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Abstract. This article presents a novel approach to cryptocurrency price forecasting, leveraging advanced machine-learning techniques. 

By comparing traditional autoregressive models with recurrent neural network approaches, the study aims to evaluate the forecasting 

accuracy of Autoregressive Integrated Moving Average (ARIMA), Seasonal ARIMA (SARIMA), Long Short-Term Memory (LSTM), 

and Gated Recurrent Unit (GRU) models across various cryptocurrencies, including Bitcoin, Ethereum, Dogecoin, Polygon, and 

Toncoin. The data for this empirical study was sourced from historical prices of these specific cryptocurrencies, as recorded on the 

CoinMarketCap platform, covering January 2022 to April 2024. The methodology employed involves rigorous statistical and neural 

network modelling where each model's parameters were meticulously optimized for the specific characteristics of each cryptocurrency's 

price data. Performance metrics such as Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), 

and Mean Absolute Percentage Error (MAPE) were used to assess the precision of each model. The main results indicate that LSTM 

and GRU models, leveraging deep learning techniques, generally outperformed the traditional ARIMA and SARIMA models regarding 

error metrics. This demonstrates a higher efficacy of neural networks in handling the non-linear complexities and volatile nature of 

cryptocurrency price movements. This study contributes to the ongoing discourse in financial technology by elucidating the practical 

implications of using advanced machine-learning techniques for economic forecasting. Importantly, it provides valuable insights that 

can directly inform and enhance the decision-making processes of investors and traders in digital assets. 
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1. Introduction 

 

The need to predict cryptocurrency prices is an important area of academic interest and active research by 

numerous researchers and practitioners worldwide (Au et al., 2024; Apostolakis, 2024; Bâra et al., 2024; Singh 

et al., 2024; Kapur et al., 2024, Demirel, 2024). 
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Indeed, as the market for cryptocurrencies advances with more complexity and scales of use, the necessity for 

even more precise forecasting models arises. This burgeoning field is dynamic, with established methods getting 

fine-tuned and polished while new, innovative techniques are constantly explored. 

 

Traditional time series methods such as Autoregressive Integrated Moving Average (ARIMA), Seasonal 

ARIMA (SARIMA), and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models are 

mainstream in financial forecasting due to their effectiveness in modelling and forecasting time-varying data. 

These models, with a focus on understanding the historical volatility and trends, are constantly refined, 

improved, and enhanced to capture better the sophisticated behaviours of cryptocurrency markets, which are 

known for massive volatility and unpredictability (Ng et al., 2023; Satheesh & Sundararagan, 2022; Vo & 

Ślepaczuk, 2022; Corrêa et al., 2016). 

 

In parallel, there has been a significant shift toward applying the deep learning approach in forecasting 

cryptocurrency prices. Neural networks, in particular Long Short-Term Memory (LSTM) models and Gated 

Recurrent Units (GRU), have proven to be highly capable of processing sequences with long-range 

dependencies (Respaty et al., 2023; Nosouhian et al. 2021; Zarzycki & Ławryńczuk, 2021; Zhang et al., 2021). 

These deep learning models are experts in processing and learning the vast amount of unstructured data 

generated in the cryptocurrency markets, hence representing value much larger than that projected by traditional 

statistical models. 

 

A current and relevant problem in this area is the comparative analysis of traditional time series methods with 

these new deep-learning approaches. Scientists continue researching which methodologies yield the most 

accurate, reliable, and appropriate forecasts (Bielskis & Belovas, 2022; Sehrawat & Vishwakarma, 2022; Gopu 

et al., 2023). This includes rigorous testing, validation, and performance evaluation of historical data models 

with different cryptocurrencies and market conditions. It is these comparisons, therefore, that becomes very 

critical in the sense that they help to gauge the strengths and weaknesses of each method as it guides traders and 

investors in making decisions. 

 

However, notwithstanding advancement, cryptocurrency prediction is still a very problematic issue. In this case, 

the volatility of cryptocurrencies, which is influenced by news of regulation, market sentiment, or changes in 

technology, is volatile and, therefore, difficult to predict. This has led to the development of hybrid models that 

combine the soundness of time series analysis and the adaptiveness of machine learning and deep learning 

models (Li & Zhao, 2022; Jisha et al., 2023; Si, 2023). In addition, the inclusion of sentiment analysis and 

blockchain analysis in forecasting models is an interesting area, as it can provide more nuanced insights into 

future price developments. 

 

The dynamic nature of the cryptocurrency market makes sure the area of price forecasting will continue to 

evolve. Continued innovations in AI and machine learning, along with improved understanding and 

incorporation of market-specific dynamics, promise improvements in the accuracy and effectiveness of the 

forecasting models. Such constant development benefits not only individual investors or traders but also allows 

the market of cryptocurrencies to become more stable and mature. 

 

2. Research objective and methodology 

    
In the volatile domain of cryptocurrency markets, forecasting price movements presents a formidable challenge 

due to rapid shifts in economic conditions and the inherently noisy nature of financial data. This research aims 

to conduct a comprehensive comparative analysis of traditional time series forecasting models, such as ARIMA 

and SARIMA, against advanced deep learning approaches, including LSTM and GRU networks, for predicting 

cryptocurrency prices. By examining the performance of these models on various cryptocurrencies, we aim to 

identify the most accurate, reliable, and appropriate forecasting methodologies for highly volatile and complex 

cryptocurrency markets. 
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2.1. Autoregressive models 

 

ARIMA is a statistical analysis model that can handle non-stationary data and fits well within the mostly 

ambiguous market conditions experienced in cryptocurrencies. Meanwhile, the SARIMA model considers the 

effect of seasonality present in data, which is common in financial time series but often ignored by ARIMA 

models. 

 

2.1.1. Auto-Regressive Integrated Moving Average (ARIMA) 

 

The Auto-Regressive Integrated Moving Average (ARIMA) model was introduced by Box & Jenkins (1970) to 

analyze and forecast time series data. It is particularly efficient for non-stationary data and is prevalent in many 

real-world applications, such as stock prices, economic indicators, and cryptocurrency prices. 

 

The model contains Auto-Regressive (AR), Integrated (I), and Moving Average (MA) components and, 

therefore, captures most structures and patterns present in the time series data. Auto-Regressive (AR) 

component assumes that the regressing variable of interest is regressed with some of its previous values. This 

component makes predictions because it specifies the future values as a function of past values. The integrated 

(I) component differentiates the observational data in the series to make the series stationary, meaning that the 

mean and variance of the series do not change over time. Stationarity is one of the statistical conditions. The 

Moving Average (MA) component models the error term as a linear combination of error terms happening 

simultaneously and different past lags. This combination of three components makes ARIMA capabilities a 

powerful tool in time series forecasting and, therefore, a reliable choice in scenarios where data has evidence 

for non-stationarity. 

 

The ARIMA model is described by the notation ARIMA(p, d, q), where: 

• p is the number of lag observations in the model (lag order). 

• d is the degree of differencing (the number of past times values have been subtracted from the data). 

• q is the size of the moving average window (order of moving average). 

 

2.1.2. Seasonal Autoregressive Integrated Moving Average (SARIMA) 

 

The Seasonal Autoregressive Integrated Moving Average (SARIMA) was introduced by Box & Jenkins (1976) 

in later revisions of their book. This model extends the standard ARIMA model to account for seasonal 

variations in time series data. The SARIMA model is highly recommended for datasets that show regular 

changes in the pattern at specified, definite intervals throughout the year and are ideal for forecasting seasonal 

economic, weather, and consumption data. 

 

The SARIMA model is described by the notation SARIMA(p, d, q)(P, D, Q)s, where: 

• p, d, and q are the non-seasonal parameters that describe the autoregressive, integrated, and moving 

average components of the model, as in a standard ARIMA model. 

• P, D, and Q are the seasonal parameters that describe the autoregressive, integrated, and moving average 

components at the seasonal level. 

• s denotes the length of the seasonal cycle, which could be quarterly, monthly, or weekly, depending on 

the context. 

 

There is a need to explain what the P, D, and Q parameters are in more detail below: 

• Seasonal Autoregressive Order (P): It reflects the use of the values of the previous seasonal periods to 

predict the future value. It is equivalent to the autoregressive component in an ARIMA model but 

applied on a seasonal scale. 

• Seasonal Differencing Order (D): This would mean that the series is subjected to differencing at the 

seasonal period to ensure stationarity on the seasonal level, much like the integrated component in the 

ARIMA model. 
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• Seasonal Moving Average Order (Q): This indicates the moving averages of the lagged forecast errors 

used to predict the current value, applied in the same manner as a moving average component of the 

ARIMA model but considering seasonal data points. 

 

By using a seasonal component, the SARIMA model can provide more accurate and relevant forecasts for 

seasonal data compared to non-seasonal models, which might fail to capture the cyclical nature of the data. It is 

a handy tool in the arsenal of any analyst dealing with time series data affected by seasonality. 

 

2.2. Recurrent Neural Network Models 

 

Recurrent neural networks (RNNs) are exceptional in their ability to process sequential data because they can 

remember past occurrences and correlate them with current data. This makes them entirely up to the task in 

many applications where context is crucial, like text generation and forecasting of time series, but still not that 

easy to work with. This leads to the adjustment of weights during training. In other words, it results in problems 

of gradient vanishing since the alterations done in the model weights are too minimal, which makes the training 

procedure ineffective. On the contrary, if massive updates take place, there could be a gradient explosion that 

triggers the problem of learning instability. Both these are caused by the incredible complexity of how training 

RNNs must be done. Fortunately, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) 

networks are much more advanced variations of the RNN that have been architected to solve these very issues. 

 

2.2.1. Long Short-Term Memory (LSTM) 

 

Long Short-Term Memory (LSTM) network, a pivotal innovation in the realm of neural networks, was first 

proposed by Hochreiter & Schmidhuber (1997). LSTM was designed to store information for long periods and 

retrieve it efficiently when needed. The idea was to subsume, within the architecture of the neural network itself, 

these so-called "gates" that would control the flow of information by giving explicit instructions on what to 

remember and what to forget. 

 

LSTM consists of a series of memory cells that can store and update information over long time steps. Each 

memory cell has three types of gates: input gates, forget gates, and output gates. Input gates define which pieces 

of information will be considered worthy of storage in long-term firing. It thereby ensures that only the most 

relevant information is being treated as necessary. A forgetting gate in a cell decides when to forget information 

and when to keep information. Therefore, the output gates establish what the information in the current state of 

the cell is to be transmitted to the output of the network; the factors might be code of pertinent characteristics 

or characteristics of the feature that are significant at that time. In this way, the network can distribute 

information more accurately and efficiently. This would give the LSTM the power to handle much longer data 

sequences than the standard RNN. 

 

2.2.2. Gated Recurrent Unit (GRU) 

 

Gated Recurrent Unit (GRU) is another advancement in the field of RNNs, proposed by Cho et al. (2014). GRU 

was introduced as a simplified version of LSTM, designed to make the learning process more efficient while 

retaining the ability to capture dependencies in sequential data. GRU combines the hidden state and the cell 

state into a single state and uses gating units to control the information flow, similar to LSTM, but with fewer 

parameters. Therefore, GRU is less computationally intensive. This makes GRU faster to learn without a 

significant loss in performance. 

 

GRU does not have a separate memory location like LSTM and it has only two gates: a reset gate and an update 

gate. The update gate helps the model decide how much of the previous hidden state should be retained. This is 

done by combining the past state and the new information. The reset gate determines which part of the past state 

is important for the current input, and the update gate uses this information to form the new hidden state. This 

allows the GRU to adjust the flow of information more flexibly than the LSTM. Also, GRU is easier to 

implement and requires fewer parameters. 
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2.3. Data 

 

For this research, five cryptocurrencies were selected: Bitcoin (BTC), Ethereum (ETH), Dogecoin (DOGE), 

Polygon (MATIC), and Toncoin (TON). This selection was made to explore different areas of cryptocurrencies. 

The first and second of them—Bitcoin and Ethereum—are fundamental cryptocurrencies. Bitcoin is the first 

one, and it is known as a classic of cryptocurrencies or digital gold. Bitcoin was introduced by Nakamoto (2008) 

as a decentralized digital currency that allows for peer-to-peer transactions without the need for a trusted third 

party. It operates on a blockchain, a distributed ledger technology that ensures transparency and security through 

cryptographic proof, enabling users to send and receive bitcoins securely over the internet. 

 

Ethereum was introduced by Buterin (2013) as a decentralized platform that enables developers to build and 

deploy smart contracts and decentralized applications (dApps). Unlike Bitcoin, which primarily focuses on peer-

to-peer transactions, Ethereum extends blockchain technology to handle more complex programmable 

transactions. It is a versatile foundation for various decentralized applications and financial instruments. 

 

Dogecoin, introduced in 2013 by software engineers B. Markus and J. Palmer, started as a humorous take on 

the cryptocurrency phenomenon, featuring the Shiba Inu dog from the "Doge" meme as its logo. Despite its 

origins as a joke, Dogecoin quickly developed a dedicated community and became known for its use in tipping 

and charitable donations. Due to its ease of use and widespread appeal, Dogecoin maintains a significant 

presence in the cryptocurrency market (Brichta, 2023). 

 

Polygon is a layer 2 solution used as a protocol and a framework for building and connecting Ethereum-

compatible blockchain networks. It was established in 2017, and since then, its token MATIC has been traded 

on top cryptocurrency exchanges. The Polygon network is widely used for crypto asset transfers and is supported 

by most crypto exchanges, dApps, and crypto services. 

 

Toncoin is a newer cryptocurrency for the TON blockchain used in Telegram messenger. The Toncoin 

community has its blockchain, a newer solution that has increased in the past year. Technically, the TON 

blockchain is also a layer 1 solution, and by the last tests, it is the fastest blockchain. Toncoin is a newer 

cryptocurrency with great prospects and a quickly growing ecosystem. 

 

Price data was taken from CoinMarketCap (https://coinmarketcap.com) – the biggest platform that provides 

information about cryptocurrencies, their prices, capitalization, rank, and others. For this research historical data 

of mentioned cryptocurrencies was taken from 2022-01-04 to 2024-04-17. It is a little bit more than two years, 

ending on a research date. Historical data for the CoinMarketCap platform has these fields: timeOpen, 

timeClose, timeHigh, timeLow, name, open, high, low, close, volume, marketCap, and timestamp. In research 

timeOpen (time, when trading starts) and open (price on trading starts) fields were used. 

 

Before the experiment, all data was prepared using best practices and splitting it into two sets: train (80%) and 

test (20%). For LSTM and GRU, test and train data were also split into parameters and feature data at a time 

step of 100. So, the input data for LSTM and GRU was reshaped into sequences of length 100, where each 

sequence contains 100-time steps and 1 feature per time step. Each sequence is fed into the model during 

training, with the model learning to predict the next value in the sequence. 

 

2.4. Parameters and architectural settings 

 

Table 1 shows the parameters p, d, and q used in the ARIMA model for each cryptocurrency. They are different 

for each cryptocurrency because they were chosen with the auto_arima() method from the pmdarima statistical 

library in Python, which automatically discovers the optimal order of p, d, and q for the ARIMA model. 
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Table 1. ARIMA model parameters for each cryptocurrency 

 p d q 

Bitcoin 2 2 1 

Ethereum 2 2 2 

Dogecoin 4 2 1 

Polygon 2 2 3 

Toncoin 2 2 1 

 

Source: own processing 

 

Table 2 shows the parameters p, d, q, P, D, Q, and s used in the SARIMAX model for each cryptocurrency. 

These parameters were also selected using the auto_arima() method. 

 
Table 2. SARIMAX model parameters for each cryptocurrency 

 

 p d q P D Q s 

Bitcoin 1 2 4 2 0 2 12 

Ethereum 4 2 4 2 0 0 12 

Dogecoin 2 2 3 2 0 1 12 

Polygon 2 2 3 1 0 0 12 

Toncoin 4 2 1 3 0 0 12 

 

Source: own processing 

 

Table 3 shows the architecture and parameters used for the LSTM model. Specifically, it details the layer types, 

output shapes, and the number of parameters for each layer in the model: 

• Layer type indicating the type of neural network layer (LSTM or Dense). 

• Output shape showing the dimensions of the output tensor at each layer. 

• Parameters indicating the number of trainable parameters associated with each layer. 

 
Table 3. LSTM model architecture and parameters 

 

Layer type Output shape Parameters 

LSTM (none, 100, 50) 10,400 

LSTM (none, 100, 50) 20,200 

LSTM (none, 50) 20,200 

Dense (none, 1) 51 

 

Source: own processing 

 

Table 4 shows the architecture and parameters used for the GRU model. 

 
Table 4. GRU model architecture and parameters 

 

Layer type Output shape Parameters 

GRU (none, 100, 50) 7,950 

GRU (none, 100, 50) 15,300 

GRU (none, 50) 15,300 

Dense (none, 1) 51 

 

Source: own processing 

 

LSTM and GRU model architectures were selected using best practices and doing some initial experiments with 

different architectures. Each prediction was made using its parameters and calculations. For the ARIMA and 

SARIMA models the own model parameters were used for each cryptocurrency, and for the LSTM and GRU 

models, the same architectures were used for all cryptocurrencies. Models were prepared and programmed using 

Python and its libraries (numpy, pandas, tensorflow, statsmodels). After the experiment was finished, all results 

were collected and provided. 
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2.5. Estimating the accuracy of predictions 

 

This research uses the Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), and Mean Absolute Percentage Error (MAPE) to provide a holistic assessment of the performance of 

each model: 

• MSE measures the average of the squares of the errors between predicted and actual values, providing 

a sense of the magnitude of prediction errors. It is susceptible to significant errors due to the squaring 

process, which can highlight considerable discrepancies between predicted and actual values. 

• MAE calculates the average absolute differences between predicted and actual values, offering a 

straightforward interpretation of prediction accuracy. Unlike MSE, it does not square the errors, making 

it less sensitive to outliers and significant errors. 

• RMSE is the square root of the average of squared differences between predicted and actual values, 

combining the benefits of MSE and providing error magnitude in the same units as the original data. It 

helps understand the model's prediction error more interpretably. 

• MAPE measures the average absolute percent error between predicted and actual values, offering a 

normalized measure of prediction accuracy. It is beneficial for comparing the predictive accuracy across 

different datasets and scales since it expresses error as a percentage. 

 

By incorporating all these metrics, the research identifies which model is more precise and how each model 

performs in varying magnitudes of data. This approach to error estimation makes the analysis much more 

detailed, providing deeper insights into which models are best suited for specific types of data and forecasting 

needs. 

 

3. Results 

 

After evaluating the experiment's results, it became evident that traditional time series forecasting models are 

significantly inferior to RNNs. In all cases, RNN models provided much better forecasts than traditional time 

series models, as illustrated in Table 5. 

 
Table 5. Comparative analysis of cryptocurrencies forecasting models 

 

Cryptocurrency Forecasting 

model 

MSE MAE RMSE MAPE 

Bitcoin ARIMA 287296754.8864 12712.0440 16949.8305 0.2180 

Bitcoin SARIMA 247012237.4136 11418.5642 15716.6230 0.1928 

Bitcoin LSTM 17658797.9000 3311.6718 4017.0880 0.0527 

Bitcoin GRU 12537535.3988 2896.3915 540.8382 0.0450 

Etherium ARIMA 1032049.4497 815.4652 1015.8983 0.2708 

Etherium SARIMA 1672989.5835 1061.8292 1293.4410 0.3562 

Etherium LSTM 50373.9706 190.8614 224.4415 0.0574 

Etherium GRU 30878.1696 136.5649 175.7219 0.0410 

Dogecoin ARIMA 0.0040 0.0453 0.0633 0.3375 

Dogecoin SARIMA 0.0014 0.0256 0.0379 0.1859 

Dogecoin LSTM 0.0003 0.0116 0.0165 0.0746 

Dogecoin GRU 0.0003 0.0127 0.0166 0.0808 

Polygon ARIMA 0.1193 0.3088 0.3454 0.3308 

Polygon SARIMA 0.0737 0.2385 0.2715 0.2533 

Polygon LSTM 0.0059 0.0611 0.0771 0.0639 

Polygon GRU 0.0808 0.0482 0.0634 0.0500 

Toncoin ARIMA 1.9613 0.7338 1.4005 0.1673 

Toncoin SARIMA 1.7605 0.7163 1.3269 0.1704 

Toncoin LSTM 0.4158 0.4798 0.6448 0.1139 

Toncoin GRU 0.2178 0.3259 0.4667 0.0731 

 

Source: own processing 
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When comparing ARIMA and SARIMA models, Ethereum and Ton were better predicted with the ARIMA 

model, while Bitcoin, Dogecoin, and Polygon were better predicted with the SARIMA model. However, the 

differences between ARIMA and SARIMA are not substantial, and we can say that they generally produce 

similar forecasts. The most noticeable difference is for Dogecoin, where the MAPE for ARIMA is 0.34 

compared to 0.19 for SARIMA. For Ethereum, ARIMA provided a better prediction than SARIMA, and for 

Ton, their performance is practically the same. 

 

The most important observation, seen in Table 5, is that RNN models did a better job of predicting the data. The 

best predictions are mostly from the GRU model, except for Dogecoin, where the LSTM model performed 

better. Although, if we look at MAPE, the differences between LSTM and GRU models for Dogecoin are very 

small. 

 

 
Figure 1. Example of an ARIMA model for forecasting the Bitcoin price 

 

Source: own processing 

 

 
Figure 2. Example of a SARIMA model for forecasting the Bitcoin price 

 

Source: own processing 
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Figure 3. Example of an LSTM model for forecasting the Bitcoin price 

 

Source: own processing 

 
Figure 4. Example of a GRU model for forecasting the Bitcoin price 

 

Source: own processing 

 

The advantage of RNNs is particularly apparent in Figures 1-4. The autoregressive models presented in Figure 

1 and Figure 2 predict the future price of Bitcoin almost linearly, regardless of fluctuations. The same tendency 

has been observed in figures for other cryptocurrencies, so they have not been included in this work to avoid 

duplication. In contrast, the RNN models in Figure 3 and Figure 4 predict the future price of Bitcoin while 

taking fluctuations into account, resulting in much more accurate predictions compared to the autoregressive 

models. 
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Conclusions 

 

The fact that ARIMA and SARIMA models gave similar results suggests that there is no significant seasonality 

in the data. Since cryptocurrency prices are highly volatile and lack pronounced seasonal patterns, ARIMA and 

SARIMA models are not suitable for predicting cryptocurrency prices. The accuracy of ARIMA and SARIMA 

models diminishes, especially over longer periods. While their forecasts may be reasonably accurate over short 

periods, their accuracy drops significantly over longer horizons due to the high volatility. ARIMA and 

SARIMA models tend to overfit historical data, resulting in poor performance on new data. This overfitting is 

particularly problematic in conditions of high volatility, where it leads to a substantial deterioration in forecast 

accuracy, especially when the new data exhibits new trends. 

 

Meanwhile, RNNs are much better at predicting data, especially in the context of highly volatile and complex 

time series such as cryptocurrency prices. RNNs can capture long-term dependencies and patterns in data, 

making them particularly well-suited for handling the non-linear relationships and abrupt changes often seen 

in cryptocurrency markets. Furthermore, recurrent neural networks are less prone to overfitting compared to 

ARIMA and SARIMA models. They can generalize unseen data better, providing more reliable forecasts in 

real-world scenarios. 
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