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Introduction

In the thesis, the asymptotic behavior of twisted with Dirichlet character L-functions
of normalized Hecke eigen cusp form is considered when the modulus of the character
increases.

Actuality

L-functions play an important role in analytic number theory. Dirichlet L-functions are
an analytic tool for the investigation of the distribution of prime numbers in arithmetic
progressions while L-functions of automorphic forms were introduced to study the prob-
lems of these forms. The role of L-functions attached to cusp forms was crucial in the
proof of the last Fermat theorem [32]. Twists of L-functions attached to automorphic
forms with Dirichlet characters are used for the investigation of Fourier coefficients of
automorphic forms in arithmetic progressions and other allied problems. The value dist-
ribution of arithmetic objects in arithmetic progressions becomes very complicated when
the difference of a progression is increasing. The problems of such a kind lead to twists
of L-functions with increasing modulus of a character. Therefore, the investigation of
twisted L-functions with increasing modulus is an urgent problem of analytic number
theory. The twists of L-functions were studied by many famous mathematicians, among
them S. Chowla, P. Erdés, P. D. T. A. Elliott, K. Matsumoto, P. Sarnak, H. Iwaniec and
others. P. D. T. A. Elliott obtained the first probabilistic results in the field.

Aims and problems

The aim of the thesis is to prove limit theorems in the sense of weak convergence of
probability measures for twisted with Dirichlet character L-functions of normalized Hecke
eigen cusp forms with respect to increasing modulus of the character, more precisely, to
obtain the following theorems:

1. To prove a limit theorem for the modulus of twisted with Dirichlet character L-
functions of normalized Hecke eigen cusp forms.

2. To prove a limit theorem for the argument of twisted with Dirichlet character L-
functions of normalized Hecke eigen cusp forms.



3. To prove a limit theorem on the complex plane for twisted with Dirichlet character
L-functions of normalized Hecke eigen cusp forms.

4. To prove a joint limit theorem for twisted with Dirichlet character L-functions of
normalized Hecke eigen cusp forms.

Methods

In the thesis, analytical and probabilistic methods are applied. For the proof of proba-
bilistic limit theorems, the method of characteristic transforms is used. Moreover, some
elements of the Dirichlet character theory and of L-functions theory are applied.

Novelty

All results of the thesis are new. Limit theorems for twisted with Dirichlet character
L-functions of normalized Hecke eigen cusp forms earlier were not known.

History of the problem and main results

For the definition of the object studied in the thesis, we need some notation and defini-
tions. As usual, denote by Z the set of all integers, and let

SL(2,7) = {( Z Z ) : a,b,c,deZ,ad—bc:l}

denote the full modular group. Moreover, let U be the upper half-plane together with
0, i. e.,
U={z€C:z=z+1iy, y>0}

Suppose that F'(z) is a holomorphic function on U, and satisfies, for some positive even

integer x and all
a b
(v 8)essen,

the functional equation

az+b "
F(cz—l—d) = (cz+ d)"F(2).

Then, clearly, F(z) is a periodic function, and has the Fourier series expansion at oo



We say that the function F'(z) is holomorphic and vanishing at oo if ¢(m) = 0 for m < 0
and m < 0, respectively. We say that F(z) is holomorphic and vanishing at the cusps if

the function
az+b
F —K
(cz—i—d) (cz4+d)7",

( Z Z > € SL(2,7),

is holomorphic and vanishing at oo, respectively. In the case when F(z) is holomorphic
at the cusps, it is called a modular form of weight x, and

for all

eQ‘n’imz

[M]8

F(z) = c(m)

0

3
I

is its Fourier series expansion at co. If the modular form F(z) of weight  is vanishing
at cusps, then we call it a cusp form of weight «. In this case, F'(z) has the Fourier series
expansion at oo

F(z)= Z c(m)e?™im=,

m=

[

The classical example of cusp forms is the Ramanujan cusp form A(z) defined by

A(z) = ) r(m)e’™m=

m=1
0
eQ-rrv,z H (1 _ eszmz)24.
m=1

The weight of the form A(z) is 12. L. Mordell proved [26] that the Ramanujan function
7(m) is multiplicative (7(mn) = 7(m)7(n) for all m,n € N, (m,n) = 1) and satisfies

k:+1) kfl)

() =1(p)r(") —p''7(p

for prime numbers p and integers k > 2. Also, by the Deligne general result [5],
11
IT(p)| < 2p=.

A cusp form F(z) of weight & is called Hecke eigenform if it is an eigen function of
all Hecke operators

d—1
(T"f)(z):nﬁfl Zdnzf(nzc;bd), neN.
d| b=0




Then it is known that ¢(1) # 0, therefore the form F(z) can be normalized. Thus, a
normalized Hecke eigen cusp form has Fourier series expansion at oo

F(z) =Y c(m)e™™m= (1) = 1.

m=1

Now let s = o + it be a complex variable, and F(z) be a normalized Hecke eigen cusp
form of weight k. To this form, we can attach the L-function L(s, F') defined by Dirichlet
series

L(s,F)=Y" CSZ:).

By the Weil conjecture,
je(m)| < m"7" d(m),

where d(m) denotes the divisor function

d(m) = Z 1,

d|m

proved by Deligne [5], we have that the Dirichlet series for L(s, F') converges absolutely
for o > “7“, and defines there an analytic function. Moreover, it is known that the
function L(s, F') can be analytically continued to an entire function, and satisfies the
functional equation

(27)°T(s)L(s, F) = (=1)2 (27)* "T'(k — s)L(k — 5, F),

where I'(s) is the Euler gamma-function. The critical strip of L(s, F') is of the form
{s e C: 51 <o <=} and contains non-trivial zeros of L(s, F). These zeros are
located symmetrically to the real axis and to the critical line 0 = §. The analogue of the
Riemann hypothesis for the function L(s, F') says that all non-trivial zeros of L(s, F) lie
on the critical line o = 3.

The coefficients ¢(m) of the Dirichlet series for L(s, F') are multiplicative, and, for

primes p and k € N\{1}, satisfy the relation

k+l) k—l).

(Pt = c(p)e(p®) — " telp

Therefore, the function L(s, F) has, for ¢ > “TH, the Euler product expansion over
primes

- _cp) 1
L(SvF) - H (1 ps + p25—5+1>

p

_ e (@)
= H(1 ps> (1 ps> , (0.1)

p

10



where a(p) and S(p) are conjugate complex numbers satisfying a(p) + 5(p) = ¢(p), and

k—1

lap) <p™ T, M) <pT.

The function L(s, F), as other L-functions, has a probabilistic limit distribution in
the following sense. Let B(S) denote the class of Borel sets of a space S, and

Q= H"Ypa
p

where 7, = {s € C : |s| = 1} for each prime p. By the Tikhonov theorem, with
the product topology and pointwise multiplication, the infinite-dimensional torus €2 is
a compact topological Abelian group. Therefore, on (£2,B(2)), the probability Haar
measure my can be defined, and this leads to the probability space (€2, B(2),mg).
Denote by w(p) the projection of element w € Q to the coordinate space 7,.

Let D = {s € C: 0 > §}. Denote by H(D) the space of analytic functions on D
equipped with the topology of uniform convergence on compacta, and on the probability
space (Q,B(Q2), my) define the H(D)-valued random element L(s,w, F') by the formula

L(s,w, F)=]] (10419)@)1(1%)1'

» p

Let meas{A} stand for the Lebesgue measure of a measurable set A C R.
Denote by Py, the distribution of the random element L(s,w, F), i.e.,

PrL(A)=mpg(weN: L(s,w, F)e A), AeB(H(D)).
Then the following limit theorem holds [12].

Theorem 0.1 The probability measure

1

Tmeas{r €10,T): L(s+i7,F) € A}, AeB(H(D)),
converges weakly to the measure Pr as T — oo.

Now let x be a Dirichlet character modulo ¢g. Then the twisted L-function L(s, F, x)
attached to the form F(z) is defined, for o > “tL, by the Dirichlet series

L(S’F7X) = Z W’
m=1

and can be analytically continued to an entire function. Also, in the half-plane o > "‘7“,
the function L(s, F,x) can be presented by the Euler product over primes

L. o) =] (1 _ a(p)x(p))*1 (1 B 6(p)x(p))*17 0.2)

p? p®

11



where the complex numbers «(p) and 3(p) are the same as in (0.1).
A similar result is also true for the twist L(s, F, x). Define the H(D)-valued random
element L(s,w, F,x) by the formula

a(p)x(p)wp)) ! B@)x(p)wp)\ !
L(S’“’F’X):E[<1_ ( );Es) ( )) (1- (P)x () )> ,
and denote by Py, its distribution

Pr(A)=mp(weQ: Lis,w, F,x) € A), AecB(H(D)).
Then in [25] the following statement has been obtained.

Theorem 0.2 The probability measure
1
Tmeas{T €[0,T]: L(s +ir,F,x) € A}, A e B(H(D)),

converges weakly to the measure Pr,, as T — o0.

Theorems 0.1 and 0.2 were applied to obtain the universality of the functions L(s, F')
and L(s, F, x).
Let

K k+1
Dy = eC:-<o< .
Theorem 0.3 ([24]) Let K be a compact subset of the strip Dy with connected comple-
ment, and let f(s) be a continuous and non-vanishing function on K, and analytic in
the interior of K. Then, for every e > 0,

1
lim inf Tmeas{T €[0,T] : sup |L(s + i1, F) — f(s)| < E} > 0.

T—o0 seK

In [25], a version of Theorem 0.3 has been proved for the function L(s, F, x).

Note that, in Theorem 0.2, the modulus ¢ of the character x is fixed. It turns out
that it is possible to characterize the asymptotic behavior of the function L(s, F, x) by
probabilistic limit theorems when the modulus ¢ is not fixed and increases, i.e., to study
the asymptotic behavior of L(s, F, x) with respect to the parameter g.

Before the statement of the results of the thesis, we will present a short survey of
probabilistic results with respect of some parameter in analytic number theory.

The first results in this direction were obtained for Dirichlet L-functions L(s, x) de-
fined, for o > 1, by

L(S7X) = Z Xr(nnz)7

12



and by analytic continuation elsewhere. We recall that the character xy modulo ¢ is
principal if x(m) = 1 for all (m,q) = 1, and is denoted by xo. If x # xo0, than the
function L(s, x) is entire, while L(s, xo) has a simple pole at s = 1 with residue

H(l—%).

plg

The first result for Dirichlet L-function L(s, x) with an increasing modulus was obtai-
ned by Chowla and Erdés [4], who proved a limit theorem for L(1, x) with real character
X. The later progress in the field belongs to Elliott. Now we suppose that ¢ is a prime
number.

For Q > 2, denote

Mog=Y > L
9<Q x=x(mod q)
XFX0

It is known [20], Lemma 2.9.7, that

2 2
Mo = 2 o © ).

2log Q log” @
For brevity, we introduce the notation

() =Mg'y > 1,

¢<Q x=x(mod q)
XF#Xo

where in place of dots a condition satisfied by a pair (g, x(mod ¢)) is to be written. Let
_ - X(m) —x(m)m~*
e(x) = H 1—=——+)e .

m
m=1

Then in [6], the following theorem was proved.

Theorem 0.4 Suppose that o > % Then the distribution function

po(leCOIHL(s,x)| < x)
converges weakly to some distribution function as QQ — oo.

When L(s, x) # 0, 5 < o < 1, let arg L(s, x) denote a value of the argument of L(s, x)
defined by continuous displacement from the point s = 2 along an arc on which L(s, x)
does not vanish. Thus, arg L(s, x) is only defined to within the addition of an integer
multiple of 27i. In [7], a limit theorem for arg L(s, x) has been obtained. In order to
state this theorem, we recall the definition and convergence of the distribution functions
mod 1.

13



A function G(z) is said to be a distribution function mod 1 if and only if it satisfies
the following three conditions:

1). it increases in the wide sense;

2). it is right continuous, that is, G(z + 0) = G(z) for all z € R;

3). G(zr)=1ifx>1,and G(z) =01if  <0.

A distribution function mod 1 G, (z), n € N, converges weakly mod 1 as n — oo if
there exists a distribution function G(z) (mod 1) such that at all points z1, x2, 0 < z1 <
x2 < 1, which are continuity points of G(z) we have

lim (Gn(z2) — Gn(21)) = G(a2) — G(z1).

n—oo

Thus, in the range 0 < z < 1, the limit function G(z) is determined only up to an
additive constant.
Now we state the main result of [7].

Theorem 0.5 At each point s in the half-plane {s € C: 0 > 3},

1
— <
(5 arg Lis, ) < a(mod 1))

converges weakly to a continuous distribution function mod 1 as Q — oco. The Fouries
transform of the limit distribution function is of the form

(5 ()5 ) ve

E. Stankus generalized [28] Theorems 0.4 and 0.5 for probability measures on (C, B(C)).
Let P be a probability measure on (C, B(C)). We remind that the function

Sw

wir, k) < / l2i"ekaszqp, T eR, ke Z,
C\{o0}
is called the characteristic transform of the measure P. It is known [20] that the measure

P is uniquelly determined by w(7, k). Let ¢, ;(m) be a multiplicative function defined,
for a prime p and m € N, by

E€+1)...8E+k—-1)

m!

Cr.k (pm) =

with £ = £ and

B > cre(m)er —k(m) 1
wP(T7 k) = Tnzl —mQJ s o> 5

14



Theorem 0.6 ([28]) Suppose that o > L. Then
pno(L(s,x) € 4), A€ B(C),

converges weakly to the probability measure P on (C,B(C)) defined by the characteristic
transform wp (7, k).

Similar results to Theorems 0.4, 0.5 and 0.6 for real characters were obtained in [8]
and [29], respectively.

The above limit theorems are examples of limit theorem with respect to some para-
meter. Now we will present some allied results. Let w(p) is defined as in Theorem 0.1.

For o > %, define
()~
L(S,(JJ) = 1-— wfg .
g( p‘ )

Theorem 0.7 ([1]) We have that

1
E#{X : X 4s a Dirichlet character mod p, and L(s,x) € A},
A € B(H(D)), converges weakly to the distribution of the random element L(s,w) as
p — oo through the sequence of primes.

Theorem 0.7 was used [1] to prove the universality of L(s,x) in x-aspect. This was
also done independently by S. M. Gonek [10] and K. M. Eminyan [11].

Theorem 0.8 ([1]) Let K C D be a compact subset with connected complement, and
let f(s) be a non-vanishing continuous function on K which is analytic in the interior of
K. Then, for every e > 0,

lim inf
p—oo P —

# {x 1 X s a Dirichlet character mod p,
and sup |L(s, x) — £(5)| < 5} > 0.
seK

Also, there exist results on estimates of distribution functions in parameter aspect
related to various L-functions. We remind that d is a fundamental discriminant if the
following statements holds:

d = 1(mod 4) and is square-free,
d = 4m,where m = 2 or 3 (mod 4) and m is square-free.

Let
D, = #{d < z:d is a fundamental discriminant},
and
1
D, (1) = Do # {d < z :d — fundamentalusis diskriminantas ir

15



L(la Xd) > e’YOT};
where 7o is the Euler constant

. 1
0= Jim (3 5 s ).

m<n

and xq is the character mod d. Then the following formula is known.

Theorem 0.9 ([12]) Uniformly in 7 < loglog z,

(1+0(2)}:

where C' has an explicit integral representation, C' = 0.8187 .. ..

T—C

@y (7) = eXP{ - =

Recently, Y. Lamzouri introduced [17] a new probabilistic model and applied it for
the investigation of value distribution of L-functions with respect to a parameter.

Let d € N and P be the set of all prime numbers. For p € P and 1 < j < d, let 6,(p)
be random variables on a certain probability space (2, §,P) with values on [—m; 7] and
satisfying the following conditions:

1).E(e%®) =0 for all p € P and 1 < j < d, where E(X) denotes the expectation of
the random element X;
2). the random variables 6;(p) and 0;(¢) are independent for p # ¢, p, g € P ;
3). the random variables
ei9] (»)

d
def
X(p) =D —;
j=1

are identically distributed for every p € P;
4). there exists an absolute constant o > 0 such that, for all p € P and all € > 0,

P(16:(p) <2, [a(p)] < 2) > .

In [17], the following Euler products

d a0 (p) !
L(1,X)=HH<1— ) )

p j=1

are considered. Define
O(r) =P(L(1, X) > (e77)%).

Then in [17], it was proved that, for 7> 1,

o) =exn{ - (1 0( 1)) |

16




where

0
(ReX)t :
() = { log E(e ; if1<t<i,

log B (e(fteX)t ift>1,

and X is a random variable having the same distribution as the X (p).
Note that the latter result covers Theorem 0.9. Moreover, it can be applied to a wider
class of L-functions. We will state one theorem related to symmetric power L-functions.
Suppose that ¢ € N. Then the subgroup of SL(2,7Z)

To(q) = { ( ot > € SL(2,Z) : ¢ = 0(mod q)}

is called a Hecke subgroup. If the equation

F<a2+b> =(cz+d)"F(z)

cz+d

d
k and level gq. Denote the space of such forms by S, (q).
Now we introduce symmetric power L- functlons of F € S(q). Denote by ¢(m) the

is satisfied for all < CCL b ) € T'o(q), the cusp form F(z) is called a cusp form of weight

Fourier coefficients of F, and ¢,, = ¢(m)m~"2 . For any prime number p, define ap such
that
cpyzag+ag_2+...+ag”, v>1,

and |a(p)] = 1. Then, for m € N, the symmetric mth power L-function L(s,sym™F)
attached to F'is defined, for o > 1, by
) 1

L(s, sym™ H H (1 -

p j=0

m2j

and by analytic continuation elsewhere.
Suppose that ¢ is prime, and define

By sy 7) - ( 5 wF> S

FeSa(q) FeSz(q)
L(1,sym™ F)>(eY0r)™+1!

where wp = m, and ||F|| the norm of F. Then the following statement is true.
Let
log,.q = log...logq.
——

17



Theorem 0.10 ([17]) For m € N, uniformly in the region T <log, ¢ —logs ¢ — 2log, q

(+0(2)

T—Am

R

where

and
U

hm(t) = log (i / exp{m:_ T icos (6(m — 25)) } sin? 9d0>.

0

There are also known other results on value distribution of L-functions with respect
to a parameter.

Now we return to the function L(s, F, x) and present the results of the thesis.
In Chapter 1, a limit theorem for

Pox(4) Duq(IL(s,F,x) € 4), A€ BR),

is proved. For 7 € R, let

and, for prime p and k € N,

m+1)...(n+k—-1)

n
d‘l'(pk) = ]C' ’

Define
k

a-(p*) =Y d-(p)at (p)d- (") B (p)

1=0
and
—k—l

k
b-(p*) =Y d-(0")a (p)d- ("B (p),
=0

where a(p) and S(p) are the coefficients of the Euler product for L(s, F'), and Z denotes
the conjugate of z. Moreover, for m € N, let

ar(m) = H a‘r(pl)
ptllm

and

be(m) = ] b,

pllim

18



where p'||m means that p!|m but p'*! { m.
Let Pg be a probability measure on (R, B(R)) defined by the characteristic transforms

wo(7) =wy (1) = ZM, TER, o> R_;l.
m=1

m2o’

Then the main result of Chapter 1 is the following theorem [22].

Theorem 1.1 Suppose that o > "‘TH Then the measure Por converges weakly to Pr as

Q — .

Chapter 2 of the thesis is devoted to the value-distribution of the argument of the
twist L(s, F,x). The function L(s, F,x) has no zeros in the half-plane o > "‘TH We
define arg L(s, F, x) from the principal value at s = ”TH’ by continuous variation along

the path connecting the points %ﬁ’ ’%2 + it and o + it. In Chapter 2, we consider

de .
Po(A) g (expliargL(s, Fx)} € A), A€ B(y),

where 7 is the unit circle on the complex plane. For k € Z, let
0=0(k)=
(k) =3,

and, for prime p and [ € N,

ah = 2Ot 1)..l.l(e+z_ D a1

Similarly as in Theorem 1.1, define, for m € N,

ar(m) = [T ax(@")

ptllm

and
bi(m) = [ bx("),

ptllm

where l
ar(p) = di(p?)e? (p)di(p~7) B (p)
7=0

and

l
_ B
br(p') =Y d-x(®)a (p)d_x(p' )8 (p).
j=0
Moreover, let P, be a probability measure on (v, B(7)) defined by the Fourier transform

def & B = ag(m)bg(m) k+1
f(k) _/x dPV_mZ:lim% o>

Y

19



Let P,, n € N, and P be probability measures on (v, B(7)). We recall that the weak
convergence of P, to P as n — oo is equivalent to the convergence

Po(A)n5oP(A)

for all arcs A C v with end points having P-measure zero.
Then we have the following theorem [23].

Theorem 2.1 Suppose that o > %H Then Pg . converges weakly to Py as Q) — oo.
Theorem 2.1 also can be stated in the following form [23].

Theorem 2.2 Suppose that o > “7“ Then

1
— <
,uQ<2 arg L(s, F, x) < z(mod 1))

converges weakly mod 1 to the distribution function mod 1 defined by the Fourier trans-
form f(k), k € Z, as Q — oc.

In Chapter 3 of the thesis, we connect Theorems 1.1 and 2.1, and prove a limit
theorem with increasing modulus on the complex plane for the function L(s, F, x).
Note that the function

wir k) < / 2|mek e 2qp, 1 eR, ke,

C\{0}

is called a characteristic transform of the probability measure P on (C,B(C)). The
measure P is uniquely determine by its characteristic transform w(r, k).

Let P,,n € N, and P be probability measures on (C, B(C)). We say that P,, converges
weakly in the sense of C to P as n — oo if P, converges weakly to P as n — oo, and
additionally,

Jim P, ({0}) = P({0}).

For r € R and k € Z, let

itttk

5 = 5(7-7 :l:k) = 9

and, for primes p and [ € N,

EE+1)...(E+1—-1)
! ’

dr +x(p') = dr k(1) =1.

Define l
a‘r,k(pl) = Z d‘r.,k(pl)aj (p)d‘r,k(plij)ﬂlij ()

Jj=0

and

l .
bri () = 3 dr (VW (D) (0 )B (0,
=0
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and, for m € N, let

arp(m) =[] ars(®')

ptllm

and

brse(m) = T] bra().

ptllm

Let Pc be probability measure on (C, B(C)) defined by the characteristic transform

= T b‘r 1
wir by = Y el g
m=1
Define
Poc(4) = ng(L(s, F.x) € 4), A€ B(©).

Then the main result of Chapter 3 is contained in the following theorem [15].
Theorem 3.1 Suppose that o > "‘TH Then Pg c converges weakly in sense of C to the

measure Pc as (Q — 00.

The last, Chapter 4, of the thesis deals with r-dimensional version of Theorem 1.1.

Let r € N\{1}, and P be a probability measure on (R",B(R")). Denote by FP;,
g =1...r Pil,jzv Jo > 51 =1,...,r—=1,..., Pl,“.,j—l,j—ﬁ-l,...,ry j = 1,...,7r, one-
dimensional, two-dimensional, ..., (r — 1)-dimensional marginal measures of the measure
P. The functions

w, (75)
= / |LL‘j|iTngnkj£L'dej, TjGR, kao,l, j:].,...,T7
R\{0}
Wkj, kjy (Tjusz)
= g, |7 sgnin g, Ja g, [ sgn®iz a g, d Py, gy,
R\{0} R\{0}
TjuszeR?kjl?ka:Ovla j2>j1=1,...,7"—1,

wkl,...,k_j_l,k]‘+1 ..... k. (T17 R 77—]'71) Tj+1; sy TT)
= |z [Trsgnay L x| sgnti ey

R\{0}  R\{0}
X|xjpa| I sgn g L |2y

|i‘rr

k
sgn™ xpd Py o154,

Tlyev oy Tj—1,Tj415-+ -5 Tp ER, kl,...,kj_l,kj+1,...,k7- :O,].,
j=1...m
wkl,‘..,kr(Tla .. ~7Tr)

= / . / lz1 |t sgn®ray |2, [ Trsgn®r e, d P,
R\{0}  R\{0}
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Tl,...,TTGR, kl,...,krzo,].,

are called the characteristic transforms of the probability measure P on (R”, B(R")). The
measure P is uniquely determined by its characteristic transforms [18].

For j = 1,...,r, let Fj(z) be a holomorphic normalized Hecke eigen cusp form of
weight x; for the full modular group with the Fourier series expansion

oo
i(2) = ) cj(m)e’™™, ¢;(1) =1,

m=1

and let L(s, F;) be a corresponding L-function,

R 41
LisF) =Y 90 o kL
m=1

with the Euler product over primes

L(s, Fj) :H(l_aji(zvﬁ)*l(l_ M),l’

p* p*

where «;(p) and §;(p) are complex conjugate numbers satisfying a;(p)+ B;(p) = ¢;(p).

In Chapter 4, the value distribution of a collection of twisted L-functions L(s1, F1, X),

oy L(sp, Fryx), Sj = 0 + itj, where x is a Dirichlet character modulo ¢, ¢ is a prime
number, and

L(sj, Fj,x) = ZW
m=1
- 11 (1 B ‘”(ﬁlf(”))_l(l 3 5j(2)53<(p))—1, o> Iij; 17

is discussed.
For j =1,...,r, define

ajir(m) = H a.j;r(pk)

and pka
by (m) = I[m b (PF),
where i "
aj-(p") = d- (")l (p)d- (0" )8 (p)
bjer(0*) = lz;dxpl)az (P)d-(" B, ()
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Let Pg- be the probability measure on (R”, B(R")) defined by the characteristic trans-
forms

00
ajir; (m)bjir; (m) .
wa(T]): Z Jm2<7j] 5 J:17"'7T7
m=1
Wkj, ,kjy (le ’ sz)
o io: Z "‘.7'1;7'1'1 (ml)an;er (m2) Z b.illle (nl)b.72:7j2 (7’L2)

Si1 ., %i2 %

S j

Sd1,,°%7
m=1mima=m my My ning=m ny’tny’?
J2 >0 :17...,7“—17
wk],...,kjfl,kj+1,...,k‘,r (Tla s 7Tj—17 Tj-‘rl; .. 37—7‘)
_ ioz Z a1y (ml)...aj,l;ﬂ-]._l(mj,1)aj+1;7-j+1 (mjs1)...aryr,. (My)
- 51 Si—1,,57+1 sr
=1 1M 1M1 T =0 mytm T m N my
% » briry (n)--bj— 13y (M =1)bj41im 14 (M41) - brir (n)
S1 5j—1_%j+1 3 ’
— n n.' > n’ ny’
Ni.Mj_1Mj41...np=m 1Myl My e

j=1...,m7
wkl,‘..,kr(le . ,TT)

_ § Z a1,y (Mm1)...ap;r,. (M) Z b1rq (TLE)...br;TT,(TLT)

Sr

mil..m W3l oer s
m=1mi...m,=m 1 r ni...n.=m 1T
Ki+1 .
) J _
o;>~5H5—, j=1,...,m

The main result of Chapter 4 is the following limit theorem [16].
Let

PQ,R”'(A) = MQ((‘L(SlthX)L ) |L(ST7FT’7X)D € A)a A € B(RT)

K’j;l, j=1,...,7. Then Por- converges weakly to

Theorem 4.1. Suppose that o; >
the measure Prr as () — o0.

In the thesis, we consider the weak convergence of probability measures defined by
the twists of L(s, F,x) in the half-plane of absolute convergence of the series defining
L(s, F,x) . We believe that the results can be extended to the region o > %, however,
in our opinion, this problem is very difficult. The principal difference from the case of
Dirichlet L-functions is that the series defining L(s, F, x), X # Xo, does not converge for
o> 3.

23



Outline of the thesis

The thesis consists of the introduction, four chapters, conclusions, bibliography and
notation. In the introduction, a short review on the actuality of the research field is
given, the aims and problems of the thesis are stated, the used methods and novelty
of results obtained are shortly discussed. Also, Introduction contains a short history of
results with respect to a parameter in the theory of L-functions, and the main results
of the thesis. In Chapter 1, a limit theorem with increasing modulus for |L(s, F, x)| is
proved. Chapter 2 is devoted to a limit theorems of the above type for arg L(s, F, x).
Chapter 3 contains a limit theorem with increasing modulus for L(s, F, x). In Chapter 4,
a joint limit theorem for a collection |L(s, F1,X)]|, - - -, |L(s, Fy, x)| is obtained.
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Chapter 1

A Iimit theorem for the modulus
of twisted L-functions of
normalized cusp forms

Let F(z) be a holomorphic normalized Hecke eigen cusp form of weight x for the full
modular group with the Fourier series expansion

F(z) = Z c(m)e®™m=  ¢(1) = 1.

The L-function L(s, F), s = o + it, attached to F(2) is defined, for o > “1, by the
Dirichlet series

L(‘S?F) = Z C(n:)v

m

and has analytic continuation to an entire function. Moreover, for ¢ > "“TH, the function
L(s, F), has the Euler product expansion over primes

L(s, F) :H(kﬂ,’))_l(k@)_l, (1.1)

p? p?

where a(p) and S(p) are conjugate complex numbers satisfying a(p) + S(p) = ¢(p).

Let x(m) be a Dirichlet character modulo ¢, where ¢ is a prime number. Then the
twisted L-function L(s, F, ) associated to the form F(z) is defined, for o > “tL by the
Dirichlet series

L(st’X): Z %)(8(7’1)7

m
m=1

28



and has analytic continuation to an entire function. Moreover, similarly to the case of
the function L(s, F'), L(s, F, x) has the Euler product expansion over primes

Lis, Fiy) = 1;[ (1 - a(p})jzc(p))—l(l 3 6(1)})91((1)))‘1’ . HTH (1.2)

This chapter is devoted to a limit, theorem for the modulus |L(s, F, x)| of the function
L(s, F, x) when ¢ increases to infinity.

1.1. Statement of the main theorem

For @ > 2, denote

Mo=> > 1

g<Q x=x(mod q)
X7#X0

where o , as usual, denotes the principal character modulo q. Moreover, for brevity,

define
po(-.)=Mz" > > 1,

q<Q x=x(mod q)
XFX0

where in place of dots a condition satisfied by a pair (¢, x(mod ¢)) is to be written.
For 7 € R, let

and, for a prime p and k € N, let

d,(p*) = 77(77+1)..].f!(77+k7 1)7 (1) =1
Now define .
a- (%) =Y d-(p)at (p)d-(P*") B (p)
1=0
and
k

b-(0") =3 d (pVa (p)d- (" (),

=0

where the complex numbers a(p) and S(p) are defined by (1.1), and Z denotes the con-
jugate of a complex number z. For m € N, we set

ar(m) = H a‘r(pl)

pllim
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and

br(m) = H bf(pl)a

ptl|m

where p'||m means that p'|m but p'*' { m. Then, a,(m) and b,(m) are arithmetic
multiplicative functions.
Let Pgr be the probability measure on the space (R, B(R)) defined by the characteristic
transforms
K+1
2 )

wo(T) = w1 (7) = Z 7@(7:2;);(771), TER, o>

m=1

and

Por(A) = pq(IL(s, F.x)l € A), A€ B(R).
Theorem 1.1 Suppose that o > "TH Then the measure Py r converges weakly to Pr
as () — oo.

For the proof of Theorem 1.1, we apply the method of characteristic transforms of
probability measures on (R, B(R)).

1.2. Characteristic transforms of probability measures
on (R, B(R))

For convienence of the reader, in this section we remind the theory of characteristic
transforms of probability measures on the space (R, B(R)).

Let F(z) be a distribution function. In [33], V. M. Zolotarev introduced the charac-
teristic transforms of the function F'(x) as a multiplicative analogue of the characteristic
function of F(z). Let

1 if x>0,
sgnz =< 0 ifx =0,
-1 ifx<0.

Then the pair of function
oo
wi (1) = / |z "sgnFedF(z), k=01,
— 00
x#0
are called the characteristic transforms of F'(x). V. M. Zolotarev proved [33] the unique-
ness and continuity theorems for characteristic transforms. In [21], the Zolotarev theory

was rewritten for probability measures on (R, B(R)), and we apply it for the proof of
Theorem 1.1.
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Let P be a probability measures on (R, B(R)). The characteristic transforms wy(7),
k = 0,1, of the measure P are defined by

wi (1) = / |z|sgn*xdP, TER, k=0,1.
R\{0}
Lemma 1.2 The probability measure P is uniquely determined by its characteristic trans-

forms wy(7), k=0, 1.

The lemma is proved in [21], Theorem 4.

Let P,, n € N, and P be probability measures on (R,B(R)). We say that P,,
as n — oo, converges m-weakly to P if P, converges weakly to P as n — oo, and,
additionally,

lim_ P, ({0}) = P({0}).

The next two lemmas are continuity theorems for probability measures on (R, B(R)) in
terms of characteristic transforms.

Lemma 1.3 Suppose that P, converges m-weakly to the measure P as n — co. Then

lm wg,(7) =wi(r), 7€R, k=01,

n—00

where wi, (7) and wg(7), k = 0,1, are the characteristic transforms of the measures P,
and P, respectively.

The lemma is given in [21], Theorem 5.

Lemma 1.4 Denote by wiy(7), k =0, 1, the characteristic transforms of the probability
measure P,, n € N, on (R, B(R)), and suppose that

lim wg,(7) =wi(r), 7€R, k=01,

n— oo

where the functions w1 (1) and wo(7) are continuous at 7 = 0. Then on (R, B(R)), there
erists a probability measure P such that the measure P, converges m-weakly to P as

n — oo. In this case, wi(7), k = 0,1, are the characteristic transforms of the measure
p.

The lemma is Theorem 6 from [21].

1.3. Characteristic transforms of Fyr

Let 0 < 6§ < % be a fixed number, and let

k+1

R={seC:o> +4}.
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From the definitions of Py r and characteristic transforms of probability measures on
(R, B(R)), we find that the characteristic transforms wyq(7) of the measure Pgr are of
the form

wro(T) = |z|"Tsgn®xd P
R\{O}

mY X

q<Qx X(mod ¢q)
X7#X0
def

|L(s, Fx)[”
= wg(r), 7€eR, k=01
Thus, since |L(s, F, x)| > 0, we have only one function wq (7). Moreover

|L(5,F, x)’”

(L(s, F.)I(s Fn)
= (s Fx) % (T F ) *.
Therefore, using (1.2), we find that, for s € R

""4

I
/N
VN
=
|
S
=
=

p - )—1(1 B B(pl);c(p))”)
_ exp{ Ty (bg (- a(p)x(p)) +log (1 6(1']))?(1))))
N %T <10g L @)X

5 . ) +1og (1- ﬁ(pz))idp))) }
_ 1;[ (1 a(p;zc(p))—? (1 B 6(pl))z<(p))—z
y 1;[ (1 B a(pz))x(p))z (1 B B(I)Z))i((p))z

(1.4)

Here the multi-valued functions log(1—z) and (1—2) ~7 inthe region |z| < 1 are defined

by continuous variation along any path in this region from the values log(1 — z)‘ =0
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and (1 — z)_% |Z:0 = 1, respectively.
Using the definition of d,(p*), we have that, for |z| < 1,

D = pks ’
_iz > ky gk k
(1 _ 5(128 (p)) 7 _ kZ:O d-(p )ﬁpk(sp)x(p ).
alp)y —iz 0 k\~k k
(1 - a(p;S(p)) : _ ;df(p )O;k(sp)x(p )
" (1- B@mp))*% _ i d- (") (D)% (")
ps Pt pks

Substituting these formulas in (1.4), we obtain that, for s € R,

|L(s, F,x)|”"

11> d- (pF)a* (p)x (p¥) i d- ()8 (p)x(P")

ks ls
p k=0 p =0 p

-y Ems b, (15)

where a,(m) and Ef(m) are multiplicative functions given, for primes p and k € N, by

k
apt) = d- () (p)x(@")d- (0* B () x () (1.6)

and

—k—1



By the multiplicativity of a,(m) and b, (m), and by (1.6) and (1.7), we find that

a(m) = [ a-0"

pFlim

k
= I D d- ) o)x®")d- ") (p)x(* )

pk|lm =0
k

=TT x0H Y el i 45 )

ptlIm 1=0
= ar(m)x(m)

and

= b (m)Y(m)a

where the multiplicative functions a,(m) and b,(m) are defined in Section 1.1. Thus, in
view of (1.5) and (1.3), we have that

= x:);;;)u q) m=1 n=1

1.4. Asymptotics for the function wq(7)

In this section, we obtain on asymptotic formula for the characteristic transform wg(7)
of the measure Pgr. Let ¢ > 0 be an arbitrary constant.

Theorem 1.5 Suppose that Q — oo. Then, uniformly in |7| < c and s € R,

Before the proof of Theorem 1.5, we present some lemmas.
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Lemma 1.6 Suppose that || < c. Then
- (p")] < (k + 1),

where the constant c1 depends on c, only.

Proof. The definition of d,(p*) gives

[l +1) .- (n[+F—=1)
k!

< 1101

v=1 »
exp{lnl 3}
exp{|77|(1 + log k)}

exp{c(l + log k)}
(k+1)°.

!d‘r(pk)‘ <

IN

IN

INIA

Lemma 1.7 Suppose that (m,q) = 1. Then

o qg—1 if m=n(mod q),
Z x(m)x(n) {0 if m % n(mod q).

x=x(modq)

Proof of the lemma can be found, for example, in [3], [14], [27].

Denote by
d(m) = Z 1
d|m

the classical divisor function.

Lemma 1.8 For every € > 0, the estimate

18 true.
The estimate of the lemma is given, for example, in [27].

Lemma 1.9 Let Q > 2. Then

2 2
Mo = 21§gQ 0(10;22@)'

The proof of the lemma is given in [20], Lemma 2.9.7.
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Lemma 1.10 Let x > 2. Then

Zl:o(logm‘)

p<z

The estimate of lemma follows from the asymptotic law of prime numbers, see, for
example, [14], [31].
Proof of Theorem 1.5. Lemma 1.6 and the Deligne estimates [5]

and

for || < ¢, imply the bounds

k
Z(l + l)clpl(tl) (k—1+ l)clpw

|aT(pk)| <
=0
< (k4 1)t2ept
(k+1)p 5,

where ¢ = 1 + 2¢; and depends on ¢, only. Therefore, the multiplicativity of the
arithmetic functions a,(m) and b,(m), and the formula

dm) =[] k+1),

pFlm

show that, for |7] < ¢,

jar(m)| = T la- ")

pklm
< [l Gk+p=p™
P Hm
= m'7 dCZ( ). (1.9)
and
b, (m)| < m"T d°(m). (1.10)

Let r = log Q. Then Lemma 1.8, and (1.9) and (1.10) imply, for |7] < ¢, s € R and
every € > 0, the estimates

ZW - O(Zm fﬂ:n)

m>r m>r

- 0% )

m>r
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= O (r_‘5+5)

and

3 i) _ g -a)

From this and from (1.8) we find that, for |7| < ¢, s € R and every € > 0,

’lUQ(T) — 72 Z <<ZW+OE(T—5+E)>
Q4<Qx= ﬁ;n;j q) msr
X(ZW+OE(T‘”5)>>
ar(m)x(m br(n)x(n
- LY X (TR
Q 4<Qx= >§§Z‘§f q) ~m<r n<r

+og<r—a+e SOy |y

? 4<Q x=x(mod q) m<r
XF#Xo

n<r

Moreover, by (1.9) and (1.10), and Lemma 1.8, for |7| < c and s € R,

5 W = o(X d;fﬁ))

m<r m<r
= 01
and B
S bR _
ns
n<r
Therefore,

_5+5 Z > (\Zar(?g(m)’

4<Qx X(mod q)  m<r
XFXo

H| X ) =0, 112

n<r

Clearly, we have that

Z Z ( Z CLT(m)X(m) Z br(”)f(n))

q<QX x(mod ¢g) m<r n<r
X7#X0
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=2 a;(@T) 2 b;(?)J\;Q YooY x(mx(n). (1.13)

n<r ¢<Q x=x(mod q)
XFX0

If m =n < r, then using Lemma 1.10 yields

Y xm)xn) >y

q<Q x=x(mod q) q<Q x=x(mod q)
X#Xo0 X7#X0
= Mo—) (¢—2)
qlm
q<r
= Aﬂ9+()(§:q)
g<r

Mg +0(rY 1) = Mg +0(r?).

q<r

Thus, this case, in view of Lemma 1.9, for |7| < ¢ and s € R, contributes to (1.11), as
Q — o0,

7 ) oy - 3 ) oy 10

In the case m # n, m, n < r, we apply Lemma 1.7. We have by Lemma 1.10 and the
definition of r that

o> x(mx(n)

q<Q x=x(mod q)

X#Xo
=YY -3 Y x(m)xn)
q<Q x=x(mod q) 4<Q x=xo(mod q)
-3 Y xmxm+Y Y xm)x(n)
q<Q x=x(mod q) ¢<Q x=x(mod q)
ql(m—n) qf(m—n)

- > x(mx(n)

q<Q x=xo(mod q)

:ozq+o(21)

g<r a<Q
—0(r?) + o(logi@)
- O(logQ)'

Therefore, by (1.9), (1.10), and Lemma 1.8, for |7| < c and s € R,
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1 ar(m)x(m) b-(n)x(n
%Z T Yy (W)lzd) ()5()

ns
q<Q x=x(mod q) m<rn<r

XF#X0 m#n
T bT 1 ~
<<122“(T> W LIS~ S ymxm)
— = m n Mg 5
mrn<r 9<Q x=x(mod q)

X#Xo

m#n
1 |a.r(m)| |b7-(n)|
<5 m%; e g ng
1 dez |
< Q( > mf@) < T

m<r

Now this, (1.11)—(1.14) show that, uniformly in |[7| < c and s € R,

o0

wo(r) = 30 )y o)

as ) — oo.

1.5. Proof of Theorem 1.1

We apply Lemma 1.4. From Theorem 1.5 and (1.3), it follows that the characteristic
transform of the measure Py g converges, uniformly in |7] < ¢ and s € R, to the function

- a,(m)b-(m)
m20’
m=1
as ) — oo. Since § > 0 is arbitrary, we have that, for o > “TH, wrq(T) converges,

uniformly in |7] < ¢, to
o0

ar(m)b-(m
3 (m)b;(m)

i (1.15)

m=1
as @ — oo, k =0, 1. The functions a,(m) and b,(m) are continuons at 7 = 0. Thus, all
hypotheses of Lemma 1.4 are satified, and we obtain that the measure Pgr converges
weakly to the measure Pr defined by the characteristic transforms

— a-(m)b. +1
w0(7)2w1(7’)227a (n;22a(m)7 T €R, 0'>R2 .

m=1

The theorem is proved.
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Chapter 2

A limit theorem for the argument
of twisted L-functions of
normalized cusp forms

In this chapter, we consider the value-distribution of the argument of the twist L(s, F, x)
in the half-plane o > 1. Define argL(s, F, x) from the principal value arg L(’fzj, F,x)
by continuous variation along the straight line segments [#£2, 543 4it] and [252, o 4it].
In view of the Euler product

L Fo) =] (1 B a(p)x(p))*l(l 3 B(p)x(p))*l’ . F»;r L 2.1)

P

and the Deligne estimates [5]

r—1

()| <p™T, |Bp) <p T, (2.2)

we have that L(s, F, x) # 0 for ¢ > %t Thus, arg L(s, F, x) is well-defined. From this

definition, it follows that argL(s, F, x) is defined up to multiple of 2.

2.1. Statement of the results

Let v = {s € C: |s| = 1} denote the unit circle on the complex plane. For k € Z, let

9:9(k):§,
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and, for prime p and [ € N,

G < 20 1)..l.l(e+z_ D gt

Define, for m € N|

ar(m) = [T ar(@")

plllm
and
b(m) = [T xs),
ptllm
where l
ar(p) = di(p?)e? (p)di ()8 (p)
§=0
and

l .
be(') = Y dow(p? ) ()dr(p' ) ().

j=0
Moreover, let P, be the probability measure on (v, B(y)) defined by the Fourier transform

f(k) déf/xkdp7 =y 7“’“(”225(”1), o> ””‘; L (2.3)
¥ m=1

and
Py (A) = po (exp{i arg L(s,F,x)} € A), A e B(y).
Let P, and P, n € N, be probability measures on (v, B(7)). We recall that the weak
convergence of P, to P as n — oo is equivalent to the convergence

Pr(A)pSecP(A)

for all arcs A C «y with end points having P-measure zero [2].

Theorem 2.1 Suppose that o > “L. Then Py, converges weakly to Py as Q — co.

A distribution function G(z) is said to be a distribution function mod 1 if G(z) =1
if > 1, and G(x) =0 if 2 < 0. A distribution function mod 1 G, (z), n € N, converges
weakly mod 1 if there exists a distribution function mod 1 G(x) such that at all continuity
points z, y, 0 <z <y < 1, of G(x)

i (Ga(y) — Ga()) = Gly) - G(a).

Thus, by this definition, the limit distribution function mod 1 G(x) is determined only
up to an additive constant.
Let

Go(x) = no (% arg L(s, F, x) < z(mod 1))
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Theorem 2.2 Suppose that ¢ > L. Then Gg(x) converges weakly mod 1 to the

distribution function mod 1 defined by the Fourier transform f(k), k € Z, given by (2.3)
as () — oo.

For the proof of Theorem 2.1 and 2.2, we apply the method of Fourier transforms.

2.2. Fourier transforms of probability measures on (v, 5(7))

Let P be a probability measure on (v, B(v)). The Fourier transforms f(k), k € Z, of P
is defined by

f(k) = /:r,de, keZ.
0l

Lemma 2.3 The probability measure P is uniquely determined by its Fourier transforms

f(k).
Now let P,, n € N, be a probability measure on (v, B(Y)).

Lemma 2.4 Denote by f.(k), k € Z, the Fourier transform of the measure P,, and
suppose that
lim f,(k) = f(k), keZ.

n—oo

Then on (v,B(7)), there exists a a probability measure P such that the measure P,
converges to P as n — oco. In this case, f(k) is the Fourier transform of the measure P.

The theory of weak convergence of probability measures on (v, B(7)) is given in [2].

2.3. Fourier transforms of distributions
functions mod 1

Let G(z) be a distribution function mod 1. The Fourier transform f(k), k € Z, of G(x)
is defined by

1
f(k) = [ *™*4G(z), ke Z.
/

Lemma 2.5 The distribution function mod 1 G(x) is uniquely determined by its Fourier
transform f(k).

Let G, (x), n € N, be a distribution function mod 1.
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Lemma 2.6 Denote by f,(k), k € Z, the Fourier transform of the distribution function
mod 1 G, (x), and suppose that

lim fo(k) = f(k), ke 2.

n—oo

Then there exists a distribution function mod 1 G(z) such that Gy, () converges weakly
mod 1 to G(z) as n — co. In this case, f(k) is the Fourier transform of G(x).

The theory of weak convergence mod 1 for distribution functions mod 1 is given in

[9].

2.4. Fourier transform of I,

Denote by fo(k), k € Z, the Fourier transform of Py ., i.e.,

folk) = [ a*arq.,

~

Thus, by the definition of Pg , we have that

1 tkar,
folky =52 D elwstemo, (2.4)
? 4<Q x=x(mod )
XF#X0
It is easily seen that
1
eiargL(s,F,x) — (|L(S, F, X)|eiargL(s,F,X) |L(S, F, X)leiargL(s,F,X)>
L(s, F,x) \°
_ (55 7X) . (25)
L(s, F,x)

Let R be the same region as in Chapter 1. Then, for s € R, the Euler product (2.1) and
(2.5) imply

eikargL(s7F7x)

p p* p*
_alp)x(p) -1, BE)XpP)\ -1 :
(Tp0- om0 - A )



o A o S0 (- 220

+§ Zp: (108 (1 - O‘(”;i‘(p)) + 1°g<1 - W))

_ Hexp{ - I;(log (1 _ a(p})gzc(p)) +log (1 _ B(p;z‘(p)»}

«TTeww ¢ (10 (1 = “PX20) 1o (1 - p)>>}
X

_ 1;[ (1- a(pl)) (p))—f(1 (p)?f( )) :
y 1;[ (1- a(p;zdp))’% (1- (p)f( ))g (2.6)

k
Here, as in Chapter 1, the multi-valued functions log(1 — z) and (1 — z)iQ in the region

|z| < 1 are defined by continuation variation along any path in this region from the values

log(1—2)|__, =0and (1— z)i% |,_, = 1, respectively.

Using the definition of dj(p'), we have that, for |z| < 1,

1—2: de

and

Hence, for s € R,

Cap)xP)\E o de(@)ed (p)x ()
(1 ps ) - ; pls ?
Bo)x(P)\ %~ de(®)B' (p)x(0")
(1_ ps ) _; : pls ?

and

(1 ~ B)x(p) ) P _ i d_x(P")B (D)X(r')



Substituting the latter expressions in (2.6), we find that, for s € R,

eikargL(s,F,x)

; (2.7)

where ax(m) and by (m) are multiplicative functions given, for primes p and [ € N, by

l

ar() =D du () (D)x(0))di (0" ~9) B (p)x (0 ) (2.8)
j=0
and l
b)) = Y dw ()@ (DX (0B ()X ). (2.9)
j=0

The multiplicativity of the functions ax(m) and Ek(m), and the complete multiplicativity
of the character x together with (2.8) and (2.9) imply

arm) = [ a@)

plllm

l
= [ D) 0)x(@)di(p'7)8' 7 (D)x(n' )

plm §=0
l
= T X0 Y o) )ap' )8 ()

p!lm §=0
= ag(m)x(m)

and

ptm
!
=TI 3 )@ (o)) ()8 ()0 )
pt|lm j=0
l .
= I x> ds)@ (p)d_i (0B (p)
ptlm Jj=0
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= be(m)x(m),

where the multiplicative functions ax(m) and by (m) are defined in Section 2.1. From
this, in view of (2.4) and (2.7), we obtain that

fall) = 3= % > )

Q g<Qx= x(mod ¢) m=1
XF#X0

x i @ (2.10)

2.5. Asymptotics for f(k)

For the proof of Theorems 2.1 and 2.2, we need an asymptotic formula for the Fourier
transform fg(k) as Q@ — oo.

Theorem 2.7 Suppose that Q — co. Then, for any k € Z, uniformly in s € R,

- > ) oy

m=1
Proof. Repeating the proof of Lemma 1.6, we find that
ld(P")] < (1+1)°,
where the constant ¢ depends on k, only. Therefore, the Deligne estimates (2.2), and the
definition of a(p') and by(p') show that

l

)] < Y+

=0
< (+1)Mp

—1) . (I=j)(r=1)
O e VT

I(k—1)
2

and oy
|bk(pl | (l+1)1+2c

Therefore, by multiplicativity of the functions ax(m) and by, (m), taking into account the

formula
d(m) = > (1+1),

ptllm
we find that

jar(m)] =TT lar@")]

plllm
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IA
he]
—
n
—
=
i

1 (m) (2.11)

and
[br(m)| < m "5 d (m), (2.12)

where ¢; = 1 + 2¢ depends on k, only.
Let, as in Chapter 1, 7 = log ). Then, using Lemma 1.8, and estimate (2.11) and
(2.12), we obtain that, for every k € Z and € > 0, uniformly in s € R,

m>r m>r m

0. (r=+%)

and

Z bk(mw);((m) _ OE(T7§+E)'

This and (2.10) show that, for every k € Z and € > 0, uniformly in s € R,

foll) = 3 % (( 3o almhdm) oe<r6+s))
¢I<Q>( Xx(mod q) m<r m
XFX0
: (Z R Oe<r6+f>))
- ak(m m) bi(n )
Q<ZQX x(;égod q) <mz<r Tg

oy x|

Q q<Q x=x(mod q) m<r
XF#X0

)) + 0. (r2079)). (2.13)
Moreover, by (2.11), (2.12) and Lemma 1.8, for every k € Z and s € R,

3 N =0 3 ) <o

m<r m<r

+

>y bk(ng(n)

n<r

and



Hence, for every k € Z, ¢ > 0 and s € R,

7,75+ei Z Z ( Z ak(m)X(m)‘

M, s
Q q<Q x=x(mod q) m<r m
X#X0
b (n)X(n) 5
—— | =0(r7"). 2.14
LT (") (2.14)

From (2.13) and (2.14), we find that, for every k € Z, ¢ > 0 and s € R,

folk) = Z 5 (Z ak(mn?(m) 5 bk(ﬂi}(n)) .

(1<Qx x(mod ¢) \m<r n<r
X#Xo
- Yy LS Y v o). @)
m<r n<r q<QX x(mod q)

X7#X0

In Section 1.4, it was obtained that, for m = n,

Yo Y xmx(n) = Mg+ O(?),

q<Q x=x(mod q)
X#Xo0

> Y mun =0(i4s):

q<Q x=x(mod q)
X7#X0

Therefore, from (2.15) and Lemma 1.9 we deduce that, for every k and s € R,

falk) = 3 Glmbelm) o)

m20’

while, for m # n,

m=1

as Q — oo.

2.6. Proof of Theorems 2.1 and 2.2

Theorem 2.1 is a straightforward consequence of Lemma 2.4 and Theorem 2.7.
Proof of Theorem 2.2. We have that the Fourier transform fo(k), k € Z, of the
function Gg(z) is

1

fQ(k‘) /27”krdG [ Z Z ikargL(s,F,X).

0 @ 4<Q x=x(mod gq)
XFX0

Therefore, the theorem follows from Lemma 2.6 and Theorem 2.7.
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Chapter 3

A limit theorem on the complex
plane for twisted L-functions of
normalized cusp forms

In this chapter, we generalize the results of Chapters 1 and 2, and we prove a limit
theorem for L(s, F, x) on the complex plane C.

3.1. Statement of the results

For € R and k € Z, let
Ttk

£ = (k) = 75

and, for primes p and [ € N,

§E+1)...(E+1-1)
I ’

d‘r,:l:k:(pl) = dT,:I:k(l) =1

Similarly, as in previous chapters, we define

l

ar k() =Y de () (p)dr i (p'~)B ()

j=0
and

l .
bri(@) = Y de () (D)dr -k (P )B (),
=0
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and for m € N, let

ark(m) = H ark(ph)

plllm

and

bT,k(m) = H bT,k(pl)'

pllim

Thus, a,;(m) and b, ;(m) are multiplicative arithmetical functions with respect to m.
Let P be a probability measure on (C, B(C)). Then the function

w(T, k) = / |z|iTet* 2P, 1€ R, k€Z, (3.1)
c\{o}

is a characteristic transform of the measure P.
Let Pc be a probability measure on (C, B(C)) defined by the characteristic transform

— ar br 1
w(T,k):ZW, TeER, keZ, U>Ii—2’—.

m=1

Define
Poc(4) = o (L(s, F,x) € 4), A€ B(C).

Theorem 3.1 Suppose that o > %H Then Py c converges weakly in the sense of C to
Pc as Q — .

For the proof of Theorem 3.1, we apply the method of characteristic transforms of
probability measures on (C, B(C)).

3.2. Characteristic transforms of probability measures

on (C, B(C))

In this section, we state the results from [19], [20] on characteristic transforms of proba-
bility measures on (C, B(C)).

Let P be a probability measure on (C,B(C)), and let w(7, k) be its characteristic
transform defined by (3.1).

Lemma 3.2 The probability measure P is uniquely determined by its characteristic trans-
form w(t, k).
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Now let P,, n € N, and P, be probability measures on (C, B(C)) . We say that P,, as
n — 0o, converges weakly in the sense of C to P if P, converges weakly to P as n — oo,
and, additionally,

nh_fgo Pn({o}) = P({O})

The next two lemmas are devoted to weak convergence of probability measures on
(C,B(C)). Denote by wy, (7, k) the characteristic transform of the measure P,.

Lemma 3.3 Suppose that P, converges weakly to the measure P as n — oo. Then

lim wy(r, k) =w(r,k), 7€R, keZ.

n— oo

Lemma 3.4 Suppose that

lim wy(r, k) =w(r,k), 7€R, keZ,

n—r oo

where the function w(r,0) is continuous at 7 = 0. Then on (C,B(C)), there exists a
probability measure P such that P, converges weakly in the sense of C to P as n — oo.
In this case, w(7, k) is the characteristic transform of the measure P.

3.3. Characteristic transform of P ¢

Denote by wq(7, k) the characteristic transform of Py c. By the definition of Py ¢, we
have that

wqQ (T, k) = / |Z|i7—eik argzdPQ’(c
C\{o}

1 T tkarg L(s
%Z o |L(s, Fyx)[ Tt et R, (3.2)

q<Q x=x(mod q)
X#Xo0

TE€Rand k € Z.

Let R, as in previous chapters, denote the half-plane {s € C: 0 > %“ +0}, 0 >0.
We recall that L(s, F,x) # 0 for s € R.

Since

N

L(s, F.x)l = (L(s, F.x)L(s, F, X)) %,

and

1
eiargL(s,F,x) — <L(S7F7 X)) ’

o1



from the Euler product

L(s,F,x) = H (1- a<p]>9§<p>)1(1 _ M)ﬂ

pS
we find that, for s € R,

Lo, Fo)[Tethostio 0

ot s 2p0)
*%Z (1Og (1 _ M?(p)) 4 log (1 B B(p):(p)»

P p P
_g p (105 (1 a(pl))s (p)) +log (1 B(pz)jf(p)>>
+§ p (log (1 - a(pl)g(p)> g (1 _ 5(192;&19)))}
— e { _ Z(log (1 B a(pl))ic(p)) 4 log (1 B ﬁ(pl);c(p)»
_k <log (1- a(p;zc(p)> +1og (1 B(p])gf(p)n}

{5 (- ) 17010
B

it

I (1 - 2y By

p? p*
iT—k

xg(lo@;zdm)‘ : (FM)-”?{

e
Here the multi-valued functions log(1 — z) and (1 — 2)~%*, w € C\{0}, in the region
|z| < 1 are defined by continuous variation along any path in this region from the values
log(1 — Z>‘z:0 =0and (1-— Z)_w’z:o = 1, respectively.

In the above notation, we have that , for |z| < 1,

(3.3)

(1—2)7¢ =) dran(p)?.
=0

Therefore, (3.3) shows that, for s € R,

|L(s, F, x)| " eik are L0s.Fox)
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p j=0 p 1=0
> Zl\T k(m) > bT k(n)

= : LA 3.4
e o >

where @, ;(m) and E_yk(m) are multiplicative functions defined, for primes p and [ € N,
by

l
ark(p') =Y dri(p?)o? (p)X()dr i (p'7) B ()X (') (3.5)
j=0
and l
bri(0) = dr (0 ()XW )dr (0B (0)X(). (3.6)
j=0

Let ¢ be an arbitrary positive constant. For |7| < cand [ € N,

e+ .. (gl +1-1)
!

l
< 10+
ol
v=1

< (+1)"

IN

|d7,ik(pl)|

with a suitable positive constant ¢; depending on ¢ and k, only. This, estimates (2.2),
and equalities (3.5) and (3.6)) imply, for |7| < c and I € N, the bounds

I(k—1)
2

@ ()] < U+ 1)2p

and
I(k—1)
2

[ori(p)] < (14 1)2p

with a positive constant depending on ¢ and k. Therefore, by the multiplicativity of
Gr(m) and by ;(m), we find that

’aT,k‘(m)| = H




< m 7T [[u+1)e
 #lm
= m’ 7 d(m) (3.7
and N .
|brk(m)] < m™7 d(m). (3.8)

3.4. Asymptotics for wq(T, k)

In this section, we give an asymptotic formula for the characteristic transform wg (7, k)
of the probability measure Py c. By (3.2) and (3.4), we have that, for s € R,

Y Xy gl 59

Q 4<Q x= x(mod g) m=1
X#X0

where, for the multiplicative functions a- ,(m) and BT,k(m),the estimates (3.7) and (3.8)
are satisfied. We use the same notation r = log @) as in previous chapters. Then (3.7),
(3.8) and Lemma 1.8 show that, uniformly in s € R, |7| < ¢, and any fixed k € Z and
e >0,

S - oy )

m>r m>r

- (X 7

m>r

= 0.(r ),

and

Z /l;'rk(n) — 0. (T76+5).

ns
n>r
Substituting this in (3.9), we obtain that, for s € R, |7| < ¢ and any fixed k,

Z Z (Zark (—a+5))

@ 4<Qx= X(mod q) m<r

wg (7, k)

XFX0
br e (n) e
><<§<: L 0. 5+)) ]
- b
Sl T (D)
q<QX x(mod ¢q) m<r n<r
X#Xo0
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oGy T (e

q<Q x=x(mod ¢q) ~m<r
X7#X0

~

+' Z b‘f',,rkl’(n) D + 0. (r20-2)

Q<QX x(mod ¢q) \m<r n<r
XFX0
+0.(r=07%¢). (3.10)

Here we have used the estimates

>t = o.

m<r

3
A
4

3
A
4

|
S
e
NN
SH S»—A
i—qH i—q»—
| |

o O
3
Il

and

s o,

n<r
which are uniform in s € R and |7| < ¢.

By (3.5), (3.6), using the multiplicativity of @, ;(m) and BT,k(m) as well the notation
for a k(m) and b, ,(m), we find that

l
arn(m) =[] D dex@)e? 0)x()dri(0"7)B (0)x (')

ptllm 7=0
l
= I xH S dee0))a? (p)dric(p )8 ()
ptllm J=0
= ari(m)x(m)

and R
brk(m) = by (m)x(m).
Therefore, by (3.10), for s € R, |7| < ¢ and any fixed k € Z, and ¢ > 0,

ug(rh) = =% Y x<m>x<n><2 R )be;’;ﬁ"))

q<Qx Xx(mod ¢q) m<r n<r
X7#X0
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+0. (r=07Fe). (3.11)

Since, for m = n,

> > x(m)x(n) = Mg +0(r?),
q<Q x=x(mod q)
X7#X0

> Y wmun -o(ly)

¢<Q x=x(mod q)
XF#X0

and, for m # n,

see Section 1.4, we have in view of (3.11) that, for s € R, |7| < ¢ and any fixed k € Z,

2
wo(rk) = Y —aT’k(gfg’k(m) +0.(r ) + O(&) + O(%)
m<r
= > el oy
m=1
as ) — oo.

3.5. Proof of Theorem 3.1

In Section 3.3, it was obtained that, for s € R, |7| < ¢ and any fixed k,

wo(r, k) = i —a77k(n2§;’k(m) +o(1) (3.12)

m=1

as Q — oo. The functions a,x(m) and b, x(m) are continuous in 7. Therefore, the
uniform convergence for |7| < ¢ of the series

w(r, k) = Z W

m=1

shows that the function w(7,0) is continuous at 7 = 0. Therefore, (3.12) together with
Lemma 3.4 proves the theorem.
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Chapter 4

A joint limit theorem for twisted
L-functions of normalized cusp
forms

The aim of this chapter is a generalization of Theorem 1.1 to the space R", r € N\{1}.
For j = 1,...,r, let Fj(z) be a holomorphic normalized Hecke eigen cusp form of
weight x; for the full modular group with the Fourier series expansion

Fj(2) =) ¢j(m)e®™™2, ¢;(1) =1,

m=1

and let L(s, F;) be a corresponding L-function,

L(s, Fj) = Z 0377(?)7 o> g’
m=1

with the Euler product over primes

Ls, Fy) =T (1- aj(p))—l(l _ 5j(p)>—17 oo fitl

p* p* 2

p

where a;(p) and §;(p) are complex conjugate numbers satisfying a;(p)+ B;(p) = ¢;(p).
Let, as in previous chapters, x be a Dirichlet character modulo ¢, and ¢ be a prime
number. In this chapter, we prove a limit theorem with increasing modulus for the vector

(IL(s1, F1,X)|, - - |1L(sr, Fr X)), 85 = 0 +it, where for o > ",
— ¢;(m)x(m)
L(s;, Fj,x) = Z;JT
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P D

- 11 (1 _ Ozj(p)x(p))*l(1 _ Bj(p)x(p))*, i1

4.1 Statement of the theorem

For j =1,...,r, define

ajir(m) = [T ajir ("),

pF|lm
and
bjir(m) = H bjr ("),
pF|lm
where .
ajir (p") =D d- (9"l (p)d- (0" )3 (p)
1=0
and )
by 0) = Y e (0 () (055 (),
1=0

and d,(p*) is defined in Chapter 1.
Let Pgr be the probability measure on (R", B(R")) defined by the characteristic trans-
forms
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) j:]'?"'?,r?

- Qg (m)bj§7'j (m)
= Z LA AN AE I ASatA

m20’j

_ i Z Ajy 57y, (ml)ajz;sz (m2) Z bjule (nl)bjz'ﬂ'jz (nﬁ)

Sj1,,,502
my My

gJ'1 §j2 ’
ny Ny

m=1mimao=m nins=m
]2>]1:11 '7T_17
wkl,..i,kj,l,kﬁl,...,kr(7'1, cee ’Tj—177j+17~-~77'r)
(oo}
-y ) 015, (M) - @1y, (M -1) @1, (M) - - G, (M)
- Sj—1,,8i+1

S1 S
m=1 Mmi...mj_1 mq ...mj_l mj+1 oo Mmy
XMjp1...Mp=MmM

Z biry (nl) cee bj71?7j71 (njfl)ijrl;‘er (nj+1> B (nr)

X = —
51 Sj—1, Sj+1 Sr ’
ni...nj_1 nq ...nj_l nj+1 R ¢
XNj41...Np="MmM
] - 17 sy Ty

Sr S1 Sr ?
. oMy " . nyt...ny
= 1...Mp=m

> a1 (M) ... apir, (My bi.r (P1) .. bpyr, (N
-y ¥ (m1) (my) 3 (r1) (rr)

where o; > “& Lij=1,...,r
Define

PQ,R"'(A) = MQ((‘L(SlaFDX”v R |L(ST‘7F’!’7X)D € A)a A € B(RT)

Theorem 4.1 Suppose that o; > ngrl, j=1,...,r. Then Por- converges weakly to

the measure Prr as QQ — oo.

For the proof of Theorem 4.1, we apply the method of characteristic transforms of
probability measures on (R”, B(R")).

4.2. Characteristic transform of probability
measures on (R", B(R"))

Let P be a probability measure on (R", B(R")). Denote by Pj, j =1,...,r, P} j,, j2 >
gi=1...,r—=1,.... Py j-1j+1,. J=1,...,7r, one-dimensional, two-dimensional,
.., (r — 1)-dimensional marginal measures of the measure P. That is,
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P;(4;)
=PRx...xRxA; xRx...xR), A;eBR), j=1,...,r
—_———
j—1
Pj17j2(Aj1 XAjz)
=PRx...xRxA4; xRx...xRxA4;, xRx...xR),
—_———

Jji—1

Jj2—1
Aj17Aj2€B(R)7 j2>j1:17"'5r_1a
Pl,,,,,jfl,j+1’,,,7T(A1 X ... X Aj,1 X Aj+1 X ... X Ar)
=P(A; x...xAj_1 xRxAj11 x...xA,),
Al,...,Aj_l,Aj_i_l,...ArEB(R), jzl,...ﬂ".

Then the functions
wi, (75)
= / lzj|sgn®ix,dPy, T, €R, kj=0,1, j=1,...,m

R\{0}

Wk, kjy (le ) sz)

_ iTj k; iTj kj
- / “rj1| Jlsgn™/t xj1|xj2| 28gn sz]édpjl,jw
R\{0} R\{0}
leﬂszeRikjlvkj2:O717 j2>_71:1,...,’f'—1,
wklv---akj—17kj+l7--<7k7‘(T17 e Ti=1 Tjdds - e 77-7‘)

iT1 iTj—1

= |21 [rsgnfray L x| sgn™i—la;

R\{0}  R\{o}
X “’L'j+1|i7—j+lsgnkj+l.’tj+1 Ce |$CT|iTTSgnk”‘xrdplw“’j,lﬁjJer,r,
Tlyer s Tj—1,Tj41y- -+, Tr € R, kl,...,kj,17kj+1,...,kr =0,1,
j=1,...,m7
Wy ... by (T15 -+, Tr)
= . / lz1[Tisgn®ray |z, [Trsgn®r e, d P,

R\{0}  R\{o}

.., 7» €ER, ki,...,k.=0,1,
are called the characteristic transforms of the probability measure P on (R", B(R")).
They were introduced in [18], where, in place of probability measures, the distribution
functions were used. Obviously, the results of [18] remain valid for probability measures.
Thus, we have the following statements.

Lemma 4.2 The probability measure P on (R",B(R")) is uniquely determined by its
characteristic transforms {wy, (), W, k. (Tiss Tin)s -+ oy Wiy ooky 1 kyn sk (TLy oo T,

Tid1s <o Tr)y Why,oo ko (T2 - - - ,TT)}.
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Lemma 4.3 Let P,, n € N, be a probability measure on (R", B(R")), and let {wy,;n(7;),
wkjl,k}jzi,n(le ) Tjg)y ct wkl,...,k?j71,k}j+1,‘..,k}1~;’ﬂ(7—1a et Tj*l} Tj+1’ te T’I“)7 wkl,‘..,krgn(’rly
. TT)} be the corresponding characteristic transforms. Suppose that

T ()

=wy,(15) j=1,...,m
nh_)ngo Wk, kjy ;n(le ) Tj2)

= Wik, (T3 Tia)y J2e>J1=1,...,7 =1,
nh_)n;owkl,‘..,k‘j,l,k:j+1,...,k:,.;n(7—17--~>7—j7177—j+15-~-77—r)

= Why oo kyor kg (TLs ooy i1, Tig s T )y J = 1,7,
Hm wiy . kon (71,0 Tr)
n— oo

= Wiy, ke, (T1s - )

forallTj eR, 7, 15, €R, .., 1, .o, o1, Tj+1, -, 7w €R, 71, ..., 7 €R, and that
the functions wi, (75), Wi, ks, (Tjis Tia)s o Wy ok kygns ke (TLs ooy T 1y Tj s o e i),
Wiy ..k, (T1, ... Tr) are continuous at 7, =0; 75, =0, 75, =0; ..., 1 =0,..., 751 =0
Tig1 =0 5., 7 = 0;, 11 = 0,...,7 = 0, respectively. Then, on (R",B(R")), there
exrists a probability measure P such that P, converges weakly to P as n — oo. In
this case, {wky (Tj)} wk“,kgz (le ) Tj2)} sy Why,okio1,kjgr,.ke (7—17 s Ti—15 Tj41s - s TT):
Wy, g (T2, ,7})} are the characteristic transforms of the measure P.

Proofs of Lemmas 4.2 and 4.3 are given in [18].

We note that the convergence of characteristic transforms gives more than the weak
convergence of P, to P, P,(A) also converges to P(A) for some special sets A € B(R")

involving {0} as coordinate sets, for example, for A = {0} x ... x {0}, however, as it is
—_————

T
stated in Lemma 4.3, we limit ourselves only by the weak convergence.

4.3. Characteristic transform of Py -

In virtue of Lemma 4.3, we have to consider the characteristic transforms {U)kj;Q(Tj),
Wiy, 3@ (Tius Tin)s v os Wik -1 byt seebors@(T1 - Tim 1 Tty oy Tr)s Wy, k(71
..., Tr)} of the measure Py - as Q — oc.

As in previous chapters,the Euler product and Deligne estimates imply that L(s;, Fj,
x) # 0 for o; > 'WT'H, j=1,...,r. Moreover, since the measure Py g~ is defined by the

modulus of L(s;, F};,x), its characteristic transforms do not depend on kj; kj,, kjy; -
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k1,...,kr. Therefore, the definition of Py g and of characteristic transforms yield

w0 (75)

1T .
:ﬁz Z !L(SJ7FJ7X)’ 17 Jj=1...,m
7<Q x=x(mod q)
XF#Xo
wk}17kjg Q(T]17TJ2) )
iTjy

1T
ML Z Z |L(sj1’Fj17X)| Jl|L(sj2vFj2’X)| )
9<Q x=x(mod q)
X7#X0
Jo>pn=1,...,r—1;
............................................................... (4,1)
wkl7---7k;]‘—1,k‘7+17-~~7k7‘:,Q(T17 s Ti—1 T4l - o vy TT)
= M}Q > S (st Fux)| T x| L(sjo1, Fi1,X)|
9<Q x=x(mod q)

iTj_l

XF#Xo ) .
X |L(Sj+1aFj+17X)|“—]+l cee |L(ST7FT3X)|ZTT7 J = ]-7 s T
Wiy, ks (T15 o5 T)

—i=Y X |L(s1, Fi, )| ™ - [ Ly Fryx)| ™
4<Q x=x(mod q)
X#Xo

Let 0 < 6 < % be fixed, and let R; = {s € C: 0; > K7T+1 + 0}, Then in Chapter 1,
Theorem 1.5, it was obtained that, uniformly in |7| < ¢ and s; € R;,

— Ajir; (m)bj;‘l'j (m)
Wi (75) = Z a2 +o(1), (4.2)
m=1
as Q — oo.
So, it remains to consider the functions wi; k;»:Q(Tj1s Tia)s Wy, ks—1.ks 41, ki@ (715
ey Ty Tl oo s Tr)y o ooy Whey, o ki@ (T1, .., 7). Clearly, it suffices to limit ourselves by
the investigations, say, of the functlon wkh..,,kr(ﬁ, ..., T) because other characteristic
transforms are considered similarly.
It follows by (1.5) that, for s; € R;,
; > G > Z
lTj _ 7375
1 L(sj, Fy 0™ =) Z (4.3)

m=1 n=1

where @;.-(m) and Ej;T(m) are multiplicative functions given, for primes p and k € N, by

k
a5 (0%) =Y do, (0 (p)x (') dr, (P B (o)X (0" ) (4.4)
=0
and .
=" d., (e ()X dr, (0F DB ()XY, (4.5)
=0
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j=1,...,r. Moreover, for |7;| < ¢, where ¢ > 0 is an arbitrary constant,

| (m)] <m™ 7 " d° (m), (4.6)
and -

557 ()| < m ™ " (m), (4.7)
m € Nand j =1,...,r, with a suitable constant ¢; > 0 depending on c, only.

Now, in view of (4.1) and (4.3), we have that, for s; € R,

o~
Cl1 m1 bl; (nl)
Wy QT Ty *Z Yy Dbl g b

q<QX X mod q) mi=1 ni=1 nl
X#Xo
0o~
U7, mr brir, (nr)
. X E E > (4.8)
my=1 ne.=1 T

where @, (m) and Bj;Tj (m) are multiplicative functions defined by (4.3) and (4.4), and
satisfying estimates (4.6) and (4.7), i =1,...,r

4.4. Asymptotics of wy, i (71,...,7)

Let N =log Q. Then the estimate d(m) = O.(m*) with arbitrary € > 0 and estimates
(4.6) and (4.7) imply, for |7;] < c and s; € Rj, the estimates

Ki—1

Z aj;r,-(m) _ O( Z mj2dcl(m)>
m;>N mj] m;>N mﬁ]Tf_HS
1
= Os( Z m1+6—£>
m; >N
— OE(N—(;-FE)’

and

Z bj;-rjggn) _ OE(N76+E),
n;>N T

j=1,...,r. From this and (4.8), we find that, for |7;| <cand s; € R;, j=1,...,r

Wky,... nQ(Tlv"'aTT)

S T (3 et o i)
my
q<QX x(mod q) mi1 <N

XFXo
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( b<>+o<N)>
m<N ™M

rr, (M) L0 5+5 ) T'rr nr JrOs(N‘HE))

(x
5 ( 5 am z; Em (n1)

1
Q q<Q x=x(mod q)

mi1<N
X7#X0 R
" Z arTT m,« Z br;rrs(:"br)> —|—OE(N_5+E), (4.9)
m,<N T n.<N r

since by (4.6) and (4.7), for |7;| < c and s; € R;,

@jir; (M e (m;
Z # - O( Z (1+5)>

m m

m; <N J m; <N J
der(my)
(mg—:l m]1,+5 >
= 0(1)

and

j=1,...,r. The multiplicativity of a;,,,(m) and ZJ%TJ‘ (m) together with (4.4) and (4.5)
shows that

aj§7j(m) = H aj;Tj(m

pFlim

k
= I 3 dr, ek ()x(0)dr, (0" D85 o)X (p" )

pk|lm =0

= g (m)x(m) (4.10)

and

jir; (M) = bjir; (M)X (), (4.11)



j=1,...,r. Therefore, the main term on the right-hand side of (4.9) can be written in
the form

ar;r, (mi) b1;r, (1) iz, (M) brr, (nr)
E = E = ... E = E =
n1 <N niﬁ m,<N me’ n,<N n’%

><L Z Z x(my...mg)x(ny...n,)

M,
Q 4<Q x=x(mod q)
XFX0

_ a1, (Ma) ... aper, (My)
o Z Z mit ... men

m<N"” mi..m,=m

« Z Z b1.ry (n;) - b%:_T (nr)

n<N"™ ni..n,.=n ny...n

XA;QZ S mx). (412)

q<Q x=x(mod q)
X#Xo

If m = n, then

SO amxm = Y Y k)P

q<Q x=x(mod q) q<Q x=x(mod q)
X#X0 X7#X0
= Mo- ) (4-2)
qlm
g<N”
= Mg+ O( Z q)
g<N"
= Mg+ O(N?). (4.13)

Moreover, in view of (4.6), (4.7) and (4.10), (4.11), using the estimate

Z 1= 0.(m)

dl...d,‘:m
with arbitrary € > 0, we obtain that , for |7;| < cand s; € Rj, j=1,...,7,
Z at;r, (M) - - - Gy, (M) Z biry (1) - - - bryr, (1)
s S 5 5,
mi..m.=m m11 My n1.mn=m nil RO 7
_ o( S ) ) s ) <nr>>
m m
mi...mp.=m ny...n.=m
ms 2
=0 m2+26 ( Z 1) )
mi..mp.=m

I
o

m€
m2+2s |
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Therefore, by Lemma 1.9 and (4.13), the case m = n contributes to (4.9)

) ., () Brir () - by, (1)
> T T

_ ny ...ng”
m=1mi..m,= niy..n.=m

+o(1), (4.14)

uniformly in |7;| < ¢, and s; € R, j=1,...,r,

Now consider the case m # n. Using Lemmas 1.7, 1.9 and 1.10, we find that

Yo > x(m)x(n)

¢<Q x=x(mod q)

XF#X0
=3 Y dmxm) = 3 xolm
q<Q x=x(modq) 7<Q
=Y > xmxm+>, > x(mx(n)
¢<Q x=x(mod q) q<Q x=x(mod q)
ql(m— n) qt(m—n)
- Z Xo(m
9<Q
oF ol
g<NT 9<Q
, Q
- O(NQQ) + O(logQ)
- O(log Q)’

Therefore, this, (4.9), (4.12) and (4.14) show that, uniformly in |7;| < ¢, and s; € Rj,
j = LA 7r7

7 (m ) T (mr)
Q\T § § : ay; 1) Qpir,
wkh...,kr; ( Tyewos T 1 m81 T

1 ..My
=1mi..mr.=m
bl.T (nl) e br;TT (nr)
x> i T +o(1)  (4.15)
ni..np.=m 1.t

as ) — oo.
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4.5. Proof of Theorem 4.1

We apply Lemma 4.3. Reasoning similarly to the proof of the asymptotic formula (4.15),
we find that, uniformly in |7;| < cand s; € Rj, j=1,...,r, as Q — o0,

wkj;Q(Tj)
0
ajir; (M)bjr. (m) .
=y —H—r—4o0(l), j=1,...,r
m J
m=1
Wk, K ‘Q(levsz)
J1°vI20
s ajyiry, (M1)ajy;r; (m2) bjyiry, (n1)bjg;r; (n2)
= > > i1 %32 > 571 Sia +o(1),
m=1mimzs=m eyt My nins=m ny tng
j2 >j1:].,...,7"71,
Why ok 1k 1seekins @ (Tl o oo Tj— 1 Tj s oo o5 Tr) (4.16)
_ § > aryry (M) aj—13m; (My—1)@54 15754 (Myg1) .- riry (M)
= — 71 541 E
=1 My T 1 e =m mll...mjll ij LomyT
b1iry (n1)ebi— 1,y (ni—1)bjt1m, g (Rj41)ebrr, (0r)
; 75 —1 " G411 (1 3Ty
X Z 3 Sj—1, Sj+1 Sr +O(1)7
N1 MG 1M1 . Np=mM My™ oMy g Mty - M
j=1...,m
Whey,ooky (T1s - T)
_ s al;rl(ml)“~ar;7r(m7‘) b1;71 (nl)"'b’f‘;"'r(nr) 1
- Z Z mil..mr Z Nl por +O( )
m=1mi..mp=m 1 T ni..n.=m 1 Tt

Thus, we have that the characteristic transforms of the measure Py g+ converge to
continuous functions as Q — co. Therefore, by Lemma 4.3, on (R”, B(R")), there exists a
probability measure Pg- such that Pg r- converges weakly to Pgrr as Q — co. Moreover,
the measure Pgrr is defined the characteristic transforms given by the right-hand sides
without o(1) of (4.16).
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Conclusions

Let F' be a normalized Hecke eigen cusp form for the full modular group, L(s, F') be
the L-function attached to the form F, and let L(s, F, x) denote a twist of L(s, F) with
Dirichlet character x modulo ¢, where g is a prime number.
For the function L(s, F, x), the following asymptotic properties are true when ¢ — co:
1). a limit theorem for |L(s, F, x);
2). a limit theorem for arg L(s, F, x);
3). a limit theorem for L(s, F, x) on the complex plane;
4). a joint limit theorem for a collection |L(s1, F1,x)l, - - -, |L(sr, Fr, X)|.

All limit theorems are understood in the sense of weak convergence of probability
measures.
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Notation

Jyk,l,m,n natural numbers
prime number
(m,n) greatest common divisor of natural m and n

N set of all natural numbers
Z set of all integer numbers
R set of all real numbers

C set of all complex numbers
s=o0+1it, z=u+iv complex variables

i=+-1 imaginary unity

meas{A} Lebesgue measure of the set A
t{A} number of elements of the set A
X Dirichlet character

L(s,x) Dirichlet L-function

SL(2,7) full modular group

F(z) Cusp form

I'(s) gamma-function

Yo Euler constant defined by

Yo =— [ e *logadr = 0.5772. ..
0
f(z) =0(g(x)), x €l meansthat |f(z)| < Cg(x),zel
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