
Citation: Ma, M.; Li, Y.; Godefroid, M.;

Gaigalas, G.; Li, J.; Bieroń, J.; Chen, C.;
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Abstract: Hyperfine structure constants have many applications, but are often hard to calculate
accurately due to large and canceling contributions from different terms of the hyperfine interaction
operator, and also from different closed and spherically symmetric core subshells that break up due
to electron correlation effects. In multiconfiguration calculations, the wave functions are expanded in
terms of configuration state functions (CSFs) built from sets of one-electron orbitals. The orbital sets
are typically enlarged within the layer-by-layer approach. The calculations are energy-driven, and
orbitals in each new layer of correlation orbitals are spatially localized in regions where the weighted
total energy decreases the most, overlapping and breaking up different closed core subshells in an
irregular pattern. As a result, hyperfine structure constants, computed as expectation values of the
hyperfine operators, often show irregular or oscillating convergence patterns. Large orbital sets, and
associated large CSF expansions, are needed to obtain converged values of the hyperfine structure
constants. We analyze the situation for the states of the {2s22p3, 2s22p23p, 2s22p24p} odd and
{2s22p23s, 2s2p4, 2s22p24s, 2s22p23d} even configurations in N I, and show that the convergence with
respect to the increasing sets of orbitals is radically improved by introducing separately optimized
orbital sets targeted for describing the spin- and orbital-polarization effects of the 1s and 2s core
subshells that are merged with, and orthogonalized against, the ordinary energy-optimized orbitals.
In the layer-by-layer approach, the spectroscopic orbitals are kept frozen from the initial calculation
and are not allowed to relax in response to the introduced layers of correlation orbitals. To compensate
for this lack of variational freedom, the orbitals are transformed to natural orbitals prior to the final
calculation based on single and double substitutions from an increased multireference set. The use
of natural orbitals has an important impact on the states of the 2s22p23s configuration, bringing
the corresponding hyperfine interaction constants in closer agreement with experiment. Relying
on recent progress in methodology, the multiconfiguration calculations are based on configuration
state function generators, cutting down the time for spin-angular integration by factors of up to 50,
compared to ordinary calculations.
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1. Introduction

In astrophysics, knowledge of hyperfine structures is needed for detailed line model-
ing and accurate abundance determinations [1,2]. The hyperfine interaction not only splits
and broadens spectral lines, but also redistributes the radiation and may even open new
decay channels that are useful for diagnosing electron densities in low-density astrophysi-
cal plasmas [3]. In nuclear physics, calculated hyperfine interaction constants, related to
detailed electron–nucleus interactions [4], have been combined with high-precision mea-
surements to extract nuclear information such as magnetic dipole, electric quadrupole [5–7],
and magnetic octupole [8] moments.

Multiconfiguration methods, both non-relativistic multiconfiguration Hartree–Fock
(MCHF) and relativistic multiconfiguration Dirac–Hartree–Fock (MCDHF), have been
used for a long time to calculate hyperfine structure constants for a large number of states
and elements of different complexities [5,6,9–11]. Common to these calculations is the
fact that they often show slow and irregular convergence patterns, requiring large orbital
sets and large CSF expansions for obtaining accurate and reliable values of the hyperfine
interaction constants [12]. In this work, following the ideas of Verdebout et al. [13]
and Li et al. [14], we analyze the situation for the states of the {2s22p3, 2s22p23p, 2s22p24p}
odd and {2s22p23s, 2s2p4, 2s22p24s, 2s22p23d} even-parity configurations in N I and show
that the convergence with respect to the increasing sets of orbitals is substantially improved
by introducing separately optimized orbital sets, targeted for describing the spin- and
orbital-polarization effects on the 1s and 2s core subshells. These sets are merged with, and
orthogonalized against, the ordinary energy-optimized orbitals. The selection of N I for
the study is mainly motivated by the fact that the hyperfine interaction constant for the
2s22p3 4So

3/2 ground state is zero in the Hartree–Fock (HF) approximation and that the spin-
and orbital-polarization effects on the 1s and 2s core subshells give large, but canceling,
contributions, the balancing of which is crucial for the final constant; see [15] for a detailed
account. Furthermore, experimental hyperfine interaction constants for states of the 2p23s 4P
and 2p23p 4Po, 4Do terms are available for comparison. The constants were extracted
from Doppler-free saturation spectra [16] and later reinterpreted by Carette et al. [17],
who compared them with constants from large scale multiconfiguration Hartree–Fock
calculations [18]. Finally, hyperfine interaction constants are needed to extract absolute
frequencies connecting states of the 2p23s 2P and 2p23p 2Do terms [19].

MCDHF calculations are usually performed with the layer-by-layer (LBL) approach [20],
whereby the spectroscopic orbitals are kept frozen from a fully variational calculation of
the targeted states, based on the most important reference configurations, and are not
allowed to relax in response to the introduced layers of correlation orbitals. As shown by
Schiffmann et al. [21], such variational restriction imposed on the spectroscopic orbitals may
negatively affect the calculated hyperfine interaction constants, but can be compensated
for by the use of natural orbitals (NOs). In analogy with the states in Na I studied by
Schiffmann et al. [21], we expect that the effect is the largest for the hyperfine constants of
the 2s22p23s states.

The paper is organized as follows: first, we describe the MCDHF and relativistic
configuration interaction (RCI) methods, with a focus on the spin-angular integration and
how it can be speeded up by the introduction of configuration state function generators
(CSFGs) [22]. This is followed by a description of the hyperfine structure. After a section on
the transformation to natural orbitals, we continue to discuss methods for generating CSF
expansions and orbital bases to account for electron correlation effects that are important for
the energies, ‘energy-driven’ calculations, and methods for generating CSF expansions and
orbital bases to account for electron correlation effects, mainly spin and orbital polarization,
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that are important for the hyperfine structure constants. We present results from ordinary
‘energy-driven’ calculations of the hyperfine interaction constants of the targeted states,
and study the convergence with respect to the increasing sets of orbitals. Additionally, we
perform calculations in which separately optimized orbital sets, targeted to account for
the spin- and orbital- polarization effects of the 1s and 2s subshells, are merged with, and
orthogonalized against, the ordinary energy-optimized orbitals. To infer the effectiveness
of the method with separately optimized orbital sets, the convergence trends for these
calculations are compared with those based on the ‘energy-driven’ calculations. In a series
of RCI calculations, we analyze the effect of NO and higher-order electron correlation
effects on the hyperfine interaction constants and compare the results with experiments
and other calculations. Finally, we summarize the results, analyze the implications, and
consider perspectives of separately optimized orbital sets for calculations of hyperfine
structure constants for other systems of relevance for astrophysics and nuclear physics.

2. Theory
2.1. The MCDHF and RCI Methods

In multiconfiguration methods, the wave function of an atomic state ΓJMJ , with Γ
being its identifying label, J the total angular momentum quantum number, and MJ the
total magnetic quantum number, is approximated by an atomic state function (ASF) Ψ,
which is a linear combination of configuration state functions (CSFs) Φ:

Ψ(ΓJMJ) =
NCSF

∑
i=1

cγi Φ(γi JMJ), (1)

where γi specifies the orbital occupancy and spin-angular coupling tree quantum numbers
of each CSF, and NCSF stands for the number of CSFs. The CSFs are antisymmetrized and
symmetry-adapted all-electron functions constructed from products of four-component
relativistic one-electron orbitals:

ϕnκm =
1
r

(
Pnκ(r) Ωκm(θ, φ)

i Qnκ(r) Ω−κm(θ, φ)

)
, (2)

where Pnκ(r) and Qnκ(r) are the radial functions. The radial functions of the orbitals are
a priori unknown and should be determined on a grid with the additional condition of
orthogonality within each symmetry. The requirement that the energy computed from the
multiconfiguration expansion should be stationary with respect to perturbations in the
expansion coefficients leads to a matrix eigenvalue problem:

(H − EI)cT = 0, (3)

where c = (c1, c2, . . . , cM) is the vector of expansion coefficients and H is the Hamiltonian
matrix with elements Hij = ⟨Φ(γi J)∥HDC∥Φ(γj J)⟩ of the Dirac–Coulomb (DC) Hamilto-
nian. The stationary condition with respect to variations in the radial functions, in turn,
leads to a system of coupled integro-differential equations, subject to boundary conditions
at the origin and in the infinity. Calculations where both the radial functions and the
expansions are simultaneously determined are referred to as multiconfiguration Dirac–
Hartree–Fock (MCDHF) calculations. Calculations for which the radial functions are frozen
(i.e., determined in an earlier calculation), and only the expansion coefficients are deter-
mined, are referred to as relativistic configuration interaction (RCI) calculations [23–25].

The computation of matrix elements between two CSFs, as part of the construction of
the Hamiltonian matrix or evaluation of expectation values, breaks down to spin-angular
integration that gives spin-angular coefficients, which are then multiplied with radial
one- or two-electron integrals and effective interaction strengths [23,24,26]. The spin-
angular integration is, by the sheer number of matrix elements, a very time-consuming
part of an RCI calculation. The integration is, however, independent of the principal
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quantum numbers of the orbitals, and arranging the CSFs in groups with the same spin-
angular structure spanned by configuration state function generators (CSFGs), spin-angular
integration has to be performed only for one or two pairs of CSFs in a group or between two
groups, from which then spin-angular coefficients directly follow for all pairs in the group
or between two groups. As a consequence, the CPU time for the spin-angular integration
is substantially reduced compared with calculations where spin-angular integration is
performed between all pairs of CSFs [22].

2.2. Hyperfine Structure

The hyperfine structure of an atomic energy level is caused by the interaction between
the electrons and the electromagnetic multipole moments of the nucleus. The Hamiltonian
for the interaction may be represented as a multipole expansion [27]:

Hh f s = ∑
k≥1

T(k) · M(k), (4)

where T(k) and M(k) are spherical tensor operators of rank k in the electronic and nuclear
spaces, respectively [28]. The dominating k = 1 term represents the magnetic dipole
interaction. For an N-electron atom, the electronic tensor operator is, in atomic units,

T(1) =
N

∑
i=1

t(1)(i) =
N

∑
i=1

−iα r−2
i

(
αi · li C(1)(θi, φi)

)
. (5)

In the formula above, α is the fine-structure constant, α the Dirac matrix, and C(1) the
renormalized spherical harmonic, a spherical tensor operator of rank one. The splitting of
atomic fine-structure levels due to the hyperfine interaction is often given in terms of the
interaction constant A:

AΓJ =
µI
I

1
[J(J + 1)(2J + 1)]1/2 ⟨ΓJ ∥ T(1) ∥ ΓJ⟩, (6)

where I is the nuclear spin and µI the nuclear magnetic dipole moment. Inserting the
wave function expansions from Equation (1), the reduced matrix elements between the
ASFs are given as sums over reduced matrix elements between CSFs weighted with the
expansion coefficients. Performing the spin-angular integration, the latter matrix elements
can be expressed in terms of spin-angular coefficients multiplied with radial hyperfine
integrals. Just as for the Hamiltonian matrix elements, the need for spin-angular integration
is reduced by the arrangement of CSFs into groups with the same spin-angular structure
spanned by a generator. Nitrogen has two stable isotopes, 14N and 15N. The hyperfine
constants in this work are computed for the most abundant isotope 14N, which has a nuclear
spin I = 1 and a nuclear magnetic dipole moment µI = +0.40376100(6) [29].

2.3. Transformation to Natural Orbitals

Since their introduction in 1955 by Löwdin [30], natural orbitals have been used
in quantum chemistry to obtain more compact representations of correlated wave func-
tions [31]. The electron density and natural orbitals of relativistic multiconfiguration
expansions can be computed using the RDENSITY program [32]. Introducing, for each
relativistic symmetry κ, the density matrix ρκ with elements

ρκ
nn′ = ∑

i,j
ciν

ij
nn′cj, (7)
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where ν
ij
nn′ are angular coefficients, the computation of which are described in [32], the

natural orbitals vector ϕ̃κ with elements ϕ̃nκ are obtained from the eigenvectors Uκ of the
density matrix

(Uκ)†ρκUκ = ρ̃κ (8)

such that
ϕ̃κ = ϕκUκ . (9)

Written explicitly, the radial parts of the natural orbitals are

P̃n′κ(r) = ∑
n

uκ
n,n′Pnκ(r) (10)

Q̃n′κ(r) = ∑
n

uκ
n,n′Qnκ(r). (11)

As shown in [21], the modification of the spectroscopic orbitals due to the transforma-
tion has important effects on the computed hyperfine interactions that are hard to capture
by just increasing the number of layers of correlation orbitals.

3. Selection of CSF Expansions and Generation of Orbital Sets

In multiconfiguration methods, the orbital sets are determined in MCDHF calculations.
Guided by Z-dependent perturbation theory [23,33], MCDHF calculations are often based
on CSF expansions obtained by single and double (SD) substitutions of orbitals in a number
of important near-degenerate configurations, the multireference (MR) set, to increasing sets
of correlation orbitals. Variational calculations are energy-driven, and correlation orbitals
localize where the weighted energy decreases the most. An orbital set built up in this way
may be inefficient in describing correlation effects for properties such as transition rates
or hyperfine structures [14], which necessitates the generation of large correlation orbital
sets in order to converge the properties in question to a desirable accuracy. To remedy this,
one should start from a perturbative analysis of the CSFs that are important for the studied
property to see how the orbital set should be constructed to ensure rapid convergence (cf.,
equation (30) in [13]). The hyperfine operator is a one-body operator, and CSFs obtained
by S substitutions contribute to the lowest order. Out of these, the ones describing the
spin and orbital polarization of the closed 1s and 2s subshells are the most important;
see [14,15,34] for a detailed account. CSFs obtained by D substitutions have mainly indirect
effects [35]. To the next order, there are CSFs obtained by S substitutions from energetically
important configurations obtained by D substitutions. In accurate calculations, one also
has to consider D substitutions from energetically important configurations obtained by
D substitutions. These two classes are, respectively, formed by triple (T) and quadruple
(Q) substitutions.

4. Calculations of Hyperfine Interaction Constants in Different Orbital Sets

Radial orbitals were obtained from MCDHF calculations performed using the GRASP2018
program package [20,36]. The RCI calculations based on configuration state function gener-
ators (CSFGs) [22] were performed with the GRASPG program package [37]. The details of
the calculations, which were performed separately for each parity, are described below.

4.1. Hyperfine Interaction Constants from Energy-Driven Calculations

Starting with the odd-parity states, we performed an extended optimal level (EOL) [38]
Dirac–Hartree–Fock calculation of the 31 lowest states of the {2s22p3, 2s22p23p, 2s22p24p}
configurations. The common 1s core shell of the MR configurations was not written
out for simplicity. This calculation was followed by MCDHF calculations based on CSF
expansions obtained by allowing single and double (SD) substitutions of orbitals in the
MR configurations with orbitals in increasing orbital sets with the restriction that there
should be at most one substitution from the 1s core shell (MR-SD VV + CV). Specified by
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the orbitals with the highest principal quantum numbers of each symmetry, and employing
the non-relativistic notation, the orbital sets are listed in Table 1.

The calculations were performed with the LBL approach, meaning that the orbitals
from previous orbital sets were kept frozen, and only the outermost orbital of each symme-
try of a new orbital set was optimized [20]. The restriction to s, p, d, f , g symmetries can be
motivated by the fact that hyperfine structure constants are less sensitive to orbitals with
higher l, which are pushed away from the important region in the vicinity of the nucleus
due to the centripetal force [39,40].

Table 1. Orbital sets for odd-parity calculations. Sets specified by the orbitals with the highest
principal quantum numbers of each symmetry in non-relativistic notation.

Label Orbitals

set 1 {3s, 5p, 3d}
set 2 {4s, 6p, 4d, 4 f }
set 3 {5s, 7p, 5d, 5 f , 5g}
set 4 {6s, 8p, 6d, 6 f , 6g}
set 5 {7s, 9p, 7d, 7 f , 7g}
set 6 {8s, 10p, 8d, 8 f , 7g}
set 7 {9s, 11p, 9d, 8 f , 7g}

The calculations for the even-parity states were performed in a similar way. We started
with an extended optimal level (EOL) Dirac–Hartree–Fock calculation of the 50 lowest states
of the {2s22p23s, 2s2p4, 2s22p24s, 2s22p23d} configurations. This calculation was followed
by MCDHF calculations based on CSF expansions obtained by allowing single and double
(SD) substitutions of orbitals in the MR configurations with orbitals in increasing orbital
sets, with the restriction that there should be at most one substitution from the 1s core shell
(MR-SD VV + CV). Specified by the orbitals with the highest principal quantum numbers
of each symmetry, the orbital sets are given in Table 2.

Table 2. Orbital sets for even-parity calculations. Sets specified by the orbitals with the highest
principal quantum numbers of each symmetry in non-relativistic notation.

Label Orbitals

set 1 {5s, 3p, 4d}
set 2 {6s, 4p, 5d, 4 f }
set 3 {7s, 5p, 6d, 5 f , 5g}
set 4 {8s, 6p, 7d, 6 f , 6g}
set 5 {9s, 7p, 8d, 7 f , 7g}
set 6 {10s, 8p, 9d, 8 f , 7g}
set 7 {11s, 9p, 10d, 8 f , 7g}.

As discussed below, oscillations in the hyperfine interaction constants are related to
the varying spatial localization of the correlation orbitals. That conclusion is substantiated

by the mean radii ⟨r⟩nκ =
∫ ∞

0 r
(

P2
nκ(r) + Q2

nκ(r)
)

dr of the correlation orbitals, which are
collected in Table 3. The first set of values reported in the Table 3 corresponds to the radii
of the spectroscopic orbitals from the initial calculations. The second set refers to the radii
of the outermost correlation orbitals within each orbital set. The data collected in Table 3
reveal that the localizations, as measured by the mean radii, of the important correlation
orbitals of s symmetry are irregular and fluctuate in a region with the left boundary between
⟨r⟩1s and ⟨r⟩2s and the right boundary between ⟨r⟩2p and ⟨r⟩3s,3p,3d.

The MCDHF calculations were followed by RCI calculations based on CSF expansion
obtained by allowing SD substitutions of orbitals in an enlarged MR set consisting of
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additional near-degenerate configurations with orbitals in the correlations sets listed in
Tables 1 and 2. The enlarged MR sets for the odd- and even-parity states were

{2s22p3, 2s22p23p, 2s22p24p, 2p5, 2p43p, 2p44p, 2s2p33s, 2s2p33d, 2s2p23p3d} (12)

and

{2s22p23s, 2s2p4, 2s22p24s, 2s22p23d, 2p43s, 2p44s, 2p43d, 2s2p33p, 2s2p23s3d, 2s2p23s4d}. (13)

The RCI calculations included the Breit interaction and the leading QED corrections
(vacuum polarization and self-energy). To speed up the calculations, the CSFs were ar-
ranged in groups, with the same spin-angular structure spanned by CSFGs, thus allowing
the spin-angular coefficients for all pairs of CSFs in a group or between two groups to
be inferred from one or two ’template’ pairs. Compared to the ordinary RCI calculations,
for which spin-angular integration is performed between all pairs of CSFs, the use of
CSFGs reduces the execution time for the largest calculations (based on orbital set 7) by a
factor of 10.

Table 3. Mean orbital radii ⟨r⟩ (in a0 units), for the spectroscopic orbitals and for the outermost
orbitals in each orbital set, and for the 1s and 2s polarization orbitals. See Section 4.2 for a description
of the latter.

spectroscopic odd states even states
orbitals s1/2 p3/2 d5/2 s1/2 p3/2 d5/2
n = 1 0.228 – – 0.228 – –
n = 2 1.262 1.273 – 1.251 1.278 –
n = 3 – 6.818 – 6.952 – 10.39
n = 4 – 14.88 – 11.15 – –

correlation
orbital set s1/2 p3/2 d5/2 s1/2 p3/2 d5/2

set 1 1.769 2.373 1.427 2.061 1.912 1.452
set 2 0.994 1.024 1.040 0.955 0.950 1.053
set 3 1.711 1.403 1.330 1.359 1.406 1.387
set 4 3.501 2.706 3.868 2.368 3.442 1.777
set 5 0.969 0.970 0.986 0.931 0.823 3.636
set 6 4.223 6.623 0.927 7.193 1.158 0.708
set 7 0.711 0.715 3.705 0.783 6.121 0.733

1s polarization
orbitals s1/2 p3/2 d5/2 s1/2 p3/2 d5/2

0.999 – 0.778 1.105 – 0.785
3.842 – 0.818 0.804 – 0.816

2s polarization
orbitals s1/2 p3/2 d5/2 s1/2 p3/2 d5/2

2.394 – 1.512 2.911 – 1.536
4.421 – 4.287 3.230 – 1.182

The calculated magnetic dipole hyperfine interaction constants are shown in Tables 4 and 5
as functions of the increasing orbital sets. They exhibit several different convergence
patterns. The hyperfine interaction constants of some odd-parity states (e.g., 2p3 4So

3/2,
2p23p 2So

1/2 and 2p24p 2So
1/2) oscillate heavily as the orbital set is increased, and they are not

converged even after seven layers of correlation orbitals. Other states, e.g., 2p3 2Do
3/2, 5/2

and 2p3 2Po
1/2, 3/2 are very stable and remain virtually unchanged as the orbital set is

increased. In the case of even-parity states, the oscillations are not as pronounced, although
there is a large change when going from orbital set 1 to orbital set 2. Worth noting are the
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large correlation effects for the 2p23s 4P1/2, 3/2, 5/2 states and the slow convergence with
respect to the increasing orbital set.

Table 4. Hyperfine interaction constants A (in MHz) for states of the {2s22p3, 2s22p23p, 2s22p24p}
odd configurations in 14N from MR-SD RCI calculations as functions of the increasing set of correla-
tion orbitals.

State J P Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Exp. MCHF d

2p3 4So 3/2 - 40.35 −11.84 7.331 8.838 11.40 11.65 11.04 10.4509 a

2p3 2Do 5/2 - 117.2 112.7 114.5 116.1 115.9 115.9 115.9
2p3 2Do 3/2 - 59.29 72.17 67.10 67.41 66.13 66.19 66.17
2p3 2Po 1/2 - 294.3 332.2 320.5 324.0 321.8 321.1 321.8
2p3 2Po 3/2 - 73.36 58.09 63.10 64.12 64.46 64.65 64.43

2p23p 2So 1/2 - 73.47 −12.92 3.931 3.105 5.489 5.730 5.484
2p23p 4Do 1/2 - 42.31 85.03 76.99 76.37 75.38 75.01 75.09 69.76(90) b,c 74.15
2p23p 4Do 3/2 - 37.96 28.93 30.69 31.02 31.16 31.38 31.26 30.3(15) c 31.71
2p23p 4Do 5/2 - 48.19 31.94 35.15 35.60 35.94 36.22 36.07 36.6(11) c 36.76
2p23p 4Do 7/2 - 68.28 50.09 53.88 54.23 54.72 54.96 54.84 55.2(11) c 55.63
2p23p 4Po 1/2 - 1.375 −72.31 −58.48 −56.97 −55.58 −54.54 −54.91 −50.78(17) c −52.25
2p23p 4Po 3/2 - 70.89 39.73 45.91 46.35 47.14 47.41 47.29 46.2(15) c 51.04
2p23p 4Po 5/2 - 51.41 25.31 30.48 30.95 31.54 31.90 31.76 31.93(86) c 33.16
2p23p 4So 3/2 - 43.68 23.31 9.971 11.23 12.69 13.18 13.07
2p23p 2Do 3/2 - 58.23 51.77 72.10 72.85 72.41 71.63 71.62
2p23p 2Do 5/2 - 82.04 66.07 69.31 69.26 69.69 69.89 69.80
2p23p 2Po 1/2 - 122.7 151.1 145.5 145.9 145.4 146.2 146.3
2p23p 2Po 3/2 - 74.44 47.74 53.10 53.20 53.82 53.97 53.85
2p24p 2So 1/2 - 72.28 −16.06 −0.08142 −1.692 0.2150 0.3925 −0.1555
2p24p 4Do 1/2 - 31.76 74.09 66.03 65.53 64.49 64.11 64.24
2p24p 4Do 3/2 - 28.99 20.20 21.64 21.36 21.47 21.56 21.45
2p24p 4Do 5/2 - 39.05 22.71 25.59 25.26 25.56 25.68 25.53
2p24p 4Do 7/2 - 67.53 49.21 52.90 52.80 53.31 53.45 53.34
2p24p 4Po 1/2 - 4.462 −68.78 −55.68 −55.64 −54.24 −53.66 −54.07
2p24p 4Po 3/2 - 73.67 42.53 48.15 46.96 47.72 47.34 47.20
2p24p 4Po 5/2 - 57.41 31.38 36.42 36.50 37.14 37.35 37.22
2p24p 2Do 3/2 - 55.21 72.13 69.78 68.92 68.67 67.47 67.55
2p24p 2Do 5/2 - 83.69 68.58 72.20 72.37 72.90 73.00 72.92
2p24p 4So 3/2 - 45.89 1.977 11.55 13.77 15.04 16.13 15.90
2p24p 2Po 1/2 - 138.5 171.0 168.5 171.0 171.1 171.8 172.1
2p24p 2Po 3/2 - 77.82 53.14 58.39 57.88 58.51 57.91 57.78

a Hirsch et al. [41], b Jennerich et al. [16], c Carette et al. [17] revisiting and reinterpreting the spectra of Jennerich et al. [16],
d Jönsson et al. [18].

In the same Tables 4 and 5, the few experimental values available are also reported
for comparison with the present calculations. For the odd parity, the experimental value
of Hirsch et al. [41], obtained using a hydrogen maser technique, has an extraordinary
accuracy, i.e., A(2p3 4So) = 10.45092912(10) MHz. The corresponding error bars are not
explicitly given in Table 4 for this specific level to save room in the table. For all other levels,
the hyperfine constant values have been determined using saturation laser spectroscopy
by Jennerich et al. [16]. As demonstrated by Carette et al. [17], the presence of crossover
resonances is problematic and the original spectra of Jennerich et al. had to be revisited
to reconcile theory with observation. As written in their work, while the strong hyperfine
lines are relatively easy to identify, the weak components are usually not. Most of the
weak hyperfine lines were reinterpreted as crossover signals, producing hyperfine constant
values that completely differ from the original ones. The uncertainty in these saturation
spectroscopy measurements in the near-infrared is much larger than the one mentioned
above for the ground level [41].
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Table 5. Hyperfine interaction constants A (in MHz) for states of the {2s22p23s, 2s2p4, 2s22p24s, 2s22p23d}
even configurations in 14N from MR-SD RCI calculations as function of the increasing set of correlation
orbitals.

State J P Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Exp. MCHF c

2p23s 4P 1/2 + 71.65 20.48 53.27 76.00 80.54 81.98 80.51 112.3(13) a,b 100.21
2p23s 4P 3/2 + 52.23 28.82 43.04 52.98 54.92 55.59 54.91 68.33(69) b 62.46
2p23s 4P 5/2 + 116.9 99.51 110.9 118.8 120.2 120.7 120.2 129.52(84) b 124.84
2p23s 2P 1/2 + 47.24 71.56 64.82 65.16 63.85 64.07 64.28
2p23s 2P 3/2 + 124.0 97.45 104.9 104.1 105.4 105.3 10.50
2p4 4P 5/2 + 344.1 361.3 360.3 354.9 350.8 350.3 350.2
2p4 4P 3/2 + 355.5 368.7 371.0 365.0 361.4 360.5 360.7
2p4 4P 1/2 + 782.0 810.6 818.8 808.4 801.5 799.4 800.0

2p23s 2D 5/2 + 130.5 134.3 135.1 135.2 135.5 135.8 135.7
2p23s 2D 3/2 + 146.4 150.5 148.6 148.6 148.0 147.9 147.9
2p24s 4P 1/2 + 19.61 −47.67 −32.29 −37.49 −34.22 −34.08 −35.06
2p24s 4P 3/2 + 25.31 −4.749 2.476 0.4206 1.824 1.931 1.488
2p24s 4P 5/2 + 94.72 72.02 79.28 78.34 79.43 79.47 79.07
2p24s 2P 1/2 + 31.53 54.29 49.66 51.58 49.49 49.78 49.80
2p24s 2P 3/2 + 117.5 92.85 103.9 105.0 104.7 104.4 103.3
2p23d 2P 3/2 + −1.712 −32.21 −30.62 −35.77 −31.49 −31.78 −31.90
2p23d 2P 1/2 + −115.4 −93.35 −102.0 −102.5 −102.8 −102.6 −101.9
2p23d 4F 3/2 + 14.85 38.14 34.50 37.09 34.50 35.32 35.93
2p23d 4F 5/2 + 21.56 24.68 24.19 24.39 24.63 24.61 24.59
2p23d 4F 7/2 + 30.59 23.23 25.44 25.06 25.97 25.85 25.66
2p23d 2F 5/2 + 31.71 38.24 35.44 9.579 28.50 27.93 22.38
2p23d 4P 5/2 + 7.241 −24.46 −21.45 0.8877 −17.02 −16.59 −11.41
2p23d 4P 3/2 + −5.061 −47.84 −43.43 −42.84 −41.73 −42.03 −42.24
2p23d 4P 1/2 + −16.48 −88.26 −35.85 −6.957 −5.629 −6.556 −5.808
2p23d 2F 7/2 + 60.53 46.81 50.66 49.96 50.57 50.51 50.27
2p23d 4D 1/2 + 222.2 266.3 217.2 184.4 184.0 184.7 183.4
2p23d 4D 3/2 + 75.66 79.77 81.81 77.55 78.02 78.07 77.69
2p23d 4D 5/2 + 47.82 36.13 40.88 40.11 40.50 40.46 40.25
2p23d 4D 7/2 + 28.54 11.15 15.51 14.71 15.34 15.24 15.06
2p23d 2D 3/2 + 49.17 64.39 60.97 61.75 61.00 61.13 61.40
2p23d 2D 5/2 + 31.68 14.83 19.38 18.74 19.74 19.60 19.42

a Jennerich et al. [16], b Carette et al. [17] revisiting and reinterpreting the spectra of Jennerich et al. [16], c Jönsson et al. [18].

4.2. Polarization Orbitals Merged with the Orbitals from Energy-Driven Calculations

To improve the convergence of the hyperfine interaction constants, the orbital basis
should, based on the discussion in Section 3, include orbitals specially targeted for capturing
the important spin- and orbital-polarization effects. In this work, following [14], we keep
the spectroscopic orbitals from the first calculation of the odd-parity states frozen and
optimize two s and two d orbitals on the weighted average of the targeted states based
on CSF expansions formed by allowing single substitutions from the closed 1s subshell of
the reference configurations. These orbitals and the corresponding CSFs capture most of
the spin- and orbital-polarization effects of the 1s subshell. In the same way, we optimize
two s and two d orbitals on the weighted average of the targeted states based on CSF
expansions formed by allowing single substitutions from the closed 2s subshell of the
reference configurations. These orbitals and the corresponding CSFs capture most of the
spin- and orbital-polarization effects of the 2s subshell. Being separately optimized, the
two sets of spin- and orbital-polarization orbitals are not orthogonal. Similar calculations of
spin- and orbital-polarization orbitals were performed for the even states. The mean orbital
radii of the spin- and orbital-polarization orbitals are reported at the bottom of Table 3.

Due to orthogonality restrictions, the separately optimized and optimally localized
polarization orbitals cannot be directly added into the orbital sets from the previous energy-
driven LBL calculations. To deal with the orthogonality issue, we use the RWFNRELABEL
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program of GRASP2018 to relabel the orbitals in the 1s polarization set (i.e., to change their
principal quantum numbers which, together with the orbital quantum numbers, serve
as the orbital identifiers), so that they carry unique identifiers, and on the hierarchical
orbital list they eventually appear after the orbitals from the energy-driven LBL calculation.
In the same way, we use the RWFNRELABEL program to relabel the orbitals in the 2s
polarization set, so that they appear after the relabeled orbitals from the 1s polarization set.
The relabeled polarization sets were added to, and orthogonalized against, the orbital sets
from the energy-driven LBL calculation, forming final orthonormal orbital sets

{set i} ∪ {1s polarization set } ∪ {2s polarization set} i = 1, 2, . . . , 7 . (14)

Then, RCI calculations were performed for the odd- and even-parity states, based on
CSF expansions obtained by allowing SD substitutions from the orbitals in the enlarged MR
set (Equations (12) and (13)) to the correlation orbital sets in Tables 1 and 2 generated by the
energy-driven LBL calculations. These expansions were augmented with CSFs obtained by
allowing S substitutions from the closed 1s subshell of the configurations in the enlarged
MR set to the correlation orbitals in the 1s polarization set, and with CSFs obtained by
allowing S substitutions from the closed 2s subshell of the configurations in the enlarged
MR set to the correlation orbitals in the 1s and 2s polarization sets. It should be noted
that the computational overhead incurred by including polarization orbitals is completely
negligible. This becomes evident by comparing the number of CSFs generated from the
largest orbital set in the energy-driven LBL calculation with the number of CSFs generated
in the same expansion, but augmented with the CSFs based on the polarization sets, and
accounting for the spin and orbital polarization. This comparison is reported in Table 6 for
the odd and even parities.

Table 6. Number of CSFs generated from the largest orbital set in the energy-driven LBL calculation,
compared with the number of CSFs obtained in the same expansion, but augmented with the
polarization sets (accounting for the spin and orbital polarization).

Expansion Odd States Even States

set 7 10,883,618 9,333,523
set 7 ∪ pol. sets 10,901,511 9,347,089

The hyperfine interaction constants from the RCI calculations with CSF expansions
generated in the energy-driven LBL approach, and augmented with the CSFs based on
the polarization sets, are shown in Tables 7 and 8. When the spin- and orbital-polarization
effects, based on separately optimized and optimally localized orbitals, are included,
the convergence with respect to the increasing orbital set from the energy-driven LBL
calculations becomes remarkably smooth.

Table 7. Hyperfine interaction constants A (in MHz) for states of the {2s22p3, 2s22p23p, 2s22p24p} odd
configurations in 14N from MR-SD RCI calculations as functions of the increasing set of correlation
orbitals. Separately optimized spin- and orbital-polarization orbitals for 1s and 2s, respectively, have
been merged with, and orthogonalized against, the ordinary energy-optimized orbitals. The TQ
column holds results from calculations for which the MR set has been increased to capture part of the
effects of the TQ substitutions. The NO column holds results from calculations that account for the
effects of the TQ substitutions in the basis of natural orbitals.

State J P Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 TQ TQ + NO Exp. MCHF d

2p3 4So 3/2 - 11.66 11.35 11.27 11.58 11.26 11.22 11.29 10.49 10.77 10.4509 a 10.395
2p3 2Do 5/2 - 111.8 117.4 115.3 116.7 115.9 115.9 115.9 115.2 115.3
2p3 2Do 3/2 - 63.38 67.57 66.08 66.75 66.26 66.14 66.13 65.97 66.00
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Table 7. Cont.

State J P Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 TQ TQ + NO Exp. MCHF d

2p3 2Po 1/2 - 309.1 325.5 320.0 323.4 321.5 321.6 321.7 320.5 320.7
2p3 2Po 3/2 - 62.36 65.08 64.10 64.95 64.47 64.48 64.50 63.67 63.79

2p23p 2So 1/2 - 10.17 6.227 6.269 6.212 5.751 5.575 5.486 7.147 6.663
2p23p 4Do 1/2 - 72.06 74.51 74.87 74.58 74.99 74.98 75.01 74.26 74.44 69.76(90) b,c 74.15
2p23p 4Do 3/2 - 31.51 31.21 31.35 31.28 31.28 31.29 31.25 31.60 31.57 30.3(15) c 31.71
2p23p 4Do 5/2 - 36.74 36.12 36.24 36.18 36.12 36.14 36.09 36.61 36.54 36.6(11) c 36.76
2p23p 4Do 7/2 - 55.27 54.74 54.92 54.95 54.71 54.91 54.87 55.39 55.28 55.2(11) c 55.63
2p23p 4Po 1/2 - −50.54 −54.56 −54.65 −54.22 −54.70 −54.71 −54.80 −53.24 −53.60 −50.78(17) c −52.25
2p23p 4Po 3/2 - 48.42 47.21 47.34 47.53 47.42 47.36 47.33 47.92 47.73 46.2(15) c 51.04
2p23p 4Po 5/2 - 32.63 31.60 31.74 31.95 31.86 31.83 31.80 32.38 32.22 31.93(86) c 33.16
2p23p 4So 3/2 - 15.52 13.16 13.29 13.55 13.22 13.13 13.08 14.12 13.96
2p23p 2Do 3/2 - 70.44 72.83 72.84 72.17 72.25 71.57 71.57 70.63 70.69
2p23p 2Do 5/2 - 69.95 69.80 69.83 69.92 69.85 69.87 69.83 70.27 70.16
2p23p 2Po 1/2 - 142.6 144.1 143.9 145.0 145.1 146.4 146.3 146.9 147.0
2p23p 2Po 3/2 - 54.50 54.21 54.25 54.30 54.15 53.93 53.89 54.29 54.12
2p24p 2So 1/2 - 7.448 2.200 1.834 1.062 0.5278 0.02129 −0.1153 2.625 2.153
2p24p 4Do 1/2 - 61.85 64.54 64.63 63.99 64.32 64.23 64.24 62.51 62.65
2p24p 4Do 3/2 - 22.42 22.04 22.05 21.57 21.55 21.52 21.48 21.49 21.32
2p24p 4Do 5/2 - 27.15 26.32 26.30 25.74 25.66 25.63 25.59 25.83 25.58
2p24p 4Do 7/2 - 53.97 53.32 53.50 53.43 53.31 53.38 53.35 54.07 53.96
2p24p 4Po 1/2 - −48.99 −53.44 −53.62 −53.37 −53.83 −54.01 −54.11 −51.56 −51.84
2p24p 4Po 3/2 - 49.34 47.89 47.98 47.76 47.70 47.18 47.18 47.83 47.73
2p24p 4Po 5/2 - 37.96 36.79 36.95 37.34 37.27 37.20 37.16 38.41 38.42
2p24p 2Do 3/2 - 66.12 69.31 69.68 68.40 68.59 67.48 67.54 65.52 65.65
2p24p 2Do 5/2 - 71.69 72.37 72.91 72.95 73.01 72.94 72.93 73.27 73.18
2p24p 4So 3/2 - 17.73 15.21 15.37 16.04 15.70 16.00 15.89 18.17 18.01
2p24p 2Po 1/2 - 159.2 166.2 168.3 170.4 170.9 172.0 172.1 171.1 171.2
2p24p 2Po 3/2 - 58.17 59.13 59.44 58.78 58.71 57.80 57.79 57.95 57.84

a Hirsch et al. [41], b Jennerich et al. [16], c Carette et al. [17] revisiting and reinterpreting the spectra of Jennerich et al. [16],
d Jönsson et al. [18].

Table 8. Hyperfine interaction constants A (in MHz) for states of the {2s22p23s, 2s2p4, 2s22p24s, 2s22p23d}
even configurations in 14N from MR-SD RCI calculations as functions of the increasing set of correlation
orbitals. Separately optimized spin- and orbital-polarization orbitals for 1s and 2s, respectively, have been
merged with, and orthogonalized against, the ordinary energy-optimized orbitals. The TQ column holds
results from calculations for which the MR set has been increased to capture part of the effects of the
TQ substitutions. The NO column holds results from calculations that account for the effects of the TQ
substitutions in the basis of natural orbitals.

State J P Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 TQ TQ + NO Exp. MCHF c

2p23s 4P 1/2 + 32.66 37.44 52.53 78.15 79.37 81.29 80.87 94.71 97.87 112.3(13) a,b 100.21
2p23s 4P 3/2 + 33.43 35.98 42.57 53.94 54.40 55.27 55.08 61.20 62.58 68.33(69) b 62.46
2p23s 4P 5/2 + 102.7 105.7 110.6 119.6 119.8 120.5 120.2 125.2 126.3 129.52(84) b 124.84
2p23s 2P 1/2 + 62.25 64.39 64.62 64.23 64.30 64.33 64.16 63.65 63.80
2p23s 2P 3/2 + 104.9 104.2 104.8 105.1 105.0 105.0 105.2 105.9 105.8
2p4 4P 5/2 + 358.7 367.0 360.3 354.7 350.6 350.1 350.2 344.1 342.7
2p4 4P 3/2 + 372.1 375.4 370.9 364.9 361.1 360.4 360.8 353.7 352.2
2p4 4P 1/2 + 822.1 826.5 819.0 808.1 801.1 799.1 800.3 785.0 782.2

2p23s 2D 5/2 + 131.6 134.6 134.9 135.2 135.5 135.8 135.7 136.3 136.5
2p23s 2D 3/2 + 145.2 150.1 148.6 148.6 148.0 147.9 147.9 147.1 146.7
2p24s 4P 1/2 + −23.62 −31.15 −32.82 −35.04 −35.37 −34.80 −34.70 −31.91 −31.76
2p24s 4P 3/2 + 4.536 2.300 2.091 1.540 1.315 1.600 1.656 2.896 3.023
2p24s 4P 5/2 + 78.43 78.30 79.10 79.27 78.99 79.20 79.07 80.39 80.45
2p24s 2P 1/2 + 44.66 47.70 49.49 50.73 49.91 50.01 49.69 48.06 47.51
2p24s 2P 3/2 + 97.52 99.82 103.6 106.1 104.3 104.1 103.4 103.8 102.4
2p23d 2P 3/2 + −18.45 −25.77 −30.84 −34.71 −31.98 −32.09 −31.75 −30.13 −28.86
2p23d 2P 1/2 + −98.12 −99.42 −101.9 −103.4 −102.4 −102.4 −102.0 −102.8 −102.1
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Table 8. Cont.

State J P Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 TQ TQ + NO Exp. MCHF c

2p23d 4F 3/2 + 28.17 32.78 34.66 36.22 35.40 35.57 35.81 35.41 35.43
2p23d 4F 5/2 + 23.08 23.91 24.17 24.29 24.67 24.63 24.59 24.63 24.68
2p23d 4F 7/2 + 24.87 25.12 25.34 25.35 25.83 25.76 25.71 26.20 26.28
2p23d 2F 5/2 + 36.01 36.50 35.47 9.842 28.58 27.95 22.38 19.45 20.54
2p23d 4P 5/2 + −6.712 −19.03 −21.64 1.233 −17.38 −16.78 −11.41 −7.861 −8.905
2p23d 4P 3/2 + −15.17 −42.66 −43.61 −41.87 −42.17 −42.31 −42.11 −40.81 −40.89
2p23d 4P 1/2 + 2.199 −81.80 −35.97 −4.722 −6.624 −7.182 −5.495 −0.8566 −1.526
2p23d 2F 7/2 + 50.74 50.38 50.57 50.49 50.32 50.35 50.34 50.97 50.96
2p23d 4D 1/2 + 189.6 266.1 217.3 182.9 184.6 185.1 183.2 179.7 180.4
2p23d 4D 3/2 + 62.48 83.24 81.77 77.84 77.88 77.98 77.73 77.72 77.81
2p23d 4D 5/2 + 35.54 40.21 40.77 40.67 40.23 40.30 40.25 40.89 40.88
2p23d 4D 7/2 + 16.49 15.39 15.36 15.37 15.03 15.05 15.15 15.73 15.70
2p23d 2D 3/2 + 59.89 60.98 61.16 61.20 61.26 61.29 61.31 60.75 60.70
2p23d 2D 5/2 + 19.79 19.04 19.22 19.39 19.44 19.41 19.41 20.18 20.13

a Jennerich et al. [16], b Carette et al. [17] revisiting and reinterpreting the spectra of Jennerich et al. [16], c Jönsson et al. [18].

The improvements in convergence of the hyperfine interaction constants for the
2p3 4So

3/2, 2p23p 2So
1/2, 2p24p 2So

1/2 odd states and the 2p23s 4P1/2, 2p24s 4P1/2, 2p23d 2D5/2
even states are graphically illustrated in Figure 1. For the calculations using polarization
orbitals, only three or four layers (orbital sets up to 3 or 4) from the energy-driven calcula-
tions are needed to achieve converged hyperfine constants. The convergence pattern for
the 2p23s 4P1/2 even state, however, differs from the other ones, and here, five or even six
orbital layers from the energy-driven calculations are needed for convergence. As we will
see later, this state is particularly sensitive to higher-order correlation effects as well as to
the transformation to natural orbitals.
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Figure 1. Convergence of hyperfine constants A for the (a) 2p3 4So
3/2, (b) 2p23p 2So

1/2, (c) 2p24p 2So
1/2

odd states and the (d) 2p23s 4P1/2, (e) 2p24s 4P1/2, (f) 2p23d 2D5/2 even states from energy-driven
LBL calculations (blue dots + orange lines) and from calculations with merged polarization orbitals
(blue crosses). The orbital sets are the ones from Tables 1 and 2.

4.3. Higher-Order Correlation Effects and Transformation to Natural Orbitals

For accurate hyperfine interaction constants, higher-order electron correlation effects
should be accounted for. This can be achieved by augmenting the CSFs from the previous
RCI calculations with CSFs obtained by triple (T) and quadruple (Q) substitutions to in-
creasing orbital sets. However, the orbital set cannot include more than a few layers, in
order to keep the number of added CSFs at a manageable level. Alternatively, and this is the
way we will follow, the CSFs from the previous RCI calculations can be augmented by CSFs
obtained by SD substitutions from a larger MR set. For the odd-parity states, the enlarged
MR set consisted of the 52 most energetically important configurations, with an accumu-
lated squared weight of 99.5%. Allowing SD substitutions from these configurations to the
{8s, 6p, 6d} orbital set resulted in a final expansion of 18,565,748 CSFs. For the even-parity
states, the enlarged MR set consisted of the 61 most energetically important configurations,
again with an accumulated squared weight of 99.5%. Allowing SD substitutions from these
configurations to the {8s, 6p, 6d} orbital set resulted in an expansion of 16,431,197 CSFs.
The hyperfine interaction constants from these calculations are collected in Tables 7 and 8,
in the columns with the TQ header. The influence of the higher-order correlation effects is
rather small, with the exception of a few states. For the 2p3 4So

3/2 odd state, the hyperfine
interaction constant is reduced by 7 %, bringing the value in better agreement with the
experimental value. For the 2p23s 4P1/2, 3/2 even states, the hyperfine interaction constants
are increased by 17% and 11%, respectively. Incidentally, for the latter states the total
correlation effects were largest. Similar observations of their sensitivity to higher-order
correlation effects were made by Jönsson et al. [18], based on MCHF calculations.

In the LBL calculations, as discussed in Section 1, orbitals are kept frozen from a
fully variational EOL calculation of the targeted states, based on the most important
reference configurations, and are not allowed to relax in response to the introduced layers
of correlation orbitals. More specifically, the 3s, 4s, 3p, 4p, 3d valence orbitals do not respond
to the effects which result from the interaction with the 1s22s22p2 core (core–valence). The
transformation to natural orbitals accounts for these effects, and in Table 9 we provide
orbital radii after the transformation.
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Table 9. Mean orbital radii ⟨r⟩ (in a0 units) for the spectroscopic orbitals after transformation to
natural orbitals. The radii should be compared to those in Table 3.

Spectroscopic Odd States Even States
Orbitals s1/2 p3/2 d5/2 s1/2 p3/2 d5/2

n = 1 0.226 – – 0.227 – –
n = 2 1.262 1.275 – 1.249 1.268 –
n = 3 – 7.782 – 5.241 – 10.37
n = 4 – 13.98 – 12.64 – –

For the odd states, the main effects are the expansion of the 3p orbital and the con-
traction of the 4p orbital. The effects on the hyperfine constants, as seen from Table 7, are
small, the exception being the 2s22p3 4So

3/2 state, for which the constant increases by 2.6%.
The hyperfine interaction constant for this state results mainly from large and canceling
contributions from the spin polarization of the 1s and 2s closed subshells, and the effect of
the orbital transformation is to change this balance slightly. For the even states, the main
effects are the contraction of the 3s orbital and the expansion of the 4s orbital. The effects of
the contraction can be seen for the 2s22p23s 4P1/2, 3/2 states, for which the constants increase
by 3.3% and 2.6%, respectively. The effects for the remaining states are small; see Table 8.
The final values of the hyperfine interaction constants are in good agreement with both
the extensive MCHF calculations of Jönsson et al. [18] and with the experimental values
deduced by Carette et al. [17] from the spectral profiles published by Jennerich et al. [16],
but revisiting their analysis on the basis of crossover signals. Using the presently avail-
able set of experimental data, some differences with respect to observation are, however,
worth noting. The hyperfine interaction constants for the 2s22p23s 4P1/2, 3/2 even states
are strongly affected by electron correlation effects. Even using specifically targeted spin-
and orbital-polarization orbitals, the values change by factors of 3 and 2, respectively, as
the energy-driven orbital set is increased. These states are also sensitive to higher-order
correlation effects and to transformation to natural orbitals. Both the results of the current
calculations and of the MCHF calculations in Ref. [18] are 10% smaller than the respective
experimental value s.

5. Conclusions and Outlook

Correlation orbitals generated in the energy-driven LBL approach often yield oscillat-
ing convergence patterns for the calculated hyperfine interaction constants, which in turn
requires large orbital sets in order to converge the constants. Separately optimized orbitals
accounting for the most important correlation effects, i.e., spin and orbital polarization,
orthogonalized against, and merged with, the orbitals from the energy-driven calculations
lead to considerably improved convergence at a marginal increase in computational cost. In
the LBL approach, the spectroscopic orbitals are determined in initial calculations including
only configurations in the MR set. These orbitals are then kept frozen and are not allowed
to relax in response to the core–valence correlation effects. This lack of variational freedom
can, seemingly, be compensated for by the use of natural orbitals. We foresee that the
use of separately optimized orbital sets, targeted for those correlation effects which are
important in the calculation of a specific atomic property, but less important for the total
energy, will be valuable in future studies of hyperfine interaction constants and also of
transition rates. At present, separately optimized orbitals need to be orthogonalized against
the orbitals from the energy-driven calculations, but with the use of the methods based on
biorthonormal transformation, as proposed in [13,22], this can be circumvented. As far as
the theory–observation comparison is concerned, the present study appeals for measure-
ments of hyperfine structures involving more excited levels. For the levels arising from
the 2p23p 4Do, 2p23p 4Po and 2p23s 4P terms, the original spectra of Jennerich et al. [16]
should be carefully reinvestigated, as suggested by Carette et al. [17], according to their
new interpretation and assignments to refine the set of available experimental hyperfine
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constants and associated uncertainties. Perhaps a more definite approach would be to
perform new high-resolution spectroscopy experiments that could avoid the confusion of
real hyperfine components with undesirable crossover signals.
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14. Li, Y.; Jönsson, P.; Godefroid, M.; Gaigalas, G.; Bieroń, J.; Marques, J.P.; Indelicato, P.; Chen, C. Independently Optimized Orbital
Sets in GRASP—The Case of Hyperfine Structure in Li I. Atoms 2023, 11, 4. [CrossRef]

15. Godefroid, M.R.; Van Meulebeke, G.; Jönsson, P.; Froese Fischer, C. Large-scale MCHF calculations of hyperfine structures in
nitrogen and oxygen. Z. Phys. D—Atoms Mol. Clust. 1997, 42, 193–201. [CrossRef]

16. Jennerich, R.; Keiser, A.; Tate, D. Hyperfine structure and isotope shifts in near-infrared transitions of atomic nitrogen. Eur. Phys.
J. D 2006, 40, 81–89. [CrossRef]

17. Carette, T.; Nemouchi, M.; Jönsson, P.; Godefroid, M. Saturation spectra of low lying states of Nitrogen: Reconciling experiment
with theory. Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 2010, 60, 231–242. [CrossRef]

18. Jönsson, P.; Carette, T.; Nemouchi, M.; Godefroid, M. Ab initio calculations of 14N and 15N hyperfine structures. J. Phys. B At.
Mol. Opt. Phys. 2010, 43, 115006. [CrossRef]

19. Ahrendsen, K.J.; Maruko, C.; Albert-Aranovich, K.R.; Berfield-Brewer, Q.; Esseln, A.; Guo, L.; Ishimwe, A.E.; Kuzniar, Y.;
McKenna, A.E.; Villarreal, K.J.S.; et al. Absolute frequency measurement of the 2p2(3P)3s 2P − 2p2(3P)3p 2Do transitions in
neutral 14N. Phys. Rev. A 2023, 108, 042815. [CrossRef]

20. Jönsson, P.; Godefroid, M.; Gaigalas, G.; Ekman, J.; Grumer, J.; Li, W.; Li, J.; Brage, T.; Grant, I.P.; Bieroń, J.; et al. GRASP Manual
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