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Introduction

In the thesis, the asymptotic behavior of twisted with Dirichlet character L-functions
of normalized Hecke eigen cusp form is considered when the modulus of the character
increases.

Actuality

L-functions play an important role in analytic number theory. Dirichlet L-functions are
an analytic tool for the investigation of the distribution of prime numbers in arithmetic
progressions while L-functions of automorphic forms were introduced to study the prob-
lems of these forms. The role of L-functions attached to cusp forms was crucial in the
proof of the last Fermat theorem [32]. Twists of L-functions attached to automorphic
forms with Dirichlet characters are used for the investigation of Fourier coe�cients of
automorphic forms in arithmetic progressions and other allied problems. The value dist-
ribution of arithmetic objects in arithmetic progressions becomes very complicated when
the di�erence of a progression is increasing. The problems of such a kind lead to twists
of L-functions with increasing modulus of a character. Therefore, the investigation of
twisted L-functions with increasing modulus is an urgent problem of analytic number
theory. The twists of L-functions were studied by many famous mathematicians, among
them S. Chowla, P. Erdös, P. D. T. A. Elliott, K. Matsumoto, P. Sarnak, H. Iwaniec and
others. P. D. T. A. Elliott obtained the �rst probabilistic results in the �eld.

Aims and problems

The aim of the thesis is to prove limit theorems in the sense of weak convergence of
probability measures for twisted with Dirichlet character L-functions of normalized Hecke
eigen cusp forms with respect to increasing modulus of the character, more precisely, to
obtain the following theorems:

1. To prove a limit theorem for the modulus of twisted with Dirichlet character L-
functions of normalized Hecke eigen cusp forms.

2. To prove a limit theorem for the argument of twisted with Dirichlet character L-
functions of normalized Hecke eigen cusp forms.
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3. To prove a limit theorem on the complex plane for twisted with Dirichlet character
L-functions of normalized Hecke eigen cusp forms.

4. To prove a joint limit theorem for twisted with Dirichlet character L-functions of
normalized Hecke eigen cusp forms.

Methods

In the thesis, analytical and probabilistic methods are applied. For the proof of proba-
bilistic limit theorems, the method of characteristic transforms is used. Moreover, some
elements of the Dirichlet character theory and of L-functions theory are applied.

Novelty

All results of the thesis are new. Limit theorems for twisted with Dirichlet character
L-functions of normalized Hecke eigen cusp forms earlier were not known.

History of the problem and main results

For the de�nition of the object studied in the thesis, we need some notation and de�ni-
tions. As usual, denote by Z the set of all integers, and let

SL(2,Z) =
{(

a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
denote the full modular group. Moreover, let U be the upper half-plane together with
∞, i. e.,

U = {z ∈ C : z = x+ iy, y > 0}.

Suppose that F (z) is a holomorphic function on U , and satis�es, for some positive even
integer κ and all (

a b
c d

)
∈ SL(2,Z),

the functional equation

F

(
az + b

cz + d

)
= (cz + d)κF (z).

Then, clearly, F (z) is a periodic function, and has the Fourier series expansion at ∞

F (z) =

∞∑
m=−∞

c(m)e2πimz.
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We say that the function F (z) is holomorphic and vanishing at ∞ if c(m) = 0 for m < 0
and m ≤ 0, respectively. We say that F (z) is holomorphic and vanishing at the cusps if
the function

F

(
az + b

cz + d

)
(cz + d)−κ,

for all (
a b
c d

)
∈ SL(2,Z),

is holomorphic and vanishing at ∞, respectively. In the case when F (z) is holomorphic
at the cusps, it is called a modular form of weight κ, and

F (z) =
∞∑

m=0

c(m)e2πimz

is its Fourier series expansion at ∞. If the modular form F (z) of weight κ is vanishing
at cusps, then we call it a cusp form of weight κ. In this case, F (z) has the Fourier series
expansion at ∞

F (z) =
∞∑

m=1

c(m)e2πimz.

The classical example of cusp forms is the Ramanujan cusp form ∆(z) de�ned by

∆(z) =
∞∑

m=1

τ(m)e2πimz

= e2πiz
∞∏

m=1

(1− e2πimz)24.

The weight of the form ∆(z) is 12. L. Mordell proved [26] that the Ramanujan function
τ(m) is multiplicative (τ(mn) = τ(m)τ(n) for all m,n ∈ N, (m,n) = 1) and satis�es

τ(pk+1) = τ(p)τ(pk)− p11τ(pk−1)

for prime numbers p and integers k ≥ 2. Also, by the Deligne general result [5],

|τ(p)| ≤ 2p
11
2 .

A cusp form F (z) of weight κ is called Hecke eigenform if it is an eigen function of
all Hecke operators

(Tnf)(z) = nκ−1
∑
d|n

d−κ
d−1∑
b=0

f

(
nz + bd

dz

)
, n ∈ N.
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Then it is known that c(1) ̸= 0, therefore the form F (z) can be normalized. Thus, a
normalized Hecke eigen cusp form has Fourier series expansion at ∞

F (z) =
∞∑

m=1

c(m)e2πimz, c(1) = 1.

Now let s = σ+ it be a complex variable, and F (z) be a normalized Hecke eigen cusp
form of weight κ. To this form, we can attach the L-function L(s, F ) de�ned by Dirichlet
series

L(s, F ) =
∞∑

m=1

c(m)

ms
.

By the Weil conjecture,
|c(m)| ≤ m

k−1
2 d(m),

where d(m) denotes the divisor function

d(m) =
∑
d|m

1,

proved by Deligne [5], we have that the Dirichlet series for L(s, F ) converges absolutely
for σ > κ+1

2 , and de�nes there an analytic function. Moreover, it is known that the
function L(s, F ) can be analytically continued to an entire function, and satis�es the
functional equation

(2π)−sΓ(s)L(s, F ) = (−1)
κ
2 (2π)s−κΓ(κ− s)L(κ− s, F ),

where Γ(s) is the Euler gamma-function. The critical strip of L(s, F ) is of the form
{s ∈ C : κ−1

2 < σ < κ+1
2 }, and contains non-trivial zeros of L(s, F ). These zeros are

located symmetrically to the real axis and to the critical line σ = κ
2 . The analogue of the

Riemann hypothesis for the function L(s, F ) says that all non-trivial zeros of L(s, F ) lie
on the critical line σ = κ

2 .
The coe�cients c(m) of the Dirichlet series for L(s, F ) are multiplicative, and, for

primes p and k ∈ N\{1}, satisfy the relation

c(pk+1) = c(p)c(pk)− pκ−1c(pk−1).

Therefore, the function L(s, F ) has, for σ > κ+1
2 , the Euler product expansion over

primes

L(s, F ) =
∏
p

(
1− c(p)

ps
+

1

p2s−κ+1

)

=
∏
p

(
1− α(p)

ps

)−1(
1− β(p)

ps

)−1

, (0.1)
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where α(p) and β(p) are conjugate complex numbers satisfying α(p) + β(p) = c(p), and

|α(p)| ≤ p
κ−1
2 , |β(p)| ≤ p

κ−1
2 .

The function L(s, F ), as other L-functions, has a probabilistic limit distribution in
the following sense. Let B(S) denote the class of Borel sets of a space S, and

Ω =
∏
p

γp,

where γp = {s ∈ C : |s| = 1} for each prime p. By the Tikhonov theorem, with
the product topology and pointwise multiplication, the in�nite-dimensional torus Ω is
a compact topological Abelian group. Therefore, on (Ω,B(Ω)), the probability Haar
measure mH can be de�ned, and this leads to the probability space (Ω,B(Ω),mH).
Denote by ω(p) the projection of element ω ∈ Ω to the coordinate space γp.

Let D = {s ∈ C : σ > κ
2 }. Denote by H(D) the space of analytic functions on D

equipped with the topology of uniform convergence on compacta, and on the probability
space (Ω,B(Ω),mH) de�ne the H(D)-valued random element L(s, ω, F ) by the formula

L(s, ω, F ) =
∏
p

(
1− α(p)ω(p)

ps

)−1(
1− β(p)ω(p)

ps

)−1

.

Let meas{A} stand for the Lebesgue measure of a measurable set A ⊂ R.
Denote by PL the distribution of the random element L(s, ω, F ), i.e.,

PL(A) = mH(ω ∈ Ω : L(s, ω, F ) ∈ A), A ∈ B(H(D)).

Then the following limit theorem holds [12].

Theorem 0.1 The probability measure

1

T
meas

{
τ ∈ [0, T ] : L(s+ iτ, F ) ∈ A

}
, A ∈ B(H(D)),

converges weakly to the measure PL as T → ∞.

Now let χ be a Dirichlet character modulo q. Then the twisted L-function L(s, F, χ)
attached to the form F (z) is de�ned, for σ > κ+1

2 , by the Dirichlet series

L(s, F, χ) =

∞∑
m=1

c(m)χ(m)

ms
,

and can be analytically continued to an entire function. Also, in the half-plane σ > κ+1
2 ,

the function L(s, F, χ) can be presented by the Euler product over primes

L(s, F, χ) =
∏
p

(
1− α(p)χ(p)

ps

)−1(
1− β(p)χ(p)

ps

)−1

, (0.2)
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where the complex numbers α(p) and β(p) are the same as in (0.1).
A similar result is also true for the twist L(s, F, χ). De�ne the H(D)-valued random

element L(s, ω, F, χ) by the formula

L(s, ω, F, χ) =
∏
p

(
1− α(p)χ(p)ω(p)

ps

)−1(
1− β(p)χ(p)ω(p)

ps

)−1

,

and denote by PL,χ its distribution

PL,χ(A) = mH(ω ∈ Ω : L(s, ω, F, χ) ∈ A), A ∈ B(H(D)).

Then in [25] the following statement has been obtained.

Theorem 0.2 The probability measure

1

T
meas

{
τ ∈ [0, T ] : L(s+ iτ, F, χ) ∈ A

}
, A ∈ B(H(D)),

converges weakly to the measure PL,χ as T → ∞.

Theorems 0.1 and 0.2 were applied to obtain the universality of the functions L(s, F )
and L(s, F, χ).

Let

D0 =

{
s ∈ C :

κ

2
< σ <

κ+ 1

2

}
.

Theorem 0.3 ([24]) Let K be a compact subset of the strip D0 with connected comple-
ment, and let f(s) be a continuous and non-vanishing function on K, and analytic in
the interior of K. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|L(s+ iτ, F )− f(s)| < ε

}
> 0.

In [25], a version of Theorem 0.3 has been proved for the function L(s, F, χ).
Note that, in Theorem 0.2, the modulus q of the character χ is �xed. It turns out

that it is possible to characterize the asymptotic behavior of the function L(s, F, χ) by
probabilistic limit theorems when the modulus q is not �xed and increases, i.e., to study
the asymptotic behavior of L(s, F, χ) with respect to the parameter q.

Before the statement of the results of the thesis, we will present a short survey of
probabilistic results with respect of some parameter in analytic number theory.

The �rst results in this direction were obtained for Dirichlet L-functions L(s, χ) de-
�ned, for σ > 1, by

L(s, χ) =
∞∑

m=1

χ(m)

ms
,
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and by analytic continuation elsewhere. We recall that the character χ modulo q is
principal if χ(m) = 1 for all (m, q) = 1, and is denoted by χ0. If χ ̸= χ0, than the
function L(s, χ) is entire, while L(s, χ0) has a simple pole at s = 1 with residue∏

p|q

(
1− 1

p

)
.

The �rst result for Dirichlet L-function L(s, χ) with an increasing modulus was obtai-
ned by Chowla and Erdös [4], who proved a limit theorem for L(1, χ) with real character
χ. The later progress in the �eld belongs to Elliott. Now we suppose that q is a prime
number.

For Q ≥ 2, denote
MQ =

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

1.

It is known [20], Lemma 2.9.7, that

MQ =
Q2

2 logQ
+O

( Q2

log2 Q

)
.

For brevity, we introduce the notation

µQ(. . .) = M−1
Q

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0
...

1,

where in place of dots a condition satis�ed by a pair (q, χ(mod q)) is to be written. Let

ε(χ) =
∞∏

m=1

(
1− χ(m)

ms

)
e−χ(m)m−s

.

Then in [6], the following theorem was proved.

Theorem 0.4 Suppose that σ > 1
2 . Then the distribution function

µQ

(
|ε(χ)|−1|L(s, χ)| < x

)
converges weakly to some distribution function as Q → ∞.

When L(s, χ) ̸= 0, 1
2 < σ ≤ 1, let argL(s, χ) denote a value of the argument of L(s, χ)

de�ned by continuous displacement from the point s = 2 along an arc on which L(s, χ)
does not vanish. Thus, argL(s, χ) is only de�ned to within the addition of an integer
multiple of 2πi. In [7], a limit theorem for argL(s, χ) has been obtained. In order to
state this theorem, we recall the de�nition and convergence of the distribution functions
mod 1.

13



A function G(x) is said to be a distribution function mod 1 if and only if it satis�es
the following three conditions:

1). it increases in the wide sense;
2). it is right continuous, that is, G(x+ 0) = G(x) for all x ∈ R;
3). G(x) = 1 if x ≥ 1, and G(x) = 0 if x < 0.
A distribution function mod 1 Gn(x), n ∈ N, converges weakly mod 1 as n → ∞ if

there exists a distribution function G(x) (mod 1) such that at all points x1, x2, 0 ≤ x1 ≤
x2 < 1, which are continuity points of G(z) we have

lim
n→∞

(
Gn(x2)−Gn(x1)

)
= G(x2)−G(x1).

Thus, in the range 0 ≤ x < 1, the limit function G(x) is determined only up to an
additive constant.

Now we state the main result of [7].

Theorem 0.5 At each point s in the half-plane {s ∈ C : σ > 1
2},

µQ

( 1

2π
argL(s, χ) ≤ x(mod 1)

)
converges weakly to a continuous distribution function mod 1 as Q → ∞. The Fouries
transform of the limit distribution function is of the form

∏
p

(
1 +

∞∑
m=1

(
−k

2
m

)(
k
2
m

)
1

p2mσ

)
, k ∈ Z.

E. Stankus generalized [28] Theorems 0.4 and 0.5 for probability measures on (C,B(C)).
Let P be a probability measure on (C,B(C)). We remind that the function

w(τ, k)
def
=

∫
C\{0}

|z|iτeikargzdP, τ ∈ R, k ∈ Z,

is called the characteristic transform of the measure P . It is known [20] that the measure
P is uniqnelly determined by w(τ, k). Let cτ,k(m) be a multiplicative function de�ned,
for a prime p and m ∈ N, by

cτ,k(p
m) =

ξ(ξ + 1) . . . ξ(ξ + k − 1)

m!

with ξ = iτ+k
2 , and

wP (τ, k) =

∞∑
m=1

cτ,k(m)cτ,−k(m)

m2σ
, σ >

1

2
.
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Theorem 0.6 ([28]) Suppose that σ > 1
2 . Then

µQ

(
L(s, χ) ∈ A

)
, A ∈ B(C),

converges weakly to the probability measure P on (C,B(C)) de�ned by the characteristic
transform wP (τ, k).

Similar results to Theorems 0.4, 0.5 and 0.6 for real characters were obtained in [8]
and [29], respectively.

The above limit theorems are examples of limit theorem with respect to some para-
meter. Now we will present some allied results. Let ω(p) is de�ned as in Theorem 0.1.
For σ > 1

2 , de�ne

L(s, ω) =
∏
p

(
1− ω(p)

ps

)−1

.

Theorem 0.7 ([1]) We have that

1

p− 1
#
{
χ : χ is a Dirichlet character mod p, and L(s, χ) ∈ A

}
,

A ∈ B(H(D)), converges weakly to the distribution of the random element L(s, ω) as
p → ∞ through the sequence of primes.

Theorem 0.7 was used [1] to prove the universality of L(s, χ) in χ-aspect. This was
also done independently by S. M. Gonek [10] and K. M. Eminyan [11].

Theorem 0.8 ([1]) Let K ⊂ D be a compact subset with connected complement, and
let f(s) be a non-vanishing continuous function on K which is analytic in the interior of
K. Then, for every ε > 0,

lim inf
p→∞

1

p− 1
#

{
χ : χ is a Dirichlet character mod p,

and sup
s∈K

|L(s, χ)− f(s)| < ε
}
> 0.

Also, there exist results on estimates of distribution functions in parameter aspect
related to various L-functions. We remind that d is a fundamental discriminant if the
following statements holds:

d ≡ 1(mod 4) and is square-free,

d = 4m,where m ≡ 2 or 3 (mod 4) and m is square-free.

Let
Dx = #

{
d ≤ x : d is a fundamental discriminant

}
,

and

Φx(τ) =
1

Dx
#

{
d ≤ x : d− fundamentalusis diskriminantas ir
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L(1, χd) > eγ0τ
}
;

where γ0 is the Euler constant

γ0 = lim
n→∞

( ∑
m≤n

1

m
− log n

)
,

and χd is the character mod d. Then the following formula is known.

Theorem 0.9 ([12]) Uniformly in τ ≤ log log x,

Φx(τ) = exp
{
− eτ−C

τ

(
1 + O

(1
τ

))}
,

where C has an explicit integral representation, C = 0.8187 . . ..

Recently, Y. Lamzouri introduced [17] a new probabilistic model and applied it for
the investigation of value distribution of L-functions with respect to a parameter.

Let d ∈ N and P be the set of all prime numbers. For p ∈ P and 1 ≤ j ≤ d, let θj(p)
be random variables on a certain probability space (Ω,F,P) with values on [−π;π] and
satisfying the following conditions:

1).E(eiθj(p)) = 0 for all p ∈ P and 1 ≤ j ≤ d, where E(X) denotes the expectation of
the random element X;

2). the random variables θj(p) and θk(q) are independent for p ̸= q, p, q ∈ P ;
3). the random variables

X(p)
def
=

d∑
j=1

eiθj(p)

d

are identically distributed for every p ∈ P;
4). there exists an absolute constant α > 0 such that, for all p ∈ P and all ε > 0,

P
(
|θ1(p)| ≤ ε, . . . , |θd(p)| ≤ ε

)
≫ εα.

In [17], the following Euler products

L(1, X) =
∏
p

d∏
j=1

(
1− eiθj(p)

p

)−1

are considered. De�ne
Φ(τ) = P

(
L(1, X) > (eγ0τ)d

)
.

Then in [17], it was proved that, for τ ≫ 1,

Φ(τ) = exp

{
− eτ−AX

τ

(
1 + O

( 1√
τ

))}
,
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where

AX = 1 +

∞∫
0

f(t)dt

t2
,

f(t) =

{
logE(e(ReX)t) if 1 ≤ t < 1,
logE(e(ReX)t)− t if t ≥ 1,

and X is a random variable having the same distribution as the X(p).
Note that the latter result covers Theorem 0.9. Moreover, it can be applied to a wider

class of L-functions. We will state one theorem related to symmetric power L-functions.
Suppose that q ∈ N. Then the subgroup of SL(2,Z)

Γ0(q) =

{(
a b
c d

)
∈ SL(2,Z) : c ≡ 0(mod q)

}
is called a Hecke subgroup. If the equation

F

(
az + b

cz + d

)
= (cz + d)κF (z)

is satis�ed for all
(

a b
c d

)
∈ Γ0(q), the cusp form F (z) is called a cusp form of weight

κ and level q. Denote the space of such forms by Sκ(q).
Now we introduce symmetric power L-functions of F ∈ Sκ(q). Denote by c(m) the

Fourier coe�cients of F , and cm = c(m)m−κ−1
2 . For any prime number p, de�ne αp such

that
cpν = αν

p + αν−2
p + . . .+ α−ν

p , ν ≥ 1,

and |α(p)| = 1. Then, for m ∈ N, the symmetric mth power L-function L(s, symmF )
attached to F is de�ned, for σ > 1, by

L(s, symmF ) =
∏
p

m∏
j=0

(
1−

αm−2j
p

ps

)−1

,

and by analytic continuation elsewhere.
Suppose that q is prime, and de�ne

Φq(sym
m, τ) =

( ∑
F∈S2(q)

ωF

)−1 ∑
F∈S2(q)

L(1,symmF )≥(eγ0τ)m+1

ωF ,

where ωF = 1
4π∥F∥ , and ∥F∥ the norm of F . Then the following statement is true.

Let
logkq = log . . . log︸ ︷︷ ︸

k

q.

17



Theorem 0.10 ([17]) For m ∈ N, uniformly in the region τ ≤ log2 q − log3 q − 2 log4 q

Φq(sym
m, τ) = exp

{
− eτ−Am

τ

(
1 + O

( 1√
τ

))}
,

where

Am = 1 +

1∫
0

hm(t)
dt

t2
+

∞∫
1

(hm(t)− t)
dt

t2

and

hm(t) = log

(
2

π

π∫
0

exp
{ t

m+ 1

m∑
j=0

cos
(
θ(m− 2j)

)}
sin2 θdθ

)
.

There are also known other results on value distribution of L-functions with respect
to a parameter.

Now we return to the function L(s, F, χ) and present the results of the thesis.
In Chapter 1, a limit theorem for

PQ,R(A)
def
= µQ

(
|L(s, F, χ)| ∈ A

)
, A ∈ B(R),

is proved. For τ ∈ R, let
η = η(τ) =

iτ

2
,

and, for prime p and k ∈ N,

dτ (p
k) =

η(η + 1) . . . (η + k − 1)

k!
, dτ (1) = 1.

De�ne

aτ (p
k) =

k∑
l=0

dτ (p
l)αl(p)dτ (p

k−l)βk−l(p)

and

bτ (p
k) =

k∑
l=0

dτ (p
l)αl(p)dτ (p

k−l)β
k−l

(p),

where α(p) and β(p) are the coe�cients of the Euler product for L(s, F ), and z denotes
the conjugate of z. Moreover, for m ∈ N, let

aτ (m) =
∏
pl∥m

aτ (p
l)

and
bτ (m) =

∏
pl∥m

bτ (p
l),

18



where pl∥m means that pl|m but pl+1 - m.
Let PR be a probability measure on (R,B(R)) de�ned by the characteristic transforms

w0(τ) = w1(τ) =
∞∑

m=1

aτ (m)bτ (m)

m2σ
, τ ∈ R, σ >

κ+ 1

2
.

Then the main result of Chapter 1 is the following theorem [22].
Theorem 1.1 Suppose that σ > κ+1

2 . Then the measure PQ,R converges weakly to PR as

Q → ∞.

Chapter 2 of the thesis is devoted to the value-distribution of the argument of the
twist L(s, F, χ). The function L(s, F, χ) has no zeros in the half-plane σ > κ+1

2 . We
de�ne argL(s, F, χ) from the principal value at s = κ+3

2 by continuous variation along
the path connecting the points κ+2

3 , κ+2
3 + it and σ + it. In Chapter 2, we consider

PQ,γ(A)
def
= µQ

(
exp{iargL(s, F, χ)} ∈ A

)
, A ∈ B(γ),

where γ is the unit circle on the complex plane. For k ∈ Z, let

θ = θ(k) =
k

2
,

and, for prime p and l ∈ N,

dk(p
l) =

θ(θ + 1) . . . (θ + l − 1)

l!
, dk(1) = 1.

Similarly as in Theorem 1.1, de�ne, for m ∈ N,

ak(m) =
∏
pl∥m

ak(p
l)

and
bk(m) =

∏
pl∥m

bk(p
l),

where

ak(p
l) =

l∑
j=0

dk(p
j)αj(p)dk(p

l−j)βl−j(p)

and

bk(p
l) =

l∑
j=0

d−k(p
l)αj(p)d−k(p

l−j)β
l−j

(p).

Moreover, let Pγ be a probability measure on (γ,B(γ)) de�ned by the Fourier transform

f(k)
def
=

∫
γ

xkdPγ =
∞∑

m=1

ak(m)bk(m)

m2σ
, σ >

κ+ 1

2
.
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Let Pn, n ∈ N, and P be probability measures on (γ,B(γ)). We recall that the weak
convergence of Pn to P as n → ∞ is equivalent to the convergence

Pn(A)
−→

n→∞P (A)

for all arcs A ⊂ γ with end points having P -measure zero.
Then we have the following theorem [23].

Theorem 2.1 Suppose that σ > κ+1
2 . Then PQ,γ converges weakly to Pγ as Q → ∞.

Theorem 2.1 also can be stated in the following form [23].
Theorem 2.2 Suppose that σ > κ+1

2 . Then

µQ

( 1

2π
argL(s, F, χ) ≤ x(mod 1)

)
converges weakly mod 1 to the distribution function mod 1 de�ned by the Fourier trans-
form f(k), k ∈ Z, as Q → ∞.

In Chapter 3 of the thesis, we connect Theorems 1.1 and 2.1, and prove a limit
theorem with increasing modulus on the complex plane for the function L(s, F, χ).

Note that the function

w(τ, k)
def
=

∫
C\{0}

|z|iτeik arg zdP, τ ∈ R, k ∈ Z,

is called a characteristic transform of the probability measure P on (C,B(C)). The
measure P is uniquely determine by its characteristic transform w(τ, k).

Let Pn, n ∈ N, and P be probability measures on (C,B(C)). We say that Pn converges
weakly in the sense of C to P as n → ∞ if Pn converges weakly to P as n → ∞, and
additionally,

lim
n→∞

Pn({0}) = P ({0}).

For τ ∈ R and k ∈ Z, let
ξ = ξ(τ,±k) =

iτ ± k

2
,

and, for primes p and l ∈ N,

dτ,±k(p
l) =

ξ(ξ + 1) . . . (ξ + l − 1)

l!
, dτ,±k(1) = 1.

De�ne

aτ,k(p
l) =

l∑
j=0

dτ,k(p
l)αj(p)dτ,k(p

l−j)βl−j(p),

and

bτ,k(p
l) =

l∑
j=0

dτ,−k(p
l)αj(p)dτ,−k(p

l−j)β
l−j

(p),
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and, for m ∈ N, let
aτ,k(m) =

∏
pl∥m

aτ,k(p
l)

and
bτ,k(m) =

∏
pl∥m

bτ,k(p
l).

Let PC be probability measure on (C,B(C)) de�ned by the characteristic transform

w(τ, k) =
∞∑

m=1

aτ,k(m)bτ,k(m)

m2σ
, σ >

κ+ 1

2
.

De�ne
PQ,C(A) = µQ

(
L(s, F, χ) ∈ A

)
, A ∈ B(C).

Then the main result of Chapter 3 is contained in the following theorem [15].
Theorem 3.1 Suppose that σ > κ+1

2 . Then PQ,C converges weakly in sense of C to the
measure PC as Q −→ ∞.

The last, Chapter 4, of the thesis deals with r-dimensional version of Theorem 1.1.
Let r ∈ N\{1}, and P be a probability measure on (Rr,B(Rr)). Denote by Pj ,

j = 1, . . . , r, Pj1,j2 , j2 > j1 = 1, . . . , r − 1, . . ., P1,...,j−1,j+1,...,r, j = 1, . . . , r, one-
dimensional, two-dimensional, . . ., (r−1)-dimensional marginal measures of the measure
P . The functions

wkj (τj)

=

∫
R\{0}

|xj |iτj sgnkjxjdPj , τj ∈ R, kj = 0, 1, j = 1, . . . , r,

wkj1 ,kj2
(τj1 , τj2)

=

∫
R\{0}

∫
R\{0}

|xj1 |iτj1 sgnkj1xj1 |xj2 |iτj2 sgnkj2xj2dPj1,j2 ,

τj1 , τj2 ∈ R, kj1 , kj2 = 0, 1, j2 > j1 = 1, . . . , r − 1,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
wk1,...,kj−1,kj+1,...,kr (τ1, . . . , τj−1, τj+1, . . . , τr)

=

∫
R\{0}

. . .

∫
R\{0}

|x1|iτ1sgnk1x1 . . . |xj−1|iτj−1sgnkj−1xj−1

×|xj+1|iτj+1sgnkj+1xj+1 . . . |xr|iτr sgnkrxrdP1,...,j−1,j+1,...,r,
τ1, . . . , τj−1, τj+1, . . . , τr ∈ R, k1, . . . , kj−1, kj+1, . . . , kr = 0, 1,

j = 1, . . . , r,
wk1,...,kr (τ1, . . . , τr)

=

∫
R\{0}

. . .

∫
R\{0}

|x1|iτ1sgnk1x1 . . . |xr|iτr sgnkrxrdP,
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τ1, . . . , τr ∈ R, k1, . . . , kr = 0, 1,

are called the characteristic transforms of the probability measure P on (Rr,B(Rr)). The
measure P is uniquely determined by its characteristic transforms [18].

For j = 1, . . . , r, let Fj(z) be a holomorphic normalized Hecke eigen cusp form of
weight κj for the full modular group with the Fourier series expansion

Fj(z) =
∞∑

m=1

cj(m)e2πimz, cj(1) = 1,

and let L(s, Fj) be a corresponding L-function,

L(s, Fj) =
∞∑

m=1

cj(m)

ms
, σ >

κj + 1

2
,

with the Euler product over primes

L(s, Fj) =
∏
p

(
1− αj(p)

ps

)−1(
1− βj(p)

ps

)−1

,

where αj(p) and βj(p) are complex conjugate numbers satisfying αj(p)+ βj(p) = cj(p).
In Chapter 4, the value distribution of a collection of twisted L-functions L(s1, F1, χ),

. . ., L(sr, Fr, χ), sj = σj + itj , where χ is a Dirichlet character modulo q, q is a prime
number, and

L(sj , Fj , χ) =
∞∑

m=1

cj(m)χ(m)

msj

=
∏
p

(
1− αj(p)χ(p)

psj

)−1(
1− βj(p)χ(p)

psj

)−1

, σj >
κj + 1

2
,

is discussed.
For j = 1, . . . , r, de�ne

aj;τ (m) =
∏
pk∥m

aj;τ (p
k)

and
bj;τ (m) =

∏
pk∥m

bj;τ (p
k),

where

aj;τ (p
k) =

k∑
l=0

dτ (p
l)αl

j(p)dτ (p
k−l)βk−l

j (p)

and

bj;τ (p
k) =

k∑
l=0

dτ (p
l)αl

j(p)dτ (p
k−l)β

k−l

j (p).
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Let PRr be the probability measure on (Rr,B(Rr)) de�ned by the characteristic trans-
forms

wkj (τj) =
∞∑

m=1

aj;τj
(m)bj;τj (m)

m2σj
, j = 1, . . . , r,

wkj1 ,kj2
(τj1 , τj2)

=
∞∑

m=1

∑
m1m2=m

aj1;τj1
(m1)aj2;τj2

(m2)

m
sj1
1 m

sj2
2

∑
n1n2=m

bj1;τj1
(n1)bj2;τj2

(n2)

n
sj1
1 n

sj2
2

,

j2 > j1 = 1, . . . , r − 1,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
wk1,...,kj−1,kj+1,...,kr (τ1, . . . , τj−1, τj+1, . . . , τr)

=
∞∑

m=1

∑
m1...mj−1mj+1...mr=m

a1;τ1 (m1)...aj−1;τj−1
(mj−1)aj+1;τj+1

(mj+1)...ar;τr (mr)

m
s1
1 ...m

sj−1
j−1 m

sj+1
j+1 ...msr

r

×
∑

n1...nj−1nj+1...nr=m

b1;τ1 (n1)...bj−1;τj−1
(nj−1)bj+1;τj+1

(nj+1)...br;τr (nr)

n
s1
1 ...n

sj−1
j−1 n

sj+1
j+1 ...nsr

r

,

j = 1, . . . , r,
wk1,...,kr (τ1, . . . , τr)

=
∞∑

m=1

∑
m1...mr=m

a1;τ1 (m1)...ar;τr (mr)

m
s1
1 ...msr

r

∑
n1...nr=m

b1;τ1 (n1)...br;τr (nr)

n
s1
1 ...nsr

r

,

σj >
κj+1

2 , j = 1, . . . , r.

The main result of Chapter 4 is the following limit theorem [16].
Let

PQ,Rr (A) = µQ

((
|L(s1, F1, χ)|, . . . , |L(sr, Fr, χ)|

)
∈ A

)
, A ∈ B(Rr).

Theorem 4.1. Suppose that σj >
κj+1

2 , j = 1, . . . , r. Then PQ,Rr converges weakly to
the measure PRr as Q → ∞.

In the thesis, we consider the weak convergence of probability measures de�ned by
the twists of L(s, F, χ) in the half-plane of absolute convergence of the series de�ning
L(s, F, χ) . We believe that the results can be extended to the region σ > κ

2 , however,
in our opinion, this problem is very di�cult. The principal di�erence from the case of
Dirichlet L-functions is that the series de�ning L(s, F, χ), χ ̸= χ0, does not converge for
σ > κ

2 .
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Outline of the thesis

The thesis consists of the introduction, four chapters, conclusions, bibliography and
notation. In the introduction, a short review on the actuality of the research �eld is
given, the aims and problems of the thesis are stated, the used methods and novelty
of results obtained are shortly discussed. Also, Introduction contains a short history of
results with respect to a parameter in the theory of L-functions, and the main results
of the thesis. In Chapter 1, a limit theorem with increasing modulus for |L(s, F, χ)| is
proved. Chapter 2 is devoted to a limit theorems of the above type for argL(s, F, χ).
Chapter 3 contains a limit theorem with increasing modulus for L(s, F, χ). In Chapter 4,
a joint limit theorem for a collection |L(s, F1, χ)|, . . ., |L(s, Fr, χ)| is obtained.
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Chapter 1

A limit theorem for the modulus

of twisted L-functions of
normalized cusp forms

Let F (z) be a holomorphic normalized Hecke eigen cusp form of weight κ for the full
modular group with the Fourier series expansion

F (z) =
∞∑

m=1

c(m)e2πimz, c(1) = 1.

The L-function L(s, F ), s = σ + it, attached to F (z) is de�ned, for σ > κ+1
2 , by the

Dirichlet series

L(s, F ) =
∞∑

m=1

c(m)

ms
,

and has analytic continuation to an entire function. Moreover, for σ > κ+1
2 , the function

L(s, F ), has the Euler product expansion over primes

L(s, F ) =
∏
p

(
1− α(p)

ps

)−1(
1− β(p)

ps

)−1

, (1.1)

where α(p) and β(p) are conjugate complex numbers satisfying α(p) + β(p) = c(p).
Let χ(m) be a Dirichlet character modulo q, where q is a prime number. Then the

twisted L-function L(s, F, χ) associated to the form F (z) is de�ned, for σ > κ+1
2 , by the

Dirichlet series

L(s, F, χ) =
∞∑

m=1

c(m)χ(m)

ms
,
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and has analytic continuation to an entire function. Moreover, similarly to the case of
the function L(s, F ), L(s, F, χ) has the Euler product expansion over primes

L(s, F, χ) =
∏
p

(
1− α(p)χ(p)

ps

)−1(
1− β(p)χ(p)

ps

)−1

, σ >
κ+ 1

2
. (1.2)

This chapter is devoted to a limit theorem for the modulus |L(s, F, χ)| of the function
L(s, F, χ) when q increases to in�nity.

1.1. Statement of the main theorem

For Q ≥ 2, denote
MQ =

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

1,

where χ0 , as usual, denotes the principal character modulo q. Moreover, for brevity,
de�ne

µQ(. . .) = M−1
Q

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0
...

1,

where in place of dots a condition satis�ed by a pair (q, χ(mod q)) is to be written.
For τ ∈ R, let

η = η(τ) =
iτ

2
,

and, for a prime p and k ∈ N, let

dτ (p
k) =

η(η + 1) . . . (η + k − 1)

k!
, dτ (1) = 1.

Now de�ne

aτ (p
k) =

k∑
l=0

dτ (p
l)αl(p)dτ (p

k−l)βk−l(p)

and

bτ (p
k) =

k∑
l=0

dτ (p
l)αl(p)dτ (p

k−l)β
k−l

(p),

where the complex numbers α(p) and β(p) are de�ned by (1.1), and z denotes the con-
jugate of a complex number z. For m ∈ N, we set

aτ (m) =
∏
pl∥m

aτ (p
l)
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and
bτ (m) =

∏
pl∥m

bτ (p
l),

where pl∥m means that pl|m but pl+1 - m. Then, aτ (m) and bτ (m) are arithmetic
multiplicative functions.

Let PR be the probability measure on the space (R,B(R)) de�ned by the characteristic
transforms

w0(τ) = w1(τ) =
∞∑

m=1

aτ (m)bτ (m)

m2σ
, τ ∈ R, σ >

κ+ 1

2
,

and
PQ,R(A) = µQ

(
|L(s, F, χ)| ∈ A

)
, A ∈ B(R).

Theorem 1.1 Suppose that σ > κ+1
2 . Then the measure PQ,R converges weakly to PR

as Q → ∞.

For the proof of Theorem 1.1, we apply the method of characteristic transforms of
probability measures on (R,B(R)).

1.2. Characteristic transforms of probability measures

on (R,B(R))
For convienence of the reader, in this section we remind the theory of characteristic
transforms of probability measures on the space (R,B(R)).

Let F (x) be a distribution function. In [33], V. M. Zolotarev introduced the charac-
teristic transforms of the function F (x) as a multiplicative analogue of the characteristic
function of F (x). Let

sgnx =

 1 if x > 0,
0 if x = 0,
−1 if x < 0.

Then the pair of function

wk(τ) =

∞∫
−∞
x ̸=0

|x|iτ sgnkxdF (x), k = 0, 1,

are called the characteristic transforms of F (x). V. M. Zolotarev proved [33] the unique-
ness and continuity theorems for characteristic transforms. In [21], the Zolotarev theory
was rewritten for probability measures on (R,B(R)), and we apply it for the proof of
Theorem 1.1.
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Let P be a probability measures on (R,B(R)). The characteristic transforms wk(τ),
k = 0, 1, of the measure P are de�ned by

wk(τ) =

∫
R\{0}

|x|iτ sgnkxdP, τ ∈ R, k = 0, 1.

Lemma 1.2 The probability measure P is uniquely determined by its characteristic trans-
forms wk(τ), k = 0, 1.

The lemma is proved in [21], Theorem 4.
Let Pn, n ∈ N, and P be probability measures on (R,B(R)). We say that Pn,

as n → ∞, converges m-weakly to P if Pn converges weakly to P as n → ∞, and,
additionally,

lim
n→∞

Pn({0}) = P ({0}).

The next two lemmas are continuity theorems for probability measures on (R,B(R)) in
terms of characteristic transforms.

Lemma 1.3 Suppose that Pn converges m-weakly to the measure P as n → ∞. Then

lim
n→∞

wkn(τ) = wk(τ), τ ∈ R, k = 0, 1,

where wkn(τ) and wk(τ), k = 0, 1, are the characteristic transforms of the measures Pn

and P , respectively.

The lemma is given in [21], Theorem 5.

Lemma 1.4 Denote by wkn(τ), k = 0, 1, the characteristic transforms of the probability
measure Pn, n ∈ N, on (R,B(R)), and suppose that

lim
n→∞

wkn(τ) = wk(τ), τ ∈ R, k = 0, 1,

where the functions w1(τ) and w0(τ) are continuous at τ = 0. Then on (R,B(R)), there
exists a probability measure P such that the measure Pn converges m-weakly to P as
n → ∞. In this case, wk(τ), k = 0, 1, are the characteristic transforms of the measure
P .

The lemma is Theorem 6 from [21].

1.3. Characteristic transforms of PQ,R

Let 0 < δ < 1
2 be a �xed number, and let

R = {s ∈ C : σ ≥ κ+ 1

2
+ δ}.
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From the de�nitions of PQ,R and characteristic transforms of probability measures on
(R,B(R)), we �nd that the characteristic transforms wkQ(τ) of the measure PQ,R are of
the form

wkQ(τ) =

∫
R\{0}

|x|iτ sgnkxdP

=
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ̸=χ0

∣∣L(s, F, χ)∣∣iτ
def
= wQ(τ), τ ∈ R, k = 0, 1. (1.3)

Thus, since |L(s, F, χ)| ≥ 0, we have only one function wQ(τ). Moreover,∣∣L(s, F, χ)∣∣iτ =
(
L(s, F, χ)L(s, F, χ)

) iτ
2

=
(
L(s, F, χ)

) iτ
2
(
L(s, F, χ)

) iτ
2 .

Therefore, using (1.2), we �nd that, for s ∈ R,∣∣L(s, F, χ)∣∣iτ
=

(∏
p

(
1− α(p)χ(p)

ps

)−1(
1− β(p)χ(p)

ps

)−1
)− iτ

2

×

(∏
p

(
1− α(p)χ(p)

ps

)−1(
1− β(p)χ(p)

ps

)−1
)− iτ

2

= exp

{
− iτ

2

∑
p

(
log
(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))

− iτ

2

∑
p

(
log
(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))}

=
∏
p

exp

{
− iτ

2

(
log
(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))}

×
∏
p

exp

{
− iτ

2

(
log
(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))}

=
∏
p

(
1− α(p)χ(p)

ps

)− iτ
2
(
1− β(p)χ(p)

ps

)− iτ
2

×
∏
p

(
1− α(p)χ(p)

ps

)− iτ
2
(
1− β(p)χ(p)

ps

)− iτ
2

. (1.4)

Here the multi-valued functions log(1−z) and
(
1−z

)− iτ
2 in the region |z| < 1 are de�ned

by continuous variation along any path in this region from the values log(1− z)
∣∣
z=0

= 0
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and
(
1− z

)− iτ
2
∣∣
z=0

= 1, respectively.
Using the de�nition of dτ (pk), we have that, for |z| < 1,

(1− z)−η =
∞∑
k=0

dτ (p
k)zk.

Therefore, for s ∈ R,(
1− α(p)χ(p)

ps

)− iτ
2

=
∞∑
k=0

dτ (p
k)αk(p)χ(pk)

pks
,

(
1− β(p)χ(p)

ps

)− iτ
2

=
∞∑
k=0

dτ (p
k)βk(p)χ(pk)

pks
,

(
1− α(p)χ(p)

ps

)− iτ
2

=

∞∑
k=0

dτ (p
k)αk(p)χ(pk)

pks

and (
1− β(p)χ(p)

ps

)− iτ
2

=

∞∑
k=0

dτ (p
k)β

k
(p)χ(pk)

pks
.

Substituting these formulas in (1.4), we obtain that, for s ∈ R,∣∣L(s, F, χ)∣∣iτ
=
∏
p

∞∑
k=0

dτ (p
k)αk(p)χ(pk)

pks

∞∑
l=0

dτ (p
l)βl(p)χ(pl)

pls

×
∏
p

∞∑
k=0

dτ (p
k)αk(p)χ(pk)

pks

∞∑
l=0

dτ (p
l)β

l
(p)χ(pl)

pls

=
∏
p

∞∑
k=0

âτ (p
k)

pks

∏
p

∞∑
l=0

b̂τ (p
l)

pls

=
∞∑

m=1

âτ (m)

ms

∞∑
n=1

b̂τ (n)

ns
, (1.5)

where âτ (m) and b̂τ (m) are multiplicative functions given, for primes p and k ∈ N, by

â(pk) =

k∑
l=0

dτ (p
l)αl(p)χ(pl)dτ (p

k−l)βk−l(p)χ(pk−l) (1.6)

and

b̂(pk) =
k∑

l=0

dτ (β
l)αl(p)χ(pl)dτ (p

k−l)β
k−l

(p)χ(pk−l). (1.7)
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By the multiplicativity of âτ (m) and b̂τ (m), and by (1.6) and (1.7), we �nd that

âτ (m) =
∏
pk∥m

âτ (p
k)

=
∏
pk∥m

k∑
l=0

dτ (p
l)αl(p)χ(pl)dτ (p

k−l)βk−l(p)χ(pk−l)

=
∏
pk∥m

χ(pk)
k∑

l=0

dτ (p
l)αl(p)dτ (p

k−l)βk−l(p)

= aτ (m)χ(m)

and

b̂τ (m) =
∏
pk∥m

b̂τ (p
k)

=
∏
pk∥m

k∑
l=0

dτ (p
l)αl(p)χ(pl)dτ (p

k−l)β
k−l

(p)χ(pk−l)

=
∏
pk∥m

χ(pk)

k∑
l=0

dτ (p
l)αl(p)dτ (p

k−l)β
k−l

(p)

= bτ (m)χ(m),

where the multiplicative functions aτ (m) and bτ (m) are de�ned in Section 1.1. Thus, in
view of (1.5) and (1.3), we have that

wQ(τ) =
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

∞∑
m=1

aτ (m)χ(m)

ms

∞∑
n=1

bτ (n)χ(n)

ns
. (1.8)

1.4. Asymptotics for the function wQ(τ)

In this section, we obtain on asymptotic formula for the characteristic transform wQ(τ)
of the measure PQ,R. Let c > 0 be an arbitrary constant.

Theorem 1.5 Suppose that Q → ∞. Then, uniformly in |τ | ≤ c and s ∈ R,

wQ(τ) =

∞∑
m=1

aτ (m)bτ (m)

m2σ
+ o(1).

Before the proof of Theorem 1.5, we present some lemmas.
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Lemma 1.6 Suppose that |τ | ≤ c. Then

|dτ (pk)| ≤ (k + 1)c1 ,

where the constant c1 depends on c, only.

Proof. The de�nition of dτ (pk) gives∣∣dτ (pk)∣∣ ≤ |η|(|η|+ 1) . . . (|η|+ k − 1)

k!

≤
k∏

v=1

(
1 +

|η|
v

)
≤ exp

{
|η|

k∑
v=1

1

v

}
≤ exp

{
|η|(1 + log k)

}
≤ exp

{
c(1 + log k)

}
≤ (k + 1)c1 .

Lemma 1.7 Suppose that (m, q) = 1. Then

∑
χ=χ(modq)

χ(m)χ(n) =

{
q − 1 if m ≡ n(mod q),

0 if m ̸≡ n(mod q).

Proof of the lemma can be found, for example, in [3], [14], [27].
Denote by

d(m) =
∑
d|m

1

the classical divisor function.

Lemma 1.8 For every ε > 0, the estimate

d(m) = Oε(m
ε)

is true.

The estimate of the lemma is given, for example, in [27].

Lemma 1.9 Let Q ≥ 2. Then

MQ =
Q2

2logQ
+O

( Q2

log2Q

)
.

The proof of the lemma is given in [20], Lemma 2.9.7.
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Lemma 1.10 Let x ≥ 2. Then ∑
p≤x

1 = O
( x

log x

)
.

The estimate of lemma follows from the asymptotic law of prime numbers, see, for
example, [14], [31].

Proof of Theorem 1.5. Lemma 1.6 and the Deligne estimates [5]

|α(p)| ≤ p
κ−1
2

and
|β(p)| ≤ p

κ−1
2 ,

for |τ | ≤ c, imply the bounds

∣∣aτ (pk)∣∣ ≤
k∑

l=0

(l + 1)c1p
l(κ−1)

2 (k − l + 1)c1p
(k−l)(κ−1)

2

≤ (k + 1)1+2c1p
k(κ−1)

2

= (k + 1)c2p
k(κ−1)

2 ,

where c2 = 1 + 2c1 and depends on c, only. Therefore, the multiplicativity of the
arithmetic functions aτ (m) and bτ (m), and the formula

d(m) =
∏
pk∥m

(k + 1),

show that, for |τ | ≤ c, ∣∣aτ (m)
∣∣ =

∏
pk∥m

∣∣aτ (pk)∣∣
≤

∏
pk∥m

(k + 1)c2p
k(κ−1)

2

= m
κ−1
2 dc2(m). (1.9)

and ∣∣bτ (m)
∣∣ ≤ m

κ−1
2 dc2(m). (1.10)

Let r = log Q. Then Lemma 1.8, and (1.9) and (1.10) imply, for |τ | ≤ c, s ∈ R and
every ε > 0, the estimates

∑
m>r

aτ (m)χ(m)

ms
= O

( ∑
m>r

m
κ−1
2 dc2(m)

m
κ+1
2 +δ

)
= Oε

( ∑
m>r

1

m1+δ−ε

)
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= Oε

(
r−δ+ε

)
and ∑

m>r

bτ (m)χ(m)

ms
= Oε

(
r−δ+ε

)
.

From this and from (1.8) we �nd that, for |τ | ≤ c , s ∈ R and every ε > 0,

wQ(τ) =
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ̸=χ0

((∑
m≤r

aτ (m)χ(m)

ms
+Oε

(
r−δ+ε

))

×
(∑

n≤r

bτ (n)χ(n)

ns
+Oε

(
r−δ+ε

)))

=
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ̸=χ0

(∑
m≤r

aτ (m)χ(m)

ms

∑
n≤r

bτ (n)χ(n)

ns

)

+Oε

(
r−δ+ε 1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

∣∣∣ ∑
m≤r

aτ (m)χ(m)

ms

∣∣∣
+
∣∣∣∑
n≤r

bτ (n)χ(n)

ns

∣∣∣)+Oε

(
r−δ+ε

)
. (1.11)

Moreover, by (1.9) and (1.10), and Lemma 1.8, for |τ | ≤ c and s ∈ R,∑
m≤r

aτ (m)χ(m)

ms
= O

( ∑
m≤r

dc2(m)

m1+δ

)
= O(1)

and ∑
n≤r

bτ (n)χ(n)

ns
= O(1).

Therefore,

r−δ+ε 1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ̸=χ0

(∣∣∣ ∑
m≤r

aτ (m)χ(m)

ms

∣∣∣
+
∣∣∣∑
n≤r

bτ (n)χ(n)

ns

∣∣∣) = O
(
r−δ+ε

)
. (1.12)

Clearly, we have that

1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

( ∑
m≤r

aτ (m)χ(m)

ms

∑
n≤r

bτ (n)χ(n)

ns

)
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=
∑
m≤r

aτ (m)

ms

∑
n≤r

bτ (n)

ns

1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

χ(m)χ(n). (1.13)

If m = n < r, then using Lemma 1.10 yields∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

χ(m)χ(n) =
∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

∣∣χ(m)
∣∣2

= MQ −
∑
q|m
q≤r

(q − 2)

= MQ +O
(∑

q≤r

q
)

MQ +O
(
r
∑
q≤r

1
)
= MQ +O(r2).

Thus, this case, in view of Lemma 1.9, for |τ | ≤ c and s ∈ R, contributes to (1.11), as
Q → ∞, ∑

m≤r

aτ (m)bτ (m)

m2σ
+ o(1) =

∞∑
m=1

aτ (m)bτ (m)

m2σ
+ o(1). (1.14)

In the case m ̸= n, m, n ≤ r, we apply Lemma 1.7. We have by Lemma 1.10 and the
de�nition of r that∑

q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

χ(m)χ(n)

=
∑
q≤Q

∑
χ=χ(mod q)

χ(m)χ(n)−
∑
q≤Q

∑
χ=χ0(mod q)

χ(m)χ(n)

=
∑
q≤Q

∑
χ=χ(mod q)
q|(m−n)

χ(m)χ(n) +
∑
q≤Q

∑
χ=χ(mod q)
q-(m−n)

χ(m)χ(n)

−
∑
q≤Q

∑
χ=χ0(mod q)

χ(m)χ(n)

= O
∑
q≤r

q +O
(∑

q≤Q

1
)

= O(r2) + O
( Q

log Q

)
= O

( Q

log Q

)
.

Therefore, by (1.9), (1.10), and Lemma 1.8, for |τ | ≤ c and s ∈ R,
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1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

∑
m≤r

∑
n≤r

m̸=n

aτ (m)χ(m)

ms

bτ (n)χ(n)

ns

≪
∣∣∣∣ ∑
m≤r

∑
n≤r

m̸=n

aτ (m)

ms

bτ (n)

ns

∣∣∣∣ 1

MQ

∣∣∣∣ ∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

χ(m)χ(n)

∣∣∣∣
≪ 1

Q

∑
m≤r

|aτ (m)|
mσ

∑
n≤r

|bτ (n)|
nσ

≪ 1

Q

(∑
m≤r

dc2(m)

m1+δ

)2

≪ 1

Q
.

Now this, (1.11)�(1.14) show that, uniformly in |τ | ≤ c and s ∈ R,

wQ(τ) =
∞∑

m=1

aτ (m)bτ (m)

m2σ
+ o(1)

as Q → ∞.

1.5. Proof of Theorem 1.1

We apply Lemma 1.4. From Theorem 1.5 and (1.3), it follows that the characteristic
transform of the measure PQ,R converges, uniformly in |τ | ≤ c and s ∈ R, to the function

∞∑
m=1

aτ (m)bτ (m)

m2σ

as Q → ∞. Since δ > 0 is arbitrary, we have that, for σ > κ+1
2 , wkQ(τ) converges,

uniformly in |τ | ≤ c, to
∞∑

m=1

aτ (m)bτ (m)

m2σ
(1.15)

as Q → ∞, k = 0, 1. The functions aτ (m) and bτ (m) are continuons at τ = 0. Thus, all
hypotheses of Lemma 1.4 are sati�ed, and we obtain that the measure PQ,R converges
weakly to the measure PR de�ned by the characteristic transforms

w0(τ) = w1(τ) =
∞∑

m=1

aτ (m)bτ (m)

m2σ
, τ ∈ R, σ >

κ+ 1

2
.

The theorem is proved.
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Chapter 2

A limit theorem for the argument

of twisted L-functions of
normalized cusp forms

In this chapter, we consider the value-distribution of the argument of the twist L(s, F, χ)
in the half-plane σ > κ+1

2 . De�ne argL(s, F, χ) from the principal value arg L(κ+3
2 , F, χ)

by continuous variation along the straight line segments
[
κ+3
2 , κ+3

2 +it
]
and

[
κ+3
2 , σ+it

]
.

In view of the Euler product

L(s, F, χ) =
∏
p

(
1− α(p)χ(p)

ps

)−1(
1− β(p)χ(p)

ps

)−1

, σ >
κ+ 1

2
, (2.1)

and the Deligne estimates [5]

|α(p)| ≤ p
κ−1
2 , |β(p)| ≤ p

κ−1
2 , (2.2)

we have that L(s, F, χ) ̸= 0 for σ > κ+1
2 . Thus, arg L(s, F, χ) is well-de�ned. From this

de�nition, it follows that argL(s, F, χ) is de�ned up to multiple of 2πi.

2.1. Statement of the results

Let γ = {s ∈ C : |s| = 1} denote the unit circle on the complex plane. For k ∈ Z, let

θ = θ(k) =
k

2
,
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and, for prime p and l ∈ N,

dk(p
l) =

θ(θ + 1) . . . (θ + l − 1)

l!
, dk(1) = 1.

De�ne, for m ∈ N,
ak(m) =

∏
pl∥m

ak(p
l)

and
bk(m) =

∏
pl∥m

bk(p
l),

where

ak(p
l) =

l∑
j=0

dk(p
j)αj(p)dk(p

l−j)βl−j(p)

and

bk(p
l) =

l∑
j=0

d−k(p
j)αj(p)d−k(p

l−j)β
l−j

(p).

Moreover, let Pγ be the probability measure on (γ,B(γ)) de�ned by the Fourier transform

f(k)
def
=

∫
γ

xkdPγ =
∞∑

m=1

ak(m)bk(m)

m2σ
, σ >

κ+ 1

2
, (2.3)

and
PQ,γ(A) = µQ

(
exp
{
i arg L(s, F, χ)

}
∈ A

)
, A ∈ B(γ).

Let Pn and P , n ∈ N, be probability measures on (γ,B(γ)). We recall that the weak
convergence of Pn to P as n → ∞ is equivalent to the convergence

Pn(A)
−→

n→∞P (A)

for all arcs A ⊂ γ with end points having P -measure zero [2].

Theorem 2.1 Suppose that σ > κ+1
2 . Then PQ,γ converges weakly to Pγ as Q → ∞.

A distribution function G(x) is said to be a distribution function mod 1 if G(x) = 1
if x ≥ 1, and G(x) = 0 if x < 0. A distribution function mod 1 Gn(x), n ∈ N, converges
weaklymod 1 if there exists a distribution functionmod 1 G(x) such that at all continuity
points x, y, 0 ≤ x ≤ y < 1, of G(x)

lim
n→∞

(Gn(y)−Gn(x)) = G(y)−G(x).

Thus, by this de�nition, the limit distribution function mod 1 G(x) is determined only
up to an additive constant.

Let
GQ(x) = µQ

( 1

2π
arg L(s, F, χ) ≤ x(mod 1)

)
.
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Theorem 2.2 Suppose that σ > κ+1
2 . Then GQ(x) converges weakly mod 1 to the

distribution function mod 1 de�ned by the Fourier transform f(k), k ∈ Z, given by (2.3)
as Q → ∞.

For the proof of Theorem 2.1 and 2.2, we apply the method of Fourier transforms.

2.2. Fourier transforms of probability measures on (γ,B(γ))

Let P be a probability measure on (γ,B(γ)). The Fourier transforms f(k), k ∈ Z, of P
is de�ned by

f(k) =

∫
γ

xkdP, k ∈ Z.

Lemma 2.3 The probability measure P is uniquely determined by its Fourier transforms
f(k).

Now let Pn, n ∈ N, be a probability measure on (γ,B(γ)).

Lemma 2.4 Denote by fn(k), k ∈ Z, the Fourier transform of the measure Pn, and
suppose that

lim
n→∞

fn(k) = f(k), k ∈ Z.

Then on (γ,B(γ)), there exists a a probability measure P such that the measure Pn

converges to P as n → ∞. In this case, f(k) is the Fourier transform of the measure P .

The theory of weak convergence of probability measures on (γ,B(γ)) is given in [2].

2.3. Fourier transforms of distributions

functions mod 1

Let G(x) be a distribution function mod 1. The Fourier transform f(k), k ∈ Z, of G(x)
is de�ned by

f(k) =

1∫
0

e2πikxdG(x), k ∈ Z.

Lemma 2.5 The distribution function mod 1 G(x) is uniquely determined by its Fourier
transform f(k).

Let Gn(x), n ∈ N, be a distribution function mod 1.
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Lemma 2.6 Denote by fn(k), k ∈ Z, the Fourier transform of the distribution function
mod 1 Gn(x), and suppose that

lim
n→∞

fn(k) = f(k), k ∈ Z.

Then there exists a distribution function mod 1 G(x) such that Gn(x) converges weakly
mod 1 to G(x) as n → ∞. In this case, f(k) is the Fourier transform of G(x).

The theory of weak convergence mod 1 for distribution functions mod 1 is given in
[9].

2.4. Fourier transform of PQ,γ

Denote by fQ(k), k ∈ Z, the Fourier transform of PQ,γ , i.e.,

fQ(k) =

∫
γ

xkdPQ,γ .

Thus, by the de�nition of PQ,γ , we have that

fQ(k) =
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ̸=χ0

eikargL(s,F,χ). (2.4)

It is easily seen that

eiargL(s,F,χ) =

(
|L(s, F, χ)|eiargL(s,F,χ)|L(s, F, χ)|−1eiargL(s,F,χ)

) 1
2

=

(
L(s, F, χ)

L(s, F, χ)

) 1
2

. (2.5)

Let R be the same region as in Chapter 1. Then, for s ∈ R, the Euler product (2.1) and
(2.5) imply

eikargL(s,F,χ)

=

(∏
p

(
1− α(p)χ(p)

ps
)−1(

1− β(p)χ(p)

ps
)−1

) k
2

×

(∏
p

(
1− α(p)χ(p)

ps
)−1(

1− β(p)χ(p)

ps
)−1

) k
2
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= exp

{
− k

2

∑
p

(
log

(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))

+
k

2

∑
p

(
log

(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))}

=
∏
p

exp

{
− k

2

(
log
(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))}

×
∏
p

exp

{
k

2

(
log
(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))}

=
∏
p

(
1− α(p)χ(p)

ps

)− k
2
(
1− β(p)χ(p)

ps

)− k
2

×
∏
p

(
1− α(p)χ(p)

ps

) k
2
(
1− β(p)χ(p)

ps

) k
2

. (2.6)

Here, as in Chapter 1, the multi-valued functions log(1− z) and
(
1− z

)± k
2 in the region

|z| < 1 are de�ned by continuation variation along any path in this region from the values

log(1− z)
∣∣
z=0

= 0 and
(
1− z

)± k
2
∣∣
z=0

= 1, respectively.
Using the de�nition of dk(pl), we have that, for |z| < 1,

(1− z)−θ =
∞∑
l=0

dk(p
l)zl

and

(1− z)θ =
∞∑
l=0

d−k(p
l)zl.

Hence, for s ∈ R,

(
1− α(p)χ(p)

ps

)− k
2

=
∞∑
l=0

dk(p
l)αl(p)χ(pl)

pls
,

(
1− β(p)χ(p)

ps

)− k
2

=

∞∑
l=0

dk(p
l)βl(p)χ(pl)

pls
,

(
1− α(p)χ(p)

ps

) k
2

=
∞∑
l=0

d−k(p
l)αl(p)χ(pl)

pls

and (
1− β(p)χ(p)

ps

) k
2

=
∞∑
l=0

d−k(p
l)β

l
(p)χ(pl)

pls
.
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Substituting the latter expressions in (2.6), we �nd that, for s ∈ R,

eikargL(s,F,χ)

=
∏
p

∞∑
l=0

dk(p
l)αl(p)χ(pl)

pls

∞∑
l=0

dk(p
l)βl(p)χ(pl)

pls

×
∏
p

∞∑
l=0

d−k(p
l)αl(p)χ(pl)

pls

∞∑
l=0

d−k(p
l)β

l
(p)χ(pl)

pls

=
∏
p

∞∑
l=0

âk(p
l)

pls

∏
p

∞∑
l=0

b̂k(p
l)

pls

=

∞∑
m=1

âk(m)

ms

∞∑
n=1

b̂k(n)

ns
, (2.7)

where âk(m) and b̂k(m) are multiplicative functions given, for primes p and l ∈ N, by

âk(p
l) =

l∑
j=0

dk(p
j)αj(p)χ(pj)dk(p

l−j)βl−j(p)χ(pl−j) (2.8)

and

b̂k(p
l) =

l∑
j=0

d−k(p
j)αj(p)χ(pj)d−k(p

l−j)β
l−j

(p)χ(pl−j). (2.9)

The multiplicativity of the functions âk(m) and b̂k(m), and the complete multiplicativity
of the character χ together with (2.8) and (2.9) imply

âk(m) =
∏
pl∥m

âk(p
l)

=
∏
pl∥m

l∑
j=0

dk(p
j)αj(p)χ(pj)dk(p

l−j)βl−j(p)χ(pl−j)

=
∏
pl∥m

χ(pj)
l∑

j=0

dk(p
j)αj(p)dk(p

l−j)βl−j(p)

= ak(m)χ(m)

and

b̂k(m) =
∏
pl∥m

b̂k(p
l)

=
∏
pl∥m

l∑
j=0

d−k(p
j)αj(p)χ(pj)d−k(p

l−j)β
l−j

(p)χ(pl−j)

=
∏
pl∥m

χ(pj)

l∑
j=0

d−k(p
j)αj(p)d−k(p

l−j)β
l−j

(p)
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= bk(m)χ(m),

where the multiplicative functions ak(m) and bk(m) are de�ned in Section 2.1. From
this, in view of (2.4) and (2.7), we obtain that

fQ(k) =
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

∞∑
m=1

ak(m)χ(m)

ms

×
∞∑

n=1

bk(n)χ(n)

ns
. (2.10)

2.5. Asymptotics for fQ(k)

For the proof of Theorems 2.1 and 2.2, we need an asymptotic formula for the Fourier
transform fQ(k) as Q → ∞.

Theorem 2.7 Suppose that Q → ∞. Then, for any k ∈ Z, uniformly in s ∈ R,

fQ(k) =
∞∑

m=1

ak(m)bk(m)

m2σ
+ o(1).

Proof. Repeating the proof of Lemma 1.6, we �nd that∣∣dk(pl)∣∣ ≤ (l + 1
)c
,

where the constant c depends on k, only. Therefore, the Deligne estimates (2.2), and the
de�nition of ak(pl) and bk(p

l) show that

∣∣ak(pl)∣∣ ≤
l∑

j=0

(l + 1)cp
l(κ−1)

2 (l − j + 1)cp
(l−j)(κ−1)

2

≤ (l + 1)1+2cp
l(κ−1)

2

and ∣∣bk(pl)∣∣ ≤ (l + 1)1+2cp
l(κ−1)

2 .

Therefore, by multiplicativity of the functions ak(m) and bk(m), taking into account the
formula

d(m) =
∑
pl∥m

(l + 1),

we �nd that ∣∣ak(m)
∣∣ =

∏
pl∥m

∣∣ak(pl)∣∣
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≤
∏
pl∥m

(l + 1)c1p
l(κ−1)

2

= m
κ−1
2 dc1(m) (2.11)

and ∣∣bk(m)
∣∣ ≤ m

κ−1
2 dc1(m), (2.12)

where c1 = 1 + 2c depends on k, only.
Let, as in Chapter 1, r = log Q. Then, using Lemma 1.8, and estimate (2.11) and

(2.12), we obtain that, for every k ∈ Z and ε > 0, uniformly in s ∈ R,

∑
m>r

ak(m)χ(m)

ms
= O

( ∑
m>r

m
κ−1
2 dc1(m)

m
κ+1
2 +δ

)
= Oε

(
r−δ+ε

)
and ∑

m>r

bk(m)χ(m)

ms
= Oε

(
r−δ+ε

)
.

This and (2.10) show that, for every k ∈ Z and ε > 0, uniformly in s ∈ R,

fQ(k) =
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

((∑
m≤r

ak(m)χ(m)

ms
+Oε

(
r−δ+ε

))

×

(∑
n≤r

bk(n)χ(n)

ns
+Oε

(
r−δ+ε

)))

=
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

(∑
m≤r

ak(m)χ(m)

ms

∑
n≤r

bk(n)χ(n)

ns

)

+Oε

(
r−δ+ε 1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

(∣∣∣∣∣ ∑
m≤r

ak(m)χ(m)

ms

∣∣∣∣∣
+

∣∣∣∣∣∑
n≤r

bk(n)χ(n)

ns

∣∣∣∣∣
))

+Oε

(
r−2(δ−ε)

)
. (2.13)

Moreover, by (2.11), (2.12) and Lemma 1.8, for every k ∈ Z and s ∈ R,∑
m≤r

ak(m)χ(m)

ms
= O

( ∑
m≤r

dc(m)

m1+δ

)
= O(1)

and ∑
n≤r

bk(n)χ(n)

ns
= O(1).
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Hence, for every k ∈ Z, ε > 0 and s ∈ R,

r−δ+ε 1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

(∣∣∣∣∣ ∑
m≤r

ak(m)χ(m)

ms

∣∣∣∣∣
+

∣∣∣∣∣∑
n≤r

bk(n)χ(n)

ns

∣∣∣∣∣ = O
(
r−δ+ε

)
. (2.14)

From (2.13) and (2.14), we �nd that, for every k ∈ Z, ε > 0 and s ∈ R,

fQ(k) =
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

(∑
m≤r

ak(m)χ(m)

ms

∑
n≤r

bk(n)χ(n)

ns

)
+O

(
r−δ+ε

)
=

∑
m≤r

ak(m)

ms

∑
n≤r

bk(n)

ns

1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

χ(m)χ(n) + O
(
r−δ+ε

)
. (2.15)

In Section 1.4, it was obtained that, for m = n,∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

χ(m)χ(n) = MQ +O(r2),

while, for m ̸= n, ∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

χ(m)χ(n) = O
( Q

logQ

)
.

Therefore, from (2.15) and Lemma 1.9 we deduce that, for every k and s ∈ R,

fQ(k) =
∞∑

m=1

ak(m)bk(m)

m2σ
+ o(1)

as Q → ∞.

2.6. Proof of Theorems 2.1 and 2.2

Theorem 2.1 is a straightforward consequence of Lemma 2.4 and Theorem 2.7.
Proof of Theorem 2.2. We have that the Fourier transform fQ(k), k ∈ Z, of the

function GQ(x) is

fQ(k) =

1∫
0

e2πikxdGQ(x) =
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

eikargL(s,F,χ).

Therefore, the theorem follows from Lemma 2.6 and Theorem 2.7.
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Chapter 3

A limit theorem on the complex

plane for twisted L-functions of
normalized cusp forms

In this chapter, we generalize the results of Chapters 1 and 2, and we prove a limit
theorem for L(s, F, χ) on the complex plane C.

3.1. Statement of the results

For τ ∈ R and k ∈ Z, let

ξ = ξ(τ,±k) =
iτ ± k

2
,

and, for primes p and l ∈ N,

dτ,±k(p
l) =

ξ(ξ + 1) . . . (ξ + l − 1)

l!
, dτ,±k(1) = 1.

Similarly, as in previous chapters, we de�ne

aτ,k(p
l) =

l∑
j=0

dτ,k(p
l)αj(p)dτ,k(p

l−j)βl−j(p)

and

bτ,k(p
l) =

l∑
j=0

dτ,−k(p
l)αj(p)dτ,−k(p

l−j)β
l−j

(p),
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and for m ∈ N, let
aτ,k(m) =

∏
pl∥m

aτ,k(p
l)

and
bτ,k(m) =

∏
pl∥m

bτ,k(p
l).

Thus, aτ,k(m) and bτ,k(m) are multiplicative arithmetical functions with respect to m.
Let P be a probability measure on (C,B(C)). Then the function

w(τ, k) =

∫
C\{0}

|z|iτeik arg zdP, τ ∈ R, k ∈ Z, (3.1)

is a characteristic transform of the measure P .
Let PC be a probability measure on (C,B(C)) de�ned by the characteristic transform

w(τ, k) =
∞∑

m=1

aτ,k(m)bτ,k(m)

m2σ
, τ ∈ R, k ∈ Z, σ >

κ+ 1

2
.

De�ne
PQ,C(A) = µQ

(
L(s, F, χ) ∈ A

)
, A ∈ B(C).

Theorem 3.1 Suppose that σ > κ+1
2 . Then PQ,C converges weakly in the sense of C to

PC as Q → ∞.

For the proof of Theorem 3.1, we apply the method of characteristic transforms of
probability measures on (C,B(C)).

3.2. Characteristic transforms of probability measures

on (C,B(C))

In this section, we state the results from [19], [20] on characteristic transforms of proba-
bility measures on (C,B(C)).

Let P be a probability measure on (C,B(C)), and let w(τ, k) be its characteristic
transform de�ned by (3.1).

Lemma 3.2 The probability measure P is uniquely determined by its characteristic trans-
form w(τ, k).
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Now let Pn, n ∈ N, and P , be probability measures on (C,B(C)) . We say that Pn, as
n → ∞, converges weakly in the sense of C to P if Pn converges weakly to P as n → ∞,
and, additionally,

lim
n→∞

Pn({0}) = P ({0}).

The next two lemmas are devoted to weak convergence of probability measures on
(C,B(C)). Denote by wn(τ, k) the characteristic transform of the measure Pn.

Lemma 3.3 Suppose that Pn converges weakly to the measure P as n → ∞. Then

lim
n→∞

wn(τ, k) = w(τ, k), τ ∈ R, k ∈ Z.

Lemma 3.4 Suppose that

lim
n→∞

wn(τ, k) = w(τ, k), τ ∈ R, k ∈ Z,

where the function w(τ, 0) is continuous at τ = 0. Then on (C,B(C)), there exists a
probability measure P such that Pn converges weakly in the sense of C to P as n → ∞.
In this case, w(τ, k) is the characteristic transform of the measure P .

3.3. Characteristic transform of PQ,C

Denote by wQ(τ, k) the characteristic transform of PQ,C. By the de�nition of PQ,C, we
have that

wQ(τ, k) =

∫
C\{0}

|z|iτeik arg zdPQ,C

=
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ̸=χ0

|L(s, F, χ)|iτeik argL(s,F,χ), (3.2)

τ ∈ R and k ∈ Z.
Let R, as in previous chapters, denote the half-plane {s ∈ C : σ ≥ κ+1

2 + δ}, δ > 0.
We recall that L(s, F, χ) ̸= 0 for s ∈ R.

Since
|L(s, F, χ)| =

(
L(s, F, χ)L(s, F, χ)

) 1
2 ,

and

ei argL(s,F,χ) =

(
L(s, F, χ)

L(s, F, χ)

) 1
2

,
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from the Euler product

L(s, F, χ) =
∏
p

(
1− α(p)χ(p)

ps

)−1(
1− β(p)χ(p)

ps

)−1

,

we �nd that, for s ∈ R,∣∣L(s, F, χ)∣∣iτeikargL(s,F,χ)

= exp

{
− iτ

2

∑
p

(
log
(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))

− iτ

2

∑
p

(
log
(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))
−k

2

∑
p

(
log
(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))

+
k

2

∑
p

(
log
(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))}

=
∏
p

exp

{
− iτ

2

(
log
(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))
−k

2

(
log
(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))}

×
∏
p

exp

{
− iτ

2

(
log
(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))
−k

2

(
log
(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))}
=
∏
p

(
1− α(p)χ(p)

ps

)− iτ+k
2
(
1− β(p)χ(p)

ps

)− iτ+k
2

×
∏
p

(
1− α(p)χ(p)

ps

)− iτ−k
2
(
1− β(p)χ(p)

ps

)− iτ−k
2

. (3.3)

Here the multi-valued functions log(1 − z) and (1 − z)−w, w ∈ C\{0}, in the region
|z| < 1 are de�ned by continuous variation along any path in this region from the values
log(1− z)

∣∣
z=0

= 0 and (1− z)−w
∣∣
z=0

= 1, respectively.
In the above notation, we have that , for |z| < 1,

(1− z)−ξ =
∞∑
l=0

dτ,±k(p
l)zl.

Therefore, (3.3) shows that, for s ∈ R,∣∣L(s, F, χ)∣∣iτeik argL(s,F,χ)
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=
∏
p

∞∑
j=0

dτ,k(p
j)αj(p)χ(pj)

pjs

∞∑
l=0

dτ,k(p
l)βl(p)χ(pl)

pls

×
∏
p

∞∑
j=0

dτ,−k(p
j)αj(p)χ(pj)

pjs

∞∑
l=0

dτ,−k(p
l)β

l
(p)χ(pl)

pls

=
∏
p

∞∑
j=0

âτ,k(p
j)

pjs

∏
p

∞∑
l=0

b̂τ,k(p
l)

pls

=
∞∑

m=1

âτ,k(m)

ms

∞∑
n=1

b̂τ,k(n)

ns
, (3.4)

where âτ,k(m) and b̂τ,k(m) are multiplicative functions de�ned, for primes p and l ∈ N,
by

âτ,k(p
l) =

l∑
j=0

dτ,k(p
j)αj(p)χ(pj)dτ,k(p

l−j)βl−j(p)χ(pl−j) (3.5)

and

b̂τ,k(p
l) =

l∑
j=0

dτ,−k(p
j)αj(p)χ(pj)dτ,−k(p

l−j)β
l−j

(p)χ(pl−j). (3.6)

Let c be an arbitrary positive constant. For |τ | ≤ c and l ∈ N,

∣∣dτ,±k(p
l)
∣∣ ≤ |ξ|(|ξ|+ 1) . . . (|ξ|+ l − 1)

l!

≤
l∏

v=1

(
1 +

|ξ|
v

)
≤ exp

{
|ξ|

l∑
v=1

1

v

}
≤

(
l + 1

)c1
with a suitable positive constant c1 depending on c and k, only. This, estimates (2.2),
and equalities (3.5) and (3.6)) imply, for |τ | ≤ c and l ∈ N, the bounds∣∣âτ,k(pl)∣∣ ≤ (l + 1)c2p

l(κ−1)
2

and ∣∣̂bτ,k(pl)∣∣ ≤ (l + 1)c2p
l(κ−1)

2

with a positive constant depending on c and k. Therefore, by the multiplicativity of
âτ,k(m) and b̂τ,k(m), we �nd that∣∣âτ,k(m)

∣∣ =
∏
pl∥m

∣∣∣âτ,k(pl)∣∣∣
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≤ m
κ−1
2

∏
pl∥m

(l + 1)c2

= m
κ−1
2 dc2(m) (3.7)

and ∣∣̂bτ,k(m)
∣∣ ≤ m

κ−1
2 dc2(m). (3.8)

3.4. Asymptotics for wQ(τ, k)

In this section, we give an asymptotic formula for the characteristic transform wQ(τ, k)
of the probability measure PQ,C. By (3.2) and (3.4), we have that, for s ∈ R,

wQ(τ, k) =
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

∞∑
m=1

âτ,k(m)

ms

∞∑
n=1

b̂τ,k(n)

ns
, (3.9)

where, for the multiplicative functions âτ,k(m) and b̂τ,k(m),the estimates (3.7) and (3.8)
are satis�ed. We use the same notation r = logQ as in previous chapters. Then (3.7),
(3.8) and Lemma 1.8 show that, uniformly in s ∈ R, |τ | ≤ c, and any �xed k ∈ Z and
ε > 0, ∑

m>r

âτ,k(m)

ms
= O

( ∑
m>r

m
κ−1
2 dc2(m)

m
κ+1
2 +δ

)
= Oε

( ∑
m>r

1

m1+δ−ε

)
= Oε

(
r−δ+ε

)
,

and ∑
n>r

b̂τ,k(n)

ns
= Oε

(
r−δ+ε

)
.

Substituting this in (3.9), we obtain that, for s ∈ R, |τ | ≤ c and any �xed k,

wQ(τ, k) =
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

( ∑
m≤r

âτ,k(m)

ms
+Oε(r

−δ+ε)
)

×
(∑

n≤r

b̂τ,k(n)

ns
+Oε(r

−δ+ε)
)

=
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

( ∑
m≤r

âτ,k(m)

ms

∑
n≤r

b̂τ,k(n)

ns

)
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+Oε

(
r−δ+ε

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

(∣∣∣ ∑
m≤r

âτ,k(m)

ms

∣∣∣
+
∣∣∣∑
n≤r

b̂τ,k(n)

ns

∣∣∣)+Oε(r
−2(δ−ε))

=
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

(∑
m≤r

âτ,k(m)

ms

∑
n≤r

b̂τ,k(n)

ns

)

+Oε(r
−δ+ε). (3.10)

Here we have used the estimates∑
m≤r

âτ,k(m)

ms
= Oε

( ∑
m≤r

m
κ−1
2 dc2(m)

m
κ+1
2 +δ

)
= Oε

( ∑
m≤r

1

m1+δ−ε

)
= Oε

( ∞∑
m=1

1

m1+δ−ε

)
= Oε(1)

and ∑
n≤r

b̂τ,k(n)

ns
= Oε(1)

which are uniform in s ∈ R and |τ | ≤ c.
By (3.5), (3.6), using the multiplicativity of âτ,k(m) and b̂τ,k(m) as well the notation

for aτ,k(m) and bτ,k(m), we �nd that

âτ,k(m) =
∏
pl∥m

l∑
j=0

dτ,k(p
j)αj(p)χ(pj)dτ,k(p

l−j)βl−j(p)χ(pl−j)

=
∏
pl∥m

χ(pl)
l∑

j=0

dτ,k(p
j)αj(p)dτ,k(p

l−j)βl−j(p)

= aτ,k(m)χ(m)

and
b̂τ,k(m) = bτ,k(m)χ(m).

Therefore, by (3.10), for s ∈ R, |τ | ≤ c and any �xed k ∈ Z, and ε > 0,

wQ(τ, k) =
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

χ(m)χ(n)

(∑
m≤r

aτ,k(m)

ms

∑
n≤r

bτ,k(n)

ns

)
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+Oε

(
r−δ+ε

)
. (3.11)

Since, for m = n, ∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

χ(m)χ(n) = MQ +O(r2),

and, for m ̸= n, ∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

χ(m)χ(n) = O
( Q

log Q

)
,

see Section 1.4, we have in view of (3.11) that, for s ∈ R, |τ | ≤ c and any �xed k ∈ Z,

wQ(τ, k) =
∑
m≤r

aτ,k(m)bτ,k(m)

m2σ
+Oε(r

−δ+ε) + O
( r2

Q2

)
+O

( 1

Q

)
=

∞∑
m=1

aτ,k(m)bτ,k(m)

m2σ
+ o(1)

as Q → ∞.

3.5. Proof of Theorem 3.1

In Section 3.3, it was obtained that, for s ∈ R, |τ | ≤ c and any �xed k,

wQ(τ, k) =
∞∑

m=1

aτ,k(m)bτ,k(m)

m2σ
+ o(1) (3.12)

as Q → ∞. The functions aτ,k(m) and bτ,k(m) are continuous in τ . Therefore, the
uniform convergence for |τ | ≤ c of the series

w(τ, k) =

∞∑
m=1

aτ,k(m)bτ,k(m)

m2σ

shows that the function w(τ, 0) is continuous at τ = 0. Therefore, (3.12) together with
Lemma 3.4 proves the theorem.
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Chapter 4

A joint limit theorem for twisted

L-functions of normalized cusp

forms

The aim of this chapter is a generalization of Theorem 1.1 to the space Rr, r ∈ N\{1}.
For j = 1, . . . , r, let Fj(z) be a holomorphic normalized Hecke eigen cusp form of

weight κj for the full modular group with the Fourier series expansion

Fj(z) =
∞∑

m=1

cj(m)e2πimz, cj(1) = 1,

and let L(s, Fj) be a corresponding L-function,

L(s, Fj) =
∞∑

m=1

cj(m)

ms
, σ >

κj + 1

2
,

with the Euler product over primes

L(s, Fj) =
∏
p

(
1− αj(p)

ps

)−1(
1− βj(p)

ps

)−1

, σ >
κj + 1

2
,

where αj(p) and βj(p) are complex conjugate numbers satisfying αj(p)+ βj(p) = cj(p).
Let, as in previous chapters, χ be a Dirichlet character modulo q, and q be a prime

number. In this chapter, we prove a limit theorem with increasing modulus for the vector
(|L(s1, F1, χ)|, . . ., |L(sr, Fr, χ)|), sj = σj + itj , where for σj >

κj+1
2 ,

L(sj , Fj , χ) =
∞∑

m=1

cj(m)χ(m)

msj
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=
∏
p

(
1− αj(p)χ(p)

psj

)−1(
1− βj(p)χ(p)

psj

)−1

, j = 1, . . . , r.

4.1 Statement of the theorem

For j = 1, . . . , r, de�ne
aj;τ (m) =

∏
pk∥m

aj;τ (p
k),

and
bj;τ (m) =

∏
pk∥m

bj;τ (p
k),

where

aj;τ (p
k) =

k∑
l=0

dτ (p
l)αl

j(p)dτ (p
k−l)βk−l

j (p)

and

bj;τ (p
k) =

k∑
l=0

dτ (p
l)αl

j(p)dτ (p
k−l)β

k−l

j (p),

and dτ (p
k) is de�ned in Chapter 1.

Let PRr be the probability measure on (Rr,B(Rr)) de�ned by the characteristic trans-
forms
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wkj (τj)

=
∞∑

m=1

aj;τj (m)bj;τj (m)

m2σj
, j = 1, . . . , r,

wkj1 ,kj2
(τj1 , τj2)

=

∞∑
m=1

∑
m1m2=m

aj1;τj1 (m1)aj2;τj2 (m2)

m
sj1
1 m

sj2
2

∑
n1n2=m

bj1;τj1 (n1)bj2;τj2 (n2)

n
sj1
1 n

sj2
2

,

j2 > j1 = 1, . . . , r − 1,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
wk1,...,kj−1,kj+1,...,kr (τ1, . . . , τj−1, τj+1, . . . , τr)

=
∞∑

m=1

∑
m1...mj−1

×mj+1...mr=m

a1;τ1(m1) . . . aj−1;τj−1(mj−1)aj+1;τj+1(mj+1) . . . ar;τr (mr)

ms1
1 . . .m

sj−1

j−1 m
sj+1

j+1 . . .msr
r

×
∑

n1...nj−1

×nj+1...nr=m

b1;τ1(n1) . . . bj−1;τj−1(nj−1)bj+1;τj+1(nj+1) . . . br;τr (nr)

ns1
1 . . . n

sj−1

j−1 n
sj+1

j+1 . . . nsr
r

,

j = 1, . . . , r,
wk1,...,kr (τ1, . . . , τr)

=

∞∑
m=1

∑
m1...mr=m

a1;τ1(m1) . . . ar;τr (mr)

ms1
1 . . .msr

r

∑
n1...nr=m

b1;τ1(n1) . . . br;τr (nr)

ns1
1 . . . nsr

r

,

where σj >
κj+1

2 , j = 1, . . . , r.
De�ne

PQ,Rr (A) = µQ

((
|L(s1, F1, χ)|, . . . , |L(sr, Fr, χ)|

)
∈ A

)
, A ∈ B(Rr).

Theorem 4.1 Suppose that σj >
κj+1

2 , j = 1, . . . , r. Then PQ,Rr converges weakly to
the measure PRr as Q → ∞.

For the proof of Theorem 4.1, we apply the method of characteristic transforms of
probability measures on (Rr,B(Rr)).

4.2. Characteristic transform of probability

measures on (Rr,B(Rr))

Let P be a probability measure on (Rr,B(Rr)). Denote by Pj , j = 1, . . . , r, Pj1,j2 , j2 >
j1 = 1, . . . , r − 1, . . ., P1,...,j−1,j+1,...,r, j = 1, . . . , r, one-dimensional, two-dimensional,
. . ., (r − 1)-dimensional marginal measures of the measure P . That is,
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Pj(Aj)
= P (R× . . .× R︸ ︷︷ ︸

j−1

×Aj × R× . . .× R), Aj ∈ B(R), j = 1, . . . , r,

Pj1,j2(Aj1 ×Aj2)
= P (R× . . .× R︸ ︷︷ ︸

j1−1

×Aj1 × R× . . .× R

︸ ︷︷ ︸
j2−1

×Aj2 × R× . . .× R),

Aj1 , Aj2 ∈ B(R), j2 > j1 = 1, . . . , r − 1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P1,...,j−1,j+1,...,r(A1 × . . .×Aj−1 ×Aj+1 × . . .×Ar)
= P (A1 × . . .×Aj−1 × R×Aj+1 × . . .×Ar),
A1, . . . , Aj−1, Aj+1, . . . Ar ∈ B(R), j = 1, . . . , r.

Then the functions

wkj (τj)

=

∫
R\{0}

|xj |iτj sgnkjxjdPj , τj ∈ R, kj = 0, 1, j = 1, . . . , r,

wkj1 ,kj2
(τj1 , τj2)

=

∫
R\{0}

∫
R\{0}

|xj1 |iτj1 sgnkj1xj1 |xj2 |iτj2 sgnkj2xj2dPj1,j2 ,

τj1 , τj2 ∈ R, kj1 , kj2 = 0, 1, j2 > j1 = 1, . . . , r − 1,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
wk1,...,kj−1,kj+1,...,kr

(τ1, . . . , τj−1, τj+1, . . . , τr)

=

∫
R\{0}

. . .

∫
R\{0}

|x1|iτ1sgnk1x1 . . . |xj−1|iτj−1sgnkj−1xj−1

×|xj+1|iτj+1sgnkj+1xj+1 . . . |xr|iτr sgnkrxrdP1,...,j−1,j+1,...,r,
τ1, . . . , τj−1, τj+1, . . . , τr ∈ R, k1, . . . , kj−1, kj+1, . . . , kr = 0, 1,
j = 1, . . . , r,

wk1,...,kr (τ1, . . . , τr)

=

∫
R\{0}

. . .

∫
R\{0}

|x1|iτ1sgnk1x1 . . . |xr|iτr sgnkrxrdP,

τ1, . . . , τr ∈ R, k1, . . . , kr = 0, 1,

are called the characteristic transforms of the probability measure P on (Rr,B(Rr)).
They were introduced in [18], where, in place of probability measures, the distribution
functions were used. Obviously, the results of [18] remain valid for probability measures.
Thus, we have the following statements.

Lemma 4.2 The probability measure P on (Rr,B(Rr)) is uniquely determined by its
characteristic transforms

{
wkj (τj), wkj1 ,kj2

(τj1 , τj2), . . ., wk1,...,kj−1,kj+1,...,kr (τ1, . . ., τj−1,
τj+1, . . ., τr), wk1,...,kr (τ1, . . . , τr)

}
.

60



Lemma 4.3 Let Pn, n ∈ N, be a probability measure on (Rr,B(Rr)), and let
{
wkj ;n(τj),

wkj1 ,kj2 ;n
(τj1 , τj2), . . ., wk1,...,kj−1,kj+1,...,kr ;n(τ1, . . . , τj−1, τj+1, . . ., τr), wk1,...,kr;n(τ1,

. . ., τr)
}
be the corresponding characteristic transforms. Suppose that

lim
n→∞

wkj ;n(τj)

= wkj (τj) j = 1, . . . , r,
lim

n→∞
wkj1 ,kj2 ;n

(τj1 , τj2)

= wkj1 ,kj2
(τj1 , τj2), j2 > j1 = 1, . . . , r − 1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
lim

n→∞
wk1,...,kj−1,kj+1,...,kr ;n(τ1, . . . , τj−1, τj+1, . . . , τr)

= wk1,...,kj−1,kj+1,...,kr (τ1, . . . , τj−1, τj+1, . . . , τr), j = 1, . . . , r,
lim

n→∞
wk1,...,kr ;n(τ1, . . . , τr)

= wk1,...,kr (τ1, . . . , τr)

for all τj ∈ R, τj1 , τj2 ∈ R, . . ., τ1, . . ., τj−1, τj+1, . . ., τr ∈ R, τ1, . . ., τr ∈ R, and that
the functions wkj (τj), wkj1 ,kj2

(τj1 , τj2), . . ., wk1,...,kj−1,kj+1,...,kr (τ1, . . ., τj−1, τj+1, . . . , τr),
wk1,...,kr (τ1, . . . τr) are continuous at τj = 0; τj1 = 0, τj2 = 0; . . ., τ1 = 0 ,. . ., τj−1 = 0
,τj+1 = 0 ,. . ., τr = 0; τ1 = 0, . . . , τr = 0, respectively. Then, on (Rr,B(Rr)), there
exists a probability measure P such that Pn converges weakly to P as n → ∞. In
this case,

{
wkj (τj), wkj1 ,kj2

(τj1 , τj2), . . ., wk1,...,kj−1,kj+1,...,kr (τ1, . . . , τj−1, τj+1, . . . , τr),
wk1,...,kr (τ1, . . . , τr)

}
are the characteristic transforms of the measure P .

Proofs of Lemmas 4.2 and 4.3 are given in [18].
We note that the convergence of characteristic transforms gives more than the weak

convergence of Pn to P , Pn(A) also converges to P (A) for some special sets A ∈ B(Rr)

involving {0} as coordinate sets, for example, for A = {0} × . . .× {0}︸ ︷︷ ︸
r

, however, as it is

stated in Lemma 4.3, we limit ourselves only by the weak convergence.

4.3. Characteristic transform of PQ,Rr

In virtue of Lemma 4.3, we have to consider the characteristic transforms
{
wkj ;Q(τj),

wkj1 ,kj2 ;Q
(τj1 , τj2), . . ., wk1,...,kj−1,kj+1,...,kr;Q(τ1, . . . , τj−1, τj+1, . . ., τr), wk1,...,kr ;Q(τ1,

. . ., τr)
}
of the measure PQ,Rr as Q → ∞.

As in previous chapters,the Euler product and Deligne estimates imply that L(sj , Fj ,
χ) ̸= 0 for σj >

κj+1
2 , j = 1, . . . , r. Moreover, since the measure PQ,Rr is de�ned by the

modulus of L(sj , Fj , χ), its characteristic transforms do not depend on kj ; kj1 , kj2 ; . . .;
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k1, . . . , kr. Therefore, the de�nition of PQ,Rr and of characteristic transforms yield

wkj ;Q(τj)

= 1
MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

∣∣L(sj , Fj , χ)
∣∣iτj , j = 1, . . . , r;

wkj1 ,kj2 ;Q
(τj1 , τj2)

= 1
MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

∣∣L(sj1 , Fj1 , χ)
∣∣iτj1 ∣∣L(sj2 , Fj2 , χ)

∣∣iτj2 ,
j2 > j1 = 1, . . . , r − 1;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
wk1,...,kj−1,kj+1,...,kr ;Q(τ1, . . . , τj−1, τj+1, . . . , τr)

= 1
MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

∣∣L(s1, F1, χ)
∣∣iτ1 × . . .

∣∣L(sj−1, Fj−1, χ)
∣∣iτj−1

×
∣∣L(sj+1, Fj+1, χ)

∣∣iτj+1
. . .
∣∣L(sr, Fr, χ)

∣∣iτr , j = 1, . . . , r;
wk1,...,kr ;Q(τ1, . . . , τr)

= 1
MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

∣∣L(s1, F1, χ)
∣∣iτ1 . . . ∣∣L(sr, Fr, χ)

∣∣iτr .

(4.1)

Let 0 < δ < 1
2 be �xed, and let Rj = {s ∈ C : σj ≥ κj+1

2 + δ}. Then in Chapter 1,
Theorem 1.5, it was obtained that, uniformly in |τ | ≤ c and sj ∈ Rj ,

wkj ;Q(τj) =
∞∑

m=1

aj;τj (m)bj;τj (m)

m2σj
+ o(1), (4.2)

as Q → ∞.
So, it remains to consider the functions wkj1 ,kj2;Q(τj1 , τj2), wk1,...,kj−1,kj+1,...,kr ;Q(τ1,

. . ., τj−1, τj+1, . . . , τr), . . ., wk1,...,kr;Q(τ1, . . . , τr). Clearly, it su�ces to limit ourselves by
the investigations, say, of the function wk1,...,kr (τ1, . . . , τr) because other characteristic
transforms are considered similarly.

It follows by (1.5) that, for sj ∈ Rj ,

∣∣L(sj , Fj , χ)
∣∣iτj =

∞∑
m=1

âj;τj (m)

msj

∞∑
n=1

b̂j;τj (n)

nsj
, (4.3)

where âj;τ (m) and b̂j;τ (m) are multiplicative functions given, for primes p and k ∈ N, by

âj;τ (p
k) =

k∑
l=0

dτj (p
l)αl

j(p)χ(p
l)dτj (p

k−l)βk−l
j (p)χ(pk−l) (4.4)

and

b̂j;τ (p
k) =

k∑
l=0

dτj (p
l)αl

j(p)χ(p
l)dτj (p

k−l)β
k−l

j (p)χ(pk−l), (4.5)
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j = 1, . . . , r. Moreover, for |τj | ≤ c, where c > 0 is an arbitrary constant,∣∣âj,τ (m)
∣∣ ≤ m

κj−1

2 dc1(m), (4.6)

and ∣∣̂bj;τ (m)
∣∣ ≤ m

κj−1

2 dc1(m), (4.7)

m ∈ N and j = 1, . . . , r, with a suitable constant c1 > 0 depending on c, only.
Now, in view of (4.1) and (4.3), we have that, for sj ∈ Rj ,

wk1,...,kr ;Q(τ1, . . . , τr) =
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

∞∑
m1=1

â1;τ1(m1)

ms1
1

∞∑
n1=1

b̂1;τ1(n1)

ns1
1

× . . .×
∞∑

mr=1

âr;τr (mr)

msr
r

∞∑
nr=1

b̂r;τr (nr)

nsr
r

, (4.8)

where âj;τj (m) and b̂j;τj (m) are multiplicative functions de�ned by (4.3) and (4.4), and
satisfying estimates (4.6) and (4.7), j = 1, . . . , r.

4.4. Asymptotics of wk1,...,kr(τ1, . . . , τr)

Let N = log Q. Then the estimate d(m) = Oε(m
ε) with arbitrary ε > 0 and estimates

(4.6) and (4.7) imply, for |τj | ≤ c and sj ∈ Rj , the estimates

∑
mj>N

âj;τj (m)

m
sj
j

= O

( ∑
mj>N

m
κj−1

2
j dc1(m)

m
κj−1

2 +δ

)

= Oε

( ∑
mj>N

1

m1+δ−ε

)
= Oε

(
N−δ+ε

)
,

and ∑
nj>N

b̂j;τj (n)

n
sj
j

= Oε

(
N−δ+ε

)
,

j = 1, . . . , r. From this and (4.8), we �nd that, for |τj | ≤ c and sj ∈ Rj , j = 1, . . . , r,

wk1,...,kr;Q(τ1, . . . , τr)

=
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

( ∑
m1≤N

â1;τ1(m1)

ms1
1

+Oε

(
N−δ+ε

))
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×

( ∑
n1≤N

b̂1;τ1(n1)

ns1
1

+Oε

(
N−δ+ε

))
. . .

×

( ∑
mr≤N

âr;τr (mr)

msr
r

+Oε

(
N−δ+ε

))( ∑
nr≤N

b̂r;τr (nr)

nsr
r

+Oε

(
N−δ+ε

))

=
1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

( ∑
m1≤N

â1;τ1(m1)

ms1
1

∑
n1≤N

b̂1;τ1(n1)

ns1
1

× . . .

×
∑

mr≤N

âr;τr (mr)

msr
r

∑
nr≤N

b̂r;τr (nr)

nsr
r

)
+Oε

(
N−δ+ε

)
, (4.9)

since by (4.6) and (4.7), for |τj | ≤ c and sj ∈ Rj ,

∑
mj≤N

âj;τj (mj)

m
sj
j

= O

( ∑
mj≤N

dc1(mj)

m1+δ
j

)

= O

( ∞∑
mj=1

dc1(mj)

m1+δ
j

)
= O(1)

and ∑
nj≤N

b̂j;τj (nj)

n
sj
j

= O(1),

j = 1, . . . , r. The multiplicativity of âj;τj (m) and b̂j;τj (m) together with (4.4) and (4.5)
shows that

âj;τj (m) =
∏
pk∥m

âj;τj (m)

=
∏
pk∥m

k∑
l=0

dτj (p
l)αl

j(p)χ(p
l)dτj (p

k−l)βk−l
j (p)χ(pk−l)

=
∏
pk∥m

χ(pk)
k∑

l=0

dτj (p
l)αl

j(p)dτj (p
k−l)βk−l

j (p)

=
∏
pk∥m

χ(pk)aj;τj (p
k)

= aj;τj (m)χ(m) (4.10)

and

b̂j;τj (m) = bj;τj (m)χ(m), (4.11)

64



j = 1, . . . , r. Therefore, the main term on the right-hand side of (4.9) can be written in
the form ∑

m1≤N

a1;τ1(m1)

ms1
1

∑
n1≤N

b1;τ1(n1)

ns1
1

. . .
∑

mr≤N

ar;τr (mr)

msr
r

∑
nr≤N

br;τr (nr)

nsr
r

× 1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

χ(m1 . . .mr)χ(n1 . . . nr)

=
∑

m≤Nr

∑
m1...mr=m

a1;τ1(m1) . . . ar;τr (mr)

ms1
1 . . .msr

r

×
∑

n≤Nr

∑
n1...nr=n

b1;τ1(n1) . . . br;τr (nr)

ns1
1 . . . nsr

r

× 1

MQ

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

χ(m)χ(n). (4.12)

If m = n, then ∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

χ(m)χ(n) =
∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

|χ(m)|2

= MQ −
∑
q|m

q≤Nr

(q − 2)

= MQ +O

( ∑
q≤Nr

q

)
= MQ +O

(
N2r

)
. (4.13)

Moreover, in view of (4.6), (4.7) and (4.10), (4.11), using the estimate∑
d1...dr=m

1 = Oε(m
ε)

with arbitrary ε > 0, we obtain that , for |τj | ≤ c and sj ∈ Rj , j = 1, . . . , r,∑
m1...mr=m

a1;τ1(m1) . . . ar;τr (mr)

ms1
1 . . .msr

r

∑
n1...nr=m

b1;τ1(n1) . . . br;τr (nr)

ns1
1 . . . nsr

r

= O

( ∑
m1...mr=m

dc1(m1) . . . d
c1(mr)

m1+δ

∑
n1...nr=m

dc1(n1) . . . d
c1(nr)

m1+δ

)

= O

(
m

ε
2

m2+2δ

( ∑
m1...mr=m

1
)2)

= O

(
mε

m2+2δ

)
.
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Therefore, by Lemma 1.9 and (4.13), the case m = n contributes to (4.9)

∞∑
m=1

∑
m1...mr=m

a1;τ1(m1) . . . ar;τr (mr)

ms1
1 . . .msr

r

∑
n1...nr=m

b1;τ1(n1) . . . br;τr (nr)

ns1
1 . . . nsr

r

+o(1), (4.14)

uniformly in |τj | ≤ c, and sj ∈ Rj , j = 1, . . . , r,

Now consider the case m ̸= n. Using Lemmas 1.7, 1.9 and 1.10, we �nd that

∑
q≤Q

∑
χ=χ(mod q)

χ ̸=χ0

χ(m)χ(n)

=
∑
q≤Q

∑
χ=χ(modq)

χ(m)χ(n)−
∑
q≤Q

χ0(m)χ0(n)

=
∑
q≤Q

∑
χ=χ(mod q)
q|(m−n)

χ(m)χ(n) +
∑
q≤Q

∑
χ=χ(mod q)
q-(m−n)

χ(m)χ(n)

−
∑
q≤Q

χ0(m)χ0(n)

= O
( ∑

q≤Nr

q
)
+O

(∑
q≤Q

1
)

= O
(
N2r

)
+O

( Q

logQ

)
= O

( Q

log Q

)
.

Therefore, this, (4.9), (4.12) and (4.14) show that, uniformly in |τj | ≤ c, and sj ∈ Rj ,
j = 1, . . . , r,

wk1,...,kr;Q(τ1, . . . , τr) =

∞∑
m=1

∑
m1...mr=m

a1;τ1(m1) . . . ar;τr (mr)

ms1
1 . . .msr

r

×
∑

n1...nr=m

b1;τ1(n1) . . . br;τr (nr)

ns1
1 . . . nsr

r

+ o(1) (4.15)

as Q → ∞.
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4.5. Proof of Theorem 4.1

We apply Lemma 4.3. Reasoning similarly to the proof of the asymptotic formula (4.15),
we �nd that, uniformly in |τj | ≤ c and sj ∈ Rj , j = 1, . . . , r, as Q → ∞,

wkj ;Q(τj)

=
∞∑

m=1

aj;τj
(m)bj;τj (m)

m2σj
+ o(1), j = 1, . . . , r,

wkj1 ,kj2 ;Q
(τj1 , τj2)

=
∞∑

m=1

∑
m1m2=m

aj1;τj1
(m1)aj2;τj2

(m2)

m
sj1
1 m

sj2
2

∑
n1n2=m

bj1;τj1
(n1)bj2;τj2

(n2)

n
sj1
1 n

sj2
2

+ o(1),

j2 > j1 = 1, . . . , r − 1,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
wk1,...,kj−1,kj+1,...,kr;Q(τ1, . . . , τj−1, τj+1, . . . , τr)

=
∞∑

m=1

∑
m1...mj−1mj+1...mr=m

a1;τ1 (m1)...aj−1;τj−1
(mj−1)aj+1;τj+1

(mj+1)...ar;τr (mr)

m
s1
1 ...m

sj−1
j−1 m

sj+1
j+1 ...msr

r

×
∑

n1...nj−1nj+1...nr=m

b1;τ1 (n1)...bj−1;τj−1
(nj−1)bj+1;τj+1

(nj+1)...br;τr (nr)

n
s1
1 ...n

sj−1
j−1 n

sj+1
j+1 ...nsr

r

+ o(1),

j = 1, . . . , r,
wk1,...,kr (τ1, . . . , τr)

=
∞∑

m=1

∑
m1...mr=m

a1;τ1 (m1)...ar;τr (mr)

m
s1
1 ...msr

r

∑
n1...nr=m

b1;τ1 (n1)...br;τr (nr)

n
s1
1 ...nsr

r

+ o(1).

(4.16)

Thus, we have that the characteristic transforms of the measure PQ,Rr converge to
continuous functions as Q → ∞. Therefore, by Lemma 4.3, on (Rr,B(Rr)), there exists a
probability measure PRr such that PQ,Rr converges weakly to PRr as Q → ∞. Moreover,
the measure PRr is de�ned the characteristic transforms given by the right-hand sides
without o(1) of (4.16).
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Conclusions

Let F be a normalized Hecke eigen cusp form for the full modular group, L(s, F ) be
the L-function attached to the form F , and let L(s, F, χ) denote a twist of L(s, F ) with
Dirichlet character χ modulo q, where q is a prime number.

For the function L(s, F, χ), the following asymptotic properties are true when q → ∞:
1). a limit theorem for |L(s, F, χ)|;
2). a limit theorem for argL(s, F, χ);
3). a limit theorem for L(s, F, χ) on the complex plane;
4). a joint limit theorem for a collection |L(s1, F1, χ)|, . . ., |L(sr, Fr, χ)|.

All limit theorems are understood in the sense of weak convergence of probability
measures.
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Notation

j, k, l,m, n natural numbers
p prime number
(m,n) greatest common divisor of natural m and n
N set of all natural numbers
Z set of all integer numbers
R set of all real numbers
C set of all complex numbers
s = σ + it, z = u+ iv complex variables
i =

√
−1 imaginary unity

meas{A} Lebesgue measure of the set A
♯{A} number of elements of the set A
χ Dirichlet character
L(s, χ) Dirichlet L-function
SL(2,Z) full modular group
F (z) Cusp form
Γ(s) gamma-function
γ0 Euler constant de�ned by

γ0 = −
∞∫
0

e−x log xdx = 0.5772 . . .

f(x) = O(g(x)), x ∈ I means that |f(x)| ≤ Cg(x), x ∈ I
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