
VILNIUS UNIVERSITY

Vytautas Valaitis

NEURAL NETWORKS BASED ROBOT MOTION IMPROVEMENT

Doctoral Dissertation
Physical Sciences, Informatics (09P)

Vilnius, 2016

The dissertation research was carried out at Vilnius University from 2011 to 2015.

Scientific supervisor:

Prof. Dr. Habil. Šarūnas Raudys (Vilnius University, Physical Sciences,
Informatics - 09P)

VILNIAUS UNIVERSITETAS

Vytautas Valaitis

ROBOTO JUDESIŲ GERINIMAS NEURONINIAIS TINKLAIS

Daktaro disertacija
Fiziniai mokslai, informatika (09P)

Vilnius, 2016

Disertacija rengta 2011 - 2015 metais Vilniaus universitete.

Mokslinis vadovas:

prof. habil. dr. Šarūnas Raudys (Vilniaus universitetas, fiziniai mokslai,
informatika - 09P)

Table of Contents

Introduction vii
Research Object . x
Research Methodology . x
Scientific Novelty . x
Practical Significance . x
Defending Propositions . xi
The Scope of the Scientific Work . xi
Structure of the Thesis . xi

1 Motion Control in Robotic Systems 1
1.1 Multi-Agent Systems and Evolution in Nature 2
1.2 Forward and Inverse Kinematics 3

1.2.1 2-Degrees-of-Freedom Robotic Arm 5
1.3 Artificial Neural Networks . 7

1.3.1 The Single Layer Perceptron 8
1.3.2 The Multi-layer Perceptron 9
1.3.3 Error Calculation . 10
1.3.4 Non-linear Perceptron Learning 11

1.4 Trajectory Planning . 14
1.4.1 Parabola Trajectory Planning 14
1.4.2 Trajectory Planning Using Primitives 14
1.4.3 Trajectory Calculation . 16

1.5 Conclusions . 18

2 Improvement of Motions in Robotic Systems 19
2.1 Single Layer Perceptron Experiment 19

2.1.1 Tasks Clustering and Classification 21
2.2 Multi-layer Perceptron Experiment 22

2.2.1 Data Generation and Preparation 25
2.2.2 Activation Functions . 25

2.3 Multiagent System Experiment . 26
2.3.1 Multi-threading and MPI Parallelization 26
2.3.2 Arm Part Length Evolution 33
2.3.3 Experiment Results . 34

v

TABLE OF CONTENTS

2.4 Conclusions . 35

3 Practical Experiments with Walking Hexapod Robot 37
3.1 Hexapod Robot Description and Leg Kinematics 39
3.2 Piezoelectric Force Sensors . 42

3.2.1 Piezoelectric Sensors Experiment 45
3.2.2 Experiment Results . 47

3.3 Inverse Kinematics Correction by Multi-layer Perceptron Experi-
ment . 49
3.3.1 Data Preparation . 52
3.3.2 Constructing Multi-layer Perceptron 52
3.3.3 Experiment Results . 54

3.4 Inverse Kinematics Solution by Multi-Layer Perceptron Experiment 58
3.4.1 Experiment Setup . 59
3.4.2 Improved Training of Multi-layer Perceptrons 60
3.4.3 Experiment Results . 63

3.5 Conclusions . 64

Conclusions 65

Bibliography 69

Publications by the Author 76

Curriculum Vitae 78

Vocabulary - Žodynelis 79

Summary in Lithuanian (Santrauka) 80

vi

Introduction

The real world environment constantly changes. Robotic systems also change:
parts wears and gets damaged, software might have calibration issues. Systems
must be capable to adapt to these changes. While the classic analytic methods
are insufficient to cope with this task, new learning methods are more capable.
It is mainly due to the fact, if robotic systems are slightly changed, new analytic
models must be developed. Sometimes it can be as trivial as changing a few
parameters but mostly non linear deviations of unknown cause appear in the
system. These deviations can be compensated using learning methods, without
clarifying their cause. Multi-layer perceptrons are widely used in robotics, but
perceptrons abilities to adapt to sudden changes are mostly overlooked.

Motion consists of goal position finding, trajectory planning, and motion ex-
ecution. Goal position finding and inverse kinematics of robotic systems are
analyzed in changing task environment. Single layer and multi-layer percep-
trons ability to adapt is analyzed. Different techniques of tuning single layer
perceptron and multi-layer perceptron alter system capability to adapt, and to
cope with sudden or gradual changes in the environment, or the system itself.

Natural motions can be classified to reflexes, partly coordinated and fully co-
ordinated motions. All these types of motions require different techniques to
be accomplished. Inverse kinematics solution plays a key role in fully coordi-
nated motions. In some cases (like fully coordinated motions) accurate inverse
kinematic solutions must be obtained. Computational speed can be sacrificed
in benefit of accuracy. On the other hand, reflexes require little accuracy, but
high computational speed. Partly coordinated motions benefits from predefined
motion primitives.

vii

Introduction

Feedback is used in robotic systems to get extra information about its compo-
nents (e.g. actuators), position, and parameters of environment. For example
robot ability to travers different terrain can be considered as feedback [44]. Fur-
ther research of the author uses real time energy consumption as a feedback
system. More traditional way is to get a feedback from end actuator position.
This is analyzed in Chapter 3. Piezoelectric force feedback sensors are intro-
duced to aid partly coordinated motions’ calculation. Feedback system is often
needed to perform a less energy consuming but a more precise motion.

Trajectory planning based on primitives is analyzed in the thesis. Motion prim-
itives is a nature based way to plan motion. They are used in state of the art
robotic systems. A new method of learning correct primitives is offered in this
thesis.

Multi-agent systems were used to model agent’s behavior in a changing task
environment. The performed simulation allowed to alter the task solved by
agents and monitors population performance. The software used was writ-
ten in Python to work with multiprocessor machines, as well as, distributed
networks (using MPI). Multi agent systems and parallel computing are both
nature-inspired practices used in modern modeling.

To execute robotic motion a number of things must be taken into considera-
tion. Firstly, the desired position to reach must be identified. Then inverse
kinematic calculation must be performed. This calculation can be precise or
approximate, based on the planned motion type. Robotic systems inaccuracies
have to be taken into consideration and corrective actions must be performed.
Nature based algorithms are capable to effectively cope with these problems.
As learning algorithms can be effectively used to deal with these problems. The
analytic approach becomes too complex and too difficult to implement. By dif-
ferentiating types of motions (e.g. reflex, partially or fully coordinated motions),
different amount of feedback from robotic systems should be considered. Force
feedback piezoelectric sensors mimic nature’s ability to identify changes in force.
Meanwhile motions can be planned based on motion primitives, i. e. high
quality parts of motion. When planning a motion from a database of known
primitives, and considering the changing environment, small sample size and
high dimensionality data problem occurs. However, this problem is common

viii

in real world applications, and can be solved by similar means. Furthermore,
processes occurring in nature are highly parallel as well. By using parallel
algorithms problems are can be solved in a more natural way.

There are three traditional methods used to solve inverse kinematics [35, 38]:
geometric [22, 41], algebraic [20, 25, 46, 57] and iterative [39] methods. Tradi-
tional methods become very complex (both in a mathematical structure of the
formulation and in a computation time), when degree of freedom increases [38].
Furthermore, robots have to work in the real world that cannot be modeled
concisely using mathematical expressions. These methods only are a solution to
a fixed geometrical configuration of a kinematic chain and if kinematics change,
for example, is a robot’s leg is damaged, it is necessary to find a new inverse
kinematics solution.

A neural network-based exploratory learning [26] and quadratic programming
[81] was also used. Elman network was also successfully used to solve the
inverse kinematics problem [60]. Radial basis function neural network can also
be used as a solution [43, 60].

There are also other algorithms used to solve the inverse kinematics problem:
the cuckoo optimization, the imperialist competitive [4], and the genetic [14].

These methods proved to overcome problems of traditional methods and pro-
vide a good basis of adaptive kinematic solutions that are not constrained of
a kinematics. Efficiency of these networks depends largely on the data taken
and the scenario [78]. So there is no single best algorithm to solve the inverse
kinematics problem.

Artificial neural networks are widely researched to solve the forward and inverse
kinematics problems [10, 58]. Many different intelligent methods (based on
Neural Networks [29], Fuzzy Logic [1, 53], Reinforcement Learning [79], etc.)
were proposed to solve the inverse kinematics problem of different robotic
systems [2, 50, 52, 73].

ix

Introduction

Research Object

Nature based techniques to improve robotic motions. Single layer and multi-
layer perceptrons and their applications in robotic motion control.

Research Methodology

Single layer and multi-layer perceptrons were modeled to aid inverse kinematics
calculation. Single layer and multi-layer perceptron algorithms were theoreti-
cally and practically analyzed in a changing environment. Perceptrons learning
rapidity problem was analyzed. Most algorithms were implemented to use par-
allel computing. Matlab, Javascript and Python programming languages were
used for most of the tasks. Inverse kinematics, homogeneous transformation,
trajectory generation, statistical, and artificial neural network based analysis
were used. Experiments were conducted using a physical robot model.

Scientific Novelty

Inverse kinematics problem solving in changing task environment. Proposed so-
lution extends inverse kinematics solving analythic algorithms with multi-layer
perceptron-based corrections. Impact of different single layer and multi-layer
perceptrons activation functions and parameters on systems adaptivity. Analysis
of percceptrons rapid learning in solving inverse kinematics problem. Primitives
based algorithm of hexapods robot motion trajectory planning. Piezoelectric
force sensors as feedback system for robot legs. Algorithms were implemented,
taking into account the different kind of motions accouring in nature.

Practical Significance

Results of the thesis were used to improve rough terrain walking hexapod robot
inverse kinematics problem solving and motion trajectory planning. Research

x

Defending Propositions

results can also be used to improve other walking robots and serial manipulators
for inverse kinematics problem solving and motion trajectory planning tasks.
Results about single layer and multi-layer perceptrons learning analysis can be
used in different fieelds, analyzing perceptron based algorithms.

Defending Propositions

1. Multilayer perceptrons can extend analytic methods and increase inverse
kinematics accuracy for real robotic system.

2. To accomplish different motion types, different amount of feedback from
robotic system is required. Piezoelectric force sensors can be used to get
force feedback from hexapod robots legs. Measurements can be used in
motion control algorithm development.

3. Trajectory primitives and splines can be used to improve hexapod robots’
trajectory planning.

4. Changing task environment can be modeled by using learning agents.
Ideas from natural evolution can be applied to analyze the behaviour
of single layer and multi-layer perceptrons. These algorithms can be
effectively parallelized. Results can be verified with real hexapod (six-
footed) robot.

The Scope of the Scientific Work

This thesis consists of 87 pages, divided into 3 chapters. 86 literature sources
were cited. 53 figures, 10 tables and 46 numerated equations were used.

Structure of the Thesis

This thesis falls into the 3 chapters. The first chapter theoretically analyze motion
control in robotic systems. An artificial neural networks are discussed to aid a

xi

Introduction

robotic motions. In the second chapter practical experiments with simulated
data are carried out. The third chapter emphasize experiments with actual
walking six-footed robot.

xii

Chapter 1

Motion Control in Robotic Systems

English neurologist J. H. Jackkson (1835–1911) described human motoric system
as a hierarchically formed one. Human motion can range from automatic
reflexes to highly coordinated motions. Automatic motions are controlled by
the spinal cortex and the brain stem, while complex motions are controlled by
the brain itself. This is parallel to a learning process – an already learned motion
can be executed immediately and more complex ones require re-learning and
feedback control.

A Russian neuropsychologist N. Bernstein (1897–1966) described logical opera-
tions that takes place in human motion control [63]. First, the desired position is
calculated, then it is compared to the current position. The difference between
them helps to form a motoric program. A motion is then executed by minimiz-
ing the difference between the desired and the current position. If the motion is
slow enough, feedback mechanism can be used to correct it. Posture-dependent
planning is widespread in the brain [3]. This model is directly connected to
the inverse kinematics problem in robotics. By varying the amount of feedback
and single- and multi-layer perceptron training parameters, different kind of
motions can be mimicked.

Motions of living organisms can be subdivided into several groups:

• Reflexes;

• Stereotypical motions;

1

Motion Control in Robotic Systems

• Fully coordinated motions.

These motions vary in feedback amount taken into consideration. Chapter 3
describes force feedback sensor offered to use with hexapods robot leg.

Different kinds of trajectories can be created by combining trajectory or motion
primitives [28, 56, 74, 76]. Motion primitives also were used in hexapods robot
motion planning [83]. If none of the existing primitives are suitable for the task,
new primitives can be constructed, using optimization techniques. Seldom used
primitives can be removed (or forgotten) from database.

1.1 Multi-Agent Systems and Evolution in Nature

A multi-agent system is a computerized system composed of multiple interact-
ing intelligent agents. These systems are widely used in computer modeling to
tackle issues that are difficult or impossible for an individual agent or a mono-
lithic system to solve [51]. Multi-agent systems are widely used in modeling
[15, 24, 72]. They mimic processes that happen in nature. Nature-based evolu-
tion can also be modeled using multi agent systems. In robotics it can be used to
study system adaptivity, as well as neural network parameters, to tune physical
robotics system parameters.

Evolution as a process is composed of two parts:

1. A mechanism that provides a variable of organisms. Changes to organ-
isms are mainly random and affect future generations. They are made
disregarding consequences to an organism.

2. A changing environment which screens of organism changes. The envi-
ronment provides stress on the variable organisms that selectively allows
certain changes to become dominant and certain others to be eliminated,
without consideration to the future of the mechanism. That same process
provides a mechanism (an organism) disintegration, if a strong screening
environment is not present. Evolution is a two-way process which does not

2

Forward and Inverse Kinematics

always work as an advantage to the organism in the long run and, in fact,
it often becomes quite deadly to a given species and, thereby, eradicates it.

This process of evolution was used in modeling multi-agent systems.

1.2 Forward and Inverse Kinematics

For serial robot manipulators, a vector of Cartesian space coordinates c is related
to the joint coordinates q by:

c = f(q), (1.1)

where f() is a non-linear differential function. If the Cartesian coordinates c
were given, joint coordinates q can be obtained as:

q = f 1(c). (1.2)

Figure 1.1 illustrates the inverse kinematics problem. First of all, the desired
position is observed in visual coordinate space. Then, joint angles Θ1,Θ2, ...,Θn

are calculated and the transformation in the joint angle vector coordinate space
can be made. This reduces the distance between the current and the desired
position.

There are still many reasons as to why the deviations of feet coordinates or
leg trajectory occur. Even simple real world rigid structure displays errors if
compared to the modeled structure. Furthermore, mechanical wear off and
structural flexibility adds even more errors to the system. After it was used, the
system needs to be re-calibrated so it would perform as expected. Re-calibration
of multiple servo motors can be time consuming task. Analytic methods of
solving inverse kinematics problem solving turn out being insufficient.

The multi-layer perceptron with hybridization of gravitational search algorithm
was proposed to solve inverse kinematics problem of a 6-degrees-of-freedom
robotic arm [8].

3

Motion Control in Robotic Systems

Figure 1.1: Inverse kinematics.

The multi-layer perceptron, as a gradient-based learning algorithm, can cause
a very slow training process [23]. This property is tested in Chapter 2, where
the multi-layer perceptron is used not only to establish an inverse kinematics
solution, but also to retrain it for a new task. Results showed, that an over-
trained multi-layer perceptron cannot adapt to sudden task changes.

Instead of finding all possible answers, the neural network can be trained to
find a single solution similar to used in training data. This task proved to be
challenging, since it is difficult to train the neural network to solve the inverse
kinematics problem with the desired precision in a whole coordinate space.
Different techniques were proposed to break down the problem into several
smaller ones: using several neural networks to solve the problem in different
parts of coordinate space [54, 55] or by using a smaller arm mounted on to
bigger one, to fine down the crude motion of the bigger arm [84]. All these
techniques do not require re-training of the neural network. New approach of
retraining existing neural network is proposed in Chapter 2. Experiments with
the hexapod robot are described in Chapter 3.

4

Forward and Inverse Kinematics

1.2.1 2-Degrees-of-Freedom Robotic Arm

Forward kinematics of 2-degrees-of-freedom arm can be described trigonometri-
cally as follows: We limit angles α(0− 180◦) and β(0− 180◦). Searching for point
(x, y):


α < 90◦

x1 = −l1 cos(α)

y1 = l1 sin(α)


α = 90◦

x1 = 0

y1 = l1


α > 90◦

x1 = l1 cos(180◦ − α)

y1 = l1 sin(180◦ − α)

. (1.3)

l - points the distance from a coordinate zero point:

l =
√
l21 + l22 − 2l1l2 cos(β) . (1.4)

δ - points the angle from the coordinate zero point:

δ = α− arccos(
l21 + l2 − l22

2l1l
). (1.5)


δ ≤ 0

x = −l cos(−δ)

y = −l sin(−δ)


0 < δ < 90◦

x = −l cos(δ)

y = l sin(δ)


90◦ ≤ δ

x = l sin(δ − 90◦)

y = l cos(δ − 90◦)

(1.6)

5

Motion Control in Robotic Systems

Inverse kinematics of the 2-degrees-of-freedom arm can be described trigono-
metrically as follows: We have a point (x, y), searching for angles α, β.

First we find points the distance to the coordinate zero point

l =
√
x2 + y2 , (1.7)

β angle can be found by

β = arccos(
l21 + l22 − l2

2l1l2
), (1.8)

angle between a point and the coordinate zero point can be found by

ω = arccos(
l22 + l2 − l21

2l2l
), (1.9)

point against y, by

ρ = arcsin(
y

l
). (1.10)


x < 0

y < 0

α = ρ+ ω


x < 0

y > 0

α = ρ+ ω


x > 0

y > 0

α = 180◦ − (ρ− ω)

(1.11)

Though this simple example of 2-degrees-of-freedom arm can be described
analytically, more complex examples become extremely difficult to describe
in this manner. Even this example shows non-linear nature of the inverse
kinematics problem. Many learning methods were used to address this problem,
as described in Section 1.2.

6

Artificial Neural Networks

1.3 Artificial Neural Networks

A number of problems can be solved by neural networks [34]:

• Pattern classification. The task of pattern classification is to assign an input
pattern represented by a feature vector to one of many prespecified classes.
This was used to classify new motions.

• Clustering/categorization. In clustering, also known as unsupervised
pattern classification, there is no training data with known class labels.
A clustering algorithm explores the similarity between the patterns and
places similar patterns in a cluster. Clustering was used to classify motions.

• Function approximation. Suppose a set of n labeled training patterns
(input-output pairs), (x1, y1), (x2, y2), ..., (xn, yn) have been generated from
an unknown function µ(x) (subject to noise). The task of function approxi-
mation is to find and estimate say µ̂, of the unknown function µ. This was
used to solve the inverse kinematics problem.

• Prediction/forecasting. Given a set of n samples y(t1), y(t2), ..., y(tn) in a
time sequence, t1, t2, ..., tn, the task is to predict the sample y(tn+1) at some
future time tn+1.

• Optimization. The goal of an optimization algorithm is to find a solution
satisfying a set of constraints such that an objective function is maximized
or minimized.

• Content-addressable memory. Associative memory or content-addressable
memory, as the name implies, can be accessed by their content. The content
in the memory can be recalled even by a partial input or a distorted content.

• Control. Consider a dynamic system defined by a tuple u(t), y(t), where
u(t) is the control input and y(t) is the resulting output of the system at
time t. In model-reference adaptive control, the goal is to generate a control
input u(t) such that the system follows a desired trajectory determined by
a reference model.

7

Motion Control in Robotic Systems

x1

x2

...

xp

p∑
i=1

(
xiwi

)
+ w0 y

Figure 1.2: Single layer perceptron.

1.3.1 The Single Layer Perceptron

The simplest biologically motivated adaptive information processing unit is a
single layer perceptron [61]. It was the first algorithmically described neural
network. McCulloch and Pitts (1943) introduced the idea of neural networks as
computing machines [47]. Hebb (1949) postulated the first rule for self-organized
learning. Rosenblatt (1958) [68] proposed this perceptron as the first model for
learning with a teacher (i.e., supervised learning) [31].

Single layer perceptron (Figure 1.2) consists of a number (say p) of inputs
x1, x2, ..., xp, one output y and performs operation y = f(arg), where arg =

w0 + x1w1 + ... + xp. wp is a linear weighted sum of inputs; w0, w1, w2, ..., wp

are the weights (unknown coefficients, connections to be learned from training
data).

Single layer perceptrons can be connected in various configuration networks.
Multi-layered feed-forward networks with a non-polynomial activation function
can approximate any function [42]. But the more complex a network, the more
complex the learning process, the more easily the network adapts to solve a
single task. It cannot be easily re-trained. In most cases, for the simplest network
is preffered to solve the task with a desired precision.

The basic way to use the neural network is to train it once for a particular task.
That is, when a task changes, either the neural network is re-set and trained
again or a different configuration of the neural network is used. An already
trained neural network can continue to be trained to adapt to a changing task.
In some cases this is more efficient than re-training neural network completely.
Furthermore, different behavior that exists in nature can be simulated. This

8

Artificial Neural Networks

includes aging process, ability to adapt to changes, inability to learn, laziness,
and other. Perceptron aging was observed, when solving the inverse kinematics
problem. Different techniques can be used to control the aging process [61, 63].

1.3.2 The Multi-layer Perceptron

Multilayer perceptron (Figure 1.3) is an artificial neural network with one or
more hidden layers. The network shown here is fully connected. This means
that a neuron in any layer of the network is connected to all the neurons (nodes)
in the previous layer. Signal flow through the network progresses in a forward
direction, from left to right and on a layer-by-layer basis. Single layer percep-
tron’s ability to solve the inverse kinematics problem is limited to very simple
cases. It is possible to connect multiple single layer perceptrons, but a real
multi-layer perceptron has an advantage – the hidden layers. The following
three points highlight the basic features of multi-layer perceptrons:

• The model of each neuron in the network includes a non-linear activation
function that is differentiable.

• The network contains one or more layers that are hidden from both the
input and output nodes.

• The network exhibits a high degree of connectivity, the extent of which is
determined by synaptic weights of the network [31].

A popular method for training multi-layer perceptrons is a back-propagation
algorithm. The training proceeds in two phases:

• In the forward phase, the synaptic weights of the network are fixed and
the input signal is propagated through the network, layer by layer, until
it reaches the output. Thus, in this phase, changes are confined to the
activation potentials and outputs of the neurons in the network.

• In the backward phase, an error signal is produced by comparing the
output of the network with a desired response. The resulting error signal

9

Motion Control in Robotic Systems

x1

x2

...

xn

...

...

y1

y2

...

yn

Hidden
layerInput

layer Output
layer

Figure 1.3: Multilayer perceptron.

is propagated through the network, again layer by layer, but this time the
propagation is performed in a backward direction. In this second phase,
successive adjustments are made to the synaptic weights of the network.
Calculation of the adjustments for the output layer is straightforward, but
it is much more challenging for the hidden layers [31].

1.3.3 Error Calculation

Several different methods exist to calculate the perceptrons error between tar-
geted and calculated outputs:

1. MAD = Σ|et|
N

means absolute deviation;

2. SSE = Σ(et)
2 sum of squared errors;

3. MSE = Σ(et)2

N
means squared error;

4. RMSE =
√
MSE root means squared error;

5. MAPE = 1
N

Σ| et
ey
|(100) means absolute percentage error.

Where: et - error of one dataset; yt - calculated value at output; N - count of error
terms. MSE and RMSE error calculation will be used in further experiments.

10

Artificial Neural Networks

1.3.4 Non-linear Perceptron Learning

In this section perceptron learning is analyzed in a theoretic perspective. Later
we use perceptrons to learn the inverse kinematics of a robotic arm. Then the
task is changed and perceptrons must adapt to changes. Psychology studies
[65, 66] analyze the learning process in the nature and find simmilarities to
the model described in the equation 1.13. Understanding the learning process
enables rapid learning in robotic systems. This allows the adaptation of an
existing system to the changing environment. In order to save the information
contained in the initial weight vector and reduce the generalization error, it is
necessary to stop training in due time [62]. In this section we demonstrate that
in the gradient descent perceptron training excessive magnitudes of the initial
weight vector componets could slow the learning speed of non-linear single
layer perceptron based classifiers [61].

A feedback chain and non-linearity of the activation function of a single layer
perceptron cause a number of non-linear phenomena in the single layer percep-
tron training and make the learning rapidity analysis very complicated.

The single layer perceptron training is a difficult task, since it faces non-linearities
[5]. This is showed in Figure 1.4.

Figure 1.4: Cost function of a perceptron after training to solve the inverse
kinematics problem. x axis denotes summed weights, y axis - denotes w0, and z
axis - errors.

Let objects or situations, are classified into one of the two pattern classes, Π1

and Π2, be described by p-dimmensionalfeature vectors ẋ = (x1, x2, ...xp)
T .

In order to train a perceptron, we use a training set of composed of vectors

11

Motion Control in Robotic Systems

ẋ
(i)
j , (i = 1, 2; j = 1, 2, ..., N), where the superscript "T " denotes the transposition

operation and N1, N2 are training sample sizes. In order to find the weights, the
cost function of sum of squares is minimized.

cost =
1

N1 +N2

2∑
i=1

Ni∑
j=1

(tj − f(vT ẋ
(i)
j + v0))2 =

=
1

N1 +N2

2∑
i=1

Ni∑
j=1

(tj − f(wTx
(i)
j))2,

(1.12)

where t1 and t2 are targets (desired outputs), and f(net) is a smooth limiting
non-linear activation function, w = (v1, v2, ..., vp, v0)T ,x = (x1, x2, ..., xp, 1)T . p-
dimensional feature vector ẋ = (x1, x2, ..., xp)

T . Training set composed of vectors
ẋ
(i)
j , (i = 1, 2; j = 1, 2, Ni).

The main factor that determins the learning speed of a new task, or when task
changes is the (p+ 1)-dimensional gradient vector

∂cost

∂wi

= η × 1

N

2∑
i=1

N∑
j=1

γgrad(t
(i)
j , net

(i)
j)×

∂net
(i)
j

∂w
, (1.13)

where γgrad(t
(i)
j , net

(i)
j) is a scalar variable called a gradient coefficient, and the

term,
∂net

(i)
j

∂w
= x(i)j is a (p + 1)-dimensional training vector. For the sigmoid

activation function, term

γgrad(t
(i)
j , net

(i)
j) = 2(t

(i)
j − f(net

(i)
j))× f(net

(i)
j)× (1− f(net

(i)
j)), (i = 1, 2; j = 1, 2, ..., Ni)

(1.14)

is determined by two product terms:

1) a derivative of the activation function,

∂f(net
(i)
j)

∂net
(i)
j

= f(net
(i)
j)× (1− f(net

(i)
j)) = o

(i)
j × (1− o(i)

j), (1.15)

12

Artificial Neural Networks

2) an error signal

t
(i)
j − o

(i)
j = t

(i)
j − fs(net

(i)
j). (1.16)

Equation 1.14 shows that the gradient coefficient, γgrad(t
(i)
j , net

(i)
j), depends on

the target t(i)j and on the weighted sum, net(i)j .

Let us assume that the magnitudes of weighted sums, net(ω) = x1ωv1 + ... +

xpωvp+ωv depend on a positive scalar ω (a coeficient of the weighted magnitude).
In figure 1.5 we see the output values as functions ot the coefficient ω.

0 5 10 15 20 25 0

0.5

1

-0.1

0

0.1

0.2

gr
ad
ie
nt

t



a minimum
of the cost
function

netA

0
5

10
15

20
25 0

0.5

1
-0.1

0

0.1

0.2

gr
ad

ie
nt

t



a minimum

of the cost

function

netC

Figure 1.5: 3D plots of the gradient as functions of ω and ∆t for two values of
the weighted sums for two different networks.

0

0.5

1 -2
0

2
4

-0.05

0

0.05

0.1

0.15

0.2

0.25

weighted sum, netdiference, t

gr
ad
ie
nt



0

0.5

1 -2
0

2
4

0

5

10

15

x 10-3

weighted sum, netdiference, t

we
ig
ht
ed
 g
ra
di
en
t



Figure 1.6: Dependence of the gradient and the weighted gradient values on the
weighted sums, net, and difference ∆t at the end of the training process (after
minimization of the cost function).

Experiment results depicted in figures 1.5 and 1.6 demonstrate that the relation-
ship between the gradient and the weight magnitudes ∆t values is non-linear.

13

Motion Control in Robotic Systems

As seen in the figures 1.5 and 1.6, it is difficult to train a perceptron when
gradient is low (flat surface). The gradient shows the rapidity of a learning
process. Re-training of the same network may cause local minima problems. If
a network is over-trained it contains a large number of flat surfaces in the cost
function wherefore it fails to adapt to a changing environment rapidly. This is
wery important for solving the inverse kinematics problem in robotics. The two
alternatives for training a network in changed environments is noise injection
and/or the reduction of targets.

1.4 Trajectory Planning

To ensure smooth walking of the hexapod, the movement of all legs must
be synchronized. The simplest method to perform walking motion is to use
parabola shaped trajectories to perform all the steps of the robot. This method
can be improved by using trajectory primitives and splines.

1.4.1 Parabola Trajectory Planning

Different walking patterns are displayed in Figure 1.7 [36, 67, 75]. One step of a
robot is completed when all six legs are moved to a new position. As mentioned
in Chapter 3, different walking patterns add different force to the legs of the
robot. Moreover, the angle of leg placement can cause slipperage or inaccuracies.

The pattern of a single leg movement is displayed in figure 1.8. This is the
simplest parabola shaped trajectory. Parabola shaped trajectories have disad-
vantages of not being robust and energy efficient. They cannot adapt to the
desired walking speed or different walking surface conditions. We propose to
improve a trajectory generation by using trajectory primitives and splines.

1.4.2 Trajectory Planning Using Primitives

Each primitive is a single step of a very high quality. Instead of constructing the
whole motion out of primitives, only the most important parts of motion can

14

Trajectory Planning

Figure 1.7: Gait diagrams [44]. a) tripod gait, b) tetrapod gait, c) wave gait, d)
ripple gait

Figure 1.8: Trajectory projections [44].

be described by primitives. This allows the flexibility to generate the rest of a
trajectory.

Taking a hexapod walking robot as an example, the most important parts of
motion are beginning and ending in the motion, e.g. leg must be lifted straight
up from the sand, or steeply and only then run. End of motion can also be
different, straight down to a slippery surface, or with an angle on a non-slippery
one. The rest of the trajectory is not so important, but it can be optimized by
different criteria.

Multiple criteria can be taken into consideration, when choosing the desired
trajectory:

15

Motion Control in Robotic Systems

• Surface identification parameters that describe the type of surface, the
robot is walking on;

• The desired walking speed;

• The maximum and the minimum height of a trajectory;

Optimization problems of these parameters are left for future research, and
are out of the scope of this thesis. Trajectories can be combined from a set of
primitives, or only key parts of a motion can be described by primitives. These
parts must be connected in a smooth manner, to minimize energy loses and
jerkiness of the robotic system. Splines are proposed to be used to connect
primitives into a smooth trajectory.

1.4.3 Trajectory Calculation

Splines are often used to calculate s smooth trajectory, connecting two or more
points. We introduce a spline as a piecewise polynomial parametric curve Q(t).
For this application we analyze splines in the two-dimensional space Q(t) ∈ R2.
There are three commonly used ways in the literature to define the polynomial
segments of a spline [77]:

1. Polynomial in parameter t, using standard notation for a polynomial.

2. Weighted sum of control vertices.

3. Product of matrices.

There are several cubic spline families [77]:

1. Cubic Hermite Spline. It consists of segments that are cubic polynomials.
Each segment connects two control points. The two remaining degrees of
freedom are controlled by specifying the tangent vectors at both, the start
and the end point of the segment

16

Trajectory Planning

0 1 2 3 4 5
0

1

2

3

4

5

x

y

Figure 1.9: 3 stages of motion

2. Cubic Bézier Splines. It also consist of cubic polynomials and therefore
have the same expressive power as the Cubic Hermite Splines. They
differ from Hermite Splines in the formulation of the segments. Instead of
explicitly defining the tangent vectors at the start and the end point, these
vectors are extracted from two additional control vertices in the case of
Cubic Bézier Splines’ segments.

3. Catmull-Rom Splines. So far, to reach C1 continuity it has been necessary
to manually adjust the tangents at the join points. Catmull-Rom Splines
overcome this by being inherently C1 continuous.

4. B-Splines. B-Splines are inherently C2 continuous. However, this comes at
an additional cost of not passing through any of their control points.

Hermite splines (see equation 1.17) were chosen, because of C1 continuity and
because control points are on the curve itself. Catmull-Rom splines are fre-
quently used to get the smooth interpolated motion between key frames. They
are popular mainly for being relatively easy to compute, guaranteeing that each
key frame position will be hit exactly, and also guaranteeing that the tangents of
the generated curve are continuous over multiple segments. One of its draw-
backs is the requirement of additional two points at the ends of a curve. But this
drawback turns into an advantage, because the curve is being fitted between
two primitives.

17

Motion Control in Robotic Systems

p(s) =
[
1 u u2 u3

]


0 1 0 0

−τ 0 τ 0

2τ τ − 3 3− 2τ −τ
−τ 2− τ τ − 2 τ



pi−2

pi−1

pi

pi+ 1

 . (1.17)

1.5 Conclusions

Single layer and multi-layer perceptrons can be used to solve the inverse kine-
matics problem in robotics. They can also be used to improve the inverse
kinematics solution that was obtained by using traditional methods. It was
examined how the perceptrons learning rapidity depends on a gradient of cost
function. To speed up the computation methods of noise injection and/or re-
duction of targets were examined. If the weights are large and the activation
function is saturated, learning stops and the inverse kinematics learning speed
becomes very slow. Single layer and multi-layer perceptrons can be trained
to cope with the changing task environment. Weight minimization and noise
injection methods help addressung the learning rapidity. Multi-agent systems
were used to model the changing the task environment. In certain conditions
the speedup can be achieved close to the ammount of the processors count of
a computer. By using the trajectory primitives combined with Catmull-Rom
splines smooth trajectories were generated. This method addresses problems
found in Chapter 3, after force feedback sensor experiments.

18

Chapter 2

Improvement of Motions in Robotic
Systems

Serial manipulators are designed as a series of links connected by motor-actuated
joints that extend from a base to an end-effector. An artificial neural network
that solves the inverse kinematics problem of robotic arm has often been used in
many research. It is difficult for a well-known neural network to solve inverse
kinematics problem with an acceptable accuracy for the whole joint space [54].
Different techniques have been used to break down the problem into several
smaller ones. In this chapter, we propose to solve the problem in a chosen part
of a coordinate space, and then train the neural network further, to solve the
problem in different parts of the coordinate space. The approach of re-training
the same neural network to solve different problems mimics the learning process
and the ability to adapt to the changing environment in the nature. Experiments
were carried out to test, if it is beneficial to re-train existing networks, or it is
better to train new networks from the initial parameters.

2.1 Single Layer Perceptron Experiment

The inverse kinematics problem of 2-degrees-of-freedom robotic arm was solved
using 2 single layer perceptrons (1 for each joint). Distance and angle of the
desired position were used as input data and joint angles as output data for

19

Improvement of Motions in Robotic Systems

the neural network. Three different tasks were chosen in a coordinate space
as shown in figure 2.1. The neural network was trained to solve task 1, then
retrained for task 2 and task 3. Tasks were chosen as inverse kinematics problems
in different places of a coordinate space. Results were verified on testing data
set. A means square error over iterations of testing data is shown in figures
2.2, 2.3, 2.4. These figures illustrate how under-learning and over-learning of a
neural network affects training error when the task changes.

− 60 − 40 − 20 0 20 40 60
x

− 60

− 40

− 20

0

20

40

60

y

Training and test ing data

task 1

task 2

task 3

1

2 3

Figure 2.1: Changing task.

0 20 40 60 80 100 120 140 160

iterat ions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

e
rr

o
r

(m
s
e

)

Error over iterat ions

task 1 task 2 task 3

Figure 2.2: NN trained for 50 iterations.

0 50 100 150 200 250 300
iterations

0.0

0.2

0.4

0.6

0.8

1.0

er
ro
r (

m
se

)

Error over iterations

Figure 2.3: NN trained for 100 iterations.

0 500 1000 1500 2000 2500 3000

iterat ions

0.0

0.2

0.4

0.6

0.8

1.0

e
rr

o
r

(m
s
e

)

Error over iterat ions

task 1 task 2 task 3

Figure 2.4: NN trained for 1000 itera-
tions.

Task 1 and task 2 were similar to learn for the neural network, while task 3
was different. Similarity is defined, as a similar weight vector of SLP to solve
the tasks. Though tasks were similar, they were not the same. The transition
between task 1 and task 2 was smooth and neither under-learning (figure 2.2)
nor over-learning (figure 2.4) had any effect. But when a task differs (perceptron
needs to learn different weights), the over learning effect can be observed (task 2
– task 3 transition). Figure 2.2 shows no over-learning effect, figure 2.3 shows a
slight over-learning effect and figure 2.4 shows that it is increasing as iterations

20

Single Layer Perceptron Experiment

increase.

Single layer perceptrons can adapt to the changing inverse kinematics problem.
If tasks are similar, only a few iterations are needed to re-train the neural network.
If tasks differed more, agents that learned first problem very well, failed on the
second one. Over-learning occurs due to the increased weights of perceptron
inputs. This process is also called "perceptron aging" [61, 63]. Depending on the
situation, different weight reduction techniques like learning step reduction or
noise injection to inputs [61] can be used to control perceptron aging. Solving
the inverse kinematics problem with neural networks enables choices among
learning speed, precision and ability to adapt to the changing environment.

2.1.1 Tasks Clustering and Classification

To obtain different kint of tasks for the robot (e.g., discussed in Section 2.1),
existing bigger task can be clustered to the smaller ones (ref. Figures 2.5 and
2.6). Many artificial clustering algorithms exist [86], and are used in statistics,
computer science and machine learning. One of the classic clustering algorithms
is k-means, first used by James MacQueen in 1967 [45]. Given a set of obser-
vations (x1, x2, ..., xn) where each observation is a d-dimensional real vector,
the k-means clustering aims to partition the n observations into k(<= n) sets
S = S1, S2, ..., Sk so as to minimize the within-cluster sum of squares. In other
words, its objective is to find:

a
s
rgmin

k∑
i=1

∑
x∈Si

‖x− µi‖2, (2.1)

where µi is the mean of points in Si.

Further research will address motion primitives. To obtain different kind of
motion patterns each motion can be carefully selected and described by a set of
parameters to fit a desired task. This includes a trajectory primitives selection,
as well, as an order of spline being used to connect primitives. By varying these
parameters, speed and precision can be traded off. This also can be done in a
more natural way, i. e. generating random motion patterns and keeping the
useful ones.

21

Improvement of Motions in Robotic Systems

Figure 2.5: 24 classes in 2D space.

When dealing with motion data, a small sample size problem arises. Due to the
changing nature of environment, a task being solved and the robotic system (e.g.
from parts wearing off, or damage), it is inpractical to have a big database of
possible motions data. Decisions must be made from using a small sample size
and a high dimensionality data.

2.2 Multi-layer Perceptron Experiment

Multi-agent evolving systems were created to analyze agent’s behavior when
a task suddenly changes. Each agent incorporates multi-layer perceptron and
solves the inverse kinematics problem of 3-degrees-of-freedom robotic arm.
The impact of an agent initial parameters was observed while using different
activation functions in output nodes of MLP. Linear, logistic, hyperbolic tangent
and sine activation functions were investigated.

Intelligent agents and robots operating in new unknown environments must
be able to adapt to sudden situational changes [40, 63, 85]. Research of rapid

22

Multi-layer Perceptron Experiment

Figure 2.6: Selected 5 classes in 2D space.

adaptation in changing task environment has been carried out in analysis of
biology, physics, economy and financial time series [17, 33, 48, 64]. Natural
evolution ensures that the only ones, capable to adapt to changes, survives.

The single layer perceptron is the simplest, nature inspired adaptive unit. Per-
ceptrons can be connected to more complex neural networks. The more complex
neural networks are being used, the more complex tasks it can solve. Such
neural networks are not able to adapt when tasks change. Simpler networks are
able to learn smaller tasks, and are able to adapt, when tasks change.

A multi-layer perceptron with 3 nodes in a hidden layer was trained to solve
the inverse kinematics problem of 3-degrees-of-freedom robotic arm. Two tasks
were chosen in a coordinate space. Figure 2.7 represents tasks in the Cartesian
coordinate space. Each task consists of the inverse kinematics problem. Tasks
were chosen to be in the opposite sides of arms reachable space. When the
multi-layer perceptron is trained to solve one task, other task solving accuracy
decreases. This experiment shows how fast accuracy can be regained, when
using different activation functions in output layer of the multi-layer perceptron.
After the first task was learned for 250 iterations, the second task was suddenly

23

Improvement of Motions in Robotic Systems

introduced. A change in error was observed when using different activation
functions in the output layer of the multi-layer perceptron with 3 nodes in the
hidden layer. The impact of agent starting conditions were investigated.

The degree of freedom of a mechanical system is the number of independent
parameters that define its configuration. Data of 3-degrees-of-freedom robotic
arm was used in this experiment, as shown in the figure 2.7.

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

θ1

L1

θ2

L2

θ3

L3

task 2

task 1

Figure 2.7: Task space of 3 degrees of freedom robotic arm.

There is no single solution to the inverse kinematics problem, but a single
solution can be learned by training neural network. If the neural network is
trained with consistent data, it will learn to propose a similar solution to a new
similar problem.

Every agent was simulated as a multi-layer perceptron with 3 hidden layers.
2 nodes in input layer were used to input 2 dimensional data with desired
position coordinates. 3 nodes in output layer were used to calculate joint angles
of a 3-degrees-of-freedom serial manipulator. Logistic activation functions were
used in hidden layers of multi-layer perceptrons in all experiments. Weights
are being updated by the delta rule (equation 2.2). Multi-layer perceptrons had
variable learning rate (η) and momentum (α) parameters, and initial weights (w).
These parameters were learned by evolution. ϕ denotes activation an function.

24

Multi-layer Perceptron Experiment

4 different activation functions were used in this experiment (equations 2.6, 2.7,
2.8, 2.9).

∆wji(n) = α∆wji(n− 1) + ηδj(n)yi(n), (2.2)

δj(n) = ej(n)ϕ′j(vj(n)). (2.3)

ej(n) is an error signal, computed by a root mean square error (RMSE). The
RMSE was measured between actual and predicted outputs:

RMSE =

√∑
(ti − yi)2

m
. (2.4)

2.2.1 Data Generation and Preparation

Different methods to gather training data can be used: kinematics equations
[7], network inversion [37], simulation programs [18]. Kinematics equations
were used to generate data. First of all joint angles θ1, θ2, θ3 were chosen from a
desired range, then a forward kinematics equation was solved, to get the desired
end actuators position. Joint angles of the robotic arm were calculated to be as
similar as possible in each desired position. Data was changed from Cartesian
coordinates to polar coordinates and normalized as shown in the equation 2.5.
Two different data sets were generated, to simulate the two different tasks.

norm_data =
data−mean(data)

std(data)
. (2.5)

2.2.2 Activation Functions

Non-linear activation functions enable the neural network to approximate ex-
tremely non-linear functions [27]. An ability to re-train the neural network for a
new task is highly based on the activation function being used [63]. An inability

25

Improvement of Motions in Robotic Systems

linear
ϕj(vj(n)) = vj(n).

(2.6)
sine

ϕj(vj(n)) = sin(vj(n)).
(2.7)

hyperbolic tangent
ϕj(vj(n)) = tanh(vj(n)).

(2.8)
logistic

ϕj(vj(n)) =
1

1 + exp(−vj(n))
.

(2.9)

to learn (or aging) is caused by increased synaptic weights, due to the saturation
of activation functions [61]. This was also observed while solving the inverse
kinematics problem with the single layer perceptron [82].

2.3 Multiagent System Experiment

A multi-agent system was created to test the behavior of an agents in the chang-
ing task environment. All experiments were performed, using 100 agents,
trained for 100 epochs and for 500 iterations. After 250 iterations task changed
and population behavior was observed. All agents follow some simple rules:

• Initial set of agents were created with random initial weights (w), learning
rate (η) and momentum (α) parameters;

• After each epoch, agents that performed worst compared to the mean
population error were discarded;

• Agents cannot die from old age;

• Population is restored either by cloning the best agent and adding 10%
of noise to its parameters, or by creating new agents with random initial
parameters (this depends on an experiment).

2.3.1 Multi-threading and MPI Parallelization

An experiment was carried out using a multi-agent neural networks system.
Every agent incorporated one single layer perceptron. Every single layer percep-
tron solved the inverse kinematics problem (like in chapter 2). While solving a

26

Multiagent System Experiment

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

1.2

iterations

rm
se

0 100 200 300 400 500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

iterations

rm
se

0 100 200 300 400 500
0

5000

10000

15000

20000

25000

30000

iterations

to
ta

la
ge

0 100 200 300 400 500
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

iterations
to

ta
la

ge
Figure 2.8: The upper figures represent the RMSE over iterations, with the
change of task on 250th iteration, using a linear activation function at multi-layer
perceptron outputs. Solid lines represent the best 10 agents, dashed lines – the
best single agent. Lower figures represent the total age of agents. Figures on the
left represent the population and then new agents were cloned from the best
agent, on the right – new agents were created with random parameters.

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

1.2

iterations

rm
se

0 100 200 300 400 500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

iterations

rm
se

0 100 200 300 400 500
0

2000

4000

6000

8000

10000

12000

iterations

to
ta

la
ge

0 100 200 300 400 500
0

2000

4000

6000

8000

10000

12000

14000

iterations

to
ta

la
ge

Figure 2.9: The upper figures represents the RMSE over iterations, with the
change of task on the 250th iteration, using a sine activation function at multi-
layer perceptron outputs. Solid lines represent the best 10 agents, dashed lines –
the best single agent. Lower figures represent the total age of agents. Figures on
the left represent the population and then new agents were cloned from the best
agent, on the right – new agents were created with random parameters.

27

Improvement of Motions in Robotic Systems

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

1.2

iterations

rm
se

0 100 200 300 400 500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

iterations

rm
se

0 100 200 300 400 500
0

2000

4000

6000

8000

10000

12000

14000

16000

iterations

to
ta

la
ge

0 100 200 300 400 500
0

5000

10000

15000

20000

iterations
to

ta
la

ge
Figure 2.10: The upper figures represent the RMSE over iterations, with the
change of task on the 250th iteration, using a hyperbolic tangent activation
function at multi-layer perceptron outputs. Solid lines represent the best 10
agents, dashed lines – the best single agent. Lower figures represent the total
age of agents. Figures on the left represent the population and then new agents
were cloned from the best agent, on the right – new agents were created with
random parameters.

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

1.2

iterations

rm
se

0 100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

iterations

rm
se

0 100 200 300 400 500
0

200

400

600

800

1000

1200

iterations

to
ta

la
ge

0 100 200 300 400 500
0

2000

4000

6000

8000

10000

12000

14000

iterations

to
ta

la
ge

Figure 2.11: The upper figures represents the RMSE over iterations, with the
change of task on 250th iteration, using a logistic activation function at multi-
layer perceptron outputs. Solid lines represent the best 10 agents, dashed lines –
the best single agent. Lower figures represent the total age of agents. Figures on
the left represent the population and then new agents were cloned from the best
agent, on the right – new agents were created with random parameters.

28

Multiagent System Experiment

task, an agent makes a predefined number of iterations. A number of iterations
affects a task completion time. Serial problem solving is depicted in Figure 2.12.
Agents solve their task independantly from each other.

Figure 2.12: Serial flow of software.

It is not difficult to parallelize the work of an agent (see Figures 2.13 and 2.14.
Every agent executes the same code, but tasks can be different, if different pa-
rameters are being sent. An experiment was carried out with different iterations
count per agent and different agents count. The task was solved by dividing
agents in some number of threads. The first task was solved starting from one
thread (meaning serial), then with 2, 3, 5, 10, 15, and ending with 100 threads.
An increase of threads in personal computer caused a system to crash. When
more threads were executed in a cluster no interesting results were obtained.
When using multi-processing method speedup stopped increasing when the
number of threads reached CPU count.

Figure 2.13: Parallel flow of software, using MPI.

A task parallelization with the MPI is depicted in figure 2.13. First of all the
pre-defined number of threads are were executed. Then it is waited until they
finish. Then a new set of threads are being executed. A task parallelization with
multi-processing is depicted in figure 2.14.

21 experiments were executed:
With Python multiprocessing:

29

Improvement of Motions in Robotic Systems

Figure 2.14: Parallel flow of software, using multiprocessing.

1. using 64 cores – 1 experiment (because only 8 cores were used),
2. using 16 cores – 4 experiments (but only 8 cores were used),
3. using 4 cores – 4 experiments,
4. personal computer with 2 cores – 4 experiments.
With Open MPI:
5. using 64 cores – 4 experiments,
6. using 16 cores – 4 experiments,
7. using 4 cores – 4 experiments,
8. personal computer with 2 cores – 4 experiments.

All figures uses following marking:
A – 100 agents, 100 iterations,
B – 100 agents, 1000 iterations,
C – 1000 agents, 100 iterations,
D – 100 agents, 10000 iterations.
These datasets were chosen to find out how speedup differs when a task com-
pletion time increases for an agent (A, C, D datasets). Furthermore, if a task
completion time differs when more agents with fewer iterations are used, or
fewer agents with more iterations are used (B and C datasets).

30

Multiagent System Experiment

Personal computer:
Hardware:
Intel Core 2 Duo CPU P8600@2.40GHz
2990 MiB of RAM
Software:
Ubuntu 10.04, 2.6.32 Linux kernel
Python 2.6
OpenMPI 1.5.4
mpi4py 1.2.2

Cluster:
Hardware:
8 Sun Blade X6275,
each one has 2 x 4 Intel Xeon cores
E5520 2.27GHz processors,
64 cores in total.
Software (for multiprocess experiment):
Python 2.6.5
Numpy 1.5.1
Software (for MPI experiment):
Python 2.4.3
Numpy 1.2.1
mpi4py 1.2.2

Figure 2.15: Cluster load using MPI parallelization, 64 CPUs

Figures 2.16, 2.17, 2.18 and 2.19 depict the speedup results in multiprocessing
system. It must be noted, that parallel computing network was used with 8
CPUs per cluster. No significant speedup was achieved using more than 8
threads. It also can be seen in a cluster load graph (Figure 2.15).

31

Improvement of Motions in Robotic Systems

1 2 3 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

0.5

1

1.5

2

2.5

A

B

C

D

Figure 2.16: Multiprocessing par-
allelization on a standard personal
computer with 2 CPU cores. x axis
denotes number of cores, y axis –
speedup.

1 2 3 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

1

2

3

4

5

6

7

8

9

A

B

C

D

Figure 2.17: Multiprocessing paral-
lelization on a cluster, using 8 CPU
cores. x axis denotes number of
cores, y axis – speedup.

1 2 3 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

1

2

3

4

5

6

7

8

9

A

B

C

D

Figure 2.18: Multiprocessing paral-
lelization on a cluster, using 16 CPU
cores. x axis denotes number of
cores, y axis – speedup.

1 2 3 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

1

2

3

4

5

6

7

8

D

Figure 2.19: Multiprocessing paral-
lelization on a cluster, using 64 CPU
cores. x axis denotes number of
cores, y axis – speedup.

While using the MPI (Figures 2.20, 2.21, 2.22, 2.23) speedup was achieved beyond
8 CPUs limit. Increased delay to send data over the network can be seen. The
network instability (probably dependent on a other tasks being executed on
cluster) can be witnessed. Figure 2.24 depicts a cluster load while dealing with
MPI tasks.

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A

B

C

D

Figure 2.20: MPI parallelization on
a standard personal computer with
2 CPU cores. x axis denotes number
of cores, y axis – speedup.

1 2 3 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

1

2

3

4

5

6

7

A

B

C

D

Figure 2.21: MPI parallelization on
a cluster, using 4 CPU cores. x axis
denotes number of cores, y axis –
speedup.

32

Multiagent System Experiment

1 2 3 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

1

2

3

4

5

6

7

8

9

A

B

C

D

Figure 2.22: MPI parallelization on
a cluster, using 16 CPU cores. x axis
denotes number of cores, y axis –
speedup.

1 2 3 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

5

10

15

20

25

30

35

40

45

A

B

C

D

Figure 2.23: MPI parallelization on
a cluster, using 64 CPU cores. x axis
denotes number of cores, y axis –
speedup.

Figure 2.24: Cluster load using multiprocess parallelization, 64 CPUs

Some interesting phenomena can be observed in figure 2.21, then speedup
exceeds a number of the nodes being used. This can be explained by non-
deterministic nature of the task.

2.3.2 Arm Part Length Evolution

Multi-agent evolving systems were used to simulate the evolution process,
observed in nature. Organisms developed in nature with similar length of two
main arm parts: femur and tibia. A simple experiment was set up. 2-degrees-
of-freedom robotic arm was simulated to reach points in 2D space. 100 agents
were created. Each agent had initial random proportions of femur and tibia.
After each epoch only 10 best agents survived. A new agent was created by
varying the best ones by 10 percents. After 100 epochs femur and tibia lengths
converged to the same lengths and the minimum length, required to accomplish
a given task (see Figure 2.25).

Multi-agent systems are relatively simple to parallelize. They exploit parallel

33

Improvement of Motions in Robotic Systems

Figure 2.25: Arm part (femur and tibia) lengths. x axis denotes epochs, y axis -
length.

processes happening in nature. The architecture of the systems must be taken in
account when creating a parallel system. Multi-threading cannot access more
CPUs than one node of the system has. To make a system more parallel, different
techniques, such as the MPI, must be used. When using the MPI an additional
network transfer delay is included. Multi-agent systems can be used to model
evolution efficiently.

2.3.3 Experiment Results

Experiment results are displayed in figures 2.8, 2.9, 2.10, 2.11.

Agents are not allowed to die from old age, so the only way, an agent is discarded
is when it performs worse than mean error of other agents. New agents are
created either by cloning the best agent of the group (figures on the left), or by
creating an agent with random initial parameters (figures on the right). This
allows analysis of the age of an agent to impact the performance of the agent.

All agents were able to learn first task. Second task was of a similar complexity
to the first one, but not all agents were able to adapt to solve it. As displayed in

34

Conclusions

the figures 2.8, 2.9, 2.10, 2.11 the inability to learn, due to saturation of activation
function can be observed in all non-linear activation functions.

The initial weights selection of multi-layer perceptrons plays an important role
in population performance. The population of agents with linear activation func-
tions were more capable to adapt to the changing task environment. Multi-layer
peceptrons using linear activation functions showed better results when new
agents were inherited from the best agents, rather when they were initialized
with random values. Population of agents with non-linear activation functions
benefits from new totally random agents.

Multi-layer perceptrons with the sine activation function failed to retrain at all,
though this function was successfully used with single layer perceptrons [82] in
other similar research of the author. Multi-layer perceptrons with logistic and
hyperbolic tangent functions showed good results. They solved the first task,
but when task changed the agent’s ability to adapt was subject to randomly
selected initial parameters. It must be noted that all these figures are a mean
error of 100 simulations. And it is clearly visible, that an error of the single best
agent was lower than an error of 1/10 of the best agents. Furthermore, the flat
line on the total age of logistic function agents indicates that the population was
constantly discarding agents, and trying to find better ones.

2.4 Conclusions

Single layer perceptrons were used to solve the inverse kinematics problem
when a task changes. Results confirm learning rapidity theory, discussed in
Chapter 1. Less trained perceptron, with non-saturated activation functions
adapts to changed tasks. To solve the inverse kinematics problem with more
precision, task space must be clustered into smaller regions. Different percep-
trons have to be trained for each region. Multi-layer perceptron experiments
showed impact of activation function to learning rapidity. While the sigmoid
function was chosen for hidden layers, linear activation functions in the output
layer prooved to suit the best for the task. The multi-agent system of multi-layer
perceptrons was paralelized. The task showed to be non-deterministic and in
some cases (e.g. Figure 2.21) the speedup exceeded the processor count by a

35

Improvement of Motions in Robotic Systems

small margin. In other cases the speedup was achieved close to the processor
count, while MPI sollutions were slowed by network transfer delay.

36

Chapter 3

Practical Experiments with Walking
Hexapod Robot

Classical 18-degrees-of-freedom hexapod robot was constructed and used in
experiments. To get feedback from legs of the robot piezoelectric force sensors
were proposed.

Walking robots show much greater ability to traverse terrain than wheeled or
tracked robots. Although wheeled robots have higher speed and simple con-
trol methods, walking robots would are preferred for difficult terrain missions
such as planetary exploration, underground operations or catastrophic envi-
ronments [21]. Each of the mentioned situations requires either a rough terrain
traversability or a very stable and careful movement. All wheeled robots can
only overcome roughness that is smaller than the radius of their wheel. Due to
this problem the use of all wheeled (also tracked) platforms are limited. That is
why all walking robots has attracted so much attention over the last few years
[59].

However, walking robots are still far away from being researched and produced.
Problems like high energy consumption, difficult gait selection, complex control
and feet placement arise from moving through rough terrain. Each problem
must be considered and eliminated before using robots in any real-life situa-
tions. In this chapter an multi-layer perceptron based method is proposed for
reducing deviations of the legs of the hexapod robot that appear when applying

37

Practical Experiments with Walking Hexapod Robot

to geometric inverse kinematics method.

Having precise inverse kinematics calculations is very important, because tra-
jectory planning requires inverse kinematics solutions, and it is also important,
when executing delicate tasks. Relatively small deviations when calculating the
joint space coordinates often cause unacceptable deviations in Cartesian space
coordinates.

There are three traditional methods used to solve the inverse kinematics [38]:
geometric [22, 41], algebraic [20, 30, 46, 57] and iterative [39] methods. These
methods can become complex and time consuming when used in complex
systems. Also these methods only give solution to a fixed geometrical configu-
ration of kinematic chain and if kinematics change, for example, a robot’s leg is
damaged, it is necessary to find a new inverse kinematics solution.

A lot of different intelligent methods (based on Neural Networks, Fuzzy Logic,
Reinforcement Learning, etc.) were proposed to solve the inverse kinematics
problem of different robotic systems [2, 50, 52, 73]. These methods proved to
overcome problems that traditional methods have and also provide a good basis
of adaptive kinematic solutions that are not constrained by kinematics of a robot.

There are still many reasons as to why the deviations of feet coordinates or
leg trajectory appear. When a number of manipulator degrees of freedom
increases, and structural flexibility is included, analytical modeling becomes
almost impossible [13]. Even simple real world rigid structures display errors
compared to modeled structures. Furthermore, mechanical wear and tear, and
structural flexibility adds more errors to the system. After some usage, the
system requires recalibration to perform as expected. Analytic methods of
inverse kinematics problem solving becomes insufficient.

Another possible source of problem is a feet slippage [49]. Moosavian et. al.
have developed a dynamics model for hexapod robot which consists only of
narrow pack of equations. This model includes feet interaction with the ground
and a force distribution model to find the required friction forces. Even though
experimental results showed minimum slippage, it is still obvious that the
deviation is not fully avoided.

Several scientists have proposed [19, 70] that leg trajectory errors might occur

38

Hexapod Robot Description and Leg Kinematics

Figure 3.1: Hexapod robot CAD model.

due to a poorly developed inverse kinematics model. Legged robots are very
complex systems consisting of a large number of actuators, joints and other
elements. The complexity of a kinematic model and control increases with more
parts. Therefore, the dynamics model and control algorithms must be carefully
organized. Moreover, an accurate control of all actuator is very important. As
the speed increases, completing various operations and useful workspace of
leg/manipulator reduces [80]. In addition to actuator speeds, frictions and
inertias, as well as, some external disturbances sometimes are not know [69].
Having taken all these conditions into account, eliminating feet positioning
deviations becomes a very difficult task.

3.1 Hexapod Robot Description and Leg Kinematics

For our experiments a typical hexapod robot with a total of 18-degrees-of-
freedom was used. Each leg has three Dynamixel AX-12+ servomotors (giving
each leg 3-degrees-of-freedom). AX-12+ actuators support 10 V input voltage
and 900 mA maximum current. The working angle is 300◦ with a resolution of
0.35◦. The robot is relatively small: body length L1 = 160 mm and width L2 = 90
mm. Leg dimensions are as follows: l1 = 80 mm, l2 = 106 mm and l3 = 68 mm
(see Figure 3.2). The total weight of the robot is around 1.5 kg, which consists
mostly of eighteen actuators, each of which weighs 55 g.

The analysis of the kinematic model of the robot can be simplified by considering
each leg as an individual system [19]. Leg design is very similar to legs of a bug,

39

Practical Experiments with Walking Hexapod Robot

1q

2q

B

1l
2l

ifx

ifz

2θ
3θ

3l

a)

3l

4l

ify

ifx
1θ

b)

Figure 3.2: Robot leg projections into xy (a) and xz (b) axes

explained in detail in paper [11]. As each leg of the hexapod robot has 3-degrees-
of-freedom inverse kinematics can be easily calculated using simple geometrical
approach. Two-leg projections are needed in order to derive servomotor angles,
projection into xy (Figure 3.2 (a)) and xz (Figure 3.2 (b)) planes.

In a case of forward kinematics, angles of the hexapod robot legs are known,
and are θ1, θ2, θ3, as are the lengths l1, l2, l3. The coordinates of the endpoint of
the leg are marked as x, y and z, and can be calculated as follows:

B =
√
l21 + l22 − 2l1l2cos(θ3), (3.1)

q2 = arccos

(
l21 − l22 +B2

2l1B

)
, (3.2)

q1 = Q2 − q2, (3.3)

z = B sin(q1), (3.4)

l4 =
√
B2 − z2 + l3, (3.5)

40

Hexapod Robot Description and Leg Kinematics

x = l4 cos(Q1), (3.6)

y = l4 sin(Q1). (3.7)

Opposite to forward kinematics, in inverse kinematics coordinates x, y, z of the
endpoint of the legs of the hexapod robot are the lengths l1, l2 and l3 of the leg
parts. The angles θ1, θ2, θ3 are obtained in the following manner:

B =
√
x2 + y2 + z2, (3.8)

q1 = arccos

(
l21 − l22 +B2

2l1B

)
, (3.9)

q2 = arcsin
(z
B

)
, (3.10)

θ1 = arctan

(
y

x+ l3

)
, (3.11)

θ2 = q1 + q2 = arccos

(
l21 − l22 +B2

2l1B

)
+ arcsin

(z
B

)
, (3.12)

θ3 = arccos

(
l21 + l22 −B2

2l1l2

)
, (3.13)

where:
θ1 - angle of coxa servomotor,
θ2 - angle of femur servomotor,
θ3 - angle of tibia servomotor,
B - subsidiary imaginary line, connecting the beginning of femur and the end of
tibia,
l1 - length of femur,

41

Practical Experiments with Walking Hexapod Robot

l2 - length of tibia,
l3 - distance between coxa and femur axes,
l4 - length of B projection to xy plane.

3.2 Piezoelectric Force Sensors

To get feedback from a robot leg, some kind of a sensor must be used. We
propose a piezoelectric force sensor as a feedback sensor from the leg of the
robot. There are many different sensors that could be used as robot’s force
sensing: barometers, pressure sensors, tactile sensors, load cells, silicon based
sensors. In this work we chose to upgrade the feet of the hexapod robot with
piezoelectric sensors (Figure 3.3). Unlike silicon based sensors, that are relatively
small and brake at overload [6], piezoelectric sensors are of the required size
and can withstand high pressure.

Figure 3.3: Piezoelectric sensor.

Main advantages of these sensors are:

1. Low cost.

2. High resolution (deflections can be of a size of a micrometer).

3. Wide measuring range.

4. Signal can be easily re-produced.

42

Piezoelectric Force Sensors

5. High-temperature resistance.

6. Insensitive to external electric and magnetic fields.

Figure 3.4: Hexapod robot foot with an integrated piezoelectric sensor.

Another reason why we chose to use piezoelectric sensors is that they can be
easily applied on the feet of a robot (Figure 3.4). In order not to break these
sensors or wires we glued the hemisphere on the bottom and a small metal plate
on the top. The whole robot with piezoelectric sensors is shown in Figure 3.4.

Characteristics of piezoelectric sensors were not available, which is why the
experiment was made using oscilloscope to obtain the voltage dependence on
pressure force U = f(F). We performed the experiment with regard to the
parameters of the robot movement, so that the characteristics would be as useful
as possible. Results of the experiment are shown in Figure 3.5.

Looking at visible points displayed in Figure 3.5, it appears that voltage depen-
dence on pressure force is linear. Using Origin 8 program, the linear proximation
is done to obtain characteristics:

U = 1, 04F + 4.78. (3.14)

There are three main reasons why force sensing is used: to adapt to the rough-
ness of terrain, to equally distribute force between feet [71] and to know the

43

Practical Experiments with Walking Hexapod Robot

Figure 3.5: Experimental characteristics of piezoelectric sensors U = f(F).

exact moment a foot reaches the ground. In our case it lets us to simulate dif-
ferent types of motions. Otherwise, it is impossible to control the foot pressure
against the ground which might damage the robot, the surface or the cargo, if it
is fragile. A good example could be an experiment made with robotic foot and
its interaction with terrain [16]. The experiment was done using a robotic foot
constructed separately from the whole robot. Force distribution was calculated
theoretically and tested experimentally, but no sensors were used. Three differ-
ent categories were distinguished: hard foot on deformable terrain, deformable
foot on hard terrain and deformable foot on deformable terrain. Results clearly
showed that foot placement deforms either the foot or the terrain depending on
the softness of a material. But without force sensors it is impossible to develop
a good algorithm that would not allow the robot to press feet hard against the
surface. Furthermore, there is no discussion about the possible adaptability to
an irregular terrain. Another work concerning rough terrain traversability is
described in detail in [9]. Using terrain templates (different height maps under
foothold) makes it easier to adapt to a rough terrain that has not been previously
seen. Although the results are promising and the robot can successfully over-
come rough terrain, sensing or force distribution between feet is not discussed.
It still remains unknown, whether or not the robot damages the surface or its

44

Piezoelectric Force Sensors

Table 3.1: Leg abbrevations.

Abbrevation Name of the leg Comment

RF Right front
Used during tripod and tetrapod
gait experiments.

RM Right middle

Used in all experiments as additional
supporting leg which is always positioned
on ground while tansfer legs are swinging motion.

RH Right hind Used only during tripod gait experiment.
LF Left front Were not used in any of the experiments.
LM Left middle Used in all experiments.
LH Left hind Were not used in any of the experiments.

own legs. More robust and compliant locomotion was acquired by Buchli J.,
Kalakrishnan M. et. al. by using force sensors [9]. Experiments were carried out
on 3 irregular types of terrain. Results showed that a robot can surpass irregular
terrain faster if it has force sensors. Still, no results indicated the actual size of
force on each foot.

3.2.1 Piezoelectric Sensors Experiment

For our experiment we used three most common hexapod gaits: tripod, tetrapod
and 6 wave gait. In each case, we monitored all transfer legs and one additional
support leg using a four channel oscilloscope. Abbreviations of each leg are
described in Table 3.1.

It is of great importance to emphasize the RM leg which was used in all cases.
By monitoring the additional support leg it becomes possible to distinguish
the start and the end of each gait. Moreover, it is much easier to see the exact
moment the robot raises and places its legs on the surface.

Hexapod robot’s voltage time diagrams for tripod and wave gaits are shown in
Figure 3.6. A smoothing filter with polynomial order of 2 to reduce to unwanted
noise was added. As we can see, there is an exponential voltage decrease. This is
because after the impact, piezoelectric sensors reduce force to zero. In our case,
only the voltage peaks matter, and lower cut-off frequency is not important. All
voltage and recalculated force peaks are presented in Table 3.2. Given values

45

Practical Experiments with Walking Hexapod Robot

Table 3.2: Force peak values for different gaits.

Gait Tripod Tetrapod Wave
Robot’s leg RF LM RH RM RF LM RM LM RM
F, N 0,28 2,75 1,72 2,17 0,38 3,06 3,93 3,78 5,47

were measured during the moment of collision between feet and the ground. It
is obvious that when the robot is moving using a tripod gait, legs are pressed
against the surface with the least force. This is because the force is distributed
among three feet. When using wave gait, robot’s legs are pressed with the most
force because only one leg is pressed against the surface.

It is also noticeable that voltage time diagrams of the tripod gait have less
fluctuations than those of a wave gait. This is mainly because the wave gait has
six phases and the tripod gait only has two. In our case, the more phases the
gait has, the faster the legs are transferred.

Also, Figure 3.6 shows negative voltage values. This is because piezoelectric
sensors show high-pass behavior. It means that after the first impact we have
positive values. After the release of pressure, values become negative. This way
we can distinguish the moment when the robot raises its legs (negative peaks)
and the moment of impact with the ground (positive peaks).

Force distribution dependence on different gaits was observed in this experi-
ment. Tripod, tetrapod and wave gaits were used to monitor the actual size of
the force on each foot during the impact with the ground. Experiments were
carried out on en ven terrain. Results clearly state that during the tripod gait, the
feet of the robot are pressed against the ground with the least force. And during
the wave gait, the robot presses its feet with the most force. This is explained as
force distribution between transfer feet. Distribution occurs upon the moment
of impact with the surface. The more legs are pressed against the ground, the
less the force. Having the current results, one of the following solutions should
be applied for the hexapod robot to eliminate feet pressure:

• Special leg placement algorithm could be developed to slower leg speed
before the moment of collision with the surface.

46

Piezoelectric Force Sensors

• The program of the robot could be upgraded with force indicator, which
would not allow the robot to press feet harder than the given force. This
method requires different type of force sensors.

Piezoelectric sensors are used only to monitor the impact forces. After the
impact, the force is exponentially reduced to zero again. It is only possible to
observe the moment of collision. Furthermore, when working on piezoelectric
characteristics, we encountered a number of additional problems. Verification
of the appropriate voltage dependence on force is a matter of another topic,
due to complexity of the experiment and dependence on various parameters
(temperature, point of impact, acceleration). Future aim is to monitor force
distribution for a longer period of time. For that we intend to build unique
pressure sensors for the hexapod robot. It will also be possible to observe
the force and energy consumption dependence with different loads. This will
establish information about the size of the maximum weight a robot can carry,
and thus determined what real world operations it can be used in.

3.2.2 Experiment Results

Hexapod robot’s voltage time diagrams for tripod and wave gaits are shown in
Figure 6. A smoothing filter was added with polynomial order of 2 to reduce
unwanted noise. As we can see, there is an exponential voltage decrease. This is
because after the impact piezoelectric sensors reduce the force to zero. In our
case, only the voltage peaks matter, so lower cut-off frequency is not important.
All voltage and recalculated force peaks are presented in Table 2. Given values
were measured upon the moment of collision between a feet and the ground. It
is obvious that when the robot is moving using the tripod gait, legs are pressed
against the surface with the least force. This is because the force is distributed
between three feet. And when using a wave gait, robot legs are pressed with the
most force because only one leg is pressed against the surface.

It is also noticeable that the voltage time diagrams of the tripod gait have less
fluctuations than those of wave gait. This is mainly because the wave gait has
six phases and tripod gait has only two. In our case, the more phases the gait
has, the faster the legs are transferred.

47

Practical Experiments with Walking Hexapod Robot

0 5 10

-10

-5

0

5

10

t (s)

U
 (

V
)

(a)

ULM

0 5 10
-15

-10

-5

0

5

10

15

t (s)

U
LM

U
RM

U
 (

V
)

(b)

Figure 3.6: Voltage time diagrams for: (a) tripod gait, and (b) wave gait.

Figure 3.6 also shows negative voltage values. This is because piezoelectric
sensors show a high-pass behavior. It means that after the first impact we have
positive values. After the release of pressure the values become negative. This
way we can distinguish the moment the robot raises its legs (negative peaks)
and the moment of impact with the ground (positive peaks).

Force distribution dependence on different gaits was observed in this paper.
Tripod, tetrapod and wave gaits were used to monitor the actual size of the
force on each foot during the impact with the ground. Experiments were carried
out on even terrain. Results clearly state that during the tripod gait, feet of the
robot are pressed against the ground with the least force. And during the wave
gait, the robot presses its feet with the most force. This can be clarified as force
distribution between the transfer feet. Distribution occurs during the moment
of impact with the surface. The more legs are pressed against the ground, the
less the force. Having the current results, one of the following solutions should
be applied for the hexapod robot to eliminate feet pressure:

1. Special leg placement algorithm could be developed to slower the leg
speed before the moment of collision with the surface.

2. The program of the robot could be upgraded with a force indicator, which

48

Inverse Kinematics Correction by Multi-layer Perceptron Experiment

would not allow the robot to press feet harder than the given force. Al-
though this method requires different type of force sensors.

Piezoelectric sensors are used only to monitor the impact force. After the
impact, the force is exponentially reduced to zero again. It is only possible to
observe the moment of collision. Furthermore, when working on piezoelectric
characteristics, we encountered a number of additional problems. To verify the
appropriate voltage dependence on the force is a matter of another topic due
to the complexity of experiment and the dependence on various parameters
(temperature, point of impact, acceleration).

The future aim is to monitor force distribution for a longer period of time. For
that we intend to build unique pressure sensors for the hexapod robot. It will
also be possible to observe the force and energy consumption dependence with
different loads. This will give information about the size of the maximum weight
a robot can carry, and determine what real world operations it can be used in.

3.3 Inverse Kinematics Correction by Multi-layer Per-

ceptron Experiment

In order to test the foot’s positioning accuracy and evaluate positioning errors
only one leg of the robot was used in experiments. The leg was connected
to the computer via USB to UART converter (Figure 3.7). As no feedback
from servomotors was used, only the Tx line was used to transmit commands.
Throughout the experiments the servo motor speed was always set to 5 RPM.
This ensured less jerky leg motions. The coordinates of the foot were measured in
foot coordinate system in two dimensional space, xy plane. In order to measure
the actual foot coordinates, they were marked on a millimeter paper (Figure 3.8)
after sending a command for a leg to position it to a certain coordinates. This
way we were able to measure actual coordinates that the foot was positioned at.
By comparing the desired coordinates that were sent to the leg and the actual
measured coordinates we were able to evaluate foot coordinate deviations and
positioning errors.

49

Practical Experiments with Walking Hexapod Robot

PC

USB to UART

USB

AX-12
No.1

AX-12
No.2

AX-12
No.3

Power
supply +10 V

UART

Figure 3.7: Diagram showing robot’s leg connection to a PC.

Figure 3.8: Experiment setup with
shown initial foot position (0, 0) and
positive, and negative foot move-
ment directions along x and y axes
(+X, -X, +Y, -Y).

y
(c

m
)

x (cm)

Figure 3.9: Initial experiment results
that show foot positioning devia-
tions in different leg’s workspace ar-
eas.

In order to measure foot positioning deviations the following experiment was
done. The foot of the robot was positioned to 55 different positions in its
workspace. 27 of these positions were along x and y axes, while one of the
coordinates remain equal to 0. Other 28 positions were along diagonal axes,
when both coordinates x and y change (Figure 3.9 blue dots). The leg was
positioned to each point 5 times. Measurement results are shown in Figure
3.9 as green dots. This gave the general information on what the positioning

50

Inverse Kinematics Correction by Multi-layer Perceptron Experiment

deviations are in different workspace areas. It can be noticed that along the
positive x axis (when y = 0) and along diagonal axes in positive x axes (Ist and
IVth quadrants) deviations are very small. Deviantions increased a bit along
the negative x axis (when y = 0) and along y axis in both positive and negative
directions. Deviations are largest in diagonal directions in negative x axes side
(IInd and IIIrd quadrants). The most important thing here is that as required
position coordiantes increase, deviations also increase but only in the negative
x axis side and slightly in both y axis sides. This suggests that there may be
problems for leg movement in the negative direction that may be caused by
the fact that this direction is towards the body of the robot and the position is
getting close to mechanical limits of the leg.

Problem may arise from coxa’s servo because it is responsible for the motion
of the leg along y axis. One of the explanations may be that the PID controller
configuration may be wrong for the said servo or even all three servos. If this
is the case, each servo controller must be configured which may be a time
consuming and tedious work. This also shows that even simple geometric
inverse kinematic solution for 3-degrees-of-freedom leg may have problems.
In this paper we focus only on eliminating deviations that may appear for any
known or unknown reason with neural network. Nevertheless, the mentioned
problems that potentially influence these deviations are interesting topics for
future research.

Multi-layer Perceptron was chosen in order to compensate errors that occur
while positioning the foot of the robot. To successfully solve this problem, a
suitable multi-layer perceptron was constructed (as described in section 3.3.2).
Training and testing data was gathered from a physical robot (as described in
section 3.3.2). Additional features were extracted, by transforming points in the
Cartesian coordinate space to polar coordinate space. The data was normalized,
as described in section 3.3.1. To verify the results experiments were carried out
with a physical robot model.

51

Practical Experiments with Walking Hexapod Robot

3.3.1 Data Preparation

The desired foot position coordinates (x, y) were used as input parameters
of the multi-layer perceptron. The multi-layer perceptron output parameters
are calculated as joint angles (θ1, θ2, θ3) needed to reach this desired position
(x, y). After commanding the leg of the robot to reach the desired position, foot
coordinates were measured as described in Section 3.3. To increase accuracy,
additional features were constructed, by transforming the desired position in
the Cartesian coordinate space (x, y) to the polar coordinate space (r, ϕ). Polar
coordinates are interpreted in a more natural way, as it represents the distance
and the angle of the desired position. Experiments showed, that by using both
the Cartesian and the polar coordinates as input parameters the MSE converges
to 0.1: only Cartesian 0.57 MSE, and only polar 1.42 MSE. The learning speed
was also improved significantly, meaning that less iterations were needed for the
multi-layer perceptron to converge. The construction of additional features from
existing data is widely used in neural networks, e.g. using polynomial inputs.
Dataset of 4 input vectors X = (x, y, r, ϕ) and 3 output vectors Y = (θ1, θ2, θ3)

was constructed. Finally, each input and output vector was normalized by
standard normalization (equation 3.15, where x denotes vector is normalized, µ
- mean, σ - standard deviation of dataset, and z - normalized vector).

z =
x− µ
σ

. (3.15)

3.3.2 Constructing Multi-layer Perceptron

It is well known, the multi-layer perceptron exists with one hidden layer that is
capable of estimating an arbitrary non-linear function with any desired accuracy
[12, 32]. This is valid for training data. Our experiment also confirmed this, as a
training error was close to the mechanical accuracy of the robot.

The multi-layer perceptron was constructed with 4 inputs, 1 hidden layer with 6
nodes and 3 outputs (Figure 3.10) (as described in section 3.3.1). The number of
nodes in a hidden layer was determined by an experiment (Figure 3.12). The
mean squared error was measured by the training data: running multi-layer

52

Inverse Kinematics Correction by Multi-layer Perceptron Experiment

x

y

r

ϕ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Θ1

Θ2

Θ3

Figure 3.10: The multi-layer perceptron architecture. 4 inputs (x, y, r, ϕ) rep-
resent coordinates in the Cartesian and the polar coordinate space, 3 outputs
(θ1, θ2, θ3) represent 3 joint angles. 6 nodes in a hidden layer with sigmoid
activation functions, and 3 output nodes with linear activation functions are
used.

perceptron 100 times with different random weights from interval [−0.2; 0.2].
The standard deviation of 100 results was also measured to evaluate the stability
of multi-layer perceptron configuration.

50 100 150 200

1

2

3

epochs

m
se

Figure 3.11: MLP training error.

2 3 4 5 6 7 8 9 10 11 12
0.1
0.5
0.9
1.3
1.7

nodes in hidden layer

st
d
/m

se

mse
std

Figure 3.12: Nodes count in the hid-
den layer of multi-layer perceptron
impact on performance

The multi-layer perceptron was trained for 200 epochs (Figure 3.11), with a
learning rate (η) of a value of 0.2 and a momentum factor (α) of 0.4. These values
were chosen by means of experiment and were not critical. The multi-layer
perceptron was continuously able to produce similar results (Figure 3.12). By
increasing the epochs count, smaller errors could be achieved in the training

53

Practical Experiments with Walking Hexapod Robot

data, but the testing data was barely affected, especially having in mind, that the
hardware of the robot only accepts integer numbers as joint position parameters.
Further increase of accuracy in training data was not needed.

Sometimes using sigmoid, stepper, soft-max or a similar activation function
in output layer can be beneficial (e.g. to force the output values to normalize
between 0 and 1), but the linear activation function was prefered in this experi-
ment, because the continuous output was needed and data normalization was
done separately. Sigmoid activation function was used in the hidden layer of
the multi-layer perceptron.

Multi-layer perceptron was trained using a delta rule (equations 3.16 and 3.17).

∆wji(n) = α∆wji(n− 1) + ηδj(n)yi(n), (3.16)

δj(n) = ej(n)ϕ′j(vj(n)), (3.17)

ϕj(vj(n)) =
1

1 + exp(−vj(n))
. (3.18)

3.3.3 Experiment Results

After training the multi-layer perceptron testing was performed on the physical
robot. Deviations (D) were measured as distance (in mm) from the desired
position (coorddesired) to the actual position (coordactual): D = |coorddesired −
coordactual|, where coord is either x or y coordinate. For this experiment two posi-
tioning squares were used: one ini a positive quadrant (Ist) and one in a negative
quadrant (IIIrd) (see Figure 3.13). Square in the Ist quadrant represents the least
inaccurate foot positions, as results of previous experiments showed minimum
foot errors in this zone. While square in the IIIrd quadrant represents the least
accurate zone (see Figure 3.9). Only these two quadrants were investigated
because they represent data inaccuracies in other two quadrants. That means
that quadrants I and IV are symmetric and quadrants II and III are symmetric in

54

Inverse Kinematics Correction by Multi-layer Perceptron Experiment

Table 3.3: Experimental result comparison

Expr. 1 Expr. 2
x, mm y, mm x, mm y, mm

Analytic method
deviations 2.09 1.53 12.4 19.6

Error ±0.21 ±0.29 ±0.17 ±0.41
MLP deviations 1.13 1.34 0.919 1.28
Error ±0.16 ±0.24 ±0.15 ±0.28

accordance with positioning accuracy. So using all four quadrants gives redun-
dant information. For testing inverse kinematics only robot was programmed
to move its foot to certain positions, depicted as green points (shown in Figure
3.13). After training the multi-layer perceptron robot was reprogrammed to
position its foot to different locations, presented as red points (Figure 3.13).

Testing results can be seen in Figures 3.14 to 3.17. Experimental results with
inverse kinematics (expr. 1) are shown in Figures 3.14 and 3.16. It is clear that the
foot’s position deviates from the desired position more in the negative space (the
IIIrd quadrant) than in the positive one. This also proves our earlier presumption.
In the positive space the average deviation is 2.09 mm for x coordinate and 1.53
mm for y coordinate and errors are ±0.21 and ±0.29 mm accordingly (Table 3.3).
In the negative space the deviations are noticeably larger. Average deviations
are 12.4 mm for x axis and 19.6 mm for y axis with errors ±0.17 and ±0.41 mm
accordingly (Table 3.3).

Figures 3.15 and 3.17 show experimental results with a trained neural network
(expr. 2). It is obvious that deviations decrease drastically and average devi-
ations are 1.13 mm for x axis, 1.34 mm for y axis in positive space and 0.919
mm for x axis, 1.28 mm for y axis in negative space. Average errors are ±0.16,
±0.24 mm in the positive and ±0.15, ±0.28 mm in the negative spaces accord-
ingly. As deviations with trained MLP remain relatively the same in the positive
and the negative spaces it is safe to say that the multi-layer perceptron has
learned to compensate unnecessary foot deviations. Measurement errors also
decreased although very little and remained almost the same allowing us to say
that experimental results are reliable.

55

Practical Experiments with Walking Hexapod Robot

10-10
-10

-20

-20

-30

-30

-40

-40

-50

-50

-60

-70

20 30 40 50

10

20

30

40

50

60

70
y (cm)

x (cm)

Figure 3.13: Coordinate system with test points for analytical method (green
points) and for MLP (red points)

y
(c

m
)

x (cm)

Figure 3.14: Experimental results in
the positive xy plane, the Ist quad-
rant, using the geometric inverse
kinematics method. Blue dots repre-
sent desired positions, green dots –
actual measured positions.

y
 (

cm
)

x (cm)

Figure 3.15: Experimental results in
the positive xy plane, the Ist quad-
rant, using the multi-layer percep-
tron method. Blue dots represent
desired positions, green dots – ac-
tual measured positions.

56

Inverse Kinematics Correction by Multi-layer Perceptron Experiment
y
 (

cm
)

x (cm)

Figure 3.16: Experimental results in
the negative xy plane, the IIIrd quad-
rant, using the geometric inverse
kinematics method. Blue dots repre-
sent desired positions, green dots –
actual measured positions.

y
 (

cm
)

x (cm)

Figure 3.17: Experimental results in
the negative xy plane, the IIIrd quad-
rant, using the multi-layer percep-
tron method. Blue dots represent
desired positions, green dots – ac-
tual measured positions.

Table 3.3 shows multi-layer perceptron based inverse kinematics deviations in
comparison with analytic method.

Theoretical calculations and experiments with a physical hexapod robot showed,
that using multi-layer perceptrons can be beneficial to calculate the inverse
kinematics, as analytic methods cannot adapt to inaccuracies and structural
flexibility of robot mechanics. Practical experiments showed that the foot of the
robot averagely deviates 2.09 ± 0.21 mm on x and 1.53 ± 0.29 mm on y axes in
the positive xy plane. And foot averagely deviates 12.4 ± 0.17 mm on x and
19.6 ± 0.41 mm on y axes in negative xy plane. Such deviations appear due
to mechanical inaccuracies and using analytic inverse kinematics method for
calculating servomotor angles. After calculating the servomotor angles using the
neural network, these deviations reduce to: x = 1.13± 0.16 mm, y = 1.34± 0.24

mm in the positive xy plane and x = 0.919 ± 0.15 mm, y = 1.28 ± 0.28 mm in
the negative xy plane.

The multi-layer perceptron configuration was not critical, and showed similar
results when enough nodes in the hidden layer were used (Figure 3.12). On
the other hand, data normalization was essential, and showed the best results,
when each data vector was normalized by standard normalization.

One of the problems with the suggested method is that it is difficult to generate
an automated feedback of the foot of the robot. However, this method cannot be

57

Practical Experiments with Walking Hexapod Robot

used for autonomous robots without external supervisor. So future work would
include the development of a system with external foot position supervision
to be used as feedback for the multi-layer perceptron. Furthermore, future
research should be to determine the cause of the mentioned foot deviations
by first changing the configuration of the PID controlers for each servo and
determining how a different controller configuration influences foot positioning
accuracy. If this would reduced foot deviation we would also compare it to our
suggested method.

3.4 Inverse Kinematics Solution by Multi-Layer Per-

ceptron Experiment

The foot positioning accuracy was measured on one leg of the robot. Position
commands for this leg were sent from the computer via USB to UART converter.
Only transmission line was used, as no feedback from servos was needed. Servo
speed was set to 5 RPM to avoid any unnecessary jerky movement which could
influence the measurement of accuracy. We assumed that the robot moves on a
flat surface (xy plane), so the vertical coordinate was constant with the value
of z = −31 (the body of the robot is above the surface by 31 mm). To simulate
the movement of the hexapod robot leg, n = 220 sets of coordination values
were generated. By using inverse kinematics defined in section 3.1, the exact
values of angles θ1, θ2, θ3, matching the chosen coordinates were calculated. The
calculated angles were sent to the hexapod leg and the actual coordinates xr
and yr were measured by marking them on a millimeter paper after the leg was
positioned (figure 3.8). This allowed us to evaluate foot deviations. Generated
and actual coordinates comparison is shown in figure 3.18.

It is noticeable from Figure 3.18, that the difference between actual coordinates
and the calculated ones is larger on the negative x axis side and especially in
diagonal −xy and −x− y directions. In order to measure the overall error we
calculated the mean square error of calculated coordinates by the following

58

Inverse Kinematics Solution by Multi-Layer Perceptron Experiment

Figure 3.18: The comparison of desired and actual coordinates of hexapod leg.

formula:

MSE (x, y) =
1

2n

n∑
i=1

(x′i − xi)
2

+ (y′i − yi)
2, (3.19)

where x′i, y′i are coordinates we obtained with multi-layer perceptron, and x, y

– coordinates we wanted to obtain, and n = 220 is the number of generated
parameter queues. The mean square error was MSE(x, y) = 61.17954.

3.4.1 Experiment Setup

Multi-layer perceptrons were used to solve the problem of a large difference
between the calculated and the actual coordinates. The inputs and outputs of
two multi-layer perceptrons are displayed in Table 3.4.

In both cases (generated and experimental data) of inverse kinematics calcu-
lations multi-layer perceptrons are used with one hidden layer, which uses a

59

Practical Experiments with Walking Hexapod Robot

Table 3.4: Input and output for two initial neural networks, where r, β, rr, βr are
the radius and the angle of the polar coordinate system for generated and actual
data, accordingly.

Generated data Experimental data
Input Output Input Output
x, y, r, β. θ1, θ2, θ3. xr, yr, rr, βr. θ1, θ2, θ3.

Table 3.5: Input and output for two improved neural networks.

Generated data Experimental data
Input Output Input Output
x, y, r, β, θ1s, θ2s, θ3s. θ1, θ2, θ3. xr, yr, rr, βr, θ1r, θ2r, θ3r. θ1, θ2, θ3.

sigmoid function for the activation of neurons. The linear function is used for
the neurons in the output layer.

By using the multi-layer perceptrons, new angles (θ1s, θ2s, θ3s for the generated
data and θ1r, θ2r, θ3r for the actual data) were calculated for the same input
parameter values as in Table 3.4. The results are displayed in Table 3a.

3.4.2 Improved Training of Multi-layer Perceptrons

To further improve the obtained results, two multi-layer perceptrons of similar
configuration as in Section 3.4.1 were introduced, which take the following
inputs and outputs for training:

By using the improved multi-layer perceptron training in a way described in
Table 3.5, we obtained new output angles: θ∗1s, θ∗2s, θ∗3s - for the generated data,
and θ∗1r, θ∗2r, θ∗3r - for the actual data. The mean square error of the calculated and
the actual angles in improved multi-layer perceptrons are displayed in Table
3.6, where N stands for the neurons in the hidden layer, η – training rate, α
– momentum term (or the momentum factor), itr – iteration count. Multiple
realistically possible variations of N and η were tested, and the best results were
achieved with the values presented in Table 3.6.

By training the initial multii-layer perceptron, the obtained mean square error
(3.19) was MSEg1 = 0.00107 for the generated data, and MSEr1 = 0.00367

60

Inverse Kinematics Solution by Multi-Layer Perceptron Experiment

Table 3.6: The parameters of MLP training and the corresponding results of train-
ing presented in Section 3.4.1 (a) and Section 3.4.2 (b), where c = g (generated), r
(actual).

a) MLP training results of inverse kinematics b) Improved MLP training results
Data type N η α itr MSEc1(x, y) N η α itr MSEc2(x, y)
Generated 11 0.6 0.16 50 0.00107 12 0.3 0.09 500 0.00027
Real 10 0.7 0.05 50 0.00367 11 0.4 0.09 500 0.00231

for the actual data, giving the relative difference of 3.43. For the improved
multi-layer perceptron, we obtained MSEg2 = 0.00027 and MSEr2 = 0.00231

for the generated and actual data, respectively. The relative difference for the
improved multi-layer perceptron is larger – 8.55. One can notice that improved
multi-layer perceptrons are giving more accurate results for the generated data
(MSEg1/MSEg2 = 3.962) than the actual one (MSEr1/MSEr2 = 1.588).

To measure the mean square error of the robotic leg angles, the following formula
was used:

MSE (θj) =
1

n

n∑
i=1

(
θ′i,j − θi,j

)2
, j = 1, 2, 3, (3.20)

where j is angle number, θ′(i,j) is angle obtained through the multi-layer percep-
tron, and θ(i,j) is the angle we wanted to obtain. The mean square errors of both
types of data (generated and actual) are displayed in Tables 3.7 and 3.8. As one
can see, for both types of multi-layer perceptron and for both types of used data
the most accurate angle was θ2, while the least accurate was – θ3. It is noticeable,
that the best improvement (measured as a relative and an absolute difference) is
for the least accurate angle (θ3).

Forward kinematics with generated data can be solved either by geometric
means, or by multi-layer perceptrons. With actual data forward kinematics
geometric solution is unknown, and forward kinematics will be solved with
multi-layer perceptron in both cases. Both cases uses initial angles (3 inputs) and
coordinates to be reached (2 outputs) to teach multi-layer perceptron. Forward
kinematics learning parameters and accuracy are displayed in Table 3.6

The multi-layer perceptron was trained for the forward kinematics formula by

61

Practical Experiments with Walking Hexapod Robot

Table 3.7: The accuracy of the angles for generated data after the initial multi-
layer perceptron calculations (MSEg1) and improved ones (MSEg2) for the
generated data

Angle MSEg1(θj) MSEg2(θj)
Difference

relative absolute
θ1 0.55565 0.16430 3.38192 0.39135
θ2 0.42421 0.08623 4.91951 0.33798
θ3 3.08235 0.24977 12.34075 2.83258
Avg 1.35407 0.16677 8.11938 1.1873

Table 3.8: The accuracy of the angles for actual data after the initial multi-layer
perceptron calculations (MSEr1) and improved ones (MSEr2) for the actual
data.

Angle MSEr1(θj) MSEr2(θj)
Difference

relative absolute
θ1 1.10783 0.96349 1.14980 0.14434
θ2 1.06909 0.93485 1.14359 0.13424
θ3 5.45186 3.42236 1.59301 2.0295
Avg 2.54293 1.77357 1.43379 0.76936

obtained angles θ1t, θ2t, θ3t and new coordinates of xn and yn were obtained.
The newly obtained coordinates are displayed in Figure 3.19. One can see that
there is a large improvement between Figure 3.18 and Figure 3.19b – instead
of using inverse kinematics (described in section 3.1) with unacceptably high
errors between the obtained and the desired data (see Figure 3.18), multi-layer
perceptron usage increases the accuracy of coordinate prediction. This claim is
affirmed by results presented in Table 3.10.

Averages of mean square errors for the initial coordinates and coordinates

Table 3.9: Parameter values of the forward kinematics formula and correspond-
ing accuracy, for initial Neural Network (NN = 1) and for improved Neural
Network (NN = 2).

Data type NN N η α itr MSEak

Calculated 1 8 0.3 0.08 30 0.00002
Real 1 8 0.4 0.01 30 0.00311
Calculated 2 7 0.2 0.13 30 0.00006
Real 2 7 0.7 0.14 30 0.00009

62

Inverse Kinematics Solution by Multi-Layer Perceptron Experiment

a b

Figure 3.19: Comparison of initially generated (a) and actual (b) coordinates
against the ones obtained with the improved neural network.

Table 3.10: The comparison of initial (MSE) (Figure 3.18) calculations, initial
NN (MSE1) and improved NN (MSE2) coordinate mean square error.

Data type MSE(x, y) MSE1(x, y) MSE2(x, y)
Difference

relative absolute
Calculated - 2.89506 0.88991 - -0.88991
Real 61.17954 4.84741 1.39515 43.85 59.78439

obtained with the multi-layer perceptron of improved training are displayed in
Table 3.10.

3.4.3 Experiment Results

Hexapods robot inverse kinematics were improved by using the multi-layer
perceptron. By using the multi-layer perceptron to correct errors of robot’s leg
deviations, results of the simulation can be increased by approximately 43 times
as described in this paper. Mean square error between the desired and the
obtained coordinates depends on the training error of the MLP. The accuracy of
results decreases by increasing the training error. By using improved multi-layer
perceptrons described in Section 3.4.2, the most and the least accurate angles
remain the same, θ2 and θ3 respectively. The training error directly correlates
with the complexity of the formula: a more complex formula leads to the larger

63

Practical Experiments with Walking Hexapod Robot

MSEs. Such problem can be solved by using more parameters in training of
neural network – it proved to be successful in case of study, as described in
Section 3.4.2.

3.5 Conclusions

A walking hexapod (six-foot) robot was constructed to verify theoretical and
simulation results. The theory of non-ideal real world robotic system was con-
firmed, as deviations of inverse kinematics calculation between the analytic
model and experiment results were found. A multi-layer perceptron was suc-
cessfully used to minimize the deviations. Piezoelectric force feedback sensors
prooved to be useful to get feedback from legs of the robot and simulate different
types of motions. Different walking patterns of a hexapod robot were analysed.

64

Conclusions

Motion consists of finding the inverse kinematics solution, path finding, tra-
jectory planning and motion execution. A number of statistical, geometrical
and iterative algorithms can be used to solve the inverse kinematics problem.
Single layer and multi-layer perceptrons were chosen to investigate the inverse
kinematics solution in the changing task environment, and their ability to adapt
to robotic system changes. Methods to retrain already trained perceptrons were
proposed and investigated. Multi-layer perceptrons were used to calculate in-
verse kinematics of a hexapod robot. A method to improve the hexapod robot’s
inverse kinematics solution (calculated by analytical means) using multi-layer
perceptrons was introduced.

A rapidly changing task environment requires different learning techniques and
different tuning of neural networks. The lack of research on neural network
controlled robotic systems in the changing task environment was observed.
Nature inspired methods to solve the inverse kinematics and trajectory planning
problems were chosen to be investigated in depth. Single layer perceptron and
multi-layer perceptron algorithms have an advantage, as by using different
learning techniques speed can be traded of to accuracy. Multi-agent systems
were created to simulate the changing task environment. Analytic methods are
not able to adapt to environmental and robotic system changes (e.g. a broken
leg, or uncalibrated servos). Multi-agent systems were used to mimic the natural
evolution. Parameters of the robotic system (e.g. manipulator geometry) can be
improved by evolutionary algorithms.

A method to use motion trajectory primitives was introduced in order to im-
prove the planning of trajectory of the hexapod robot. As experiments with
piezoelectric force feedback sensors showed, parabolic trajectories are not suffi-

65

Conclusions

cient in a different environment.

Piezoelectric force sensors were proposed to improve the hexapod’s legs by
adding a feedback mechanism. Different kind of motions, observed in nature,
can be simulated by the varying feedback amount and the needed inverse kine-
matics precision. Piezoelectric force sensors offer a cheap and simple solution
to add feedback to the system. These sensors have an advantage, as they can
determine, if a manipulator is moving down, or up, based on the surface.

A real-life hexapod robot was used to verify these results.

66

Following conclusions were obtained:

1. A number of techniques potentially perspective to increase the learning
speed of neural network used for robot foot movements control and re-
training in changing environments were examined both theoretically and
by simulation. It was demonstrated while traning single layer and multi-
layer perceptrons to solve inverse kinematic problem that simpler and less
over-trained networks (when the magnitude of weights are small) adapt
to the changed task in fewer iterations. Over-trained networks (when
activation functions are saturated) fail to adapt. In this case, most effective
approach, however, appeared training of the novel network starting from
small random initial parameters. Other alternatives are noise injection
and/or reduction of targets.

2. Analytic methods are insufficient to solve the inverse kinematics problem
in real robotic systems. Multi-layer perceptrons can be used to aid the
analytic method in minimizing foot deviations of the hexapod robot (six
footed robot). The enhanced analytic method resulted in 2 to 15 times better
precision than the analytic solution alone in some cases. Highest increase
of precision was achieved when hexapods robot joints were operated at
close to maximum angles. These positions caused larger deviations of the
analytic solution and were corrcted with multi-layer perceptron.

3. Neural networks require different training to cope with different kind of
motions. It was experimentally showed, that piezoelectric force sensors al-
lows to get feedback from robotic systems, to be used with neural network
based methods. These sensors can distinguish the moment a robot raises
its legs and the moment of their impact with the ground.

4. After constructing the multiagent system of the multilayer perceptrons to
solve inverse kinematics problem, speedup up to 40 times was achieved us-
ing 64 MPI threads, when solved task was complex. MPI better works with
more complex tasks, because when the task is simple the network transfer
time becomes similar to the execution time. Simulations demonstrated
that the multi-agent system can be used to find the best parameters for the
multi-layer perceptron, solving inverse kinetatics problem, by simmulat-
ing many different configurations. Experiments with real hexapod robot

67

Conclusions

showed that multi-agent systems can be used to simulate evolution, by
calculating the acceptable configuration of the robotic arm to accomplish
the given task.

Future research will address the selection of motion primitives in hexapods and
other walking robots. Nature-based methods to minimize energy consumption
while learning joint angles speed and acceleration parameters will be inves-
tigated. Different types of motions will be integrated in one learning system.
Methods will be scaled up to higher-degrees-of-freedom serial manipulators.

68

Bibliography

[1] Aggogeri, Pellegrini, and Adamini. A fuzzy algorithm to study the inverse
kinematics problem of a serial manipulator. volume 783, pages 77–82, 2015.

[2] Alavandar, Srinivasan, and Nigam. Neuro-fuzzy based approach for in-
verse kinematics solution of industrial robot manipulators. International
Journal of Computers, Communications & Control, 3(3):224–234, 2008.

[3] Barany, Della-Maggiore, Viswanathan, Cieslak, and Grafton. Feature inter-
actions enable decoding of sensorimotor transformations for goal-directed
movement. The Journal of Neuroscience, 34(20):6860–6873, 2014.

[4] Bayati. Using cuckoo optimization algorithm and imperialist competitive
algorithm to solve inverse kinematics problem for numerical control of
robotic manipulators. Proceedings of the Institution of Mechanical Engineers,
Part I: Journal of Systems and Control Engineering, 2015.

[5] Becker and Le Cun. Improving the convergence of back-propagation learn-
ing with second order methods. In Proceedings of the 1988 connectionist
models summer school, pages 29–37, 1988.

[6] Beebe, Denton, Radwin, and Webster. A silicon-based tactile sensor for
finger-mounted applications. Biomedical Engineering, IEEE Transactions on,
45(2):151–159, 1998.

[7] Bingul, Ertunc, and Oysu. Comparison of inverse kinematics solutions
using neural network for 6r robot manipulator with offset. In Computational
Intelligence Methods and Applications, pages 5–pp, 2005.

[8] Biswal, Jha, and Sahu. Inverse kinematic solution of robot manipulator
using hybrid neural network. International Journal of Materials Science and
Engineering, 2015.

[9] Buchli, Kalakrishnan, Mistry, Pastor, and Schaal. Compliant quadruped
locomotion over rough terrain. pages 814–820, 2009.

[10] Chandran and Anand. Forward kinematic solution for a five joint robot

69

Bibliography

using artificial neural network. pages 1704–1709, 2014.
[11] Chen, Ren, Zhang, and Wang. Smooth transition between different gaits

of a hexapod robot via a central pattern generators algorithm. Journal of
Intelligent & Robotic Systems, 67(3-4):255–270, 2012.

[12] Cybenko. Approximation by superpositions of a sigmoidal function. Math-
ematics of Control, Signals and Systems, 2(4):303–314, 1989.

[13] Daya, Khawandi, and Akoum. Applying neural network architecture for
inverse kinematics problem in robotics. Journal of Software Engineering and
Applications, 3(03):230, 2010.

[14] Deng, Huang, Gao, Zhan, and Zhu. Development of an improved genetic
algorithm for resolving inverse kinematics of virtual human’s upper limb
kinematics chain. pages 189–211. 2014.

[15] Van der Hoek and Wooldridge. Multi-agent systems. Foundations of Artificial
Intelligence, 3:887–928, 2008.

[16] Ding, Gao, Deng, Song, Liu, Liu, and Iagnemma. Foot–terrain interaction
mechanics for legged robots: Modeling and experimental validation. The
International Journal of Robotics Research, 32(13):1585–1606, 2013.

[17] Doynei, Packard, and Perelson. The immune system, adaptation, and
machine learning. Physica D: Nonlinear Phenomena, 22(1):187–204, 1986.

[18] Driscoll. Comparison of neural network architectures for the modeling of
robot inverse kinematics. In Southeastcon 2000, pages 44–51, 2000.

[19] Duan, Chen, Yu, and Liu. Tripod gaits planning and kinematics analysis of
a hexapod robot. In Control and Automation, pages 1850–1855, 2009.

[20] Duffy. Analysis of Mechanisms and Robot Manipulators. 1980.
[21] Ettlin and Bleuler. Rough-terrain robot motion planning based on obstacle-

ness. pages 1–6, 2006.
[22] Featherstone. Position and velocity transformations between robot end-

effector coordinates and joint angles. The International Journal of Robotics
Research, 2(2):35–45, 1983.

[23] Feng, Yao-nan, and Yi-min. Inverse kinematics solution for robot manipu-
lator based on neural network under joint subspace. International Journal of
Computers Communications & Control, 7(3):459–472, 2014.

[24] Ferber. multi-agent systems: an Introduction to Distributed Artificial Intelligence,
volume 1. 1999.

[25] Fu and Gonzalez. Robotics: Control, Sensing, Vision, and Intelligence. 1987.

70

Bibliography

[26] Galbraith, Guenther, and Versace. A neural network-based exploratory
learning and motor planning system for co-robots. Frontiers in neurorobotics,
9, 2015.

[27] Gardner and Dorling. Artificial neural networks (the multilayer
perceptron)–a review of applications in the atmospheric sciences. Atmo-
spheric environment, 32(14):2627–2636, 1998.

[28] Gasparetto, Boscariol, Lanzutti, and Vidoni. Path planning and trajectory
planning algorithms: A general overview. pages 3–27. 2015.

[29] Gentili, Oh, Huang, Katz, Miller, and Reggia. Towards a multi-level neural
architecture that unifies self-intended and imitated arm reaching perfor-
mance. pages 2537–2540, 2014.

[30] Gonzalez and Fu. Robotics: Control, sensing, vision, and intelligence.
Editora Hardcover, 1987.

[31] Haykin. Neural Networks and Learning Machines, volume 3. 2009.
[32] Hornik and White. Multilayer feedforward networks are universal approx-

imators. Neural Networks, 2(5):359–366, 1989.
[33] Huangi, Lai, Keung, Nakamori, and Wang. Forecasting foreign exchange

rates with artificial neural networks: a review. International Journal of
Information Technology & Decision Making, 3(01):145–165, 2004.

[34] Jain, Mao, and Mohiuddin. Artificial neural networks: A tutorial. IEEE
computer, 29(3):31–44, 1996.

[35] Kang, Chanal, Dai, and Ray. Comparison of numerical and neural network
methods for the kinematic modeling of a hybrid structure robot. Proceed-
ings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science, 2014.

[36] Kar, Issac, and Jayarajan. Gaits and energetics in terrestrial legged locomo-
tion. Mechanism and machine theory, 38(4):355–366, 2003.

[37] Köker. Reliability-based approach to the inverse kinematics solution of
robots using elman’s networks. Engineering Applications of Artificial Intelli-
gence, 18(6):685–693, 2005.

[38] Köker, Öz, Çakar, and Ekiz. A study of neural network based inverse
kinematics solution for a three-joint robot. Robotics and Autonomous Systems,
49(3):227–234, 2004.

[39] Korein and Badler. Techniques for generating the goal-directed motion of
articulated structures. IEEE Computer Graphics and Applications, 2(9):71–81,

71

Bibliography

1982.
[40] Kuncheva. Classifier ensembles for changing environments. In Multiple

Classifier Systems, pages 1–15. 2004.
[41] Lee. Robot arm kinematics, dynamics, and control. Computer, pages 62–80,

1983.
[42] Leshno, Lin, Pinkus, and Schocken. Multilayer feedforward networks with

a nonpolynomial activation function can approximate any function. Neural
Networks, 6(6):861–867, 1993.

[43] Lian and Ruey-Jing. Adaptive self-organizing fuzzy sliding-mode radial
basis-function neural-network controller for robotic systems. Industrial
Electronics, 61(3):1493–1503, 2014.

[44] Tomas Luneckas. Sesiakojo Roboto Judejimo Nelygiu Pavirsiumi Tyrimas. 2013.
[45] MacQueen. Some methods for classification and analysis of multivariate

observations. pages 281–297, 1967.
[46] Manocha and Canny. Efficient inverse kinematics for general 6r manipula-

tors. Robotics and Automation, 10(5):648–657, 1994.
[47] McCulloch and Pitts. A logical calculus of the ideas immanent in nervous

activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.
[48] Moody. Economic forecasting: Challenges and neural network solutions.

OHSU Digital Commons, 1995.
[49] Moosavian, Ali, and Dabiri. Dynamics and planning for stable motion of a

hexapod robot. In Advanced Intelligent Mechatronics, pages 818–823, 2010.
[50] Morris. Finding the inverse kinematics of manipulator arm using artificial

neural network with lookup table. Robotica, 15(06):617–625, 1997.
[51] Muaz and Amir. Agent-based computing from multi-agent systems to

agent-based models: a visual survey. Scientometrics, 89(2):479–499, 2011.
[52] Nanda, Panda, and Subudhi. A novel application of artificial neural net-

work for the solution of inverse kinematics controls of robotic manipulators.
International Journal of Intelligent Systems and Applications, 4(9):81, 2012.

[53] Narayana, Perugu, and Ramana. Predection of inverse kinematics solution
of a puma manipulator using anfis. Int. J. Adv. Engg. Res. Studies/III/II/Jan.-
March, 84:88, 2014.

[54] Oyama, Agah, MacDorman, Maeda, and Tachi. A modular neural network
architecture for inverse kinematics model learning. Neurocomputing, 38:
797–805, 2001.

72

Bibliography

[55] Oyama, Gan, MacDorman, and Tachi. Inverse kinematics learning for
robotic arms with fewer degrees of freedom by modular neural network
systems. In Intelligent Robots and Systems, pages 1791–1798, 2005.

[56] Pachikara, Kehoe, and Lind. A path-parameterization approach using
trajectory primitives for 3-dimensional motion planning. In Proceedings of
the 2009 AIAA Guidance, Navigation, and Control Conference, 2009.

[57] Paul and Shimano. Kinematic control equations for simple manipulators.
In Decision and Control Including the 17th Symposium on Adaptive Processe,
pages 1398–1406, 1979.

[58] Petra and De Silva. Inverse kinematic solutions using artificial neural
networks. volume 534, pages 137–143, 2014.

[59] Pongas, Mistry, and Schaal. A robust quadruped walking gait for traversing
rough terrain. pages 1474–1479, 2007.

[60] Raj, Raglend, and Anand. Inverse kinematics solution of a five joint robot
using feed forward and elman network. In Circuit, Power and Computing
Technologies, pages 1–5, 2015.

[61] Raudys. An adaptation model for simulation of aging process. International
Journal of Modern Physics, 13(08):1075–1086, 2002.

[62] Raudys and Amari. Effect of initial values in simple perception. 2:1530–
1535, 1998.

[63] Raudys and Mitašiūnas. Multi-agent system approach to react to sudden
environmental changes. In Machine Learning and Data Mining in Pattern
Recognition, pages 810–823. 2007.

[64] Raudys and Žliobaitiė. Prediction of commodity prices in rapidly changing
environments. In Pattern Recognition and Data Mining, pages 154–163. 2005.

[65] Rescorla. The role of information about the response-outcome relation in
instrumental discrimination learning. Journal of Experimental Psychology:
Animal Behavior Processes, 16(3):262, 1990.

[66] Rescorla and Wagner. A theory of pavlovian conditioning: Variations in the
effectiveness of reinforcement and nonreinforcement. Classical conditioning
II: Current research and theory, 2:64–99, 1972.

[67] Ridderström. Legged Locomotion: Balance, Control and Tools-from Equation to
Action. 2003.

[68] Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386, 1958.

73

Bibliography

[69] Rossomando, Soria, and Carelli. Sliding mode neuro adaptive control in
trajectory tracking for mobile robots. Journal of Intelligent & Robotic Systems,
74(3-4):931–944, 2014.

[70] Roy and Pratihar. Kinematics, dynamics and power consumption analyses
for turning motion of a six-legged robot. Journal of Intelligent & Robotic
Systems, 74(3-4):663–688, 2014.

[71] Schmucker, Schneider, Rusin, and Zavgorodniy. Force sensing for walking
robots. pages 3–93, 2005.

[72] Schumacher. Multi-agent systems. Objective Coordination in Multi-Agent
System Engineering: Design and Implementation, pages 9–32, 2001.

[73] Shah, Rattan, and Nakra. Kinematic analysis of 3-dof planer robot using ar-
tificial neural network. IAES International Journal of Robotics and Automation,
1(3):145–151, 2012.

[74] Shah, Svec, Bertaska, Klinger, Sinisterra, von Ellenrieder, Dhanak, and
Gupta. Trajectory planning with adaptive control primitives for au-
tonomous surface vehicles operating in congested civilian traffic. pages
2312–2318, 2014.

[75] Siciliano, Bruno, Khatib, and Oussama. Springer Handbook of Robotics. 2008.
[76] Springer, Gattringer, and Stöger. A real-time nearly time-optimal point-

to-point trajectory planning method using dynamic movement primitives.
pages 1–6, 2014.

[77] Sprunk. Planning motion trajectories for mobile robots using splines. Uni-
versity of Freiburg, 2008.

[78] Srikant and Rao. Application of backpropagation neural networks in calcu-
lation of robot kinematics. Case Studies in Intelligent Computing: Achievements
and Trends, page 379, 2014.

[79] Tahami, Jafari, and Fallah. Learning to control the three-link musculoskele-
tal arm using actor–critic reinforcement learning algorithm during reaching
movement. Biomedical Engineering: Applications, Basis and Communications,
26(05), 2014.

[80] Tarokh and Zhang. Real-time motion tracking of robot manipulators using
adaptive genetic algorithms. Journal of Intelligent & Robotic Systems, 74(3-4):
697–708, 2014.

[81] Toshani and Farrokhi. Real-time inverse kinematics of redundant manipula-
tors using neural networks and quadratic programming: A lyapunov-based

74

Bibliography

approach. Robotics and Autonomous Systems, 62(6):766–781, 2014.
[82] Valaitis. Learning motion patterns of robotic arm. Numerical Computations:

Theory and Algorithms, page 138, 2013.
[83] Vanek, Faigl, and Masri. multi-goal trajectory planning with motion primi-

tives for hexapod walking robot. In Informatics in Control, Automation and
Robotics, volume 2, pages 599–604, 2014.

[84] Wang and Tso. Path error compensation of a two-link flexible robot arm
based on integrated laser transducers. volume 4, pages 3786–3790, 1997.

[85] Weng, McClelland, Pentland, Spornsi, Stockman, Mrigankai, and Thelen.
Autonomous mental development by robots and animals. Science, 291
(5504):599–600, 2001.

[86] Xu and Wunsch. Survey of clustering algorithms. Neural Networks, IEEE
Transactions on, pages 645–678, 2005.

75

Publications by the Author

Periodic

1. T. Luneckas, M. Luneckas, D. Udris, V. Valaitis. Hexapod Robot Foot
Deviation Correction Using Multilayer Perceptron. International Journal of
Advanced Robotic Systems., pp. 294-297, 2015 [ISI Web of Science].

2. M. Luneckas, T. Luneckas, V. Gavelis, V. Valaitis, D. Udris. Piezoelectric
Force Sensors for Hexapod Transportation Platform. Transport (Special Issue
on Smart and Sustainable Transport)., 30(3), 8 p., 2015 [ISI Web of Science].

Reviewed Conference Publications

5. Š. Raudys, V. Valaitis, Ž. Pabarškaitė, G. Biziulevičienė. A Price we Pay for
Inexact Dimensionality Reduction. Bioinformatics and Biomedical Engineer-
ing., 289-300, 2015 [ISI Web of Science].

6. V. Valaitis. Learning inverse kinematics problem in changing task envi-
ronment. The 12th Scandinavian AI conference, 257:299-302, 2013 [ISI Web of
Science].

7. V. Valaitis. Learning motion patterns of robotic arm. Proceedings of the
international conference "Numerical computations: theory and algorithms", 138,
2013.

8. V. Valaitis. Judesiai gamtoje ir dirbtinėse sistemose. Informacinės technologi-
jos 2012, 57-60, 2012.

76

Publications by the Author

Other publications

9. S. Peldžius, S. Ragaišis, V. Valaitis. Seeking Process Maturity with DSDM
Atern. Computational Science and Techniques, 2:193-204, 2013 [Periodic].

Conference talks

10. The 3rd IEEE Workshop on Bio-Inspired Signal and Image Processing, 5
May, 2014, Vilnius, Lithuania. V. Valaitis, Multi-agent Neural Network
Approach on Inverse Kinematics Problem in Changing Task Environment.

11. The 12th Scandinavian AI conference, 20-22 November, 2013, Aalborg,
Denmark. V. Valaitis, Learning inverse kinematics problem in changing
task environment.

12. Kompiuterininkų dienos - 2013, 19 - 21 September, 2013, Šiauliai, Lithuania.
V.Valaitis, Gamta paremti judesiai dirbtinėse sistemose.

13. Numerical Computations: Theory and Algorithms, 17 - 23 June 2013,
Falerna, Italy. V.Valaitis, Learning Motion Patterns of Robotic Arm.

14. Informacinės technologijos 2012, 20 April, 2012, Kaunas, Lithuania. V.Valaitis,
Judesiai gamtoje ir dirbtinėse sistemose.

77

Curriculum Vitae

Vytautas Valaitis was born in Vilnius on 6th of September 1986. He graduated
from Vilnius University receiving BSc degree in Software Engineering in 2009
and MSc degree in Informatics in 2011. From 2011 to 2015 he was enrolled into
Informatics PhD study program at Vilnius University.

During 2011-2016 academic years he was a lecturer in Faculty of Mathemat-
ics and Informatics and prepared lectures for Software Systems Testing and
Computer Technics. Served as an assistant for a number of lectures and as a
supervisor for a number bachelor and master thesisis.

Since 2006 V. Valaitis has occupied positions of a programmer in several compa-
nies.

Since 2012 V. Valaitis participated in 3 projects: High-dimensionality and small
data size problems in classification of biomedical and financial data (results of
which are used in the thesis), LituanicaSAT-1 - first Lithuanian space satellite,
Unpiloted hybrid spacecraft "Kolibris" for defense purpose development.

78

Vocabulary - Žodynėlis

artificial neural network (ANN) - dirbtinis neuroninis tinklas
data source - duomenų šaltinis
classification - klasifikavimas
clustering - blokinių kūrimas
degree of freedom (DOF) - laisvės laipsnis
forward kinematics - tiesioginė kinematika
hexapod robot - šešiakojis robotas
inverse kinematics - atgalinė kinematika
multi-agent system - daugiaagent ė sistema
multi-layer perceptron (MLP) - daugiasluoksnis perceptronas
parallel computing - lygiagretieji skaičiavimai
single layer perceptron - vienasluoksnis perceptronas
spline - tolydžioji kreivė
supervised learning - mokymas su mokytoju
unsupervised learning - mokymasis be mokytojo

79

Summary in Lithuanian (Santrauka)

Tiriamojo darbo objektas yra gamta pagrįsti algoritmai roboto judesių planav-
imui ir valdymui. Patobulintas atgalinės kinematikos skaičiavimo metodas,
naudojant vienasluoksnį ir daugiasluoksnį perceptroną. Skaičiavimai buvo pri-
taikyti greitai besikeičiančioms aplinkos sąlygoms. Rezultatai išbandyti su realiu
šešiakoju robotu. Darbe pasiūlytas metodas judesio planavimui remiantis jude-
sio primityvais ir tolydžiosiomis kreivėmis. Pasiūlyta naudoti piezoelektrinius
daviklius kaip roboto kojų grįžtamojo ryšio daviklius.

80

Summary in Lithuanian (Santrauka)

Vytautas Valaitis

ROBOTO JUDESIŲ GERINIMAS NEURONINIAIS TINKLAIS

Daktaro disertacija

Fiziniai mokslai (P000),

Informatika (09 P)

Redaktorė Monika Žemgulytė

Vytautas Valaitis

NEURAL NETWORKS BASED ROBOT MOTION IMPROVEMENT

Doctoral Dissertation

Physical Sciences (P000),

Informatics (09 P)

Editor Monika Žemgulytė

81

	Introduction
	Research Object
	Research Methodology
	Scientific Novelty
	Practical Significance
	Defending Propositions
	The Scope of the Scientific Work
	Structure of the Thesis

	1 Motion Control in Robotic Systems
	1.1 Multi-Agent Systems and Evolution in Nature
	1.2 Forward and Inverse Kinematics
	1.2.1 2-Degrees-of-Freedom Robotic Arm

	1.3 Artificial Neural Networks
	1.3.1 The Single Layer Perceptron
	1.3.2 The Multi-layer Perceptron
	1.3.3 Error Calculation
	1.3.4 Non-linear Perceptron Learning

	1.4 Trajectory Planning
	1.4.1 Parabola Trajectory Planning
	1.4.2 Trajectory Planning Using Primitives
	1.4.3 Trajectory Calculation

	1.5 Conclusions

	2 Improvement of Motions in Robotic Systems
	2.1 Single Layer Perceptron Experiment
	2.1.1 Tasks Clustering and Classification

	2.2 Multi-layer Perceptron Experiment
	2.2.1 Data Generation and Preparation
	2.2.2 Activation Functions

	2.3 Multiagent System Experiment
	2.3.1 Multi-threading and MPI Parallelization
	2.3.2 Arm Part Length Evolution
	2.3.3 Experiment Results

	2.4 Conclusions

	3 Practical Experiments with Walking Hexapod Robot
	3.1 Hexapod Robot Description and Leg Kinematics
	3.2 Piezoelectric Force Sensors
	3.2.1 Piezoelectric Sensors Experiment
	3.2.2 Experiment Results

	3.3 Inverse Kinematics Correction by Multi-layer Perceptron Experiment
	3.3.1 Data Preparation
	3.3.2 Constructing Multi-layer Perceptron
	3.3.3 Experiment Results

	3.4 Inverse Kinematics Solution by Multi-Layer Perceptron Experiment
	3.4.1 Experiment Setup
	3.4.2 Improved Training of Multi-layer Perceptrons
	3.4.3 Experiment Results

	3.5 Conclusions

	Conclusions
	 Bibliography
	 Publications by the Author
	 Curriculum Vitae
	 Vocabulary - Žodynelis
	 Summary in Lithuanian (Santrauka)

