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Abstract. This paper explores very acute problem of portfolio secondary over-

fitting. We examined the financial portfolio inputs random selection optimiza-

tion model and derived the equation to calculate the mean Sharpe ratio in de-

pendence of the number of portfolio inputs, the sample size L used to estimate

Sharpe ratios of each particular subset of inputs and the number of times the

portfolio inputs were generated randomly. It was demonstrated that with the

increase in portfolio complexity, and complexity of optimization procedure we

can observe the over-fitting phenomena. Theoretically based conclusions were

confirmed by experiments with artificial and real world 60,000-dimensional 12

years financial data.

Keywords: Complexity, financial portfolio, overfitting, sample size, variable

selection

1. Introduction.

Data mining methods are slowly making their way into finance, where trading is
mainly dominated by econometric and statistical models. The same is with financial
portfolio construction. Markowitz mean variance portfolio optimization was proposed
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many years ago and many practitioners still use it in original form to create (learn
from data) optimal portfolios [1, 2]. Mean variance portfolio optimization (MVO) is
typically used to construct portfolios from various investments. For example, how
much stocks bonds and real estate one needs to have in its portfolio to achieve best
risk reward ratio? The quality of the portfolio is typically measured by the Sharpe
ratio (Sh) [2]. This ratio is a mean of the profits divided by the variance (stan-
dard deviation). It constitutes how much you earned and with what risk. Very few
investigate nonlinear methods offered by machine learning community.

The MVO works with any time series of profit and loses (PNL). So people use it
with artificial investments such as generated by automated trading systems. Auto-
mated trading is known as algorithmic trading, systematic trading and other names.
It is the process where human puts his investments knowledge into the computer
program and allows the program to make buy and sell decisions automatically. It
varies by types, trading frequency and strategies that are used. The trading firms
can employ many potential trading systems. Each trading strategy (TS) can be run
in simulated mode and out of this simulation is the series of PNLs. These series
correspond to the success of the trading systems to generate profits. The question is
what algorithms to trade together to maximize profitability and minimize the risk.
Such time series can be used by the MVO engine to calculate the best portfolio best
set of trading strategies. Numerous factors influence this process.

Complex portfolio design rules having too large number of inputs for relative
short learning sequences often lead to overfitting. It is very easy to get good results
in simulations with training data, but notoriously difficult on the unseen data. Main
factors that are affecting the overfitting are: the training set size, a number of portfolio
inputs, inexact estimation of means values and correlations of the returns [3]. In view
of that, it is also very important to verify strategies in out of sample manner and
select such methods that will work well on the unseen data.

In present-day tasks we face extremely large number (say, N = 60,000) of trading
strategies and need to construct an investment portfolio for trading during short
future time interval. Obviously, we cannot include all N systems into the portfolio.
Therefore, we are obliged to choose much smaller subset of the best systems and use
simpler portfolio design methods [3]. The simplest portfolio is an equal weighted rule
where one weights all selected investments equally. This non-trainable portfolio is
called, 1/N , or Näıve portfolio. Often it outperforms more sophisticated methods
[4, 5].

Machine learning has numerous methods that allow to deal with imprecise data
and to perform feature selection or extraction. Many methods select the “best” subset
of Nb (Nb � N) trading strategies (TS) are suggested in the literature [6, 7].

The simplest way to generate Nb - dimensional subset is to sort N trading strate-

gies according to sample estimates of the Sharpe ratio, Ŝh. In this approach, one

selects Nb of them having the highest Ŝh values (method A). Sadly, this method ig-
nores correlations. Sophisticated way of the best subset selection is forward selection
Comgen procedure [8] that takes into account the correlations (method B). It makes
series of locally optimal solutions and hopes that it will lead to a near global optimum
solution. The benefit of this system is in its simplicity and granularity, as it virtually
creates integer portfolio weights (0, 1, 2, . . . ) that can be traded straight away.

An important alternative is a random selection (method C) where one generates
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m independent random subsets composed of Nb TSs. One estimates Sharpe ratios of

m subsets, and selects the best subset having the highest Ŝh value. An advantage
of this method is a possibility to analyze the accuracy of the best selection procedure
theoretically. Moreover, this way allows taking into account the correlations and
frequently leads to selection of good subset.

Analysis of diverse portfolio design schemas suggested by multiple authors showed
that majority of them does not hold out-of-sample scheme [9]. To obtain reliable
results, in selection of the best input subset or the portfolio design strategy one needs
to use independent validation data set. Due to finite size, the validation data is also
imprecise. Hence, selection of the TSs subset is inexact. In such circumstances, use
of more complex selection algorithm or an increase in the size of the TSs subset, Nb,
often does not lead towards the desirable result. It is worth noting that typical MVO
assumes that correlation, variance and profitability of the time series will remain
constant. Notoriously it changes and changes a lot. Therefore, in the portfolio input
and design scheme selection we face notable adaptation to validation set (secondary
overfitting).

To our knowledge the secondary overfitting effect was never considered in the
portfolio design literature. An objective of the present paper is analytic, numeri-
cal and experimental clarification of reasons of this important for the practitioner
phenomenon and choosing for research directions allowing to overcome this difficulty.

2. Theoretical analysis of accuracy.

An objective of the present section is to obtain an analytical formula to calculate a
mean value of true Sharpe ratio when random selection procedure C is used to learn
(find) the “best subset” of TSs. To examine the accuracy, one needs to define a distri-
bution density function of true Sharpe ratio values ft(Sh), and conditional density of

estimates, fc

(
Ŝh | Sh

)
. To simplify theory and numerical analysis, we assume true

values, Sh, and estimates, Ŝh, can take only discrete values, Sh1, Sh2, . . . , ShA, and

Ŝh1, Ŝh2, . . . , ŜhB . If numbers A and B are sufficiently large, this simplification is
not restrictive. Let the elements of both vectors are ranked in an increasing way. In

the discrete model, instead of probability densities ft (Sh), and fc

(
Ŝh | Sh

)
, we deal

with probabilities of discrete values

Ptrue (Sh = Shi) = Ptrue i, (i = 1, 2, . . . , A) , (1)

Pcond

(
Ŝh = Ŝh

j | Sh = Shi

)
= P cji , (i = 1, 2, . . . , A; j = 1, 2, . . . , B) , (2)

where P stands for the probability.
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To investigate relations between the sample size and accuracy analytically, we need

to choose models Ptrue(Sh = Shi) and Pcond

(
Ŝh = Ŝh

j | Sh = Shi

)
. To calculate

the mean Sharpe ratio, E (Sh), we need to derive two expressions:

1. conditional probabilities Pcond

(
Ŝh = Ŝh

j | Sh = Shi

)
and

2. probabilities of the maximal values of m estimates Ŝh1, Ŝh2, . . . , Ŝhm (here
subscript indicates a serial number the of Nb - dimensional subset of TSs’).

Note, each estimate, Ŝhl, can get any of B values defined in Eq. 2.

Without loosing generality, we normalize values of Sh and Ŝh to have them varying
in interval [0, 1]. According to the theory of probabilities, a joint probability of two

dimensional vector (Sh, Ŝh)

Pjoint

(
Ŝh = Ŝh

j
, Sh = Shi

)
= P cji × Ptrue i = P jointij . (3)

Then unconditional probability

Pucond(Ŝh = Ŝh
j
) =

A∑

i=1

(P cji

(
Ŝh = Ŝh

j
, Sh = Shi

)
× Ptrue (Sh = Shi) =

A∑

i=1

(
P jointij × Ptrue i

)
= P juc.

(4)

Subsequently, conditional probabilities can be expressed as

Pcond

(
Shl = Shi | Ŝh = Ŝh

j

l

)
=
Pjoint

(
Ŝhl = Ŝh

j
, Shl = Shi

)

Pucond(Ŝhl = Ŝh
j
)

= P jci, (5)

where the subscript index l means ”any of 1, 2, . . . ,m”.
According to definition of the maximal values their probabilities can be expressed as

Pcond

(
Ŝhmaximal = Ŝh

j)
=P

(
Ŝh1 < Ŝh

j+1
, Ŝh2 < Ŝh

j+1
, . . . , Ŝhm < Ŝh

j+1)−

P
(
Ŝh1 < Ŝh

j
, Ŝh2 < Ŝh

j
, . . . , Ŝhm < Ŝh

j)
.

In the random search selection, the probabilities Ŝh1, Ŝh2, . . . , Ŝhm are indepen-
dent. Thus,

P
(
Ŝhmaximal = Ŝh

j)
= P

(
Ŝhl < Ŝh

j+1)m − P
(
Ŝhl < Ŝh

j)m
(6)

where P
(
Ŝhl < Ŝh

j)
=
∑j−1
l=1 P

l
uc.
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As a result

P
(
Ŝhmaximal = Ŝh

j)
=

(
j∑

l=1

P luc

)m
−
(
j−1∑

l=1

P luc

)m
(7)

Then the mean value of the expected Sharpe ratio after the random selection
procedure, E(Sh), can be calculated from Equations (5) and (7)

E(Sh) =
A∑

i=1

Shi ×
B∑

j=1

Pcond

(
Shl = Shi|Ŝhl = Ŝh

j)× P
(
Ŝhmax = Ŝh

j)
=

A∑

i=1

Shi ×
B∑

j=1

P jci ×
((

j∑

l=1

P juc

)m
−
(
j−1∑

l=1

P juc

)m) (8)

3. Numerical analysis of the two-dimensional Beta distribution model

Eq. (8) does not allow seeing a relationship between the decreasing of the Sharpe
ratio due inexact selection of the best subset of trading strategies in an explicit way.
It can be done numerically. To see the relationship of E(Sh) and validation set size,
L, the portfolio inputs selection algorithms complexity parameters, m,N,Nb, and sets
Ptrue i, P

cj
i (i = 1, 2, . . . , A; j = 1, 2, . . . , B) one needs to define them. A simple way

to fulfill this requirement is to assume values Ptrue i, (i = 1, 2, . . . , A) to be calculated
from Beta density

Ptrue i,= γShα(1− Sh)β (9)

where α and β are shape parameters and coefficient γ is chosen from requirement∑A
i=1 Shi = 1. By simple scaling of two extra parameters the Sharpe ratio value can

be made to vary in an arbitrary interval. Then we would have a generalized Beta
distribution.

We assume conditional probabilities Pcond

(
Ŝh = Ŝh

j | Sh = Shi

)
are defined by

Beta distribution with parameters γc, αc and βc. In numerical analysis we define
values of αc and βc according to mean = Shi and variance = V0/L of the Beta
distribution density (9)

αc = Shi(Shi(1− Shi)L/V0 − 1), βc = αc(Sh
−1
i − 1) (10)

where parameter L symbolizes the validation set size used to obtain estimates Ŝh
l

and parameter V0 symbolizes the variance when L = 1;
Below we will examine an example with α = 18.218, β = 160.968, V0 = 0.006,

A = B = 1, 000 and L = 42 (number 42 symbolizes two months validation days used
to estimate Sharpe ratio in automated financial trading). These values were chosen
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Figure 1. Schema of Two-D Beta distribution density.

while analyzing real world financial data with 50,356 trading strategies. In Figure 1

we present 2-D visualization of distribution of probability Pjoint(Ŝh = Ŝh
j
, Sh = Shi)

in variables Ŝh (x axis) and Sh (y axis) space. We see the smallest Sharpe values
(painted in black, here we have the highest P jointij values) are much more correlated

as the largest Ŝh, Sh values (painted in bright gray, here we have the smallest P jointij

values). Inspection of Figure 1 shows that an increase in the number of m random
subsets TSs (entering the rights part of the gray area marked by “*”) allows finding
subsets characterized by high validation set based Sharpe values. The test estimates
(Sh), however, are low in this area.

Calculations according to Eq. 8 confirm the conclusion made from visual analysis
of Figure 1. Graphs for L = 21, 42 and 63 presented in Figure 2 indicate: 1) with
lager value of validation set size, L, we obtain higher true Sharpe values, Sh, 2) the
means of Sh are increasing with m at the very beginning, then saturate, and later
start decreasing. Thus, training performed by random selection procedure confirms
overtraining (peaking) effect known in the data mining and machine learning research
[10]. The peaking effect appears earlier when validation set size, L, is small (inspect

a curve marked by 21 in Figure 1). When L is extremely small, then Ŝh and Sh
become almost uncorrelated. Then peaking starts almost immediately. Contrary, for
larger L values the peaking occurs later and is less expressed (see curve for L = 64 in
Figure 2).

Note, parameter m characterizes a complexity of the model selection procedure.
Thus, speaking in general, the theory and graphs in Figure 2 explain peaking rela-
tionship between accuracy and complexity of learning portfolio inputs selection algo-
rithm.
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Figure 2. Mean of true Sharpe ratio after the best subset selection.

4. Experiments with 60,314-dimensional financial data

Our analysis is aimed to understand the influence of complexity on the 1/N portfolio
design in real world financial trading when portfolio dimensionality is extremely high
and the size of the data to be used for training (the best TSs subset selection) is rela-
tively small. Therefore, for verification of conclusions presented above we performed
experiments with the real world automated trading data.

Trading algorithms comes in many varieties. In our particular case, from prop
trading firm we received series (60,314 – dimensions, years 2004 – 2016 data) of
the PNLs generated by mean reversion type of strategies. Mean reversion strategies
(MRS) are also known as contra trend strategies as they go against the trend. If
market is moving upwards at some point MRS can decide that it moved too much
and there will be a market correction. So algorithm will short sell and wait for
correction. The same is for opposite direction. If the market falls down too much
and/or too fast, then the MRS will buy with anticipation of some correction - at
least short market movement upwards. If market moves upwards the trading strategy
typically will sell and close the position with the profit. Sometimes, especially during
market tumor and panic such strategies can generate sharp losses as market moves
in one direction for extended period of time. Therefore, it is extremely important
such strategies to trade in the portfolio. The risk in portfolio is divided among many
strategies and quick loss in one of them makes only small loss in overall portfolio level.

Due to the presence of numerous economy and finance environments changes,

in our investigations we used two months data for validation (estimation Ŝh
l

and
selection of m best TSs). Later two months data were used for testing the trading



184

algorithm, i.e. estimation of Shl).
In real world trading with sudden environmental changes, we have two sources

of errors that are affecting difference between evaluation of Ŝh and true Sh. The
first source is finite sizes of learning and validation segments of historical data. This
problem was considered in previous section. The second source is the data variation.
Investigation of contemporary financial time series showed that Sharpe ratios esti-
mated for two earlier and later two months length data segments are very weakly
correlated. Often correlations are even negative. In Figure 3 we present a “successful
example” with absence of visible correlation (2+2 months of 2016 spring data). Like
in the previous section we are interested in dependence of the mean Sh value on m.

Due to random generation the subsets of TSs, single Ŝh and Sh graphs are notably
scattered.

To reduce fluctuations we generated M = 5,0000,000 subsets composed of Nb TSs

for each of them. Then for each subset we calculated the estimates Ŝh (two training
months were used) and the true values, Sh (again two extra months were used).
As a result, for further analysis we obtained 2 × 5,000,000 dimensional array of the
Sharpe ratio values. For each particular m value chosen from a priori fixed vector
mm = [50, 100, 200, . . . , 100,000] we used binomial coefficients to calculate true mean

Sharpe ratio, Ŝh(m), for all possible, M !/m!/(M−m)!, combinations. In Figure 4 we
present graphs of the mean values calculated for three TSs subset sizes, Nb = 20, 40
and 90.

For each of the TSs subset size, Nb, we observe peaking effect. Curves in Figure
4 remind the curves, presented in Figure 2 calculated for the 2-D Beta model. The
most obvious decrease in the performance of the TSs selected is observed for small
sizes of the subsets. Small training strategies subsets result smaller portfolio accuracy

and smaller correlations between the Ŝh and, Sh values. Therefore, the peaking effect
appears very early (curve for Nb=20 in Figure 4). With reserved increase in Nb, the
portfolio performance increases (curve for Nb=40 in Figure 4). Notable increase in
size of the TSs, m, increases the complexity of the optimization algorithm. In such
a case, we obtain overtraining (overfitting) effect once more: for Nb=90 the true
Sharpe ratio graph is notably below as that for Nb=40. This result confirms: too
great increase in complexities of the TSs subset size, Nb, and in the algorithm used
to select the best subset, m, causes a negative effect. Figure 4 illustrates that for
successful employment of the random search procedure (Nb=40, m ≈ 400,000) an
average of the true (validation set estimates) the Sharpe ratio values obtained for
these optimization procedures parameters, Shbest=3.72, (see Figure 4). It is notably
higher value as average of Shr (r = 1, 2, . . . , 5,000,000). For practical application one
needs to know optimal values of the optimization procedure parameters (Nb, m, L).
Studies in this direction have already begun.

The peaking effect had been noticed in statistical, pattern recognition, data visu-
alization, design of prediction rules, neural networks [10, 11, 12, 13]. We expect that
this conclusion can be applicable also for other research and development disciplines
where data mining and machine learning are used. Therefore, in dynamic Portfolio de-
sign, we need to pay attention both into development of faster optimization methods
and ways to determine the optimal complexity of the optimization algorithms.

In the introduction we mentioned two heuristically based algorithms, the indepen-
dent training strategy selection (A) and the feed forward selection algorithm Comgen
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Figure 5. Sharpe ratio of the best TSs where trading systems were ranked individ-
ually or selected by the Comgen algorithm.

(B). In comparison with random search they work much faster. Their complexity can
be characterized by the number of TSs selected, Nb. In Figure 5 we present variation
of the test set Sharpe ratio in dependence of dimensionality of the TSs selected. The
dependency curves are much more scattered as that in Figure 4, since only short, two

month length data sequences were used to calculate Ŝh and Sh.
Both graphs in Figure 5 exhibit the peaking behavior. For both algorithms the

optimal complexity of the Portfolio inputs is found somewhere in the range 200− 250
trading strategies. The true Sharpe ratios detected are a bit lower as that obtained by
relatively slow random search procedure. In the practical automated daily investment
work the random search (algorithm C) can be easily applied since modern laptop
computers calculate the family of curves similar to that in Figure 4 in 10 - 20 minutes.

5. Concluding remarks

This paper explores the secondary over-fitting effect that is very acute of 1/N portfolio
design. It is an adaptation to validation data set used to select the best subset of
inputs and/or the best algorithm to calculate the portfolio weights. Ignoring this
up to now unexplored effect constitutes a big headache for portfolio managers as
constructed portfolios do not behave in the way they were supposed to. In theoretical
analysis we examined the random portfolio inputs optimization procedure and derived
the equation to calculate the mean Sharpe ratio in dependence of (on) the number
of portfolio inputs Nb, the validation sample size L used to estimate Sharpe ratios
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of each particular subset of inputs and the number, m, of randomly generated Nb-
dimensional portfolio inputs from their N -dimensional set. This equation was adapted
for practical calculations of the mean Sharpe ratio when both, the probabilities of the
true and estimate Sharpe ratios, are calculated from the 2-D Beta distribution model.
It was demonstrated that with an increase of portfolio complexity, Nb, and complexity
of optimization procedure, m, we can observe the over-fitting phenomenon.

Theoretically based conclusions were confirmed by experiments with high dimen-
sional real world financial data and suggest several recommendations for future re-
search and practical work. Due to the presence of numerous economy and finance
environmental changes the 2-D scatters of Sharpe ration evaluated on training and
validation data in diverse time periods often show zero or even negative correlations.
Consequently, the practitioner should be careful: sometimes even a negligible opti-
mization of the portfolio inputs subset can worsen the result. For that reason the
practitioner should examine numerous subsequent in time 2-D Sharpe ratio scatters
and be cautious with for the portfolio inputs optimization. Therefore a prudent analy-
sis of changes in preceding historical data is very important. Preliminary experiments
demonstrated that paying an attention to validation data size and knowledge about
character of possible data changes could lead to novel useful ways of the portfolio
management and determination of the portfolio size and parameters of optimization
rules.
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