
VILNIUS UNIVERSITY

Justas Dapkūnas
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Introduction

Hepatic metabolism by cytochrome P450 enzymes is the major clearance route
for most of the drugs. The biotransformation reactions introduce hydrophilic
functional groups into lipophilic molecules, usually resulting in more polar and
water-soluble compounds that are readily excreted. Fast metabolism and rapid
elimination of drug is undesired in the pharmaceutical industry therefore many
efforts are focused on the optimization of metabolic stability of drug candidates
[1]. Furthermore toxic metabolites are formed in some cases leading to un-
wanted adverse effects. Safety testing of metabolites has become a requirement
according to the guidances for industry issued by regulatory institutions [2].

Consequently the metabolites of a drug candidate are desired to be known in the
earliest stages of drug development. Knowing the regioselectivity of metabolism,
i. e. major reaction sites, possible modifications of a compound to increase its
metabolic stability can be suggested [1]. On the other hand, understanding
the pharmacological and toxicological consequences of metabolism of a drug
candidate is critical for pharmaceutical research, thus the biotransformation
pathways are always identified in detail at the later stages of development.

Another crucial aspect related to drug metabolism is drug-drug interactions,
predominantly caused by the inhibition of xenobiotic metabolizing enzymes.
These are among the main problems in the modern drug discovery after several
drugs have been withdrawn from market because of drug-drug interactions
involving inhibition of CYP3A4. This is the most relevant enzyme, responsible
for more than 50% of drug metabolism in human organism [3]. It is a broad
specificity oxygenase which is able to metabolize compounds belonging to many
diverse drug classes [4].
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Introduction

The early predictions of metabolism related properties, such as possible meta-
bolites or cytochrome P450 inhibition, may alert researchers to safety risks
associated both directly with the drug substance itself and with products of its
biotransformation. All possible tools should be used to avoid failures, including
in silico predictions. This approach is very attractive because in silico models may
be applied in early stages of drug discovery at a very small cost. Predictions are
very fast and can be obtained for virtual compounds prior to their synthesis.

Despite the complexity of biological systems, prediction of metabolism from
molecular structure is possible [5]. Recently the predictive software has been
successfully applied for optimization of metabolic stability of cyclooxygenase-2
inhibitors [6–8]. Experimental identification of metabolites by mass spectrometry
is facilitated by using structures of metabolites estimated in silico [2, 9, 10]. The
prediction of CYP3A4 inhibition allows rapid screening of virtual libraries
for possible drug-drug interactions prior to their actual synthesis and enables
compound prioritization before the experimental testing.

The (quantitative) structure-activity relationship is the most popular means
for modeling ADME properties, including metabolism and cytochrome P450
inhibition [11]. A variety of regression and classification methods are used to
express the mathematical relationship between activity and structure of com-
pound, like Partial Least Squares (PLS) or Support Vector Machines (SVM). The
chemical structures are encoded by 2D- or 3D-structural, topological, quantum
chemical or physicochemical descriptors and the models are trained on the
data for diverse compounds acquired from in vitro or in vivo experiments. One
of the main limitations of all predictive structure-activity relationship models
is that they are valid only in the part of chemical space closely related to the
training set, called model applicability domain. According to OECD principles
for (Q)SAR validation, any model that is proposed for regulatory use should be
based on a defined experimental endpoint, tested on data that were not used for
its development, and after all associated with a defined domain of applicability
[12].

Most of the previously published metabolism and cytochrome P450 inhibition
models are based on proprietary datasets, which automatically raises several
issues regarding their potential application:
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• The effective assessment of the applicability domain of such models is not
possible as the actual training set structures are not available in public;

• In-house datasets usually consist of specific compounds that a particular
institution is working with, rendering such models practically useless for
anyone dealing with different compound classes;

• The modeling techniques used in model development do not allow estim-
ation of prediction reliability.

The latter fact is especially important in case of metabolism site prediction as
none of the previous regioselectivity models estimates its applicability domain.

A novel GALAS (Global, Adjusted Locally According to Similarity) modeling
methodology was recently introduced, which allows forecasting the reliability
of each prediction. The successful applications of this method in predicting con-
tinuous properties, such as LogP and acute toxicity in terms of LD50, have been
described in detail [13, 14]. GALAS model is a combination of two approaches:
a global model for the prediction of the property of interest, and a similarity
based local correction model. This methodology not only allows the estimation
of reliability of predictions, but also makes it possible to expand the applicability
domain of a resulting model in a very straightforward manner, i. e. without
time consuming full statistical re-parameterization of the model.

Objectives of the Study

The objectives of the study were to adapt the GALAS modeling method for
prediction of properties related to drug metabolism, and to develop and validate
a model predicting the regioselectivity of metabolism. The following tasks were
set in order to achieve these objectives:

• Develop a probabilistic model for CYP3A4 inhibition as an instance of a
drug metabolism related property;

• Develop a metabolism regioselectivity model predicting the probability to
be oxidized in human liver microsomes for every atom in the molecule;
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• Test the features of GALAS model (corrections according to similarity,
estimation of prediction reliability, possibility to adapt the model to novel
compounds) in the developed models;

• Validate the predictions of metabolism regioselectivity using new pub-
lished experimental data;

• Compare the regioselectivity predictions with previously published ligand-
based model SMARTCyp.

Scientific Novelty

The major aspects of the scientific novelty of the results described in the thesis
are as follows.

• The GALAS modeling method was successfully applied for prediction of
drug metabolism related properties.

• The developed model predicting sites of metabolism in human liver micro-
somes is the first QSAR model of regioselectivity that provides a definition
of its applicability domain.

• The developed models predicting CYP3A4 inhibition and metabolism re-
gioselectivity can be trained using experimental data for new compounds
simply by adding them to the local part of the model without the need of
full remodeling.

Practical Value

The reported GALAS models can be used in the pharmaceutical industry. In
silico predictions may be applied in rapid screening of virtual libraries prior to
actual synthesis of compounds. Estimation of CYP3A4 inhibition allows consid-
eration of possible drug-drug interactions in the earliest drug discovery stages.
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The good prediction results of regioselectivity model lead to its potential prac-
tical application in metabolic stability optimization or metabolite identification.
Reliability estimation is provided for each prediction and enables compound
prioritization before experimental testing. The trainability feature of a GALAS
model enables adjusting it to the needs of any particular drug discovery project.

Statements Presented for Defense

• Structure-activity relationship models predicting CYP3A4 inhibition and
regioselectivity of human liver microsomal metabolism were developed
using GALAS modeling method.

• The developed models provide estimation of their applicability domain in
the form of calculated prediction Reliability Index that effectively identifies
correct predictions.

• The applicability domain of the developed GALAS models is easily expan-
ded by adding new compounds to the local part of the model.

• The quality of regioselectivity predictions produced by the developed
model is comparable to the results of recently published SMARTCyp soft-
ware, based on quantum chemistry calculations.
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Chapter 1

Overview of Literature

1.1 Cytochrome P450 and Drug Metabolism

The most significant part of biotransformation of drugs and other xenobiotics in
human organism occurs in the liver. It is divided into two phases. Oxidation-
reduction and hydrolysis reactions constitute Phase I. These reactions introduce
hydrophilic functional groups into lipophilic xenobiotic molecules. In Phase II
either the parent compounds or their oxidized metabolites are conjugated to
glucuronic acid, sulfate, gluthatione or amino acids. The conjugation reactions
are usually very fast and thereby the Phase I is the rate limiting step of the
drug metabolism. This section describes the enzymes of cytochrome P450
superfamily, which are the most important catalysts of the oxidative Phase I
reactions, responsible for more than 2/3 of total drug metabolism [3].

1.1.1 Reactions Catalyzed by Cytochrome P450

The cytochrome P450 enzymes are hemoproteins. In mammalian organisms
they are bound to the membrane of endoplasmic reticulum. The main reaction
catalyzed by these enzymes is the incorporation of one oxygen atom from O2
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Figure 1.1: The reaction cycle of cytochrome P450 enzymes.

molecule into the molecule of substrate:

NADPH + H+ + O2 + SH −→ NADP+ + H2O + SOH (1.1)

The chemical mechanism of a typical cytochrome P450 reaction is well known
[15, 16] and is shown in Fig. 1.1. After binding of substrate (a), the iron in
the active site of enzyme is reduced from ferric to ferrous state by flavoprotein
NADPH-cytochrome P450 reductase (b). Then the enzyme binds an oxygen
molecule (c), and a second electron from reductase (or in some cases from
cytochrome b5) further reduces the system (d). The O−O bond is cleaved after
addition of a proton (e), generating water (H2O) and an intermediate Compound
I which is formally represented as FeO3+ or FeV−−O (f). The exact electronic
structure of this intermediate is not fully characterized because it cannot be
trapped due to its very short lifetime [17].

The Compound I reacts with the substrate molecule. In case of aliphatic carbon
hydroxylation, the hydrogen atom abstraction leads to formation of a radical
that reacts with the FeOH3+ intermediate to form hydroxylized metabolite (Fig.
1.1, g and h; Fig. 1.2, a). If this oxidation occurs next to heteroatom, an unstable
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Figure 1.2: The mechanisms of reactions catalyzed by cytochrome P450 enzymes:
a – aliphatic hydroxylation, b – N-dealkylation, c – O-dealkylation, d – aromatic
hydroxylation, e – S-oxidation.

compound is formed and the carbon-heteroatom bond may split resulting in
dealkylation (Fig. 1.2, b and c). Aromatic carbon is oxidized by a different
mechanism (Fig. 1.2, d). In this case σ-complex with the substrate is formed,
resulting in migration of hydrogen atom, called “NIH shift”. The heteroatoms
(N, S) are oxidized by the electron abstraction mechanism (Fig. 1.2, e). After the
formation of metabolite, the last step of the cytochrome P450 reaction cycle is
the dissociation of the product from the active site of the enzyme (Fig. 1.1, i).

The above described reaction mechanism is a simplification. A number of
alternative reactions can proceed, resulting in formation of reactive oxygen
species, inhibition of enzyme because of covalent binding of substrate to the
heme or protein, rearrangements in substrate molecule, etc. [16]. The outcome of
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1.1. Cytochrome P450 and Drug Metabolism

these processes is hardly predictable. Expansion or contraction of rings, various
isomerisations and eliminations lead to production of diverse metabolites [18,
19]. Further investigation of these uncommon reactions should provide a deeper
understanding of oxidation mechanisms and possible new insights into toxicity
of chemicals.

1.1.2 Human Cytochrome P450 Enzymes

The major cytochrome P450 isoforms that mediate biotransformations of xeno-
biotics in human body are CYP3A4, CYP2D6, CYP2C9, CYP2C19, and CYP1A2
[3]. CYP3A4 is a broad specificity oxygenase responsible for a half for drug meta-
bolism. The typical substrates of this enzyme are large hydrophobic compounds.
They belong to multiple drug classes and have molar mass ranging from 151 Da
(paracetamol) to > 1,200 Da (cyclosporins). CYP2D6 is a polymorphic oxygenase,
its activity varies in different individuals up to > 1,000 times leading to adverse
effects of drugs in poor metabolizers. It substrates are basic aromatic compounds
(opioids, anti-arrythmics, antidepressants, β-blockers, drugs of abuse, etc.). On
the contrary CYP2C9 oxidizes mostly acidic molecules like non-steroidal anti-
inflammatory drugs. The specificity of CYP2C19 is similar to that of CYP2C9
except the fact that this enzyme prefers unionized drugs. Substrates of CYP1A2
are planar aromatic molecules. In addition to biotransformations of several
drugs, this enzyme also activates promutagens and procarcinogens, such as
polycyclic aromatic hydrocarbons and aromatic amines [4].

The determinants of CYP2D6 specificity are probably the best understood among
human drug metabolizing enzymes. The substrates of this enzyme usually
contain an aromatic ring in the distance of 5-10 Å from basic amino group [20].
The site-directed mutagenesis experiments show that the amino group from
substrate molecule interacts in the active site with Asp301 and Glu216 residues
[21]. Changing these amino acids into non-acidic residues altered the specificity
of enzyme, and it oxidized non-basic compounds which are not substrates for
wild-type CYP2D6. The X-ray crystallography experiments confirmed these
data (Fig. 1.3) [22].

The aromatic amino acids that are known to be important for CYP2D6 specificity

9



1. Overview of Literature

are Phe120, Phe481, and Phe483. Phe120 is responsible for ligand orientation in
the active site. After substituting it to non-aromatic residues the regioselectivity
of metabolism changed for several substrates and the affinity for typical CYP2D6
inhibitor quinidine decreased [23, 24]. Phe481 and Phe483 are more distant from
heme in the crystal structure (Fig. 1.3) but can be active in substrate recognition
or binding in active site [22]. The mutagenesis of these residues changed kinetics
of reactions, regioselectivity of metabolism, and even substrate specificity [25–
27].

Despite of a relatively clear picture of substrate binding to CYP2D6, some recent
findings show that the understanding of the specificity of this enzyme is not
complete. A new compound pactimibe and its analogues were found to be
clinically significant CYP2D6 substrates [28]. All these molecules contain an
acidic group and are negatively charged at physiological pH. Docking experi-
ments revealed that the carboxy group of pactimibe interacts with basic Arg221
residue in the active site of the enzyme [29]. Unfortunately these results are not
confirmed by X-ray diffraction or mutagenesis experiments. The significance of
acidic CYP2D6 ligands is unknown because only a few non-basic substrates of
this enzyme are known up to date.

The knowledge on the determinants of ligand binding to other human drug
metabolizing enzymes is even less exhaustive. Only a few amino acids that are
responsible for substrate binding and catalysis are determined in CYP1A2. The
role of Phe226 in interaction with planar aromatic ligands is clear [30, 31] and
was later confirmed in crystal structure of CYP1A2 with inhibitor naphtoflavone
[32]. The exact influence of other residues is still not understood.

Some reactions catalyzed by human cytochrome P450 enzymes do not obey
classical Michaelis-Menten kinetics [33]. In fact, such “atypical kinetics” are
characteristic for many substrates of CYP3A4 or CYP2C9. The analysis of meta-
bolism of different chemicals by these enzymes are consistent with theoretical
kinetic schemes involving binding of substrates into several binding sites [34].
A cytochrome P450 enzyme has only one active site that is in some cases large
enough to bind two or even more ligand molecules. These interact with dif-
ferent amino acid residues of the protein, resulting in unusual kinetic curves
representing activation, autoactivation, partial inhibition or substrate inhibition.

10



1.1. Cytochrome P450 and Drug Metabolism

Figure 1.3: The structure of CYP2D6 active site (PDB ID 2F9Q). Acidic residues
Glu216 and Asp301 are red, aromatic amino acids Phe120, Phe481 and Phe483
are yellow.

These results of kinetic studies are in agreement with later crystallographic and
site-directed mutagenesis experiments. The structure of CYP2C9 was determ-
ined with substrates warfarin [35] and flurbiprofen [36]. Flurbiprofen forms
ion bridge with Arg108 (Fig. 1.4, a). Warfarin binds in the active site by π-π
interactions with Phe114 and Phe476 (Fig. 1.4, b). The same residues were found
to be important by site-directed mutagenesis [37–39]. These experiments show
that interactions in the active site of CYP2C9 depend on ligand.

The crystallographic analysis of CYP3A4 demonstrated that the active site of
this enzyme is large enough to bind bulky substrates or several ligand molecules
together. It contains hydrophobic mostly amino acids [40–42]. Fig. 1.5 shows
two molecules of ketoconazole bound to CYP3A4. The hydrophobic cluster
consisting of Phe213, Phe215, Phe219, Phe220, Phe241, and Phe304 breaks down
after ligand binding, and the amino acid residues that lacked secondary struc-
ture in ligand-free protein now form a helix-like structure. Imidazole ring from
ketoconazole molecule coordinates with heme, and hydrophobic interactions
and multiple hydrogen bonds are also observed. However, the binding of eryth-
romycin could not be explained by X-ray data [42]. Another CYP3A4 inhibitor
ritonavir also forms complex with heme iron and induces large conformational
changes in protein structure [43].
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a b

Figure 1.4: Different binding of substrates in the active site of CYP2C9: a –
flurbiprofen forms salt bridge with Arg108 (PDB ID 1R9O); b – warfarin interacts
with phenylalanine residues, and Arg108 is not in the active site of the enzyme
(PDB ID 1OG5).

Figure 1.5: Two molecules of ketoconazole bound to CYP3A4 (PDB ID 2J0C).
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1.1. Cytochrome P450 and Drug Metabolism

Many amino acids that are responsible for ligand binding were found by site-
directed mutagenesis of CYP3A4. For example, changing Ser119, Leu210,
Leu211, Phe213, Asp214, Ile301, Phe304, Ala305, Ile369, Ala370 affect regio-
selectivity and kinetics of steroid metabolism [44–49]. Some of these residues
have impact on midazolam oxidation (Ser119, Phe304) together with Ile120,
Tyr307 and Thr309 [50]. Another benzodiazepine drug diazepam also interacts
with these amino acids [51]. On the contrary, mutating Ser119 and Thr309 did
not influence raloxifene biotransformation, but Phe215 appeared to be important
for positioning this substrate in the active site of enzyme [52]. Taken together,
the overall data lead to conclusion that a single mechanism of ligand binding to
CYP3A4 does not exist, and different models are suitable for different ligands.
These features explain the extreme chemical diversity of CYP3A4 substrates and
inhibitors and support the general opinion on the significance of hydrophobic
interactions for binding to this enzyme.

1.1.3 Inhibition of Cytochrome P450

The inhibitors of cytochrome P450 enzymes are widely used as therapeutic
agents, insecticides or herbicides. On the other hand, inhibition of drug meta-
bolizing cytochrome P450 enzymes (especially CYP3A4) can lead to undesired
accumulation of their substrates in the organism potentially resulting in toxic
side effects. Up to date a number of drugs (mibefradil, terfenadine, astemizole)
has been withdrawn from the market because of drug-drug interactions [3]. As
a result, testing novel compounds for human cytochrome P450 inhibition has
become a common practice in pharmaceutical industry [1].

There are several notable aspects of cytochrome P450 inhibition mechanisms
[53]. In case of reversible inhibition of the enzyme, two types of interaction
between the inhibitor and enzyme are observed. Competitive inhibitors form
hydrogen bonds with the side chains of active site amino acids or bind by
hydrophobic interactions. Such compounds usually are tight binders but poor
substrates. In addition, complex between the heme iron and the inhibitor can be
formed. Pyridine and imidazole derivatives are commonly used cytochrome
P450 inhibitors. The strongest interaction is observed for compounds that bind
both to the side chains of amino acids and prosthetic heme iron (Fig.1.6).
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chanism of inhibition and examples of inhibitors: metyrapone (non-specific
cytochrome P450 inhibitor), ketoconazole (fungal Lanosterol 14-α-demethylase
and human CYP3A4 inhibitor), quinidine (human CYP2D6 inhibitor).

In addition to reversible inhibition, some inhibitors act as mechanism-based
(or catalysis-dependent) cytochrome P450 inactivators. After binding to the
active site, they undergo oxidation as substrates of these enzymes. An interme-
diate compound then reacts with the protein and can bind covalently to amino
acids or heme, or form quasi-irreversible complex with heme iron. Mechanism-
based cytochrome P450 inhibitors are nitrogen, sulfur and halogen containing
compounds, terminal alkenes and alkynes, methylenedioxybenzenes [53]. Fig.
1.7 shows how methylenedioxybenzenes form quasi-irreversible complex with
heme iron after oxidation.
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1.2 Experimental Methods for Estimation of Drug

Metabolism

The investigation of metabolism related properties of a drug candidate consists
of the elucidation of the structures of its metabolites, identification of the en-
zymes that are responsible for formation of major biotransformation products,
and determination of the possibility to inhibit main human xenobiotic metabo-
lizing enzymes.

1.2.1 Metabolite Identification

The modern identification of metabolites is done using liquid chromatography
coupled with mass spectrometry (LC/MS). The metabolites of a drug candidate
are obtained by incubation in vitro with hepatocytes, microsomes or purified
enzymes in early drug discovery. Later samples from blood, urine and feces are
analyzed to investigate metabolism in vivo and identify circulating and excreted
metabolites. A great variety of mass spectrometry methods and instruments
have been developed and are utilized in elucidation of structures of metabolites
[54, 55]. Mass difference between parent compound and metabolite is known
for common biotransformation reactions (e. g., +16 for hydroxylation, -14 for
demethylation). A number of software packages exist to ease analysis of spectra
by incorporating the mass shifts most frequently observed in drug metabolism
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[9, 54]. Still, simple MS methods cannot detect all metabolites. Additional data
obtained by tandem mass spectrometry are then used to identify metabolism
sites for less common biotransformations. The spectra of product ions are
obtained in these multi-stage MS experiments and help in identifying unusual
metabolites [54].

Common practice is to label drug candidate molecules by radioactive isotopes
(14C, 3H) for metabolism studies. Besides alternative techniques have been
developed for analysis of mass spectra containing peaks of impurities from
complex biological samples. These methods are applied after data acquisition.
Multiple reaction monitoring utilizes prior knowledge on structures of meta-
bolites. For example, initially metabolites are characterized in vitro using liver
microsomes, and the acquired data are employed in analysis of blood samples
[56]. Mass defect filter uses accurate mass data to identify small mass defects
that are within 50 mDa range for typical biotransformations [57, 58]. These
techniques refine the high resolution MS data and automatically remove ions of
molecules that interfere with drug metabolite ions.

Many software tools aid the interpretation of MS data in metabolite identi-
fication. In addition to programs provided by instrumentation vendors, the
possibility to use in silico predicted metabolites has been proposed [9]. Recently
the analysis of mass spectra has been successfully automated by combining
it to site of metabolism estimations by MetaSite software [10]. This approach
facilitates the work of biotransformation scientist and accelerates the process of
metabolite identification.

If the exact elucidation of metabolite structure is not possible by MS only, more
labor intensive methods are used. Purified metabolites are analyzed by NMR
which can determine exact sites of hydroxylation. Chemical modifications
are utilized in rare cases when unstable or hardly separable metabolites are
produced [54].

1.2.2 Cytochrome P450 Reaction Phenotyping

Knowing the in vitro metabolic profile of a drug candidate in human liver mi-
crosomes, most projects later focus on phenotyping major cytochrome P450
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enzymes. The enzymes that catalyze the formation of metabolites are determ-
ined using several methods [59]. The best approach for identification of the most
significant cytochrome P450 isoforms is inhibition of microsomal metabolism us-
ing monoclonal antibodies. These inhibit individual enzymes and can therefore
unambiguously confirm their contribution to the particular biotransformation
reaction. Nevertheless the commercial availability of inhibitory antibodies is
low.

Inhibition by specific chemical inhibitors is used as an alternative reaction phe-
notyping method. These compounds may inhibit several human cytochrome
P450 isoforms, but the inhibition constants are different. As a result research-
ers obtain highly selective inhibition of enzymes by choosing an appropriate
concentration of the inhibitor. Ketoconazole is such non-specific inhibitor. Its
affinity for CYP3A4 is more than 10 times higher than for other human hepatic
enzymes, therefore at low concentrations it selectively inhibits this isoform [60].
The names and structures of compounds frequently used for human cytochrome
P450 phenotyping are listed in Table 1.1.

The specific inhibition experiments are complemented by incubation of com-
pound of interest with recombinant cytochrome P450 enzymes. Interpretation
of the results of such testing is straightforward only if a single enzyme catalyzes
the biotransformation. If the metabolism by several enzymes is observed, the
studies with inhibitory antibodies or selective chemical inhibitors are obligatory
to estimate the contribution of each enzyme in microsomal incubations. His-
torically the correlation of the rate of drug biotransformation with cytochrome
P450 marker reactions is also used. This method is the least reliable. It may
produce numerous errors and should be utilized only for confirmation of the
results of other experiments [59].

1.2.3 Cytochrome P450 Inhibition Assays

Many in vitro methods have been developed and are used today to screen
large libraries of synthesized compounds for cytochrome P450 inhibition [62].
The conventional methods are based on inhibition of standard probe reactions
measured in human liver microsomes or with recombinant cytochrome P450

17



1. Overview of Literature

Table 1.1: Selective inhibitors of human cytochrome P450 enzymes, according to
[61].
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Table 1.2: Examples of standard substrates used in human cytochrome P450
inhibition studies [61, 63].

Enzyme Inhibitor Structure
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enzymes [1, 63]. The specific substrates of human cytochrome P450 enzymes
are shown in Table 1.2. Some of these compounds are metabolized by several
microsomal enzymes, but different metabolites are formed. Diclofenac is hy-
droxylated in different positions by CYP2C9 and CYP3A4, dextromethorphan is
O-dealkylated by CYP2D6 and N-dealkylated by CYP3A4. Metabolites specific
for the enzyme of interest are tracked in these cases, i. e. 4’-hydroxydiclofenac
for CYP2C9 and dextrorphan (O-demethylated dextromethorphan) for CYP2D6.
The reactions are performed with radiolabeled substrates or detection of meta-
bolites by LC/MS is used.

Later high-throughput screening (HTS) assays based on fluorescent compounds
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were developed and made the analysis faster and cheaper [64]. Substrates that
produce fluorescent metabolites are incubated with recombinant cytochrome
P450 enzymes, as these substrates are not enough selective for experimentation
in human liver microsome [65]. Luminogenic assays were developed as an
alternative for fluorescence experiments [66]. Analogues of luciferin are con-
verted to luciferin by cytochrome P450 enzymes. The luciferase decarboxylates
luciferin using ATP, generating an amount of light which is proportional to the
amount of luciferine formed.

Cytochrome P450 inhibitors diminish the fluorescence in fluorometric experi-
ments and light output in luminogenic assays. Both methods can be automated,
and the enzymes and substrates for the HTS experiments are commercially
available [62]. The main disadvantage of fluorometric assays is that they cannot
be used for analysis of drug candidates that are also fluorescent. Luminogenic
methods are more sensitive but may produce false positive results for compound
that do not inhibit cytochrome P450 but interfere with luciferase activity.

Due to these facts, in later drug discovery stages the results of HTS have to be
approved by an experiment with standard cytochrome P450 probes [1]. Cocktail
assays are sometimes used to increase throughput of these methods. Specific
substrates of several isoforms are incubated with human liver microsomes or
a mixture of recombinant cytochrome P450 enzymes and inhibition potential
is determined for all enzymes in one experiment. Finally, only detailed results
from conventional experiments with determination of inhibition mechanism
and kinetics can be reported to regulatory institutions [62].

1.3 QSAR Models of CYP3A4 Inhibition

The data acquired from in vitro studies of CYP3A4 inhibition have been used to
develop in silico structure-activity relationship models [67–76], which can serve
as virtual screening tools in evaluating the possibility for new compounds to
cause drug-drug interactions. The results of these works are briefly summarized
in Table 1.3. A great variety of descriptors and statistical methods were used
for prediction of CYP3A4 inhibition representing the tools commonly used for
QSAR modeling.
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Table 1.3: Summary of classification structure-activity relationship models of
CYP3A4 inhibition based on large data sets of diverse compounds

Model and data Modeling detailsa Resultsb

Zuegge et al., 2003 [67]
Inhibitors: IC50 < 1 µM (421, 36.5%)
Non-inhibitors: IC50 > 50 µM (160,
14.5%)

Methods: PLS, ANN
Descriptors: fragmental,
topological, physicochemical

Accuracy: 90%
Sensitivity: 93%
Specificity: 86%

Kriegl et al., 2005 [69, 70] c

Strong inhibitors: IC50 < 2 µM (243,
18%);
Medium inhibitors: 2
µM < IC50 < 20 µM (561, 42%)
Non-inhibitors: IC50 > 20 µM (541,
40%)

Methods: PLS, SVM
Descriptors:
physicochemical, topological,
quantum chemical, 3D
structural

Accuracy: 70%
(three class model)
Sensitivity: strong:
68%
medium: 63%

Arimoto et al., 2005 [71] d

Inhibitors: IC50 < 3 µM (1578, 35%)
Non-inhibitors: IC50 > 3 µM (2892,
65%)

Methods: RT, kNN, BC, LR,
SVM
Descriptors: topological,
fragmental

Accuracy: 83%
Sensitivity: 82%
Specificity: 81%

Jensen et al., 2007 [73] e

Inhibitors: IC50 < 20 µM (361, 26%)
Non-inhibitors: IC50 > 20 µM (1021,
74%)

Method: kNN
Descriptors: fragmental

Accuracy: 88%
Sensitivity: 65%
Specificity: 94%
Not classified: 14%

Gleeson et al., 2007 [74] d

Inhibitors: IC50 < 6.3 µM (145,
19.8%)
Non-inhibitors: IC50 > 15.8 µM (420,
57.2%)

Methods: PLS, RT
Descriptors: fragmental,
physicochemical

Accuracy: 89%
Sensitivity: 67%
Specificity: 96%

Choi et al., 2008 [75]
Inhibitors: not defined (394, 42.5%)
Non-inhibitors: not defined (533,
57.5%)

Method: RT
Descriptors: topological,
physicochemical, 3D
structural

Accuracy: 73%
Sensitivity: 83%
Specificity: 54%

a Abbreviations of statistical methods are given in Abbreviations list.
b Test set classification results for the best model is reported in case of several models.
c Inhibition of erythromycin metabolism by recombinant CYP3A4.
d Inhibition of 7-benzyloxy-4-trifluormethylcoumarin (BFC) metabolism by recombinant

CYP3A4.
e Inhibition of erythromycin metabolism in human liver microsomes.

21



1. Overview of Literature

All computational models have their limitations. For example, widely accepted
3D-QSAR models analyze spatial ligand-enzyme interactions assuming that
binding mode for all compounds is the same. The predictive power of such
CYP3A4 inhibition models is limited [77], because in reality a great variety of
ligand binding modes to CYP3A4 exists as well as a large conformational degree
of freedom in the active site is possible [42, 78–80]. Descriptors, based on 3D
structure of chemicals have been rarely used for CYP3A4 specificity modeling
(Table 1.3). Physicochemical, topological and 2D structural descriptors proved
to be more suitable for this enzyme.

Despite the relative successes in CYP3A4 inhibition modeling a need of new
computational approaches for identification of CYP3A4 inhibitors still exists.
Most of published CYP3A4 inhibition models were developed in pharmaceutical
companies and are based on in-house data. In such cases the molecules of
the training set belong to specific chemical classes that are investigated in a
particular company, and consequently wide application of the models is limited.
A new QSAR model trained on publically available diverse data is needed.

Furthermore, not all previously developed models are associated to a measure
of their applicability domain, which is a standard requirement for QSAR models
that can be used for regulatory purposes [12]. The importance of this domain has
been also shown for CYP3A4 inhibition model recently [76]. The methods for
estimation of model applicability also should be improved. Similarity measures
are widely utilized to evaluate the reliability of prediction. In addition to
them the novel GALAS modeling method takes into account the consistency
of experimental data with regard to the predictions of the global model. The
necessity to include a measure for consistency of experimental data has been
described in recent publication covering the topic of acute toxicity modeling
[14]. In case of CYP3A4 inhibition, compound classes also exist where some
representatives are potent inhibitors while others do not inhibit this enzyme at all
despite being very similar. Such situation was observed for 1,4-dihydropyridine
calcium channel antagonists [81].
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1.4 Prediction of Drug Metabolism Regioselectivity

Attempts of drug metabolism regioselectivity prediction have been reviewed
recently [5]. In this very informative article the models estimating potential
metabolism sites are classified to substrate orientation-based, mechanism-based
and empirical predictions. Predictions of substrate orientations either align three-
dimensional structures of many substrates or analyze the interactions between
substrate and enzyme. Mechanism-based predictions estimate the most reactive
sites in the organic molecules by quantum chemistry methods. After analysis of
large biotransformation databases models utilizing the empirical knowledge can
be made, either rule-based expert systems to predict metabolites or statistical
models predicting the most likely metabolism sites.

Another possible way for classification of drug metabolism regioselectivity
predicting models is the using of ligand- or protein-based methods. Protein-
based models investigate interactions between enzyme and it substrates while
ligand-based ones use only the structures of ligands. Most of the predictions are
made integrating various methods, e. g. docking of substrates to the structures
of enzymes is often combined to reactivity predictions.

Historically the first attempts of metabolism prediction were ligand-based as
the structures of drug metabolizing enzymes were not known. Analysis of data-
bases containing information on drug metabolism reactions lead to derivation
of biotransformation rules [82–86]. Another important ligand-based method is
quantum chemistry calculations which predict the reactivity of compounds in
cytochrome P450 catalyzed reactions [87–90]. Later the increasing amount of
available experimental data lead to creation of several statistical methods for
mining these data [91–97]. Protein-based modeling techniques for prediction of
possible metabolism sites became popular when the structures of drug metabo-
lizing enzymes were determined [98–102]. Further in this section we are going
to review these and other significant models of drug metabolism regioselectivity
in detail.
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Figure 1.8: Examples of biotransformation rules used in the program SyGMa
[95].

1.4.1 Biotransformation Rules

The earliest regioselectivity models predicted the metabolites using a set of
biotransformation rules derived from experimental data. The substitutions of
fragments of substrate molecule following these rules result in generation of
structure of metabolite. Some examples of biotransformation rules are provided
in Fig. 1.8. Different numbers of rules were derived by different authors, ranging
from 70 in earliest models to > 300 in the latest [82–86].

The major drawback of rule-based regioselectivity models is that too many
metabolites are generated. Most of models use some prioritization method to
distinguish major metabolites from insignificant ones. In the oldest models
expert ratings were used, which later evolved into more sophisticated reasoning
systems [85, 86]. Unfortunately, some of these are too ambiguous: it is hardly
possible for a user to rank the metabolism sites using categories “probable” and
“plausible”, and many false positive predictions are provided after all [103]. The
newest rule-based model learns priorities of different metabolism sites from a
large database of experimental observations, and can be viewed also as data
mining method [95].
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1.4.2 Prediction of Regioselectivity by Quantum Chemistry Me-

thods

It can be assumed that the rate of a biotransformation reaction is limited by the
reactivity of the substrate and not by its binding to the enzyme, because many
diverse compounds are oxidized by cytochrome P450 [4]. Under such circum-
stances it might be possible to predict the sites of metabolism by estimating
the reactivity of compound in every possible reaction by quantum chemistry
methods. The activation energy can be calculated for hydrogen atom abstraction
in case of aliphatic hydroxylation and for formation of a bond between oxygen
and carbon atom in case of aromatic hydroxylation.

Semiempirical AM1 calculations were used in the first quantum chemical mo-
dels. The hydrogen atom abstraction energies were calculated for sets of small
molecules, and their reactions with radicals mimicking the Compound I (FeV−−O,
FeO3+) in the active site of cytochrome P450 were modeled [87]. The best predic-
tions were obtained using p-nitrosoxyphenyl radical. Later the same authors
extended their model to incorporate aromatic hydroxylation reactions using
methoxy radical as model of Compound I [88]. Calculated energies were the
calibrated according to experimental data to obtain combined model which
predicted both aliphatic and aromatic hydroxylation, but this model was not
validated against an external test set.

Later the reactivity of drug-like molecules in cytochrome P450 catalyzed reac-
tions was predicted by ab initio calculations at the density functional theory
(DFT) levels. These methods are the best of available theoretical tools to ob-
tain reliable reactivity models [104]. Fe(porphine)(SCH3)O was used as a more
realistic model of Compound I. The results of calculations are briefly summar-
ized in Table 1.4. For hydrogen atom abstraction, lowest activation energies
were calculated for amines (28-32 kJ/mol), corresponding to N-dealkylation
reaction. In case of ethers and atoms connected to sp2-hybridized carbon the
energies were higher (45-55 kJ/mol and 48-56 kJ/mol, respectively), and sub-
strates with only sp3-hybridized carbon atoms had the highest energy barrier
(60-62 kJ/mol for secondary and tertiary atoms, and > 72 kJ/mol for methyl
group) [89]. Activation energies for aromatic hydroxylation were 60-87 kJ/mol,
indicating that aliphatic hydroxylation is more energetically favorable reaction.

25



1. Overview of Literature

Table 1.4: Activation energies for cytochrome P450 catalyzed reactions calculated
by ab initio DFT methods [89, 90].

Atom type Reaction Calculated energy

Aliphatic carbon in amine N-dealkylation 28-32 kJ/mol
Aliphatic carbon in ether O-dealkylation 45-55 kJ/mol
Vinylic or benzylic carbon (next to
sp2-hybridized carbon)

Aliphatic hydroxylation 48-56 kJ/mol

Secondary or tertiary sp3-hybridized carbon Aliphatic hydroxylation 60-62 kJ/mol
Primary sp3-hybridized carbon (methyl
group)

Aliphatic hydroxylation > 72 kJ/mol

Aromatic carbon Aromatic hydroxylation 60-87 kJ/mol

In case of some substituents, preference for ortho- and para-oxidation was clearly
shown [90, 105].

Despite high accuracy, the main disadvantage of the ab initio quantum chemistry
methods is the intense computational power needed. A calculation for one
typical drug-like compound can last for several weeks [89, 90]. Therefore these
methods are more frequently viewed as tools to investigate the mechanisms
of cytochrome P450 catalyzed reactions rather than means to predict the regio-
selectivity of metabolism for drug-like compounds [104, 105]. Semiempirical
methods are usually chosen to reduce time required for calculation. Interestingly,
the results of semiempirical calculations correlated well with the DFT results
in case of aliphatic hydroxylation [89], but only low correlation was observed
for aromatic hydroxylation [90]. Other studies later confirmed these results
showing that semiempirical calculations accurately predict DFT energies only
for alkanes [106]. When the activation energies were predicted using various
descriptors, the results also were not enough accurate [89, 90, 105]. Therefore it
was concluded that the simplified methods may give unreliable estimations.

As a consequence of the above described experiments, an interesting method
of utilizing ab initio DFT methods to predict metabolism sites was developed
in the program SMARTCyp [107, 108]. The activation energies are calculated
for small molecular fragments representing most popular metabolism sites, like
aliphatic carbon next to nitrogen or oxygen, vinylic or benzylic carbon, aromatic
atoms in various rings, etc. When predicting for a new molecule, the software
only looks up the energy value for every atom in the precalculated database.
This solves the problem of long lasting computation, and the regioselectivity
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predictions are even superior in comparison to semiempirical calculations. The
reactivity predictions can be later corrected according to the accessibility of
the atom, either by docking substrate into the structure of enzyme [107] or by
simply calculating solvent accessible surface area [108]. Most metabolism sites
of CYP1A2 [107] and CYP3A4 [108] catalyzed metabolism could be predicted
by this regioselectivity model.

1.4.3 Regioselectivity Models Using Structures of Enzymes

Only the predictions of reactivity for every atom in the molecule is sometimes
not sufficient for prediction of likely metabolism sites. Steric effects may make
the reactive site not accessible to the heme-oxygen complex. Therefore most
of the above mentioned reactivity based predictions are later combined with
accessibility evaluation. Solvent-accessible surface area is calculated in ligand-
based models. Such topological description is sufficient for broad specificity
enzymes, like CYP3A4. More accurate methods are needed for more specific
cytochrome P450 isoforms when the most likely metabolism site is determined
by binding of the substrate to the active site of enzyme. As a result, models of
reactivity are often combined to protein-based methods. In such cases docking
a substrate molecule into a known structure of enzyme is a possible solution.

As it was already described above, the patterns of substrate interaction with
CYP3A4 are not clear. The substrates can bind in several places of the active site,
and the protein structure undergoes considerable changes upon ligand binding.
Under these circumstances it is not surprising that the ability to predict of
CYP3A4 metabolism sites by docking is lower than by other methods [99, 100]. A
more successful prediction of regioselectivity of CYP3A4 catalyzed metabolism
involved a specific docking methods with dominant reactivity component [101].

Many published protein-based models predict sites of metabolism by CYP2D6
[109–112], CYP2C9 [100, 102, 113] or CYP1A2 [114, 115]. These enzymes have a
more defined specificity compared to CYP3A4 and are therefore more suitable
for docking. In case of CYP2D6, docking studies mostly aim not to predict the
sites of metabolism but to understand the determinants of the regioselectivity of
the reactions catalyzed by this enzyme [29, 112].
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An interesting method how to utilize docking for predictions of CYP2C9 meta-
bolism sites was published recently [102]. First, the metabolites are generated
using rule-based methods. Then these metabolites are docked into the active
site of enzyme in order to remove false positives. Nevertheless regioselectivity
of CYP2C9 metabolism is predicted less accurately by docking than by other
methods [100], and this raises questions on the potential of wide application of
such models.

One of possible reasons for failures of structural models is the nature of hu-
man drug metabolizing enzymes. The tertiary structures of the major human
cytochrome P450 were determined using X-ray crystallography. The protein
is usually modified before crystallization: the N-terminal membrane anchor is
removed, and sometimes several amino acid residues are substituted to improve
solubility [116]. These modifications cause oligomerization of engineered pro-
teins which can be observed not only in the crystals but also in solution [117].
The significance of these facts is not sufficiently discussed. Moreover, both ex-
perimental and theoretical investigations showed that the structure of CYP2C9
and CYP3A4 changes upon ligand binding [35, 36, 42, 118], and water molecules
can affect substrate binding [43]. Given these facts, the interpretation of data on
tertiary structures of human cytochrome P450 enzymes is not straightforward.

Furthermore, docking algorithms have drawbacks which raise difficulties in
their practical application [119]. The correct binding pose is not always provided
with the highest score. Different programs show best results for particular
proteins, and the performance is usually low having no prior knowledge on
the protein, software and scoring functions. Under these circumstances, only
a skilled computational chemist may produce accurate and reliable docking
results.

A notable example of a use of protein-based model for prediction of metabolism
sites is implemented in the software package MetaSite [98]. This program tries
to solve aforementioned problems of docking methods by providing a fully
automated analysis of substrate interaction with the active site of the selected
enzyme and prediction of the most reactive atoms. These are predicted using a
similar approach to SMARTCyp: hydrogen abstraction energy is calculated for
small fragments by ab initio methods, and when predicting for a new compound,
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the value is looked up in the database. When a certain fragment is not found
among the precalculated ones, semiempirical AM1 method is used.

The protein structure is converted to a flexible Molecular Interaction Field using
the GRID method [120]. The generated fingerprint of the active site is matched
with the fingerprint of organic molecule. The interaction between substrate
and enzyme is described by hydrophobic, hydrogen bond forming or charge
capabilities. Such approach allows for the users of MetaSite to import their
protein structures and apply the method for any cytochrome P450 enzyme.

The predictions of MetaSite has been validated several times in pharmaceutical
companies. About 80% of metabolism sites were identified using this software
in these evaluations [98–100, 121, 122]. The program was applied for metabolic
stability optimization of cyclooxygenase-2 inhibitors [6–8] and for automation
of MS data analysis in metabolite identification [10].

1.4.4 Data Mining Models for Prediction of Metabolism Sites

In the last decades metabolites have been determined experimentally for many
compounds, leading to accumulation of large databases containing thousands
of biotransformation reactions. As a result, various data mining techniques have
been proposed for prediction of metabolism regioselectivity. Reaction sites have
been predicted by fingerprints of known substrates [92, 93], statistical evaluation
of biotransformation rules [95] or by QSAR models [91, 96, 97]. Such empirical
approaches, briefly summarized in Table 1.5, provide the simplest way to utilize
constantly increasing amounts of experimental cytochrome P450 regioselectivity
data.

SPORCalc (Substrate Product Occurrence Ratio Calculator) and SyGMa (Sys-
tematic Generation of Potential Metabolites) use experimental databases to
calculate the frequency of observed metabolites in case of metabolism sites or
biotransformation rules. SPORCalc uses atom-centered structural fingerprints
[92, 93]. Every atom and its neighborhood up to 6 atoms is described by finger-
prints based on 33 atom types. Then similar atoms are retrieved from database
and occurrence ratio of metabolism sites among them is calculated. SPORCalc
has been applied in case of both Phase I and Phase II metabolism, and more than
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Table 1.5: Summary of data mining models for prediction of drug metabolism
regioselectivity.

Model and data Modeling details Test set prediction results

SPORCalc [92, 93]
Training set: 20,029
compounds (64,650
reaction)a,b

Test set: 30 new compounds

Calculation of occurrence
ratios for metabolism sites
among similar ones in
database, described by
atom-centered structural
fingerprints

87% of experimental sites
within 3 highest ranked
positions

SyGMa [95]
Training set: 1,848
compounds (6,187
reactions)b

Test set: update of
databasea,b

P450 test set: 106
compounds (127 reactions)c

Probabilities for 144
biotransformation rules are
calculated according to
fraction of experimentally
observed metabolites

68% of total metabolites
were reproduced. In the
compounds representing
cytochrome P450 reactions,
84% of metabolites were
predicted (107/127).

Sheridan et al. [91]
Training set: 316, 124, and 92
compounds for CYP3A4,
CYP2D6 and CYP2C9
Test set: 25 compounds

Random Forest classification
using atom-centered
fragmental and accessibility
descriptors

Metabolism site was among
the two top ranked atoms for
84% (16/19), 70% (7/10) and
67% (6/9) of molecules in
case of CYP3A4, CYP2D6
and CYP2C9, respectively.

CypScore [96]
Training set: 844 compounds
(2,336 reactions)c

Test set: 345 compounds (612
reactions)

Six binary models for 7
reactions using MLR and
quantum chemical and
surface descriptors

61% of sites obtained high
score (373/612); for 74%
(254/345) of compounds
experimental site was among
3 top ranked atoms.

SOME [97]
Training set: 1,819
metabolism sitesa,c

Test set: Sheridan et al. data;
24 compounds (45
metabolism sites)

Classification models for 6
reactions using SVM and
quantum chemical
descriptors

Accuracy: 79% (295/373
atoms)
Sensitivity 80% (36/45
metabolism sites)

a Data from MDL Metabolite Database.
b Phase I and Phase II biotransformations.
c Cytochrome P450 catalyzed Phase I metabolism reactions.
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1.4. Prediction of Drug Metabolism Regioselectivity

87% of metabolism sites were predicted among three top ranked sites for 30 test
set compounds. Later this method was implemented in the software program
MetaPrint2D [94]. The user of this program can choose similarity thresholds
for customized searching of metabolism sites and select databases to obtain
predictions for human, rat or dog metabolism.

SyGMa is based on prioritization of biotransformation rules [95]. Each of 144
rules covering Phase I and Phase II metabolism are applied to the whole database.
The number of metabolites that match experimental ones is divided by the
number of all metabolites generated according to every rule. This ratio is the
probability score for the rule. If possible, the rules were further refined to make
them more specific and increase the number of correctly predicted metabolites
obtaining higher probability values. For example, aromatic hydroxylation could
be split according to presence of substituents in ortho-, meta- or para- positions,
and aliphatic metabolism sites were attached to aromatic, heteroaromatic or
aliphatic cores. This model predicted 71% of all metabolites in training set
and 68% of metabolites in test set. In case of oxidative Phase I reactions the
results were even better with 84% of metabolites predicted. The number of
false positive predictions is shown to be smaller than in case of other rule-based
biotransformation predictors.

The third approach that is used to develop drug metabolism regioselectivity
models using available experimental data is structure-activity relationship based
on statistical classification and regression methods. First such model was de-
veloped by Sheridan et al. for prediction of metabolism by three major human
cytochrome P450 enzymes, CYP3A4, CYP2D6 and CYP2C9 [91]. The majority
of experimental metabolism sites were within atoms ranked first or second by
models for all three enzymes. Later two structure-activity relationships were
created using quantum chemical descriptors, CypScore [96] and SOME (Site of
Metabolism Estimator) [97]. Position ranked top by CypScore was metabolism
site for 46% of compounds, and 61% of experimental metabolism sites obtained
rank higher than 38, considered as threshold for classification. SOME correctly
predicted about 80% of metabolism sites.

All previously developed structure-activity relationships of metabolism regio-
selectivity have the same drawback: the applicability domain of the model is
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not defined, as the modeling methods do not allow estimation of prediction
reliability. Therefore it was decided to create a new model, predicting the regio-
selectivity of metabolism using the GALAS modeling method. The preliminary
results already established the effectiveness of the methodology and the use-
fulness of calculated Reliability Index in identifying the correct predictions, i. e.
the evaluation of a model applicability domain [123].
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Chapter 2

Data and Modeling Methods

2.1 CYP3A4 Inhibition Data

2.1.1 Literature Dataset

Two datasets have been used in the development and validation of CYP3A4
inhibition models. CYP3A4 inhibition data in the first set (“Literature dataset”)
were collected from various literature sources (scientific publications, drug pre-
scribing information). Inhibition of metabolism of probe CYP3A4 substrates
(midazolam, testosterone, erythromycin, 7-benzyloxy-4-trifluormethylcoumarin
(BFC), nifedipine, and others) has been considered. Classification of compounds
was performed only after critical analysis of original literature in order to identify
any cases of contradictions in experimental CYP3A4 inhibition data, such as
substrate dependency [79, 124] or inconsistency between data obtained using
human liver microsomal and recombinant enzyme [125]. Only IC50 values
determined at substrate concentration close to Km value were used for classific-
ation. Compounds having IC50 < 40 µM were classified as CYP3A4 inhibitors,
having IC50 > 60 µM were classified as non-inhibitors, compounds with inter-
mediate IC50 values (40-60 µM ) or discrepant results in different assays were
marked as inconclusive. In cases when detailed analysis of CYP3A4 inhibition
was available and inhibition constant Ki has been reported, compounds having
Ki < 20 µM were classified as CYP3A4 inhibitors.
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2.1.2 PubChem Dataset

The second set (“PubChem dataset”) was downloaded from National Center
for Biotechnology Information (NCBI) PubChem database (assay ID 884) on
10 June 2008 [126]. PubChem database contained 14127 entries concerning
CYP3A4 inhibition, determined using luminogenic CYP3A4 inhibition screen-
ing method [66]. PubChem data were preprocessed prior to further analysis:
entries containing inorganic compounds, non-covalent complexes, and mixtures
were excluded; salts were converted to corresponding acids or bases; water
molecules were removed from hydrates. All compounds that were marked as
CYP3A4 activators in PubChem database were excluded from further analysis.
The resulting entries were classified as CYP3A4 inhibitors, non-inhibitors or
inconclusive. To identify inhibitors in general the same rules were used as in
PubChem: entry was classified as inhibitor if observed assay score was≥ 40 and
non-inhibitor if the score was 0, with inconclusive range lying between scores of
0 and 40. PubChem activity score is assigned from fitted IC50 value, with respect
to completeness of dose-response curve and efficacy of inhibition (maximum
inhibition response). For compounds having PubChem activity score > 40 the
IC50 is less than 40 µM , therefore the classifications of PubChem and literature
datasets in this case are consistent with each other. No specific effort was made
to review any supporting experimental information and PubChem scores were
used as provided.

Following the classification of the entire PubChem database, the attention was
switched to the compounds provided with several experimental results, i.e.
represented by multiple entries in the database (3797 entries for 1546 com-
pounds with stereoisomers treated as duplicates). Only 55 compounds (4%)
had contradicting classification as active (activity score > 40) in one experiment
while inactive (activity score 0) in another. Such compounds were marked as
inconclusive. Additional 398 compounds (26%) had inconclusive result in one
of the experiments and therefore were also marked as inconclusive. For the
remaining 1093 compounds (71%) that had consistent classification one entry
per compound was left in database.

Another classification scheme was applied to distinguish effective inhibitors in
PubChem dataset: compounds with IC50 < 5 µM and maximal efficacy > 70%
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2.1. CYP3A4 Inhibition Data

Table 2.1: Distribution of compounds in data sets with regard to CYP3A4 inhibi-
tion.

Data set No. of
compounds

Inhibitors Non-
inhibitors

Inconclusive
compounds

Literature dataset a 907 335
(36.9%)

497
(54.8%)

75
(8.3%)

PubChem dataset
(general inhibition) b

11,060 303
2 (27.4%)

5,496
(49.7%)

2,532
(22.8%)

PubChem dataset
(effective inhibition) c

11,060 1,238
(11.2%)

6,401
(57.9%)

3,421
(30.9%)

a Inhibitors: IC50 < 40 µM ; non-inhibitors: IC50 > 60 µM ; inconclusive compounds: IC50

40-60 µM or contradicting results in different experiments.
b Inhibitors: PubChem Activity score > 40; non-inhibitors: PubChem Activity score 0;

inconclusive compounds: other (including contradictory results in repeating experiments).
c Inhibitors: IC50 < 5 µM and efficacy > 70%; non-inhibitors: IC50 > 30 µM ; inconclusive

compounds: other.

were classified as effective inhibitors, compounds with activity score of 0 or
IC50 > 30 µM were treated as inactive, remaining compounds were classified as
inconclusive.

2.1.3 Summary of CYP3A4 Inhibition Datasets

Number of compounds and their distribution with regard to CYP3A4 inhibition
classes for both datasets are summarized in Table 2.1. Inconclusive data from
all datasets were not used in modeling. Compounds that were present in both
literature and PubChem databases were excluded from the latter one, which
was used as a validation set.

Consistency of experimental data for 297 compounds present in both Literature
and correspondingly classified PubChem datasets has been checked before
modeling. 119 compounds have inconclusive classification in one of the sets.
Detailed analysis of experimental values for remaining compounds is given
in Table 2.2. For 156 out of 178 compounds (88%) consistent classification of
inhibition was observed in both datasets.
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Table 2.2: Consistency of experimental data present in both literature and Pub-
Chem datasets.

Literature

Inhibitor Non-inhibitor

PubChem Inhibitor 36 13
Non-inhibitor 9 120

Agreement: 87.6%

2.2 Regioselectivity Data

2.2.1 Modeling Dataset

Experimental data on metabolism in human liver microsomes for 873 com-
pounds were collected from scientific publications dealing with analytical iden-
tification of the metabolites observed after the incubation of compound with
human liver microsomes or recombinant human cytochrome P450 enzymes.

Every carbon atom having at least one hydrogen atom attached was marked as
a site of metabolism, if hydroxylation or oxidation at the atom was observed, or
site of no metabolism otherwise. For dealkylation reactions, carbon atoms of
the leaving groups were marked in the same manner. Sulfur atoms having < 4
neighbors were marked as metabolism sites if they were oxidized. Some atoms
were marked as “inconclusive” and consequently not used in the modeling. The
overall dataset contained 8,608 atoms, 1,326 of them were marked as metabolism
sites.

The complete dataset was then divided into N-dealkylation, O-dealkylation,
aliphatic hydroxylation, aromatic hydroxylation, and S-oxidation subsets ac-
cording to the reaction types. The description and composition of the obtained
subsets in case of human liver microsomal metabolism is outlined in Table 2.3.

Additionally, for compounds having experimental data on CYP2D6 catalyzed
metabolism, the atoms of the modeling dataset were marked if they are sites of
metabolism by this enzyme. Table 2.4 shows the composition of this dataset.
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2.2. Regioselectivity Data

Table 2.3: Datasets of atoms used for regioselectivity modeling.

Subset Description No. of
compounds

No. of
metabolism

sites

Total No. of
marked atoms

N-dealkylation Aliphatic CH
attached to N

511 333 1,173

O-dealkylation Aliphatic CH
attached to O

488 260 1,033

Aliphatic
hydroxylation

Aliphatic CH
(other)

723 318 29,04

Aromatic
hydroxylation

Aromatic CH 739 358 3,341

S-oxidation S with less than
4 neighbors

135 57 157

Total 873 1326 8,608

Table 2.4: CYP2D6 regioselectivity dataset.

Subset No. of compounds No. of metabolism
sites

Total No. of marked
atoms

N-dealkylation 440 104 1,020
O-dealkylation 372 84 777
Aliphatic
hydroxylation

569 58 2,227

Aromatic
hydroxylation

577 108 2,632

S-oxidation 83 15 100

Total 673 369 6,756

2.2.2 External Validation Dataset

After the model has been developed, experimental data for 42 compounds were
collected from scientific literature, mostly from newly published articles. This
dataset served as external validation set, and was also used for comparison of
the predictions with previously published regioselectivity models. All atoms
of the compounds in this dataset were marked if they are sites of metabolism
using the same criteria as in modeling dataset. The list of validation dataset
compounds with references is presented in Chapter 4, Section 4.2.
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2.3 Descriptors

2.3.1 Fragmental Descriptors

Fragmental descriptors were chosen for the modeling of CYP3A4 inhibition.
Molecules were fragmented using a set of 379 predefined fragments. The major
part of this set is intended for the description of general chemical compound
constitution and was comprised of conventional fragmental descriptors, such
as atoms, functional groups, molecular shape fragments, and others. These
descriptors have been already used and proved effective in previous projects,
involving modeling various biological activities and chemical properties [13, 14].
Additionally several typical fragments describing CYP3A4 specificity were ad-
ded (e.g., nitrogen containing heterocycles, methylenedioxybenzene, fragments
representing possible cytochrome P450 metabolism sites, etc.).

2.3.2 Atom-centered Fragmental Descriptors

The regioselectivity of metabolism is not a whole-molecule property: the pos-
sibility of metabolism has to be predicted for every single atom in the molecule.
Therefore modifications of the standard fragmental descriptors were neces-
sary in order to generate different values of descriptors for every atom in the
molecule. The atom-centered fragmentation was developed. It provides inform-
ation about the atom types present at equidistant positions from the selected
atom, called levels. Fig. 2.1 shows how these levels are computed for different
atoms in different molecules.

In order to describe both the metabolism site and the whole molecule, atom-
centered fragmentation up to level 15 was performed. The nature of the selected
atom itself and its neighborhood have the largest influence in the reactivity
of the metabolism site. They were described using fragmental descriptors in
which atoms were differentiated according to element (C, N, O, S, P, halogens,
etc.), hybridization, number of attached hydrogens, cyclization and aromaticity.
This detail description was used up to level 2 for aliphatic carbon atoms. In
case of aromatic atoms it was extended up to level 4 with the intention to cover
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Figure 2.1: Examples of levels in atom-centered fragmentation. Reprinted with
permission from [127].

the first level of all possible substituents in a six-membered aromatic ring. In
addition, slightly different sets of predefined fragments were used for aliphatic
and aromatic carbon as well as sulfur atoms.

The further levels have less influence to the reactivity of metabolism site and
can be described more roughly. Merging of them was performed as it is shown
in Fig 2.2 to reduce the number of descriptors and account for the flexibility of
the molecule. Another merging scheme served as description of the presence
of functional groups having strong electronic effects (-NO2, halogens, -CF3, -
CN, esters, charged groups etc.). The significance of presence of such groups
depending on the distance from the selected atom was assigned in analogy with
the known extent of the electronic interaction propagation over the distance in
the molecule, and then all levels were summed up to one descriptor.

2.4 Statistical Methods

GALAS modeling methodology has been developed utilizing extensive ex-
perience from numerous QSAR modeling projects. Recently the successful
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Figure 2.2: Merging of levels in atom-centered fragmentation. Reprinted with
permission from [127].

application of this methodology in predicting various properties of continuous
nature (e.g., LogP , LD50) has been reported [13, 14]. Two main parts constituting
the basis of the method are a global QSAR model providing baseline predictions
for the property of interest and local corrections calculated according to the
experimental data for the most similar compounds from the training set. The
global model for CYP3A4 inhibition is intended to capture the general trends in
enzyme specificity and identify structural fragments tending to affect inhibition.
The global models of regioselectivity describe the reactivity of the atom in cyto-
chrome P450 catalyzed reactions. The purpose of the second step is identifying
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any systematic errors made by the global model in the local chemical space of
the test compound and compensating for it. In case of regioselectivity model it
can be also viewed as the corrections to reactivity emerging from the binding to
active sites of the enzymes.

In further sections general description of the GALAS modeling method is
provided. The same statistical method was applied for both modeling of
CYP3A4 inhibition and prediction of metabolism sites. The only differences
between the models are that the regioselectivity models use data for atoms
instead of whole compounds, and the atom-centered method for generation of
fragmental descriptors.

2.4.1 Global Model

Baseline QSAR is a linear model built using logistic PLS regression. This method
is a variation of ordinary PLS, possessing all its useful features in combination
with the ability to analyze binary data. The predicted value in this case is the
logit transformation of probability for a compound to exhibit activity (p) which
is calculated as the sum of all the fragmental contributions:

logit(p) = ln

(
p

1− p

)
=
∑
i

aifi + c (2.1)

here p is the probability for a compound to be active; fi is the occurrence sum of
a particular fragment in a molecule; ai – statistical coefficient of the fragment,
determined using logistic PLS; c – intercept.

Such model predicting CYP3A4 inhibition was compared to those developed
using linear Support Vector Machine (SVM) and nonlinear Random Forest
methods. The statistical results were similar for all three models (see Chapter 3,
Section 3.1). In fact, the implementation of GALAS modeling method described
in this article is also possible using other global models as baseline. Logistic PLS
was chosen for further works due to its easier interpretability and our experience
in development of PLS-based QSAR models.
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2.4.2 Dynamic Similarity

Another important role of the baseline model is determining the “dynamic”
similarity key used to compare compounds in prediction space, i.e. in terms of a
particular analyzed property. Igor Tetko and his colleagues were among the first
to realize the advantages of such approach over the use of typical methods that
define the similarity of two molecules in descriptor space and a priori [128, 129].
The same predefined similarity key used in the models for different properties
disregards the possibility that what is similar in case of property A can be
significantly less relevant for property B.

Global model is developed combining logistic PLS with the bootstrapping
technique. The latter method implies random compound sampling from the
initial training set [130], i.e. generation of new training sub-sets and derivation
of independent model for each sub-set. Performing this procedure 100 times
provides each compound with a vector of 100 predictions, each based on a
slightly different part of the initial training set. This ensemble of models contains
information about the influence and stability of every independent descriptor.
Broad variability of the particular descriptor coefficient value across the models
is an indication that the global QSAR cannot correctly estimate its influence.
As a result, molecules containing the same highly variable descriptor are the
best candidates to correct the potentially unreliable baseline prediction. The
more variation is observed in the values of a particular descriptor coefficient,
the more significant contribution the corresponding atom or functional group
should have in the similarity assessment.

On the other hand, the most stable descriptors are those most widely en-
countered (-CH2-, -CH3, aromatic carbon and similar in case of fragmental
descriptors). Their minimal contribution in the similarity assessment (i.e., the
compounds that differ only by one -CH2- or -CH3 group will be treated as nearly
identical by the model) conforms to the general chemical logic that compounds
in homologous series are the most similar compounds among themselves.

The quantitative measure of the individual similarity between any two com-
pounds (Similarity Index, SIi) in the GALAS model is the square of correlation
coefficient (r2) between the prediction vectors. When comparing these vectors,
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the same trends in variability of 100 logistic PLS predictions indicate that the
two compounds possess a very similar pattern of structural features found by
the model to be of great influence in case of the analyzed property. This leads to
a conclusion that two such compounds are indeed similar. Every difference in
the set of significant fragments will inevitably reduce the correlation between
the prediction vectors decreasing the SIi.

2.4.3 Local Model

Determining the similarity between any two compounds is a key process in the
second layer of the GALAS modeling methodology. Here the predictions of
the baseline model are compared to experimental values of the 5 training set
compounds most similar to the query molecule. The final probability estimation
is a combination of global prediction and local correction:

logit(p) = ln

(
p

1− p

)
=
∑
i

aifi + ∆ + c (2.2)

here ∆ is the correction calculated according to the experimental data for the
most similar compounds.

The ∆ value itself is calculated as a weighted average from the differences
between global QSAR predictions and experimental data for the 5 most similar
compounds in the training set:

∆ =

5∑
i=1

wi−1 · SIi ·∆i

5∑
i=1

wi−1

(2.3)

here ∆ is a correction that should be applied for the given prediction from the
global model; w is a weighting constant (simple average is calculated if this
constant is 1); SIi is an individual Similarity Index between given compound
and the i-th most similar compound in the training set; ∆i is the difference
between logit value of the experimental result and the value predicted by global
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model for the i-th most similar compound prior to its transformation into the
baseline probability.

Since function logit approaches negative and positive infinity when its argument
approaches 0 and 1 respectively (the numbers used as experimental result
indications in our case), 5% cut-offs are used at both ends of the probability
value range to avoid unreasonable values while calculating ∆i in eq. 2.3, i.e.,
logit(> 0.95) = logit(0.95) = 2.94 and logit(< 0.05) = logit(0.05) = -2.94. For example,
∆i for experimental positive result and predicted baseline probability 0.7 is
calculated as the difference between logit(0.95) and logit(0.7), and in case of
baseline probability > 0.95 ∆i is zero.

The application of the ∆ correction prior to the transformation using the logistic
function (as shown in eq. 2.2) and subsequent specifics of the ∆i calculation (as
described in eq. 2.3) are prompted by necessity to confine the final corrected
probability (p in eq. 2.2) into the interval between 0 and 1. Straightforward
application of the correction to the baseline probability would leave the pos-
sibility of the final probability exceeding 1 or falling below 0 in certain cases.
Conversely, the above described workflow assures the different influence of the
correction on the final probability depending on the initial baseline prediction.
A proposed large positive correction will have a great impact if the baseline
probability is low, but will not influence the prediction if the baseline probability
is already close to 1.

2.4.4 Estimation of Prediction Reliability

GALAS modeling methodology also allows estimating the quality of predic-
tion. This feature is even more significant than the accuracy improvement,
compared to the global statistical methods. Knowing the prediction reliability
is very important given the fact that any QSAR model is characterized by its
applicability domain, outside of which, the performance of the model is usually
poor [12, 14, 76]. No prediction can be considered reliable if there are no similar
compounds in the training set. In the situations when such compounds do
exist, but experimental data for them are inconsistent with regard to the global
model, predictions based on such data cannot be confident as well. These two
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assumptions provide the basis for the calculation of Reliability Index (RI) which
has been made directly dependent on these two factors.

The presence or absence of similar compounds in the training library is indic-
ated by the compound Similarity Index (SI) to the entire data set. This index is
calculated by weighted averaging of all the individual Similarity Indices (SIi)
for the test molecule and each of the 5 most similar compounds from the training
library. Data-Model Consistency Index (DMCI) is used to quantitatively evalu-
ate the consistency of experimental data of similar compounds with the global
baseline model. DMCI value compares the individual differences between
experimental and predicted baseline property values (∆i) for the same most sim-
ilar compounds from the training library with the overall local correction for the
compound of interest calculated by the eq. 2.3. The more individual differences
are scattered around the calculated average (∆), the more inconsistent are the
data for the similar compounds with regards to the global baseline model and
vice versa.

The final prediction Reliability Index characterizing the applicability domain of
the model is calculated in the following manner:

RI = SI ·DMCI (2.4)

It is a value set to vary between 0 and 1 with larger RI values indicating more
reliable predictions. A more in-depth consideration of some of the mathemati-
cal background of the GALAS modeling methodology is available in a recent
publication [14].

2.4.5 Training of the GALAS Model

Another important feature of GALAS modeling methodology is the possibility
for an easy and straightforward expansion of the applicability domain of resul-
ting models. Training of the GALAS models is performed by simply adding
new compounds with experimental data to the similarity correction (local) part
of the modeling, as shown in Fig. 2.3. If the baseline model is unable to predict
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Figure 2.3: The workflow of the GALAS model trainability testing.

accurately for a certain class of compounds, the local similarity correction can
compensate this inaccuracy by calculating the appropriate ∆ value. Introduction
of the new data results in the adaptation of the local model to a new part of
the chemical space, represented by the newly imported compounds, while the
same global model is used. The latter fact allows performing model training
“on-the-fly” without time consuming full statistical re-parameterization of the
model.

2.5 Development and Validation of Models

2.5.1 CYP3A4 Inhibition Model

The model predicting CYP3A4 inhibition is based on the Literature dataset and
predicts probability for a compound to be a CYP3A4 inhibitor with IC50 < 40 µM .
Literature dataset was randomly split into the training and test set (190 com-
pounds in the test set, ca. 20%). Initially the model was tested on this internal
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test set, followed by a more rigorous validation using the PubChem dataset as
an external test set, which was published after the model has been developed.
As it was already mentioned, compounds that were present in both databases
were excluded from the external test set. Compounds with predicted probabil-
ity > 0.5 were considered as inhibitors, whereas probability of < 0.5 indicated
non-inhibitors. Additionally, the performance of global and local models was
adjusted using receiver operating characteristic (ROC) curves [131].

Following performance test the possibility to train GALAS model has been
investigated. In order to verify whether the model can be trained using data from
a different assay two different trainability experiments have been conducted
on PubChem data classified as CYP3A4 inhibitors using different thresholds.
In the first scenario the model was trained using PubChem dataset, classified
according to PubChem activity score, i.e. data from similar experimental assay.
The second trainability example used PubChem dataset with only effective
CYP3A4 inhibitors classified as positive compounds, mimicking a different
experimental assay with a different potency threshold to identify inhibitors. In
both cases the PubChem dataset was divided into several parts: one half of it
was reserved as the validation set, while the remaining parts were added one by
one to the training library (Fig. 2.3). The similarity correction libraries contained
ca. 2.5, 5, 10, 25, and 50 percent of the PubChem dataset.

The third trainability example involved compounds having a completely new
structural scaffold. CYP3A4 inhibition data for 10 insulin-like growth factor-
1 receptor (IGF-1R) inhibitors have been recently published [132]. All these
compounds were classified as CYP3A4 inhibitors having IC50 < 40 µM . Five
compounds were randomly selected and added one by one to the similarity cor-
rection library which in case of original model consisted of the literature dataset.
After the addition of each training molecule the probability to inhibit CYP3A4
and corresponding RI values were calculated for five remaining compounds.

2.5.2 Regioselectivity Model

Individual models were built for all types of reactions listed in Table 2.3 using
the GALAS modeling method and atom-centered fragmental descriptors. Each
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subset of atoms was randomly divided into the training (70%) and test (30%) sets.
Initially the model has been validated using these internal test sets. Atoms with
calculated probability > 0.5 were considered metabolism sites. The influence of
local modeling was also visualized by ROC curves.

The predictions of regioselectivity model have been further evaluated using
newly published data (external validation set). The predictions were divided
into four classes according to their quality. The definitions of classes are as
follows:

• “Excellent” predictions were those where the model produced probabilities
of > 0.5 for all experimentally determined metabolism sites and the atom
ranked 1st was experimentally determined as a metabolism site.

• In cases where most metabolism sites were predicted with probability
> 0.5, the prediction was marked as “good”, though for some compounds
the atom ranked by the model as most probable metabolism site was
experimentally not found to be metabolize.

• When less than a half of experimentally determined metabolism sites
obtained probabilities > 0.5, the prediction was labeled “satisfactory”. If
the only experimentally determined metabolism site was ranked as one of
three most probable sites, but the probability was < 0.5, the prediction was
also labeled “satisfactory”.

• If the model failed to identify metabolism sites both by score and rank, the
prediction was marked as “unsatisfactory”.

For comparison with previously published regioselectivity models, the metabo-
lism sites in external validation set compounds were predicted using SMART-
Cyp software [108, 133]. Similarly, these predictions were divided into the same
quality classes according to analogous criteria with some modifications due to
different output of the program:

• “Excellent” predictions were those where the atom ranked 1st was experi-
mentally determined as a metabolism site.
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• In cases where most metabolism sites were among top 3 atoms, the predic-
tion was marked as “good”.

• The prediction was labeled “satisfactory” if experimentally determined
metabolism sites was ranked as one of 6 most probable sites.

• If the software failed to identify most of metabolism sites among 6 top
ranked atoms, the prediction was marked as “unsatisfactory”.

After the development and validation of regioselectivity model the trainability
feature was tested using data for fluorinated propranolol derivatives [134, 135].
In this case all analogues and metabolites of propranolol (10 compounds) were
removed from the modeling dataset, and a special model was built without them.
Then three randomly chosen compounds (trifluoropropranolol, propranolol
derivative TFE and propranolol tert-butyl derivative) were added one-by-one to
the similarity correction library which in case of initial model consisted of the
atoms of the modified modeling set (Fig. 2.3). The probability of metabolism
was predicted for all remaining propranolol analogues after each addition.

In order to test the possibility to adapt the GALAS model to the specificity of
a particular enzyme, we marked the modeling dataset according to available
CYP2D6 metabolism data (Table 2.4). CYP2D6 was chosen as the most specific of
major human drug metabolizing enzymes. The same baseline models were used,
and the similarity correction library consisted of the part of CYP2D6 dataset
that intersects with the training set. This model was then tested on the rest of
CYP2D6 regioselectivity dataset.

2.5.3 Software

Molecule fragmentation and all subsequent statistical analysis were performed
using Algorithm Builder 1.8 software [136, 137], except SVM and Random Forest
models for CYP3A4 inhibition which were developed using R 2.6.2 [138]. ROC
curves were generated by a web-based calculator [139]. The trainability of
GALAS models was tested on ACD/ADME Suite 4.95 software application [140].
SMARTCyp predictions of metabolism sites were obtained using a web-based
version of this software [133].
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Chapter 3

Results and Discussion: CYP3A4
Inhibition Modeling

Classification scheme, distinguishing compounds between inhibitors and non-
inhibitors according to their experimental data is the first aspect of any attempt
to develop statistical classification models of enzyme inhibition. Inhibition
potency thresholds selected for classification in earlier structure-activity relation-
ship studies of CYP3A4 inhibition cannot be directly compared between each
other, because experimental estimation of CYP3A4 inhibition depends on the
methods used [63, 79, 80]. The percent of active compounds identified in differ-
ent screening programs also confirms that; and the distribution of compounds
according to CYP3A4 inhibition potency is not the same in available databases.
PubChem screening program identified 27% of compounds with IC50 values
less that 40 µM (see Table 2.1). The study performed on Novo Nordisk in-house
database, utilizing the assay of erythromycin metabolism inhibition in human
liver microsomes, identified a similar fraction of 26% of compounds as active,
yet a lower threshold was used (IC50 = 20 µM , instead of IC50 = 40 µM ) [73].
Even greater proportions of active compounds were reported in other studies
using IC50 thresholds as low as < 10 µM for compound classification (see Table
1.3) [67, 69, 71, 74].

The aforementioned facts suggest that universal and objective thresholds for
classification of compounds into CYP3A4 inhibitors and non-inhibitors cannot
be established [1]. In this work two classification thresholds for diversifying
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3.1. Global Model

the compounds according to their experimental CYP3A4 inhibition data were
chosen. The first one is used to identify inhibitors in general (IC50 < 40 µM ),
while the second one distinguishes only effective inhibitors (IC50 < 5 µM ) from
the rest. The structure-activity relationship model described in this article pre-
dicts general CYP3A4 inhibitory properties (IC50 < 40 µM ) and was built using
data from literature sources (Literature dataset). This unusually high threshold
to classify inhibitors is chosen for consistency of classification of literature and
PubChem data. It allows identification of the most general properties related to
CYP3A4 inhibition.

Further it will be demonstrated how this model, built using GALAS modeling
methodology, is able to adapt itself even to the binary data obtained using
IC50 thresholds other than in the construction of the training set, i. e. when
only effective inhibitors with IC50 < 5 µM were classified as active compounds.
Consequently, proposed classification model based on any selected threshold
can later serve as baseline model in training with CYP3A4 inhibition data from
any available inhibition assay: either based on fluorescent substrate metabolism
by recombinant CYP3A4, or inhibition studies with human liver microsomes, or
other.

3.1 Global Model

The first step of the presented GALAS model is a logistic PLS with predefined
set of fragments as independent variables (see Section 2.4) – a baseline model
of CYP3A4 inhibition. This is a linear and additive model. It produces rele-
vant predictions for both internal and external test sets with accuracy of about
80%. The overall results are comparable to other standard machine learning
methods like SVM and Random Forest (Table 3.1). The fact that an additive
model accurately describes probability for a compound to inhibit CYP3A4 is
in agreement with the very broad specificity of this enzyme [4]. The active site
cavity of CYP3A4 is considerably larger than that of any other cytochrome P450
isoform. It also has the potential to expand considerably on ligand binding
[41, 42] and is even able to accept several molecules simultaneously [34, 42]. The
dependence of CYP3A4 inhibition potency on molecular weight has also been
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3. Results and Discussion: CYP3A4 Inhibition Modeling

shown to be markedly different from that of the other cytochrome P450 isoforms
with no drop in the mean potency for large compounds with molecular weight
of > 750 Da [141]. Therefore, additivity of the model still persists for compounds
with high molecular weight.

The most attractive feature of in silico screening tools is the ability to use them in
the assessment of the properties for virtual compound libraries. Large databases
of structures can be screened even prior to the actual synthesis of the substances.
A part of this study has been devoted to the analysis of the baseline model
predictions for some virtual compounds in order to understand how changes
in chemical structure affect the probability of drug-like compound to inhibit
CYP3A4. Table 3.2 presents predicted probabilities to inhibit CYP3A4 for virtual
ipriflavone analogues. Ipriflavone itself is not a CYP3A4 inhibitor, but its meta-
bolites are weak inhibitors [142, 143]. Similar flavones that inhibit this enzyme
are present in PubChem database. Baseline model predicts ipriflavone as non
inhibitor of CYP3A4 – the probability for this compound to have IC50 < 40 µM
is 0.3 (logit(p) = -0.85).

Two studies have been published recently that are dedicated to the analysis
of the influence of physicochemical properties and most popular substituents
of organic compounds on ADME and toxicity parameters, including CYP3A4
inhibition [141, 144]. The predictions of the baseline model obtained for virtual
compounds in Table 3.2 are within a good agreement with results of these studies.
The predicted probabilities were converted to corresponding logit(p) values in
order to maintain linear scale before comparison of the published changes in
average pIC50 [144] with the predicted values of our models. Then the difference
between the logit(p) of a virtual compound and the logit(p) of ipriflavone was
calculated (∆ logit(p)). This value shows the influence of a particular substituent
in our baseline model. The overall correlation of published changes in pIC50

and ∆ logit(p) for considered virtual ipriflavone analogues is high (r2 = 0.70, Fig.
3.1). Some notable substituents are analyzed further in the text.

Introduction of an acidic group makes the inhibition of CYP3A4 enzyme almost
impossible (predicted probability for virtual analogue p = 0.05, ∆ logit(p) = -
2.1). The negative impact of any acidic group on IC50 for CYP3A4 inhibition
value has been also shown using proprietary data (∆pIC50 = -0.55) [141, 144].
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3. Results and Discussion: CYP3A4 Inhibition Modeling

Table 3.2: Effects of structure modifications of virtual ipri-
flavone analogues on predicted baseline probability for a
compound to inhibit CYP3A4.

  

 

O

O

O

CH3
R1

R2

R1 R2 ∆pIC50
a p logit(p) ∆ logit(p)

Ipriflavone:
-H -H 0 0.3 -0.85 0.00

Ionogenic substituents:
-COOH -H -0.55 0.05 -2.94 -2.10
-H -COOH -0.55 0.04 -3.18 -2.33
–NH2 -H 0.07 0.23 -1.21 -0.36
-H -NH2 0.07 0.26 -1.05 -0.20
-N(CH3)2 -H 0.09 0.15 -1.73 -0.89
-H -N(CH3)2 0.36 0.49 -0.04 0.81

  
 N

-H 0.00 0.19 -1.45 -0.60

Hydrophilic substituents:
–OH -H -0.23 0.25 -1.10 -0.25
-H –OH -0.23 0.29 -0.90 -0.05
-CH2OH -H -0.05 0.33 -0.71 0.14
-CONH2 -H -0.01 0.21 -1.32 -0.48
-SO2CH3 -H 0.12 0.28 -0.94 -0.10
-H -SO2CH3 0.12 0.25 -1.10 -0.25
-H -NHSO2CH3 0.28 0.23 -1.21 -0.36

Ethers, esters and amides:
-COOCH3 -H 0.26 0.48 -0.08 0.77
-H -COOCH3 0.26 0.34 -0.66 0.18
-H -OCH3 0.11 0.37 -0.53 0.32
-H -OCF3 0.44 0.53 0.12 0.97
-H -OCH2CH3 0.22 0.42 -0.32 0.52
-SCH3 -H 0.24 0.35 -0.62 0.23
-H -SCH3 0.24 0.33 -0.71 0.14
-CH2OCH3 -H 0.19 0.45 -0.20 0.65
-OCOCH3 -H 0.16 0.48 -0.08 0.77
-NHCOCH3 -H 0.23 0.39 -0.45 0.40
a ∆pIC50 values are taken from a previous publication [144].
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3.1. Global Model

Table 3.2: Effects of structure modifications of virtual ipri-
flavone analogues on predicted baseline probability for a
compound to inhibit CYP3A4. (continued)

R1 R2 ∆pIC50
a p logit(p) ∆ logit(p)

Aliphatic substituents:
-CH3 -H 0.11 0.36 -0.58 0.27
-CH2CH3 -H 0.32 0.39 -0.45 0.40
-CH2CH2CH3 -H 0.28 0.43 -0.28 0.57
-CH(CH3)2 -H 0.29 0.39 -0.45 0.40
-CH2CH2CH2CH3 -H 0.20 0.48 -0.08 0.77
-CH(CH3)(CH2CH3) -H 0.50 0.41 -0.36 0.48
-C(CH3)3 -H 0.36 0.57 0.28 1.13

-H   
 

0.51 0.53 0.12 0.97

-H   
 N
O 0.42 0.63 0.53 1.38

Aromatic substituents:

  
 

-H 0.46 0.77 1.21 2.06

  
 

-H 0.65 0.88 1.99 2.84

  
 O

-H 0.54 0.57 0.28 1.13

  
 S

-H 0.73 0.54 0.16 1.01

  
 N

-H 0.86 0.68 0.75 1.60

  

 

O -H -b 0.97 3.48 4.32

  
 

N -H -b 0.86 1.82 2.66

  
 
N N

-H -b 0.91 2.31 3.16

  
 O

O -H - b 0.9 2.20 3.04

Halogen containing substituents:
-H -F 0.07 0.27 -0.99 -0.15
-H -Cl 0.21 0.37 -0.53 0.32
-H -Br 0.27 0.35 -0.62 0.23
-H -CF3 0.24 0.48 -0.08 0.77
-CH2F -H 0.52 0.39 -0.45 0.40
-CN -H 0.08 0.36 -0.58 0.27
-H -CN 0.08 0.23 -1.21 -0.36
b The ∆pIC50 for these substituents was not reported in article [144].
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3. Results and Discussion: CYP3A4 Inhibition Modeling

r² = 0.70
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Figure 3.1: The correlation between published changes in average pIC50

(∆pIC50) [144] and changes in values predicted by the baseline model
(∆ logit(p)).

Data on HMG-CoA reductase inhibitors also show that, while in acidic form,
these compounds show no activity towards CYP3A4, whereas their lactone
form inhibits this enzyme [145]. Similar effect is observed in a novel series
of arginine vasopressin V2 receptor agonists. The compound with carboxy
group does not inhibit CYP3A4 while others do [146]. Introduction of a methyl
ester shows positive impact on CYP3A4 inhibition both analyzing experimental
data and predictions of our model (p in the range from 0.34 to 0.48 for esters,
corresponding ∆ logit(p) in the range between 0.18 and 0.77). Therefore it may
be concluded that the negative charge of an acidic group is the most significant
property reducing the interaction between inhibitor and CYP3A4.

Introduction of a strong basic group (e. g., aliphatic amine) slightly decreases the
probability for a compound to inhibit CYP3A4, but the effect is nowhere com-
parable to that of an acidic group (p varies between 0.15 and 0.23, corresponding
∆ logit(p) in the range of -0.89 to -0.36). Similarly, average inhibition potency for
basic compounds has been found to decrease slightly compared with neutral
compounds in large datasets of CYP3A4 inhibitors analyzed in other studies
[141].

Negative impact of various hydrophilic groups (hydroxyl or amide, p ranges
between 0.21 and 0.33, ∆ logit(p) varies within -0.48 and -0.05 with an exception
for hydroxymethyl substituent having ∆ logit(p) = 0.14) is possibly related to
the decrease of lipophilicity of the compound. On the contrary, increasing the
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3.1. Global Model

size of the molecule with hydrophobic aliphatic or aromatic residue results in
the rise of the probability for a compound to inhibit CYP3A4 (p in the range
0.36 to 0.97, ∆ logit(p) varies between 0.27 and 4.32). The majority of previously
reported CYP3A4 specificity models highlighted the importance of multiple
hydrophobic groups for effective interaction with this enzyme [74]. This cha-
racteristic dependency of CYP3A4 inhibition potency on molecular weight and
lipophilicity was as well observed in a recent analysis of a large amount of
CYP3A4 inhibition data [141]. The significance of hydrophobic interactions for
effective CYP3A4 inhibition might be expected from the known crystal structure
of this enzyme, in which a phenylalanine cluster plays an important role in
defining the CYP3A4 active site [41]. This particular fact explains why aromatic
substituents inflict a larger influence on predicted probabilities compared to an
aliphatic chain (probabilities 0.36 to 0.57 for aliphatic chains and 0.57 to 0.88 for
aromatic rings). The introduction of nitrogen containing aromatic rings increases
the probability to inhibit enzyme even more (predicted probability in the range
from 0.68 to 0.97). Possession of the nitrogen-containing heterocyclic moieties
(such as imidazole, quinoline, pyrimidine) gives the compound a possibility to
form complexes with the heme iron inside cytochrome P450 enzymes [53].

Methoxy and ethoxy groups (R−OCH3, R−OC2H5) connected to the aromatic
ring increases probability to inhibit CYP3A4 (p varies from 0.37 to 0.42, ∆ logit(p)

ranges from 0.32 to 0.52). Methoxy group connected to aromatic ring is a possible
site of CYP3A4 mediated metabolism [15]. Substituents of this type increase the
probability for a compound to become a mechanism-based CYP3A4 inhibitor.
One of the biggest impacts on predicted CYP3A4 inhibition probability was ob-
served following the addition of a methylenedioxybenzene substituent (p = 0.9,
∆ logit(p) = 3.04). This group, well known for its relevance in mechanism-based
inhibition, is frequent among cytochrome P450 inhibitors [15, 53].

Although predictive models described here are not able to distinguish mechanism-
based inhibitors from competitive ones, this shortcoming is not likely to be
important in practical applications. Many of the known clinically relevant in-
hibitors like azole type drugs interact with CYP3A4 as mixed type inhibitors –
both competitive and mechanism-based [147]. High-throughput screening ex-
periments used in determination of cytochrome P450 inhibitors cannot identify
mechanism-based inhibition as well.
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3. Results and Discussion: CYP3A4 Inhibition Modeling

3.2 Local Model

The global model described above successfully reflects the general trends of
CYP3A4 inhibition. However, the sensitivity of the model is lower than spe-
cificity (75% in the internal test set and 61% in the external test set, see Table 3.1).
This can be attributed to the features of some CYP3A4 inhibitors which could
not be described using linear model. Under these circumstances a method is
needed that is able to account for possible nonlinear effects. Local correction
of the baseline model predictions according to experimental data for the most
similar compounds (a second layer of the GALAS model) has been developed
to deal with this kind of problems. Moreover, this routine allows estimation of
the prediction reliability in the form of calculated Reliability Index (RI), as well
as training of the model using new experimental data.

Detailed results of the validation of the GALAS model for CYP3A4 inhibition are
presented in Table 3.3. Predictions having RI < 0.3 fall outside the applicability
domain of the model [14] and are not considered here. This affects only a small
fraction of the internal test set. The majority (73%) of its compounds obtain pre-
dictions of acceptable reliability. The statistical parameters of the GALAS model
for such compounds are superior compared to those of the baseline model (over-
all accuracy 89%, sensitivity 83%, specificity 93%). This is actually greater than
classification consistency between the datasets compiled from literature sources
and PubChem database (see Table 2.2). When considering only predictions with
high reliability (RI > 0.5), the accuracy increases to 95%, with both sensitivity
and specificity being higher than 90%. These values approach the accuracy of
experimental measurements that were observed in the analysis of compounds
having multiple experimental values reported in the PubChem database. Such
results serve as the first confirmation that the employed Reliability Index calcu-
lation methodology effectively assesses the quality of prediction and defines the
applicability domain of the model.

The benefits of correcting baseline predictions according to experimental data
for similar compounds can be seen while analyzing receiver operating charac-
teristic (ROC) curves for the internal test set (Fig. 3.2). These graphs show the
dependence between false positive rate (1 - specificity) and true positive rate
(sensitivity) as the discrimination threshold of the model is varied [131]. The
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3. Results and Discussion: CYP3A4 Inhibition Modeling
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Figure 3.2: ROC curves comparing the performance of global and similarity
corrected models on the internal test set: a – compounds within the applicability
domain of the model (RI > 0.3); b – compounds obtaining high reliability
predictions (RI > 0.5). Dotted line indicates random classifier, dashed line –
baseline model, solid line – similarity corrected model.

point (0;1) corresponds to perfect classification. The closer to this point gets
the curve, the better is the model. As it can be seen from the ROC curves for
compounds in the applicability domain of the model (Fig. 3.2, a), local modeling
shifts the baseline predictions towards better classification. The influence of
similarity correction is bigger for compounds obtaining high reliability predic-
tions (Fig. 3.2, b). This can be explained by the fact that significant ∆ values are
calculated only in the cases when highly similar compounds with consistent
experimental data are present in the training library.

Comparison of the GALAS model results for internal test set compounds within
different RI ranges reveal the improvement of all the statistical parameters with
the increase of RI values (see Fig. 3.3). Similar trends are observed when testing
the model on the external set – PubChem dataset. For compounds that belong
to the applicability domain of the model (RI > 0.3) the statistical results are also
better than those of the baseline model (Table 3.3 vs. Table 3.1). The accuracy of
predictions is 89% with acceptable sensitivity (69%) and very good specificity
(93%). Overall prediction accuracy is even better (93%) for compounds having
high Reliability Index (RI > 0.5). However, only less than half (41%) of the
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Figure 3.3: The statistical parameters of GALAS models for internal and external
test set compounds classified according to the Reliability Index values.

PubChem dataset actually belongs to the applicability domain of the model, and
only a small fraction of compounds (14%) obtain high reliability predictions.
In situations like this, the possibility to expand the applicability domain of the
model would be of the utmost importance.

3.3 Training of the GALAS Model

The similarity correction procedure described in the methodological part plays
the major role in the ability to train the model with external data. In addition to
the original training library, initially containing the same training set compounds
used in the development of a baseline model, new compounds can be added
allowing the model to cover a novel, previously unknown, part of the chemical
space.

The above described procedure does not introduce large changes if the baseline
predictions are already correct. Yet if a query molecule representing a part of
the chemical space just added to the model is mispredicted by the global model
which remains unchanged, the similar compounds just added to the similarity
correction library effectively correct this baseline prediction based on the newly
available experimental data.
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3. Results and Discussion: CYP3A4 Inhibition Modeling

3.3.1 Training with Data from a Similar Assay

PubChem dataset was used to demonstrate how training of the model is able to
improve the predictions for new compounds. A randomly selected part of this
database was used as a validation set for trainability testing, while remaining
compounds were added in several portions to form a new training library of the
model, as described in Section 2.5. The results for models containing different
fractions of the PubChem dataset in a training library are presented in Fig. 3.4.

The baseline model predicts CYP3A4 inhibition specificity for the trainability
validation part of the PubChem dataset with overall accuracy of 76%, sensitivity
of 59%, and specificity of 85% (see Fig. 3.4, a). These parameters are comparable
to the baseline model performance on the whole PubChem dataset. Addition of
just a small part of the remaining dataset (ca. 200 compounds) as the training
library markedly improves the statistical performance (accuracy 79%, sensitivity
65%, specificity 87%), whereas further expansion of this library with PubChem
compounds keeps increasing the values of statistical parameters of the model
(see Fig. 3.4, a), reaching a maximum accuracy of 86%, sensitivity of 77%, and
specificity of 90% when > 4,000 compounds are added to the library.

Notably, in all cases the specificity of the model was significantly better than
sensitivity. This means that a compound dissimilar to the training set is always
more likely to be classified as a non-inhibitor. The small number of correctly
identified inhibitors can be named as a major drawback of the baseline model.
This number noticeably increases with the addition of new compounds to the
training library. Just 200 compounds added result in 35% of inhibitors being
identified with RI > 0.3, and this percent increases to 46% when 400 compounds
are added (see Fig. 3.4, b). The fraction of inhibitors identified with high
reliability (RI > 0.5) increases approximately twofold comparing the results for
200 and 400 compounds added to the library (13% and 25% respectively). Even
more inhibitors can be identified if larger training libraries are used because
of expanding of the model applicability domain to cover more compound
structural classes. Following the addition of all available (> 4,000) PubChem
compounds to the training library 50% of CYP3A4 inhibitors are found with
high reliability of prediction.
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Figure 3.4: Training of the GALAS model using data from a similar assay: a –
statistical parameters of the model; b – percentage of identified inhibitors; c –
percentage of compounds predicted with RI > 0.3 and RI > 0.5.
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In order to directly illustrate the actual expansion of the GALAS model applic-
ability domain as a result of new compounds added to the training library; let
us consider the following results. Only 48% of the trainability validation set
belongs to the applicability domain (RI > 0.3) of the model trained with just
200 compounds. The number of acceptable reliability predictions increases to
60% after adding another 200 compounds (400 in total) (see Fig. 3.4, c). Further
enlargement of the training library eventually results in applicability domain of
the model covering 89% of the test set at > 4,000 compounds added (ca. twofold
increase in total). The relative growth in the number of high reliability predic-
tions (RI > 0.5) is even bigger, starting from 14% at 200 compounds added, and
reaching 59% at > 4,000 compounds added (ca. four times more). These results
definitely show the adaptation of the model, based on the literature data, to the
part of the chemical space occupied by the PubChem dataset compounds.

3.3.2 Training with Data from an Assay with a Different Po-

tency Threshold

Following the successful training of CYP3A4 inhibition model with data from a
similar experimental assay classified using the same IC50 threshold, a natural
question arises: can the trainable model described above be adapted for the
discrimination between CYP3A4 inhibitors and non-inhibitors identified using
a different scale? In other words, do the binary data (inhibitor/non-inhibitor)
used in model training necessarily have to be obtained using exact same criteria
as for the training set, or data produced by any screening programs can be used
to train the model, no matter what experimental protocol or inhibition potency
threshold was used to classify compounds in terms of CYP3A4 inhibition? To
test this possibility, the initial model was trained with the PubChem dataset
classified using significantly different inhibition potency threshold (IC50 = 5 µM
versus IC50 = 40 µM used to classify the training set data). The results for the
trained models obtained during this experiment are presented in Fig. 3.5.

The first look at the results reveals that initially many false positive predictions
are observed. Using the baseline model for the classification of the PubChem
validation set, the positive predictive value is only 46%, i. e. only about a half
of compounds predicted as active are indeed experimentally determined as
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Figure 3.5: Training of the GALAS model using data from an assay with different
potency threshold: a – statistical parameters of the model; b – percentage of
compounds predicted with RI > 0.3 and RI > 0.5.

effective CYP3A4 inhibitors. This is an inevitable consequence of the differences
in classification thresholds used. Percent of false positive predictions decreases
and positive predictive value of the model increases following the addition
of the new compounds from the PubChem set to the training library (see Fig.
3.5, a). Improvements in other statistical parameters are observed as well (Fig.
3.5, a). The fraction of reliable and high reliability predictions depends on the
number of new compounds added to the library analogously as observed in the
previous training example (Fig. 3.5, b). These results demonstrate the ability of
the GALAS modeling methodology, employed in this work, to handle data from
different types of experimental CYP3A4 inhibition studies.

3.3.3 Training with Compounds from a New Structural Class

The above examples show the adaptation of the model to experimental data
obtained using a different method or even a different classification threshold. Ob-
viously, having such a large library with experimental data for new compounds
(exceeding the original training set several times) is a reasonable argument
for the revision of the model. Still a simple statistical re-parameterization of
the existing model not necessarily produces better results than the described
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Figure 3.6: Training of the GALAS model with compounds belonging to a novel
chemical class: a – general scaffold of compounds (R1 – aliphatic heterocycle,
R2 – aromatic substituent); b – increase in average predicted probability and RI
values (error bars indicate standard deviation).

training procedure. In contrast, full remodeling is a long process, involving a
more in-depth analysis of data, calculation of new descriptors, etc. When new
experimental data are obtained for only a few compounds belonging to a novel
chemical class, it is usually desirable to avoid these time consuming procedures.

We have decided to test the trainability feature with recently published inhibitors
of insulin-like growth factor-1 receptor (IGF-1R) as a model of such a novel drug
class [132]. The common scaffold of these compounds is not present among
the molecules in the Literature and PubChem datasets and is shown in Fig.
3.6, a. According to the classification rules used in this article, all 10 published
IGF-1R inhibitors are CYP3A4 inhibitors having IC50 < 40 µM . Five randomly
selected compounds were added one by one to the similarity correction library
of the model initially containing literature dataset. The changes of average
predicted probability and average Reliability Index values for the remaining
five compounds are shown in Fig. 3.6, b.

The original model (0 compounds added) predicts three compounds as non-
inhibitors with probabilities ranging from 0.24 to 0.39, and two inconclusively
with probabilities around 0.5. Average probability is 0.46 for all five compounds.
The RIs are low for all predictions with average of 0.13 (values range from 0.09
to 0.16), indicating that novel IGF-1R inhibitors fall outside the applicability
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3.3. Training of the GALAS Model

domain of original CYP3A4 inhibition model. As expected, after adding similar
compounds to the training library both predicted probabilities and RIs increase,
indicating successful model training. In this case adding three compounds is
enough to adapt the model to the novel class of IGF-1R inhibitors as calculated
probabilities to inhibit CYP3A4 and corresponding RI values become higher
than 0.5 for all test compounds.

Recently, the importance of the applicability domain evaluation in QSAR mod-
eling was illustrated in the study involving models for the prediction of plasma
protein binding and CYP3A4 inhibition generated using GlaxoSmithKline in-
house data [76]. Using internal test set the average error of prediction of CYP3A4
inhibition potency (expressed as IC50) was close to experimental variability.
Switching to the external validation set significantly increased the error which
kept steadily growing following each subsequent expansion of this set with
newly available data measured after the model was built. The bigger was the
time gap between model development and new CYP3A4 inhibition measure-
ments, the larger prediction errors were observed [76]. Such time dependence is
a direct consequence of structural diversity changes in the in-house databases of
experimentally tested compounds. Training the model using above described
methodology would be useful in keeping the models up to date and adjusting
them to the parts of chemical space of researcher’s interest. While full revisions
of QSAR models are inevitable from time to time having a substantial amount of
new experimental data, the proposed training procedure of the GALAS model
can be used on a daily basis.
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Chapter 4

Results and Discussion:
Regioselectivity Modeling

Regioselectivity of metabolism is not a typical property for structure-activity re-
lationship analysis. A QSAR model usually predicts whole molecule properties
like LogP , toxicity or enzyme inhibition. The model of metabolism regioselecti-
vity predicts the possibility of reaction for every atom in a molecule. Moreover,
different reactions – hydroxylation of aliphatic and aromatic carbon as well as
heteroatom oxidation – have distinct reaction mechanisms. Therefore building
a QSAR model for prediction of regioselectivity is a complicated task. First
of all the atoms of modeling dataset compounds were marked whether they
are metabolism sites or not. In order to handle the difficulties with reaction
mechanisms the whole database of atoms has been split into subsets which
have the same types of reactions [15]. Then 5 separate models were developed
for N-dealkylation, O-dealkylation, aromatic and aliphatic hydroxylation, and
S-oxidation. Atom-centered fragmentation was used to describe atoms and their
neighborhood.

The developed regioselectivity model was initially validated using an internal
test set, which contained 30% of atoms of the modeling dataset. Then pre-
dictions were obtained for 42 compounds that were not used in modeling on
purpose to see what is the model performance in real-life application on drug
candidates. After this thorough validation, the predictions were compared to
those of SMARTCyp software. This program was chosen because it is also a
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4.1. Internal Validation of the Model

Table 4.1: The performance of the regioselectivity model on the initial test sets
constituting 30% of modeling dataset atoms.

Baseline model

Pred. True Pred. False
Obs. True 273 128 Sensitivity: 68.1%
Obs. False 420 1759 Specificity: 80.7%

Accuracy: 78.8%

After local modeling

Pred. True Pred. False
Obs. True 260 141 Sensitivity: 64.8%
Obs. False 133 2046 Specificity: 93.9%

Accuracy: 89.4%

After local modeling, RI > 0.3

Pred. True Pred. False
Obs. True 203 97 Sensitivity: 67.7%
Obs. False 71 1864 Specificity: 96.3%

Accuracy: 92.5%

After local modeling, RI > 0.5

Pred. True Pred. False
Obs. True 119 34 Sensitivity: 77.8%
Obs. False 22 1310 Specificity: 98.4%

Accuracy: 96.2%

ligand-based model but uses a completely different computational method –
quantum chemistry calculations. Finally, the trainability features of GALAS
model were tested.

4.1 Internal Validation of the Model

The results of initial model validation are presented in Table 4.1. The test sets of
all reactions are joined into one dataset in this table. The performance of baseline
models is already good, 68% of metabolism sites predicted with probability > 0.5,
and 79% of total atoms classified correctly.

Table 4.2 shows the descriptors having largest coefficients in the aliphatic and
aromatic hydroxylation models. The largest positive influence for aliphatic
hydroxylation comes from the sp2-hybridized aliphatic or aromatic system next
to the metabolism site. Oxygen and nitrogen atoms in the second level have
largest negative contribution, probably because the reaction is more likely to
occur right next to these heteroatoms, resulting in O- or N-dealkylation. The
large positive increments for methyl groups show that secondary carbon atom
in ω-1 position and tertiary atom in isopropyl group are more susceptible to
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4. Results and Discussion: Regioselectivity Modeling

Table 4.2: The descriptors having largest coefficients in aliphatic and aromatic
hydroxylation models.

Fragment Level Coefficient % of metabolism sitesa Examples of
metabolism
sitesb

Aliphatic hydroxylation:

CH3 1 0.45 20% (38/189)   R
,

R

Csp2 (aliphatic or aromatic) 1 0.38 24% (156/644)   R

,

Csp2 (aliphatic) 1 0.23 21% (80/385)   R

Csp2 or sp (aliphatic) 1 0.22 21% (81/391)   R

, R

CH2 (cyclic) 0 0.22 12% (67/552)
 

C, connected to Csp2 0 0.20 24% (155/638)   R

,

CH3 2 0.20 13% (65/358)
  

R

,
R

N 2 -0.23 5% (29/543) NH
R

O 2 -0.26 5% (22/441) O
R

Aromatic hydroxylation:

OH 2 0.49 30% (24/81)
  

O

H

meta-substituted ring 1 0.43 11% (231/2040)
  

R

ortho-substituted ring 2 0.42 11% (233/2061)
  

R

para-substituted ring 0 0.33 20% (177/902)
  

R

CH (aromatic) 1 0.31 12% (233/1947)
 H

N (aromatic) 3 -0.32 6% (17/263)
N

,

  
N
H

,
 N

H

Csp2 or sp (aliphatic) 2 -0.33 1% (2/258)
  R

C (aliphatic) 4 -0.37 6% (77/1308)
 

CH3

O 3 -0.52 3% (15/491)
  

OH

a Number of metabolism sites having the fragment in corresponding level divided by
number of atoms having this fragment.

b The metabolism site (marked atom) for which the fragment is found is circled, R means any
structure.
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4.1. Internal Validation of the Model

oxidation than primary carbon. These facts are consistent with the results of
ab initio quantum chemistry calculations [89]. In addition to vinylic, benzylic
and ω-1 metabolism sites, positive influence of methyl groups in level 2 leads to
prediction of oxidation in tertiary butyl groups, which are typical cytochrome
P450 metabolism sites [15].

In case of aromatic hydroxylation carbon atom having a hydrogen next to the
oxidation site has a positive influence. This fact is in agreement with the reaction
mechanism [15, 16]. As it can be seen from other descriptors having largest
positive increments, the metabolism of monosubstituted benzene is predicted in
para-position. Quantum chemistry models estimate oxidation in ortho- and para-
positions [90, 105], but our baseline model tends to predict ortho-hydroxylation
only in case of phenols, as it can be seen from large coefficient for OH group in
level 2. This empirical observation and most of negative influences for aromatic
hydroxylations are harder to explain using published quantum chemistry data.
Thus the baseline models can be viewed as description of the reactivity with
some empirical corrections.

Further advancement of the model is needed because of the high number of
false positives among baseline predictions (about 16% of all atoms). This situ-
ation noticeably changes after local similarity corrections (see Table 4.1). Slight
decrease of sensitivity to 65% is compensated by large increase in specificity to
94%, indicating the diminishing of false positives. The overall accuracy increases
to 89%. The influence of local modeling can be nicely visualized using the ROC
curves (Fig. 4.1). Improvement of classification after similarity based corrections
is observed for all reactions.

Another important feature of the local similarity correction in the GALAS model
is the possibility to calculate the Reliability Index. This value takes into account
the presence and consistence of experimental data for similar atoms. When
considering only predictions with higher values of Reliability Index, all the
statistical parameters improve (Table 4.1). Superior classification among predic-
tions of higher reliability can be also seen from the shift of ROC curves towards
the point of perfect classification (Fig. 4.1). These results demonstrate that RI
effectively identifies correct predictions in a similar manner that was observed
in CYP3A4 inhibition modeling (Chapter 3).
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Figure 4.1: ROC curves comparing the performance of baseline and similarity
corrected regioselectivity models for different reaction types.
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4.2 External Validation of the Model

After obtaining acceptable results for the internal test sets, the model was eval-
uated on an external validation set of 42 compounds that were not used in
modeling. The results show good agreement between predictions and exper-
imental data. The experimentally observed metabolism site obtained highest
probability for 30 compounds (71%), and 35 compounds (83%) had at least one
experimental site among three top ranked atoms. 43 of 73 metabolism sites are
predicted by the model with probability > 0.5 (sensitivity 59%).

Most of the previously published regioselectivity prediction evaluation studies
conducted either by model developers or by independent researchers [91, 97,
99, 100, 122] focus only on a few top ranked metabolism sites. However, this
approach is limited. Top ranked atom is obviously the most probable place
for oxidation in the molecule, but its calculated score (probability of reaction,
activation energy, etc.) can still be negligible, indicating that actually the model
suggests this metabolism site as nonsignificant and the whole compound as not
metabolized. Therefore a new approach for analyzing the predictions is needed
which examines not only ranking of atoms according to calculated possibility of
metabolism, but also the values of calculated metabolism scores.

Such method was used in evaluation of the developed model. The probability
of being a metabolism site was calculated for every atom of 42 external test set
compounds. Analyzing the results for individual compounds, the predictions
were divided according to their quality into four classes: “excellent”, “good”,
“satisfactory”, and “unsatisfactory”. Brief descriptions for these classes are as
follows:

• Excellent: all metabolism sites predicted;

• Good: most metabolism sites predicted;

• Satisfactory: some metabolism sites predicted;

• Unsatisfactory: no metabolism sites predicted.

The detailed definitions of the quality classes are given in the Chapter 2, Section
2.5.2. The whole list of compounds with description of the prediction quality
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Figure 4.2: The distribution of regioselectivity predictions for external test set
according to their quality.

is in Table 4.3, and the detailed predictions can be found in Appendix A. Fig.
4.2 shows the distribution of the external test set compounds according to the
quality of regioselectivity predictions.

Most metabolism sites were predicted for more than 60% of the compounds in
the validation set (22 “excellent” and 5 “good” predictions). As it can be seen
in the Table 4.3, all types of reactions are represented among these predictions.
Fig. 4.3 shows compounds predicted “excellent” that are from well-known drug
classes, such as steroids (medroxyprogesterone acetate), opioids (dimemorfan),
PDE5 inhibitors (vardenafil), which are well represented in the training sets.
The majority of atoms in these compounds obtained high reliability predictions.

Fig. 4.4 shows examples of “excellent” and “good” predictions for compounds
belonging to novel drug classes. Some of them have only one experimentally de-
termined metabolism site which is is ranked as one of three most probable atoms
(NSC 639829, harmine, bepridil, tadalafil). The false positive predictions might
be minor metabolites that were not identified experimentally. The opposite is
observed for TSU-68, carbosulfan, and voreloxin: one of the experimental sites is
not predicted. The two major metabolites are predicted for TSU-68. Interestingly,
in case of voreloxin, the O-dealkylation site is ranked second having probability
0.37. The S-oxidation site of carbosulfan is ranked 4th with probability of 0.23.
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4.2. External Validation of the Model

Table 4.3: List of external validation set compounds with the evaluation of
prediction.

Name Main reactions No. of
exp.
sites

No. of
pred.
sites

Prediction
evaluation

BDB [148] O-dealkylation 1 1 Excellent
Bepridil [122] Aromatic hydroxylation 1 2 Excellent
p-Cresol [149] Hydroxylation 2 2 Excellent
Dimemorfan [150] N-dealkylation, aliphatic

hydroxylation
2 2 Excellent

Gemfibrozil glucuronide
[151]

Hydroxylation 3 3 Excellent

Harmaline [152] O-dealkylation 1 1 Excellent
Medroxyprogesterone
acetate [153]

Aliphatic hydroxylation 3 3 Excellent

5-Methoxy-N,N-
dimethyltryptamine
[154]

O-dealkylation 1 2 Excellent

Methyleugenol [155, 156] Aliphatic hydroxylation 1 1 Excellent
2-Nitroanisole [157] O-dealkylation 1 1 Excellent
Osthol [158] O-dealkylation, aliphatic

hydroxylation
2 2 Excellent

Pefloxacin [122] N-dealkylation 1 1 Excellent
Pinoline [159] O-dealkylation 1 1 Excellent
R-125528 (pactimibe
metabolite) [160]

Aliphatic hydroxylation 1 1 Excellent

Sibutramine [161] N-dealkylation 1 1 Excellent
Sibutramine metabolite M1
[161]

N-dealkylation 1 1 Excellent

SKF 525A [162] N-dealkylation 1 1 Excellent
SKF8742 [162] N-dealkylation 1 1 Excellent
Tadalafil [122] N-dealkylation 1 4 Excellent
Trabectedin [163] Dealkylation, hydroxylation 5 4 Excellent
Trichostatin A [122] N-dealkylation 1 1 Excellent
Vardenafil [164] N-dealkylation 1 1 Excellent
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Table 4.3: List of external validation set compounds with the evaluation of
prediction. (continued)

Name Main reactions No. of
exp.
sites

No. of
pred.
sites

Prediction
evaluation

Carbosulfan [165, 166] Aliphatic hydroxylation,
S-oxidation

2 1 Good

Harmine [152] O-dealkylation 1 3 Good
3-Hydroxycarbamazepine
[167]

Aromatic hydroxylation 1 3 Good

NSC 639829 [168] N-dealkylation 1 3 Good
TSU-68 [169] Aromatic hydroxylation 3 2 Good
Voreloxin [170] Dealkylation 2 1 Good

CP-533,536 [171] N-dealkylation,
hydroxylation

2 2 Satisfactory

Dasatinib [172] Hydroxylation 3 2 Satisfactory
Fluticasone [173] S-oxidation 1 1 Satisfactory
2-Hydroxycarbamazepine
[167]

Aromatic hydroxylation 1 2 Satisfactory

Pactimibe [160] Hydroxylation 2 2 Satisfactory
Piperacillin [174] N-dealkylation 1 0 Satisfactory
Tanespimycin [175] Dealkylation, aliphatic

hydroxylation
4 1 Satisfactory

TZB-30878 [176] Hydroxylation,
N-dealkylation

5 3 Satisfactory

Chenodeoxycholic acid
[177]

Aliphatic hydroxylation 2 0 Unsatisfactory

Cholic acid [177] Aliphatic hydroxylation 1 0 Unsatisfactory
Flu-1 [178, 179] Aromatic hydroxylation 1 0 Unsatisfactory
Sanguinarine [180] Aromatic hydroxylation 2 0 Unsatisfactory
Zearalenol [181] Aromatic hydroxylation 2 0 Unsatisfactory
Zearalenone [182] Aromatic hydroxylation 2 0 Unsatisfactory
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Figure 4.3: “Excellent” predictions for drugs of well-known classes. Experi-
mental metabolism sites are circled, solid arrows indicate confidently predicted
metabolism sites (probability > 0.5 and RI > 0.5), dashed arrows show predicted
sites with RI < 0.5.

Fig. 4.5 shows two examples of these compounds that obtained best of “satisfact-
ory” predictions. In case of pactimibe, the major metabolism site – pyrrolidine
ring oxidation – is not predicted, but site of ω-1 aliphatic hydroxylation ob-
tained probability of 0.52. N-dealkylation that is estimated by the model is
in fact a minor hardly detectable pathway in human liver microsomes [160].
The sulfur atom of fluticasone is ranked second and obtained probability of
0.43, close to the threshold value. Similar situation is observed for piperacillin,
where N-dealkylation site is ranked highest with probability of 0.44. Many false
positive metabolites are notable among other “satisfactory” predictions. It is
important to note that most of them obtained low Reliability Indices. Still, some
of the experimentally determined metabolism sites are identified correctly by
the model.

No metabolism sites were predicted for only 6 compounds (“unsatisfactory”
results). Five of them are natural compounds, such as bile acids or secondary
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metabolites. There were no similar metabolism sites in the training set for these
structures. Natural compounds often contain atypical sites of metabolism which
are difficult to predict, thus the predictions are still in agreement with the general
trends of cytochrome P450 reactivity of drug-like chemicals.

4.3 Comparison to Other Models

After development and validation of a new model it is useful to compare it
to the existing ones. It is worth noting that direct comparison of different
regioselectivity models is hardly possible because different methods produce
different scales of predicted metabolism scores, and the output of programs also
varies. This is the likely reason why only few such studies exist [99, 100].

The predictions of the developed regioselectivity model were compared to
those of SMARTCyp [108]. This software is built using quantum chemical
calculations – a completely different method for obtaining ligand-based models.
The SMARTCyp predictions for 42 external validation set compounds were
also categorized into the same four quality categories (“excellent”, “good”,
“satisfactory”, and “unsatisfactory”) according to similar criteria as were used
for evaluation of our model.

As we can see in Table 4.4, the overall performance of models is similar. Both
models tend to correctly identify metabolism sites in most compounds. Like our
model, SMARTCyp also predicts 28 compounds as “excellent” or “good”. The
higher number of “unsatisfactory” predictions produced by our model (6 vs. 3)
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Table 4.4: Comparison of our model predictions with the ones of SMARTCyp.

SMARTCyp:
Excellent Good Satisfactory Unsatisfactory

Our model:
Excellent 11 4 5 2
Good 2 3 1 0
Satisfactory 0 4 4 0
Unsatisfactory 1 3 1 1
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Figure 4.6: Combination of our model and SMARTCyp to predict sites of metabo-
lism. Experimental metabolism sites are circled, arrows indicate our predictions,
asterisks and numbers show sites predicted by SMARTCyp and their rank.

can be explained by the fact that according to the less strict evaluation criteria
SMARTCyp predicts at least one metabolism site in every molecule.

An important outcome of comparing two regioselectivity models is that combin-
ation of different in silico approaches helps to predict more metabolism sites. Fig.
4.6 shows two example compounds for which the predictions of both models are
satisfactory: only one metabolism site is found using individual approaches. In-
terestingly, different metabolism sites are predicted for dasatinib and CP-533,536.
SMARTCyp forecasts N-dealkylation for both compounds, and our model sug-
gests sites for aliphatic hydroxylation. Furthermore, the N-dealkylation site of
dasatinib is ranked 3rd by our model with borderline probability of 0.46, and
aromatic hydroxylation obtained 4th rank with probability 0.17. As a result,
more possible metabolism sites predicted by the sum of two models could better
guide medicinal chemists about possible modifications to improve metabolic
stability or ease the experimental identification of metabolites by facilitating
analysis of experimental mass spectral data.
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It is also important to note that further comparison studies are necessary for
regioselectivity models. The site of metabolism predictors have to be evalu-
ated by independent researchers using experimental data obtained for novel
compounds as the developers of one model cannot objectively compare it to
the others. On the other hand, the regioselectivity models based on GALAS
modeling methodology have some more useful features in addition to the good
predictive power.

4.4 Adaptation of the Model to Compounds of Novel

Classes

Although most of the metabolism sites of external validation set compounds
have been predicted correctly, the calculated Reliability Indices were low for
many of them, indicating that these metabolism sites are not in the model
applicability domain. We have already shown how to expand this domain
in case of the GALAS model of CYP3A4 inhibition, adapting the model to
recognize novel compounds. New CYP3A4 inhibitors could be predicted after
application of a straightforward training procedure which consists of adding
of new compounds to the similarity correction part of the GALAS model. An
analogous experiment was conducted for the developed regioselectivity models.
Propranolol derivatives which are metabolized by CYP2D6 and CYP1A2 were
chosen as an example of compounds of a novel chemical class. These compounds
have two aromatic hydroxylation sites and one N-dealkylation site [134, 135].

In order to test the possibility to adapt the regioselectivity model to this novel
compound class, baseline models were trained on the modified modeling data-
set with all propranolol analogues and metabolites removed, and the same
dataset was used as similarity correction library. Then three randomly chosen
propranolol analogues were added one by one to this library.

The predictions after model training were similar for all propranolol analogues.
Fig. 4.7 shows the changes in predicted metabolism sites for fluoropropranolol.
The initial model with 0 analogues added predicts only one metabolism site
of three. Such prediction would be classified as “satisfactory” according to the
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Figure 4.7: Changes in prediction of metabolism sites for fluoroproranolol.
Experimental metabolism sites are circled, solid arrows indicate confidently
predicted metabolism sites (probability > 0.5 and RI > 0.5), dashed arrows show
sites predicted with probability > 0.5 and RI < 0.5.

model evaluation criteria (described in detail in Section 2.5). After adding the
first similar compound both aromatic hydroxylation sites are predicted, and
after adding another one, these sites are already estimated with high reliability.
N-dealkylation site is found after addition of the third propranolol analogue,
resulting in “excellent” prediction.

Fig. 4.8 shows the changes in the predicted probability and the Reliability Index.
The steady increase of the calculated probability is observed for all metabolism
sites of fluoropropranolol after adding its analogues to the training library of
the model. The Reliability Indices also increase for all atoms, indicating that the
compounds of novel class are now in the model applicability domain.

This example demonstrates the potential for practical applications of such train-
able regioselectivity model, especially given the fact that the described improve-
ments in predictions following the addition of similar compounds were instant
and required no rebuilding of the baseline models. The regioselectivity model is
more complex than any usual QSAR models and rebuilding it requires consider-
ably more resources. In this situation the possibility to adapt the model to new
chemical classes and new types of metabolism sites is even more significant in
this case than it is for CYP3A4 inhibition. Furthermore, this training proced-
ure can be automated by connecting it to the database with the metabolites of
in-house compounds.
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Figure 4.8: Changes in the predicted probability and RI values for metabolism
sites of fluoroproranolol after training the model.

4.5 Adaptation of the Model to Cytochrome P450 Phe-

notyping

Determination of metabolites formed after incubation with human liver mi-
crosomes is only the first step of analysis of metabolism for a new chemical
molecule. When the major metabolites are already known, the studies are fo-
cused to the identification of enzymes which catalyze their formation – reaction
phenotyping. In this case in silico regioselectivity predictions for individual
enzymes would be useful.

The GALAS models can be a valuable tool in this case. As it was described
above, the global model can be viewed as a description of general reactivity
trends. Local corrections then correspond to binding to the microsomal enzymes.
The model predicts metabolism sites of all cytochrome P450 enzymes if we use
a similarity correction database with the data on regioselectivity of human liver
microsomal metabolism. Alternatively, having a database with only atoms that
are oxidized by a particular enzyme marked as metabolism sites we can adapt
the GALAS model to the specificity of this enzyme.

CYP2D6 was chosen for the experiment of model adaptation to cytochrome
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4. Results and Discussion: Regioselectivity Modeling

Table 4.5: The performance of the regioselectivity model on the CYP2D6 test
sets after training the model with CYP2D6 data.

Baseline model

Pred. True Pred. False
Obs. True 93 24 Sensitivity: 79.5%
Obs. False 508 1449 Specificity: 74.0%

Accuracy: 74.4%

After local modeling

Pred. True Pred. False
Obs. True 79 38 Sensitivity: 67.5%
Obs. False 131 1826 Specificity: 93.3%

Accuracy: 91.9%

After local modeling, RI > 0.3

Pred. True Pred. False
Obs. True 61 26 Sensitivity: 79.1%
Obs. False 58 1646 Specificity: 96.6%

Accuracy: 95.3%

After local modeling, RI > 0.5

Pred. True Pred. False
Obs. True 28 11 Sensitivity: 71.8%
Obs. False 17 1046 Specificity: 98.4%

Accuracy: 97.5%
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Figure 4.9: The percent of false positive predictions in the human liver micro-
somes model and the model, retrained using CYP2D6 data.

P450 reaction phenotyping. This enzyme has a more defined specificity com-
paring to other human drug metabolizing enzymes. Its substrates are aromatic
compounds, having a basic center in the distance of 5-10 Å from an aromatic
ring [20, 22]. The major reactions of this enzyme are aromatic hydroxylation
and O-dealkylation at the aromatic ring and N-dealkylation in the basic amino
group.

The results of prediction of regioselectivity of CYP2D6 metabolism after re-
training can be found in Table 4.5. As it was expected, the baseline models
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4.5. Adaptation of the Model to Cytochrome P450 Phenotyping

applied on CYP2D6 data produce large numbers of false positive predictions.
These constitute about 24% of all predictions, compared to 16% by model,
predicting sites of human liver microsomal metabolism (Fig. 4.9). This results
from to the fact that HLM models take into account metabolites produced by
all enzymes, yet one enzyme can be only responsible for some of them. In
other words, if a particular atom is metabolized by CYP2D6, it is metabolized
in human liver microsomes, whereas the reverse is not necessarily true. After
the similarity corrections the percent of false positive predictions decreases and
is comparable to the microsomal model (Fig. 4.9). The trends of increasing
quality of predictions after filtering them according to the reliability are similar
to those observed in case of all microsomal enzymes. Thus the adaptation of the
model to predict the CYP2D6 metabolism sites is obvious, and we believe that
adjusting the model to the specificity of other microsomal enzymes should be
also possible.
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Conclusions

1. A structure-activity relationship model of CYP3A4 inhibition was de-
veloped using the novel GALAS modeling method. It exhibits good
agreement between experimental and predicted values: the accuracy of
predictions for compounds within the model applicability domain is 89%.

2. A model that predicts regioselectivity of metabolism in human liver micro-
somes was developed. It calculates probability of oxidation for every atom
in the molecule and provides the reliability of prediction, defining the
model applicability domain. Among metabolism sites that were observed
experimentally and predicted with high reliability, 78% were identified
correctly.

3. Local similarity-based corrections improved the accuracy of classification
in case of both CYP3A4 inhibition and metabolism regioselectivity models,
and calculated Reliability Index values clearly correlated with the quality
of predictions.

4. The possibility to train the GALAS model was confirmed by adding ex-
perimental data for new chemical compounds into the local part of the
CYP3A4 inhibition model. Its applicability domain expanded and new
CYP3A4 inhibitors were predicted following this training procedure.

5. The trainability of regioselectivity model was also demonstrated. The
model easily adapted to recognize additional metabolism sites in com-
pounds with a new structural scaffold. Furthermore, the model was re-
trained to recognize the specificity of a particular enzyme, CYP2D6, show-
ing the possibility to use it in the cytochrome P450 reaction phenotyping.
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Conclusions

6. The regioselectivity model was validated on an external set of 42 com-
pounds. Major metabolism sites were predicted for 27 of them, and at least
one site was predicted for 36 compounds. These results are comparable to
the predictivity of SMARTCyp, a quantum chemistry based software.
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Appendix A

Results of External Validation of
Regioselectivity Model

The tables below show all compounds of the external validation set with pre-
dictions for each atom. Only atoms that were marked (i.e., C−H and S atoms)
are listed. Only one of equivalent atoms is included. The experimental sites
of metabolism are bold. AtomNo is the number of atom, p(baseline) – baseline
probability, p – final probability, RI – Reliability Index value.

Excellent Predictions

Compound AtomNo p(baseline) p RI

BDB [148]

1
2

3
4

NH2
5

6
7

8

9
10

11

12

O
13

O
14

1 0.492 0.069 0.764
2 0.117 0.046 0.708
3 0.182 0.098 0.552
4 0.192 0.120 0.485
7 0.256 0.056 0.917

10 0.124 0.053 0.929
11 0.452 0.060 0.914
12 0.856 0.944 0.921
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Compound AtomNo p(baseline) p RI

Bepridil [122]

N
1

N
2

3

4

5

6

O
7

8

9

10

11

12

13

14

15

16

17

18
19

20

21

22

23 24

25 2627

3 0.100 0.088 0.251
4 0.029 0.018 0.469
5 0.400 0.308 0.254
9 0.020 0.016 0.512

10 0.452 0.366 0.365
13 0.072 0.043 0.561
14 0.012 0.036 0.176
15 0.225 0.210 0.314
17 0.212 0.123 0.250
19 0.110 0.042 0.735
21 0.333 0.247 0.295
23 0.180 0.116 0.501
25 0.566 0.291 0.530
26 0.943 0.607 0.373
27 0.957 0.824 0.363

p-Cresol [149]

1
2

3

4
5

6

OH
7

8 1 0.515 0.151 0.741
6 0.816 0.765 0.203
8 0.852 0.741 0.387

Dimemorfan [150]

1

2

3 4

5

6

78

9

10

11 12

13

14

15

16

N
17

H
18

19

20 1 0.063 0.063 0.651
2 0.304 0.100 0.592
4 0.027 0.027 0.829
7 0.005 0.005 0.932
8 0.379 0.079 0.895
9 0.210 0.070 0.907

11 0.315 0.096 0.828
12 0.343 0.100 0.805
13 0.283 0.089 0.768
14 0.194 0.075 0.797
15 0.902 0.877 0.479
16 0.132 0.070 0.877
19 0.007 0.007 0.928
20 0.964 0.970 0.800
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Compound AtomNo p(baseline) p RI

Gemfibrozil glucuronide [151]

1

2

3

4

5

O
6

7

O
8

9

10 O
11

12

13

14

15

16

17

18

19

20

21

22

O
23

2425

O
26

OH
27

OH
28

OH
29

OH
30

5 0.187 0.116 0.208
7 0.057 0.065 0.251

10 0.575 0.506 0.283
12 0.211 0.131 0.436
13 0.098 0.098 0.643
15 0.969 0.920 0.195
16 0.074 0.074 0.419
17 0.963 0.921 0.172
18 0.046 0.046 0.421
19 0.002 0.005 0.434
20 0.002 0.002 0.492
21 0.010 0.010 0.585
22 0.006 0.006 0.425
24 0.013 0.021 0.185

Harmaline [152]

1
N
H

2

3

4

5

6

N
7

8

9

10

11
1213

O
14

15

16

8 0.673 0.133 0.471
9 0.212 0.090 0.576

11 0.698 0.484 0.365
12 0.564 0.175 0.574
13 0.673 0.244 0.285
15 0.600 0.320 0.331
16 0.837 0.841 0.366

Medroxyprogesterone acetate [153]

1

2
3

4

5
6 7

8
9 10

11

12

O
1314

15
16

17

18

19

O
20

O
21

O
22

23

24

25

26

27

28

H
29

H
30

H
31

5 0.033 0.031 0.869
6 0.083 0.038 0.852
7 0.035 0.023 0.747
8 0.048 0.044 0.716

10 0.577 0.790 0.357
11 0.057 0.029 0.722
12 0.271 0.109 0.614
14 0.029 0.029 0.860
15 0.083 0.137 0.692
16 0.316 0.617 0.601
23 0.620 0.762 0.578
24 0.106 0.046 0.779
25 0.110 0.045 0.747
26 0.134 0.080 0.507
27 0.323 0.399 0.416
28 0.230 0.183 0.316
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Compound AtomNo p(baseline) p RI

5-methoxy-N,N-dimethyltryptamine [154]

1

2

34

N
H
5

6

7

8

9

10

11

O
12

N
13

14

15

16 4 0.445 0.108 0.818
6 0.325 0.074 0.738
7 0.631 0.077 0.793
8 0.442 0.094 0.611

10 0.550 0.201 0.304
11 0.332 0.200 0.364
14 0.875 0.918 0.553
15 0.778 0.735 0.158

Methyleugenol [155, 156]

1

2

3

O
4

5

O
6

7

8

9 10

11

1213

3 0.296 0.099 0.732
5 0.217 0.109 0.773
8 0.724 0.384 0.458
9 0.575 0.088 0.788

10 0.798 0.397 0.565
11 0.949 0.904 0.699

2-Nitroanisole [157]

1

2

3

4

5

6

O
7

8

N
+

9 O
-

10

O
11

2 0.322 0.120 0.768
4 0.941 0.813 0.343
5 0.654 0.094 0.767
6 0.372 0.226 0.538
8 0.846 0.847 0.411

Osthol [158]

1
2O

34

5

6
78

9

10
O
11

12

13
14

O
15

1617

18

5 0.652 0.299 0.488
6 0.350 0.332 0.127
8 0.323 0.293 0.189

13 0.147 0.116 0.697
14 0.531 0.203 0.553
17 0.872 0.928 0.470
18 0.698 0.752 0.363

Pefloxacin [122]

12
3

4 5
N
6

7
8

9

N
10

11
12

N
13

O
14

15

16

O
17

18

19

F
20

OH
21

22
23 24 7 0.009 0.009 0.557

9 0.013 0.013 0.545
16 0.194 0.223 0.356
19 0.145 0.137 0.400
22 0.119 0.216 0.346
23 0.901 0.862 0.129
24 0.128 0.094 0.447
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Compound AtomNo p(baseline) p RI

Pinoline [159]

N
H

12

3 4

5

6

NH
7

89

10

11

12

O
13

14 15

6 0.493 0.143 0.563
8 0.278 0.118 0.530
9 0.318 0.201 0.433

11 0.589 0.431 0.619
12 0.593 0.348 0.248
14 0.106 0.134 0.530
15 0.890 0.862 0.260

R-125528 (pactimibe metabolite) [160]

1

2
3

4

5

6
7

N
8

9
10

11
12

13
14

15
1617

18

NH
19

20

21

22

23 24

O
25

26

27

28

OH
29

O
30

6 0.501 0.264 0.327
7 0.450 0.281 0.255
9 0.423 0.458 0.263

10 0.248 0.149 0.352
11 0.136 0.073 0.535
12 0.163 0.109 0.393
13 0.240 0.162 0.415
14 0.406 0.235 0.424
15 0.625 0.633 0.152
16 0.681 0.471 0.317
18 0.407 0.367 0.325
22 0.690 0.184 0.544
26 0.357 0.082 0.543
27 0.759 0.249 0.459

Sibutramine [161]

1

2

3 4

5

6

7

8

9

10
11

N
12

13

14

15Cl
16

17

18
19

1 0.198 0.083 0.614
3 0.088 0.082 0.501
6 0.064 0.059 0.599
8 0.074 0.062 0.544

11 0.137 0.089 0.362
13 0.085 0.075 0.463
14 0.104 0.156 0.333
15 0.309 0.129 0.551
19 0.685 0.866 0.546

Sibutramine metabolite M1 [161]
1

2

3 4

5

6

7

8

9

10
11

NH
12

13

14

15Cl
16

17

18

1 0.185 0.076 0.627
3 0.146 0.107 0.426
6 0.079 0.071 0.587
8 0.091 0.074 0.526

11 0.168 0.100 0.344
13 0.107 0.085 0.464
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Compound AtomNo p(baseline) p RI

14 0.164 0.152 0.250
15 0.295 0.131 0.570
18 0.712 0.761 0.393

SKF 525A [162]

1

2

3

4

5

6

7

8

9

O
10

O
11

12

13

14

15

16

17

18

19

20

21
N
22

23

24

25

26

5 0.200 0.145 0.474
6 0.043 0.036 0.754

12 0.095 0.110 0.339
13 0.145 0.102 0.525
17 0.032 0.030 0.610
18 0.112 0.067 0.575
19 0.798 0.251 0.615
21 0.381 0.301 0.292
24 0.711 0.826 0.282
25 0.043 0.040 0.644

SKF8742 [162]

1

2

3

4

5

6

7

8

9

O
10

O
11

12

13

14

15

16

17

18

19

20

21
NH
2223

24

5 0.206 0.148 0.504
6 0.038 0.033 0.777

12 0.106 0.121 0.369
13 0.115 0.089 0.649
17 0.039 0.037 0.661
18 0.142 0.085 0.636
19 0.790 0.213 0.654
21 0.484 0.369 0.288
23 0.783 0.795 0.225
24 0.086 0.057 0.646

Tadalafil [122]

1

N
2

3

4
N
5

6
7

8
9

10

N
H
11

12

13
14

15

16
17

18 O
19

20

O
21

22

23

24

25
26

O
27

28

O
29

H
30

1 0.028 0.035 0.151
6 0.002 0.002 0.467
7 0.140 0.123 0.502
8 0.017 0.020 0.423

14 0.314 0.132 0.469
15 0.813 0.573 0.128
16 0.735 0.698 0.432
17 0.417 0.178 0.339
20 0.819 0.804 0.245
22 0.095 0.091 0.440
23 0.032 0.019 0.549
24 0.046 0.036 0.396
28 0.653 0.683 0.144
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Compound AtomNo p(baseline) p RI

Trabectedin [163]
1

2

3
4

5

67

NH
8 9

10

11
12

13
14

15

16

17

18
19

20

21
22

23

O
24 25

OH
26

27

28 29

30

H
31

H
32

N
33
34

35

36

S
37

38
O
39

40
O
41

O
42

O
43

44

45

O
46 47

O
48

49
50

OH
51

O
52

53

OH
54

H
55 H

56

H
57

N
58

59

1 0.096 0.100 0.321
4 0.070 0.024 0.168
7 0.006 0.005 0.311

10 0.422 0.156 0.418
17 0.924 0.880 0.192
23 0.017 0.017 0.362
25 0.478 0.598 0.129
27 0.129 0.094 0.344
28 0.000 0.000 0.466
29 0.002 0.002 0.363
30 0.001 0.001 0.326
34 0.000 0.000 0.424
36 0.010 0.009 0.332
37 0.065 0.085 0.163
38 0.001 0.001 0.256
44 0.406 0.455 0.159
45 0.290 0.230 0.396
49 0.616 0.350 0.241
53 0.595 0.783 0.317
59 0.611 0.608 0.310

Trichostatin A [122]

1 2
3

4
5

6
78

9

N
10

O
11

O
12

13

14

15

16 NH
17

OH
18

1920

21

22

3 0.776 0.494 0.234
13 0.038 0.036 0.418
15 0.049 0.042 0.338
19 0.164 0.145 0.428
21 0.677 0.742 0.362
22 0.419 0.258 0.454

Vardenafil [164]

1

2N
3

4

5 N
6

7

8

S
910

O
11 O

1213
14

15
16

17

O
18
19

20

21N
22 N

H
23

24

N
25

26
27

N
28

29

O
30

31

32

33

34

1 0.007 0.007 0.859
2 0.004 0.006 0.844
7 0.165 0.847 0.754
8 0.299 0.079 0.614

13 0.002 0.002 0.902
16 0.013 0.013 0.895
17 0.012 0.012 0.893
19 0.142 0.065 0.803
20 0.417 0.074 0.797
31 0.545 0.266 0.301
32 0.544 0.149 0.637
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Compound AtomNo p(baseline) p RI

33 0.409 0.058 0.809
34 0.659 0.145 0.695

Good Predictions

Compound AtomNo p(baseline) p RI

Carbosulfan [165, 166]

1

2

3

4

5

6

7

8

O
9

10

11

O
12 13

O
14

N
15 S

16

17

N
18 19

20
21

22
23

24
25

26

1 0.334 0.135 0.294
2 0.314 0.138 0.342
3 0.137 0.079 0.314
7 0.784 0.715 0.395

10 0.373 0.157 0.478
16 0.220 0.232 0.145
17 0.754 0.302 0.465
19 0.146 0.158 0.286
21 0.101 0.060 0.486
22 0.322 0.169 0.284
23 0.545 0.291 0.434

Harmine [152]

N
H

12 3

4 5

6

7

8

N
9

10

11 12
13

O
14

15

16

6 0.574 0.145 0.613
7 0.287 0.064 0.550

11 0.546 0.697 0.557
12 0.834 0.869 0.559
13 0.746 0.155 0.665
15 0.721 0.291 0.385
16 0.728 0.717 0.173

3-Hydroxycarbamazepine [167]

N
12

3

4
5

6

7

8
9

10

11

12 13

14

15

16

O
17NH2

18

OH
19

8 0.035 0.046 0.481
9 0.873 0.720 0.157

11 0.377 0.439 0.539
12 0.192 0.099 0.698
13 0.717 0.717 0.383
14 0.901 0.825 0.511
15 0.106 0.078 0.628
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Compound AtomNo p(baseline) p RI

NSC 639829 [168]

1
2

3

4
5

6

N
7
8

9

10

O
11

NH
12

13

O
14

NH
15

16

17
18

19

20
21 22

O
23 24

N
25 26

27
28

N
29 Br

30

1 0.872 0.869 0.255
2 0.096 0.085 0.296
5 0.266 0.161 0.369
6 0.421 0.279 0.319
9 0.753 0.755 0.204

17 0.101 0.120 0.489
18 0.073 0.065 0.342
21 0.040 0.054 0.367
22 0.822 0.724 0.210
26 0.021 0.024 0.321

TSU-68 [169]

NH
12

3

4
56 7

8
O
9

OH
10

11

12

13
NH
14

15

16

17

18

19 20

21

22

O
23

7 0.371 0.173 0.339
8 0.601 0.447 0.374

11 0.499 0.182 0.508
12 0.488 0.234 0.373
18 0.086 0.071 0.386
19 0.839 0.846 0.357
20 0.767 0.656 0.177
21 0.200 0.084 0.509

Voreloxin [170]

1
2 3

4

N
5

6

7
8

9

N
10

O
11

OH
12

13

O
14

151617

18

19

N
20

21
O
22

23

NH
24

25

S
26

27

N
28

1 0.004 0.004 0.510
2 0.042 0.037 0.457
9 0.033 0.029 0.206

16 0.091 0.082 0.337
17 0.039 0.037 0.261
18 0.012 0.012 0.331
19 0.096 0.087 0.329
21 0.407 0.373 0.119
23 0.707 0.665 0.208
25 0.308 0.245 0.322
26 0.046 0.044 0.115
27 0.272 0.246 0.217
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Satisfactory Predictions

Compound AtomNo p(baseline) p RI

CP-533,536 [171]

1
2

3

4
5

6

O
7

8

9
O
10

11
N
12

S
13

14
1516

N
17

18
19

20
21

O
22

O
23

24
25

26
27

28
29

30

31
32

OH
33

1 0.086 0.058 0.339
3 0.516 0.431 0.107
4 0.040 0.039 0.487
5 0.338 0.150 0.385
8 0.395 0.255 0.259

11 0.134 0.057 0.280
15 0.260 0.136 0.383
16 0.358 0.187 0.428
18 0.944 0.592 0.427
19 0.568 0.284 0.436
20 0.253 0.215 0.216
24 0.014 0.013 0.502
25 0.153 0.092 0.234
32 0.777 0.719 0.220

Dasatinib [172]

N
1 2

3

N
4

5
6 7

8 OH
9

N
1011

12 S
13

14 NH
15 16

N
17 18 N

19

20

21

22NH
23

O
24

25
26

27

28
29

30

Cl
31

32

33

2 0.029 0.040 0.185
3 0.044 0.059 0.130
7 0.433 0.457 0.220
8 0.110 0.095 0.511

11 0.006 0.006 0.386
13 0.027 0.024 0.377
21 0.036 0.030 0.453
27 0.066 0.066 0.431
28 0.276 0.171 0.246
29 0.069 0.056 0.310
32 0.891 0.875 0.328
33 0.875 0.730 0.082

Fluticasone [173]

1

2

3

4 5
6

7

8

9

10

11

O
12

13

14

15

16

17

18

19
F
20

O
21

O
22

O
23

24

25

OH
26
27

28
S
29

30

F
31 32

33

H
34

H
35

F
36

5 0.028 0.027 0.767
6 0.019 0.016 0.662
8 0.001 0.001 0.790
9 0.016 0.016 0.670

11 0.228 0.105 0.502
13 0.060 0.071 0.427
14 0.019 0.018 0.645
18 0.467 0.799 0.332
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Compound AtomNo p(baseline) p RI

24 0.071 0.051 0.598
27 0.083 0.059 0.625
28 0.462 0.185 0.181
29 0.262 0.428 0.377
32 0.411 0.198 0.372
33 0.135 0.099 0.512

2-Hydroxycarbamazepine [167]

N
1

2

3

4
5

6

7
8

9

10 11

12

13

14
15

16 O
17

NH2
18

OH
19

8 0.198 0.146 0.473
10 0.702 0.481 0.230
11 0.077 0.052 0.599
12 0.229 0.113 0.667
13 0.784 0.696 0.513
14 0.901 0.825 0.511
15 0.106 0.078 0.628

Pactimibe [160]

1

2
3

4
5

6

N
7

8
9

10
11

12
13

14
15

16
17

18

19

20

OH
21

O
22

23

NH
24

25

26

O
27

28

29 30
8 0.091 0.093 0.261
9 0.253 0.176 0.357

10 0.585 0.557 0.180
11 0.084 0.055 0.460
12 0.090 0.061 0.394
13 0.127 0.096 0.342
14 0.195 0.122 0.423
15 0.323 0.180 0.504
16 0.562 0.517 0.173
17 0.633 0.419 0.303
18 0.211 0.100 0.382
19 0.672 0.210 0.385
23 0.294 0.151 0.440
28 0.608 0.298 0.306
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Compound AtomNo p(baseline) p RI

Piperacillin [174]

N
1

2

N
3

4

5

6

7

8

S
9

10

11

NH
12

NH
13

14

N
15

16

17

18

O
19

O
20

O
21

22

O
23

O
24

O
25

26

OH
27

28

29

30

31

32

33

34

35

36

H
37

2 0.001 0.001 0.468
5 0.000 0.000 0.505
7 0.007 0.007 0.289
9 0.022 0.024 0.301

16 0.013 0.013 0.458
18 0.002 0.002 0.351
22 0.002 0.002 0.369
28 0.112 0.084 0.540
30 0.312 0.442 0.099
31 0.019 0.018 0.388
33 0.201 0.171 0.300
34 0.021 0.020 0.446
36 0.084 0.082 0.427

Tanespimycin [175]

1
2

3
NH
4

O
5

6

7
8

9
10

N
H
11

12

13

14
15

16

17

18

19

20

21

22
23

24

25

26

27O
28

O
29

O
30

31 32

O
33

34

O
35

36

37
38

39
NH2
40

O
41

OH
42

3 0.036 0.036 0.342
10 0.101 0.061 0.358
12 0.010 0.010 0.337
13 0.023 0.020 0.358
16 0.014 0.014 0.366
17 0.059 0.059 0.384
20 0.122 0.052 0.340
23 0.015 0.015 0.458
24 0.069 0.149 0.238
31 0.058 0.028 0.442
32 0.048 0.028 0.368
34 0.080 0.065 0.340
36 0.474 0.640 0.169
37 0.182 0.438 0.135
38 0.519 0.195 0.429

TZB-30878 [176]

N
1
2

3

N
4

5

6

7
8

9
10

11
12

13
14

15

N
16

17

18

N
19
20

21
N
22

23

24

25
26

27

28

29

30

NH2
31

O
32

7 0.825 0.723 0.182
8 0.533 0.336 0.224
9 0.769 0.699 0.159

10 0.582 0.369 0.334
11 0.238 0.207 0.319
12 0.041 0.035 0.389
13 0.021 0.020 0.528
14 0.886 0.864 0.205
15 0.006 0.006 0.488
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Compound AtomNo p(baseline) p RI

17 0.013 0.012 0.494
23 0.024 0.024 0.445
25 0.077 0.073 0.369
27 0.398 0.134 0.295
28 0.557 0.366 0.281
29 0.371 0.287 0.472
30 0.476 0.242 0.263

Unsatisfactory Predictions

Compound AtomNo p(baseline) p RI

Chenodeoxycholic acid [177]

1
2

3

45

6

78
9

10

11

12

13 OH
14

15

16

17
18

1920

21

22

23

24

25

OH
26

OH
27

O
28

H
29

H
30

H
31

H
32

1 0.067 0.047 0.675
2 0.032 0.028 0.681
4 0.050 0.038 0.602
5 0.148 0.110 0.618
6 0.012 0.012 0.682
7 0.226 0.083 0.611
8 0.058 0.038 0.570
9 0.094 0.053 0.704

10 0.161 0.120 0.551
12 0.026 0.023 0.728
13 0.052 0.051 0.539
15 0.070 0.055 0.626
16 0.381 0.185 0.464
17 0.327 0.166 0.470
18 0.112 0.080 0.639
19 0.119 0.105 0.623
20 0.041 0.036 0.706
21 0.111 0.091 0.534
22 0.152 0.088 0.534
23 0.340 0.089 0.509
24 0.026 0.026 0.563
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Compound AtomNo p(baseline) p RI

Cholic acid [177]

1
23

4

5

67

8

9 OH
10

11
12

13

14

15

16

17

18OH
19

20

21

22

23

24

25

OH
26

27

OH
28

O
29

H
30

H
31

H
32

H
33

1 0.018 0.015 0.697
2 0.057 0.041 0.625
3 0.126 0.088 0.627
4 0.011 0.011 0.676
6 0.028 0.024 0.621
8 0.012 0.011 0.716
9 0.038 0.037 0.608

11 0.188 0.093 0.583
12 0.010 0.010 0.592
13 0.080 0.045 0.722
14 0.094 0.066 0.593
15 0.312 0.166 0.507
16 0.260 0.147 0.571
17 0.084 0.059 0.643
18 0.041 0.035 0.548
20 0.084 0.070 0.598
21 0.120 0.086 0.550
22 0.091 0.083 0.645
23 0.030 0.027 0.675
24 0.023 0.023 0.581
25 0.284 0.135 0.224

Flu-1 [178, 179]

1N
+

2
3

4

NH2
5

6

7

O
-

8

O
9

10

F
11

F
12

F
13

14 6 0.516 0.303 0.544
7 0.237 0.163 0.716

14 0.636 0.258 0.715

Sanguinarine [180]

1

2

3

N
+

4
5

6

7

8

9 10

11
O
12
13

O
14

1516

1718

O
19

20

O
21

22

23 24

25

1 0.101 0.087 0.391
5 0.236 0.202 0.350
6 0.210 0.198 0.237
9 0.364 0.203 0.506

10 0.392 0.236 0.391
13 0.557 0.323 0.414
17 0.181 0.181 0.478
20 0.547 0.396 0.361
23 0.797 0.451 0.313
25 0.424 0.174 0.285
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Compound AtomNo p(baseline) p RI

Zearalenol [181]

1
2

3

4

O
5

6

O
7

8
9

OH
10

11

OH
12

13

OH
14

15

16

17

18

19

20
21 22

23

6 0.680 0.054 0.635
8 0.295 0.070 0.402

11 0.045 0.045 0.379
13 0.168 0.083 0.312
15 0.014 0.052 0.460
16 0.096 0.047 0.525
17 0.051 0.036 0.553
18 0.045 0.035 0.445
19 0.068 0.063 0.524
20 0.069 0.032 0.614
21 0.055 0.031 0.618
22 0.086 0.039 0.622
23 0.048 0.023 0.729

Zearalenone [182]

1
2

3

4

O
5

6

O
7

8 9

10

O
11

1213

OH
14

15

OH
16

17

18

19 20

21

22

23

6 0.649 0.047 0.618
8 0.203 0.095 0.209

15 0.031 0.031 0.362
17 0.161 0.080 0.543
18 0.176 0.152 0.468
19 0.375 0.246 0.503
20 0.317 0.199 0.490
21 0.084 0.049 0.608
22 0.094 0.075 0.459
23 0.215 0.127 0.604
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Summary in Lithuanian (Santrauka)

Pagrindinis šio darbo tikslas buvo kiekybinio struktūros ir aktyvumo ryšio
modelių, prognozuojančių su vaistų metabolizmu susijusias savybes, kūrimas.
Modeliai, prognozuojantys CYP3A4 slopinimą ir žmogaus kepenų mikrosomų
katalizuojamo metabolizmo regioselektyvumą, buvo sukurti naudojant GALAS
(angl. Global, Adjusted Locally According to Similarity; Globalus, lokaliai
pakoreguotas pagal panašumą) modeliavimo metodą, kuris geba įvertinti pro-
gnozės patikimumą, taip apibrėždamas modelio pritaikymo sritį. Sukurtų
modelių prognozės buvo tikrinamos naudojant eksperimentinius naujų cheminių
junginių duomenis. Visų globalių modelių prognozės gerėjo po korekcijų pagal
panašumą, o neteisingų spėjimų skaičius buvo ženkliai mažesnis tarp aukšto
patikimumo prognozių. Visgi daugiau nei pusė išorinių duomenų nepatenka
į šių modelių pritaikymo sritį. GALAS modeliai gali būti gana paprastai ap-
mokomi, pridedant naujus duomenis į lokalią modelio dalį ir apskaičiuojant
reikiamą korekciją. Po tokios apmokymo procedūros CYP3A4 slopinimo mod-
elis prisitaikė prie PubChem duomenų bazės cheminių junginių ir taip pat prie
vaistų, turinčių naują cheminį karkasą. Pridėjus naujų junginių ir apmokius
regioselektyvumo modelį, jis pradėjo prognozuoti naujas metabolizmo vietas.
Pastarasis modelis taip pat buvo pritaikytas atskirų fermentų katalizuojamo
metabolizmo prognozavimui.
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