
Concentration Quenching of Fluorescence Decay Kinetics of
Molecular Systems
Sandra Barysaite,̇ Jevgenij Chmeliov, Leonas Valkunas, and Andrius Gelzinis*

Cite This: J. Phys. Chem. B 2024, 128, 4887−4897 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Fluorescence concentration quenching occurs when
increasing molecular concentration of fluorophores results in a
decreasing fluorescence quantum yield. Even though this
phenomenon has been studied for decades, its mechanisms and
signatures are not yet fully understood. The complexity of the
problem arises due to energy migration and trapping in huge
networks of molecules. Most of the available theoretical work
focuses on integral quantities like fluorescence quantum yield and
mean excitation lifetime. In this work, we present a numerical study
of the fluorescence decay kinetics of three-dimensional and two-
dimensional molecular systems. We investigate the differences
arising from the variations in models of trap formations. We also
analyze the influence of the molecular orientations to the
fluorescence decay kinetics. We compare our results to the well-known analytical models and discuss their ranges of validity.
Our findings suggest that the analytical models can provide inspiration for different ways of approximating the fluorescence kinetics,
yet more detailed analysis of the experimental data should be done by comparison with numerical simulations.

1. INTRODUCTION
Fluorescence concentration quenching is a phenomenon when
the fluorescence quantum yield decreases upon increasing
molecular concentration. It has been investigated since the
middle of the previous century1−7 and still remains an active
research topic.8−11 Concentration quenching has been
observed in different chlorophyll systems.2,12,13 Rather
remarkably, no concentration quenching is observed in in
vivo photosynthetic systems, even though in vitro systems of
similar concentrations exhibit severe fluorescence quenching.14

Since concentration quenching results in energy loss and lower
fluorescence yield, for practical applications, it has to be
controlled and limited.15−17 This requires a detailed knowl-
edge and understanding of many different facets of this
phenomenon. To this day, however, concentration quenching
is not yet fully understood.

The complexity of concentration quenching originates in its
multilayered nature. For most systems, the global picture is
deceptively simple�excitation migrates until a trap is reached.
The physical nature of the trap is nonetheless not yet agreed
upon. A widely popular statistical pair model assumes that two
molecules, closer to each other than a certain critical distance,
form a trap.2 Formally, as remarked in ref 5, such model does
not contain any physical picture since the excitation is just
assumed to be lost in the statistical pair. Most prevalent
physical explanation of the trapping nature suggests that
closely situated molecules, especially the planar ones, tend to

form H-type dimers.18 Thus, excitation, upon reaching such a
dimer, quickly relaxes to the very weakly fluorescent lower
excited state. Recently, however, charge transfer was proposed
to be responsible for the chlorophyll fluorescence concen-
tration quenching.11 On the other hand, trapping can also be
assumed to occur due to the acceptor molecules,19 which could
in principle be of the same species as the fluorescent donors,
just affected by the environmental influence. Regardless of the
physical nature of the traps, additional source of complexity is
due to energy transfer since there are no analytical solutions for
energy transfer and trapping in systems of hundreds or
thousands of randomly distributed molecules, even assuming
the limit of infinitely deep traps.

The theoretical analysis of energy migration and trapping in
molecular systems underpins the efforts to understand the
concentration quenching phenomenon. Analytical work usually
requires a set of approximations. Perhaps the most well-known
limit is the case of a single donor molecule surrounded by an
infinite number of infinitely deep acceptors.19,20 Expressions
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for two-dimensional (2D), three-dimensional (3D), and even
fractal-dimensional systems can be obtained.4 Accounting for
the energy transfer between the donor molecules is also
possible, but the resulting expressions can be rather
cumbersome and still require numerical evaluations.21−24 All
this highlights the importance of fully numerical investigations,
which should explicitly account for excitation migration and
trapping in specific molecular configurations via kinetic
equations or Monte Carlo simulation-based methods. Un-
fortunately, such works are relatively rare.18,25,26

Most theoretical studies focus on the integral quantities, like
quantum yield or mean fluorescence lifetime.2,18,22,25 The time
dependence of the kinetics themselves is analyzed much more
rarely. Even though it is simpler to focus on the integral
quantities, and the experimental literature usually does so, the
information content in these integral quantities is much smaller
than in the kinetics. Indeed, as remarked in ref 27, fitting only
the mean fluorescence lifetime often does not lead to an
unambiguous determination of the model parameter values.

Therefore, here we theoretically analyze the fluorescence
decay kinetics in 2D and 3D molecular systems. The kinetics
are obtained via numerical solution of the Master equation. We
consider both random traps, resulting from the presence of
some acceptors in the system, and statistical traps, resulting
from the closely situated donor molecules. In addition, we
investigate the influence of the molecular orientations, which
are often neglected in the analytical work. We compare our
results with the simplest analytical model�a single donor
surrounded by infinitely deep acceptors�and analyze the
deviations from this limit due to energy transfer between the
donor molecules.

2. THEORETICAL METHODS
In this work, we seek to describe the fluorescence decay
kinetics in molecular assemblies. To account for concentration
quenching, traps will be included in the model. Assuming that
all the fluorescing molecules are of the same species, their
transition dipole moment has the same magnitude; thus, the
resulting fluorescence signal is proportional to the total
excited-state population of the fluorescing species. Therefore,
we will focus on the time dependence of this quantity. To this
end, we will first provide a theoretical description of the
population transfer and decay, which is similar to the one
employed in ref 18. To facilitate the analysis of the numerical
results, we will then briefly review the known analytical
expressions for a simple model of a single-donor molecule
surrounded by energetically infinitely deep acceptors. Finally,
we will present the details of our numerical model.
2.1. Population Decay Kinetics. According to the Förster

resonance energy transfer theory, an excited light-sensitive
molecule can transfer its excitation energy to another light-
sensitive molecule, thus relaxing to the ground state while the
other molecule becomes excited.28,29 The time dependence of
the excitation probability Pi(t) for each molecule in a system of
N molecules is obtained by solving the Master equation

P
t

K P
d
d

= ·
(1)

where P t( ) is a vector containing excitation probabilities Pi(t)
of every molecule in the system and K is a matrix of energy-
transfer rates between the molecules and relaxation rates to the
ground state.

In the Förster limit, the excitation energy transfer rate is
proportional to the squared coupling between the molecules.
When molecules i and j are far apart from each other, the
coupling between their excited states can be calculated using
the dipole−dipole approximation29,30
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where ε is the relative permittivity of the medium, ε0 is the
vacuum permittivity, i is the transition dipole moment of the
ith molecule, and Rij is a vector connecting molecules i and j.
However, for simplicity, we use this approximation even for
molecules that are close to each other. The magnitude of i is
equal for identical molecules ( )i| | = , and its direction can

be denoted by a unit vector di, thus di i= . The magnitude
of Rij is equal to the distance between molecules i and j, and its

direction can also be denoted by a unit vector Rij
0
: R R Rij ij ij

0= .
Then, eq 2 can be written simply as

J A
Rij

ij

ij
3= ·

(3)

where A = μ2/(4πεε0) is a constant and κij is an orientation
parameter, expressed as

d d R d R d3( )( )ij i j ij i ij j
0 0= · · · (4)

Thus, the nondiagonal element of K that describes i ← j
transfer can be written as

K B J C
Rij ij

ij

ij

2
2

6= · = ·
(5)

where B and C = A2·B are constants. Note that the Förster
theory should break down for small intermolecular distances,
when excitonic effects or exchange interactions begin to play a
larger role. Other works have assumed that for distances
smaller than some cutoff, the transfer rate depends on distance
differently18 or is a constant altogether.10 Nevertheless, in
order not to overcomplicate our model, we will use the Förster
rates for all intermolecular distances.

Excitation can return to the ground state via fluorescence
and nonradiative relaxation; thus, the total excitation lifetime
of an isolated molecule can be written as

1 1 1

total fluor nonr
= +

(6)

Moreover, the fluorescence quantum yield (QY) relates the
fluorescence lifetime to the total lifetime

QY total

fluor
=

(7)

The distance, at which the transfer rate Kij is equal to the
fluorescence rate τfluor

−1 , is usually denoted as the Förster radius
RF,

30 so the constant C in eq 5 is expressed as

C
R 1

ij

F
6

fluor
2

or
=

(8)
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where ij
2

or is the squared orientation parameter, averaged
over every possible molecular orientation. Using eqs 8 and 5,
the nondiagonal elements of K can be written as
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Note that the orientationally averaged ij
2

or in the rate
expression does not imply that we assume fast orientational
fluctuations. Instead, it arises due to the fact that formally the
Förster radius should be different for every orientation
between the donor and acceptor transition dipoles; thus, we
define it with the average orientational parameter. As an
approximation, the molecular orientations could be ignored. In
such a case, eq 9 can be written as
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Meanwhile, the diagonal elements of K represent the
population loss due to the transfer to other molecules and
decay to the ground state

K K1
jj

i i j

N

ij
total 1,

=
= (11)

To account for concentration quenching, traps were
included in the system. We assume the limit of infinitely
deep traps. This reduces the number of parameters in the
model. In this work, two different methods for trap formation
were used. In the random trap model, only the percentage of
traps is specified, and randomly chosen molecules become
traps. This can be realized when due to the interactions with
the surroundings, the properties of a molecule might change
(e.g., due to protonation31). The statistical trap model assumes
that traps are closely situated molecules, with the intermo-
lecular distance less than some threshold value Rtrap.

2,5,18 This
limit is often called as the statistical pair model, but we want to
highlight that in our formulation, not only dimers but also
larger aggregates might become traps, which is relevant for
larger molecular concentrations. The diagonal elements of K
that represent traps and those nondiagonal elements that
represent an excitation leaving a trap were set to 0. In both
models, energy transfer to the trap molecules is for simplicity

described in the same way as energy transfer between the
donor molecules.
2.2. Analytical Models. To provide a foundation for an

easier interpretation of the numerical results, it is worthwhile
to consider the simplified cases for which analytical results are
available. It is possible to derive an analytical expression for
population decay kinetics in a 3D system, which consists of
one donor surrounded by infinitely deep acceptors.19,20 At the
initial moment of time t = 0, the donor is excited; thus, the
excitation probability is P(0) = 1. In the derivation, the
molecular orientations are neglected. For a 3D system, the
resulting expression for P(t) is
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while for a 2D system
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is obtained.19,20 Here, n3D (n2D) is the concentration of the
acceptors in the 3D (2D) system and Γ(x) denotes the
Gamma function. The transfer microparameter CDA relates the
transfer rate w(r) from the donor to the acceptor and the
distance r between them as w(r) = CDA/r6 (cf. with eq 10).
2.3. Our Model. Here, we describe the details of our

model, which was used to simulate the fluorescence decay
kinetics in 2D and 3D molecular systems.

In the 2D model, N molecules, each 1 nm in diameter, were
scattered randomly across a 100 nm × 100 nm area using a
uniform distribution. The size of the molecules was taken to be
similar to the porphyrin ring system of chlorophylls. Different
concentrations n were obtained by changing N; the chosen
values were based on the experimental data from ref 13, where
the fluorescence lifetimes of chlorophylls in monolayers were
measured. Figure 1a,b demonstrates the examples of such a
system for random and statistical formation models. The values
of the fluorescence quantum yield and the total excitation
lifetime for calculating τfluor from eq 7 were set to QY = 0.33
and τtotal = 5 ns,32 and the value of the Förster radius was RF =
5 nm. The value of Rtrap in the 2D model was 3 nm. The
direction of the dipole moment di for each molecule was
determined by picking an angle from an interval [0; 2π) using
a uniform distribution, and the value of ij

2
or for a 2D space is

Figure 1. Examples of distribution of molecules, where green and red circles represent fluorescent molecules and traps, respectively. (a) Random
trap 2D model, where n = 0.02 nm−2 and traps make up 30% of the system; (b) statistical pair trap 2D model, where n = 0.02 nm−2 and Rtrap = 3
nm; (c) random trap 3D model, where n = 0.07 nm−3 and traps make up 10% of the system; and (d) statistical pair trap 3D model, where n = 0.07
nm−3 and Rtrap = 1 nm. In the case of the 2D model, molecules are shown to be larger than 1 nm for clarity.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.3c08254
J. Phys. Chem. B 2024, 128, 4887−4897

4889

https://pubs.acs.org/doi/10.1021/acs.jpcb.3c08254?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c08254?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c08254?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c08254?fig=fig1&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.3c08254?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


5/4. Calculated population decay kinetics were averaged over
the random positions of the molecules.

The same principle was used in the 3D model, where
molecules were scattered uniformly in a 20 nm × 20 nm × 20
nm box. Figure 1c shows an example of such molecular
distribution using a random trap formation model and Figure
1d using the statistical trap model. The values of QY, τtotal, and
RF were the same as in the 2D case; however, the value of

ij
2

or for a 3D space is 2/3. The values of concentration n
were chosen based on the experimental data from ref 3, where
chlorophyll fluorescence lifetimes in lipid liposomes were
measured. In the 3D case, the value of Rtrap was chosen to be 1
nm. Note that significantly different values for Rtrap for 3D and
2D models were chosen to explore different points in the
parameter space and not to represent specific situations.

Having a complete transfer rate matrix K , P is then
calculated by solving eq 1. At the initial moment of time t = 0,
probability is equally distributed over the fluorescent
molecules. This corresponds to excitation of a molecular
system by an infinitely short laser pulse. Elements of P that
correspond to the fluorescent molecules are summed up to
obtain the total probability decay kinetics Psum(t). In every
case, the results were averaged over 100 different distributions
of molecules.

3. RESULTS
In this work, we are interested in the behavior of the excited-
state population decay kinetics that should mimic the
experimentally observable fluorescence signal. We will mostly
focus on two points. First, how slight changes in the model
formulation (inclusion of molecular orientations, random or
statistical traps, etc.) influence the kinetics. Second, how close
the obtained kinetics are to the available analytical models.
3.1. Kinetics in 2D Systems. Let us first consider the

simplest model�random traps with molecular orientations not
included in the transfer rates.

We have calculated the population decay kinetics for various
parameter values, and they were nonexponential. Thus, the
stretched exponential function was used to fit the calculated
kinetics

i
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=
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where τ and b are parameters, whose values were changed
during the optimization process. This is a simple description of
the nonexponential behavior, and it was applied recently to the
FL signal of thin films of zinc-phthalocyanine.10 Figure 2
illustrates that the stretched exponential function can fit the
calculated kinetics sufficiently well, as the mean squared
deviations (MSDs) between the function and the kinetics are
fairly small (∼10−5). While this demonstrates the complexity of
the calculated kinetics and serves as an example of the
suitability of the stretched exponential description, in the
general case other descriptions could nevertheless be more
easily interpretable.

Thus, as an alternative description of the decay curves, eq 14
was modified to explicitly include the finite lifetime of an
isolated molecule
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=
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This type of description is inspired by the analytical results
summarized in Section 2.2.

The values of MSD for different molecular and trap
concentrations, obtained using eq 15, were small (∼10−6).
The dependence of parameters τ and b on concentration is
shown in Figure 3: the value of τ decreases for larger
concentrations and the amount of traps, while the value of
parameter b increases with increasing concentration values,
though this increase is smaller for larger amount of traps.

The obtained values of parameter b are fairly close to 1/3, as
shown in Figure 3b, especially for higher trap percentages;
therefore, we fixed b to this value, thus making the fitting
function equivalent to eq 13

Figure 2. Calculated kinetics of the 2D model (solid lines),
approximated using eq 14 (dashed lines). Traps make up 30% of
the system.

Figure 3. Dependence of eq 15 parameters (a) τ and (b) b on the
molecular concentration and the percentage of traps in the 2D model.
Dashed line at b = 1/3 corresponds to the value expected from eq 13.
Note that the y axis in part (a) is logarithmical.
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In this case, the values of MSD for higher concentrations of
molecules and traps are larger than they were using eq 15
(10−4−10−5); however, when these concentrations are low, the
model represents the ideal system that is described in ref 4, and
the values of MSD reach 10−6.

The dependence of eq 16 parameter τ on concentration is
shown in Figure 4. Since it is interesting to compare numerical
results with analytical predictions, we derive the theoretical
dependence of the parameter τtheor on the acceptor
concentration n2D by equating eqs 13 and 16

( )( )C n

1
theor

DA
2
3 2D

3=

(17)

with CDA = RF
6/τfluor, as discussed above. We assumed that in

this case, traps represent acceptors; thus, the molecular
concentrations that are shown in Figure 4 were accordingly
multiplied by 0.05, 0.1, 0.3, and 0.5 in order to obtain the
concentrations of traps, which were used to calculate different
values of τtheor; results are compared with τ in Figure 4. The
agreement of the numerical values with the theoretical curve is
better for larger trap percentages and smaller molecular
concentrations. Indeed, calculated curves that correspond to
the same concentrations of traps were very close in the low
concentration range. The deviations get larger for smaller trap
percentages because then the model does not satisfy the
assumptions behind eq 13.

Next, we investigated the influence of the molecular
orientations to the population decay kinetics. Thus, eq 9 was
used to calculate the nondiagonal elements of K . Figure 5
shows a comparison between the kinetics with and without
accounting for molecular orientations. Even though it is clear
that quenching is faster in the latter case, there are no
significant differences even for higher concentrations.

Finally, we investigated the statistical trap model, where
traps are assumed to form in closely situated pairs of molecules
(or larger aggregates). In order to compare the kinetics of both

trap models, at first we calculated the kinetics of the statistical
trap model, then we evaluated the percentage of traps in the
system, and this percentage was used to calculate the kinetics
of the random trap model. Figure 6 compares these two
models: when the concentration is low, the kinetics are almost
identical, but as the concentration gets higher, differences
begin to appear�quenching is slower in the statistical trap
model. This can be explained by the distribution of traps in the
system: when traps are taken to form in the statistical pairs or
larger aggregates, they accumulate in certain areas; thus,
excitation has to travel further to reach a trap compared to a
random trap model, where traps are distributed uniformly.
3.2. Kinetics in 3D Systems. Similarly to the 2D model, at

first the simple 3D model with random traps was considered.
Equations 11 and 10 were used to calculate the elements of K
that represent the fluorescent molecules.

Figure 4. Dependence of eq 16 parameter τ values on the molecular
concentration and the percentage of traps (indicated in the legend) in
the 2D model. Dots represent τ and solid line represents τtheor.

Figure 5. Comparison of kinetics of the 2D model when molecular
orientations are either included (solid line) or not included (dashed
line). Percentages represent the amount of traps in the system. Curves
representing different parameter values were multiplied by powers of
10 for clarity.

Figure 6. Comparison of kinetics of random (solid line) and statistical
(dashed line) trap 2D models. Percentages represent the amount of
traps in the system.
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First, kinetics of such model were fitted using eq 14, and
results are shown in Figure 7. The fitting quality is quite good
using the stretched exponential, as the values of MSD using
this function are fairly low (MSD ≤ 10−5).

Equation 15 helped to achieve better approximation
accuracy for 2D systems; therefore, it was also used to fit the
kinetics of 3D systems. In this case, the values of MSD are
close to those obtained using eq 14�also equal to or less than
10−5. The dependence of parameters τ and b on concentration
shown in Figure 8 is similar to Figure 3, as with increasing
concentration τ decreases very rapidly and b slowly increases.

The obtained values of parameter b are relatively close to 1/
2, as shown in Figure 8b; therefore, just like in the case of a 2D
model, we fitted the kinetics using a function that is equivalent
to eq 12 which describes the kinetics of an ideal 3D system
with one donor surrounded by multiple acceptors

i
k
jjjjj

i
k
jjj y

{
zzz

y
{
zzzzzP t t t

( ) exp
total

1/2

=
(18)

When the concentration of traps is high, the calculated
kinetics and the fitted curve are very close (MSD ≤ 10−5) for
each molecular concentration value: this case represents the
ideal 3D model, described in refs 4 and 19. For lower
concentration of traps, the values of MSD are larger: 10−5−
10−3.

The dependence of τ on concentration is shown in Figure 9.
Again, by equating eqs 12 and 18, we derive the theoretical
dependence of parameter τtheor on the acceptor concentration
n3D

C n
1

theor 16
9 DA

3
3D
2

=
· (19)

with CDA = RF
6/τfluor, as in the 2D case. Trap concentrations for

the calculation of τtheor were obtained in the same way as in the
2D system. Comparison between τ and τtheor values is shown in
Figure 9. As expected, the differences between both curves are
less significant for higher trap percentages and lower molecular
concentrations. In the case of smaller trap percentages, the
deviation from the theoretical prediction increases consid-
erably.

The comparison between kinetics with and without
accounting for molecular orientations was done similarly to
the 2D case, with eq 9 being used to calculate the nondiagonal
elements of K , and it is demonstrated in Figure 10. The result
is also similar: quenching is slightly slower when the molecular
orientations are included in the energy-transfer rates.

Last, we compared the random trap 3D model with the
statistical trap model, where the percentage of traps was
calculated as described in the 2D case. Results are shown in
Figure 11. As expected, quenching is slower in the statistical
trap model, which could be explained as in the 2D model�the
distribution of traps causes excitation to travel further to reach
a trap in the statistical trap model and less in the random trap
model.
3.3. Application. As an application of the present

approach, here we consider fluorescence concentration
quenching in solutions of disulfonated aluminum phthalocya-
nine (AlPcS2).

33 To model the fluorescence decay kinetics, we

Figure 7. Kinetics of the 3D model (solid lines), approximated using
eq 14 (dashed lines). Traps make up 5% of the system for n = 0.015
nm−3 concentration and 30% for n = 0.1 nm−3 concentration.

Figure 8. Dependence of eq 15 parameters (a) τ and (b) b on
molecular concentration and the percentage of traps in the 3D model.
Dashed line at b = 1/2 corresponds to the value expected from eq 12.

Figure 9. Dependence of eq 18 parameter τ on molecular
concentration and the percentage of traps (indicated in the legend)
in the 3D model. Dots represent τ and solid line represents τtheor.
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utilize the 3D model with statistical traps, as evidence for
dimer formation is clear in the experimental data.33 To
simulate the experimental conditions, the diameter of
molecules was taken to be 1.5 nm, the quantum yield was
set to QY = 0.4, and the value of Rtrap was chosen to be 4.5 nm.
The total lifetime τtotal was set to 5.0 ns. To compare our
calculations with the experimental data, we considered
molecular concentrations of 0.00031, 0.00062, 0.00124,
0.00186, 0.00248, 0.00372, 0.00496, 0.0062, and 0.0124
nm−3 (corresponding to 0.5, 1, 2, 3, 4, 6, 8, 10, and 20 mM,
respectively). The molecules were scattered uniformly in a 50
nm × 50 nm × 50 nm box. The calculated fluorescence decay
kinetics were averaged over 100 different random distributions
of molecules and then convolved with the instrument response
function that is taken to be of Gaussian form with the full
width at half-maximum of 0.1 ns and centered at t = 3.5 ns.

In Figure 12, we present calculations corresponding to RF =
4 nm and RF = 7 nm. They are in quite good agreement with
the experimental fluorescence decays of AlPcS2in PBS at pH =
7.4 and pH = 11.5 as given in Figures 5 and 6 of ref 33, with
the larger Förster radius corresponding to the higher pH. From
the absorption spectra of the same solutions given in ref 33, it
appears that in the case of lower pH, more dimers are formed
in the solution. The smaller value of RF provides an indication
that it is harder for the excitation to reach the traps. This might
be related to the slower transfer between monomers and
dimers than between monomers only, as was also estimated in
ref 33.

Clearly, the above consideration should be viewed as an
effective model of the problem. Nonetheless, it already
provides insights into the concentration quenching of
fluorescence in AlPcS2 solutions.

4. DISCUSSION
In this paper, we numerically investigated concentration
quenching in 2D and 3D molecular systems. Even though
we kept our models as simple as possible, the signatures of
complexity of this phenomenon are already apparent. We will
now discuss these issues in turn.

Let us begin by considering the functional form of the
calculated kinetics and different ways to parametrize them.
Formally, a solution of a system of kinetic equations could be
expressed as a sum of decaying exponential functions, with the
number of terms equal to the number of molecules in the
system. Hundreds of parameters would then be required. Of
course, the information content in the decay curves is much
smaller, as they could be approximated by a simpler functional
form. In the presence of energy transfer, the kinetics show
deviations from single exponential behavior. A simplest way to
characterize these deviations is to assume a stretched

Figure 10. Comparison of kinetics of the 3D model when molecular
orientations are included (solid line) and are not included (dashed
line). Percentages represent the amount of traps in the system. Curves
representing different parameter values were multiplied by powers of
10 for clarity.

Figure 11. Comparison of kinetics of random (solid line) and
statistical pair (dashed line) trap 3D models. Percentages represent
the amount of traps in the system.

Figure 12. Kinetics of the 3D model with statistical traps, when the
value of the Förster radius is (a) RF = 4 nm and (b) RF = 7 nm. Faster
quenching corresponds to higher concentrations, which are as follows:
0.00031, 0.00062, 0.00124, 0.00186, 0.00248, 0.00372, 0.00496,
0.0062, and 0.0124 nm−3.
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exponential decay law, which increases the functional freedom
at the cost of an additional model parameter.34 We tried to
approximate our obtained population kinetics with a stretched
exponential function for both 2D and 3D systems and found
that it provides a good agreement with the calculations. It is
therefore a good choice for the initial data analysis.
Nevertheless, the approximated decay curves exhibit some
differences from the calculated ones, especially at longer times.
This could become important, for example, when fitting
experimental fluorescence data with high signal-to-noise ratio.
In the case of comparisons with the experiment, it is thus best
to use the actual calculated curves rather than their
approximations. We also note that we recently investigated
the fluorescence decay kinetics in a 2D lattice system, and in
that case, a sum of two stretched exponential functions was
needed to adequately describe the data.35

In our view, inspiration for different functional forms could
be drawn from the available theoretical models. We had some
success in using a form where the donor lifetime was included
explicitly and the stretched exponential part remains, see eq 15.
Approximation accuracy equal or better than using the simple
stretched exponential was achieved. The donor lifetime should
be available experimentally from the measurements corre-
sponding to low concentrations, where no concentration
quenching occurs. We therefore suggest that this type of decay
function could be useful for description of experimental data as
well. It is important to note that by fixing the donor lifetime, eq
15 has only two free parameters, the same as in the simple
stretched exponential decay. Thus, overfitting can be avoided.
Additional freedom in describing the decay could be achieved
by changing the τtotal in eq 15 to a free parameter since it was
shown previously that accounting for excitation diffusion in an
approximate way could lead to such changes.23,36 Of course,
the best approximation could be achieved by postulating a sum
of simple or stretched exponential functions, but this would
also result in a complete loss of interpretability of the obtained
parameter values.

We now turn to the applicability of the analytical models.
The model of a single donor surrounded by infinitely deep
acceptors has been widely employed to analyze and interpret
the experimental data on fluorescence quenching.37,38 Most of
the considered systems, however, cannot be taken to include
only a single donor. Thus, in the present work, we investigated
deviations from the simplest model in the presence of energy
transfer between the donor molecules. Our results have shown
that in the limit of very small molecular concentration, eqs 12
and 13 provide an adequate description of the population
decay kinetics in 3D and 2D systems, respectively. At larger
molecular concentrations, deviations between the analytical
results and simulations become apparent. Moreover, these
deviations are much larger for smaller relative trap concen-
trations. Since at a larger trap concentration excitation reaches
the traps faster, with less hoppings between the donor
molecules, the effects of energy transfer between the donor
molecules are much less important, and the system is closer to
a model system with a single donor. Nevertheless, these simple
models have a limited range of validity; thus, in-depth
theoretical simulations should explicitly include all the
population transfer possibilities, either via kinetic equations,
as is the case in this work, or using Monte Carlo-type
approaches, as in ref 18. Interestingly, it was shown previously
that neglecting the possibilities of a long-range energy transfer,

which is a numerically attractive approximation, can lead to
noticeable deviations from the full calculations.25

It is also worthwhile to mention that for the ideal system of a
single donor, the law of population decay remains the same
regardless of molecular concentration. Our simulations clearly
show that excitation migration between the donor molecules
makes the decay law concentration dependent, as the power of
time in the exponent changes (see Figures 3 and 8). This is a
demonstration of complexity resulting from the large number
of degrees of freedom in the system. Moreover, this highlights
the importance of obtaining the experimental data over a very
broad concentration range, even though for some systems (e.g.,
chlorophylls in solutions), it is very difficult to reach the
required molecular concentrations and still obtain undistorted
fluorescence signal due to the inner filter effects.39

Let us now discuss the effects of molecular orientations in
the model. We analyzed the influence of the molecular
orientations for both 2D and 3D systems. For both cases, their
effects upon the total population decay kinetics are minor, but
inclusion of the orientations in the model results in slower
decay (see Figures 5 and 10). This can be explained by the fact
that for specific orientations, the Förster transfer rate can be
reduced to zero regardless of the distance between the
molecules. Thus, even at very large concentrations, there is a
nonvanishing probability that some molecules could be
effectively isolated, thus slowing down the total population
decay. The distribution of the relative Förster transfer rates for
a fixed intermolecular distance but different possible
orientations was investigated in ref 5. It was shown that this
distribution is quite wide and skewed. Our numerical results
show that these effects do not contribute to the energy transfer
dynamics as much as could be expected, but they are definitely
relevant. Overall, we conclude that for purely theoretical
simulations or initial assessment of experimental data, the
molecular orientations could be neglected, but more detailed
models should include them.

We consider the trap model next. Due to the differences in
model formulation, it is not straightforward to compare the
random and statistical trap models. Formally, neither model is
simpler than the other because one parameter in the random
trap model (percentage of traps) is replaced by another
parameter in the statistical trap model (trap distance). We have
made the comparison by first considering the statistical trap
model, calculating the mean trap percentage at some fixed
molecular concentrations, calculating the population decay
kinetics and then doing the calculation with the random trap
model with the same trap percentage. Our results show that
the population decays slower in the statistical pair model (see
Figures 6 and 11). This can be explained by considering that at
least two molecules are needed to form a trap in the statistical
trap model; thus, at the same formal trap percentage, the traps
are much more clustered in the system, and the excitation has
to travel further to reach the trap. This can be easily seen in the
molecular distributions presented in Figure 1. The choice of
the model in simulations thus should reflect the relevant
physics of the system under consideration.

Interestingly, our work has revealed no qualitative differ-
ences between 2D and 3D molecular systems. In both cases,
we clearly see quenching upon increasing molecular concen-
tration, the range of validity for the isolated donor model is
similar, effects of molecular orientations are the same, and
differences between random and statistical pair trap models are
also very similar. Therefore, within our assumptions and
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approximations, the behavior of the 2D and 3D molecular
systems is qualitatively the same. This does not mean, however,
that there could not be any differences in principle. Indeed, if
we were to assume that quenching in statistical pairs is due to a
formation of H-type dimers, like in ref 18, then we could
expect larger differences in 2D and 3D systems arising from the
available geometric configurations. Still, our results show
quantitative difference in the power of time in the exponent of
the approximated form of the population kinetics, as illustrated
in Figures 3 and 8, with parameter b being about 1.5 larger for
3D systems, as expected from the analytical results.

Let us discuss the limitations of our model. Perhaps, the
most important point is that we assume that the traps are
infinitely deep. In principle, this limit could be reached in two
cases�either the internal trapping rate, describing the
excitation relaxation from the excited to the ground state, is
very fast, or population back-transfer from the trap to
neighboring molecules is very slow. We focused on this limit
for two reasons. First, this is assumed in the analytical model of
a single donor surrounded by acceptors, and we wished to
compare our results with this model. Second, relaxing this
approximation would require us to introduce two additional
parameters in the model, describing the internal trapping rate
and population back-transfer rate. If needed to describe actual
experiments, however, the model could be easily extended to
include these parameters. We note that in our recent
investigation of the fluorescence concentration quenching in
thin films of zinc-phthalocyanine, we concluded that the back-
transfer from the traps has to be accounted for.10 Thus, this has
to be kept in mind when modeling real experimental data. As
demonstrated in Section 3.3, even in this quite simplified form,
the present model can already provide insights to the relevant
physical situations.

In this work, we have focused on the population kinetics that
result from different trap models, rather than the physical basis
of the said models. On the one hand, this makes our work
compatible with many physical mechanisms. On the other
hand, it can give no insight into the physical nature of the
traps, provided that they can be described by our considered
limits.

The random trap model should represent a case when only
one molecular species is present, and due to the interaction
with the environment (solvent, protein matrix, etc.), a part of
such molecules have their properties changed. The model
considered here requires that such trapping molecules should
have their absorption/emission maxima shifted, so that they
would not get excited by the laser pulse targeting the main
absorption band of the system. Also, the model assumes that
such molecules should act as infinitely deep energy traps.
While these requirements appear strict, they can be realized in
actual physical systems. For example, in ref 31, it was shown
that zinc-phthalocyanine molecules undergo sequential proto-
nation in acidic ethanol solution, which shifted their emission
maxima and reduced the fluorescence quantum yield. As
another possibility, the random trap model could be realized if
the system under consideration is a binary mixture of
molecules, with one species possessing shifted absorption/
emission spectra and a shorter excited-state lifetime.

Regarding the statistical trap model, it is mostly related to
the formation of the statistical pairs, which are assumed to
quench the excitation. Close proximity of neighboring
molecules should result in shifts of the excited-state energy
levels; thus, such molecules might not be excited by the

excitation laser pulse. The actual mechanism of energy
trapping in such closely situated molecules is still under
debate to this day. Most often, it is assumed that the trapping
results from the formation of H-type dimers or higher
aggregates, as in ref 18. On the other hand, recent work
demonstrates that charge-transfer states might be responsible
for excitation quenching,11 as was suggested earlier.40

5. CONCLUSIONS
In conclusion, here we numerically investigated the fluo-
rescence concentration quenching in 2D and 3D systems. Our
results demonstrated nonexponential decay behaviors that
could be approximated using a stretched exponential function.
Better accuracy, however, is obtained by utilizing expressions
inspired by the analytical results. The model of a single donor
surrounded by infinitely deep acceptors can be used to
interpret the data for small molecular concentrations and large
trap percentages, but its range of validity is limited, and in the
general case, fully numerical simulations should be used
instead. Influence of the molecular orientations to the energy
transfer rates should not be neglected. Both random and
statistical trap models can be applied to describe the
quenching. For the same trap percentage in the system, the
random trap model results in faster quenching. The choice of
the trapping model should depend on the physics under
consideration.

Our numerical work demonstrated the richness of possible
excitation decay behaviors. Future studies, aimed at the
elucidation of the physical quenching mechanisms, should
thus consider not only integral parameters like fluorescence
quantum yield or mean excitation decay time scale but also the
time-dependence of the fluorescence decay kinetics, in order to
constrain the considered models.
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