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Ferroelectric fenomena have attracted considerable attention from the 

beginning of 20 th century, when American scientist of Czech origin J. Valasek 

discovered spontaneous electric polarization and it’s electric hysterezis in 

Rochelle (or Seignette) salt  [1]. Nowadays, relaxor ferroelectrics (relaxors, 

RLs) have gained significant attention due to their unusual physical behaviour 

and excellent dielectric and electromechanical properties. Lead-free 

ferroelectric relaxor ceramics have been intensively investigated in order to 

replace widely used PMN, PZT, PLZT and other lead-containing materials, 

according to the EU legislation restricting the use of hazardous substances in 

electrical and electronic equipment  [2]. Dielectric measurements of relaxors 

are very important for both fundamental investigations and applications. 

However most of such investigations are performed only in narrow frequency 

range  [3-9]. Often only the increase of temperature value, at which the 

dielectric permittivity has maximum, with increase of frequency, is analysed. 

As a rule, such investigations are based on various predefined formulas of 

distribution of relaxation times. Most popular predefined distribution of 

relaxation times is the Cole-Cole function  [10-13], however this model is good 

enough only for narrowband dielectric data of relaxors. On the other hand, two 

or more Cole-Cole functions describe dielectric dispersion better in relaxors; 

however a further drawback of such an approach is the inherent difficulty of 

separating processes with comparable relaxation times. Other predefined 

distribution functions: Davidson-Cole  [14], Havriliak-Negami  [15], Joncher, 

Kolraush-Wiliams-Watts and Curie-von Schweidler  [16] also frequently are 

used for analysis of dielectric data of relaxors, however such analysis can not 

explain dynamics of polar nanoregions. 

 Broadband dielectric spectroscopy from Hz to GHz region is needed for 

investigation of very wide dielectric relaxation in relaxors. We can predicate 

that dielectric dispersion of bulk relaxors at higher temperature (near and 

below TB) is rather unknown, because the dielectric dispersion at higher 
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temperatures is revealed mainly in microwave and THz region. On the other 

hand, in literature there are many speculations about relaxor dynamics based 

on hypothesis about the dielectric dispersion between several GHz and several 

hundred GHz. The authors of  [17] discovered two dielectric dispersions in 

relaxors, one from low frequencies to 1.8 GHz and another between 1.8 GHz 

and several hundred GHz, however they have no data between 1.8 GHz and 

100 GHz. Dielectric and piezoelectric studies of solid solutions of relaxor 

ferroelectrics like Pb(Mg1/3Nb2/3)O3 (PMN) and Pb(Sc1/2Nb1/2)O3 (PSN) with 

normal ferroelectric PbTiO3 revealed giant piezoelectricity (one order of 

magnitude larger than in the best classical ferroelectrics like PbZr1-xTixO3) for 

compositions near morphotropic phase boundary  [18]. The paper of Park and 

Shrout  [18] turned the attention of many physicists to the study of solid 

solutions of relaxor ferroelectrics with ferroelectrics. Monoclinic phase was 

observed on the morphotrophic phase boundary between the tetragonal and 

rhombohedral phases  [19] and it was proposed that the easy rotation of 

polarization in the monoclinic phase is responsible for the giant piezoelectric 

coefficient in these systems  [20]. Appearance of polar nanoregions (PNRs) 

and their dynamics in lead-based perovskite relaxors have been thoroughly 

investigated by a wide range dielectric spectroscopy  [21-23]. However, for 

lead-free relaxors no complete data on their dielectric spectra were reported 

and analysed so far.  

The aim of the work 

The aim of the the work was to investigate the collective phenomena in 

disordered ferroelectrics. 

The tasks of the dissertation: 

1. Investigation of lead-free materials in broad temperature and frequency 

range.  

2. Investigation of ferroelectric phase transition dynamics in isovalently 

and heterovalently dopped BaTiO3.  
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3. Dielectric measurements of xBBT-(1-x)SBT solid solutions in order to 

confirm the crossover from ferroelectric to relaxor state. 

4. Piezoresponse Force Microscopy (PFM) and dielectric measurements 

and investigation of dynamics of polar nanoregions in BaBi2Nb2O9

ceramics. 

Scientific novelty

1. For the first time the dielectric response of (1-x)BT-xLMT, xBBT-(1-

x)SBT, BaTi1-xSnxO3 and BaBi2Nb2O9 ceramics in microwave frequency 

was measured. 

2. The function of the distribution of the relaxation times of above 

mentioned materials was calculated from the dielectric spectra for the 

first time. 

3. Polar nanoregions sized about 50 nm of BBN ceramics were observed 

using PFM method. 

4. The relaxation time distribution function of BBN ceramics was fitted 

with the formalism developed for the dipolar glasses. 

The statements presented for the defense

1. Dielectric dispersion in the lead-free ferroelectric ceramics is caused by 

polar nanoregions (PNR’s). 

2. The influence of polar nanoregions to the distribution of relaxation 

times gives broadening to the long relaxational times according to 

Vogel-Fulcher law. 

3. Even small substitution of La(Mg1/2Ti1/2)O3 in BaTiO3 induces diffused 

phase transition, confirming the formation of polar nanoregions in the 

temperatures above TC , thus causing coexistence of ferroelectric and 

relaxor states. 

4. The relaxational behaviour of BaBi2Nb2O9 ceramics is not typical for 

relaxors and the formalism developed for the dipolar glass is suitable for 
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the BaBi2Nb2O9 ceramics, confirming the similar origin of dipolar glass 

and relaxor states. 
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Relaxor ferroelectrics (RLs) include a large group of solid solutions, mostly 

oxides, with a perovskite or tungsten bronze structure. In contrast to ordinary 

ferroelectrics (FE) whose physical properties are quite adequately described by 

the Landau-Ginzburg-Devonshire theory [24], RLs possess the following main 

features: (i) a significant frequency-dependence of the dielectric permittivity, 

(ii) absence of both spontaneous polarization and structural macroscopic 

symmetry breaking, (iii) ferroelectric-like response arising after field cooling 

to low temperature  [25]. Figure 1.1 shows the most prominent differences 

between normal (FE) and relaxor (RL) ferroelectrics: 

a) The FE polarization (P) versus electric field (E) hysteresis loop is nearly 

of square shape and shows large remanent polarization, PR, due to the 

switching of macroscopic long-range ordered domains. A RL shows a so-

called slim loop, which indicates that the long-range ordering needs large 

fields, while in zero field the polarization decays into submicroscopic 

nanoregions, which re-acquire their natural random orientations, resulting in 

small PR values. 

b) Saturation and remanent polarization of a FE decrease with increasing 

temperature and vanish at the phase transition temperature TC. No polar 

domains exist above TC. By contrast, the field-induced polarization of a RL 

decreases smoothly through the dynamic transition temperature Tm and retains 

finite values up to rather high temperatures due to the fact that the nanopolar 

domains persist to well above Tm.

c) 1) The static dielectric susceptibility χ’ or dielectric permittivity ε’ = 1 +

χ’ of a FE exhibits a sharp and narrow peak at TC (FWUM ≈ 10 – 20 K) with 

frequency independence in the audio range. By contrast RLs exhibit a very 

broad peak and a strong frequency dispersion in both position (Tm) and height 

(ε’max) of the anomaly.  
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2) The T dependence of ε’ of a FE obeys a Curie-Weiss law, ε’ = C/(T — T0), 

above TC as shown by a linear relationship of 1 / ε’ versus T. By contrast ε’(T) 

of a RL exhibits strong deviation from Curie-Weiss behaviour well above Tm. 

d) The existence of a macroscopic symmetry change for a FE at TC, give 

rise to usual phase transition features with changes of the refractive properties 

(occurrence or drastic change of birefringence), while in the absence of 

macroscopic symmetry breaking no such phenomena are observed in a RL at

Tm.

Very high response coefficients and the enhanced width of the high response 

regime around the "ordering" temperature Tm, ("Curie range") make RLs 

popular systems for applications as piezoelectric/electrostrictive actuators and

sensors (e.g. scanning probe microscopy, ink jet printer, adaptive optics, 

micromotors, vibration sensors/attenuators, Hubble telescope correction, ...) 

and as electro- or elasto-optic and photorefractive elements (segmented 

displays, modulators, image storage, holographic data storage,...). When 

reflecting on the occurrence of RL behaviour in perovskites, there appear to be 

three essential ingredients: 

• existence of lattice disorder, 

• existence of polar nanoregions at temperatures much higher than Tm,

• residence of these domains within the highly polarizable host lattice

governed by a soft optic mode. 

The first ingredient can be taken for granted, since RL behaviour in these 

materials does not occur in the absence of disorder. The third ingredient is also 

an experimental fact in that RL behaviour occurs in ABO3 oxides with very 

large dielectric permittivities. 
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Fig. 1.1. Different properties of normal ferroelectrics and relaxor ferroelectrics or 

relaxors  [25]. 

The second ingredient manifestes itself in many experimental observations in 

all perovskite RLs, as will be discussed later. 
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Fig. 1.2. Randomly distributed dipolar domains in soft-mode host lattice. At high 

temperature (but below Td) the domains and the correlation radius, rc, are small (a), 

both grow and coalesce at low temperatures (b). 

The following physical picture has emerged for RLs and has become generally 

accepted. Chemical substitution and lattice defects introduce dipolar entities in 

mixed ABO3 perovskites. At very high temperatures, thermal fluctuations are 

so large that there are no well-defined dipole moments. However, on cooling, 

the presence of these dipolar entities manifests itself as smals polar 

nanoregions (Fig 1.2) below the so-called Burns temperature, Td  [26]. These 

domains grow as the correlation length, rc, increases with decreasing T, and 

ultimately, one of two things happens. If the domains become large enough 

(macrodomains) so as to percolate (or permeate) the whole sample, then the 

sample will undergo a static, cooperative FE phase transition at TC. On the 

other hand, if the nanoregions grow with decreasing T but do not become large 

enough or percolate the sample, then they will ultimately exhibit a dynamic 

slowing down of their fluctuations at T < Tm leading to an isotropic RL state 

with random orientation of the polar domains. 

A matter of dispute is still the relevance and the very origin of the Burns 

temperature. Very probably this is not a usual phase transitions temperature. It 

might rather be considered as a so-called Griffiths temperature, which signifies 
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the onset of weak singularities in a diluted ferroic system below the transition 

temperature of the undiluted system  [27,28]. However, the sharp onset of 

weak singularities is not at all confirmed in RL systems. We rather believe that 

the temperature regime in which the domains grow in size is a continuous one, 

which is determined by the correlating forces due to the underlying quenched 

random field (RF) distribution  [29] .  

Another characteristic relaxor property is the extremely slow relaxation below 

Tm, which signals the onset of relaxor freezing  [13]. The characteristic 

relaxation time diverges at the freezing temperature T0 according to the well-

known Vogel–Fulcher (VF) relation  [30,31] 

τ  =  τ0 exp [U/k (T – T0)]       (1.1) 

where τ0 represents the inverse attempt frequency, U the activation energy, and 

T0 the VF or freezing temperature. For obvious reasons, Eq. 1.1 only makes 

sense for T > T0. 

The above empirical VF law (1.1) has been experimentally observed in a 

variety of other systems such as supercooled organic liquids, spin glasses, 

polymers, etc. Although many theoretical ideas about the origin of the VF law 

have been proposed in the past, a derivation of Eq. 1.1 at the mesoscopic level 

is still lacking. 

The above describes the situation in the absence of a biasing electric field. 

Cooling in the presence of a biasing field, however, aligns the domains and 

increases their correlation length, effectively canceling the influence of the 

RFs. For sufficiently large Ebias the domains become large leading to the onset 

of long-range FE order. This is a field-induced nano-to-macrodomain 

transition. This transition occurs spontaneously in some cases in the absence of 

bias (e.g. for Pb1-yLayZr1-xTixO3, PLZT). Evidence for the nano-to-

macrodomain transition in RLs can be inferred, as we shall see, from the 

dielectric response and can often be seen in TEM images and from scattering 

data  [32]. Its occurrence is determined by a delicate balance among Ebias, 



thermal fluctuations an

about the physics of RL

dc bias. Such measurem

Figure 1.3. 

Fig. 1.3. Dielectric res

discussed in the text. Res

Figure 1.3(a) is the si

relaxational response is

zero-field heating (ZFH

induced, frequency-inde

stabilizes the FE phase

responses for intermedia

the response has four re

consisting of frozen-in, 

temperature) there is n

domains with the field. 

and grow, forming ma

further heating, a tem

23 

nd the strength of dipolar correlations. 

Ls has been gained from measurements in

ments lead to distinct behaviour as show

ponse of RLs both without and with electric f

sponse (b) defines all the various characterist

temperatures of RL  [33]. 

ignature of a RL in the absence of bi

s observed under both zero-field coolin

H) conditions. The dashed curve depi

ependent FE response for sufficiently larg

e at low temperatures. Figure 1.3(b) and

ate biases. For field heating (FH) conditio

egions (Figure 1.3(b)). Region I is a disp

randomly oriented nanoregions. Below 

not enough thermal energy to unfreeze 

However, at T > Tf (region II) the nano

crodomains. This is a dispersion free F

mperature, TF-R, is reached above w

Much insight 

n the presence 

wn for ε’(T) in 

field bias as 

tic "transition" 

as. The same 

ng (ZFC) and 

icts the field-

ge Ebias which 

d (c) show the 

ons after ZFC, 

persive region 

Tf (a freezing 

and align the 

oregions align 

FE region. On 

which thermal 



24 

fluctuations become sufficiently large so as to break the ordering tendency of 

the intermediate strength biasing field. As a result, the macrodomains break 

into randomly oriented, slowed down nanoregions, i.e., a dispersive RL state 

(region III). Finally, above Tm the sample enters the PE state (region IV) where 

the nanoregions undergo rapid thermal fluctuations.  

Also in Figure 1.3(b) is shown the fourth characteristic temperature, the Burns 

temperature, Td (> Tm), where nanoregions first nucleate. Figure 1.3(c) shows 

the response of the sample under field cooling (FC) conditions for intermediate 

strength fields. Regions IV and III are similar to those in Figure 1.3(b). 

However, at T ≤ TF-R the behaviour is different. Here the field aligns and grows 

the nanoregions into macrodomains (a FE state). Once aligned, the 

macrodomains remain aligned and stable down to the lowest temperature in the 

presence of the field. Thus region I is absent in this case. 

����������	
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Orientational glasses (dipolar, quadrupolar or octupolar) are crystalline 

materials that transform from a high-temperature crystalline phase into a low-

temperature glassy state. Analogous to the spin glasses (for a review see 

Ref.  [34]), randomly substituted impurity ions (or molecules) that carry a 

dipolar moment are located on a topologically ordered lattice. These moments 

have orientational degrees of freedom and they interact with one another. The 

dominant exchange interaction can be of electrostatic dipolar, quadrupolar or 

octupolar, or of elastic quadrupolar nature. In the latter case, the interaction is 

mediated via lattice strains. Due to site disorder and anisotropic interactions, 

the orientational disorder is cooperatively frozen-in. The use of the term 

“glass-state” suggests some similarity with canonical glasses such as vitreous 

silica. Indeed, the orientational glasses exhibit relaxation dynamics similar to 

those observed in canonical glasses. In addition, the low-temperature 

thermodynamic, elastic and dielectric properties are characteristic of 



25 

amorphous systems. Well-known examples are mixtures of ferroelectric and 

antiferroelectric compounds such as rubidium ammonium dihydrogen 

phosphate (RADP)  [35] (Fig. 1.4) and mixtures of the elastically ordered KCN 

and NaCN [34].  

Fig. 1.4. (a) The real part of dielectric permitivity ε‘c. (b) The imaginary parts of 

dielectric permittivity ε c“ (longitudal) and εa“ (transverse) of RAPD.  

In RADP, a frustrated ground state is believed to occur via the competing 

electrical interactions. In NaCN:KCN, it seems plausible that the random fields 

suppress a long-range elastic order [35]: random strains are introduced by the 

volume difference of the impurity atoms that cause quenched elastic 

relaxations of the neighbouring ions. 
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While many researchers believe that the above mentioned three ingredients for 

RL behaviour to appear are more or less independent, the arguements have 

been made since long  [29] that the primary cause of RL behaviour is the lattice 

disorder, which is at the origin of the occurrence of polar nanoregions and their 

fluctuations within the highly polarizable lattice. In order to describe 

disordered systems and to explore their basic thermodynamic behaviour simple 

spin models are frequently used.  

The model Hamiltonian  � ����∑ �
��
�
���
�
�
��∑ �

�
�
��
   (1.2) 

accounts for random interactions (or random bonds, RBs), Jij, between nearest 

neighbour spins Si and Sj, and for quenched random fields (RFs), hi acting on 

the spins Si. While the RBs are at the origin of spin glass behaviour  [34], RFs 

may give rise to disordered domain states provided that the order parameter has 

continuous symmetry  [36]. This is easily shown with the help of energy 

arguments considering both the bulk energy decrease by fluctuations of the 

RFs and the energy increase due to the formation of domain walls. A 

remarkable exception, which does not necessarily lead to a disordered ground 

state, is the random-field Ising model (RFIM) system. Owing to its 

discontinuous spin symmetry, atomically thin domain walls are expected, 

which are energetically unfavorable. For this reason the three-dimensional (3d)

RFIM is expected to exhibit long-range order below the critical temperature TC.

However, as a tribute to the RFs new criticality due to a T = 0 fixed point  [37] 

and strongly decelerated critical dynamics are encountered  [38]. 

Evidence for the existence of polar nanoregions well above Tm has come from 

high resolution TEM which also showed the growth of these domains with 

decreasing T  [33]. The evidence is also prominently reflected in certain 

properties of these systems.  

The manifestation of the presence of polar nanoregions in strong RLs in terms 

of the electrooptic effect was first demonstrated by Burns and Dacol  [39] in 
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measurements of the T dependence of the refractive index, n. For a normal 

ABO3 FE crystal, starting in the high-temperature PE phase, n decreases 

linearly with decreasing T down to Tb, at which point n deviates from linearity. 

The deviation is proportional to the square of the polarization and increases as 

the polarization evolves with decreasing T. If the FE transition is of the first 

order, then there is a discontinuity in n at TC followed by the expected 

deviation. This qualitative picture is representative of the behaviour of many 

perovskite FEs. However, in the case of RLs, Burns and Dacol observed 

deviation from linear n(T) well above Tm.  

Deviation from the Curie-Weiss behaviour is commonly observed in the 

temperature dependence of the magnetic susceptibility, χ, of spin glasses  [34] 

above the freezing temperature of spin fluctuations, Tf (which corresponds to 

Td for RLs in some sense). Also in an ideal superparamagnet, i.e., in non-

interacting paramagnetic particles or clusters, χ(T) exhibits Curie-Weiss 

behaviour. This behaviour is achieved in spin glasses for high temperatures 

compared to Tf. At lower temperatures, deviation from the Curie-Weiss law is 

attributed to strong local magnetic correlations  [34] and the onset of local 

(spin-glass) order below Tf. Sherrington and Kirkpatrick  [40] developed a 

model, which relates χ(T) below Tf to the local order parameter q: 

� ��

����������
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      (1.3) 

where q is a function of temperature. Clearly q and its temperature dependence 

can be evaluated from χ(T) data and the values of C and θ determined from the 

high-temperature χ(T) response above Tf which follows the Curie-Weiss law. 

In this high-temperature regime q —> 0 and Eq. (1.3) simply reduces to the 

Curie-Weiss form. Eq. (1.3) can be thought of as a modified Curie-Weiss law 

where both C and θ are functions of temperature. If we presume that the 

deviation from the Curie-Weiss behaviour in PMN and other RLs is due to 

correlations among local nanoregions, then we may evoke Eq. (1.3) to treat the 

high-temperature dielectric response of RLs. Indeed this equation has been 
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shown to provide a satisfactory description of the χ(T) response of 

RLs  [41,42]. As expected, q —> 0 above, e.g., around 625 K for PMN, and it 

increases with decreasing temperature below Td because of increased dipolar 

correlations  [41]. In such a case the local order parameter due to correlations 

between neighbouring polar domains of polarization Pi and Pj is q=< PiPj >1/2. 

����
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A very important group of ferroelectrics is known as the perovskites from the 

mineral perovskite CaTiO3 (which itself is actually a distorted perovskite 

structure)  [24]. The perfect perovskite structure is extremely simple one with 

general formula ABO3, where A is monovalent or divalent metal and B is tetra 

or pentavalent one (Fig 1.5).  It is cubic, with the A atoms at the cube corners, 

B atoms at the body centers and the oxygens at the face centres.  

Fig. 1.5. The cubic ABO3 structure (a) unite cell and (b) octahedra framework  [24]. 

  

Many piezoelectric (including ferroelectric) ceramics such as Barium Titanate 

(BaTiO3), Lead Titanate (PbTiO3), Lead Zirconate Titanate (PZT), Lead 

Lanthanum Zirconate Titanate (PLZT), Lead Magnesium Niobate (PMN), 

Potassium Niobate (KNbO3), Potassium Sodium Niobate (KxNa1-xNbO3), 
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Potassium Tantalate Niobate (K(TaxNb1-x)O3) and many others have a 

perovskite type structure.  

Fig. 1.6. IR active normal modes in simple cubic perovskites ABO3: (a) Slater mode, 

(b) Last mode and (c) Axe mode. 

First discovered perovskite ferroelectric material - Barium titanate (BaTiO3) 

has a paraelectric cubic phase above its Curie point of about 130° C. In the 

temperature range of 130° C to 0° C the ferroelectric tetragonal phase with a 

c/a ratio of ∼ 1.01 is stable. The spontaneous polarization is along one of the 

[001] directions in the original cubic structure. Between 0° C and -90° C, the 

ferroelectric orthorhombic phase is stable with the polarization along one of 

the [110] directions in the original cubic structure. On decreasing the 

temperature below -90° C the phase transition from the orthorhombic to 

ferroelectric rhombohedral phase leads to polarization along one of the [111] 

cubic directions. 

The spontaneous polarization on cooling BaTiO3 below the Curie point Tc is 

due to changes in the crystal structure. As shown in Fig. 1.7 the paraelectric 

cubic phase is stable above 130° C with the center of positive charges (Ba2+

and Ti4+ ions) coinciding with the center of negative charge (O2-). 
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Fig. 1.7. The crystal structure of BaTiO3 (a) above the Curie point the cell is cubic; 

(b) below the Curie point the structure is tetragonal with Ba2+ and Ti4+ ions displaced 

relative to O2- ions. 

On cooling below the Curie point Tc, a tetragonal structure develops where the 

center of Ba2+ and Ti4+ ions are displaced relative to the O2- ions, leading to the 

formation of electric dipoles. Spontaneous polarization developed is the net 

dipole moment produced per unit volume for the dipoles pointing in a given 

direction. 

The ferroelectric phase transition in BaTiO3 is generally considered to be the 

classical example of a displacive soft-mode–type phase transition (Fig. 1.8 a) 

describable by anharmonic lattice dynamics  [43,44].  

The off-center displacements of Ti ions in the high temperature cubic phase of 

BaTiO3 have recently been demonstrated by NMR experiments  [45], which 

reveal that the order-disorder dynamics of Ti ions coexists with the observable 

displacive features of the TO soft mode (Fig. 1.8 b).  
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Fig. 1.8. BaTiO3 undergoing phase transitions from tetragonal to orthorombic and  

rhombohedral in terms of a) displacive scenario – freezing of soft TO lattice mode 

and b) order-disorder scenario. 

Various A and B site substitutions in different concentrations have been tried 

to see their effect on the dielectric and ferroelectric properties of BaTiO3. Sr2+

substitutions to the A site have been found to reduce the Curie point linearly 

towards room temperature. The substitution of Pb2+ for Ba2+ raises the Curie 

point. The simultaneous substitution into both A and B sites with different ions 

can be used to tailor the properties of BaTiO3. The effect of various isovalent 

substitutions on the transition temperatures of BaTiO3 ceramic are shown in 

Fig. 1.9  [46]. 
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Fig. 1.9. The effect of isovalent substitutions on the transition temperatures of BT 

ceramics [46].

The dielectric properties of BaTiO3 are found to be dependent on the grain 

size  [47]. Figure 1.10 shows the variation of dielectric permittivity with 

temperature for BaTiO3 ceramics with a fine (∼ 1 µm) and coarse (∼ 50 µm) 

grain size. Large grained BaTiO3 (≥ 1 µm) shows an extremely high dielectric 

permittivity at the Curie point. This is because of the formation of multiple 

domains in a single grain, the motion of whose walls increases the dielectric 

permittivity at the Curie point. For a BaTiO3 ceramics with fine grains (∼ 1 

µm), a single domain forms inside each grain. The movement of domain walls 

are restricted by the grain boundaries, thus leading to a low dielectric 

permittivity at the Curie point as compared to coarse grained BaTiO3  [48]. The 

room temperature dielectric permittivity (εr) of coarse grained (≥ 10 µm) BT 

ceramics is found to be in the range of 1500-2000. On the other hand, fine 

grained (~1 µm) BT ceramics exhibit a room temperature dielectric 

permittivity between 3500-6000. The grain size effect on the dielectric 
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permittivity at room temperature has been explained by the work of Buessem 

et. al.  [49] and Arlt et. al. [50]. Buessem and coworkers proposed that the 

internal stresses in fine grained BaTiO3 must be much greater than the coarse 

grained ceramic, thus leading to a higher permittivity at room temperature. 

Fig. 1.10. The variation of the relative permittivity (εr) with temperature for BaTiO3 

ceramics with (a) 1 µm grain size and (b) 50 µm grain size [29] (Temperature is ºC). 

As already noted, in ferroelectrics relaxor behaviour results from either 

frustration or compositionally induced disorder  [34]. This disorder and related 

random fields are believed to be responsible for the relaxor properties of the 

mixed ABO3 perovskite oxides. In addition to a broad, frequency-dependent 

peak in ε’(T) relaxors are characterized by the absence of macroscopic phase 

(symmetry) change at the transition. The parent compounds of ABO3

perovskite relaxors (e.g. BaTiO3, PbTiO3, PbZrO3, KTaO3) are prototypical 

soft-mode systems whose dielectric properties and phase transitions are well 

understood in terms of soft phonon mode theory. A variety of types of disorder 

in this lattice can produce dipolar defects and induce relaxor behaviour. 

Properties of such mixed-compound ferroelectric ceramic materials will be 

discussed in the following chapters. 
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In ferroelectric BaTiO3 based materials the relaxor behaviour can be achieved 

not only in heterovalently substituted solid solutions  [51-53], but also in 

isovalently substituted solid solutions, for example, in BaTi1−xSnxO3  [54-56]. 

The dielectric permittivity of the (1-x)BaTiO3 – xLa(Mg1/2Ti1/2)O3 ceramics 

with different x – the example of heterovalent substitution is presented in Fig. 

1.11. Even at low substitution rate (5%) only one clearly expressed phase 

transition is observed and authors of  [53] suggest this to be the point of the 

crossover from ferroelectric to relaxor state (Fig. 1.12). In example of 

BaTi1−xSnxO3 ceramics  [57], the compositions from the intermediate 

concentration range of 8%–20% show a behaviour being different from both 

the normal ferroelectrics and canonical relaxors. The dielectric permittivity 

exhibits a strongly diffused maximum (Fig. 1.13), but with a frequency 

independent position. Such behaviour is occasionally denoted as diffused phase 

transition (DPT) in order to distinguish it from the relaxor one. The 

interpretations of the nature of DPTs are controversial. Mueller et al.  [58] 

attributed the DPT to a ferroelectric pase transition based on the observation of 

domains in compositions with Sn content less than 13%  [59]. On the other 

hand, Wei et al. [54] proposed that DPTs already correspond to the relaxor 

state, and the distinction between frequency independent DPT and frequency 

dependent relaxorlike behaviours is due to the different sizes of the PNRs with 

the consequence of different relaxation frequencies. When these relaxation 

frequencies are close to the experimental ones, relaxor behaviour is observed; 

when they are far from the experimental ones, only DPT behaviour is 

expected  [57]. 

In order to explain the appearance of relaxor properties in BaTiO3-based 

compositions, several other models were proposed which were all based on the 

internal heterogeneity of these materials.  
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Fig. 1.11. Temperature dependence of the permittivity (real part) of the (1-x)BaTiO3 – 

xLa(Mg1/2Ti1/2)O3 ceramics at 102, 103, 104, 105 and 106 Hz  [53]. 

The primordial model of Smolensky and Isupov  [60] supposes that local 

fluctuations of the composition result in a distribution of local Curie 

temperatures, leading to a broadening of the phase transition. Simon et al.  [52] 

proposed a model where each substituted atom is assumed to perturb the 

surrounding host lattice in a finite volume creating a polarized cluster. Such 

clusters grow at decreasing temperature and reach their maximal size at the 

Curie temperature TC. Interaction between these clusters is assumed to be the 

source of dielectric dispersion. The transformation to relaxor behaviour occurs 

when the concentration of clusters becomes so large that they cannot reach 

their maximal size. 
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Fig. 1.12. Variation of T1, T2 and TC (Tm) with x for ceramics of (1-x)BT-xLMT at 

105 Hz  [53]. 

Fig. 1.13. Temperature dependences of the real (a) and imaginary (b) parts of 

the dielectric permittivity of the BaTi1−xSnxO3 ceramics measured at different 

frequencies, ν =1 Hz–100 kHz  [57]. 

0.00 0.02 0.04 0.06 0.08 0.10
50

100

150

200

250

300

350

400

450

T
1

T2

T
C

T
m

relaxor

∆Tm/∆x = -30K per 1mol% of LMT

T 1, 
T 2, 

T C(
T m

), 
 K

LMT content, x



37 

�� �����!"
�����
��#�	
�	!�!	��
��		�����	���


Bismuth-layered ferroelectrics with Aurivillius structure have the general 

chemical formula Bi2An−1BnO3n+3 (n=1–4) and the crystal structure consists of 

perovskite-like blocks (An−1BnO3n+1)2− interleaved with fluoride-like (Bi2O2)2+

layers perpendicular to pseudotetragonal c axis. Here B is a diamagnetic 

transition metal such as Ti4+ or Nb5+ and A is an alkali or alkaline earth 

cation  [61].  

The important piezoelectric materials with the (Bi2O2)2+ layer structure (also 

known as Aurivilius structure) are bismuth titanate (Bi4Ti3O12) and lead 

bismuth niobate (PbBi2Nb2O9). As shown in Fig. 1.14, the structure of 

PbBi2Nb4O9 consists of corner linked perovskite-like sheets, separated by 

(Bi2O2)2+ layers. 

Fig. 1.14. One half of the tetragonal (4/mmm) unit cell of PbBi2Nb2O9. A denotes the 

perovskite double layer (PbNb2O7)2-; B is a hypothetical PbNbO3 and C denotes the 

(Bi2O2)2+ layers  [62]. 
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The plate-like crystal structure of these compounds leads to highly anisotropic 

ferroelectric properties. The ceramics fabricated from the (Bi2O2)2+ layer 

compounds do not have very good piezoelectric properties because of a very 

low poling efficiency. The piezoelectric properties have been shown to be 

improved by grain orientation during the processing step. One fabrication 

method involves the tape casting of plate-like Bi4Ti3O12 and PbBi2Nb4O9

powders. The powders get aligned during the formation of the green tape. The 

orientation is further enhanced on sintering. In the other method, the ceramics 

is hot forged leading to the orientation of the grains along the forged 

direction  [63,64].  

Fig. 1.15. Crystal structures of ABi2Ta2O9 (A=Ca,Sr and Ba) 

drawn with the positional parameters refined with the neutron- 

diffraction data  [65] 

Other important Bi-layered materials, first discovered by Smolenskii et 

al.  [66], are Ba-based ferroelectrics BaBi2Ta2O9 (BBT), BaBi2Nb2O9 (BBN) 

together with their solid solutions Ba1-xSrxBi2Ta2O9. The crystal structure of 
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SrBi2Ta2O9 consists of Bi2O2 layers and perovskite-type SrTa2O7 units with 

double TaO6 octahedral layers. It was studied by using neutron and electron 

diffraction, which revealed orthorhombic distortion with space group 

A21am  [67]. The structural distortion with this noncentrosymmetric space 

group is responsible for the displacive-type ferroelectric behaviour of the 

compound, i.e., atomic displacements along the a axis from corresponding 

positions in the parent tetragonal (I4/mmm) structure cause spontaneous 

ferroelectric polarization. 

Fig. 1.16. Temperature dependence of the dielectric permittivity of 

ABi2Ta2O9 (A=Ca,Sr and Ba)  [65].  

The diffraction pattern of BaBi2Ta2O9 exhibiting the pseudotetragonal unit cell 

must reflect the ‘‘averaged’’ structure, i.e., the BaBi2Ta2O9 structure consists 

of microdomains with orthorhombic distortion, which causes the relaxor-type 

ferroelectric transition (Fig. 1.16) [65]. The anisotropic peak broadening and 

the large thermal parameters revealed in the structure refinement based on the 

macroscopic I4/mmm tetragonal symmetry also result from the microscopic 

structural distortion. 
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Fig.1.17. Lattice parameters for BaBi2Nb2O9 as a function of temperature  [68]. 

The structure studies of BaBi2Nb2O9 ceramics  [68] suggests the low-

temperature ferroelectric structure to be well described in space group I4mm, 

while the high-temperature (above 300 K) structure is in the more common 

I4/mmm space group, corresponding to the phase transformation at about 320 

K.  

Fig. 1.18. Temperature dependences of ε‘ for xBBT-(1-x)SBT compositions, x=0 (A), 

0.25 (B), 0.75 (C), 1 (D)  [69]. 
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Dielectric properties of mixed SrBi2Ta2O9 - BaBi2Ta2O9 (SBT-BBT) 

compositions, measured in low-frequency range (Fig. 1.18) shows the ability 

of ε’(T) variation as substitution of stroncium in SBT by barium induces the 

shift of phase transformation temperature to lower values while introducing a 

frequency dispersion similar to ferroelectric relaxors  [69]. 

The bismuth oxide layer structured ferroelectrics may become important 

piezoelectric ceramics because of their higher stability, higher operating 

temperature (Tc = 550-650oC), and higher operating frequency. These ceramics 

are mainly useful for piezoelectric resonators which need to exhibit a very 

stable resonant frequency. Although the ferroelectric properties of these oxides 

have been known for more than 50 years  [63,66], most extensive studies have 

been carried out only during the last 10 years. The increased interest is owing 

to the high spontaneous polarization, fatigue-free behaviour and low leakage 

currents of these compounds, which make them promising for applications in 

nonvolatile ferroelectric memories  [70-72]. The most intensively studied are 

SrBi2Ta2O9 (SBT) (n=2) thin films, which are already utilized in FERAMs. 

There are still open questions – are the dipolar glasses and relaxors the same, 

but only different origin – order - disorder type and displacive type? How 

differ the dynamics of the phase transitions in both cases? The aim of the 

present work was to try to find answers to these questions using the broadband 

dielectric spectroscopy. 
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This chapter includes the methods of the dielectric spectroscopy and 

measurement technique that was used for the investigation of the relaxor 

ceramics. 
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In the low-frequency (20 Hz – 1 MHz) range, capacitance Cc and tangent 

losses tgδ = ε″/ε′ of the sample was measured with the LCR meter HP4284. For 

all measurements the silver past was used for contacts. Complex dielectric 

permittivity was calculated from the plane capacitor formulas  [73]: 
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where C′

css and tgδss are the capacitance and tangent losses of the system with 

the sample, Cc0 and tgδ0 are the capacitance and tangent losses of the system 

without the sample, d is the height of the sample, Ss is the area of the sample, ε0

is the dielectric permittivity of vacuum. The area of the sample was much 

larger as square of the height d2 so that the field effects were insignificant to all 

experiments performed. The temperature was measured with copper-

constantan thermocouple, which had one stub in the sample and another in the 

ice and water mixture. Measurements were performed on during continuous 

temperature variation with typical rate of 1 K/min. All measurements were 

performed on cooling and heating but most of presented results are on cooling. 

Home made furnace was used for heating and for cooling was used liquid 

nitrogen in all experiments.  
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The coaxial technique is the most convenient for the dielectric spectroscopy of 

solids in the 1 MHz – 3 GHz frequency range. The specimen was placed at the 

end of the coaxial line between the inner conductor and the short piston where 

it formed a capacitor. Such configuration allowed placing easily the capacitor 

into temperature-control device. Broadband coaxial lines were used. From the 

low-frequency end they could be used at any frequency. From the superhigh-

frequency end the condition of propagation of the main TEM-wave limits 

application of the coaxial lines. This condition is given by  [73]: 

)( 4300 rr +> πλ ,                                                (2.2) 

where r3 and r4 are the radii of the inner and outward conductors of the coaxial 

line, λ00 is the length of electromagnetic waves. 

����)���	������
������


Most of high-frequency experiments were performed with a coaxial dielectric 

spectrometer  [74]. The core of this coaxial spectrometer was complex 

reflection coefficient measurement unit Р4-11 and vector network analyzer 

Agilent 8714 ET. The complex reflection coefficient R*(ν, T) was obtained by 

amplifying the incident and reflected signals by a frequency converter and 

detected by synchronous amplitude and phase detectors.  

Inhomogeneities of the line and distortion in a high-frequency part of the 

spectrometer (influence of which increases with the increase of frequency) can 

be taken into account using a computer and digital processing of information 

by an analysis of the six-port between the capacitor and the output planes of 

the directional couples. The linear eight-port can be described by a scattering 

matrix riU  of the complex coefficients Uri=br/ai, relating a reflected signal br

from the input signal ai at input i. The indicator of the setup measures the 

reflection factor Rm (i. e., the ratio of outcoming signals from the measuring 

and referenced output Rm=b3/b4).  
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For an ideal reflectometer setup (R2=R3=R4=0): 

RoR
P
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R km ==

42

3112 ,                                              (2.3) 

where the coefficient ok can be found by calibrating the spectrometer using a 

shot with R= -1. In general, one should solve the set of linear equations: 

(2.4) 

which respect to b1, b2, b3, and b4. Taking into account the fact that a1 = R1b1, 

a3 = R3b3 and a4 = R4b4, one could find the relation between the measured 

reflection factor Rm and the reflection coefficient R: 

1*
3

2
*

1*

+

+

=

Ro
oRo

R
k

kk
m .                                                       (2.5) 

The coefficients ok1, ok2 and ok3 are composed from products and sums of the 

elements of the scattering matrix Uri and the reflection factors from the mixers 

R3 and R4. At every frequency they are determined by measuring the reflection 

Ri
m from the tree calibration samples (from short and open-circuit lines, and 

from a sample of known permittivity and small loss (TiO2, CaTiO3). Using 

Equation (2.5) for every sample, one obtains a set of three complex linear 

equations, from which one finds the coefficients k1, k2 and k3.  

The dielectric spectra are obtained from the results of the measurements of the 

complex reflection coefficient R*(ν, T) of the TEM-wave in the coaxial line 

loaded with the sample in the measuring capacitor. From the complex 

reflection coefficient R*(ν, T) the complex dielectric permittivity ε*(ν, T) was 

obtained according to the formulas presented in Section 2.4. 
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Complex reflection coefficient R* is related with the impedance of measuring 

capacitor Z*
ss and the systems impedance Z0: 

0
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−

= .                                                   (2.6) 

For complex capacitance Cc
* = Cc ′- iCc″ of the planar capacitor the relation 

(2.1a) can be generalized in such a form: 
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There is a well known relation between the complex impedance Zss and the 

complex capacitance Cc
*: 
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From Eqs. (2.6), (2.7) and (2.8) we obtain the formulas for the real and 

imaginary parts of the complex dielectric permittivity ε*: 
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The fore-cited equations are applied for a quasistatic capacitor in which 

capacitance is independent of frequency and the electric field in the sample is 

homogeneous, just as it is when the dimensions of the capacitors are much 

smaller in comparison to a wavelength λ00 of the exciting electric field. 

However, with the increase of frequency the electric field in the sample 

become non-homogeneous and is given by: 

])(/2[ 2/1
00000 rJAE k εµελπ ′= ,                                    (2.10) 
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where Ak is the constant, depending on the dimensions of the capacitor, r is the 

distance from the center of a capacitor along the radius, J0 is the Bessel 

function of the first kind of zero order, and µ0 is the vacuum magnetic 

permittivity. Finding the zeros of the Bessel function, the radii r1, r2, r3, …, 

where the field between electrodes of the capacitor is equal to zero, can be 

obtained. The radius r1 is given by: 

2/1
00

00
1 )(2

405.2
εµεπ

λ

′

≈r .                                                (2.11) 

Taking the radius of the sample r ≤ 0.1 r1, one finds the conditions of the 

quasi-stationary electric field distribution in the capacitor: 
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≤r .                                                  (2.12) 

In this case, a dynamic capacitor, which takes into account inhomogeneous 

distribution of the electric field in the sample, should be used. Consider now 

the propagation of electromagnetic waves in the capacitor, which is formed by 

the cylindrical sample, placed at the end of the coaxial line between the inner 

conductor and short piston. The harmonic field of frequency ω excites the line, 

and the main monochromatic TEM-wave propagates along the line without 

variation along the coordinates z and φ. The wave has only the components of 

the electromagnetic field Ez and H
φ
. In the cylindrical system of coordinates, 

with the center at the axis of the line, the components Ez and H
φ
 are given by: 
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where J′0 is the derivate of the Bessel function J0.  

The impedance of the capacitor under study is given by: 
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= .                                                        (2.15) 
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From the comparison of Eqs. (2.8), (2.13), (2.14) and (2.15) we obtained the 

capacitance of dynamic capacitor: 
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When the quasi-stationary conditions (2.12) are fulfilled, the relationship 

(2.16) becomes equal to (2.1). 
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2.5.1.  Microwave reflectivity and transmission measurements 

For dielectric measurements in the centimetre and millimetre microwave 

ranges method of thin cylindrical rod in a rectangular waveguide was used. 

Moduli of microwave reflection and transmission coeficients were measured 

with automatic dielectric spectrometer (Fig. 2.1). Using generators (ГКЧ-61 

for wave range 8 - 12 GHz and Р2-65 for range 26 - 37 GHz) as variable 

frequency sources, and changing only the waveguide terminanting with a 

matched load, method under study was applied to measurements of moduli of 

microwave reflection and transmission coeficients in the frequncy range from 

8 GHz to 37 GHz. Bandwith of the range is dependent on microwave oscilator 

bandwith and waveguide wall width. Power meter Я2Р-70 is used for 

reflection, transmission and reference power measurements. Coupling between 

computer and measurements equipment realize the interface BG-01 of prof. A. 

Brilingas. In the interface unit there are digital analogical converters, which are 

used to alternate the sweeping frequency of oscillators. Oscillators sweeping 

frequency dependence on signal level of digital / analog converters ν = f(NDAC) 

was measured with frequency  
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Fig. 2.1. Dielectric spectrometer setup for reflection and transmission measurements 
in the centimetre and milimetre ranges. 

cell and described as a third order polynomial (apart ГКЧ-61, where this 

function is linear). Frequency measurement errors were less than 0.2% in the 

centre of the range and 1% in the edges. 

Frequency dependencies of reflection R and transmission Ttr moduli were 

measured in all bandwidth of selected range at several hundred points, 

additionally for each point values was measured on several scan and averaged. 

Next curves R=R(ν) and Ttr=Ttr(ν) has been sleek, for selected frequencies 

results was saved in computer. Such processing of results allows to reduce an 

influence of the random errors and to improve accuracy and plausibility of the 

method. 

The sample of cylindrical shape was placed in the centre of the wide 

waveguide wall parallel to the electrical field of the main TE10 mode. A special 

sample holder was used. In this sample holder a slot for piston was made. In 

the piston for sample was made notch, whitch is used for contacts between the 

sample and a waveguide. Two other pistons were used for calibration of 

reflections and transmissions. This method allows to reject destruction of 

waveguide channel, and additionally, allows to verify a calibration during 

experiment. 
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2.5.2. Calculation of complex dielectric permittivity  

Microwave complex reflection R* and transmission T*
tr coefficients are 

dependent on parameters of waveguide system (width of the wall a), frequency 

of the microwaves, complex dielectric permittivity ε* and the radius r of a 

sample. Complex dielectric permittivity ε*(ν) can be estimated from the 

nonlinear equations ε* = f(R*) or ε* = f(R, Ttr). 

A sample of cylindrical form was placed in the centre of the broad wall (or at 

distance l0) parallel to the electrical field of the main mode TE10 (Fig. 2.2).  

l0

2r0

b

a
TE10

Fig. 2.2. Thin cilindrical rod in a rectangular waveguide. 

When a sample is thin enough (α
0
 = 2πr/λ00 « 1), the complex reflection 

coefficient is  [75]: 
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where J0, J1 are the Bessel functions, H1, H0
2( )  are the Hankel fuctions, 

β0 = k0(ε)’1/2r, a is the width of a waveguide wall. 

When a distance from the sample axis to centre of a waveguide wall is l0, then 

another expression for complex reflectivity is used  [75]:  
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For a sample with enough big radius, when condition α0 « 1 is not fulfil, more 

complicated expression for complex reflectivity modulus is used  [75]: 
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Figs. 2.3 and 2.4 show dependences of R = R(ε') and Ttr = Ttr(ε') for different 

values of ε”. The best range for determination of ε’ and ε” values is 

0.2 < R < 0.85.  



51 

0 500 1000 1500 2000 2500 3000
0,0

0,2

0,4

0,6

0,8

1,00,0

0,2

0,4

0,6

0,8

1,0

R
ef

le
ct

io
n 

m
od

ul
us

ε'

         ε"   
 0
 500
 1000
 2000

Tr
an

sm
is

si
on

 m
od

ul
us

ε'

Fig. 2.3. Microwave transmission and reflection coeficients moduli dependence from 

dielectric permittivity of sample, when ν = 10 GHz, radius of sample r = 100 µm. 

When dielectric permittivity is higher, this correction becomes considerable. 

When losses in the sample are zero then the wave TE10 is fully reflected (Fig. 

2.3.). This occures for frequency of microwaves: 

επ

ν

r
c

20 =

,                 (2.20)

here c is the light velocity in vacuum. When dielectric losses increase, the 

reflection and transmission coefficients dependence from a real part of 

dielectric permittivity becomes more shallow. The accuracy of the method 

decreases, extremely at ν > ν0.  
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For calculating the complex dielectric permittivity the Newton method was 

used, which allows alternating nonlinear equations system: 
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),(
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1

εε

εε
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fT
fR

tr
(2.21) 

into linear. The limits of complex dielectric permittivity ε* and their initial 

values were chosen aproximately by comparision of high-frequency 

measurement results. Iteration calculation was stoped, when 

R - f1(ε′,ε′′) < δ ac   and    Ttr - f2(ε′,ε′′) < δ
αχ

; (2.22) 

there δ
αχ

 is the acuracy of calculations. Usualy δ
αχ

 is selected around 0,001, 

calculation with better acuracy is meaningless, because measurements 

accuracy is less. More information about this method is in  [75]. 

2.5.3. Sample preparation 

The method of thin cylindrical rod in rectangular waveguide requeres the 

samples of cylindrical shape and of height equal to narrow waveguide wall. 

The samples were prepareted according to measurements methodology 

requirement, that values of microwave reflection and transmission moduli 

would be not less then 0.2 and not higher then 0.85. As usual, the samples were 

cut from big enough piece and further manually polished for desirable 

dimension was achieved. Shape of the investigated specimens was nearly 

cilindrical and effective radius ref was calculated according to formula:  

where S is the area of the sample. 

r S
ef =

π

,  (2.23) 
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Fig. 2.4 Microwave transmission and reflection coefficients moduli dependence from 

dielectric permittivity and radius of a sample, when ν = 53 GHz, losses of sample 

ε″ = 400 . 
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The results of this chapter are published in [P1] and were presented in [C5, C8, 

C9, C11, C12, C14, C16, C22, C24, C25, C27, C35] scientific conferencies. 

(1-x)BaTiO3-xLa(Mg1/2Ti1/2O3) ceramics ( (1-x)BT-xLMT for short) with the 

compositions x = 0.025 and 0.05 were processed from powders obtained by a 

chemical route based on the Pechini method, previously optimized for 

LMT  [76]. A stoichiometric mixture of the respective reagent-grade oxides 

and carbonates was ball-milled in ethanol and calcined at 1470 K for 4 h. 

Following the latter (chemical) procedure, nitrates of lanthanum and 

magnesium as well as barium carbonate in proper ratio were dissolved in 

titanium citrate. The resulting solution was then dried and calcined at 1020 K 

(2 h) to obtain a fine powder of the desired composition. All the ceramics were 

sintered in oxygen gas flow at 1720-1770 K for 2-4 hours. Two types of 

ceramics with x = 0.025 have been obtained. After measurements they were 

classified into two types: homogeneous one, which showed all three phase 

transitions of BT type, and non-homogeneous, in which only two phase 

transitions have been observed. The microstructure was examined by scanning 

electron microscopy (SEM, Hitachi S-4100) (Fig. 3.1). 
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Fig. 3.1. SEM images of polished and thermally etched surfaces of the (1-x)BT-

xLMT ceramics, where x = 0.025 (a) and 0.05 (b). 

Two types of ceramics of (1-x)BaTiO3-xLa(Mg1/2Ti1/2O3) with x = 0.025 and 

one with x = 0.05 were dielectrically investigated over the extended frequency 

range. Dielectric studies have been performed in the frequency range from 20 

Hz to 10 GHz within the temperature interval of 100-500 K.  

Temperature dependence of the real and imaginary parts of the dielectric 

permittivity of BT-0.025LMT ceramics are presented in the Fig. 3.2. As it is 

possible to see, there are three phase transitions as in pure BT. The difference 

is that these phase transitions are shifted to lower temperatures, compared with 

BT. Also, below the first phase transition at 320 K, typical relaxor properties 

are observed. The real part of dielectric permittivity is strongly frequency 

dependent below 320 K and imaginary part at low frequencies is nearly 

frequency independent. This is also seen from the frequency dependence of the 

real and imaginary parts of dielectric permittivity (Fig. 3.3). From the results 

presented in the Fig. 3.2 and Fig. 3.3, we see, that we have relaxor, which in 

the low-temperature phase shows another two phase transitions. In the Fig. 3.4 

the temperature dependence of the real and imaginary parts of dielectric 

permittivity of non-homogeneous sample are presented. These temperature 

dependences differ significantly from the results presented in the Fig.3.2. As 

we can see, in the temperature dependence of the real part of dielectric 
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permittivity we can clearly distinguish only two phase transitions: at about 370 

K and 300 K. The first one most probably is caused by BT regions, the other 

one by the rest volume of the ceramics. Due to that we classify this ceramics as 

non – homogeneous. This ceramics below the phase transition at 300 K shows 

typical relaxor behaviour as PLZT and other well investigated relaxors  [23]. 

The frequency dependence of the real and imaginary parts of dielectric 

permittivity of non-homogeneous ceramics confirms typical relaxor behaviour 

(Fig. 3.5). The real part of the dielectric permittivity shows linear behaviour 

with frequency, the imaginary part up to microwaves also is frequency nearly 

independent.  
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Fig. 3.2. Temperature dependence of the real (a) and imaginary (b) parts of dielectric 

permittivity at different frequencies of BT-0.025LMT (homogenous). 
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Fig. 3.3. Frequency dependence of the real (a) and imaginary (b) parts of the 

dielectric permittivity measured in different temperatures. Lines are the best fits with 

the obtained distribution of the relaxation times (BT-0.025LMT homogenous). 
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Fig. 3.4. Temperature dependence of the real and imaginary parts of dielectric 

permittivity at different frequencies of BT-0.025LMT (non-homogenous). 
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Fig. 3.5. Frequency dependences of the real (a) and imaginary (b) parts of the 

dielectric permittivity measured in different temperatures. Lines are the best fits with 

the obtained distribution of the relaxation times (BT-0.025LMT non-homogenous). 

Usual evaluation of the dielectric dispersion parameters is performed with 

Cole – Cole or Havriliak – Negami formulas. Unfortunately, these formulas 

have defined shape of the distribution of the relaxation time function. As we 

can see from the Figs 3.3 and 3.5, in our case we have extremely broad and 

non symmetrical shape of the frequency dependence of the imaginary part of 

the dielectric permittivity. Also, after careful examination of the frequency 

dependence of the imaginary part we can see that there are at least two 

maxima, so there is no possibility to describe dispersion with single Cole - 

Cole or Havriliak – Negami process (Fig.3.3). In such case we need a new 

approach to extract the real distribution of the relaxation times from the 

dielectric spectra. In this study, from the frequency dependence of the real and 

imaginary parts of dielectric permittivity the distribution of relaxation times is 

treated as the ensemble of independent Debye-like processes: 
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These integral equations have been numerically solved. The Tikhonov 

regularization method has been used. This method and calculation technique is 

described in detail elsewhere  [77].  
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Fig. 3.6. Distribution of the relaxation times of BT-0.025LMT (homogenous). 
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Fig. 3.7. Distribution of the relaxation times of BT-0.025LMT (non-homogenous). 
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Obtained results are presented in the Figs 3.6 and 3.7. As we see, the 

distributions of the relaxation times for homogeneous and non–homogeneous 

ceramics are clearly different. In the case of homogeneous ceramics we 

observe one maximum at about 10-11 s and the broad maximum at longer 

relaxation times. Similar picture was already obtained for PMN-PSN-PZN 

relaxor ceramics  [23]. With decreasing temperature, the maximum at 10-10 s 

decreases, and becomes comparable with the long relaxation times broad 

maximum. We assume, that this maximum at about 10-11 s is caused by non-

polar matrix of relaxor and the long relaxation times and the broad maximum 

is caused by polar nanoregions, which contribution increases with decreasing 

temperature. The main difference in comparison with previous results for 

relaxors is that the long relaxation time edge do not diverge according to Vogel 

– Fulcher law, but stays nearly constant at all temperatures at about 10 s. Such 

behaviour can be caused by the limits of our experimental frequency range.  

The distribution of the relaxation times for non-homogeneous ceramics (Fig. 

3.7) is different. As we can see, we do not observe clearly expressed long 

relaxation times maximum, instead the maxima of nonpolar matrix decreases 

with temperature and broadens. This result confirms non homogeneous 

distribution of LMT in the sample – it does not behave as typical relaxor. It 

reminds a ferroelectric phase transition, but with a broad distribution of the 

relaxation times.  

The distribution of the relaxation times of BT-LMT ceramics is more similar to 

the relaxor type, but the dynamics of polar nanoregions is different – no Vogel 

– Fulcher law dependence of the long relaxation times has been observed. This 

can be caused by influence of the ferroelectric phase transition at 320 K. Due 

to that, the dynamics of relaxor-type polar nanoregions is strongly influenced 

by ferroelectric order, and these regions, caused by substitution of LMT do not 

give the main contribution to the dielectric permittivity and the dynamics of 

these regions is completely different from the relaxors. 
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 Fig. 3.8. Temperature dependence of the real (a) and imaginary (b) parts of dielectric 

permittivity at different frequencies of BT-0.05LMT. 

But the temperature and frequency dependences look very similar to the 

relaxor ones. They even look more similar for the relaxor-type for non- 

homogeneous sample. But after examination of the distribution of the 

relaxation times (Fig. 3.7) we see, that this ceramics is even more different 

from relaxors.  
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Fig. 3.9. Frequency dependence of the real and imaginary parts of the dielectric 

permittivity at different temperatures of BT-0.05LMT. 

We see, that the main maxima of the distribution of the relaxation times only 

slightly shifts with temperature and significantly broadens, but we do not 

observe splitting of the distribution times caused by polar nanoregions.  

For ceramics of higher LMT content x = 0.05 (BT-0.05 LMT) only one phase 

transition, coresponding to the transition from paraelectric to ferroelectric 

phase in pure BaTiO3 is clearly seen (Fig. 3.8). The transition temperature is 

about 250 K and it is shifted lower temperatures compared to pure BT (400 K) 

and BT-0.025 LMT (325 K). The transition is diffused and in temperatures 

below it showing relaxor-type dispersion, although the maximum value of the 

dielectric permittivity doesn’t have such obvious dependence on frequency as 

it is obtained for “classical” relaxor materials as PMN. 
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Fig. 3.10. Distribution of the relaxation times of BT-0.05LMT. 

The dielectric permittivity from the lowest measured frequencies up to 108 Hz 

is showing nearly linear character, typical for relaxors, and then dramatically 

reduces at GHz frequencies (Fig. 3.9) – very similar as for BT-0.025 LMT 

material. The relaxation times have peak at about 10-11 – 10-12 s with a low 

decreasing at higher temperatures (Fig. 3.10). The same as for the composition 

with x = 0.025, the long relaxation time edge obviously does not diverge 

according to Vogel – Fulcher law and that is the main difference from the 

relaxor behaviour. 

From these results we can conclude, that both measured compositions of (1-

x)BaTiO3-xLa(Mg1/2Ti1/2O3) family – the one with x = 0.025 and x = 0.05 

show ferroelectric and nearly relaxor properties. We have bridging materials 

between ferroelectrics and relaxors.  
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Results of this chapter are published in [P7] and were presented in [C18, C26, 

C28] scientific conferencies. 

The BaTiO3 is the classic ferroelectric crystal which was one of the most 

investigated ferroelectric materials during the years  [44,45,47,49,50]. The 

recent investigations showed that small amount of admixtures changes the 

nature of the phase transition from ferroelectric to relaxor one. The aim of the 

present work was to investigate the nature of the relaxor behaviour in 

isovalently substituted solid solutions BaTi1−xSnxO3.  

The gradual crossover from ferroelectric to relaxor behaviour is characterized 

by vanishing of the contribution due to domain walls and appearance of 

relaxation related to reorientation of polar nanosized regions. Typical 

behaviour of relaxors is observed only in ceramics with x = 0.30, while the 

compositions with 0.175 ≤ x ≤ 0.25 show coexistence of both ferroelectric and 

relaxor features. The relaxor properties are supposed to be due both to weak 

random fields and to disorder inherent in pure BaTiO3.  

Typically, the relaxor behaviour is observed in compositions with a charge 

disorder, where cations with different valence randomly occupy equivalent 

crystallographic positions. Such charge disorder is a source of quenched 

electric random fields (RFs), which prevent the formation of a long-range 

ordered ground state in ferroics with continuous symmetry of order parameter. 

Statistical fluctuations of RFs promote nucleation of PNRs at high 

temperatures in the paraelectric state. At high temperatures, PNRs have the 

size of several nanometers and are highly dynamic. This state is called the 

ergodic relaxor state, since interactions between PNRs are supposed to be weak 

and the system quickly goes back to the initial state after some excitation. On 

cooling both a growth of individual PNRs and an increase of their number take 

place. As a result interactions between PNRs become stronger and finally at a 
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certain temperature a transition into a short-range ordered glass-like (non-

ergodic relaxor) or into a long-range ordered ferroelectric state occurs.  

BaTi1-xSnxO3 ceramics with x = 0.1 (BTSn10) also was investigated by the 

broadband dielectric spectroscopy.  

200 250 300 350 400
0

2000

4000

6000

8000

10000

12000
 1 kHz
 1 MHz
 100 MHz
 185 MHz
 260 MHz
 370 MHz
 525 MHz
 750 MHz
 1 GHz
 1,5 GHzε'

T, K

(a)

200 250 300 350 400
0

1000

2000

3000

4000

5000
 1 kHz
 100 kHz
 1 MHz
 15 MHz
 25 MHz
 70 MHz
 100 MHz
 300 MHz

ε"

T, K

(b)

Fig. 4.1. Temperature dependence of the real (a) and imaginary (b) parts of dielectric 

permittivity at different frequencies of BTSn10 ceramics. 
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Fig. 4.2. Frequency dependence of the real (a) and imaginary (b) parts of the 

dielectric permittivity of BTSn10 measured in different temperatures. Lines are the 

best fits with the obtained distribution of the relaxation times. 



67 

We can see huge dielectric dispersion in both higher and lower temperatures 

around the phase transition (Fig. 4.1). The temperature of the phase transition 

(320 K) is shifted to lower temperatures compared to that of pure BT. The 

dispersion character is obviously non relaxor-type.
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Fig. 4.3. Frequency dependence of the imaginary part of the dielectric permittivity of 

BaTi1-xSnxO3 ceramics with x=0.10 (a), 0.15 (b), 0.175 (c), 0.20 (d), 0.25 (e), and 

0.30 (f), all measured in the frequency range 10-2–105 Hz. In all graphs the solid and 

open symbols correspond to temperatures above and below Tm ( ν = 100 kHz), 

respectively. 
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It was supposed  [57] that PNRs in BTSn ceramic appear only above a certain 

doping level, when the effects of random fields become substantial. Recently, 

however, we found that even in BTSn10 a high-frequency relaxation is already 

observed above Tm at frequencies 108–109 Hz (Fig. 4.2). A similar relaxation 

starting above Tm was observed also in pure BaTiO3  [78]. It was related to a 

hopping of the off-center Ti4+ cations between symmetry-related potential 

wells, pointing out that the phase transition in BaTiO3 rather follows an order–

disorder scenario than a purely displacive one. 

The measurements in low frequency range were performed in cooperation with 

Duisburg University (Germany). Ceramics with x=0.15, 0.175, 0.2, 0.25 and 

0.3 were measured down to 10-2 Hz (Fig. 4.3). 
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Fig. 4.4. Temperature dependence of the real (a) and imaginary (b) parts of dielectric 

permittivity at different frequencies of BTSn25 ceramics. 
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The transformation to relaxor behaviour in BTSn is supposed to be related to 

the disorder within the B-sites of the perovskite-type ABO3 unit cell. Indeed, 

the ferroelectricity in barium titanate resides on a cooperative shift of Ti4+

cation into a certain direction from the center of the oxygen octahedron. The 

larger tin cation cannot shift off-center, giving rise to random breaking of the 

correlated displacement along Ti-O-Ti-O chains. As the tin content increases 

(Figs. 4.4 and 4.5), the regions with an accumulated concentration of broken 

bonds will occupy a larger part of the sample. As a consequence, the polar 

correlations are strongly diminished and ferroelectric domains are less likely to 

nucleate. However, due to the distortions arising around the tin ions a 

redistribution of the charges and a local formation of charged centers results. 

These are sources of local random fields, whose quenched spatial fluctuations 

act as pinning centers of the thermally fluctuating polarization. 
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Fig. 4.5. Frequency dependence of the real and imaginary parts of the dielectric 

permittivity at different temperatures of BTSn25 ceramics. 

Clearly, this kind of random fields is much weaker than that resulting from 

heterovalent cation substitution as in conventional relaxors. Hence, the relaxor 

properties of BTSn require relatively high doping. 
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The following conclusions have been made from the above results. Dielectric 

spectroscopical data evidence a ferroelectric state in compositions with 

x < 0.175 (Fig. 4.3). Relaxor-type relaxations related to the reorientation of 

PNRs appear in compositions with higher tin content. However, the phase 

transitions in ceramics with x = 0.20 and 0.25 occur at higher temperatures 

than the freezing of PNRs dynamics. Only in BTSn30 the relaxor-type 

transition into a glass-like state takes place. The relaxor properties in BTSn are 

supposed to be induced by weak random fields. On the other hand, dynamic 

superparaelectric moments that also exist in the pure barium titanate are 

proposed to be precursors of PNRs in related solid solutions. 
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The results of this chapter are published in [P4] and [P5] and were presented in 

[C3, C4, C7, C10, C13, C17, C20, and C29] scientific conferences. 

The Ba1-xSrxBi2Ta2O9 (alternatively marked as (x)BBT-(1-x)SBT) solid 

solutions possess Bi-layered Aurivilius structure, which was portrayed in 

Chapter 1.6. SBT composition (x = 0) presents a typical ferroelectric behaviour 

with a phase transition occurring at ~320°C. As for BBT (x = 1), it exhibits a 

ferroelectric relaxor behaviour; a diffuse phase transition is observed at lower 

temperatures and its dielectric curve exhibits a strong relaxation in the studied 

frequency range where its maximum of permittivity Tm shifts to higher 

temperature as the frequency increases. It is commonly accepted that, when 

strontium is substituted by barium, a significant positional disorder is induced 

in SBT which is considered to be the main cause of the broadening of the 

phase transition in BBT. Substituting small amounts of strontium by barium, a 

shift of the Curie temperature towards lower values is observed while a 

frequency dispersion of the permittivity values at lower temperatures appears. 

This effect is already visible for x = 0.25. As x increases, the maximum of 

permittivity keeps moving to lower temperatures approaching the temperature 

region where diffuse phase transition in BBT is observed.  
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Fig. 5.1. Temperature dependence of the real and imaginary parts of the dielectric 

permittivity measured in different frequencies for BBT ceramics. 
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Figure 5.1 shows the real and imaginary parts of dielectric permittivity 

temperature dependence at different frequencies. As it possible to see, the 

maximum value of dielectric permittivity reaches only 370 at low frequencies. 
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Fig. 5.2. Frequency dependence of the real and imaginary parts of the dielectric 

permittivity of BBT measured in different temperatures. 

Such low value is not typical for relaxors. For lead containing relaxors it is of 

order 10000 or higher  [21]. But the frequency – temperature behaviour is 

typical for relaxors: maximum of the real part of dielectric permittivity shifts to 

higher temperatures with increase of the frequency. Imaginary part also 

behaves very typically as for relaxors. Such low value of dielectric permittivity 

is probably related to reduced polarizability of the host ions and weak 

interaction between the dipole moments  [79]. It should be mentioned, that 

maxima of the real part of dielectric permittivity shifts much stronger to higher 

temperatures with increasing frequency as in lead containing relaxors, such as 
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PLZT  [21]. We must mark that at high temperatures and low frequencies 

conductivity contribution was observed (Fig.5.1).  

Frequency dependencies of the real and imaginary parts of dielectric 

permittivity are presented in Fig. 5.2. The dielectric dispersion clearly appears

at low temperatures and extends to the microwave region. A less pronounced 

dispersion of dielectric permittivity can be seen even at low temperatures. In 

contrast to the classical relaxors, this dispersion region is temperature 

dependent and shifts to the lower frequency region with decreasing 

temperature and we do not observe flat dependence of the imaginary part of the 

dielectric permittivity, but the real part of dielectric permittivity at low 

temperatures behaves nearly linearly as it should be for relaxors. 

At low temperatures it is possible to see two maxima in the frequency 

dependence of the imaginary part of dielectric permittivity. Low-frequency 

maxima (clearly seen in the Fig. 5.2 at 103 Hz at 150 K) most probably is 

related to polar nanoregions dynamics, and high-frequency maxima (at 150 K ) 

is caused by nonpolar matrix of ceramics.  

Due to pronounced dispersion even at low frequencies we have used usual 

Cole – Cole model to obtain dispersion parameters: 

α

ωτ

ε∆

εε
−

∞

+

+= 1)(1
*

i .       (5.1) 

In this equation ∆ε represents the strength of relaxator, τ is the mean Cole -

 Cole relaxation time, α is the relaxation time distribution parameter, ε
∞
 is the 

contribution of all phonon modes and electronic polarization. Calculated Cole -

 Cole dielectric dispersion parameters are presented in the Fig. 5.3. The 

parameter of the distribution of relaxation times α has values of 0.8 - 0.9 in the 

whole temperature range. This means that the distribution of relaxation times is 

extremely broad.  
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 Fig. 5.3. Cole – Cole fit parameters ∆ε, α, τ.

The mean Cole - Cole relaxation time of present ceramic diverges with 

temperature according to Vogel - Fulcher law: 

)(
0

0TTk
E

e −

= ττ         (5.2) 

The Vogel - Fulcher fit (Fig. 5.4) parameters are: τ0 = 2.34 • 10-14 s, T0 = 92 K, 

E/kb = 3302 K. Parameters of the dielectric dispersion are presented in the 

Fig.5.3. Such behaviour of the relaxation time temperature dependence is 

caused by complicated dynamics: splitting of the maxima of imaginary part of 

dielectric permittivity into two peaks, but the fits where performed with single 

Cole – Cole process. Also the distribution parameter alpha reaches very high 

value in the whole investigated temperature range. 
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Fig. 5.4. Relaxation time fit with Vogel – Fulcher law. 
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However, at low temperatures the behaviour of dielectric permittivity (ε” in 

low frequencies is almost frequency independent, having a peak at ≈ 1011 Hz; 

the dielectric spectrum is very diffused) suggests that Cole - Cole 

approximation is not the best choice due to unsymmetrical shape of the 

distribution of relaxation times.  

The relaxation time distribution function at different temperatures was 

calculated according to the following procedure. The original program 

performs the direct calculation of the relaxation time distribution function f(τ) 

from the frequency dependence of the complex dielectric permittivity at fixed 

temperatures according to superposition of Debye-like processes (for details 

see  [77]). 
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Fig. 5.5. Relaxation time distribution function f(t) of BBT ceramics at different 

temperatures. 

The real distribution function of the relaxation times of BBT ceramics (Fig. 

5.5) was calculated from the dielectric measurements results. Relaxation times 

scatter over the interval of 10-15 – 10-2 s. With the increase of the temperature 
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the f(t) function peak, responding to the 2•10-12 s time of relaxation, increases 

and reaches the biggest value at 350 K. 

As the main attention was focused on BBT material (x = 1), but the dielectric 

measurements were also made for other materials with x = 0.25, 0.5 and 0.75, 

we present here only brief review and the main graphs of the dielectric spectra 

for these ceramics. For xBBT-(1-x)SBT solid solution with x = 0.25, obtained 

results are presented in Figs. 5.6 - 5.8, for x = 0.5 in Figs. 5.9 – 5.10 and for 

x = 0.75 in Fig. 5.11. The dielectric dispersion in these ceramics with x = 0.25, 

0.5 and 0.75 is not typical nor for ferroelectrics, nor ferroelectric relaxors. In 

the whole frequency range, even at lower temperatures we observe maxima in 

imaginary part of dielectric permittivity. Such behaviour is more similar to 

dipolar glasses than to relaxors. The distribution of relaxation times (Fig. 5.8) 

shows the existence of at least two-component behaviour – the spherical glassy 

matrix and the ferroelectric clusters. These clusters (polar nanoregions) are 

present and make noticeable influence to the dielectric permittivity of xBBT-

(1-x)SBT solid solutions at temperatures below a phase transition.  
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Fig. 5.6. Temperature dependence of the real (a) and imaginary (b) parts of the 

dielectric permittivity of 0.25BBT-0.75SBT ceramics, measured in different 

frequencies. 
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Fig. 5.7. Frequency dependence of the real and imaginary parts of the dielectric 

permittivity of 0.25BBT-0.75SBT measured in different temperatures. 
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x = 0.5 
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Fig. 5.9. Temperature dependence of the real (a) and imaginary (b) parts of the 

dielectric permittivity of 0.5BBT-0.5SBT ceramics, measured in different 

frequencies. 
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Fig. 5.10. Frequency dependence of the real and imaginary parts of the dielectric 

permittivity of 0.5BBT-0.5SBT measured in different temperatures. 
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x = 0.75 
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Fig. 5.11. Temperature dependence of the real (a) and imaginary (b) parts of the 

dielectric permittivity of 0.75BBT-0.25SBT ceramics, measured in different 

frequencies. 
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The results of xBBT-(1-x)SBT with x = 0.25, 0.5, 0.75 and 1 confirm the 

crossover from ferroelectric to relaxor state with decrease of x, although 

introducing behaviour similar to dipolar glasses. 

For BBT (x = 1), the distribution of relaxation times shows complicated nature 

of the dynamics of this relaxor. We can distinguish at least two different 

components with different behaviour – most probably we can guess that we 

observe contributions to the dielectric permittivity originating from the 

spherical glassy matrix and the ferroelectric clusters. Also this two component 

behaviour can be related to breathing and flipping motions of the polar 

nanoregions in the relaxor.  These clusters (polar nanoregions) are growing in 

size and making noticeable influence to the dielectric permittivity of BBT as 

indicated by asymmetrical broadening of the distribution of relaxation times. 

As we can see from the distribution function, there are at least two different 

kinds of polar clusters. Dielectric dispersion in BBT ceramics is much more 

complicated, due to the broad distribution of the relaxation times even at high 

temperatures, indicating the influence of polar nanoregions in the whole 

investigated temperature range. 
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The results of this chapter are published in [P1, P3, P6, P8] and were presented 

in [C1, C6, C15, C19, C21, C23, C30-C34] scientific conferences. 

Ba-based ferroelectric ceramics with Bi-layered structure BaxSr1-xBi2Nb2O9

ceramics were prepared by mixed oxide route using SrCO3/BaCO3, Bi2O3 and 

Nb2O5 as starting reagents. The mixtures of the desired amounts of oxides were 

milled with planetary ball mill, calcined at 950 ºC for 2 hours, uniaxially 

pressed at 190 MPa and sintered at temperatures varied in range 1000 – 1250 

ºC.  

Fig. 6.1. SEM microstructure of BaBi2Nb2O9 ceramics sintered at 1100 ºC.  

Full substitution of Sr2+ with larger Ba2+ ions lowers the temperature of the 

phase transition and the transition becomes broad and dispersive, showing 

relaxor character. This opens perspective of applications in wide temperature 

range with still remaining good dielectric and ferroelectric properties. 

The real (ε’) and imaginary (ε”) parts of dielectric permittivity were measured 

in temperature interval of 200 – 500 K on cooling at different frequencies (Fig. 

6.2). The real part of the dielectric permittivity ε’ is strongly dispersive and 

shifts to higher temperatures with the increase of the frequency. At the lowest 
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frequency maximum value of 560 of the real part of dielectric permittivity was 

observed. At high temperatures and low frequencies conductivity contribution 

was observed, but it was not the aim of the present work. In this paper we will 

concentrate on the dielectric dispersion.  
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Fig. 6.2. Temperature dependences of the real and imaginary parts of the dielectric 

permittivity of BBN, measured in different frequencies. 

It is comparable with other Ba-based ferroelectrics with Bi-layered structure as 

BBT but significantly less than for lead containing relaxors as PMN or PLZT. 

The maximum of the imaginary part of the dielectric permittivity grows with 

the increase of frequency and shifts to higher temperatures. These temperature 

dependences are similar to relaxors but are not typical. For relaxors ε”

typically remains nearly constant till the lowest temperatures. As it is typical 

for dipolar glasses, the maximum of the imaginary part of dielectric 

permittivity shift to higher temperatures with frequency increasing. Such 

behaviour is not typical for relaxors. This is also confirmed by frequency 

dependences of the real and imaginary parts of dielectric permittivity. 

Frequency dependences of the real and imaginary parts of dielectric 

permittivity are presented in Fig. 6.3. It should be mentioned, that maxima of 

the imaginary part of dielectric permittivity shifts much stronger to higher 
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temperatures with increasing frequency as in lead containing relaxors, such as 

PLZT.  
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Fig. 6.3. Frequency dependences of the real and imaginary parts of the dielectric 

permittivity measured in different temperatures. 

The dielectric dispersion clearly appears at low temperatures and extends to the 

microwave region. A less pronounced dispersion of the dielectric permittivity 

can be seen even at low temperatures. In contrast to the classical relaxors, this 

dispersion region is temperature dependent and shifts to the lower frequency 

region with decreasing temperature and we do not observe flat dependence of 

the imaginary part of the dielectric permittivity, but the real part of dielectric 

permittivity at low temperatures behaves nearly linearly as it should be for 

relaxors. At low temperatures we can see appearing second maximum in the 

frequency dependence of the imaginary part of dielectric permittivity. Low 
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frequency maximum most probably is related to polar nanoregions dynamics, 

and a high frequency maximum is caused by nonpolar matrix of ceramics.  

We have used usual Cole – Cole model (Eq. 5.1) to obtain dispersion 

parameters. 
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Fig. 6.4. Cole – Cole fit parameters ∆ε, α, τ. 

Calculated Cole-Cole dielectric dispersion parameters are presented in the Fig. 

6.4. The parameter of the distribution of relaxation times α has high values in 

the whole temperature range. At high temperatures it decreases only till 0.5. 

This means that the distribution of the relaxation times is extremely broad in 

the whole temperature range. 

The mean Cole-Cole relaxation time of present ceramics diverges with

temperature according to Vogel-Fulcher law (Eq. 5.2). 

The Vogel-Fulcher law parameters are: τ0 = 1.92 • 10-11 s, T0 = 259 K, E/kb = 

1196 K. 

However Cole – Cole equation describes symmetrical form of dispersion and 

can be applied reliably only in such cases. But for BBT ceramics we can see 

the second process appear in high frequencies (Fig. 6.3). So the original 

program was used to perform the direct calculation of the relaxation time 
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distribution function f(τ) from the frequency dependence of the complex 

dielectric permittivity at fixed temperatures according to superposition of 

Debye-like processes (for details, see Chapter 3). 
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Fig. 6.5 Relaxation time distribution function f(t)(normalized) of BBN ceramics at 

different temperatures. 

The real distribution function of the relaxation times f(τ) was calculated (Fig. 

6.5). Even at high temperatures we can clearly see two processes, what is 

completely different from classic relaxors. High-frequency maximum stays 

nearly stable, but the most interesting part is the low frequency range. We 

observe maximum even at high temperatures and this maximum shifts to 

longer relaxation times with temperature decreasing. This effect can be caused 

by presence of polar nanoregions and their significant contribution to the 

dielectric permittivity even at high temperatures. This can mean that Burns 

temperature for this ceramics is very high, and polar nanoregions are present in 

the whole investigated temperature range. We consider a polar nanoregion as a 

dipole moving in an asymmetric double-well potential. The movement consists 

of fast oscillations in one of the minima with occasional thermally activated 
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jumps between the minima. Here we neglect quantum tunneling, which is 

negligible for polar nanoregions. The oscillation frequency is ν0. The jump 

probability is governed by the Boltzmann probability of overcoming the 

potential barrier between the minima. An ensemble of similar relaxations has a 

relaxational dielectric response at lower frequencies. It was shown that the 

relaxation time of such system is  [42]: 
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,     (6.1) 

where τ0 = 1/2πν
∞
, T0 is the Vogel–Fulcher temperature.  

We further consider that the dipoles are not similar, but instead have the 

asymmetry A and the potential barrier Eb randomly distributed according to the 

Gaussian law around their mean values A0 and Eb0: 
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where σE, and σA are the standard deviations of Eb and A respectively. 

Obtained results are shown in the Fig.6.6.  
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Figure 6.6. Obtained Eb, A, σE and σA, values at different temperatures. 

The conclusion must be made here, that the dipolar glass model is suitable for 

the relaxors with perovskite structure. 

For investigation of the microscopic properties of relaxor ceramics 

BaBi2Nb2O9 (BBN) we have used piezoresponse force microscopy (PFM), 

which is used to investigate the physical properties at the scale limited only by 

the diameter of the PFM tip (~10 nm). Detailed microscopic characterizations 

of the ferroelectric clusters structure were performed. The measure of the short 

range ordering - correlation length has been directly extracted from the images. 

The imaging is complemented with local piezoelectric hysteresis acquisition, 

where the high electric fields can induce local ferroelectric order just under the 

SFM tip. Polar nanoregions (PNRs) sized about 50 nm were observed in the 

BBN ceramics. Local ferroelectric hysteresis behaviour was also studied and 

compared in few different areas of the sample. 
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Fig. 6.7. Topography (a, c) and piezoresponse (b, d)  

images of BBN ceramics. 

Our dielectric studies of BaBi2Nb2O9 (BBN) in broad frequency range 

suggested the coexistence of two different phases in this material - the 

spherical glassy matrix and the ferroelectric clusters. The PNRs are present 

even at high temperatures and make noticeable influence to the dielectric 

permittivity of BBN. Dielectric dispersion in BBN ceramics is caused by the 

presence of two components in the relaxation time distribution even at high 

temperatures, indicating the influence of polar nanoregions in the whole 

investigated temperature range.  
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Fig. 6.8. Autocorrelation function image of the PFM

contrast from Fig. 6.7 (d). 

For the quantitative data treatment, we used a correlation function technique, 

which has been used for topographic data analysis  [79]. Indeed, the value of 

the signal (contrast) D taken from the piezoresponse image is proportional to 

the local polarization value. So, its autocorrelation function:
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    (6.6) 

is equivalent to polarization-polarization correlation function. The 

autocorrelation function was used for the estimation of the average size of the 

nanoregions. The behaviour of the average curve all in-plane directions 

autocorrelation function was fitted with the formula:  

��	� � �	
����

�

�
�

��
���       (6.7) 

where R is radius, Rc - correlation length, a - parameter (in our case a ≈

0.95±0.01) [80].  

Even though the freezing occurs below room temperature, the conditions on 

the surface and strong electric field developed due to the sharp PFM tip may 

be favorable for the formation of stable ferroelectric state on the surface. In 
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order to prove this, we applied consecutive voltage pulses and measured the 

piezoelectric response as a function of the voltage piezoelectric hysteresis 

loops. We positioned the tip in the center of as-grown nanoregion and swept 

the voltage in the range −60 V<V<+60 V. The results are shown in Fig. 6.9. 

Fig. 6.9. Local piezoresponse hysteresis loop of BBN 

ceramics 

The local piezoelectric coefficient followed normal hysteresis behaviour 

characteristic of ferroelectric phase with the coercive voltage of about 8–10 V. 

 After the application of a dc bias, we observed a normal micron-sized 

ferroelectric domain (Fig. 6.10 a) that was stable and could be still observed ~1 

and 2 h after the application of a dc bias field (Fig. 6.10 b,c). 
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Still open question is the relation of the relaxation time distribution with the 

distribution of the PNRs sizes. 

The conclusions on investigation of BBN ceramics are following: 

1. Polar nanoregions have been observed. 

2. Dielectric dispersion has features of dipolar glasses 

3. The model of dipolar glass double-well potential is suitable for the 

relaxors with Aurivilius structure. 

  

Fig. 6.10. Piezoresponse image (a) just after the application of a bias field, and 

piezoresponse image relaxation during 1 h (b) and 2 hours (c).
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1. The (1-x)BaTiO3-xLa(Mg1/2Ti1/2O3) compositions with x = 0.025 and 

x = 0.05 show ferroelectric and nearly relaxor properties. In this 

composition we have bridging materials between ferroelectrics and 

relaxors.  

2. Strontium substitution by barium in Ba1-xSrxBi2Ta2O9 solid solutions 

induces extremely broad frequency dispersion of the temperature 

dependence of the dielectric permittivity which is not typical for 

relaxors or dipolar glasses.  

3. The distribution of relaxation times of BaBi2Nb2O9 shows the existence 

of at least two-component behaviour – the spherical glassy matrix and 

the ferroelectric clusters. 
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