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Abstract: In this article, we prove that the product of two algebraic numbers of degrees 4 and 6 over � cannot
be of degree 8. This completes the classification of so-called product-feasible triplets �( ) ∈a b c, ,

3 with
≤ ≤a b c and ≤b 7. The triplet ( )a b c, , is called product-feasible if there are algebraic numbers α β, , and γ

of degrees a b, , and c over�, respectively, such that =αβ γ. In the proof, we use a proposition that describes all
monic quartic irreducible polynomials in �[ ]x with four roots of equal moduli and is of independent interest.
We also prove a more general statement, which asserts that for any integers ≥n 2 and ≥k 1, the triplet
( ) ( ( ) )= −a b c n n k nk, , , 1 , is product-feasible if and only if n is a prime number. The choice ( ) ( )=n k, 4, 2

recovers the case ( ) ( )=a b c, , 4, 6, 8 as well.
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1 Introduction

In the study by Drungilas et al. [1] a curious version of an abc-problem for sums and products of algebraic
numbers has been introduced. (It has nothing to do with the abc-conjecture of Masser and Oesterlé.) According
to the definitions in [1], a triplet �( ) ∈a b c, ,

3 is called
• sum-feasible if there exist algebraic numbers α and β of degrees a and b (over �), respectively, such that
the degree of +α β is c,

• product-feasible if there exist algebraic numbers α and β of degrees a and b (over �), respectively, such that
the degree of ⋅α β is c,

• compositum-feasible if there exist number fields K and L of degrees a and b (over �), respectively, such that
the degree of their compositum KL is c.

The first named author has been interested in these questions before the publication of the article [1]; indepen-
dently, the sum question is one of the questions at MathOverflow (http://mathoverflow.net/questions/30151/posed
in 2010).

It is clear that the first two definitions are symmetric with respect to a b, , and c in the sense that the triplet
( )a b c, , is sum-feasible (resp. product-feasible) if and only if so are six possible permutations of the triplet
( )a b c, , . So, without restriction of generality, we may assume that ≤ ≤a b c. The case of compositum-feasible
triplets is less symmetric. Then, only the degrees a and b (but not c) are involved in a symmetric way. However,
since the field KL contains both K and L, we can also assume that ≤ ≤a b c. Of course, if �( ) ∈a b c, ,

3 with
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≤ ≤a b c is a sum-feasible, a product-feasible or a compositum-feasible triplet, then (in any of the three cases)
we must have ≤c ab.

In the study by Drungilas et al. [1], it was shown that

Proposition 1. Each compositum-feasible triplet is also sum-feasible.

Later, in the study by Drungilas and Dubickas [2], it was proved that

Proposition 2. Each sum-feasible triplet is also product-feasible.

Consequently, if a triplet is not product-feasible, then it is neither sum-feasible nor compositum-feasible.
The simple example ( )2, 3, 3 shows that a triplet can be product-feasible but not sum-feasible, so these two

questions are not equivalent. Indeed, the product γ of the quadratic number =α e
πi2

3 and the cubic number

=β 2

3 is cubic, because = =γ αβ e 2

πi2

3

3 is conjugate to β. On the other hand, since the integers 2 and 3 are
coprime, the sum γ of any quadratic number α and any cubic number β must be of degree 6 (and so = +γ α β

cannot be cubic); see, e.g., [3].
In the study by Drungilas et al. [1], all sum-feasible and also all compositum-feasible triplets �( ) ∈a b c, ,

3

satisfying ≤ ≤a b c, with ≤b 6, have been described except for one special case ( )6, 6, 8 . the study by Drungilas
et al. [4], the missing case ( )6, 6, 8 from that classification has been treated by showing that the triplet ( )6, 6, 8 is
not sum-feasible, and the classification has been extended to ≤b 7. Then, in the study by Drungilas and
Maciulevičius [5], all possible compositum-feasible triplets ( )a b c, , satisfying ≤ ≤a b c, with ≤b 9, have
been determined. In the special case when = =a b p is a prime number, a complete characterization of all
compositum-feasible triplets ( )p p ps, , has been given in [6].

Recently, in the study by Maciulevičius [7], the second named author described all possible product-
feasible triplets ( )a b c, , satisfying ≤ ≤a b c, with ≤b 7, except for the following five cases:

( ) ( ) ( ) ( ) ( )4, 6, 8 , 4, 7, 7 , 4, 7, 14 , 5, 6, 10 , 5, 6, 15 .

By a different approach, Virbalas [8] showed that the triplets ( )4, 7, 7 , ( )4, 7, 14 , ( )5, 6, 10 , and ( )5, 6, 15 are not
product-feasible. More generally, he proved the following:

Proposition 3. (Part of [8, Theorem 3]) Let α and β be algebraic numbers over �. Suppose =α pdeg , =β mdeg ,
where >p 2 is a prime number, ∤p m and − ∤p m1 . Then, ( ) =αβ mpdeg .

This leaves us with the only undecided case ( )4, 6, 8 . In this note, we complete the picture of [7]
by showing that

Theorem 4. The product of a quartic and a sextic number over � cannot be octic.

This implies that

Table 1: Triplets ( )a b c, , , ≤ ≤a b c , with ≤b 7, that are product-feasible

b a\ 1 2 3 4 5 6 7

1 1
2 2 2, 4
3 3 3, 6 3, 6, 9
4 4 4, 8 6, 12 4, 6, 8, 12, 16
5 5 10 15 5, 10, 20 5, 10, 20, 25
6 6 6, 12 6, 9, 12, 18 6, 12, 24 30 6, 8, 9, 12, 15, 18, 24, 30, 36
7 7 14 21 28 35 7, 14, 21, 42 7, 14, 21, 28, 42, 49
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Corollary 5. The triplet ( )4, 6, 8 is not product-feasible, and therefore, it is not sum-feasible.

Combining the aforementioned results with [7, Theorem 1], we obtain the following table that describes all
possible product-feasible triplets ( )a b c, , , where ≤ ≤a b c and ≤b 7 (Table 1).

In Table 1, there are nine triplets (with c written in italics) that are not sum-feasible by the results in [4]
and [1], namely,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2, 3, 3 , 3, 4, 6 , 4, 5, 5 , 4, 5, 10 , 3, 6, 9 , 6, 6, 8 , 6, 7, 7 , 6, 7, 14 , 6, 7, 21 .

We also prove the following more general theorem:

Theorem 6. For any integers ≥n 2 and ≥k 1, the triplet ( ) ( ( ) )= −a b c n n k nk, , , 1 , is product-feasible
if and only if n is a prime number.

In the proof of Theorem 4, assuming that there are α and β of degree 4 and 6 over �, respectively, whose
product αβ is of degree 8, we will first show that the conjugates of α must all be of the same modulus. In 1969,
Robinson [9] described algebraic integers whose conjugates including α itself are all of the same moduli; see
also [10] for the description of algebraic numbers with conjugates of two distinct moduli. Here, we need a more
specific result for quartic algebraic numbers α whose all four conjugates have equal moduli. The proposition
below is a new ingredient that turns out to be a useful tool in the proof of Theorem 4.

Proposition 7. Assume that ( )p x is a monic quartic polynomial in �[ ]x , which is irreducible over � and whose
four roots have equal moduli. Then, ( )p x must be of one of the following forms:
(i) −x r

4 , where �∈ >r
0
;

(ii) + +x sx r
4 2 , where �∈s r, and <s r4

2 ;
(iii) ( )( )+ + + ′ +x ux r x u x r

2 2 , where �∈r and ≠ ′u u are the conjugates of a real quadratic algebraic
number satisfying ( )′ <u u rmax , 4

2 2 .

This approach apparently cannot be used in the proof of a more general Theorem 6, although some parts
of the proof of Theorem 4 will be used in the more general setting of Theorem 6.

Of course, Theorem 6 immediately implies Theorem 4 by selecting ( ) ( )=n k, 4, 2 . However, we present
both proofs of the case ( ) ( )=a b c, , 4, 6, 8 , since a separate proof of Theorem 4 contains some ideas that may
be useful in treating similar problems for algebraic numbers of small degrees, but not only. As observed by one
of the referees, in the first proof, the case ( )4, 6, 8 is obtained via descent, using the fact that the triplet ( )2, 4, 6

is not product-feasible. The main auxiliary result in the proof of Theorem 6 is Lemma 11.
In the next section, we will prove Proposition 7 and also give several auxiliary lemmas, which will be

useful in the proofs of Theorems 4 and 6. Then, in Section 3, we will prove Theorem 4. The proof of Theorem 6
is a bit more involved. First, in Section 4, we will give some preparation under the assumption that the triplet
( ( ) )−n n k nk, 1 , is product feasible. Second, in Section 5, using some previous results, we will show that the
triplet ( ) ( ( ) )= −a b c n n k nk, , , 1 , , where n is a prime number and ≥k 1, is product-feasible. Finally, we will
complete the proof of Theorem 6 by getting a contradiction for composite n.

2 Proof of Proposition 7

Write

( ) ( )( )( )( )= + + + + = − − − −p x x a x a x a x a x α x α x α x α .

4

3

3

2

2

1 0 1 2 3 4
(1)

Assume first that p has a real root. By the assumptions of the proposition, not all four roots of p can be real.
Thus, p must have a pair of complex conjugate roots and another real root. So, without loss of generality, we
may assume that the four roots of p in equation (1) are { } { }= −α α α α, ,

1 2
and { } { }= −

α α αe αe, ,

iϕ iϕ

3 4
for some
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>α 0 and ( )∈ϕ π0, . It follows that = = −a α α α α α
0 1 2 3 4

4 is a negative rational number, say, −r , where �∈ >r
0
.

Furthermore, since p has four roots, at least one real, on the circle ∣ ∣ =z α, by Ferguson’s result [11] (or even by
an earlier result of Boyd [12]), we must have ( ) ( )=p x g x

4 with some �[ ]∈g x . The polynomials p and g have
the same constant coefficient, so g is a monic linear polynomial −x r , which implies that p is as in ( )i .

Next, we consider the case when p has no real roots. Then, there are >ϱ 0 and < < <ϕ ξ π0 such
that the roots of p are { } { }= −

α α e e, ϱ , ϱ

iϕ iϕ

1 2
and { } { }= −

α α e e, ϱ , ϱ

iξ iξ

3 4
. This time, by equation (1), we obtain

�= = ∈ >a α α α α ϱ
0 1 2 3 4

4

0
. Furthermore, by Vieta’s formulas,

( ) ( ( ) ( ))= − + + + = − +a α α α α ϕ ξ2ϱ cos cos
3 1 2 3 4

(2)

and

( ( ) ( ))

( ( ) ( ))
( ( ) ( ))

⎜ ⎟= − ⎛
⎝

+ + + ⎞
⎠

= −
+

= −
+

= − + =

a a

α α α α

a

ϕ ξ

ϕ ξ

ϕ ξ a

1 1 1 1 2 cos cos

ϱ

ϱ

2 cos cos

ϱ

2ϱ cos cos ϱ .

1 0

1 2 3 4

0

4 3 2

3

Likewise, by Vieta’s formula, we deduce

( )( ) ( ) ( )= + + + + = +a α α α α α α α α ϕ ξ2ϱ 4ϱ cos cos .
2 1 2 3 4 1 2 3 4

2 2 (3)

If =a 0
3

, then = =a aϱ 0
1

2

3
and ( ) ( )= −ϕ ξcos cos by equation (2). Thus, equation (3) yields =a

2

�( ( )) ( )− = − ∈ξ ξ2ϱ 1 2 cos 2ϱ cos 2

2 2 2 . Therefore, setting �≔ = ∈ >r a ϱ
0

4

0
and ≔s �( )= − ∈a r ξ2 cos 2

2
,

we obtain the polynomial �( ) [ ]= + + ∈p x x sx r x
4 2 , which is the case ( )ii , because ( )= ≤s r ξ r4 cos 2 4

2 2 .
Here, the inequality must be strict, i.e., <s r4

2 , since otherwise ( )p x has a real root.
It remains to consider the case ≠a 0

3
. Then, = ≠a aϱ 0

1

2

3
and �= ∕ ∈a aϱ

2

1 3
. Set �≔ ∈ >r ϱ

2

0
. Since

= =α α α α r
1 2 3 4

, setting

( ) ( )≔ − + = −u α α r ϕ2 cos
1 2

(4)

and

( ) ( )′ ≔ − + = −u α α r ξ2 cos ,
3 4

(5)

by equation (1), we obtain

( ) ( )( )( )( ) ( )( )= − − − − = + + + ′ +p x x α x α x α x α x ux r x u x r .
1 2 3 4

2 2

Here, = + ′ ≠a u u 0
3

, = ′ +a uu r2
2

, ( )= + ′a u u r
1

, and =a r
0

2. Since �∈ >r
0
, these four numbers are all

rational if and only if + ′u u and ′uu are both rational. Furthermore, u and ′u are both real by equations
(4) and (5). They are both irrational, since otherwise ( )p x would be reducible. Since u and ′u are the roots
of the quadratic polynomial

�( ) [ ]− + ′ + ′ ∈x u u x uu x ,

2

which is irreducible over � due to �′ ∉u u, , the numbers u and ′u must be real quadratic conjugates.
Moreover, since the roots of + +x ux r

2 and + ′ +x u x r
2 are all nonreal, we must have − <u r4 0

2

and ′ − <u r4 0

2 . Consequently, p is a polynomial of the form described in case ( )iii . This completes the proof
of the proposition.

In the proofs of Theorems 4 and 6, we will also use the following two lemmas:

Lemma 8. [1, Proposition 21] Suppose that α and β are algebraic numbers of degrees a and b over�, respectively.
Let =α α α α, ,…, a1 2

be the distinct conjugates of α, and let =β β β β, ,…,
b1 2

be the distinct conjugates of β. If β is of
degree b over �( )α , then all the numbers α βi j

, ≤ ≤i a1 , ≤ ≤j b1 , are conjugate over � (although not necessarily
distinct).
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Of course, the numbers α βi j
, where ≤ ≤i a1 and ≤ ≤j b1 , cover all possible conjugates of αβ. Lemma 8

describes the situation when they are all conjugate over �.

Lemma 9. (Part of [13, Lemma 1]) Let β
1

, β
2

, and β
3

be distinct algebraic numbers conjugate over �. If =β β β
1

2

2 3

,
then =β β

m m

1 2

for some positive integer m.

Let p be a prime number and �∈n . Denote by ( )nordp the exponent to which p appears in the prime
factorization of n (for ∤p n, we set ( ) =nord 0p ). We say that a triplet ( )a b c, , satisfies the exponent triangle
inequality with respect to a prime number p if

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )+ ≥ + ≥ + ≥a b c a c b b c aord ord ord , ord ord ord , and ord ord ord .p p p p p p p p p

The next lemma will be used in the proof of Theorem 6.

Lemma 10. [1, Proposition 28] Suppose that the triplet �( ) ∈a b c, ,

3 satisfies the exponent triangle inequality
for all prime numbers p. Then, for any product-feasible triplet �( )′ ′ ′ ∈a b c, ,

3, the triplet ( )′ ′ ′aa bb cc, , is also
product-feasible.

3 Proof of Theorem 4

Suppose there exist algebraic numbers α and β satisfying

� � � � � �[ ( ) ] [ ( ) ] [ ( ) ]= = =α β αβ: 4, : 6, and : 8.

Since �( )β and �( )αβ are subfields of �( )α β, , we find that � �[ ( ) ]α β, : is divisible by both 6 and 8
and therefore divisible by ( ) =lcm 6, 8 24. On the other hand,

� � � � � � � � � �[ ( ) ] [ ( ) ] [ ( ) ( )] [ ( ) ] [ ( ) ]= ⋅ ≤ ⋅ = ⋅ =α β α α β α α β, : : , : : : 4 6 24.

This implies � �[ ( ) ] =α β, : 24, and we have the picture as in Figure 1.
Let ≔α α α α α, , ,

1 2 3 4
be the four distinct conjugates of α over �, and let ≔β β β β, ,…,

1 2 6

be the 6 distinct
conjugates of β over �. For =i 1, 2, 3, 4, we denote

{ }≔ α β α β α βΓ , , …, .i i i i
1 2 6

The diagram and Lemma 8 with ( ) ( )=a b, 4, 6 implies that the numbers in the union ∪ ⋯ ∪Γ Γ
1 4

are all
conjugate over �. Since this set contains the number αβ, it must have exactly 8 distinct elements. Therefore,

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣= ∪ ⋯ ∪ ≥ ∪ = + − ∩ = + − ∩8 Γ Γ Γ Γ Γ Γ Γ Γ 6 6 Γ Γ ,
1 4 1 2 1 2 1 2 1 2

Figure 1: Diagram for the product-feasible triplet ( )4, 6, 8 .
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which implies ∣ ∣∩ ≥Γ Γ 4
1 2

. Consequently, there exist distinct indices i i i, ,
1 2 3

, and i
4
and distinct indices j j j, ,

1 2 3

,
and j

4

in { }1, 2, …,6 such that

=α β α β ,
i j1 2

1
1

(6)

=α β α β ,
i j1 2

2
2

(7)

=α β α β ,
i j1 2

3
3

=α β α β .
i j1 2

4
4

Clearly, { } { }∩ ≠ ∅i i i i j j j j, , , , , ,
1 2 3 4

1 2 3 4

. Also, ≠i j
1

1

, since ≠α α
1 2

. Without loss of generality, we may assume
that =i j

1
2

. Dividing equation (6) by equation (7) we obtain =β β β
i j i

2

1 1
2

. If ≠j i
1

2
, then Lemma 9 implies

=β β
j

m

i

m

1

1

1

1 for some �∈m
1

. Hence, by (6),

=α α .

m m

1 2

1 1 (8)

If =j i
1

2
, then multiplying (6) and (7) we obtain =α α

1

2

2

2, and so equation (8) holds for =m 2
1

.
Repeating the analogous argument for the pairs ( )Γ , Γ

1 3
and ( )Γ , Γ

1 4
, we deduce

= =α α α αand

m m m m

1 3 1 4

2 2 3 3 (9)

for some �∈m m,
2 3

. Now, by equations (8) and (9), we conclude that all four conjugates of =α α
1

have equal
moduli.

By Lemma 8 with ( ) ( )=a b, 4, 6 , the full list of conjugates of αβ of degree 8 is, for instance,

  αβ αβ αβ α β α β, , …, , ,i t j l1 2 6

Γ
1

(10)

for some { }∈i j, 2, 3, 4 and some { }∈t l, 1, 2, 3, 4, 5, 6 . In equation (10) we can choose any distinct products α βi t

and α βj l
, which do not belong to Γ

1
. In particular, for indices i and j , we must have

≠ ≠Γ Γ and Γ Γ .i j1 1
(11)

Adding and multiplying all eight conjugates in equation (10), we obtain

� �( )( ) { }+ + ≔ ∈ ≔ ∈ ⧹αr α β α β r α r α β α β rand 0 ,i t j l i t j l1 2

6

3 4

where �≔ + + ⋯+ ∈r β β β
1

1 2 6

and � { }≔ ⋯ ∈ ⧹r β β β 0
3

1 2 6

. This yields

( )
+ + =αr α β

r

α r α β

r ,i t

i t

1

4

6

3

2

and hence,

( )
+ = −α β

r

α r α β

r αr .i t

i t

4

6

3

2 1 (12)

Squaring equation (12) and multiplying it by α β
i t

2 2, we find that

( )⎜ ⎟+ ⎛
⎝

− − ⎞
⎠

+ =α β

r

α r

r αr α β

r

α r

2

0.
i t i t

4 4
4

6

3

2 1

2 2 2
4

2

12

3

2

(13)

Thus, β
t
is a root of a degree 4 polynomial over the field �( )α α,

i

2 . As we have shown earlier, all the conjugates
of α have equal moduli. Hence, there are three possible cases for the minimal polynomials of α that are listed
in Proposition 7.

In case ( )i , we have =α αεi for some { }∈ − ±ε i1, . Then, =α α
i

2 2 or = −α α
i

2 2, which implies � �( ) ( )=α α α,
i

2 .
But then the degree of β

t
over�( )α is at most 4. Since the degree of β over�( )α equals 6 (see the diagram), β and β

t

are conjugate over �( )α . So the degree of β
t
over �( )α equals 6, a contradiction.

In case ( )ii , since both α
2 and α

i

2 are the roots of the polynomial + +x sx r
2 , we must have either =α α

i

2 2

or = − −α s α
i

2 2. In both cases, � �( ) ( )=α α α,
i

2 , and we obtain the same contradiction.
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It remains to consider case ( )iii . Then, α is nonreal. Assume, without loss of generality, that α
2
is the

complex conjugate of =α α
1

. Note that in case ( )iii , both α
1
and =α α

2 1
are the roots of the same quadratic

factor + +x ux r
2 or + ′ +x u x r

2 , since �′ ∈u u r, , . Hence, =α α r
2

.
If ≠Γ Γ

1 2
, then we can take in equation (10) =i 2, and so =α αi 2

. From = = ∕α α r αi 2
, we obtain

� �( ) ( )=α α α,
i

2 , so that equation (13) leads to the same contradiction again.
In the alternative case, when =Γ Γ

1 2
, we obtain

ℓℓ (ℓ)= =αβ α β for 1, 2,…, 6,
τ2 (14)

where { ( ) ( ) ( )} { }=τ τ τ1 , 2 , …, 6 1, 2, …,6 . This time, by equation (11), we cannot take =i 2, so that { }∈i 3, 4 .
Multiplying all equalities in equation (14) we obtain =α α

6

2

6. Since =α α
2

and =α α r
2

, this yields =r
6

=α α α
6

2

6 12. Consequently, α6 is a rational number { }∈ −r r r,
5

3 3 . Adding all equalities in equation (14), we derive
that = + + + =r β β β… 0

1
1 2 6

, since ≠α α
2
. Thus, by equation (12), we must have

+ =α β

r

r r α β

r .i t

i t

4

5 3

2

This means that =δ α βi t
is a rational number or a quadratic number. Evidently, δ cannot be rational, since αi

and β
t
are of distinct degrees 4 and 6, respectively. On the other hand, if δ were quadratic, then the product of

the quadratic number δ and the quartic number ∕α1 i would be the sextic number β
t
. However, the triplet

( )2, 4, 6 is not product-feasible by [7, Theorem 1]. This completes the proof of Theorem 4.

4 The case (( )) == (( (( )) ))a b c n n k nk, , , ‒ 1 ,

Set =a n, ( )= −b n k1 , and =c nk , where >n k, 1 are integers. Throughout this section, we assume that there
exist algebraic numbers α and β satisfying

� � � � � �[ ( ) ] [ ( ) ] [ ( ) ]= = =α a β b αβ c: , : and : .

The beginning of the argument is essentially the same as that in Section 3. Since �( )β and �( )αβ are subfields
of �( )α β, , we find that � �[ ( ) ]α β, : is divisible by both b and c and therefore divisible by

( )
( )

( )
= =

− ⋅
=b c

bc

b c

n k nk

k

ablcm ,

gcd ,

1

.

On the other hand, � � � � � �[ ( ) ] [ ( ) ][ ( ) ]≤ =α β α β ab, : : : . This implies � �[ ( ) ] =α β ab, : and

� �[ ( ) ( )] = = − = −α β αβ

ab

c

n a, : 1 1.

Thus, we have the following diagram:

Figure 2: Degree diagram for α, β and αβ.
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Let ≔α α
1

, α
2
,…, αa be the distinct conjugates of α over �, and let ≔β β

1

, β
2

,…, β
b
be the distinct conjugates

of β over �. Denote

{ } { }≔ ≔A a B b1, 2, …, and 1, 2, …, .

Figure 2 and Lemma 8 imply that the numbers in the set

{ }≔ ∈ ∈α β i A j BΓ : ,i j

are all conjugate over �. Since the set Γ contains the number αβ, it must have exactly c distinct elements.
This means that � �[ ( ) ] =α β c:i j

for any indices ∈i A and ∈j B.
Therefore, the same degree diagram as that in Figure 2 holds for any pair of indices ∈i A, ∈j B (Figure 3).
We conclude this section with the following lemma and its corollary:

Lemma 11. Let ≥n 3 and ≥k 2 be integers. Assume that α and β are algebraic numbers of degrees =a n and
( )= −b n k1 over �, respectively, whose product αβ is of degree =c nk . Then, for any pair of conjugates ≠α αi j

of α over �, the degree of αi over �( )αj is equal to −a 1.

Proof. Assume that ≠α αi j are two distinct conjugates of α, so { }∈ ⧹i A j . By the diagram in Figure 3, we can
assume that =j 1 and so =α αj . Since β is of degree b over �( )α , all the numbers

≔ =γ αβ t b, 1, 2,…, ,
t t

are conjugate to ≔γ αβ over �. Let the remaining conjugates of γ over � be

+ +γ γ γ, ,…, .
b b c1 2

Take the polynomials

( ) ( )( ) ( )

( ) ( )( ) ( )
( )

( )

≔ − − ⋯ − = ⎛
⎝

⎞
⎠

≔ − − ⋯ − =+ +

g x x γ x γ x γ α P

x

α

h x x γ x γ x γ

P x

g x

,

,

b

b

β

b b c

γ

1 2

1 2

where ( )P xβ and ( )P xγ are the minimal (monic) polynomials of β and γ over �, respectively. Set �( )=K α .
Clearly, ( ) [ ]∈g x K x , and hence ( ) [ ]∈h x K x . This means that for t satisfying + ≤ ≤b t c1 , we have

� �[ ( ) ( )] [ ( ) ] ( )= ≤ = − = − − =α γ α K γ K h c b nk n k k, : : deg 1 .
t t

In particular, this implies that ≠γ αβ
c l

for ∈l B, since otherwise, by Figure 3, the degree of γ
c
over the field

�( )α would be ( )= − >b n k k1 , which is a contradiction. Hence, ℓ=γ α β
c l

for some ℓ { }∈ ⧹A j and some ∈l B.
Evidently, [ ( ) ]ℓ ≤ −K α K a: 1. In addition, [ ( ) ] =K β K b:

l
by Figure 3. Therefore,

[ ( ) ] [ ( ) ] [ ( ) ][ ( ) ] [ ( ) ] ( ) ( )ℓ ℓ ℓ= = ⋅ ≤ ≤ ⋅ ≤ − = − =− −
b K β K K γ α K K γ K K α K k K α K k a n k b: : : : : 1 1 .

l c c

1 1

Figure 3: Degree diagram for αi, β
j
and α βi j

.
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This implies [ ( ) ] =K γ K k:
c

and [ ( ) ]ℓ = −K α K a: 1. Thus, ℓα is of degree −a 1 over �( )=K α , and hence
so must be the degree of αi over K for each { }∈ ⧹i A j . This completes the proof of the lemma. □

Corollary 12. Under the conditions of Lemma 11, we assume that there exists �∈m such that �( )∈α α
i

m

j

for two distinct conjugates αi and αj of α over �. If = ≥a n 3, then there exists a rational number r
6

such that = = ⋯= =α α α r
m m

n

m

1 2 6
.

Proof.Write ( )=α G α
i

m

j , where �[ ]∈G x . Then, by Lemma 11, for each { }∉t A j\ , there is an automorphism of
the Galois group �( ( ))∕E αGal j , where E is the Galois closure of �( )α α,j i over �( )αj , which maps αi to αt.
Applying it to ( )=α G α

i

m

j , we obtain ( )=α G α
t

m

j . Hence, α
t

m are equal for { }∈t A j\ . Choosing { }∉t A i j\ , we can
apply the same argument to the equality �( )= ∈α α α

i

m

t

m

t by mapping αi to αj. This yields =α α
j

m

t

m, and

therefore, = = ⋯=α α α
m m

n

m

1 2
. Adding all these n equal elements, we obtain∑ = α

t

n

t

m

1
, which is a rational number.

Thus, α
t

m, =t n1, 2,…, , are all equal to this rational number divided by n. □

5 Proof of Theorem 6

The case =k 1 of Theorem 6 follows from the previous result of the second named author:

Lemma 13. [7, Theorem 2] The triplet ( )−n n n, 1, , ≥n 2, is product-feasible if and only if n is prime.

We now show that the triplet ( ( ) )−n n k nk, 1 , is product-feasible for ≥k 2 and n prime. Indeed, for a
prime number n, the triplet ( )−n n n, 1, is product-feasible by Lemma 13. On the other hand, the triplet ( )k k1, ,

satisfies the exponent triangle inequality with respect to any prime number (see the end of Section 2).
Consequently, the triplet ( ( ) )−n n k nk, 1 , is product-feasible by Lemma 10.

Now, assume that >n 1 is a composite number. It is clear that then ≥n 4. We need to show that the triplet
( ) ( ( ) )= −a b c n n k nk, , , 1 , is not product-feasible. The case =k 1 follows from Lemma 13, so from now on
we assume that ≥k 2.

Set

{ }≔ α β α β α βΓ , , …,i i i i b1 2

for =i a1,…, . For any distinct ∈i j A, we have

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣= ⋃ ≥ ∪ = + − ∩ = + − ∩
=

c b bΓ Γ Γ Γ Γ Γ Γ Γ Γ ,

s

a

s i j i j i j i j

1

which implies

∣ ∣ ( )
( )

∩ ≥ − = − − = − >
−

=b c n k nk nk k

n k b

Γ Γ 2 2 1 2

1

2 2

.i j

Thus, there is ∈l B for which α βi l
and α βj l

both lie in the intersection ∩Γ Γi j. Since these two elements are
distinct, there are { }∈ ⧹u v B l, such that =α β α βi l j u

and =α β α βi v j l
. From = ∕ = ∕β α β α β β β

l j u i u v l
, we deduce

=β β β
l u v

2 . If ≠u v then, by Lemma 9, for some �∈m , we obtain =β β
l

m

u

m. If =u v, then the same equality
with =m 2 follows directly. Therefore, from =α β α β

i

m

l

m

j

m

u

m, we deduce =α α
i

m

j

m. Here, �∈m and >m 1

in view of ≠i j . By Corollary 12, we conclude that the conjugates of α over � all have the same moduli.
We now consider two cases depending on whether the composite number =a n is even or odd. If n is even

and α has no real conjugates, then the product r
7
of all conjugates can be written in the form ( )= ∕

r αα
n

7

2. If α

has a real conjugate, say ′α , then − ′α is also its conjugate (as the number of nonreal conjugates is even), so
( )= − ∕

r α αi i

n

7

2 for any nonreal αi. Therefore, in both cases, there are two distinct indices ∈i j A, such that
�( )∈∕

α α
i

n

j

2 . By Corollary 12, we conclude that �= ∈∕
α r

t

n 2

6
for every ∈t A. So α is of degree at most ∕n 2 over

�, which is not the case since α is of degree > ∕n n 2 over �.

The product of a quartic and a sextic number  9



Likewise, if =a n is odd, then α has a real conjugate αi, and so the product r
7
of all the conjugates of α can

be written as α
i

n (in both cases >α 0i and <α 0i ). Hence, � { }= ≔ ∈ ⧹α r w 0
i

n

7
. This yields =α w

j

n for each
∈j A, so that the minimal polynomial of α over � is −x w

n . Consequently, the conjugates of α are

= − ≔∕
w ζ t n ζ e, 0, 1,…, 1, where .

n t1

πi

n

2

By Lemma 11, the number ∕
w ζ

n1 has degree −n 1 over the field �( )∕
w

n1 , because ≠∕ ∕
w ζ w

n n1 1 are the con-
jugates of α. This implies that the degree of =

∕

∕ζ
w ζ

w

n

n

1

1

over the field �( )∕
w

n1 equals −n 1. Consequently, the
degree of ζ over its subfield � must be at least −n 1. However, the degree of ζ over � equals ( )φ n , where φ

stands for Euler’s totient function [14, Theorem 3.1]. For each composite n, we have ( ) < −φ n n 1, so the degree
of ζ over � is less than −n 1, a contradiction. This completes the proof of Theorem 6.
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