,b||

,

we have

vol(Bn+1
t (0) ∩ hp(c)(a : b)) = Voln(t, p(c)/||va,b||).

Thus

∞∑
c=−∞

vol(Bn+1
t (0) ∩ hp(c)(a : b)) =

∞∑
c=−∞

Voln(t, p(c)/||va,b||).
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This sum is again finite. Moreover, there exists a constant Cp ∈ N such that p is monotone
on both (−∞,−Cp] and [Cp,∞), and therefore the summand is.

When c ∈ [−Cp + 1, Cp − 1], we have the bound:

Cp−1∑
c=−Cp+1

vol(Bn+1
t (0) ∩ hp(c)(a : b)) ≤ (2Cp − 1) vol(Bn+1

t (0) ∩ h0(a : b)) = (2Cp − 1) vol(Bn
t ).

The last quantity is clearly O(tn). Therefore, we can approximate the sum by an integral
as follows:

∞∑
c=−∞

vol(Bn+1
t (0) ∩ hp(c)(a : b)) =

∫ ∞
−∞

Voln(t, p(ρ)/||va,b||)dρ+O(tn). (4.4)

4.4 Approximation of the integral

In this section, we will describe an asymptotic of the integral when t tends to infinity. We
will see first what the asymptotic is when the polynomial in ρ involved in it is a monomial ρl.
To describe the general case, we will make use of the idea that the polynomial p(ρ) can be
"replaced" by its leading term pmρ

m and that would be a sufficiently good approximation.

Claim 3. Let l ∈ N. Then∫ ∞
−∞

Volk(t, ρ
l)dρ = tk+1/l

∫ ∞
−∞

Volk(1, ρ
l)dρ. (4.5)

Proof. Observe that the following scaling equality holds:

∫ ∞
−∞

Volk(t, ρ
l)dρ = tk

∫ ∞
−∞

Volk(1,
ρl

t
)dρ.

By the change of variable, the last integral is

∫ ∞
−∞

Volk(1,
ρl

t
)dρ =

∫ ∞
−∞

Volk(1,
( ρ
t1/l
)l

)dρ = t1/l
∫ ∞
−∞

Volk(1, ρ
l)dρ.
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We will need the following lemma to describe the general case.

Lemma 4. Let p(ρ) = ρl+pl−1ρ
l−1 +...+p0 ∈ R[ρ] be a monic polynomial in a real variable

ρ. Then ∫ ∞
0

Volk(t, p(ρ))dρ =

∫ ∞
0

Volk(t, ρ
l)dρ+O(tk), (4.6)

where the implied constant of the term O(tk) may depend on k and p but not on t.

In the use of O-notation in the proof below we will allow, in the same manner, the implied
constants to depend on k and p.

Proof. Initially, observe that the integrands are zero everywhere but on finite intervals. To
be more precise, let

C = inf{b ∈ R≥0 | p(b) ≥ 0, p is increasing on [b,∞)}.

Let p−1 denote the inverse of the restricion of the polynomial p to the interval [C,∞). We
assume without a loss of generality that t ≥ max{p(C), C l} (as both integrals are O(tk) on
bounded intervals of integration). Then the precise upper bounds of integration are p−1(t)

and t1/l respectively.

We will need the following two propositions for the proof of this lemma. In the first
proposition we bound the difference between the lengths of the intervals of integration.

Proposition 1. The term |p−1(t)− t1/l| is O(1).

Proof. Assume first that
p−1(t)− t1/l > |pl−1|/l + 1.

Since p is increasing on [C,∞),

t = p(p−1(t)) > p(t1/l + |pl−1|/l + 1).

The last term, viewed as a polynomial in t1/l, has t as its leading term and a positive
coefficient in front of its second leading term. It follows that t that satisfy the last inequality
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must be bounded by a constant Cp. But then the difference p−1(t)− t1/l is bounded above
by

max{p−1(θ)− θ1/l|C ≤ θ ≤ Cp}.

Assume, in the opposite direction, that

p−1(t)− t1/l < −|pl−1|/l − 1.

Again, since p is increasing on [C,∞),

t = p(p−1(t)) < p(t1/l − |pl−1|/l − 1).

The right hand side, viewed as a polynomial in t1/l, has t as its leading term and a negative
coefficient in front of its second leading term. It follows that t that satisfy the last inequality
must be bounded by a constant, call it Cp again. But then the difference p−1(t) − t1/l is
bounded below by

min{p−1(θ)− θ1/l|C ≤ θ ≤ Cp}.

This ends the proof of the proposition.

In the second proposition we bound the main error term.

Proposition 2. The term
∫ min{p−1(t),t1/l}

0
(Volk(t, p(ρ))− Volk(t, ρ

l))dρ is O(tk).

Proof. Initially, we write out the integral more explicitly:∫ min{p−1(t),t1/l}

0

(Volk(t, p(ρ))− Volk(t, ρ
l))dρ =

vol(Bk
1 )

∫ min{p−1(t),t1/l}

0

(√
(t2 − p2(ρ))k −

√
(t2 − ρ2l)k

)
dρ.

We will bound the integrand for ρ ∈ [1, t1/l − (|pl−1|+ 1)/l] (one can see that the remain-
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ing values of ρ comprise two intervals of bounded length, as follows from the preceeding
proposition, hence the integral on them is O(tk)).

Notice that

ρ2l ≤ t2 − 2(|pl−1|+ 1)t(2l−1)/l +O(t(2l−2)/l).

Hence

t2 − ρ2l ≥ 2(|pl−1|+ 1)t(2l−1)/l +O(t(2l−2)/l).

In the meanwhile,

|p2(ρ)− ρ2l| ≤ |pl−1|t(2l−1)/l +O(t(2l−2)/l).

Therefore, when t is larger than some constant,

|p2(ρ)− ρ2l| ≤ 1

2
(t2 − ρ2l) (4.7)

holds. Thus one obtains

t2 − p2(ρ) = (t2 − ρ2l) + (p2(ρ)− ρ2l) ≥ (t2 − ρ2l)− 1

2
(t2 − ρ2l) =

1

2
(t2 − ρ2l).

Therefore,

√
(t2 − p2(ρ))k ≥ 2−k/2

√
(t2 − ρ2l)k.

Now observe that for any two real numbers A,B > 0 the inequality

|B − A| ≤ max{|B2 − A2|/(2A), |B2 − A2|/(2B)}
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holds. If additionally A,B satisfy A ≥ 2−k/2B, then one can conclude that

|B − A| ≤ 2k/2
|B2 − A2|

2B
.

When A =
√

(t2 − p2(ρ))k, B =
√

(t2 − ρ2l)k, this yields

∣∣∣√(t2 − ρ2l)k −
√

(t2 − p2(ρ))k
∣∣∣ ≤ 2k/2

|(t2 − ρ2l)k − (t2 − p2(ρ))k|
2
√

(t2 − ρ2l)k
.

We claim that the last term is at most −c′ d
dρ

√
(t2 − ρ2l)k for some constant c′ > 0.

To see that, it suffices to show that

2k/2|(t2 − ρ2l)k − (t2 − p2(ρ))k| ≤ −c′ d
dρ

(t2 − ρ2l)k.

We rewrite the left hand side (without the constant factor) by the binomial expansion:

|(t2 − ρ2l)k − ((t2 − ρ2l) + (ρ2l − p2(ρ)))k| =

∣∣∣∣∣
k∑
j=1

(
k

j

)
(t2 − ρ2l)k−j(ρ2l − p2(ρ))j

∣∣∣∣∣ .
From here, one can see that it suffices to show that the inequality holds term-wise, that is,

|(t2 − ρ2l)k−j(ρ2l − p2(ρ))j| ≤ −c′j
d

dρ
(t2 − ρ2l)k = −c′jk(t2 − ρ2l)k−1(−2l)ρ2l−1 (4.8)

for some c′j > 0, j = 1, ..., k.

Since ρ ≥ 1, one sees that

|ρ2l − p2(ρ)| = O(ρ2l−1).

Furthermore, from (4.7) one has
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|ρ2l − p2(ρ)| = O(t2 − ρ2l).

The last two equalities together give

|(t2 − ρ2l)k−j(ρ2l − p2(ρ))j| = O((t2 − ρ2l)k−1ρ2l−1).

Hence (4.8) is satisfied. Therefore, the claim holds.

Consequently, from the claim, for ρ ∈ [1, t1/l − (|pl−1| + 1)/l], we have a bound for the
integrand:

∣∣Volk(t, p(ρ))− Volk(t, ρ
l)
∣∣ ≤ vol(Bk

1 )(−c′) d
dρ

√
(t2 − ρ2l)k.

Therefore,

∫ min{p−1(t),t1/l}

0

∣∣Volk(t, p(ρ))− Volk(t, ρ
l)
∣∣ dρ ≤

vol(Bk
1 )

∫ min{p−1(t),t1/l}

0

−c′ d
dρ

√
(t2 − ρ2l)kdρ+O(tk) ≤

vol(Bk
1 )

∣∣∣∣t1/l

0

− c′
√

(t2 − ρ2l)k +O(tk) =

vol(Bk
1 )c′tk +O(tk) = O(tk).

Finally, the condition that t is larger than some constant can be dropped, as otherwise the
length of the interval of integration is O(1) and therefore the integral is O(tk) on it. This
ends the proof of the second proposition.

33



Now one can use the propositions to have a transition between the two integrals:∫ ∞
0

Volk(t, p(ρ))dρ =

∫ min{p−1(t),t1/l}

0

Volk(t, p(ρ))dρ+O(tk|p−1(t)− t1/l|) =∫ min{p−1(t),t1/l}

0

Volk(t, p(ρ))dρ+O(tk) =∫ min{p−1(t),t1/l}

0

Volk(t, ρ
l)dρ+O(tk) =∫ ∞

0

Volk(t, ρ
l)dρ+O(tk).

This completes the proof of Lemma 2.

Corollary 1. We have∫ ∞
−∞

Volk(t, p(ρ))dρ = tk+1/l

∫ ∞
−∞

Volk(1, ρ
l)dρ+O(tk). (4.9)

Proof. It follows from (4.6) (by using it also when ρ is substituted with −ρ) that

∫ ∞
−∞

Volk(t, p(ρ))dρ =

∫ ∞
−∞

Volk(t, ρ
l)dρ+O(tk).

Now (4.5) yields the conclusion.

Now we can use Corollary 1 to approximate the integral in (4.4). By the change of variable
one obtains

∫ ∞
−∞

Voln(t, p(ρ)/||va,b||)dρ = m

√
||va,b||/|pm|

∫ ∞
−∞

Voln(t, p
(

m

√
||va,b||/|pm|ρ

)
/||va,b||)dρ.

By symmetry of the function Voln in the second argument we have
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Voln(t, p
(

m

√
||va,b||/|pm|ρ

)
/||va,b||) = Voln(t, sign(pm)p

(
m

√
||va,b||/|pm|ρ

)
/||va,b||).

The polynomial sign(pm)p
(

m
√
||va,b||/|pm|ρ

)
/||va,b|| is a monic polynomial in ρ. We obtain

now from Corollary 1 (with k = n and l = m) that

∫ ∞
−∞

Voln(t, sign(pm)p
(

m

√
||va,b||/|pm|ρ

)
/||va,b||)dρ = tn+1/m

∫ ∞
−∞

Voln(1, ρm)dρ+O(tn).

Corollary 1 allows the implied constant here to be dependent on the polynomial

sign(pm)p
(

m

√
||va,b||/|pm|ρ

)
/||va,b||

and thus on ||va,b||. However, since ||va,b|| ≥ 1, notice that when ||va,b|| > 1, the ab-
solute value of every but the leading coefficient of this polynomial is smaller than the
absolute value of the respective coefficient of the polynomial sign(pm)p(ρ/ m

√
|pm|), while

when ||va,b|| = 1, the two polynomials coincide. Therefore, for all |ρ| larger than some
constant that depends on p but not on ||va,b|| holds

|Voln(t, sign(pm)p
(

m

√
||va,b||/|pm|ρ

)
/||va,b||)− Voln(t, ρm)| ≤

|Voln(t, sign(pm)p(ρ/ m
√
|pm|))− Voln(t, ρm)|.

We thus conclude that the implied constant above does not depend on ||va,b||.

Define

γ(a : b) := |pm|−1/m∆(a : b)1/m−1

∫ ∞
−∞

Voln(1, ρm)dρ.

Then we can write

1

∆(a : b)

∫ ∞
−∞

Voln(t, p(ρ)/||va,b||)dρ = γ(a : b)tn+1/m +O(tn),
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where the implied constant does not depend on a/b.

4.5 Proof of Theorem 1

Equality (4.4) together with the last equality of the previous section give

1

∆(a : b)

∞∑
c=−∞

vol(Bn+1
t (0) ∩ hp(c)(a : b)) = γ(a : b)tn+1/m +O(tn).

This together with (4.3) give

∞∑
c=−∞

#(Bn+1
N (0) ∩ Λp(c)(a : b)) = γ(a : b)Nn+1/m +O(Nn+1/m−1H +Nn).

To complete the proof, we sum the last equality over rational numbers a/b of height at
most H to obtain Theorem 1 with

γn,p(H) :=
∑

a/b∈Q,H(a/b)≤H

γ(a : b). (4.10)
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Chapter 5

Curves without points in a number field

In view of the arguments given in the preceeding chapters, one may expect that few hy-
perelliptic curves will have points over any number field. It is thus of interest to construct
families of hyperelliptic curves that do not have points over a given number field.

For a given finite extension K of the field of rational numbers, it is not very difficult to
show (relying on two well-known theorems) that there exists a hyperelliptic curve that has
no points over K. To see that, we consider the curve

y2 = x5 + 1.

It may or may not itself have points over K. Suppose that it has, then, by the theorem
of Faltings, there are only finitely many of them. Thus, there exists a finite set of the
x-coordinates of the points. For each element α of the set, we can look at its minimal
polynomial pα(x) over the rational numbers. Suppose that the degree of the extension
K/Q is d. Then, by [5], the polynomial pα(xd+1 + y) is irreducible over Q[x, y]. By
Hilbert’s irreducibility theorem, there exists a natural number nK 6= −1 such that all the
polynomials pα(xd+1 +nK) are irreducible over Q[x]. Since their degrees each is larger than
the degree of the extension K/Q, none of them has roots in K. Then, consequently, the
hyperelliptic curve

y2 = (xd+1 + nK)5 + 1
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has no points over K.

We see that the genus of such a curve depends on the extension K. We can avoid this.

Theorem 9. There exists a hyperelliptic curve of genus 4 that has no points over K.

Proof. We may again look at the curve

y2 = x5 + 1.

Let the x-coordinates of its points over K be denoted by α1, ..., αs. Then one can note
that the polynomials x2 + y − αi are irreducible over C[x, y]. By a generalized Hilbert’s
irreducibility theorem [25] (known to us from [11]), there exists an arithmetic progression
of rational integers such that for any number nK in it, each of the polynomials x2 +nK−αi
are irreducible over K[x]. Then the curve

y2 = (x2 + nK)5 + 1

has no points over K.

There exist simpler reasons why a hyperelliptic curve may have no points over a number
field. For instance, y2 = 7x2 + 3z2 does not have integer solutions other than (x, y, z) =

(0, 0, 0) (since 3 is not a square modulo 7). Hence y2 = 7x2 + 3 does not have rational
solutions. One can then construct a hyperelliptic curve y2 = 7f(x)2+3 (where f(x) ∈ Q[x])
that will not have rational solutions for the same reason.

Let K = Q(
√

2). We could verify that y2 = 7x2 + 3z2 does not have solutions in OK other
than (x, y, z) = (0, 0, 0). Indeed, observe that 7 = (2

√
2 + 1)(2

√
2 − 1). Thus, the ideal

7Z splits completely in OK . Let ℘1, ℘2 denote its two prime factors. In the field OK/℘1

the equation simplifies to y2 = 3z2. Since 3 is not a square in this field, we must have
y, z ∈ ℘1. Then

℘2
1|(y2 − 3z2)OK = 7OKx2OK .

Since ℘2
1 does not divide 7OK , the uniqueness of factorization of ideals yields that ℘1

divides xOK . Thus, x, y, z ∈ ℘1. In the same way, x, y, z ∈ ℘2. Therefore, x, y, z ∈ pOK .
Then we can divide x, y, z by p and obtain a smaller solution. We can continue in this way
to conclude that (x, y, z) = (0, 0, 0).
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This approach generalizes to Galois closure of an arbitrary number field with the help of
the Chebotarev density theorem.

Theorem 10. Let K be a Galois extension of the field of rational numbers of finite degree
d. Then the lower density of prime numbers p such that for any a ∈ Z that is not a square
modulo p, the curve y2 = px2 + a has no points over K, is at least 1/d in the set of all
prime numbers.

Proof. Let us assume that the curve has a K-rational point. Then the equation

y2 = px2 + az2 (5.1)

has a solution in OK with z 6= 0. It follows from Chebotarev density theorem that the
density of prime numbers that split completely over K is 1/d. Let p be such a prime. Write

pOK = p1...pd.

Modulo pj, the above equation reduces to y2 = az2. Then, since a is not a square modulo
p, we must have y, z ∈ pj. Since this is true for i = 1, ..., d, we conclude that y, z ∈ pOK .
We thus can write py, pz instead of y, z to obtain

p2y2 = px2 + p2az2.

After dividing both sides by p one can see that x2 ∈ pOK and thus that pOK divides
(xOK)2. Therefore (pOK)2 divides (xOK)2 and thus p|x. We have obtained a descent.
Consequently, the equation (5.1) cannot have solutions in OK other than (0, 0, 0). A
contradiction.

This allows to conclude the following.

Corollary 2. Given a number fied K, there exist infinitely many curves of every genus
that are defined over the rational numbers and have no points over K.

We remark that the result given in [26] enables a different construction of quadratic curves
that do not have points over a chosen number field. The observations above do not seem to
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extend to tell whether there is a polynomial f(x) ∈ Q[x] of degree 9 or, of any odd prime
degree (and nonzero discriminant), such that the curve y2 = f(x) has no points over K.
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Chapter 6

On the congruent number curves

6.1 Introduction

A positive integer n is called a congruent number if it is the area of a right triangle with
rational sides. The question of what positive integers are congruent numbers dates back at
least to 10th century AD (see, for instance, [4]) and is not fully resolved. P.Fermat proved
that perfect squares are not congruent numbers. By now, many families of congruent and
not congruent numbers are known. For instance, prime numbers of the form 8m + 5 are
congruent numbers while prime numbers of the form 8m+ 3 are not.

Thus an integer n is a congruent number if and only if the system of equations

a2 + b2 = c2

ab = 2n
(6.1)

in unknowns a, b, c has a solution in nonzero rational numbers. The system of equations is
equivalent to

c2 − 4n = (a− b)2

c2 + 4n = (a+ b)2.

Hence, if n is a congruent number, the curve
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16n2 = x4 − y2

has a rational point with nonzero coordinates. Conversely, if the curve has a rational point
(x, y) with nonzero coordinates, then (a, b, c) = (y/(2x), 4nx/y, (x4 + 16n2)/(2xy)) would
give a solution in nonzero rational numbers to the above system of equations (alternatively,
one may obtain a similar mapping from the curve y2 = x3 − n2x).

Resolution of the congruent number problem is related with the famous Birch and Swinnerton-
Dyer conjecture that we briefly state here. For an elliptic curve E, let the number p+1−ap
be the number of points on E over the finite field Fp. Let the L(E, s) be a function of the
complex variable s, defined by

L(E, s) =
∏
p

(1− app−s + p1−2s)−1,

where the product is taken over all primes p such that the reduced curve remains elliptic
over Fp. The function L(E, s) is called the L-function of the curve E. It is a deep fact that
the function is holomorphic on the whole complex plane. The weak Birch and Swinnerton-
Dyer conjecture asserts that the order of vanishing of the L-function at the point s = 1

equals the rank of the group of rational points on E.

In 1983 Tunnell proved the following theorem.

Theorem 11. (Tunnell [31]). Let n be a squarefree positive integer. Define

An = {(x, y, z) ∈ Z3|x2 + 2y2 + 8z2 = n},
Bn = {(x, y, z) ∈ Z3|x2 + 2y2 + 32z2 = n},
Cn = {(x, y, z) ∈ Z3|2x2 + 8y2 + 16z2 = n},
Dn = {(x, y, z) ∈ Z3|x2 + 8y2 + 64z2 = n}.

If n is an odd congruent number, then #An = 2#Bn. If n is an even congruent number,
then #Cn = 2#Dn. Moreover, if the weak Birch and Swinnerton-Dyer conjecture holds for
the curve y2 = x3− n2x, then the converse is true: if n is odd and #An = 2#Bn then n is
a congruent number; if n is even and #Cn = 2#Dn, then n is a congruent number.

Would the Birch and Swinnerton-Dyer conjecture be proven to be true, the theorem would
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provide a complete solution to the congruent number problem.

As an illustration, one can easily draw from the theorem the following corollary.

Corollary 3. For all m ∈ N, the number n = 64m2 + 64m+ 26, whenever it is squarefree,
is not congruent.

Proof. In this case, (1, 1, 2m+ 1) belongs to the set Cn of the above theorem, while the set
Dn is empty, as the equation

x2 + 8y2 + 64z2 = 64m2 + 64m+ 26

has no solutions modulo 16.

We refer the reader to [4] for a more detailed survey of the main facts related to the
congruent number problem.

One may ask, quite generally, if a set contains lengths of a right triangle with area equal
to n.

Definition 1. Let k be a field extension of the rational numbers and S ⊂ k be its subset.
We will say that a positive integer n is a S-congruent number if (6.1) has a solution in S
with a, b, c 6= 0.

In [13], the following question was stated: given a number field K, what positive integers
are K-congruent numbers? In particular, this asks whether all positive integers are K-
congruent numbers for some number field K.

One may first wonder if for some number field K there may exist rational functions
a(n), b(n), c(n) ∈ K(n) that for every n ∈ N would evaluate to side lengths of a ratio-
nal right triangle with area n. Were that the case, the curve n2 = x4 − y2 would also
have a parametric solution (x(n), y(n)) ∈ K(n)×K(n). However, the following (folklore)
proposition tells us that such a parametrization does not exist.

Proposition 3. The curve n2 = x4 − y2 does not have solutions in C(n) with x 6= 0.

Proof. If (x(n), y(n)) is a solution, then
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1 = x(n)4/n2 − y2(n)/n2.

Set n = t2, then

1 = (x(t2)/t)4 − (y(t2)/t2)2.

Thus (x(t2)/t, y(t2)/t2) ∈ C(t) is a point on the curve 1 = x4 − y2. As it is known that
a curve of genus one (or larger) cannot have nonconstant rational parametrizations, it
follows that there must exist constants c1, c2 ∈ C such that x(t2)/t = c1, y(t2)/t2 = c2.
Thus x(n) = c1t 6∈ C(n), unless c2 = 0.

In contrast to this, Jedrzejak ([16], Corollary 6) recently proved the following generalization
of a result of Tada [29].

Theorem 12. Let m1, ...,ms be square-free positive integers that are not multiples of each
other. Let K = Q(

√
m1....,

√
ms) and assume that

√
2 /∈ K. Then a positive integer n is a

K-congruent number if and only if one of the numbers nme1
1 ...m

es
s , where ei ∈ {0, 1}, is a

congruent number (over the rational numbers).

This allows one to conclude ([16], Remark 8) via the Tunnell’s theorem above that, condi-
tionally on the weak Birch and Swinnerton-Dyer conjecture for the curves y2 = x3 − n2x,
every positive integer is a Q(

√
3,
√

5)-congruent number.

It may be interesting to ask what numbers are congruent over rings of integers of a number
field K, that is, are OK-congruent. We will prove the following theorem.

Theorem 13. Let K be a finite Galois extension of the field of rational numbers with
cyclic Galois group. Then, asymptotically, at least half of the prime numbers p that are
inert in K correspond to curves

16p2 = x4 − y2

that do not have points over OK with x 6= 0.

Corollary 4. For a finite Galois extension K of the field of rational numbers with cyclic
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Galois group Gal(K/Q) of cardinality d, the set of prime numbers that are not OK-
congruent has lower density at least ϕ(d)/(2d) among the prime numbers.

Example 1. The polynomial f(x) = x3− 3x+ 1 is irreducible in the ring Q[x]. Moreover,
its discriminant is a perfect square and thus the splitting field of f(x) is a cyclic extension
of degree 3 of the rational numbers. Let α = 2 cos(2π/9) be a root of f(x). Then the
theorem implies that the (rational) prime numbers that are not Z[α]-congruent have lower
relative density at least 1/3.

6.2 Proof of the Theorem

For the proof of the theorem we borrow two statements from [14] and [15], respectively,
that we state here as lemmas:

Lemma 5. Let A be any subset of the prime numbers of positive relative upper density.
Then A contains infinitely many arithmetic progressions of length l for all l.

Lemma 6. If R is a finitely generated integral domain of zero characteristic and l is an
integer, then there exists a constant Al(R) such that every arithmetic progression in R

having more than Al(R) elements contains an element which is not a sum of l units.

Proof. Rational prime numbers p that remain inert in OK have density ϕ(d)/d in the set
of prime numbers, as follows from the Chebotarev density theorem [30]. Let us denote by
P ′K the set of prime numbers p that are inert in OK and such that the equation

16p2 = x4 − y2

has a solution in OK with x 6= 0. Thus, for p ∈ P ′K holds

16OK(pOK)2 = (x2 − y)OK(x2 + y)OK .

Since each ideal of OK factorizes uniquely into prime ideals, we must have either
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(x2 − y)OK = pOKI

(x2 + y)OK = pOKI ′
(6.2)

or

(x2 − y)OK = (pOK)2I

(x2 + y)OK = I ′
(6.3)

for some ideals I, I ′ ⊂ OK that satisfy II ′ = 16OK . If (6.2) is the case, we deduce that

x2 − y = pr

x2 + y = 16p/r

for some r ∈ OK that divides 16. Thus,

2x2r = (r2 + 16)p.

Let K ′ be the largest subfield of K such that the degree of the field extension K ′/Q is odd.
Denote K ′(i) by L. Observe that L is a cyclic extension of the field of rational numbers as
well. Therefore, as it follows from the Chebotarev density theorem again, if i /∈ K, rational
prime numbers that remain inert in OL have density 1/2 among the prime numbers that
remain inert in OK . Over K(i) we can write

2rOK(i)(xOK(i))
2 = (r + i)OK(i)(r − i)OK(i)pOK(i).

Let σ ∈ Gal(K(i)/K) be the element of order two and denote by J the ideal (r + i)OK(i).
Let us intersect both sides of the equality with OL. Then the r.h.s. can be written as

(J ∩ OL)σ(J ∩ OL)pOL.

We thus can see that if p is a rational prime that remains inert in both K and L, the
highest power of the prime ideal pOL that divides the r.h.s. must be odd. On the other
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hand, the highest power of any prime ideal, that is not a divisor of 2OL, that divides the
l.h.s. is even. Therefore all odd primes p that are in P ′K and are inert in L must satisfy
(6.3). We deduce that for such p holds

x2 − y = 16p2/r

x2 + y = r

for some r ∈ OK that divides 16. Thus,

2x2r = 16p2 + r2.

Let M be a field extension of K that is generated by elements of the form
√
r, where

r ∈ OK are divisors of 16. Up to multiplication by units, there are only finitely many such
divisors. Let r1, ..., rv be their representatives. The Dirichlet unit theorem [8], [9] tells
also that the multiplicative group of units of OK is finitely generated. Let e1, ..., es be its
generators. Then M = K(

√
e1, ...,

√
es,
√
r1, ...,

√
rv) is a finite extension of K. Over OM

one can write

(
√

2rx− 4p)(
√

2rx+ 4p) = r2.

Hence both
√

2rx − 4p,
√

2rx + 4p are divisors of 162 in OM . Consequently, 8p is a sum
of two divisors of 162. We will deduce that such primes must have density zero among
the rational prime numbers. Let us assume, on the contrary, that they comprise a set
of positive relative upper density. It follows then from the first lemma that there must
exist arbitrarily long arithmetic progressions with terms that are sums of two divisors of
162 in OM . Let r′1, ...r′l ∈ OM be the representatives of the divisors of 162 modulo the
multiplicative group of units of OM . Then the ring OM [1/r′1, ..., 1/r

′
l] is finitely generated.

Furthermore, any term of an arithmetic progression as above is a sum of two units in this
ring. This contradicts the second lemma.
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Chapter 7

On integer points on the hyperelliptic
curves x2n+1 − y2 = 4

"Determine all pairs (x, y) of integers such that

x5 − y2 = 4.”

The problem was proposed in [19]. The reader can find an elementary solution in the
next issue. We offer a different solution that demonstrates how the basic knowledge of the
ring of Gaussian integers may be employed in a Diophantine problem. This approach is
well-known (e.g., see the survey article [7]) and dates back at least to [17]. In the second
section we shortly discuss a more general problem.

7.1 On integer points on the hyperelliptic curve x5−y2 =

4

Theorem 14. There is no pair of integers (x, y) such that x5 − y2 = 4.

Proof. Assume that there is such a pair (x, y). If x is even, then x = 2x′. We hence have
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32x′5 = y2 + 4.

We see that y2 must be divisible by 4. Thus y = 2y′. Therefore,

32x′5 = 4y′2 + 4⇔ 8x′5 = y′2 + 1.

Since the left hand side of the last equation is even, we see that y′ must be odd. But then,
the right hand side equals 2 modulo 4, while the left hand side equals 0 modulo 4. Thus x
cannot be even. So x is odd.

We can write

x5 = (y + 2i)(y − 2i)

over the ring of Gaussian integers Z[i]. If there is a Gaussian prime p ∈ Z[i] such that
p|y + 2i, y − 2i, then p|y + 2i − (y − 2i) = 4i. Thus p is a divisor of 2 and therefore is an
associate of 1 + i. Then, 1 + i|x5. Therefore, Nm(1 + i) = 2|Nm(x5) = x10. This, however,
cannot happen since x is odd. Consequently, y + 2i, y − 2i are coprime and, since their
product is a 5-th power, they both must be associates of 5-th powers of some elements of
Z[i]. In particular,

e(y + 2i) = (k + li)5 =
5∑
j=0

(
5

j

)
k5−j(li)j = (k5 − 10k3l2 + 5kl4) + (5k4l − 10k2l3 + l5)i,

where k, l ∈ Z and e ∈ {±1,±i} is a unit. Therefore, either

2ie = k5 − 10k3l2 + 5kl4,

or
2ie = (5k4l − 10k2l3 + l5)i.

We claim that neither k5 − 10k3l2 + 5kl4, nor 5k4l − 10k2l3 + l5 can be an associate of 2.
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Observe that it is enough to show the first, as the other follows by renaming k by l and
vice versa. If

k5 − 10k3l2 + 5kl4 = k(k4 − 10k2l2 + 5l4) = ±2,

then k|2. Thus k = ±1 or k = ±2. In the first case,

k4 − 10k2l2 + 5l4 = 1− 10l2 + 5l4 = ±2.

One can verify that for l2 = 0, 1 this is not the case, while for l2 ≥ 4, 1 − 10l2 + 5l4 ≥
1− l2(10− 20) > 2. Hence the first case cannot happen.

In the second case,

k4 − 10k2l2 + 5l4 = 16− 40l2 + 5l4 = ±1.

By checking values of l2 = 0, 1, 4 and seeing that when l2 ≥ 9, holds 16 − 40l2 + 5l4 ≥
16 − l2(40 − 45) > 1, one concludes that this case cannot happen as well. We conclude
that the equation x5 − y2 = 4 cannot have integer solutions.

7.2 On integer points on curves x2n+1 − y2 = 4.

This approach allows us to say a bit more:

Theorem 15. For n ≥ 0, the equation x2n+1 − y2 = 4 has a solution in integers (x, y)

precisely when the equation
y + 2i = ±(l + 2i)2n+1

has a solution in integers (y, l).

Proof. First, observe that if (x, y) is a solution, then, in the same manner as above, x must
be odd and y + 2i, y − 2i therefore have to be coprime. Hence y + 2i, y − 2i both have to
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be associates of 2n+ 1-th powers of Gaussian integers. Thus,

e(y + 2i) = (k + li)2n+1,

where k, l ∈ Z are integers and e ∈ {±1,±i} is a unit. By the binomial expansion, we have

e(y + 2i) =
2n+1∑
j=0

(
2n+ 1

j

)
k2n+1−j(li)j.

The real and imaginary parts of the binomial expansion are

n∑
j=0

(
2n+ 1

2j

)
k2n+1−2j(li)2j,

n∑
j=0

(
2n+ 1

2j + 1

)
k2n−2j(li)2j,

respectively. One of them must equal ±2. Up to renaming k by l and vice versa, we may
assume that it is the first one. Then k|2, and thus either k = ±1 or k = ±2. We will show
that k = ±1 is not possible. Say, k = ±1. Then

±2 =
n∑
j=0

(
2n+ 1

2j

)
k2n+1−2j(li)2j =

n∑
j=0

(
2n+ 1

2j

)
(−l2)j.

By observing that the first summand of the binomial expansion is equal to 1 and subtracting
it from both sides we obtain

n∑
j=1

(
2n+ 1

2j

)
(−l2)j ∈ {−3, 1}.

Thus l2|3 and therefore l = ±1. Hence the complex number k + li has norm equal to 2.
We can see that the norm of (k + li)2n+1 is an even number, while the norm of e(y + 2i)

is odd. Therefore, the equality e(y + 2i) = (k + li)2n+1 is not possible. Hence k = ±1 is
not possible. Thus k = ±2. Then we have e(y + 2i) = (±2 + li)2n+1. By multiplying both
sides by a unit we thus obtain

y + 2i = e(l + 2i)2n+1,

51



where e denotes a unit again. Since y is odd, l must be odd too. Then (l + 2i)2n+1 has
an odd real part and an even imaginary part. Since after multiplication by e the real part
must equal y and thus remain odd, we conclude that e = ±1. Therefore

y + 2i = ±(l + 2i)2n+1.

Conversely, say that

y + 2i = ±(l + 2i)2n+1

holds for integers (y, l). By multiplying both sides of the equality by their conjugates we
obtain

y2 + 4 = (l2 + 4)2n+1.

Thus (x, y) = (l2 + 4, y) is a solution.

The equation y+2i = ±(l+2i)2n+1 can be interpreted geometrically. It may be interesting
to ask whether n for which it has an integer solution could be arbitrarily large. It turns
out that the answer is known to be negative. In fact, for n ≥ 2 the corresponding equation
has no integer solutions. The result follows from the work of T. Nagell [21], as referenced
to in [6]. Very generally, a conjecture of S. S. Pillai states that each positive integer occurs
at most finitely many times as a difference of two perfect powers (see e.g., [32]).
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