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Abstract: Let P be the set of generalized prime numbers, and ζP (s), s = σ + it, denote the Beurling
zeta-function associated with P . In the paper, we consider the approximation of analytic functions
by using shifts ζP (s + iτ), τ ∈ R. We assume the classical axioms for the number of generalized
integers and the mean of the generalized von Mangoldt function, the linear independence of the
set {log p : p ∈ P}, and the existence of a bounded mean square for ζP (s). Under the above
hypotheses, we obtain the universality of the function ζP (s). This means that the set of shifts
ζP (s + iτ) approximating a given analytic function defined on a certain strip σ̂ < σ < 1 has a positive
lower density. This result opens a new chapter in the theory of Beurling zeta functions. Moreover,
it supports the Linnik–Ibragimov conjecture on the universality of Dirichlet series. For the proof, a
probabilistic approach is applied.

Keywords: Beurling zeta-function; generalized integers; generalized primes; Haar measure; random
element; universality; weak convergence
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1. Introduction

A positive integer q > 1 is called prime if it has only two divisors, q and 1. Thus,
2, 3, 5, 7, 11, . . . are prime numbers. Integer numbers k > 1 that have divisors different from
k and 1 are called composite. It is well known that the set of all primes is infinite, and this
was first proved by Euclid. By the fundamental theorem of arithmetic, every integer k > 1
has a unique representation as a product of prime numbers. Thus,

k = qα1
1 · · · qαr

r , αj ∈ N0 = N∪ {0},

and qj is the jth prime number, j = 1, . . . , r, with some r ∈ N.
Investigations of the number of prime numbers

π(x) def
= ∑

q⩽x
1, x → ∞,

were more complicated. We recall that a = O(b), a ∈ C, b > 0, means that there exists a
constant c > 0 such that |a| ⩽ cb. Comparatively recently, in 1896 Hadamard [1] and de la
Vallée-Poussin [2] proved independently the asymptotic formula

π(x) =
x∫

2

du
log u

+ O
(

xe−c
√

log x
)

, c > 0.
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For this, they applied the Riemann idea [3] of using the function

ζ(s) =
∞

∑
k=1

1
ks = ∏

q

(
1 − 1

qs

)−1
, s = σ + it, σ > 1,

now called the Riemann zeta-function. The distribution low of prime numbers was found.
Prime numbers have generalizations. The system P of real numbers 1 < p1 ⩽ p2 ⩽

· · · ⩽ pn ⩽ · · · such that limn→∞ pn = ∞ are called generalized prime numbers. General-
ized prime numbers were introduced by Beurling in [4], and are studied by many authors.
The system P generates the associated system NP of generalized integers consisting of
finite products of the form

pα1
1 · · · pαr

r , αj ∈ N0, j = 1, . . . r,

with some r ∈ N.
The main problem in the theory of generalized primes is the asymptotic behavior of

the function
πP (x) def

= ∑
p⩽x, p∈P

1, x → ∞.

The function πP (x) is closely connected to the number of generalized integers

NP (x) def
= ∑

m⩽x, m∈NP

1, x → ∞.

In these definitions, the sums are taking counting multiplicities of p and m. Distribu-
tion results for generalized numbers were obtained by Beurling [4], Borel [5], Diamond [6–8],
Malvin [9], Nyman [10], Ryavec [11], Hilberdink and Lapidus [12], Stankus [13], Zhang [14],
and others. The important place in generalized number theory is devoted to making re-
lations between NP (x) and πP (x). We mention some of them. From a general Landau’s
theorem for prime ideals [15], we have the estimate

NP (x) = ax + O
(

xβ
)

, a > 0, 0 ⩽ β < 1, (1)

that implies

πP (x) =
x∫

2

du
log u

+ O
(

xe−c
√

log x
)

, c > 0.

Nyman proved [10] that the estimates

NP (x) = ax + O
(

x
(log x)α

)
, α > 0, (2)

and

πP (x) =
x∫

2

du
log u

+ O
(

x
(log x)α1

)
, α1 > 0,

with arbitrary α > 0 and α1 > 0 are equivalent. Beurling observed [4] that the relation

πP (x) ∼ x
log x

, x → ∞,

is implied by (2) with α > 3/2.
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It is important to stress that Beurling began to use zeta-functions for investigations of
the function πP (x). These zeta-functions ζP (s), now called Beurling zeta-functions, are
defined in some half-plane σ > σ0, by the Euler product

ζP (s) = ∏
p∈P

(
1 − 1

ps

)−1
,

or by the Dirichlet series

ζP (s) = ∑
m∈NP

1
ms ,

where σ0 depends on the system P .
Suppose that (1) is true. Then, the partial summation shows that the series for ζP (s) is

absolutely convergent for σ > 1,

ζP (s) = s
∞∫

1

NP (x)
xs+1 dx, (3)

the function ζP (s) is analytic for σ > 1, and the equality

∑
m∈NP

1
ms = ∏

p∈P

(
1 − 1

ps

)−1

is valid.
Analytic continuation for the function ζP (s) is not an easy problem. If (1) is true,

then (3) implies

ζP (s) =
a s

s − 1
+ s

∞∫
1

R(x)
xs+1 dx, R(x) = O

(
xβ
)

, 0 ⩽ β < 1.

This gives analytic continuation for ζP (s) to the half-plane σ > β, except for the point
s = 1 which is a simple pole with residue a.

Beurling zeta-functions are attractive analytic objects; investigations of their properties
lead to interesting results, and require new methods. Various authors put much effort
into showing that the Beurling zeta-functions have similar properties to classical ones. We
mention a recent paper [16] containing deep zero-distribution results for ζP (s).

In this paper, we investigate the analytic properties of the function ζP (s). The approx-
imation of analytic functions is one of the most important chapters of function theory. It is
well known that the Riemann zeta-function ζ(s) is universal in the sense of approximation
of analytic functions. More precisely, this means that every non-vanishing analytic function
defined on the strip {s ∈ C : 1/2 < σ < 1} can be approximated with desired accuracy
by using shifts ζ(s + iτ), τ ∈ R. Universality of ζ(s) and other zeta-functions has deep
theoretical (zero-distribution, functional independence, set denseness, moment problem,
. . . ) and practical (approximation problem, quantum mechanics) applications. On the other
hand, the universality theory of zeta-functions has some interior problems (effectivization,
description of a class of universal functions, Linnik–Ibragimov conjecture, see Section 1.6
of [17], . . . ); therefore, investigations of universality are continued, see [17–23].

Our purpose is to prove the universality of the function ζP (s) with a certain system
P . We began studying the approximation of analytic functions by shifts ζP (s + iτ) in [24].
Suppose that the estimate (1) is valid. Let

MP (σ, T) =
T∫

0

|ζP (σ + it)|2 dt,
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σ̂ = inf
{

σ : MP (σ, T) ≪σ T, σ > max
(

1
2

, β

)}
.

Suppose that σ̂ < 1 and define

D = DP = {s ∈ C : σ̂ < σ < 1}.

Here, and in the sequel, the notation a ≪c b, a ∈ C, b > 0, shows that there exists
a constant c = c(ε) > 0 such that |a| ⩽ cb. Denote by H(D) the space of analytic on
D functions equipped with the topology of uniform convergence on compacta, and by
measA the Lebesgue measure of a measurable set A ⊂ R. The main result of [24] is the
following theorem.

Theorem 1. Suppose that the system P satisfies the axiom (1). Then there exists a closed non-empty
subset FP ⊂ H(D) such that, for every compact set K ⊂ D, f (s) ∈ FP and ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|ζP (s + iτ)− f (s)| < ε

}
> 0.

Moreover, the limit

lim
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|ζP (s + iτ)− f (s)| < ε

}

exists and is positive for all but at most countably many ε > 0.

Theorem 1 demonstrates good approximation properties of the function ζP (s); how-
ever, the set FP of approximated functions is not explicitly given. The aim of this paper,
using certain additional information on system P , is to identify the set FP .

A new approach for analytic continuation of the function ζP (s) involving the general-
ized von Mangoldt function

ΛP (m) =

{
log p if m = pk, p ∈ P , k ∈ N,
0 otherwise,

and
ψP (x) = ∑

m⩽x
m∈NP

ΛP (m)

was proposed in [12]. Let, for α ∈ [0, 1) and every ε > 0,

ψP (x) = x + O
(

xα+ε
)
. (4)

Then, in [12], it was obtained that the function ζP (s) is analytic in the half-plane
σ > α, except for a simple pole at the point s = 1. It turns out that estimates of type (4) are
useful for the characterization of the system P . It is known [12] that (1) does not imply the
estimate

ψP (x) = x + O
(

xβ1
)

(5)

with β1 < 1. Therefore, together with (1), we suppose that estimate (5) is valid.
Let K be the class of compact subsets of strip D with the connected complement,

and H0(K) with K ∈ K the class of continuous functions on K that are analytic in the
interior of K. Moreover, let

L(P) = {log p : p ∈ P}.

Note, that the following theorem supports the Linnik–Ibragimov conjecture.
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Theorem 2. Suppose that the system P satisfies the axioms (1) and (5), and L(P) is linearly
independent over the field of rational numbers Q. Let K ∈ K and f (s) ∈ H0(K). Then, for every
ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|ζP (s + iτ)− f (s)| < ε

}
> 0.

Moreover, the limit

lim
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|ζP (s + iτ)− f (s)| < ε

}

exists and is positive for all but at most countably many at ε > 0.

Notice that the requirement on the set L(P) is sufficiently strong, it shows that the
numbers of the system P must be different. The simplest example is the system

P = {q + α : q is prime},

where α is a transcendental number.
An example of P with a bounded mean square is given in [25].
For the proof of Theorem 2, we will build the probabilistic theory of the function ζP (s)

in the space of analytic functions H(D).
The paper is organized as follows. In Section 2, we introduce a certain probability

space, and define the H(D) valued random element. Section 3 is devoted to the ergodicity of
one group of transformations. In Section 4, we approximate the mean of the function ζP (s)
by an absolutely convergent Dirichlet series. Section 5 is the most important. In this section,
we prove a probabilistic limit theorem for the function ζP (s) on a weakly convergent
probability measure in the space H(D), and identify the limit measure. Section 6 gives the
explicit form for the support of the limit measure of Section 5. In Section 7, the universality
of the function ζP (s) is proved.

2. Random Element

Define the Cartesian product

ΩP = ∏
p∈P

{s ∈ C : |s| = 1}.

The set ΩP consists of all functions ω : P → {s ∈ C : |s| = 1}. In ΩP , the operation
of pointwise multiplication and product topology can be defined, and this makes ΩP a
topological group. Since the unit circle is a compact set, the group ΩP is compact. Denote
by B(X), the Borel σ-field of the space X. Then, the compactness of ΩP implies the existence
of the probability Haar measure mP on (ΩP ,B(ΩP )), and we have the probability space
(ΩP ,B(ΩP ), mP ).

Denote the elements of ΩP by ω = (ω(p) : p ∈ P). Since the Haar measure mP is the
product of Haar measures on unit circles, {ω(p) : p ∈ P} is a sequence of independent
complex-valued random variables uniformly distributed on the unit circle.

Extend the functions ω(p), p ∈ P , to the generalized integers NP . Let

m = pα1
1 · · · pαr

r ∈ NP .

Then we put
ω(m) = ωα1(p1) · · ·ωαr (pr). (6)

Now, for s ∈ D and ω ∈ ΩP , define

ζP (s, ω) = ∑
m∈NP

ω(m)

ms .
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Lemma 1. Under the hypotheses of Theorem 2, ζP (s, ω) is an H(D)-valued random element
defined on the probability space (ΩP ,B(ΩP ), mP ).

Proof. Fix σ0 > σ̂, and consider

am(ω) =
ω(m)

mσ0
, m ∈ NP .

Then {am : m ∈ NP} is a sequence of complex-valued random variables on
(ΩP ,B(ΩP ), mP ). Denote by z the complex conjugate of z ∈ C. Suppose that m1 ̸=
m2, m1, m2 ∈ NP . Since the set L(P) is linearly independent over Q, in the product
ω(m1)ω(m2), there exists at least one factor ωα(p), p ∈ P , with integer α ̸= 0. Therefore,
denoting by Eξ the expectation of the random variable ξ, we have

E|am(ω)|2 =
1

m2σ0
, m ∈ NP , (7)

Eam1(ω)am2(ω) =
1

mσ0
1 mσ0

2

∫
ΩP

ω(m1)ω(m2)dmP = 0, m1 ̸= m2,

because the integral includes the factor

∫
γ

ωα(p)dmγ =

1∫
0

e2πiαu du = 0,

where γ is the unit circle on C, and mγ the Haar measure on γ. This and (7) show that {am}
is a sequence of pairwise orthogonal complex-valued random variables and the series

∑
m∈NP

E|am|2 log2 m

is convergent. Hence, by the classical Rademacher theorem, see [26], the series

∑
m∈NP

ω(m)

mσ0

converges for almost all ω with respect to the measure mP . Therefore, by a property of the
Dirichlet series, see [22], the series

∑
m∈NP

ω(m)

ms (8)

converges uniformly on compact sets of the half-plane σ > σ0 for almost all ω ∈ ΩP .
Now, let

σk = σ̂ +
1
k

, k ∈ N,

and Dk = {s ∈ C : σ > σk}. Denote by the set Ωk ⊂ ΩP such that the series (8) converges
uniformly on compact sets of Dk for almost all ω ∈ Ωk. Then, by the above remark,

mP (Ωk) = 1. (9)

On the other hand, taking
Ω̂ = ∩

k
Ωk,

we obtain from (9) that mP (Ω̂) = 1, and the series (8) converges uniformly on compact sets
of the half-plane σ > σ̂ of the strip D. Hence, ζP (s, ω) is the H(D)-valued random element
on (ΩP ,B(ΩP ), mP ).
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Lemma 2. For almost all ω, the product

∏
p∈P

(
1 − ω(p)

ps

)−1

converges uniformly on compact subsets of the half-plane σ > σ̂, and the equality

ζP (s, ω) = ∏
p∈P

(
1 − ω(p)

ps

)−1

holds.

Proof. The series ζP (s, ω) is absolutely convergent for σ > 1. Therefore, the equality
of the lemma, in view of (6), is valid for σ > 1. By proof of Lemma 1, the function
ζP (s, ω), for almost all ω ∈ ΩP , is analytic in the half-plane σ > σ̂. Therefore, by analytic
continuation, it suffices to show that the product of the lemma, for almost all ω ∈ ΩP ,
converges uniformly on compact subsets of the strip D.

Write

∏
p∈P

(
1 − ω(p)

ps

)−1

= ∏
p∈P

(1 + ap(s, ω)) (10)

with

ap(s, ω) =
∞

∑
α=1

ωα(p)
pαs .

We observe that the convergence of product (10) follows from that of the series

∑
p∈P

ap(s, ω) and ∑
p∈P

|ap(s, ω)|2.

Set

bp(s, ω) =
ω(p)

ps .

Then

ap(s, ω)− bp(s, ω) =
∞

∑
α=2

ωα(p)
pαs ≪ 1

p2σ
, σ > σ̂.

Hence, the series
∑

p∈P
|ap(s, ω)− bp(s, ω)| (11)

is convergent for all ω ∈ ΩP with every σ = σ0, σ0 > σ̂, thus, uniformly convergent on
compact subsets of the half-plane σ > σ̂. To prove the convergence for the series

∑
p∈P

bp(s, ω),

we apply the same arguments as in the proof of Lemma 1. For fixed σ > σ̂, we have

E|bp(σ, ω)|2 =
1

p2σ

and for p, q ∈ P , p ̸= q,

Ebp(σ, ω)bq(σ, ω) =
1

pσqσ

∫
ΩP

ω(p)ω(q)dmP = 0.
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Thus, the series
∑

p∈P
E|bp(σ, ω)|2 log2 p

is convergent, and the Rademacher theorem implies that the series

∑
p∈P

bp(σ, ω)

converges for almost all ω ∈ ΩP . Hence, this series, for almost all ω ∈ ΩP , converges
uniformly on compact subsets of the half-plane σ > σ̂. This, together with a convergence
property of the series (11), shows that the series

∑
p∈P

ap(s, ω),

for almost all ω ∈ ΩP , converges uniformly on compact subsets of the half-plane σ > σ̂,
and it remains to prove the same for the series

∑
p∈P

|ap(s, ω)|2. (12)

Clearly, for all ω ∈ ΩP ,

|ap(s, ω)|2 ≪ 1
p2σ

, σ > σ̂.

Hence, the series (12), for all ω ∈ ΩP , converges uniformly on compact subsets of the
half-plane σ > σ̂.

3. Ergodicity

For τ ∈ R, let
κτ =

(
p−iτ : p ∈ P

)
,

and
gτ(ω) = κτω, ω ∈ ΩP .

Since the Haar measure mP is invariant with respect to shifts by elements of ΩP ,
i.e., for all A ∈ B(ΩP ) and ω ∈ ΩP ,

mP (A) = mP (ωA) = mP (Aω),

gτ(m) is a measurable measure preserving transformation on ΩP . Thus, we have the
one-parameter group Gτ = {gτ : τ ∈ R} of transformations of ΩP . A set A ∈ B(ΩP ) is
called invariant with respect to Gτ if, for every τ ∈ R, the sets A and Aτ = gτ(A) differ
one from another at most by a set of mP -measure zero. It is well known that all invariant
sets form a σ-field which is a subfield of B(ΩP ). The group Gτ is called ergodic if its σ-field
of invariant sets consists only of sets mP -measure 0 or 1.

Lemma 3. Under the hypotheses of Theorem 2, the group Gτ is ergodic.

Proof. Let A ∈ B(ΩP ) be a fixed invariant set of Gτ . Denote by IA(ω) the indicator
function of the set A. Then, for almost all ω ∈ ΩP ,

IA(gτ(ω)) = IA(ω). (13)



Axioms 2024, 13, 145 9 of 23

Characters χ of the group ΩP are of the form

χ(ω) = ∏∗

p∈P
ωkp(p), (14)

where ∗ indicates that only a finite number of integers kp are distinct from zero. Suppose
that χ is a nontrivial character, i.e., χ(ω) ̸≡ 1 for all ω ∈ ΩP . Then, we have

χ(gτ) = ∏∗

p∈P
p−ikpτ = exp

{
−iτ ∑∗

p∈P
kp log p

}
.

Since the set L(P) is linearly independent over Q, and χ is a nontrivial character,

∑∗

p∈P
kp log p ̸= 0.

Thus, there exists a real number a ̸= 0 such that

χ(gτ) = e−iτa.

Hence, there is τ0 ∈ R satisfying χ(gτ0) ̸= 1.
Now, we deal with Fourier analysis on ΩP . Denote by ĝ the Fourier transform of a

function g, i.e.,

ĝ(χ) =
∫

ΩP

g(ω)χ(ω)dmP .

In virtue of (13), we find

ÎA(χ) =
∫

ΩP

IA(ω)χ(ω)dmP = χ(gτ0)
∫

ΩP

χ(ω)IA(ω)dmP = χ(gτ0 )̂IA(χ).

Hence, in view of inequality χ(gτ0) ̸= 1, we obtain

ÎA(χ) = 0. (15)

Consider the case of the trivial character χ0 of the group ΩP . We set ÎA(χ0) = c. Then,
the orthogonality of characters implies that

ĉ(χ) =
∫

ΩP

c(χ)χ(ω)dmP = c
∫

ΩP

χ(ω)dmP =

{
c if χ = χ0,
0 if χ ̸= χ0.

Therefore, using (15) yields the equality

ÎA(χ) = ĉ(χ). (16)

It is well known that a function is completely determined by its Fourier transform.
Thus, by (16), we have that for almost all ω ∈ ΩP , IA(ω) = c. However, as IA(ω) is
the indicator function, it follows that c = 0 or 1. In other words, for almost all ω ∈ ΩP ,
IA(ω) = 0 or IA(ω) = 1. Thus, mP (A) = 0 or mP (A) = 1. The lemma is proved.

We apply Lemma 3 for the estimation of the mean square for ζP (s, ω).

Lemma 4. Under hypotheses of Theorem 2, for fixed σ̂ < σ < 1 and almost all ω ∈ ΩP ,

T∫
−T

|ζP (σ + it, ω)|2 dt ≪P ,σ T, T → ∞.
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Proof. Let am(σ, ω), m ∈ NP , be the same as the proof of Lemma 1. The random variables
am(σ, ω) are pairwise orthogonal, and

E|am(σ, ω)|2 =
1

m2σ
.

Therefore,

E|ζP (σ, ω)|2 = E

∣∣∣∣∣ ∑
m∈NP

am(σ, ω)

∣∣∣∣∣
2

= ∑
m∈NP

E|am(σ, ω)|2 = ∑
m∈NP

1
m2σ

< ∞. (17)

Let gτ(ω) be the transformation from the proof of Lemma 3. Then, by the definition of gτ,

|ζP (σ, gt(ω)|2 = |ζP (σ, gtω)|2 = |ζP (σ + it, ω)|2.

We recall that a strongly stationary random process X(t, ω), t ∈ T , on (Ω,A, P) is
called ergodic if its σ-field of invariant sets consists of sets of P-measure 0 or 1. Since the
group Gτ is ergodic, the stationary process |ζP (σ + it, ω)|2 is ergodic, for details, see [22].
Therefore, we can apply the classical Birkhoff–Khintchine ergodic theorem, see [27]. This
gives, by (17),

lim
T→∞

1
2T

T∫
−T

|ζP (σ + it, ω)|2 dt = lim
T→∞

1
2T

T∫
−T

ζP (σ, gt(ω))dt = E|ζP (σ, ω)|2 < ∞.

4. Approximation in the Mean

In this section, we approximate the functions ζP (s) and ζP (s, ω) by absolutely conver-
gent Dirichlet series. Let η > 1 − σ̂ be a fixed number, and, for m ∈ NP and n ∈ N,

an(m) = exp
{
−
(m

n

)η}
.

Then the series

ζP ,n(s) = ∑
m∈NP

an(m)

ms and ζP ,n(s, ω) = ∑
m∈NP

an(m)ω(m)

ms , ω ∈ ΩP ,

are absolutely convergent for σ > σ̂ and for every fixed n ∈ N. We will approximate ζP (s)
and ζP (s, ω) by ζP ,n(s) and ζP ,n(s, ω), respectively, in the mean. Recall a metric in the
space H(D) inducing its topology. Let {Kl : l ∈ N} ⊂ D be a sequence of embedded
compact sets such that

D =
∞
∪

l=1
Kl ,

and every compact set K ⊂ D lies in some Kl . Then

ρ(g1, g2) =
∞

∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈Kl

|g1(s)− g2(s)|
, g1, g2 ∈ H(D),

is the desired metric in H(D).
In [24], the following statement has been obtained.
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Lemma 5. Suppose that (1) is valid. Then

lim
n→∞

lim sup
T→∞

1
T

T∫
0

ρ(ζP (s + iτ), ζP ,n(s + iτ))dτ = 0.

Denote by ΩP ,1 a subset of ΩP such that a product

∏
p∈P

(
1 − ω(p)

ps

)−1

converges uniformly on compact subsets of D for ω ∈ ΩP ,1, and by ΩP ,2 a subset of ΩP
such that, for ω ∈ ΩP ,2, the estimate

T∫
−T

|ζP (σ + it, ω)|2 dt ≪σ T

holds for σ̂ < σ < 1. Then, by Lemmas 3 and 4, mP (ΩP ,j) = 1, j = 1, 2. Let

Ω̂P = ΩP ,1 ∩ ΩP ,2.

Then again mP (Ω̂P ) = 1.

Lemma 6. Under the hypotheses of Theorem 2, for ω ∈ Ω̂P the equality

lim
n→∞

lim sup
T→∞

1
T

T∫
0

ρ(ζP (s + iτ, ω), ζP ,n(s + iτ, ω))dτ = 0

holds.

Proof. Denote
ln(s) = η−1Γ(η−1s)ns, n ∈ N,

where Γ(s) is the Euler gamma function. Then the classical Mellin formula

1
2πi

a+i∞∫
a−i∞

Γ(z)b−z dz = e−b, a, b > 0,

implies, for m ∈ NP ,

1
2πi

η+i∞∫
η−i∞

m−zln(z)dz =
1

2πi

η+i∞∫
η−i∞

Γ(z)
(m

n

)−z
dz = an(m).

Therefore, for σ > σ̂ and ω ∈ Ω̂P ,

ζP ,n(s, ω) = ∑
m∈NP

an(m)ω(m)

ms =
1

2πi

η+i∞∫
η−i∞

(
∑

m∈NP

ω(m)

ms+z

)
ln(z)dz

=
1

2πi

η+i∞∫
η−i∞

ζP (s + z, ω)ln(z)dz. (18)
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The definition of the metric ρ implies that it is sufficient to show that, for every compact
set K ⊂ D,

lim
n→∞

lim sup
T→∞

1
T

T∫
0

sup
s∈K

|ζP (s + iτ, ω)− ζP ,n(s + iτ, ω)|dτ = 0. (19)

Thus, let K ⊂ D be a compact set. Then there exists ε > 0 satisfying for σ + it ∈ K the
inequalities σ̂ + ε ⩽ σ ⩽ 1 − ε/2. Take η = 1 and η1 = σ̂ − ε/2 − σ with the above σ. Then
η1 < 0 and η1 ⩾ σ̂ + ε/2 − 1 + ε/2 = σ̂ − 1 + ε > −1. Consequently, the integrand in (18)
has only a simple pole z = 0 in the strip η1 < Rez < η. Hence, the residue theorem and (18)
show that, for s ∈ K,

ζP ,n(s, ω)− ζP (s, ω) =
1

2πi

η1+i∞∫
η1−i∞

ζP (s + z, ω)ln(z)dz.

Thus, for s ∈ K,

ζP ,n(s + iτ, ω)− ζP (s + iτ, ω)

=
1

2π

∞∫
−∞

ζP
(

σ̂ +
ε

2
+ iτ + it + iu, ω

)
ln
(

σ̂ +
ε

2
− σ + iu

)
du

=
1

2π

∞∫
−∞

ζP
(

σ̂ +
ε

2
+ iτ + iu, ω

)
ln
(

σ̂ +
ε

2
− s + iu

)
du

≪
∞∫

−∞

∣∣∣ζP(σ̂ +
ε

2
+ iτ + iu, ω

)∣∣∣ sup
s∈K

∣∣∣ln(σ̂ +
ε

2
− s + iu

)∣∣∣du. (20)

It is well known that, for the gamma-function Γ(σ + it), the estimate

Γ(σ + it) ≪ exp{−c|t|}, c > 0, (21)

is valid uniformly for σ ∈ [σ1, σ2] with every σ1 < σ2. Therefore, (20) implies

1
T

T∫
0

sup
s∈K

|ζP (s + iτ, ω)− ζP ,n(s + iτ, ω)|dτ

≪
∞∫

−∞

 1
T

T∫
0

∣∣∣ζP(σ̂ +
ε

2
+ iτ + iu, ω

)∣∣∣dτ

 sup
s∈K

∣∣∣ln(σ̂ +
ε

2
− s + iu

)∣∣∣du def
= I. (22)

By Lemma 4, for ω ∈ Ω̂P ,

T∫
−T

∣∣∣ζP(σ̂ +
ε

2
+ iτ, ω

)∣∣∣2 dτ ≪ε T.

Hence,
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1
T

T∫
0

∣∣∣ζP(σ̂ +
ε

2
+ iτ + iu, ω

)∣∣∣dτ ⩽

 1
T

T∫
0

∣∣∣ζP(σ̂ +
ε

2
+ iτ + iu, ω

)∣∣∣2 dτ

1/2

⩽

 1
T

T+|u|∫
−|u|

∣∣∣ζP(σ̂ +
ε

2
+ iτ, ω

)∣∣∣2 dτ


1/2

≪ε

(
T + |u|

T

)1/2

≪ε (1 + |u|)1/2. (23)

In view of (21), for s ∈ K,

ln
(

σ̂ +
ε

2
− s + iu

)
≪ nσ̂+ε/2−σ exp{−c|u − t|} ≪K n−ε/2 exp{−c1|u|}, c1 > 0.

This and (23) give

I ≪ε,K n−ε/2
∞∫

−∞

(1 + |u|)1/2 exp{−c1|u|}du ≪ε,K n−ε/2,

and (19) is proved.

5. Limit Theorems

In previous sections, we gave preparatory results for the proof of a limit theorem
for ζP (s) in the space of analytic functions H(D). In this section, we consider the weak
convergence for

PT,P (A) =
1
T

meas{τ ∈ [0, T] : ζP (s + iτ) ∈ A}

and
P̂T,P (A) =

1
T

meas{τ ∈ [0, T] : ζP (s + iτ, ω) ∈ A}

as T → ∞, where A ∈ B(H(D)), ω ∈ Ω̂P .
We start with a limit lemma on ΩP . For A ∈ B(ΩP ), define

PΩP
T,P (A) =

1
T

meas
{

τ ∈ [0, T] :
(

p−iτ : p ∈ P
)
∈ A

}
.

Lemma 7. Suppose that the set L(P) is linearly independent over Q. Then PΩP
T,P converges weakly

to the Haar measure mP as T → ∞.

Proof. In the proof of Lemma 3, we have seen that characters of the group ΩP are given
by (14). Therefore, the Fourier transform FT,P (k), k = (kp : kp ∈ Z, p ∈ P) of PΩP

T,P is
defined by

FT,P (k) =
∫

ΩP

∏∗

p∈P
ωkp(p)dPΩP

T,P =
1
T

T∫
0

(
∏∗

p∈P
p−iτkp

)
dτ

=
1
T

T∫
0

exp

{
−iτ ∑∗

p∈P
kp log p

}
dτ. (24)
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We have to show that

lim
T→∞

FT,P (k) =
{

1 if k = 0,
0 if k ̸= 0.

(25)

For this, we apply the linear independence of the set L(P). We have

AP (k)
def
= ∑∗

p∈P
kp log p = 0

if and only if kp = 0. Thus, (24),

FT,P (k) =

{
1 if k = 0,

1−exp{−iT AP (k)}
iT exp{−i AP (k)}

otherwise,

and (25) take place.

The next lemma is devoted to the functions ζP,n(s) and ζP,n(s, ω). For A ∈ B(H(D)), set

PT,P ,n(A) =
1
T

meas{τ ∈ [0, T] : ζP ,n(s + iτ) ∈ A}

and
P̂T,P ,n(A) =

1
T

meas{τ ∈ [0, T] : ζP ,n(s + iτ, ω) ∈ A}.

Lemma 8. Suppose that the set L(P) is linearly independent over Q. Then, on (H(D),B(H(D)))
there exists a probability measure PP ,n such that both the measures PT,P ,n and P̂T,P ,n converge
weakly to PP ,n as T → ∞.

Proof. We use a property of the preservation of weak convergence under continuous
mappings. Consider the mapping vP ,n : ΩP → H(D) given by

vP ,n(ω) = ζP ,n(s, ω).

Since the series for ζP ,n(s, ω) is absolutely convergent for σ > σ̂, the mapping vP ,n is
continuous. Moreover, for A ∈ B(H(D)),

PT,P ,n(A) =
1
T

meas
{

τ ∈ [0, T] :
(

p−iτ : p ∈ P
)
∈ v−1

P ,n A
}
= PΩP

T,P

(
v−1
P ,n A

)
.

Thus, denoting by PΩP
T,Pv−1

P ,n the measure given by the latter equality, we obtain that

PT,P ,n = PΩP
T,Pv−1

P ,n. This equality continuity of vP ,n, and the principle of preservation of
weak convergence, see Theorem 5.1 of [28], show that PT,P ,n converges weakly to the

measure QP ,n
def
= mPv−1

P ,n as T → ∞.
Define one more mapping v̂P ,n : ΩP → H(D) by

v̂P ,n(ω̂) = ζP ,n(s, ωω̂), ω̂ ∈ ΩP .

Then, repeating the above arguments, we find that P̂T,P ,n converges weakly to Q̂P ,n
def
=

mP v̂−1
P ,n. Let vP (ω̂) = ωω̂. Then, by invariance of the measure mP , we have

Q̂P ,n = mP (vP ,nvP )−1 =
(

mPv−1
P

)
v−1
P ,n = mPv−1

P ,n = QP ,n.

Thus, PT,P ,n and P̂T,P ,n converge weakly to the same measure QP ,n as T → ∞.
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Next, we study the family of probability measures {QP ,n : n ∈ N}. We recall some
notions. A family of probability measures {P} on (X,B(X)) is called tight if, for every
ε > 0, there exists a compact set K ⊂ X such that

P(K) > 1 − ε

for all P, and {P} is relatively compact if every sequence {Pk} ⊂ {P} has a subsequence
{Pnk} weakly convergent to a certain probability measure P on (X,B(X)) as k → ∞. By the
classical Prokhorov theorem, see Theorem 6.1 of [28], every tight family of probability
measures is relatively compact.

Lemma 9. Under the hypotheses of Theorem 2, the family {QP ,n : n ∈ N} is relatively compact.

Proof. In view of the above remark, it suffices to prove the tightness of {QP ,n}. Let K ⊂ D
be a compact. Then, using the Cauchy integral formula and absolute convergence of the
series for ζP ,n(s), we obtain σκ > σ̂

sup
n∈N

lim sup
T→∞

1
T

T∫
0

sup
s∈K

|ζP ,n(s + iτ)|2 dτ ≪ sup
n∈N

∑
m∈NP

a2
n(m)

m2σκ
≪ ∑

m∈NP

1
m2σκ

def
= Vκ < ∞. (26)

Suppose that ξT is a random variable on a certain probability space (Ξ,A, µ) uniformly
distributed in the interval [0, T]. Define the H(D)-valued random element

YT,P ,n = YT,P ,n(s) = ζP ,n(s + iξT).

Then, denoting by D−→ the convergence in distribution by Lemma 8, we obtain

YT,P ,n
D−−−→

T→∞
YP ,n, (27)

where YP ,n(s) is the H(D)-valued random element with the distribution QP ,n. Since the
convergence in H(D) is uniform on compact sets, (27) implies

sup
s∈K

|YT,P ,n(s)|
D−−−→

T→∞
sup
s∈K

|YP ,n(s)|. (28)

Now, let K = Kl , where {Kl} is a sequence of compact sets of D from the definition
of the metric ρ. Fix ε > 0, and set Rl = 2lε−1√Vl where Vl = Vκl . Therefore, relation (26),
and the Chebyshev type inequality yield

lim sup
T→∞

µ

{
sup
s∈Kl

|YT,P ,n(s)| > Rl

}
⩽ sup

n∈N
lim sup

T→∞

1
TRl

T∫
0

sup
s∈Kl

|ζP ,n(s + iτ)|dτ

⩽ sup
s∈N

lim sup
T→∞

1
Rl

 1
T

T∫
0

sup
s∈Kl

|ζP ,n(s + iτ)|2 dτ

1/2

=
ε

2l .

Hence, in view of (28),

µ

{
sup
s∈Kl

|YP ,n(s)| > Rl

}
⩽

ε

2l . (29)

Define the set

H(ε) =

{
g ∈ H(D) : sup

s∈Kl

|g(s)| ⩽ Rl , l ∈ N
}

.
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Then H(ε) is a compact set in H(D). Moreover, inequality (29) implies that

µ{YP ,n ∈ H(ε)} = 1 − µ{YP ,n ̸∈ H(ε)} ⩾ 1 − ε
∞

∑
l=1

1
2l = 1 − ε

for all n ∈ N. Since QP ,n is the distribution of YP ,n, this shows that

QP ,n(H(ε)) ⩾ 1 − ε

for all n ∈ N. The lemma is proved.

Now, we are ready to consider the weak convergence for PT,P and P̂T,P . For conve-
nience, we recall one general statement.

Proposition 1. Suppose that a metric space (X, d) is separable, and the X-valued random elements
xmn and yn, m, n ∈ N are defined on the same probability space (Ξ,A, µ). Suppose that

xmn
D−−−→

n→∞
xm, xm

D−−−→
m→∞

x,

and, for every ε > 0,
lim

m→∞
lim sup

n→∞
µ{d(xmn, yn) ⩾ ε} = 0

Then
yn

D−−−→
n→∞

x.

Proof. The proposition is Theorem 4.2 of [28], where its proof is given.

Lemma 10. Under the hypotheses of Theorem 2, on (H(D),B(H(D))) there exists a probability
measure PP such that both the measures PT,P and P̂T,P converge weakly to PP as T → ∞.

Proof. Let ξT be the same random variable as in the proof of Lemma 9. By Lemma 9, there
exists a sequence {QP ,nm} ⊂ {QP ,n} and the probability measure QP on (H(D),B(H(D)))
such that QP ,nm converges weakly to QP as m → ∞. In other words, in the notation of the
proof of Lemma 9,

YP ,nm
D−−−→

m→∞
QP . (30)

On (Ξ,A, µ), define one more H(D)-valued random element

YT,P = YT,P (s) = ζP (s + iξT).

Then the application of Lemma 5 gives, for ε > 0,

lim
m→∞

lim sup
T→∞

µ{ρ(YT,P , YT,P ,nm) ⩾ ε}

= lim
m→∞

lim sup
T→∞

1
T

meas{τ ∈ [0, T] : ρ(ζP (s + iτ), ζP ,nm(s + iτ)) ⩾ ε}

⩽ lim
m→∞

lim sup
T→∞

1
εT

T∫
0

ρ(ζP (s + iτ), ζP ,nm(s + iτ))dτ = 0.

This, and relations (27) and (30) show that all conditions of Proposition 1 are fulfilled.
Thus, we have

YT,P
D−−−→

T→∞
QP , (31)
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PT,P converges weakly to QP as T → ∞. Since the family {QP ,n} is relatively compact,
relation (31), in addition, implies that

YP ,n
D−−−→

n→∞
QP . (32)

It remains to prove weak convergence for P̂T,P . On (Ξ,A, µ), define the H(D)-valued
random elements

ŶT,P ,n = ŶT,P ,n(s) = ζP ,n(s + iξT , ω)

and
ŶT,P = ŶT,P (s) = ζP (s + iξT , ω).

Lemma 8 implies the relation

ŶT,P ,n
D−−−→

T→∞
QP , (33)

while, in view of Lemma 6, for ε > 0,

lim
n→∞

lim sup
T→∞

µ
{

ρ
(

ŶT,P , ŶT,P ,n

)
⩾ ε
}

⩽ lim
n→∞

lim sup
T→∞

1
εT

T∫
0

ρ(ζP (s + iτ, ω), ζP ,n(s + iτ, ω))dτ = 0.

This, (32), (33) and Lemma 10 yield the relation

ŶT,P
D−−−→

T→∞
QP .

Thus, P̂T,P , as T → ∞, also converges weakly to QP .

It remains to identify the measure QP . Denote by PζP the distribution of the random
element ζP (s, ω), i.e.,

PζP (A) = mP{ω ∈ ΩP : ζP (s, ω) ∈ A}.

Theorem 3. Under hypotheses of Theorem 2, PT,P converges weakly to the measure PζP as T → ∞.

Proof. We will show that the limit measure QP in Lemma 10 coincides with PζP .
We apply the equivalent of weak convergence of probability measures in terms of

continuity sets, see Theorem 2.1 of [28]. Let A be a continuity set of the measure QP ,
i.e., QP (∂A) = 0, where ∂A denotes the boundary of A. Then, Lemma 10 implies that

lim
T→∞

P̂T,P (A) = QP (A). (34)

On (ΩP ,B(ΩP )), define the random variable

ξP (ω) =

{
0 if ζP (s, ω) ̸∈ A,
1 otherwise.

Return to the group Gτ of Lemma 3. Since, by Lemma 3, the group Gτ is ergodic,
the process ξ(gτ(ω)) is ergodic, and application of the Birkhoff–Khintchine theorem [27] gives

lim
T→∞

1
T

T∫
0

ξP (gτ(ω))dτ = EξP (ω) (35)
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for almost all ω ∈ ΩP . However, the definition of the random variable ξT(ω) implies that,
for almost all ω ∈ ΩP ,

1
T

T∫
0

ξP (gτ(ω))dτ =
1
T

meas{τ ∈ [0, T] : ζP (s, gτ(ω)) ∈ A}

=
1
T

meas{τ ∈ [0, T] : ζP (s + iτ, ω) ∈ A}.

Thus, by (34),

lim
T→∞

1
T

T∫
0

ξP (gτ(ω))dτ = QP (A). (36)

Moreover,
Eξ(ω) =

∫
ΩP

ξP (ω)dmP = PζP (A).

This, (35) and (36) prove that QP (A) = PζP (A) for all continuity sets A of the measure
QP . It is well known that all continuity sets constitute a determining class. Hence, we have
QP = PζP , and the theorem is proved.

6. Support

For the proof of Theorem 2, the explicitly given support of the measure PζP is needed.
We recall that the support of PζP is a minimal closed set SP ⊂ H(D) such that PζP (SP ) = 1.
Every open neighbourhood of elements SP has a positive PζP -measure.

Define the set
SP = {g ∈ H(D) : g(s) ̸= 0 or g(s) ≡ 0}.

Proposition 2. Under the hypotheses of Theorem 2, the support of the measure PζP is the set SP .

A proof of Proposition 2 is similar to that in the case of the Riemann zeta-function.
Therefore, we will state without proof only the lemmas because their proofs word for word
coincide with analogical assertions from [22].

We start with some estimations over generalized primes p ∈ P .

Lemma 11. Suppose that the estimate (5) is valid. Then, for x → ∞,

∑
p⩽x
p∈P

1
p
= log log x + a + O

(
xβ2−1

)
,

where a is a constant, and 0 ⩽ β2 < 1.

Proof. We have

ψ1(x) def
= ∑

p⩽x
p∈P

log p = ψ(x)− ∑
pα⩽x
p∈P

∑
2⩽α⩽(log x)/(log 2)

log p

= ψ(x) + O
(

ψ
(

x1/2
)

log x
)
= x + r(x),

where
r(x) = O

(
xβ2 log x

)
with

β2 = max
(

β1,
1
2

)
.
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From this, by partial summation, we obtain

∑
p⩽x
p∈P

1
p
=

1
x log x ∑

p⩽x
p∈P

log p +

x∫
p1

(
1

u2 log u
+

1
u2 log2 u

)
ψ1(u)du

=
1

log x
+ log log x − 1

log x
+ c1 +

x∫
p1

(
1

u2 log u
+

1
u2 log2 u

)
r(u)du

= log log x + c1 +

∞∫
p1

(
1

u2 log u
+

1
u2 log2 u

)
r(u)du

−
∞∫

x

(
1

u2 log u
+

1
u2 log2 u

)
r(u)du

= log log x + c2 + O

 ∞∫
x

uβ1−2 du

 = log log x + c2 + O(
(

xβ2−1
)

.

In what follows, we will use some properties of functions of exponential type. We
recall a function g(s) analytic in the region | arg s| ⩽ θ0, 0 < θ0 ⩽ π is of exponential type if
uniformly in θ, θ ⩽ θ0,

lim sup
r→∞

log |g(reiθ)|
r

< ∞.

Lemma 12. Suppose that g(s) is an entire function of exponential type, (5) holds, and

lim sup
r→∞

log |g(r)|
r

> −1.

Then

∑
p∈P

|g(log p)| = ∞.

Proof. We use the formula of Lemma 11, and repeat word for word the proof of Theo-
rem 6.4.14 of [22].

Let s ∈ D, and |ap| = 1. For brevity, we set

gP (s, ap) = log
(

1 −
ap

ps

)
, p ∈ P ,

where

log
(

1 −
ap

ps

)
= −

ap

ps −
a2

p

2p2s − · · · .

Lemma 13. Suppose that (5) holds. Then the set of all convergent series

∑
p∈P

gP (s, ap)

is dense in the space H(D).

Proof. The object connected to the system P is only Lemma 12. Other arguments of the
proof are the same as those applied in the proof of Lemma 6.5.4 from [22].
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Recall that the support of the distribution of a random element X is called a support
of X, and is denoted by SX .

For convenience, we state a lemma on the support of a series of random elements.

Lemma 14. Let {ξm} be a sequence of independent H(D)-valued random elements on a certain
probability space (Ξ,A, µ); the series

∞

∑
m=1

ξm

is convergent almost surely. Then, the support of the sum of this series is the closure of the set of all
g ∈ H(D) which may be written as a convergent series

g =
∞

∑
m=1

gm, gm ∈ Sξm .

Proof. The lemma is Theorem 1.7.10 of [22], where its proof is given.

Proof of Proposition 2. By the definition, {ω(p) : p ∈ P} is a sequence of independent
complex-valued random variables. Therefore, {gP (s, ω(p))} is a sequence of indepen-
dent H(D)-valued random elements. Since the support of each ω(p) is the unit circle,
the support of gP (s, ω(p))} is the set{

g ∈ H(D) : g(s) = − log
(

1 − a
ps

)
, |a| = 1

}
.

Therefore, in view of Lemma 14, the support of the H(D)-valued random element

log ζP (s, ω) = − ∑
p∈P

log
(

1 − ω(p)
ps

)

is the closure of the set of all convergent series

∑
p∈P

gP (s, ap)

with |ap| = 1. By Lemma 13, the set of the latter series is dense in H(D). Define u : H(D) →
H(D) by u(g) = eg, g ∈ H(D). The mapping u is continuous, u(log ζP (s, ω)) = ζP (s, ω)
and u(H(D)) = SP \ {0}. This shows that SP \ {0} lies in the support of ζP (s, ω). Since
the support is a closed set, we obtain that the support of ζP (s, ω) contains the closure of
SP \ {0}, i.e.,

SζP ⊃ SP . (37)

On the other hand, the random element ζP (s, ω) is convergent for almost all ω ∈ ΩP ,
a product of non-zeros multipliers. Therefore, by the classical Hurwitz theorem, see [29],

SζP ⊂ SP .

This inclusion together with (37) proves the proposition.

7. Proof of Universality

In this section, we prove Theorem 2. Its proof is based on Theorem 3, Proposition 2
and the Mergelyan theorem [30] on the approximation of analytic functions by polynomials
on compact sets with connected complements.

Proof of Theorem 2. Let p(s) be a polynomial, K and ε defined in Theorem 2, and

Gε =

{
g ∈ H(D) : sup

s∈K

∣∣∣g(s)− ep(s)
∣∣∣ < ε

2

}
.
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Then, the set Gε is an open neighborhood of an element ep(s) ∈ SP . Since, in view of
Proposition 2, SP is the support of the measure PζP , by a property of supports, we have

PζP (Gε) > 0. (38)

Since f (s) ∈ H0(K), we may apply the mentioned Mergelyan theorem and choose the
polynomial p(s) satisfying

sup
s∈K

∣∣∣ f (s)− ep(s)
∣∣∣ < ε

2
.

This shows that the set Gε lies in

Ĝε =

{
g ∈ H(D) : sup

s∈K
|g(s)− f (s)| < ε

}
.

Thus, by (38), we have
PζP (Ĝε) > 0. (39)

Theorem 3 and the equivalent of weak convergence in terms of open sets yield

lim inf
T→∞

PT,P (Ĝε) ⩾ PζP (Ĝε).

This, (39), and the definitions of PT,P and Ĝε prove the first statement of the theorem.
To prove the second statement of the theorem, we observe that the boundary ∂Ĝε of

the set Ĝε lies in the set {
g ∈ H(D) : sup

s∈K
|g(s)− f (s)| = ε

}
.

Hence, the boundaries ∂Ĝε1 and ∂Ĝε2 do not intersect for different positive ε1 and ε2.
Therefore, PζP (∂Ĝε) > 0 for countably many ε > 0. In other words, the set Ĝε is a continuity
set of the measure PζP for all but at most countably many ε > 0. This, (39), Theorem 3 and
the equivalent of weak convergence in terms of continuity sets prove the second statement
of the theorem.

8. Conclusions

In the paper, we considered the set P of generalized prime numbers satisfying

∑
m⩽x

m∈NP

1 = ax + O
(

xβ
)

, a > 0, 0 ⩽ β < 1,

and
∑

m⩽x
m∈NP

ΛP (m) = x + O
(

xβ1
)

, 0 ⩽ β1 < 1,

where NP is the set of generalized integers and ΛP (m) is the generalized von Mangoldt
function corresponding to the set P . Assuming that the set {log p : p ∈ P} is linearly
independent over Q, and the Beurling zeta-function

ζP (s) = ∑
m∈NP

1
ms , s = σ + it, σ > 1,

has the bounded mean square for σ > σ̂ with some β < σ̂ < 1, we obtained universality
of ζP (s), i.e., that every non-vanishing analytic function can be approximated by shifts
ζP (s + iτ), τ ∈ R.
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In the future, we are planning to obtain a more complicated discrete version of
Theorem 2, i.e., to prove the approximation of analytic functions by discrete shifts ζP (s +
ikh), h > 0, k ∈ N0.
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