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Introduction

Fast and accurate information is crucial to making right decisions and taking

appropriate actions. Humans perceive information by the biological sensor

system, including our five senses of sight, hearing, taste, smell and feeling.

However, our senses alone are often insufficient in many cases. Therefore, ad-

ditional auxiliary equipment is constantly being developed, such as sensors,

biosensors, biological fuel cells and reactors. In this thesis we shall focus on the

design and development of multi-step biosensors.

In the context of this thesis, the term biosensor is used to refer to sensors using

biomolecules as selective recognition elements [17, 124, 139, 152]. Biosensors

are analytical devices made up of a combination of a biological entity, usually

an enzyme, that recognizes a specific analyte (substrate) and the transducer

that translates the biorecognition event into a signal (see Fig. 1). The strength

of the signal is usually proportional to the concentration of the target analyte.

Figure 1: Biosensing process.

According to IUPAC definition:

Biosensor is an integrated receptor-transducer device, which is capable of provid-

ing selective quantitative or semi-quantitative analytical information using a

biological recognition element [137].
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Introduction

Biosensors are constructed to be relatively cheap, sensitive and reliable devices,

widely used in clinical diagnostics, drug discovery, food analysis, environ-

mental and industrial monitoring and some other purposes [97, 118, 143, 152,

156].

Rapidly expanding area of the applications require a new types of biosensors.

In order to create these biosensors the corresponding experimental studies are

necessary. However, these investigations generally are very expensive, primar-

ily due to the high cost of the reagents, especially enzymes. Computational ex-

periments could very well replace physical ones. The computational modeling

of biosensors is based on the solution of the nonlinear partial differential equa-

tions [17]. These equations involve linear diffusion term as well as nonlinear

reaction rate of biocatalytical transformation of substrate. The analytical solu-

tions are only available in the extreme cases of substrate concentrations [125].

In general case, one of the numerical techniques from a variety of methods

must be employed. In this research we focus on the finite difference numerical

schemes. In order to assure optimal scheme the comparative research must be

performed.

Most of the computational researches are based on single step reaction approx-

imation. Modern biosensors are composed of several different enzymes or the

single enzyme carrying out different reactions simultaneously. Moreover, even

more complicated situations arise when cross-reaction of the substrates and the

products occurs (see Chapter 4). Therefore, the multi-step character of a reac-

tion scheme must be considered and modeled accordingly. In this thesis such

reaction (synergistic) scheme is studied in great details.

For each individual reaction system a unique mathematical model is usually

developed [17]. However, this process is cumbersome and error-prone. The de-

terministic nature of model creation allows the automated models to be built.

The resulting software will facilitate the process of design and production of

new biosensors for life science research. The applicability in and the high

demand for research, industry and medical care of various biosensors is wit-

nessed today and is fairly expected to grow even more in the near future [127].
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Research Object

Models of biosensors and the simulation techniques are the research objects of

this thesis. The main focus is upon mathematical and computational modeling

of multi-step biosensors. The research object also includes the applicability of

various finite difference schemes and automated construction of computational

models.

Research Methodology

New mathematical models were formulated applying kinetic approach for the

description of the chemical and diffusional processes. The corresponding reac-

tion-diffusion equations represent a parabolic type nonlinear partial differen-

tial equations. A number of the most common finite difference techniques for

the solution of the problem was used. For the development of the new software

program that automates computer modeling of biosensors the SBML descrip-

tion and JAVA programming languages were used. Properties of the multi-step

biosensors were investigated by the computer simulations.

Statement of the Problem and Tasks

The problem that was addressed in this study was to develop a method for

automated numerical simulation of multi-step biosensors.

The problem statement of this study can be further divided into the following

tasks:

1. Development of mathematical models for the practical multi-step bio-

sensors: optical peroxidase-based and amperometric laccase-based bio-

sensors.

3
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2. Comparison of common finite difference schemes for the numerical solu-

tion of reaction-diffusion equations. Identification of the most suitable

scheme for the simulation in terms of accuracy of the solution, computa-

tion time needed to solve the problem and ease of use of the technique.

3. Development of a general tool for the computational modeling of multi-

step biosensors.

4. Investigation of the influence of the model parameters on the optical bio-

sensor response.

5. Simulation the synergetic effect of the simultaneous substrates conversion

in the laccase-based biosensor by using the developed tool.

Scientific Novelty and Results

1. Original mathematical models were developed for absorbance and fluor-

escent peroxidase-based biosensors.

2. A novel regeneration boundary condition was introduced for the math-

ematical model of laccase-based biosensor.

3. The comparison of the common finite difference schemes shows that the

fastest schemes to achieve the required relative error are implicit and

Hopscotch schemes. For the problems where accuracy is not a signific-

ant factor but the speed is, the simplest explicit scheme should be used.

4. Flexible model for computational modeling of different practical multi-

step biosensors was developed.

5. The modeling of laccase biosensor explained and confirmed the syner-

gistic effect.

4
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Practical Significance

The mathematical models derived in this dissertation can be applied for the

detailed investigation, engineering and control of action of the multi-step bio-

sensors. They can also be easily generalized for other practically relevant bio-

sensors. The introduced method of the construction and analysis of the multi-

step biosensors’ models forms a basis for the further future researches.

The new tool presented in this work is an interactive and user-friendly soft-

ware program for the computational modeling of the multi-step biosensors.

This computational tool can facilitate the work of biochemists and bioengin-

eers doing the biosensor analysis. The performed computational experiments

confirmed the adequacy and applicability of our methods for systems as com-

plex as the synergistic laccase-based and optical perozidase-based biosensors.

The results of this thesis contributed to the goals of the following projects: "De-

velopment of bioelectrocatalysis for synthesis and analysis (BIOSA)" funded by

a grant (No. PBT-04/2010) from the Research Council of Lithuania and "Devel-

oping computational techniques, algorithms and tools for efficient simulation

and optimization of biosensors of complex geometry" funded by the European

Social Fund under Measure VP1-3.1-ŠMM-07-K "Support to Research of Scient-

ists and Other Researchers (Global Grant)".

Statements Promoted to Defend

1. The best accuracy among the common finite difference schemes for solv-

ing reaction-diffusion problem with Michaelis-Menten kinetics is achieved

using implicit calculation and Hopscotch approaches. For the problems

where the accuracy is not a significant factor but the speed is, the simplest

explicit scheme should be used.

2. The multi-step character of chemical processes in complex biosensors can

be specified extending SBML language. The developed tool can be ap-

plied for the computational modeling of the various multi-step biosensors.

5
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3. Computational modeling of the laccase-based biosensor explained and

confirmed the experimentally observed synergetic effect of mediator on

the biosensor response.

4. The developed mathematical model of a peroxidase-based optical bio-

sensor can be successfully used to investigate the kinetic peculiarities of

the biosensor response. The biosensor response is highly stable at the

relatively thick external diffusion layer, which has little effect on the re-

sponse at high enzyme concentrations.

Reliability of the Results

To ensure the reliability of the results some of the numerical tests were com-

pared with the experimental data. The results were of a little variation tak-

ing into account uncertainty in the parameter estimates. A good agreement

with the latest published models was also obtained. The most contemporary

mathematical techniques and software currently used by the biosensor model-

ers were employed.

Approval and Contribution of the Results

The main results of this thesis were published in five articles [1A, 2A, 3A, 4A,

5A]. Three of them ([1A, 2A, 4A]) in journals included in the ISI (the Institute

for Scientific Information) Journal List. In addition, results were presented in

the six reviewed conference proceedings ([6A, 7A, 8A, 9A, 10A, 11A]). Eleven

contributed talks were given at various conferences:

1. E. Gaidamauskaitė, R. Baronas. Influence of Spontaneous Convection on

Amperometric Biosensor Response. 23rd Nordic Seminar on Computational

Mechanics, 21-22 October, 2010, KTH, Royal Institute of Technology, Stock-

holm, Sweden.
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2. E. Gaidamauskaitė, R. Baronas. A Computational Investigation of the

Optical Biosensor by a Dimensionless Model. Kompiuterininkų dienos -

2009, 25 - 26 September, 2009, KTU, Kaunas, Lithuania.

3. E. Gaidamauskaitė, R. Baronas. Numerical Modelling of Peroxidase-based

Optical Biosensor. 14th International Conference on Mathematical Modelling

and Analysis MMA 2009, 27 - 30 May, 2009, Daugavpils, Latvia.

4. E. Gaidamauskaitė, R. Baronas. Computer Modelling of Biosensor with

Product Inhibition. 5th European Congress on Computational Methods in

Applied Sciences and Engineering ECCOMAS 2008, 30 June - 4 July, 2008,

Venice, Italy.

5. R. Baronas, E. Gaidamauskaitė. A Reduced Model of Peroxidase-based

Optical Biosensor. 13th International Conference on Mathematical Modelling

and Analysis MMA 2008, 4 - 7 June, 2008, Tartu (Kääriku), Estonia.

6. E. Gaidamauskaitė, R. Baronas. Modelling a Peroxidase-based Fluores-

cent Biosensor. 22nd European Conference on Modelling and Simulation ECMS

2008, 3 - 6 June, 2008, University of Cyprus, Nicosia, Cyprus.

7. E. Gaidamauskaitė, R. Baronas. Computational Modelling of Rotating

Disc Enzyme Electrode. 20th Nordic Seminar on Computational Mechanics,

23-24 November, 2007, Chalmers University, Göteborg, Sweden.

8. E. Gaidamauskaitė. The Development of Computer Models for Biosensors.

XIII International Scientific IT Conference, Kompiuterininkų dienos - 2007, 13-

15 Semptember, 2007, Panevėžys, Lithuania.

9. E. Gaidamauskaitė. The Development of Computer Models for the Bio-

sensors. PhD Summer School "Formal Methods for System Analysis in Inform-

atics", 13-19 May, 2007, Druskininkai, Lithuania.

10. E. Gaidamauskaitė, R. Baronas. Automatizuotas biojutiklių kompiuterinių

modelių sudarymas (The development of computer models for ampero-

metric biosensors). Informacinės technologijos 2007, 31 January - 1 February,

2007, KTU, Kaunas, Lithuania.
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11. E. Gaidamauskaitė, R. Baronas. Baigtinių skirtumų metodo taikymas bio-

jutiklio veiksmui modeliuoti. Informacinės technologijos 2006, 25-26 Janu-

ary, 2006, KTU, Kaunas, Lithuania.

Structure of the Thesis

The thesis is organized as follows. Chapter 1 discusses common biosensor

types, defines a framework for the mathematical handling of the problem, over-

views the literature and tools of computer modeling. Chapter 2 presents math-

ematical models of multi-step biosensors: a peroxide-based optical biosensor

and a synergistic laccase-based biosensor. An automated solver is proposed in

Chapter 3. Several types of finite difference schemes are compared and verified

against known analytical solutions. In Chapter 4 we continue with the results

of computational modeling of multi-step biosensors. We focus on analyzing

the dimensionless sensitivity of the biosensor. Finally, in last Chapter 5, we

conclude on our results and answer the research questions.

8



Chapter 1

Theoretical Framework

The precursor of today’s biosensors was first presented in the early sixties. The

concept of enzymatic electrochemical monitoring of glucose was established

by Clark and Lyons [38] and soon modified by Updike et al. [140]. Enzyme-

based glucose sensors work on the principle of detection of hydrogen peroxide

(H2O2) formed by the oxidation of glucose (eq. 1.1). The H2O2 is electrochem-

ically oxidized under an applied potential of 0.7 V, and the current measured is

related to the concentration of glucose in the system (eq. 1.2).

Glucose + O2

Glucose oxidase
−−−−−−−−→ Gluconic acid + H2O2, (1.1)

H2O2

0.7 V
−−→ 2H+ + O2 + 2e−. (1.2)

Biosensors

Bioreceptor Transducer

Antibodies, antigens

and aptamers
Enzyme DNA, RNA

Cells Receptors Tissues

Optical Electrochemical

Acoustic Thermal

Figure 1.1: Biosensor classification schemes.
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This biosensor represents a class of electrochemical sensors. Nowadays, bio-

sensors comprise a huge variety of different devices. Contemporary biosensors

are generally classified according to the biological material (see Fig.1.1). They

can also be classified based upon the transduction methods they employ. These

types are discussed in greater detail below.

1.1 Classification of Biosensors According to Biore-

ceptor System

With respect to the bioreceptor that recognizes the target analyte, biosensors

can be classified into (1) affinity sensors, when non-covalent interactions like

antibody-antigen reactions or DNA strand hybridization are involved, and (2)

catalytic or enzyme sensors, when the target analyte is the enzyme substrate,

or it can be detected by measuring the signal produced by one substrate or

product of the enzymatic reaction involving the analyte [22].

Biomolecules such as enzymes, antibodies, antigens, nucleic acids, membranes,

receptors, organelles and microorganisms as well as animal and plant cells or

tissues have been used as biological sensing elements [89]. The enzyme, anti-

body and DNA/RNA biosensors will be discussed in more detail as their spe-

cificity for the natural substrates makes them the first candidates to be incor-

porated as the biorecognition element.

1.1.1 Enzyme biosensors

Enzymes catalyze reactions with a high degree of specificity, and the products

of these reactions (or of reactants consumed) are detected directly if electroact-

ive, colored or luminescent, or by using optical transducers. Though it would

be desirable to directly detect changes in the enzyme substrate or in one re-

action product, most of the analytes are not natural substrates of the enzymes

carrying out these conversions. Therefore, the coupled enzymatic reactions are

10
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used following the one where analyte participates, to finally produce a spe-

cies detectable optically or electrochemically. The design below has been pro-

posed by Conrath to detect inorganic phosphate [39]. The coupled reaction are

shown in equations (1.3) to (1.6). They ultimately produce hydrogen peroxide,

the species that is electrochemically transformed at the electrode to generate an

amperometric signal.

maltose + Pi
maltose phosphorylase
−−−−−−−−−−−−→ α-D-glucose + β-D-glucose-1-P, (1.3)

α-D-glucose mutarotase
−−−−−−→ β-D-glucose, (1.4)

β-D-glucose
glucose oxidase
−−−−−−−−→ glucuronic acid + H2O2, (1.5)

β-D-glucose-1-P
acid phosphatese
−−−−−−−−−→ β-D-glucose + Pi. (1.6)

In this interesting example, the signal is not only amplified by the extra amount

of substrate rendered by the acid phosphatase using a "side product", but also

by recycling the analyte.

1.1.2 Antibody-antigen biosensors

Biosensor technology makes use of specific interactions between an antibody

and an antigen. When the analyte of interest is an antigen it is possible to

use the complementary antibodies as capturing molecules in the bioreceptor

system [106, 148]. Antibodies reactive exclusively with their corresponding

antigens, confer a remarkable specificity of the device.

Figure 1.2A depicts the competitive immunosensor format, where the target

analyte competes with the labelled antigen for the biorecognition sites of the

antibody attached to the electrode. Then the system is rinsed and the substrate

labeled with redox enzyme is added. The resulting product is transformed at

the electrode, leading to a detectable current. In this competitive assay, the

signal diminishes as the analyte concentration increases.

11
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Capturing antibody

Electrode

target analyte

labelled-analyte

Substrate

Enzyme Product

e-

Electrode

Substrate

Enzyme Product

Capturing antigen

target analyte

enzyme labelled
secondary antibody

e-

A B

Figure 1.2: The working principle of the antibody-antigen biosensors (adopted
from [22]). (A) A competitive immunoassay format to detect an antigen. (B) An
indirect immunoassay format to detect a specific antibody.

When the analyte is an antibody, which is usually the case when diagnosing an

infection, another immunological assay scheme can be performed, similar to

that used to detect antigens [115]. This method specificity relies on the select-

ive molecular recognition of the antibodies generated by the infected patients

toward specific antigens, appropriately immobilized on an electrode. The as-

say is followed by a second reaction where the specific antibody reacts further

with secondary antibody conjugated with an enzyme label, used to reveal up to

which extent the first immunological reaction took place. When the substrate of

the enzyme covalently coupled to the secondary antibody is added, the result-

ing current is measured indicating the presence of the analyte in the sample. In

this case, one expects the signal to increase with the analyte concentration. Fig-

ure 1.2B illustrates the working principle of an indirect immunoassay format

with amperometric detection.

Recently, aptamers have also been used as analyte-capturing species [96, 119,

151]. Aptamers are artificial specific oligonucleotides, DNA or RNA, with the

ability to bind to non-nucleic acid target molecules, such as peptides, proteins,

drugs, organic and inorganic molecules or even whole cells, with high affin-

ity and specificity [22]. Numerous clinically related aptamer-based biosensors

have been designed, as for example, an aptasensor for cocaine [6].
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1.1.3 DNA/RNA biosensors

DNA and RNA strands are excellent candidates to be used as recognizing ele-

ments, due to the specific base-pairing interactions between complementary

sequences [47, 123]. In a typical configuration of DNA- or RNA-based bio-

sensors, a single-stranded nucleic acid sequence is anchored within the recog-

nition layer, where the base-pairing interactions recruit the target analyte to the

surface (Fig. 1.3).
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Figure 1.3: The general design of the DNA- or RNA-based biosensors (adopted
from [47]).

There are a number of strategies to detect hybridization (optical, mechanical

or electrochemical). The simplest strategy to detect nucleic acid hybridiza-

tion relies on monitoring the direct oxidation/reduction of nucleotide bases

(guanine). Another strategy to monitor DNA or RNA hybridization employs

labelled-complementary DNA or RNA strands. Labels may include enzymes

or electroactive molecules. Clinical applications using DNA- or RNA-based

biosensors include devices useful to determine the markers of pathogenic bac-

teria [91], virus DNA such as that of SARS virus [1].
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1.2 Classification of Biosensors According to Tras-

ducer

Biosensors are also classified according to the parameter that is measured by

the physicochemical transducer of the biological event. Thus, classically bio-

sensors are grouped into optical, electrochemical, acoustic, thermal ones [145].

Special emphasis will be placed on the description of electrochemical and op-

tical transducing principles.

1.2.1 Electrochemical enzyme biosensors

Electrochemical biosensors are ideally suited to analyze the content of a biolo-

gical sample due to the direct transformation of a biological event to an elec-

tronic signal [60, 147]. Electrochemical sensors have some remarkable advant-

ages, such as low-cost, portability and simplicity of use, over the conventional

analytical methods [149]. Other notable advantages of electrochemical bio-

sensors are their robustness, compactness, good detection limits, even with

small analyte volumes, and ability to be used in turbid analyte samples with

optically absorbing or fluorescing interfering compounds. On the other hand,

electrochemical sensors have some limitations: electrochemically active sub-

stances in the sample, poor stability, and complicated electron transfer. Elec-

trochemical biosensors are based on potentiometric, amperometric and imped-

imetric transducers [111].

Potentiometric sensors rely on the measurement of potential difference between

the reference electrode and the working electrode without polarizing the elec-

trochemical cell, that is, zero or no significant current flows between the elec-

trodes. The working electrode acquires a variable potential depending on the

concentration of a certain analyte in solution. For potentiometric measure-

ments, the relationship between the concentration and the potential is gov-

erned by the Nernst equation [60, 111, 122, 149, 157]. Currently, semiconductor

based especially ISFETs (ion-sensitive field effect transistors) and LAPS (light

addressable potentiometric sensor) transducers are more common [111].
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Amperometric biosensors are quite sensitive and more suited for commercial-

ization than the potentiometric ones [60, 93, 148]. Amperometry is a method

of electrochemical analysis in which the signal of interest is a current that is

directly proportional to the concentration of the analyte. Generally, the cur-

rent is measured at a constant potential and this is referred to as amperometry.

If a current is measured during controlled variations of the potential, this is

referred to as voltammetry. As certain chemical compounds are oxidized or

reduced (redox reactions) at inert metal electrodes, electrons are transferred

from the analyte to the working electrode or vice versa. Electrochemical sens-

ing, besides the working (or redox) electrode, usually requires a reference elec-

trode and a counter or auxiliary electrode. Voltage is applied between the refer-

ence and the working electrodes, and current flows between the working and

the auxiliary electrodes. Due to the different electron transfer process, there

are three so-called "generations" of biosensors [147, 149]. First generation bio-

sensors are based on the natural enzyme substrates or products (mostly oxy-

gen). Second generation biosensors involve artificial redox mediators (mostly

dye molecules) between the reaction and the transducer [62]. The other ap-

proach is based on the direct electron transfer of proteins (third generation bi-

osensors).

Impedimetric biosensors are less frequent compared to potentiometric and am-

perometric biosensors [111]. Impedimetric biosensors follow either impedance

or its components resistance and capacitance. The inverse value of resistance is

called conductance and for this reason some investigators name such systems

as conductometric. Impedance biosensors include two electrodes with applied

alternating voltage. An example of such a system could be an enzymatic re-

action producing ionic compounds. The released ions are able to provide a

significant increase of impedance and, thus, a measurable signal. The main dis-

advantage of impedance biosensors are false positive results due to electrolytes

from the samples. Recent progress in the application of electrochemical sensors

to analysis of clinical chemicals, food samples and environmental samples is re-

viewed in [108, 116, 149].
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1.2.2 Optical enzyme biosensors

This subsection describes sensors and systems where the information is ob-

tained by the measurement of photons (rather than electrons as in the case of

electrochemical biosensors). Optical biosensors are known to be suitable for

biomedical research, healthcare, pharmaceuticals, environmental monitoring,

homeland security [28, 139]. They are irresponsive to electromagnetic interfer-

ence, and can employed for multiplexed detection within a single device.

Optical biosensors can be used with many different types of spectroscopies

(e.g., absorption, fluorescence, phosphorescence, Raman, refraction, dispersion

spectrometry) to estimate different spectrochemical properties of target ana-

lytes [145]. The properties that are measured by optical biosensors include:

• amplitude,

• energy,

• polarization,

• decay time,

• phase.

Amplitude change derived from absorption, reflection, or other transmission

loss mechanisms produces changes in the intensity of the impinging light [113].

The change of energy (or frequency) of the electromagnetic radiation might

provide information about changes in the local environment surrounding the

analyte, its molecular vibrations (e.g. Raman spectrometry), or the formation

of new energy levels. The interaction of a free molecule with a fixed surface

can often be measured with polarization detection. When a target molecule is

bound to a fixed surface of optical biosensor, the emitted light remains polar-

ized. However, the polarization of emitted light from a free molecule in solu-

tion is usually random. The decay time of fluorescence or phosphorescence can

also be used to gather information about local molecular environment of target

analytes. The refractive index may change when the analyte binds to a surface.

Therefore, the phase of the emitted radiation is altered and this property can be

exploited to quantify the amount of analyte.
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Moreover, optical biosensors can be classified according to the detection proto-

cols: fluorescence-based detection and label-free detection [51]. In fluorescence-

based detection, either target molecules or biorecognition molecules are labeled

with fluorescent tags, such as dyes. The intensity of the fluorescence emit-

ted indicates the presence of the target molecules and the interaction strength

between target and biorecognition molecules. An extra step is required for the

biomolecule to be covalently labeled and this might interfere with the function

of a biomolecule. As the number of optical labels on each molecule cannot be

precisely controlled, the fluorescence signal bias may arise and hinder quant-

itative analysis. On the other hand, fluorescence-based detection is extremely

sensitive, with the detection limit down to a single molecule and enables the

analytical wavelengths to be shifted to almost any desired value [104]. Cur-

rently, the luminescent nanoparticles are often used as fluorophores. In con-

trast, in label-free detection, target molecules are not labeled or altered. The

intrinsic optical property of the biomolecule as a result of its interaction with

the target analyte is exploited. Although, such sensors are not numerous be-

cause their sensitivity is usually low, this type of detection is relatively easy

and cheap to perform. In the label-free optical detection, there exist a number

of detection methods, including the measurement of refractive index change

induced by molecular interactions, optical absorption detection, and Raman

spectroscopic detection [51, 113, 145].

Although biosensing devices employ a variety of recognition elements, pre-

dominantly used detection technique is based on enzymes. Therefore, a short

description of the enzyme kinetics is introduced.

1.3 Enzyme Kinetics

The essential characteristic of enzyme action is catalysis [26, 49, 65, 90, 103, 135,

138, 141]. An enzyme enhances the rate of the reaction it influences. The cata-

lysts is not consumed as a result of the reaction, nor does it alter the equilibrium

constant [17, 23].

Michaelis and Menten proposed that enzymes take part in reactions as shown
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in the following equation,

E + S
k1

⇄
k2

ES
k3

⇄
k4

E + P, (1.7)

where E stands for enzyme, S for substrate, P for products and ES for the

enzyme-substrate complex [31, 102]. In this two-step reaction the enzyme com-

bines with substrate to form the complex, which can either dissociate again

into unchanged substrate and enzyme or go on to the second step and form the

products and unchanged enzyme. The reverse of the second step would lead to

the synthesis of ES from enzyme and products, but this process can generally

be ignored unless the products are allowed to accumulate. On that assumption

we can say that the initial rate of formation of the product will be given by the

rate equation

v = k3ES, (1.8)

where v is equal to the rate of product formation and ES is the concentra-

tion of the enzyme-substrate complex. It is impossible to measure ES directly.

However, it is clear that the total concentration of enzyme, E, will be the sum

of the concentration of the complex, ES, and of the the free enzyme. Assum-

ing also that the total substrate concentration, S, is much greater than E, we

can then ignore the amount of S which is present in the ES complex. For the

steady state overall process, the rate of formation of the enzyme-substrate com-

plex will equal its rate of breakdown. This can be expressed in a steady-state

equation,
(E − ES)S

ES
=

k2 + k3

k1

= KM , (1.9)

where KM is the Michaelis constant, which is equal to the substrate concentra-

tion necessary to develop one-half the maximum rate. Rearranging (1.9) equa-

tion and substituting it for the rate equation (1.8) gives

v = k3

E × S

KM + S
. (1.10)

The rate of the reaction will reach a maximum when the substrate concentra-

tion will be high enough so that all the enzyme will be in the form of enzyme-
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substrate complex,

Vmax = k3E. (1.11)

The expression for the rate of the reaction is called Michaelis-Menten equation:

v =
VmaxS

KM + S
. (1.12)

The equation (1.12) describes the quantative relationship between reaction rate

and substrate concentration, as illustrated in the Figure 1.4.

KM
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½Vmax
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V
e
lo

c
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Figure 1.4: Relationship between substrate concentration and the velocity of
an enzyme-catalyzed reaction. As the substrate concentration is increased, the
velocity of the reaction approaches a maximum value.

1.4 Diffusion Equation

The conventional reaction mechanism in electrochemistry involves two steps:

(i) enzyme reaction and (ii) diffusion of the reagents. Reactions are said to be

diffusion-controlled when the diffusion steps take much longer than the reac-

tion steps.

The diffusion processes are described by Fick’s laws [44, 50, 61]. They were

formulated in 1855 by A. Fick based on the analogy with heat conduction pro-

cesses [53]. Fick’s laws describe the diffusion phenomenologically without
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claiming that it derives from basic microscopic concepts and corresponds to

the free systems of weakly-interacting particles. It is, however, indicative of the

importance of Fick’s description that all subsequent developments have in no

way affected the validity of his method.

Fick’s first law describes the diffusion in a steady-state condition. According to

this law diffusion flux density j is proportional to the concentration (C) gradi-

ent:

j = −D
∂C

∂x
. (1.13)

This equation is written for the case of one-dimensional system and proportion-

ality constant D is the material-dependent diffusion coefficient. Fick’s second

law is the basis of most diffusion measurements and describes diffusion in

a non-steady-state condition when the concentration changes with time, but

particles are neither created nor destroyed,

∂C

∂t
= D

∂2C

∂x2
. (1.14)

The second Fick’s law (1.14) can be derived from the first Fick’s law taking into

account the particle balance relationship:

∂C

∂t
= −

∂j

∂x
. (1.15)

Assuming the diffusion coefficient to be a space-independent we receive the

diffusion equation (1.13). The influence of the space dependence of diffusion

coefficient on the biosensor response was investigated in recent work [6A]. Par-

tial differential equations generally can be divided into three categories: para-

bolic, elliptic and hyperbolic (see Fig. 1.5). Some examples of such classes

include diffusion, poisson and wave equations [86, 120, 142]. The focus of this

work will be on the nonlinear parabolic partial differential equations as they

describe physical processes in the biosensors.
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PDE

Parabolic Elliptic Hyperbolic

Diffusion equation Poisson equation Wave equation

Figure 1.5: Classification of partial differential equations (PDEs).

1.5 Reaction - Diffusion Equation

The standard scheme of classical (amperometric, optical) biosensors usually

consist of a continuous alternating diffusion and enzyme layers. The action of

these biosensors can be described combining previously introduced reaction

and diffusion members. Together they form a non-linear differential equation

for the substrate and product concentrations,

∂C

∂t
= D

∂2C

∂x2
+

VmaxS

KM + S
, (1.16)

here C corresponds to the concentration of the substrate (S) or the product (P ).

The latter equation can be relatively easy generalized for the complex geometry

biosensors taking into account additional spatial coordinates. However, a one-

dimensional approximation can be applied for the majority of biosensor mod-

els. Therefore, a one-dimensional approximation was also used in this thesis.

To solve partial differential equations, initial and boundary conditions (Dirich-

let and/or Neuman) must be defined.

The general analytical solution for the nonlinear differential equations cannot

be obtained. The following solutions are available only in extreme cases, when

the non-linear equation can be linearized. The linearization of the reactions -

diffusion kinetic equation can be performed for the extreme values of the sub-

strate concentration - high or low in comparison with the Michaelis - Menten

constant KM . For the low-concentration case (S0 ≪ KM ), the enzymatic reac-

tion rate is directly proportional to the substrate concentration,

VmaxS

KM + S
≈

Vmax

KM

S, when S ≪ KM . (1.17)

21



Theoretical Framework

In the high-concentration case (KM ≪ S0), the diffusion process becomes more

kinetically dominant, and the enzymatic reaction rate is,

VmaxS

KM + S
≈ Vmax, when S ≫ KM . (1.18)

Exact solutions are helpful in testing models and assessing accuracy of the solu-

tion.

A more detailed description on the previous applications of the reaction-diffu-

sion equations for the modeling of the biosensor action can be found in mono-

graphs and review articles [17, 125].

1.6 Numerical Approaches of Enzyme Kinetics Mod-

eling

1.6.1 Finite difference method

Analytical solutions of reaction-diffusion equations are limited to simplified

cases of concentrations and geometry. Problems that incorporate more realistic

settings can only be solved by numerical methods. One of the most widely

used numerical techniques is the Finite Difference method [17, 86, 120, 142].

Let us consider a rectangular uniform mesh of intersecting lines in space and

time (0 ≤ x ≤ d, 0 ≤ t ≤ T ),

Ωhτ = {(xi, tj) : xi = ih; tj = jτ ; hN = d; τM = T ; i = 0, ..., N ; j = 0, ..., M}.

(1.19)

We define the constants h and τ to be the mesh sizes in the x and t directions,

respectively (see Fig. 1.6). The functions of the continuous arguments u(x, t)

are replaced by the functions of the discrete arguments uj
i at mesh points.

Derivatives in the partial differential equation are approximated by linear com-

binations of function values at mesh points. The definition of a function’s first
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derivative u′(x) is used to approximate derivatives,

u′(x) = lim
h→0

u(x + h) − u(x)

h
. (1.20)

The numerical solution drops the limit, approximating the derivative with a

finite change of u over a finite h,

u′(x) ≈
u(x + h) − u(x)

h
. (1.21)

To estimate the accuracy of this approximation let us consider Taylor Series

expansion to find u(x + h), assuming all necessary derivatives exist:

u(x + h) = u(x) + hu′(x) +
1

2
h2u′′(x) +

1

3!
h3u′′′(x) + ... . (1.22)

If we re-arrange equation (1.22) to solve for u′(x), we get

u′(x) =
u(x + h) − u(x)

h
−

1

2
hu′′(x) −

1

3!
h2u′′′(x) − ... . (1.23)

Ignoring the remainder term in equation (1.23) we obtain approximation (1.21).

Hence, the error introduced by using finite differences is O(h).

Similarly, to approximate the second derivative we use the formula:

u′′(x) ≈
u(x − h) − 2u(x) + u(x + h)

h2
. (1.24)

The approximation error obtained from the Taylor expansions for the second

derivative is O(h2) [17].

1.6.1.1 The explicit difference scheme

There are many finite difference schemes that can be considered to solve PDEs.

The simplest and most straightforward technique is Explicit Difference scheme

[17, 32, 120].
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Figure 1.6: Finite difference schemes. (A) Explicit finite difference scheme. (B)
Implicit finite difference scheme. (C) Crank-Nicolson finite difference scheme.
(D) Hopscotch finite difference scheme.

Definition 1.6.1. The method is called explicit if it gives value of the solution

on the upper layer explicitly in terms of values at lower layer, otherwise it is

called implicit. �

We will demonstrate explicit scheme on diffusion problem (1.14). The diffusion

equation can be approximated by this difference equation,

uj+1

i − uj
i

τ
= D

uj
i+1 − 2uj

i + uj
i−1

h2
. (1.25)

The equation (1.25) involves three mesh points on tj layer and one mesh point

on tj+1 layer as shown in Fig. 1.6A. The major advantages of explicit finite

difference scheme are it’s simplicity and low computational cost. However,
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the main flaw is that this scheme is conditionally stable, the required condition

being,

D
τ

h2
≤

1

2
. (1.26)

Oscillation will occur if this condition is not satisfied.

Definition 1.6.2. The scheme is called stable if it does not magnify initial errors

that arise during the course of the calculation. �

1.6.1.2 The implicit difference scheme

In an implicit difference scheme (1.6B), the spatial derivative term ∂2C/∂x2 in

equation (1.14) is evaluated at the new time step [17, 32, 120],

uj+1

i − uj
i

τ
= D

uj+1

i+1 − 2uj+1

i + uj+1

i−1

h2
. (1.27)

As a result, we have to solve a linear system of equations at each time level.

The very important feature of implicit finite difference scheme is that there are

no restrictions on the ratio of mesh steps. The implicit method is second order

accurate in space, but only first order accurate in time (i.e., O(h2 + τ)).

The diffusion problem is tridiagonal, that is, all the elements of the coefficient

matrix of the system of equations is zero except for the three central diagonals.

Such problems may be efficiently solved with the tridiagonal matrix algorithm

(see Section 1.6.2).

1.6.1.3 The Crank-Nicolson Difference scheme

Another implicit, therefore unconditionally stable, scheme is Crank-Nicolson

[17, 43, 120]. The Crank-Nicolson method is based on average in time of explicit
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and implicit schemes (Fig. 1.6C),

uj+1

i − uj
i

τ
=

D

2

(

uj+1

i+1 − 2uj+1

i + uj+1

i−1

h2
+

uj
i+1 − 2uj

i + uj
i−1

h2

)

. (1.28)

Crank-Nicolson scheme is second order accurate both in space and in time (i.e.,

O(h2 + τ 2)).

1.6.1.4 The Hopscotch Difference scheme

The Hopscotch scheme consists of two phases [48, 120]. In the first phase the

odd-numbered mesh point are calculated explicitly by the scheme (1.25) as rep-

resented in Fig. 1.6D by a solid line. For the second phase at the same time layer

the even mesh points are calculated implicitly (Fig. 1.6D, dotted line) by equa-

tion (1.27). Subsequent computation of time layers continues alternating the

calculation order of the odd and even points.

Hopscotch scheme is fully explicit yet unconditionally stable.

1.6.2 Tridiagonal matrix algorithm

An approximation of one dimensional in space reaction-diffusion equation by

implicit finite difference scheme results in a tridiagonal matrix. The tridiagonal

system is written as:
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The solution for the xi in this matrix system is due to Llewellyn Thomas and

is known as the Tridiagonal Matrix Algorithm (TDMA) [2, 36, 86, 142]. The

method is based on an application of Gaussian elimination and consist of two

phases: a forward elimination and a backward substitution. The method begins

by forming coefficients pi, qi and ui as follows (i = 1, ..., n):

pi = aiqi−1 + bi, (1.30)

qi = −ci/pi, (1.31)

ui = (di − aiui−1/pi). (1.32)

The initial values being q0 = 0 and u0 = 0.

In the backward substitution phase the values of xi can be calculated from the

following equation:

xk = qkxk+1 + uk, k = n − 1, ..., 1, xn = un. (1.33)

The tridiagonal matrix algorithm is only applicable to matrices that are diag-

onally dominant, i.e.,

|bi| ≥ |ai| + |ci|, i = 1, ..., n. (1.34)

This condition is satisfied for the finite difference approximation of one-dimen-

sional reaction-diffusion equations.

The algorithm requires O(n) operations instead of O(n3) required by Gaussian

elimination [64]. Although it is more computationally intensive than the work

required for an explicit solver, the time step can be increased significantly.
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1.7 Computational Modeling of Biosensors

A range of software packages are available for biochemical modeling [75]. Due

to this variety of tools many input data formats are utilized hindering exchange

of the computational models. To address this problem a few standardized lan-

guages for representing and exchanging models between simulation tools were

proposed [67, 134].

1.7.1 Model representation

Nowadays, the Systems Biology Markup Language (SBML) is considered a

standard representation format for quantitative and qualitative biochemical

models [54, 70]. SBML is an XML based language for representing models

of biological processes. Adopting SBML format enables straightforwardly de-

scribe a biological process by means of compartments, species, reactions, para-

meters, unit definitions and rules. The editions of SBML are called levels, where

each level extends the set of features of the language [54, 70]. All of the con-

structs of lower level can be mapped to the higher level. The distinct SBML

levels are supposed to coexist. There are currently three levels of SBML defined.

In 2001 Caltech team issued a specification for SBML Level 1, which described

fundamental features that are common to all biochemical network models [66].

The main conceptual elements in SBML are the interacting chemical substances

(Species), how these substances participate in reactions (Reaction) and the reac-

tion environment (Compartment). A compartment is an area of a particular type

and finite size. There is one required attribute for a compartment element, id,

to give it a unique identifier by which other parts of an SBML model definition

can refer to it. A compartment can also have an optional size attribute repres-

enting a length of a compartment (if the compartment is one-dimensional). A

model may contain multiple compartments.

The species element has two required attributes: id and compartment. Species

must be defined once for every compartment where they are present.

28



Theoretical Framework

<?xml version="1.0" encoding="UTF-8"?>
<sbml level="2" version="4" xmlns="http://www.sbml.org/sbml/level2/version4">

<model id="EnzymaticReaction">
<listOfCompartments>

<compartment id="enzymelayer" size="1e-4"/>
</listOfCompartments>
<listOfSpecies>

<species compartment="enzymelayer" id="ES" initialConcentration="0" name="ES"/>
<species compartment="enzymelayer" id="P" initialConcentration="0" name="P"/>
<species compartment="enzymelayer" id="S" initialConcentration="1e-20" name="S"/>
<species compartment="enzymelayer" id="E" initialConcentration="5e-21" name="E"/>

</listOfSpecies>
<listOfReactions>

<reaction id="veq1">
<listOfReactants>

<speciesReference species="E"/>
<speciesReference species="S"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="ES"/>
</listOfProducts>

</reaction>
<reaction id="veq2">

<listOfReactants>
<speciesReference species="ES"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="E"/>
<speciesReference species="P"/>

</listOfProducts>
</reaction>

</listOfReactions>
</model>

</sbml>

Figure 1.7: SBML Level 2 model, describing the enzyme kinetics.

Reactions are defined using lists of participating reactants and products, along

with optional parameters. Just as with other objects in SBML, there is a man-

datory attribute id.

The parameter element is used in SBML to associate a name with a value, so

that the name can be used in mathematical formulas in place of the value. The

parameter element has one required attribute, id. The optional attribute value is

of type double and defines the numerical value assigned to the parameter.

In addition, user can specify more detailed features to the objects of an SBML

model, place restrictions on them and link SBML descriptions to complement-

ary information about the objects in databases.

It took 6 years to finalize the next level of SBML from 2002 to 2008 [68]. The

main changes introduced by that edition was MathML usage for mathematical
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expressions, support for metadata and named function definitions. A simple

example of a model of enzyme kinetics (1.7) in SBML Level 2 is given in Figure

1.7.

The current SBML Level 3 was published in 2010 with a number of significant

changes in syntax and constructs [69]. The models defined in SBML Level 3

have modular structure. The core set of features are based largely on SBML

Level 2. The extension packages, like "Layout", "Hierarchical Model Composi-

tion" and "Spatial Processes", can be layered on top of the Core. Currently, only

the Core specification was issued and various packages are being developed

for SBML Level 3.

SBML is not intended to be read by users or written by hand. The content of

it can be viewed by reporting tool SBML2Latex which overviews an SBML file

[46].

To facilitate the development of new tools and to integrate the existing tools

specialized library libSBML is available [29]. It provides an application pro-

gramming interface (API) for reading, writing and manipulating data in SBML

format. Moreover, the packages for working with SBML in Mathematica and

MATLAB, respectively MathSBML and SBMLToolbox are available [73, 129].

CellML is another open standard based on the XML to represent biological

structures and processes [58, 63]. A CellML model is described as a network

of components related to one another. Components may contain units defini-

tions, variables, mathematical expressions, metadata and reactions. However,

it should be noted, that the use of the reaction element is currently discouraged

as there are ongoing discussions regarding removal of reactions from the future

CellML specifications.

1.7.2 Model generation

XML editing requires knowledge of XML technology and it can be quite cum-

bersome [24]. This is a drawback, especially for a user who needs to specify

complex biochemical reactions [35, 98]. Instead, software tools that provide

higher-level interfaces to reading, writing, and manipulating XML should be
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used. Moreover, there has been an initiative to develop and standardize a

human-readable graphical representations for applications in systems biology.

Such an effort, named Systems Biology Graphical Notation (SBGN), was de-

veloped by a community of biochemists, modelers and computer scientists

[76, 87]. SBGN proposes three complementary types of diagrams: process dia-

gram, entity relationship diagram and activity flow diagram, that can be used

as three alternative descriptions of the same biological system. For instance, the

model of enzyme kinetics (1.7), expressed in SBML in Fig. 1.7, can be presented

diagrammatically using SBGN process diagram (see Fig. 1.8). There is a num-

enzymelayer

S

P

ES

E

Figure 1.8: SBGN process diagram describing a simple enzyme-catalyzed re-
action.

ber of software packages that provide support to SBML and SBGN [87, 131].

Most of these tools can read in, create, visualize and export a model expressed

in SBML. Freely available (open source), platform independent applications

like BioUML, CellDesigner, Cellware and others allow to simulate a model by

constructing a system of ordinary differential equations and solving them nu-

merically [45, 56, 78].

Nevertheless, the actual structure and reaction schemes applied in biosensor

are not supported fully. Biosensors as the specific technical devices with elec-

trical or optical signal transduction are not completely covered by SBML that is

primarily designed for the cell-biological processes. In addition, the simulators

mentioned above are based on solving ordinary differential equations without

diffusion.
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1.8 Conclusions

Contemporary biosensors present a huge variety of different appliances. They

are generally classified according to the biological material or by the transduc-

tion methods they employ. The standard description of the biosensor action

is based on the reaction-diffusion equations. The diffusion process is gov-

erned by the Fick’s second law and for the description of the reaction kinetics

a Michaelis-Menten approach is applied. It is impossible to find a general ana-

lytical solutions for the reaction-diffusion equations. In order to enable a com-

putational modeling of the biosensor action a numerical methods usually are

applied. A number of computational tools are available for the practical mod-

eling of the reaction-diffusion kinetics. However, these tools are not suitable

for the general investigation of the any possible biosensor. Numerical schemes

presented in these packages are also not optimized for the large-scale calcu-

lations. Moreover, Michaelis-Menten approach can not be applied for the de-

scription of the multi-step reactions.

32



Chapter 2

Mathematical Models of Multi-Step

Biosensors

A number of characteristics are important in the development of actual bio-

sensors [42, 124, 139, 152]. To improve the productivity as well as the effi-

ciency of the biosensor design, a model of the biosensor should be built [3, 132].

Mathematical models have been widely used to study and optimise analyt-

ical characteristics of the biosensors [11, 14, 17, 21, 71, 72, 79, 100, 126]. A

wide range of contemporary biosensors involve a multi-step chemical reac-

tions [124, 139, 152]. Reaction kinetics in such devices can be mathematically

described only by the full mass transport rate equations. This chapter presents

a mathematical models of the two multi-step biosensors: peroxidase-based op-

tical and laccase-based synergistic biosensors [1A, 4A].

2.1 Peroxidase-based Optical Biosensor

Optical biosensors are known to be suitable for environment, clinical and in-

dustrial purposes [152]. Those devices allow real-time analysis of molecular

interactions without labelling requirements [88]. Optical biosensors have been

used to study interactions involving a wide range of interacting partners, from
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drugs and viruses to peptides, proteins, oligonucleotides, carbohydrates, and

lipids [109, 110, 121, 133, 153].

The understanding of the kinetic peculiarities of biosensors is of crucial import-

ance for their design. To improve the productivity as well as the efficiency of

biosensors design and to optimize the biosensors configuration a model of real

biosensors should be build [41, 52]. Starting from seventies various mathemat-

ical models of biosensors have been developed and used to study and optimise

analytical characteristics of electrochemical biosensors [8, 9, 12, 13, 15, 16, 19,

79, 80, 94, 95, 100, 112, 126, 155]. A comprehensive study of the mathematical

modeling of amperometric biosensors is given in [125]. Mathematical mod-

eling in the design of optical biosensors has been applied in individual cases

only [101, 117].

2.1.1 Modeling biosensor

The biosensor comprises an enzyme layer immobilized on the reflective sur-

face, laser and detector. Laser is used as the emitted light source. Also, the

diffusion layer where the flux of the analyte takes place is also considered (see

Fig. 2.1).

Laser Detector

Analyte

Enzyme

Figure 2.1: Schematic representation of peroxidase-based optical biosensor.

We consider the reaction scheme of the optical biosensor involving hydrogen

peroxide (H2O2) reaction with peroxidase (E) to form compound I (cmpI) and
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water (H2O) with the constant reaction rate k1 [3A, 4A, 7A]. The compound I

interacts with the substrate (S) to form product (P) and free enzyme (E) assum-

ing the constant reaction rate k2 (see Fig. 2.2),

E + H2O2

k1−→ cmpI + H2O, (2.1)

cmpI + S k2−→ E + P. (2.2)

H2O2

H2O

P

S

cmpl

E

Reflective sensor surface

Figure 2.2: Reaction scheme of peroxidase-based optical biosensor.

The product (P) absorbs light and therefore the response of the biosensor in-

creases during the reaction as the product forms. The concentration of the ana-

lyte (S) can be directly determined from the absorbance of the product (P) [145].

2.1.2 Mathematical model

Governing equations

Assuming the symmetrical geometry of the biosensor and homogeneous dis-

tribution of immobilized enzyme, the mass transport and the reaction kinetics

in the enzyme layer can be described by the following system of the reaction-

diffusion equations (0 < x < d, t > 0),

∂Se

∂t
= DSe

∂2Se

∂x2
− k2CSe, (2.3)
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∂Pe

∂t
= DPe

∂2Pe

∂x2
+ k2CSe, (2.4)

∂He

∂t
= DHe

∂2He

∂x2
− k1EHe, (2.5)

∂E

∂t
= −k1EHe + k2CSe, (2.6)

∂C

∂t
= k1EHe − k2CSe, (2.7)

where x and t stand for space and time, Se(x, t), Pe(x, t), He(x, t), E(x, t), C(x, t)

are the substrate, product, hydrogen peroxide, peroxidase and compound I

concentrations in the enzyme layer, d is the thickness of the enzyme layer, and

DSe, DPe, DHe are the diffusion coefficients. The enzyme and the formed com-

pound I are immobilized and therefore there are no diffusion terms in the en-

zyme and compound I equations.

Outside the enzyme layer only mass transport by diffusion of the substrate,

product and hydrogen peroxide takes place. We assume that the external mass

transport obeys a finite diffusion regime (d < x < d + δ, t > 0),

∂Sb

∂t
= DSb

∂2Sb

∂x2
, (2.8)

∂Pb

∂t
= DPb

∂2Pb

∂x2
, (2.9)

∂Hb

∂t
= DHb

∂2Hb

∂x2
, (2.10)

where δ is the thickness of the diffusion layer, Sb(x, t), Pb(x, t), Hb(x, t) are the

substrate, product and hydrogen peroxide concentrations in the diffusion layer,

and DSb, DPb, DHb are the diffusion coefficients.

The diffusion layer (d < x < d + δ) may be treated as the Nernst diffusion

layer [146]. According to the Nernst approach a layer of thickness δ remains

unchanged with time. It was assumed that away from it the solution is uniform

in concentration.
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Initial conditions

Let x = 0 represents the plate surface, while x = d is the boundary between

the enzyme layer and the buffer solution. The biosensor operation starts when

some substrate appears in the bulk solution. This is used in the initial condi-

tions (t = 0)

Se(x, 0) = Pe(x, 0) = C(x, 0) = 0, He(x, 0) = H0,

E(x, 0) = E0, 0 ≤ x ≤ d,

Pb(x, 0) = 0, Hb(x, 0) = H0, d ≤ x ≤ d + δ,

Sb(x, 0) = 0, d ≤ x < d + δ,

Sb(d + δ, 0) = S0,

(2.11)

where E0 stands for the initial concentration of the enzyme in the enzyme layer,

H0 is the hydrogen peroxide concentration in the bulk solution as well as in the

enzyme layer, and S0 is the substrate concentration in the bulk solution.

Boundary conditions

In the bulk solution the concentrations of the substrate, product and hydrogen

peroxide remain constant (t > 0),

Sb(d + δ, t) = S0, Pb(d + δ, t) = 0, Hb(d + δ, t) = H0. (2.12)

Assuming the impenetrable and unreactive plate surface, the mass flux of the

species must vanish at this boundary,

∂Se

∂x

∣

∣

∣

x=0

=
∂Pe

∂x

∣

∣

∣

x=0

=
∂He

∂x

∣

∣

∣

x=0

= 0. (2.13)

On the boundary between two regions having different diffusivities, we define
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the matching conditions (t > 0)

DSe

∂Se

∂x

∣

∣

∣

x=d
= DSb

∂Sb

∂x

∣

∣

∣

x=d
, Se(d, t) = Sb(d, t),

DPe

∂Pe

∂x

∣

∣

∣

x=d
= DPb

∂Pb

∂x

∣

∣

∣

x=d
, Pe(d, t) = Pb(d, t),

DHe

∂He

∂x

∣

∣

∣

x=d
= DHb

∂Hb

∂x

∣

∣

∣

x=d
, He(d, t) = Hb(d, t).

(2.14)

These conditions mean that fluxes of the substrate, product and hydrogen per-

oxide through the stagnant external diffusion layer equals to the corresponding

fluxes entering the surface of the enzyme layer. The partitions of the substrate,

product and hydrogen peroxide in the enzyme layer versus bulk are assumed

to be equal [9, 80].

Response of the biosensor

The light absorbance was assumed as the response of the optical biosensor. The

optical signal is due to the product absorbance in the enzyme and diffusion

layers. The optical biosensor was assumed to be placed in the flow or inside

of a very high volume of mixed solution. The product molecules which escape

the enzyme and diffusion layers do not contribute to the signal. The absorbance

A(t) at time t may be obtained as follows:

A(t) = εP lef P̄ , lef = d + δ, (2.15)

where εP is molar extinction coefficient of the product, P̄ - the concentration

of the product averaged through the enzyme and diffusion layers, lef - the ef-

fective thickness of the enzyme layer and Nernst layer [145]. For organic com-

pounds εP varies between 104 and 102 m2mol−1.

For the further representation of averaged concentrations of substrate, product

and hydrogen peroxide through the enzyme and diffusion layers, we introduce
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the following designations:

Ū =
1

d + δ





d
∫

0

Ue(x, t)dx +

d+δ
∫

d

Ub(x, t)dx



 , U ∈ {S, P, H}. (2.16)

The concentrations of the substrate, product, hydrogen peroxide, enzyme and

compound I averaged only through the enzyme layer are given by

V̄ =
1

d

d
∫

0

Ue(x, t)dx, Ue ∈ {Se, Pe, He, E, C}. (2.17)

We assume that the system (2.3)-(2.14) approaches a steady state as t → ∞,

A∞ = lim
t→∞

A(t), (2.18)

where A∞ is the steady state absorbance.

The sensitivity is another very important characteristic of biosensors [124, 139].

It is defined as a gradient of the steady state absorbance with respect to the

substrate concentration. The absorbance varies in orders of magnitude with

the concentration of the substrate to be analyzed [92]. Therefore dimensionless

expression of the sensitivity is preferable,

BS(S0) =
S0

A∞(S0)
×

d A∞(S0)

d S0

, (2.19)

where BS stands for the dimensionless sensitivity of the biosensor, A∞(S0) is

the steady state absorbance calculated at the substrate concentration S0 in bulk

solution.

We consider the dimensionless Biot number Bi to express the ratio of internal

mass transfer resistance to the external one [4, 74],

Bi =
d/DSe

δ/DSb

=
dDSb

δDSe

. (2.20)
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The reaction product may be fluorescent and it may be the fluorescence which

is measured [7A]. Optical biosensors based on the fluorescence detection gen-

erate a photoluminescent signal indicative of target analyte binding [30, 92].

Fluorescence emission is then detected and converted into an analytical sig-

nal [77]. They have been used for the analysis of many chemical and biological

substances, especially in cases limited by low analyte concentrations [5].

By an extension of the Beer-Lambert law, the response of a fluorescent bio-

sensor describing the intensity of fluorescence FI(t) at time t may be obtained

as follows [7, 77]:

FI(t) = I0ϕ
(

1 − 10−εP lef P̄
)

, (2.21)

where I0 stands for the intensity of excitation light, ϕ is a quantum yield of

fluorophore, P̄ - the concentration of the product averaged through the entire

diffusion layer. The quantum yield of the product fluorescence ϕ, defined as

the ratio of the number of photons emitted to the number of photons absorbed,

practically varies between 0.001 and 1.

The fluorescence FI(t) is almost linearly proportional to the averaged concen-

tration of the product P̄ ,

FI(t) ≈ 2.303I0ϕεP lef P̄ , (2.22)

when the absorbance expressed as εP lef P̄ is less than 0.1 [145]. Since the fluor-

escence intensity FI(t) is directly proportional to the intensity I0 of the excita-

tion light, the measured fluorescence F (t) is usually reported in relative fluor-

escent units (RFU),

F (t) = FI(t)/I0. (2.23)

We also assume that the system approaches a steady state as t → ∞,

F∞ = lim
t→∞

F (t), (2.24)

where F∞ is the steady state fluorescence.

40



Mathematical Models of Multi-step Biosensors

2.2 Laccase-based Synergistic Biosensor

There are many different schemes of enzymatic catalysis apart from the simplest

Michaelis-Menten case that might be exploited for the bioelectrocatalysis and

the construction of biosensors [34, 42]. Synergistic scheme of substrates conver-

sion is of particular interest due to the fact that this scheme allows producing

highly sensitive bioelectrodes and powerful biofuel cells [18, 40, 55, 107, 128].

In the synergistic scheme, an enzyme catalyses the parallel conversion of sub-

strates into the products, with the concomitant cross-reaction of the substrates

and the products. Moreover, in this case, the average rate of substrates conver-

sion exceeds the rate of individual reaction steps [82, 84, 136].

Recently, the laccase-based bioelectrode utilising synergistic N-substituted phen-

othiazines and phenoxazines oxidation in the presence of hexacyanoferrate(II)

was built and investigated [83]. The synergistic process was analytically invest-

igated assuming the steady state conditions, ignoring the mass transport and

applying many other simplifications. The action of bioelectrodes includes not

only biocatalytical conversion but also the mass transport of substrates as well

as products [95, 124, 139, 152]. The diffusion limitations causes bioelectrode

sensitivity changes. For the accurate prediction of the bioelectrode response,

the mass transport by diffusion has to be considered together with the biocata-

lytical conversion [10, 20, 94]. The modeling of these processes by an analytical

solution of the system of differential equations is practically impossible [32, 99].

This section presents a mathematical model of a laccase-based biosensor util-

izing simultaneous substrates conversion. The developed model is based on

non-stationary non-linear reaction-diffusion equations [17, 32]. The modeling

biosensor comprises three compartments, an enzyme layer, a dialysis mem-

brane and an outer diffusion layer. By changing input parameters the bio-

sensor action was analysed with a special emphasis to the influence of the

species concentrations on the synergy of the simultaneous substrates conver-

sion. The digital simulation was carried out using the finite difference tech-

nique [17, 32, 120].
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2.2.1 Modeling biosensor

We assume that a laccase-based biosensor is composed of a graphite electrode

covered with the net (mesh = 160, thickness of the thread 100 µm) and the en-

zyme solution [83]. The enzyme layer is separated from the bulk solution by

means of the dialysis membrane. The diffusion layer where the flux of the

substances takes place is also considered. The schematic view of the modeled

biosensor is presented in the Fig. 2.3.

a

a

a

a   = 0

Figure 2.3: The schematic view of the laccase-based amperometric biosensor.

The scheme of the laccase action (see Fig. 2.4) comprises the stadium of oxid-

ized laccase interaction with two substrates as well as a cross reaction of the

oxidized mediator and ferrocyanide [83]. The laccase is activated with oxygen,

Laccase(red) + O + 4H+ k1−→ Laccase(ox) + 2H2O, (2.25)

Laccase(ox) + 4Fe(CN)4−6
k2−→ Laccase(red) + 4Fe(CN)3−6 , (2.26)

Laccase(ox) + 4Mred
k3−→ Laccase(red) + 4Mox, (2.27)

Mox + Fe(CN)4−6
k4−→ Mred + Fe(CN)3−6 , (2.28)

where Laccase(red) and Laccase(ox) are the reduced and oxidized forms of lac-

case, O - oxygen (O2), H2O - water, H+ stands for the hydrogen ion, Fe(CN)4−6
is the hexacyanoferrate(II) (ferrocyanide), Fe(CN)3−6 is the hexacyanoferrate(III)
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(ferricyanide), Mred, Mox - stand for the reduced and oxidized mediators re-

spectively, k1, k2, k3, k4 are the reaction rate constants.

On the electrode surface the ferricyanide is reduced to ferrocyanide whereas

oxidized mediator is converted to its reduced form,

Fe(CN)3−6 + e− −→ Fe(CN)4−6 , (2.29)

Mox + e− −→ Mred. (2.30)

O2+4H
+

2H2O

Eox

Ered

Fe(CN)6

Fe(CN)6

Mred

Mox

Electrode

e
-

3-

4-

Figure 2.4: Scheme of electron transfer in laccase biosensor.

In the terms of substrates and products the reaction scheme (2.25)-(2.30) can be

written as follows:

Ered + O + 4H+ k1−→ Eox + 2H2O, (2.31)

Eox + 4S1

k2−→ Ered + 4P1, (2.32)

Eox + 4S2

k3−→ Ered + 4P2, (2.33)

P2 + S1

k4−→ S2 + P1, (2.34)
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P1 + e− −→ S1, (2.35)

P2 + e− −→ S2, (2.36)

where Ered and Eox correspond to the reduced and the oxidized laccase enzyme,

respectively, S1 and S2 are the substrates, P1, P2 - stand for the products of the

reactions. S2 and P2 are called the reduced and the oxidized mediators, respect-

ively. The products P1 and P2 are the electrochemically active substances.

2.2.2 Mathematical model

The biosensor model involves the following regions: an enzyme-loaded nylon

net, a dialysis membrane, an outer diffusion limiting region, and a convective

region where the analyte concentration is maintained constant. Due to the re-

latively small volume of the nylon net in comparison with the volume of the

enzyme, the enzyme-loaded mesh can be assumed as a periodic media, and

the homogenisation process can be applied to the enzyme-loaded mesh [150].

These assumptions lead to a three compartment model. The homogenised en-

zyme layer corresponds to the first compartment. The dialysis membrane and

the outer diffusion are the next two compartments.

Governing equations

Assuming the homogeneous distribution of immobilised enzyme, the mass

transport and the reaction kinetics in the enzyme layer of the uniform thick-

ness can be described by the following system of the reaction-diffusion equa-
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tions (0 < x < a1, t > 0):

∂Ered,1

∂t
= DEred,1

∂2Ered,1

∂x2
+ 4k2Eox,1S1,1 − k1Ered,1O1 + 4k3Eox,1S2,1, (2.37a)

∂Eox,1

∂t
= DEox,1

∂2Eox,1

∂x2
+ k1Ered,1O1 − 4k2Eox,1S1,1 − 4k3Eox,1S2,1, (2.37b)

∂S1,1

∂t
= DS1,1

∂2S1,1

∂x2
− 4k2Eox,1S1,1 − k4P2,1S1,1, (2.37c)

∂S2,1

∂t
= DS2,1

∂2S2,1

∂x2
− 4k3Eox,1S2,1 + k4P2,1S1,1, (2.37d)

∂P1,1

∂t
= DP1,1

∂2P1,1

∂x2
+ 4k2Eox,1S1,1 + k4P2,1S1,1, (2.37e)

∂P2,1

∂t
= DP2,1

∂2P2,1

∂x2
+ 4k3Eox,1S2,1 − k4P2,1S1,1, (2.37f)

∂O1

∂t
= DO1

∂2O1

∂x2
− k1Ered,1O1, (2.37g)

where Ered,1, Eox,1, Si,1, Pi,1 and O1 stand for the concentrations of the reduced

and oxidized forms of the enzyme, i-th substrate, i-th product and oxygen,

respectively, a1 is the thickness of the enzyme layer, DEred,1
, DEox,1

, DSi,1
, DPi,1

and DO1
are the diffusion coefficients, i = 1, 2.

In the dialysis membrane as well as in the outer diffusion layer no enzymatic

reaction occurs. Hence, only the mass transport by diffusion and the electro-

chemical reaction (2.34) are modeled (aj−1 < x < aj , t > 0),

∂S1,j

∂t
= DS1,j

∂2S1,j

∂x2
− k4P2,jS1,j, (2.38a)

∂S2,j

∂t
= DS2,j

∂2S2,j

∂x2
+ k4P2,jS1,j , (2.38b)

∂P1,j

∂t
= DP1,j

∂2P1,j

∂x2
+ k4P2,jS1,j, (2.38c)

∂P2,j

∂t
= DP2,j

∂2P2,j

∂x2
− k4P2,jS1,j, (2.38d)

∂Oj

∂t
= DOj

∂2Oj

∂x2
, (2.38e)

where Si,j, Pi,j and Oj stand for the concentrations of the i-th substrate, i-th

product and oxygen in the dialysis membrane (j = 2) and the diffusion layer

(j = 3), respectively, a1 is the thickness of the enzyme layer, a2 − a1 and a3 − a2

are the thicknesses of the membrane and the diffusion layer, respectively, DSi,j
,
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DPi,j
and DOj

are the diffusion coefficients, i = 1, 2, j = 2, 3.

Initial conditions

The biosensor operation starts when the substrates appear on the boundary of

the diffusion layer (t = 0),

Si,j = 0, x ∈ [aj−1, aj ], j = 1, 2, (2.39a)

Si,3 = 0, x ∈ [a2, a3), (2.39b)

Si,3 = Si,0, x = a3, (2.39c)

where Si,0 is the concentration of the i-th substrate in the buffer solution, a0 = 0,

i = 1, 2.

Initially, the oxygen is assumed to be of uniform concentration, while the pro-

ducts are assumed of zero concentration (t = 0),

Pi,j = 0, Oj = O0, x ∈ [aj−1, aj ], j = 1, 2, 3, (2.40)

where O0 is the initial concentration of the oxygen.

The whole enzyme is initially in the reduced form (t = 0),

Ered,1 + Eox,1 = E0, Ered,1 = E0, Eox,1 = 0, x ∈ [0, a1], (2.41)

where E0 stands for the initial as well as the total concentration of the enzyme.
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Boundary conditions

On the electrode surface the products are consumed and the substrates are re-

generated by reactions (2.35) and (2.36) (t > 0),

Pi,1 = 0, x = 0, (2.42a)

DSi,1

∂Si,1

∂x

∣

∣

∣

x=0

= −DPi,1

∂Pi,1

∂x

∣

∣

∣

x=0

, i = 1, 2. (2.42b)

Assuming the impenetrable plate surface, the mass flux of the electro-inactive

substance vanishes at this boundary (t > 0),

∂O1

∂x

∣

∣

∣

x=0

= 0. (2.43)

During the biosensor operation the enzyme remains locked in the enzyme layer

(t > 0),
∂Eox

∂x

∣

∣

∣

x=0

=
∂Eox

∂x

∣

∣

∣

x=a1

=
∂Ered

∂x

∣

∣

∣

x=0

=
∂Ered

∂x

∣

∣

∣

x=a1

= 0. (2.44)

The outer diffusion layer (a2 < x < a3) can be treated as the Nernst diffusion

layer [32]. According to the Nernst approach the layer of the thickness (a3 −a2)

remains constant. In the bulk solution the concentrations of the substances

remain constant (t > 0),

S1,3 = S1,0, S2,3 = S2,0, P1,3 = 0, P2,3 = 0, O3 = O0, x = a3. (2.45)

On the boundary between the adjacent regions having different diffusivities,
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we define the matching conditions (t > 0),

DSi,j

∂Si,j

∂x

∣

∣

∣

x=aj

= DSi,j+1

∂Si,j+1

∂x

∣

∣

∣

x=aj

, Si,j = Si,j+1, x = aj , (2.46a)

DPi,j

∂Pi,j

∂x

∣

∣

∣

x=aj

= DPi,j+1

∂Pi,j+1

∂x

∣

∣

∣

x=aj

, Pi,j = Pi,j+1, x = aj , (2.46b)

DOj

∂Oj

∂x

∣

∣

∣

x=aj

= DOj+1

∂Oj+1

∂x

∣

∣

∣

x=aj

, Oj = Oj+1, x = aj, (2.46c)

where i = 1, 2, j = 1, 2.

Response of the biosensor

The measured current is accepted as a response of an amperometric biosensor

in a physical experiment. The current I(t) depends upon the fluxes of the hex-

acyanoferrate(III) and mediator at the electrode surface,

I(t) = neFA
(

DP1,1

∂P1,1

∂x

∣

∣

∣

x=0

+ DP2,1

∂P2,1

∂x

∣

∣

∣

x=0

)

, (2.47)

where ne is a number of electrons involved in the electrochemical reaction, F is

Faraday’s constant and A stands for the geometrical surface of the electrode.

We assume that the system (2.37)-(2.46) approaches a steady state as t → ∞,

I∞ = lim
t→∞

I(t), (2.48)

where I∞ is the steady state current.

2.3 Conclussions

The mathematical models for the optical and synergistic multi-step biosensors

were introduced in this chapter. The models include the governing reaction-

diffusion equations, initial as well as boundary conditions. The expressions

for the calculation of the biosensor response were also formulated, taking into
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account the practically significant steady state case. The results of this chapter

were published in six journal articles (see [1A, 3A, 4A, 7A, 9A, 10A]).
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Chapter 3

Automated Modeling of Multi-step

Biosensors

Computational modeling of multi-step biosensors is a complex process and

generally requires a huge amount of CPU time [2, 32]. There is a number of

the standard computational tools available for the numerical computations [57,

134]. However, numerical methods presented in these tools are not adequate

for the solution of the reaction-diffusion diffusion equations. Moreover, these

tools are generally not convenient for the great number of biochemists and

bioengineers. In this chapter a new tool for the automated and user-friendly

modeling of multi-step biosensor will be presented. In order to optimize the

numerical solution a detail analysis of the finite difference schemes was pro-

duced.

3.1 Computational Schemes for Modeling of Biosen-

sors

Analytical solutions for mathematical models of the biosensors are obtainable

exclusively in special cases [33, 79]. In common case the models have to be
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solved numerically [32, 125]. Finite difference method is one of the most popu-

lar approximation techniques [120]. Numerous types of finite difference sche-

mes can be considered for the solution of non-linear reaction-diffusion sys-

tems [4, 120]. Three major factors must be taken into account when choosing

the technique for simulation: the accuracy of the solution, computation time

needed to solve the problem and ease of use of the technique. This chapter

is focused on the analysis of several most commonly known finite difference

schemes using computer simulation [5A].

3.1.1 Mathematical model

An amperometric biosensor can be considered as an amperometric electrode,

having a layer of enzyme immobilized onto the surface of the electrode. We

assume the symmetrical geometry of the electrode and homogeneous distribu-

tion of the immobilized enzyme in the enzyme membrane.

In this section, we consider the following enzyme-catalysed reaction

S + E ⇄ ES → E + P. (3.1)

In this scheme the substrate (S) combines reversibly with an enzyme (E) to

form a complex (ES). The complex then dissociates into a product (P) and the

enzyme is regenerated. Assuming the quasi steady state approximation, the

concentration of the intermediate complex (ES) do not change and may be neg-

lected when simulating the biochemical behaviour of biosensors [124, 139]. The

scheme (3.1) reduces to a simplified model of enzyme-catalyzed reaction where

the enzyme (E) binds to the substrate (S) producing the product (P) is con-

sidered,

S E
−→ P. (3.2)

Coupling the enzyme-catalyzed reaction with the one-dimensional-in-space dif-

fusion, described by Fick’s second law, leads to the following system of equa-
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tions [79, 125]:

∂S

∂t
= DS

∂2S

∂x2
−

VmaxS

KM + S
,

∂P

∂t
= DP

∂2P

∂x2
+

VmaxS

KM + S
, 0 < x < d, t > 0,

(3.3)

where S(x, t) and P (x, t) are the substrate and product concentrations, respect-

ively, t stands for time and x - for space, DS and DP are the diffusion coeffi-

cients of the substrate and product, respectively, KM is the Michaelis-Menten

constant, Vmax is the maximal enzymatic rate attainable when the enzyme is

fully saturated with substrate, d is the thickness of the enzyme membrane.

Let x = 0 represents the electrode surface, while x = d represents the bulk

solution-membrane interface. The biosensor operation starts when some sub-

strate appears on the surface of the enzyme layer,

S(x, 0) = 0, 0 ≤ x < d,

S(d, 0) = S0,

P (x, 0) = 0, 0 ≤ x ≤ d,

(3.4)

where S0 stands for the concentration of substrate in the bulk solution.

In the case of amperometric biosensors, due to the electrode polarization, the

concentration of the reaction product at the electrode surface is being perman-

ently reduced to zero. The substrate does not react at the electrode surface. If

the substrate is well-stirred and in powerful motion, then the diffusion layer

(0 < x < d) remains at a constant thickness of d during the biosensor operation.

This is used in the boundary conditions given by:

∂S

∂x

∣

∣

∣

x=0

= 0,

S(d, t) = S0,

P (0, t) = P (d, t) = 0.

(3.5)
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The measured current is accepted as a response of an amperometric biosensor

in a physical experiment. The current depends upon the flux of the reaction

product at the electrode surface, i.e. at the border x = 0. Consequently, the

density J(t) of the anodic current at a time t can be obtained explicitly from

Faraday’s and second Fick’s laws using the flux of the product concentration at

the surface of the electrode,

J(t) = neFDP

∂P

∂x

∣

∣

∣

x=0

, (3.6)

where ne is a number of electrons, involved in charge transfer at the electrode

surface, and F is the Faraday constant.

We assume that the system (3.3)-(3.5) approaches a steady state as t → ∞,

Jp = lim
t→∞

J(t), (3.7)

where Jp is the density of the steady state current.

3.1.2 Solution of the problem

The analytical solutions for nonlinear partial differential equations generally

do not exist. Equations (3.3)-(3.5) describing the action of an amperometric

biosensor do not have ones either, so numerical approximation must be used.

We applied finite difference technique to solve (3.3)-(3.5) the boundary value

problem numerically [32, 120].

3.1.2.1 Analytical solutions

In a special, low-concentration case S0 ≪ KM , the reaction rate is directly pro-

portional to the substrate concentration. Therefore, the analytical solutions are

known for the boundary value problem at a steady-state (3.3)-(3.5),

S (x) = S0

cosh(Q(d − x))

cosh(Qd)
, (3.8)
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P (x) =
S0DS

DP

[(

1

cosh(Qd)
− 1

)

x

d
−

cosh(Q(d − x))

cosh(Qd)
+ 1

]

, (3.9)

where S(x) and P (x) are the stationary functions,

Q =

√

Vmax

KMDS

. (3.10)

Applying these analytical solutions to the equation (3.6) the biosensor steady

state current can be calculated as follows [79]:

Jl = neFDPS0

1

d

(

1 −
1

cosh(σ)

)

, (3.11)

where σ2 is a dimensionless diffusion modulus, Damköhler number,

σ2 =
Vmaxd

2

DSKM

. (3.12)

The biosensor response is known to be under mass transport control if the en-

zymatic reaction in the enzyme layer is faster than the mass transport process

[4, 79, 125]. The diffusion modulus essentially compares the rate of enzymatic

reaction (Vmax/KM ) with the diffusion through the enzyme layer (DS/d2), If

σ2 ≪ 1 then the enzyme kinetics controls the biosensor response. The response

is under diffusion control when σ2 ≫ 1.

At the high concentration of the substrate (S0 ≫ KM ), the biosensor steady

state current does not depend on the concentration S0 of the analyte [33],

Jg =
neFVmaxd

2
. (3.13)

However, in the intermediate concentration cases, i.e. if S0 ≈ KM , the analytical

solutions are unknown and numerical methods are used to solve the problem

[4, 32, 125].
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3.1.2.2 Finite Difference schemes

We introduce an uniform discrete grid Ωhτ to simulate the biosensor using finite

difference method,

Ωhτ = {(xi, tj) : xi = ih; tj = jτ ; hN = d; τM = T ; i = 0, ..., N ; j = 0, ..., M},

(3.14)

where T stands for the duration of the process analysis.

The differential equations are discretized in that domain assuming the follow-

ing definitions:

Sj
i = S(xi, tj), P j

i = P (xi, tj), Jj = J(tj),

i = 0, . . . , N ; j = 0, . . . , M.
(3.15)

3.1.2.3 Explicit Finite Difference scheme

Using explicit finite difference scheme for the substrate and product concen-

trations (3.3) we obtain the following finite difference equations [32, 120, 125]:

Sj+1

i − Sj
i

τ
= DS

(

Sj
i+1 − 2Sj

i + Sj
i−1

h2

)

−
VmaxS

j
i

KM + Sj
i

,

P j+1

i − P j
i

τ
= DP

(

P j
i+1 − 2P j

i + P j
i−1

h2

)

+
VmaxS

j
i

KM + Sj
i

,

i = 1, . . . , N − 1; j = 1, . . . , M.

(3.16)

The initial conditions (3.4) in numerical model has the following form

S0
i = 0, 0 ≤ i < N,

S0
N = S0,

P 0
i = 0, 0 ≤ i ≤ N.

(3.17)
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For the boundary conditions (3.5) we obtain:

Sj
0 = Sj

1,

Sj
N = S0,

P j
0 = P j

N = 0, 1 ≤ j ≤ M.

(3.18)

The formulae for calculation of current density (3.6) becomes thus (0 < j ≤ M):

Jj = neFDP

P j
1

h
. (3.19)

We consider the density JR of the steady state current calculated at the moment

TR

JR = J(TR) ≈ Jp, TR = min
j>0, Jj>0

{

τj :
Jj − Jj−1

Jj

< ε

}

, τj = τj, T ≈ TR.

(3.20)

We used ε = 10−5 for the calculations.

One of the most important features of the scheme is the stability [120]. The

prerequisite for the stability of the explicit finite difference scheme (3.16)-(3.18)

is the following condition:

τ ≤ min

{

h2

2DS

,
h2

2DP

}

. (3.21)

Because of these stability conditions, a number of the time steps must be mag-

nified strongly as the number of the space steps is increased. This leads to the

inefficient calculations.

3.1.2.4 Implicit 1 Finite Difference scheme

Mathematical model of a biosensor can be solved using several implicit finite

difference schemes [32, 120, 125]. Let us name first of them "Implicit 1 Finite
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Difference Scheme" and compose its equations.

The model governing equation for the substrate concentration in (3.3) is re-

placed by the following finite difference equation:

Sj
i − Sj−1

i

τ
= DS

(

Sj
i+1 − 2Sj

i + Sj
i−1

h2

)

−
VmaxS

j−1

i

KM + Sj−1

i

. (3.22)

Known concentration values of the substrate at the upper layer can be used for

calculation of the product concentration. Hence, governing equation for the

product concentration can be approximated with:

P j
i − P j−1

i

τ
= DP

(

P j
i+1 − 2P j

i + P j
i−1

h2

)

+
VmaxS

j
i

KM + Sj
i

. (3.23)

The rest equations (3.4)-(3.6) take the same form as those of the explicit scheme.

3.1.2.5 Implicit 2 Finite Difference scheme

The model equation for the substrate concentration in (3.3) may be approx-

imated with a more implicit scheme than equation (3.22). At a numerator of

reaction term the concentration of substrate can be used in a upper level,

Sj
i − Sj−1

i

τ
= DS

(

Sj
i+1 − 2Sj

i + Sj
i−1

h2

)

−
VmaxS

j
i

KM + Sj−1

i

. (3.24)

Present numerical equation is linear, same as (3.22). The other equations match

those obtained using the explicit scheme.
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3.1.2.6 Crank-Nicolson scheme

Using Crank-Nicolson [43, 120] method the reaction-diffusion equations (3.3)

are approximated by linear finite difference equations,

Sj
i − Sj−1

i

τ
=

DS

2h2

(

Sj
i+1 − 2Sj

i + Sj
i−1+

Sj−1

i+1 − 2Sj−1

i + Sj−1

i−1

)

−
VmaxS

j−1

i

KM + Sj−1

i

,

P j
i − P j−1

i

τ
=

DP

2h2

(

P j
i+1 − 2P j

i + P j
i−1+

P j−1

i+1 − 2P j−1

i + P j−1

i−1

)

+
VmaxS

j
i

KM + Sj
i

.

(3.25)

The rest equations (3.4)-(3.6) are approximated like in the explicit scheme.

3.1.2.7 Hopscotch scheme

Using Hopscotch scheme unknown grid points are obtained at two phases

[120]. On the first phase, even grid points (S[e]j+1

i , P [e]j+1

i ) are calculated expli-

citly using known lower layer values (Sj
i , P j

i ),

S[e]j+1

i − Sj
i

τ
= DS

(

Sj
i+1 − 2Sj

i + Sj
i−1

h2

)

−
VmaxS

j
i

KM + Sj
i

,

P [e]j+1

i − P j
i

τ
= DP

(

P j
i+1 − 2P j

i + P j
i−1

h2

)

+
VmaxS

j
i

KM + Sj
i

.

(3.26)

On the second phase, odd grid points (S[o]j+1

i , P [o]j+1

i ) are calculated using odd

values of the lower level and already known even values of the upper layer,

S[o]j+1

i − Sj
i

τ
= DS

(

S[e]j+1

i+1 − 2S[o]j+1

i + S[e]j+1

i−1

h2

)

−
VmaxS

j
i

KM + Sj
i

,

P [o]j+1

i − P j
i

τ
= DP

(

P [e]j+1

i+1 − 2P [o]j+1

i + P [e]j+1

i−1

h2

)

+
VmaxS

j+1

i

KM + Sj+1

i

.

(3.27)
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Computation continues alternating the calculation order of the odd and even

points.

Hopscotch scheme is fully explicit yet unconditionally stable for Vmax = 0 and

therefore it can operate with any size of time and space steps.

3.1.2.8 Mathematical software packages

The major mathematical software packages provide tools for solving systems

of the partial differential equations. However, a greater ease of use and wider

range of solvable problems often comes at the expense of lower precision or

less efficiency.

We used Maple (Maplesoft, Inc.) version 10 general-purpose solver "pdsolve" to

find numerical solution for the system of the partial differential equations [57].

This solver uses finite difference method and can be configured with eleven

classical schemes, calculation step size and other parameters.

The biosensor action was also simulated with MATLAB (The MathWorks, Inc.)

software package [114, 154]. The problem was solved using built-in solver

"pdepe", which provides a numerical solution for systems of differential equa-

tions in single spatial dimension and time.

3.1.3 Results and discussion

Computer simulation was used to compare accuracy and performance of the

solution techniques. Since the system of linear algebraic equations is tridiag-

onal it can be solved efficiently [120]. Calculation results are compared in terms

of precision and computation time. We define the relative error Er as the abso-

lute difference of the steady state current density estimated by analytical and

numerical solutions divided by the steady state current density of analytical

solution.

Er =
|JR − Ja|

Ja

, Ja =







Jl, S0 ≪ KM ,

Jg, S0 ≫ KM ,
(3.28)
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where JR is the numerical solution defined by (3.20) while Jl and Jg are analyt-

ical solutions defined by (3.11) and (3.13), respectively.

The following values of the model parameters were employed:

KM = 100µM, S0 ∈ {10−3KM ; 103KM}, Vmax = 100µM/s,

DS = DP = 300µm2/s, ne = 2, T = 10s, d = 100µm.
(3.29)

The routines of the finite difference method were implemented in Java pro-

gramming language [105]. For performance reasons, we executed programs of

the mathematical software packages using command-line approach. The ex-

periments were performed on the 2 GHz Intel Core 2 Duo Processor with 1GB

of RAM.

As a first test problem, relative errors of the finite difference schemes and math-

ematical software packages were examined using two known analytical solu-

tions (3.11) and (3.13). We applied M = 102 for the calculations using impli-

cit 1, implicit 2 and Crank-Nicolson schemes and M = 105 using explicit and

Hopscotch schemes because of the stability constraints on the time step. All the

considered finite difference schemes yield very similar precision, therefore only

explicit scheme results are presented in Figure 3.1 as the example. The smal-

lest relative errors are obtained using finite difference schemes. Maple package

calculates the steady state biosensor current more accurately than MATLAB.

In cases of high substrate concentration (3.13) Maple’s results are as precise as

those obtained by explicit scheme. The numbers of steps used in calculations

do not influence the accuracy of the MATLAB solution.

In Figure 3.2 the finite difference schemes are compared to the explicit scheme.

The Hopscotch scheme differs very slightly from the explicit scheme in both

analytical solution cases, whereas the implicit schemes showed the maximal

difference of approximately 0.8 % when the number of space steps N equals

to 160 (Figure 3.2). The relative errors computed using the analytical solution

(3.13) at S0 ≫ KM are by a few orders of magnitude larger than the corres-

ponding errors at S0 ≪ KM calculated using (3.11). This could be explained

by less accuracy of the analytical solution (3.13) compared to the solution (3.11)

[33, 79]. Considered schemes yield more similar results using analytical solu-
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Figure 3.1: Dependence of relative error Er on the number of space steps N for
two values of S0: 10−3KM (a) and 103KM (b). 1 - explicit scheme (M = 105), 2 -
Maple (M = 102), 3 - MATLAB (M = 102).
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Figure 3.2: The percentage ratio of the relative error Er of the finite difference
schemes to the error Er of the explicit scheme for two values of S0: 10−3KM (a)
and 103KM (b). 1 - implicit 1 scheme, 2 - implicit 2 scheme, 3 - Crank-Nicolson
scheme, 4 - Hopscotch scheme.

In the next test problem, we consider the computation time as a function of the

relative error (Figure 3.3). Introducing different limits ǫ for the relative error

Er, the computation time TE(ǫ) is given by:

TE(ǫ) = min
N,M

{TN,M : Er ≤ ǫ} , (3.30)

where TN,M is the time of calculation at given numbers of grid steps N and

M . TE(ǫ) is the minimal time of computation needed to achieve the relative
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error Er not greater than ǫ. The calculations were performed for very different

values of space and time steps, N, M ∈ {20, 40, 80, 160, 320, 640, 1280, 2560,

5120, 10240}.
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Figure 3.3: The computation time TE versus the relative error ǫ, N, M ∈
{20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240}. 1 - explicit scheme, 2 - impli-
cit 1 scheme, 3 - implicit 2 scheme, 4 - Crank-Nicolson scheme, 5 - Hopscotch
scheme, 6 - Maple, 7 - MATLAB.

As one can see in Figure 3.3, the implicit and Hopscotch are the fastest schemes

to achieve the required relative error. Despite being very computationally in-

tensive, partial differential equation solvers in mathematical software packages

cannot accurately calculate the results. The MATLAB solver does not obtain

higher precision than 0.1.

Finally, the computation times for different grid steps are reported in Tables 3.1

and 3.2. The Table 3.1 shows that there is a very small difference between

schemes implicit 2 and Crank-Nicolson and they are the most computationally

intensive schemes. Explicit scheme is the fastest computation technique. Math-

ematical software packages are significantly more computationally intensive,

particularly Maple, see Table 3.2.
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Table 3.1: Computation time (ms) by the finite difference schemes, N = 100.

M Explicit Implicit 1 Implicit 2 Crank-Nicolson Hopscotch
10000 284 555 996 1064 659
20000 398 1108 1967 2090 1356
40000 755 2232 3974 4205 3062
80000 1480 4450 8080 8853 5563
160000 2957 8866 16542 16829 10623

Table 3.2: Computation time (s) by the mathematical software packages, N = 100.

M Maple MATLAB
100 695 0.64
200 2480 0.74
400 9379 0.85

3.2 Tool for Automated Model Development

The new types of biosensors are being introduced constantly. In order to sim-

ulate the action of those biosensors a new mathematical and numerical mod-

els must be developed every time. This process becomes cumbersome if bio-

sensor involves multi-step reaction scheme. Considering a deterministic nature

of model development this process can be automated. To make this process less

work intensive we developed a computer software for the simulation of chem-

ical reactions and diffusion.

3.2.1 Model representation language

SBML is a powerful language to describe the reaction scheme of the model.

Although it does not provide all the features needed for the biosensor model,

it can be readily extended.

With the introduction of SBML level 2 version 3, all model entities can now be
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annotated using ontological terms. The Annotation element, which is encoded

using the resource description framework (RDF), allows to specify additional

information. According to the SBML specification, kinds of data that may be

appropriately stored in annotation include information about the model that

cannot be readily encoded in existing SBML elements [68]. Therefore, for the

input of our software we chose SBML, supplementing additional information

in form of SBML annotations.

We use XML Schema (XSD) trees to define new elements introduced for bio-

sensor modeling (see Figures 3.4, 3.5, 3.6, 3.7) [144]. The structure of SBML

document can be validated against this specification. The new schema uses

a different XML namespaces to identify which elements are associated with it

and covers the parameters that are not included in the SBML model definitions.

Figure 3.4: Extract of SBML schema for Compartment annotation element.

Using annotation we can add new properties to various model elements. As

Figure 3.4 shows, Compartment element in SBML can now also define attribute

spaceStepNo to specify the number of space steps for numerical simulation.

The Species element can be supplemented with two additional elements: Bi-

oSim:diffCoef and BioSim:speciesType (see Figure 3.5). Species occur in a single

compartment only with corresponding diffusion coefficient. BioSim:diffCoef ele-

ment defines the identifier id and the value value of the diffusion coefficient.

Additional attributes of the species defined in BioSim:speciesType element are

also important to our automated solver. The enzymatic attribute marks the sub-

stances that are of enzymatic nature. Considering various types of biosensors’

responses, different physical characteristics are noted by the attribute respons-
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Figure 3.5: Extract of SBML schema for Species annotation element.

ive. In case of amperometric biosensors electrochemically active species are

marked with that attribute. For biosensors that are based on optical principals,

absorbing or light emitting species must be indicated. The attribute exploratory

refers to the substance that is being measured (analyte). The value of this attrib-

ute is used for the initial conditions. Since substances are expected to diffuse

to several compartments, species are named differently in each of them. The

attribute principal is used to distinguish the same species, which denotes the

name of species in the first compartment.

Figure 3.6: Extract of SBML schema for Reaction annotation element.
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In the annotation of Reaction element we introduce reactionType attribute (see

Figure 3.6). The values of this attribute (either chemical or electrochemical) define

the type of reaction being annotated. Also, the BioSim:rateconst element with

attributes for identifier (id) and value (value) of reaction rate constant must be

entered.

Figure 3.7: Extract of SBML schema for Model annotation element.

To the annotation of the model element we introduce parameters of numerical

modeling and biosensor response (see Figure 3.7). The element BioSim:scheme

defines finite difference scheme to be used for the simulation (scheme), solution

stationarity parameter (accuracy) and number of time steps (timeSteps). For the

calculation of the response of amperometric biosensor values of the number of

the electrons involved in charge transfer (ne) and the geometrical surface of the

electrode (A) must be defined. While for the response of the optical biosensor

values of the molar extinction coefficient (molarExt), intensity of excitation light
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(I0) and quantum yield of fluorophore (varphi) are entered.

Not all of the features provided in standard SBML are used by our tool. The

tool takes into account all the above mentioned elements: species, reaction, com-

partment. Though it does not use other elements of SBML, like rule, constraint

and unitDefinition. The quantities of corresponding units of measurement must

be used in the modeling. Preserving original structure of SBML document will

allow integration with other SBML supporting tools.

3.2.2 Generation of simulator

The developing of the computer models is based on the algorithm that gen-

erates mathematical and numerical models. SBML document containing the

model description serves as an input for the algorithm. The overall process of

simulator generation is shown in Fig. 3.8.

Construct 
governing 
equations

Construct 
initial 

conditions

Construct 
boundary 
conditions

Construct 
matching 
boundary 
conditions

Figure 3.8: Process of the simulator generation.

The Figure 3.9 shows the algorithm for construction of governing equations.

The main parts of the routine are to form diffusion equation (i.e. equation

(1.14)) for every species in the model and supplement it with reaction terms

(i.e. equation (1.8)) if necessary.

Initial conditions are expressed by the external concentrations of the species,

except for the exploratory species, which initial conditions are set to be equal to

zero (see Figure 3.10). On the boundary of the last compartment the substances
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Figure 3.9: Algorithm for the construction of governing equations.
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Figure 3.10: Algorithm for the construction of initial conditions.

that are marked as a exploratory species are set to their initial concentration.

This denotes the start of the operation action.

As Figure 3.11 shows, the procedure of boundary conditions generation de-

pends on the compartment that is being modeled. On the boundary of the first

compartment usually the Neumann boundary condition is defined (i.e. equa-

tion (2.13)). In case of amperometric biosensor the Dirichlet boundary condi-
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Figure 3.11: Algorithm for the construction of boundary conditions.

tion (i.e. equation (2.42a)) is defined for the responsive species. Responsive

species are the substances which must be included in the response calcula-

tion. For the substance that reacts in a electrochemical reaction a regenerating

boundary condition (i.e. equation (2.42b)) is created. On the boundary of the

last compartment the concentrations of the substances remain constant. Gen-

erally enzymatic species are not diffusing substances and therefore boundary

conditions for such species must be defined in some inner compartment.

A matching boundary conditions between compartments must be defined in

case of multiple compartments (see Figure 3.12). These conditions involve spe-

cies from two adjacent compartments (e.g. equation (2.14)). The similar species

can be identified by the attribute principal.

The routine for the response equation generation is straightforward.
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Figure 3.12: Algorithm for the construction of boundary matching conditions.

3.2.3 Graphical user interface

Tedious task of model specification can be mitigated by the handy graphical

user interface (GUI). The GUI provides three tabs to enter model description:

Model, Species and Reactions tabs. The Species tab provides fields to specify

species that take part in the reaction scheme of biosensor. Species have to be

defined in every compartment they appear separately. The reactions them-

selves ought to be entered in the Reactions tab. Complex multi-step reactions

must be divided into simple reactions. The biosensor response and simulation

parameters are entered in the Model tab. A full list of model parameters is

given in Table 3.3.

The developed tool is aimed to do the following:

• Import predefined model in SBML document. The biological model can

be defined by any tool that supports SBML and then imported into de-

veloped software program for additional specification of biosensor para-

meters.

• Export SBML model with additional annotations. The resulting docu-

ment can be later reimported into software program or used with other
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Table 3.3: Input fields of graphical user interface. [L] - length, [T ] - time and [n] - amount of
substance dimensions.

Field name Description Unit
Reactions tab
Reagent 1 - 4 Name of the species that is a reactant in the a

reaction
Product 1 - 4 Name of the species that is a product in the a re-

action
Reaction type Type of the reaction. Possible values of this at-

tribute are "Chemical" and "Electrochemical"
Rate constant Name of the reaction rate constant
Rate value Value of the reaction rate constant [n]−1[L]3[T ]−1

Species tab
Name Unique name of the species
Responsive Checkbox denotes electrochemically active, ab-

sorbing or light emitting species
Enzyme species Checkbox denotes species that are of enzymatic

nature
Exploatory Checkbox refers to the substance that is being

measured
Initial conc. Value of the initial concentration [n][L]−3

Diffusion coef. Name of the diffusion coefficient
Diff. coef. value Value of the diffusion coefficient [L]2[T ]−1

Compartment Name of the compartment that species belongs
to

Principal species Name of the same species in the first compart-
ment

Model tab
Model name Name of the model
Response Type of the biosensor response. Possible values

include "Amperometric biosensor", "Absorbance
biosensor" and "Fluorescent biosensor"

Name Unique name of the compartment
Size Size of the compartment [L]
Number of space step
(N)

Number of space steps to be used in numerical
simulation

Scheme Name of the finite difference scheme to be used
for simulation. Possible values include "Explicit"
and "Implicit"

Accuracy Accuracy of the relative response difference
Number of time step
(M)

Number of time steps to be used in numerical
simulation

Molar ext. coef. Value of the molar extinction coefficient. This
value is used only for optical biosensors

[L]2[n]−1

Intensity of excit. light Value of the intensity of excitation light. This
value is used only for fluorescent biosensors

Quantum yield Value of the quantum yield of fluorophore. This
value is used only for fluorescent biosensors

Number of electrons Number of electrons involved in the electro-
chemical reaction. This value is used only for
amperometric biosensors

Surface of electrode Geometrical surface of the electrode [L]2
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SBML tools.

• Generate LATEX document containing a full description of mathematical

model. This mathematical model is presented in terms of governing reac-

tion - diffusion equations, initial and boundary conditions.

• Generate representation of numerical solution of the mathematical model

by finite difference explicit and implicit schemes in LATEX.

• Generate computer model code in JAVA. The numerical solution of the

mathematical model is represented in output file model.java. A hosting

application starter.java to run a simulation is also generated. These files

can be compiled in a Java IDE or from command line to create class files

that can then be run using the Java virtual Machine (JVM). To create the

class files from command line use:

javac starter.java model.java

The following command will then run the simulation:

java starter

3.2.4 Software architecture

The software program is based on factory pattern to handle various results

(SBML, LATEXdocuments and Java code) generation (see Fig. 3.13). In enables

system to handle new products in a generic manner.

The software program is written in Java, an object-oriented language [27, 105].

It uses SWING library to implement the Graphical User Interface (GUI) and

libSBML library to manipulate SBML documents [29]. The tool can be deployed

on all platforms that support Java.
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+addReaction(Hashtable arguments)
+addCompartment(String name, String size, String spaceStepNo)
+addSpecies(Hashtable params)
+save(String filename, String dirname)

<<interface>>
ResultGenerator

+getResultGenerator(int resultType) : ResultGenerator
ResultGeneratorFactory

CodeResultGenerator SBMLResultGenerator TexResultGenerator

GUI

SBMLFileReader

Figure 3.13: Class diagram of the system.

3.3 Conclusions

In this chapter, several finite difference schemes were applied for modeling an

amperometric biosensor. Using all the considered schemes quite satisfactory

results were obtained when sufficient number of steps of the discrete grid is

employed.

The best accuracy is achieved using implicit calculation and Hopscotch ap-

proaches. For the problems where accuracy is not a significant factor but the

speed is, the simplest explicit scheme should be used.

General-purpose solvers of Maple and MATLAB are less precise to simulate

the biosensor action and need more computation time. Those solvers can be

applied for basic problems while taking advantage of the simplicity.

An additional advanced investigation of the accuracy of the finite difference

computational schemes were presented in the recent publication [2A]. The fi-

nite difference equations were solved explicitly taking into account the nonlin-
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earities. The results of this research indicated that linearisation of the nonlinear

chemical term reduces both the accuracy and, in the case of the second-order

methods such as Crank-Nicolson, reduces the global order.

The deterministic nature of model construction allows to automate this process.

The multi-step biosensors can be encoded in existing SBML elements, supple-

menting additional information in form of SBML annotations. The proposed

algorithm enables model description to be converted into mathematical and

numerical models in terms of reaction - diffusion equations, initial and bound-

ary conditions. The process of biosensor modeling can be greatly facilitated by

graphical user interface.

The results of this chapter are the subject of three articles published ([2A, 5A,

11A]).
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Chapter 4

Computational Modeling of

Multi-step Biosensors

The computer simulation enables to investigate the influence of the physical

and kinetic parameters on the biosensor response. This chapter presents a res-

ults of the computational modeling of the multi-step biosensors: peroxidase-

based optical and laccase-based synergetic biosensors. These investigations

indicated applicability of our approach for the complex biosensors. A detail

modeling at transition and steady state conditions revealed the dependence of

the biosensor response on the different parameters. Moreover, the results of the

research can be also applied for the creation of the new biosensors as well as

for the control of the action of the functional biosensors.
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4.1 Computational Modeling of Peroxidase-based Op-

tical Biosensor

4.1.1 Digital simulation

Because of non-linearity of the problem, no analytical solutions are possible [4,

32]. Hence numerical simulation is employed. We applied a uniform discrete

grid to simulate the biosensor using implicit finite difference method [9, 15,

120].

We assume the biosensor response AR calculated at the moment TR as the

steady state response,

AR = A(TR) ≈ A∞, TR = min
j>0, Aj>0

{

τj :
Aj − Aj−1

Ajτ
< ε

}

, (4.1)

where τ stands for the size of time step. We used ε = 10−3 for the calculations.

The response time TR as an approximate steady state time is highly sensitive to

the decay rate ε, i.e. TR → ∞ when ε → 0. We introduce less sensitive part of

the steady state time function A∗(t),

A∗(t) =
AR − A(t)

AR

, A∗(0) = 1, A∗(TR) = 0, 0 ≤ A∗(t) ≤ 1. (4.2)

T0.5 is defined as the time at which a half of the steady state absorbance is

reached, i.e., A∗(T0.5) = 0.5. T0.5 is usually called the half time of the steady

state.

The following values of the model parameters were employed in all the numer-
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ical experiments:

DSe = DPe = DHe = 300µm2s−1, DSb = DPb = DHb = 600µm2s−1,

k1 = 7.1 × 106s−1M−1, k2 = 2 × 107s−1M−1, εP = 103m2mol−1.
(4.3)

The following constant-concentration conditions can be derived from equa-

tions (2.3)-(2.14):

E(x, t) + C(x, t) = E0, 0 ≤ x ≤ d, t > 0, (4.4)

Se(x, t) + Pe(x, t) = S0, 0 ≤ x ≤ d, t → ∞,

Sb(x, t) + Pb(x, t) = S0, d ≤ x ≤ d + δ, t → ∞,
(4.5)

He(x, t) + Pe(x, t) = H0, 0 ≤ x ≤ d, t → ∞,

Hb(x, t) + Pb(x, t) = H0, d ≤ x ≤ d + δ, t → ∞.
(4.6)

These conditions were employed in testing the numerical solution of the model.

We define the steady state fluorescence FR of the biosensor as the fluorescence

intensity calculated at the time TR,

FR = F (TR) ≈ F∞,

TR = min
j>0, Fj>0

{

τj :
Fj − Fj−1

Fjτ
< ε

}

, (4.7)

where τ is the size of time step. We used ε = 10−5 for the calculations.

Unless otherwise stated, the model used the following values of the paramet-

77



Computational Modeling of Multi-step Biosensors

ers:

DS = DP = DH = 300 µm2s−1,

k1 = 7.1 × 106 s−1M−1, k2 = 2 × 107 s−1M−1,

εP = 103 m2mol−1, ϕ = 0.01, d = 1 µm. (4.8)

Figure 4.1: The Reactions tab describing reactions of peroxidase-based optical
biosensor.

Figure 4.2: The Species tab describing species of peroxidase-based optical bio-
sensor.

The computer simulation was performed using the new software program pre-

sented in Chapter 3. The user interface of this tool is divided into three screens:

Reactions tab (Fig. 4.1), Species tab (Fig. 4.2) and the Model tab (Fig. 4.3).

The Reactions (Fig. 4.1) tab contains reaction scheme of the peroxidase-based

optical biosensor (2.1, 2.2). All the chemical species that participate in the re-

actions are listed in the Species tab (Fig. 4.2) as well as their properties. Other

model parameters are inputed in the Model tab (Fig. 4.3). In case of fluores-

cent biosensor the program input is very similar. What differs though is the
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Figure 4.3: The Model tab describing model parameters of peroxidase-based
optical biosensor.

response type and the response parameters in the Model tab. This example

demonstrates intuitive user interface of the developed program.

4.1.2 Results and discussion: Absorbance biosensor

By changing input parameters the output results were numerically analyzed

with special emphasis to the influence of the biosensor geometry and of the

catalytical parameters on the biosensor response at transition and steady state

conditions.

The dynamics of the concentrations of the compounds

Figs. 4.4 and 4.5 show the concentration profiles of substrate, product, hydro-

gen peroxide, compound I and enzyme peroxidase in the enzyme and diffusion

layers. These concentration profiles were obtained when the steady state and

the half of it was reached.

As one can see in Figs. 4.4 and 4.5, constraints (4.6) on the concentrations are

ensured. When the biosensor operation starts, the initial (t = 0) concentration

79



Computational Modeling of Multi-step Biosensors

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.001

0.002

0.003

0.004
0.996

0.997

0.998

0.999

1.000

 

 

C
, E

, n
M

x, m

 1
 2C

E

Figure 4.4: The steady state (TR = 305 s, 1) and the half of it (T0.5 = 116 s,
2) concentration profiles of compound I (C) and peroxidase (E) in the enzyme
layer (d = 1µm) at S0 = 100 µM, E0 = 1 nM, H0 = 1 mM, δ = 400 µm.
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Figure 4.5: The concentration profiles of the substrate (Se,b), product (Pe,b) and
hydrogen peroxide (He,b) in the enzyme layer and diffusion layers. The para-
meters and notation are the same as in Fig. 4.4.

of the enzyme (E) equals E0 and the compound I (C) starts at zero concentra-

tion. Fig. 4.4 shows, that the final (at steady state conditions) concentration E
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of the enzyme is less than 0.3% of the initial concentration E0 while the concen-

tration C of the compound I is equal approximately to the initial concentration

E0 of the enzyme. These concentrations quickly become invariable. The dy-

namics of the substrate concentration is also quit fast. The final (steady state)

concentrations of these three compounds differ only slightly from the concen-

trations obtained at the half time of the steady state. The concentrations of the

hydrogen peroxide (He, Hb) and of the product (Pe, Pb) change notably slower.

Although the dependence of the product concentration is linear as seen in Fig.

4.5, the linear dependence is not followed in the enzyme layer (1 µm). This

is highlighted in the inset of Fig. 4.5. The non-linear dependence could be

explained by the enzymatic reaction occurring in the enzyme layer.

The dynamics of the concentrations of the compounds is also presented in Figs.

4.6 and 4.7. Fig. 4.6 shows the concentrations averaged through the enzyme

layer while Fig. 4.7 shows the concentrations averaged through both compart-

ments, the enzyme layer and the diffusion layer. The thickness d of the enzyme

layer equals 1 µm. The thickness δ of the external diffusion layer is in two

orders of magnitude higher, δ = 400µm = 400d. After a certain time the equilib-

rium approaches and the concentrations become invariable.

During the biosensor action the substrate diffuses into the enzyme layer and

this results in a decrease of the enzyme as well as of the hydrogen peroxide and

in an increase of the compound I as well as of the product concentrations. The

inset in Fig. 4.6 shows very high concentration dynamics of the enzyme (Ē) as

well as of the compound I (C̄) in the beginning of the reacting process. In about

1 ms these concentrations become approximately constant. The concentration

dynamics of all other compounds is significantly lower.

Figs. 4.8 and 4.9 present the averaged concentrations for tenfold thinner en-

zyme layer (d = 0.1µm). One can observe similar concentration evolution as
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Figure 4.6: The concentrations of the substrate (S̄e), product (P̄e), hydrogen
peroxide (H̄e), compound I (C̄) and enzyme (Ē) averaged through the enzyme
layer (d = 1µm). The parameters are the same as in Fig. 4.4.
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Figure 4.7: The concentrations of the substrate (S̄), product (P̄ ) and hydrogen
peroxide (H̄) averaged through the enzyme and diffusion layers. The paramet-
ers are the same as in Fig. 4.4.

in the previous case, with some differences from a quantitative point of view.

The shortage of compound I results to larger amounts of unreacted hydrogen
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peroxide and substrate.
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Figure 4.8: The concentrations of substrate (S̄e), product (P̄e), hydrogen perox-
ide (H̄e), compound I (C̄) and enzyme (Ē) averaged through the enzyme layer
of the thickness d = 0.1µm. Other parameters are the same as in Fig. 4.4.

Fig. 4.8 also shows non-monotony of Ē and C̄ as functions of time t. The inset

in Fig. 4.8 shows very fast reduction of the enzyme (Ē) and so fast growth

of the compound I (C̄). In about 0.5 ms practically whole enzyme peroxidase

converts to compound I. In about 10 s some substrate reaches the enzyme layer

and the reaction (2.2) starts. Because of this, the enzyme (Ē) is regenerated from

the compound I (C̄). Fig. 4.8 expressly shows that biosensor action starts very

quickly with the reaction (2.1) while the reaction (2.2) starts with notable delay.

Certainly, the delay term depends on the thickness δ of the external diffusion

layer.

The impact of the thickness of the diffusion layer

The dependence of the absorbance on the thickness of the diffusion layer is

shown in the Fig. 4.10. The Biot number Bi was calculated assuming a constant
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Figure 4.9: The concentrations of substrate (S̄), product (P̄ ) and hydrogen per-
oxide (H̄) averaged through the enzyme and diffusion layers at the thickness
d = 0.1µm of the enzyme layer. Other parameters are the same as in Fig. 4.4.

thickness of the enzyme layer. The absorbance increases with an increase in the

substrate concentration. The absorbance strongly depends on the outer con-

centration S0 of the substrate whereas the effect of other parameters is notably

less important. In cases of a thick diffusion layer (Bi <≈ 0.02 or δ >≈ 100µm)

only the substrate concentration effects the absorbance. The concentration of

the product (which absorbs light) directly depends on the concentration of the

substrate, thus the absorbance changes in relation to the concentration of the

substrate.

The approximately linear decrease of the steady state absorbance AR with the

Biot number Bi can be explained by a linear distancing the border (x = d +

δ) where the product concentration is permanently reduced to zero (see the

boundary condition (2.12)). Consequently, the exact evaluation of the thickness

of the external (Nernst) diffusion layer is of crucial importance to predict the

biosensor response accurately.
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Figure 4.10: Dependence of the absorbance AR on the Biot number Bi at a con-
stant thickness d = 1µm of the enzyme layer, three substrate concentrations S0:
10 (3), 100 (1, 4, 5, 6, 7), 1000 (2) µM, three initial concentrations of the enzyme
E0: 0.1 (5), 1 (1, 2, 3, 6, 7), 10 (4) nM and three initial concentrations of the
hydrogen peroxide H0: 0.1 (7), 1 (1, 2, 3, 4, 5), 10 (6) mM.

As one can see in Fig. 4.10, the gradient of the steady state absorbance AR as a

function of the Biot number Bi is notably higher at lower initial concentrations

of the enzyme (E0, curve 5) as well as of the hydrogen peroxide (H0, curve 7)

rather than at higher ones (corresponding curves 4 and 6). Thus, the absorbance

is less sensitive to changes in the thickness δ of the external diffusion layer

(which is reversally proportional to the Biot number Bi) at higher values of E0

and H0 than at lower ones.

The response time increases with thickening the diffusion layer due to the time

delay needed for substrate to appear in the enzyme layer (Fig. 4.11). A ten-

fold increase in the thickness δ increases the response time approximately hun-

dredfold. All other considered parameters affect the biosensor response time

slightly. The half time T0.5 of the steady state response is approximately a lin-

ear function of the Biot number Bi as well as of the thickness δ of the diffusion
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layer. Slight variations in the linear behaviour of T0.5 can be explained by a

non-linearity of the reaction process in the enzyme layer (see the inset in Fig.

4.5).
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Figure 4.11: Dependence of the half time T0.5 of the steady state response on
the Biot number Bi at a constant thickness d = 1µm of the enzyme layer. The
parameters and notation are the same as in Fig. 4.10.

Observed values of the biosensor sensitivity are fairly high except two cases

(see Fig. 4.12). At high outer substrate concentration S0 the enzyme becomes

saturated and cannot respond effectively to the change of the substrate con-

centration (see curve 2). Very similar results were obtained at low concentra-

tion H0 of the hydrogen peroxide (curve 7). The decrease in the initial enzyme

concentration E0 (curve 5) also determines a decrease in the sensitivity of the

biosensor response. However, in all the cases increase in the thickness of the

diffusion layer (i.e. decrease of the Biot number) positively effects the biosensor

sensitivity.

A relatively short linear range of the calibration curve is one of serious draw-

backs restricting wider use of the biosensor [124, 139, 152]. This problem can

be partially solved by an application of an additional inert outer membrane
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Figure 4.12: Dependence of dimensionless sensitivity BS on the Biot number Bi
at a constant thickness d = 1µm of the enzyme layer. Calculation parameters
and notation are the same as in Fig. 4.10.

on the surface of the enzyme layer [124, 139, 152]. In the case of optical bio-

sensors, outer membranes are of limited applicability [30, 37]. Therefore, an

opportunity to increase the biosensor sensitivity as well as the linear range of

the calibration curve by increasing the thickness of the external diffusion layer

is especially important.

The impact of the thickness of the enzyme layer

The effect of enzyme layer thickness on the absorption, response time and sens-

itivity was analyzed. In this test problem the Biot number was calculated as-

suming a constant thickness of the diffusion layer.

In general, the importance of the enzyme layer (membrane) thickness to the

biosensor response is rather well known [8, 16, 41, 79, 95, 124, 139]. Usually,

the effect of the enzyme layer thickness decreases with an increase in the layer
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thickness. Fig. 4.13 shows that in the case of the peroxidase-based optical bi-

osensor, the enzyme layer thickness d effects the absorbance AR slightly only.

This can be explained by relatively thick external diffusion layer [8, 95]. The

analyzed thickness δ of the external diffusion layer was in several orders of

magnitude greater than the enzyme layer thickness d. The biosensor response

is highly stable to changes in the enzyme layer thickness when the Biot number

Bi varies from 0.02 to 0.2 (the thickness d varies from 0.01δ up to 0.1δ). The high

stability of the biosensor response to changes in the enzyme layer thickness is

a useful characteristic for the biosensor developers [30, 37].

In addition, Fig. 4.13 shows that the absorbance strongly depends on the bulk

concentration S0 of the substrate. Below this property is discussed in detail.
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Figure 4.13: Dependence of the absorbance AR on the Biot number Bi at a
constant thickness δ = 100 µm of the diffusion layer. Other parameters and
notation are the same as in Fig. 4.10.

Fig. 4.14 shows the effect of the Biot number, which is directly proportional to

the enzyme layer thickness d, on the half time T0.5 of the steady state response

of the optical biosensor. In most cases the half time T0.5 is a non-monotonous
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function of the thickness d. This is especially notable in the case of low concen-

tration of enzyme compared to the concentrations of substrate and hydrogen

peroxide (curve 5). The behaviour of the half time T0.5 when changing the en-

zyme layer thickness d at high substrate concentration S0 as compared to the

concentrations of enzyme and hydrogen peroxide (curve 2) is very similar to

that at low (see the parameters in Fig. 4.10) concentration H0 of the hydrogen

peroxide (curve 7). Only in both these cases (curves 2 and 7) the half time T0.5 is

a monotonous function of d. However, in all the cases when the enzyme layer

is relatively thick (Bi >≈ 0.2 or d >≈ 10 µm) T0.5 is a monotonous increasing

function of d at all values of the parameters.
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Figure 4.14: Dependence of the response time on the Biot number Bi at a con-
stant thickness δ = 100 µm of the diffusion layer. Other parameters and nota-
tion are the same as in Fig. 4.10.

The effect of the Biot number Bi on the biosensor sensitivity BS is depicted

Fig. 4.15. The effect of the layer thickness is rather similar to that of the ex-

ternal diffusion layer. The sensitivity of the biosensor increases extending the

enzyme layer (Fig. 4.15). The observed values of the sensitivity are very high

except two cases (curves 2 and 7). The sensitivity is notable lower at a high
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concentration S0 of the substrate (curve 2) and at a low concentration H0 of the

hydrogen peroxide (curve 7) as compared to the values of other concentrations.

In both these cases the biosensor sensitivity BS is rather sensitive to changes in

the enzyme layer thickness d. At a high concentration S0 as well as at a low

concentration H0 (see the parameters in Fig. 4.10) the biosensor sensitivity BS

can be notably increased by increasing the thickness d of the enzyme layer.
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Figure 4.15: Dependence of the dimensionless sensitivity BS on the Biot num-
ber Bi at a constant thickness δ = 100 µm of the diffusion layer. Other paramet-
ers and notation are the same as in Fig. 4.10.

The impact of the outer substrate concentration

In this test problem the outer substrate concentration is expressed as the ratio of

the substrate and hydrogen peroxide concentrations combining with the rates

of the corresponding reactions (1) and (2)

Σ =
k2S0

k1H0

. (4.9)
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The dependence of the absorbance and sensitivity of the biosensor on the di-

mensionless ratio Σ of the reactions (2) and (1) is depicted in the Figs. 4.16 and

4.17, respectively.
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Figure 4.16: Dependence of the absorbance AR on the dimensionless ratio Σ of
the reactions (2) and (1) changing the substrate concentration S0 at three initial
concentrations H0 of the hydrogen peroxide: 0.1 (5), 1 (1, 2, 3), 10 (4) mM and
three initial concentrations E0 of the enzyme: 0.1 (3), 1 (1, 4, 5), 10 (2) nM;
d = 1µm, δ = 400µm.

One can see in Fig. 4.16 a linear range of the calibration curve up to Σ ≈ 5×103

(S0 ≈ 200 µM). The dependence of the absorbance AR on the ratio Σ is no-

ticeably affected by the hydrogen peroxide (H0). The absorbance is directly

proportional to the concentration H0 of the hydrogen peroxide. A tenfold in-

crease in the concentration H0 increases the absorbance approximately tenfold

(curve 4). The corresponding decrease in H0 decreases the AR tenfold (curve

5). A variation in the initial concentration E0 of enzyme effects the absorbance

slightly (curves 2 and 3).

Fig. 4.17 shows, that the biosensor sensitivity notably decreases with a de-

crease in the concentrations E0 on the enzyme (curve 3). The concentrations
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Figure 4.17: Dependence of the dimensionless sensitivity BS on the dimension-
less ratio Σ of the reactions (2) and (1). The parameters and notation are the
same as in Fig. 4.16.

of the enzyme and of the hydrogen peroxide determine the concentration of

the compound I (reaction (2.1)), which interacts with the substrate to form the

product (reaction (2.2)). A decrease in enzyme concentration E0 decreases the

rate of product formation, while an increase in substrate concentration S0 in-

creases the reaction rate up to saturation [124, 139]. A lower concentration E0 of

the enzyme corresponds to a lower substrate concentration S0 at which the en-

zyme is saturated with the substrate. Fig. 4.17 show this effect as a decreasing

sensitivity of the biosensor with a decrease in the enzyme concentration E0.

4.1.3 Results and discussion: Fluorescent biosensor

Distributions of the concentrations of substrate, product, hydrogen peroxide,

compound I and enzyme peroxidase in time and space were given in previous

section. By changing input parameters we analyze the behavior of the bio-
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sensor response and sensitivity.

The Effect of the Thickness of the Enzyme Layer

The effect of the thickness of the enzyme layer on the response of amperometric

as well as potentiometric biosensors has been studied recently [8, 16, 124, 139].

Fig. 4.18 shows the dependence of the dimensionless steady state fluorescence

FR on the thickness of enzyme membrane.

In the case of fluorescent biosensors, thickening the enzyme membrane causes

the increase of the product concentration and therefore light is emitted to a

greater extent. The response of the biosensor mostly depends on the outer con-

centration S0 of the substrate (see curves 2 and 3 in Fig. 4.18). When the enzyme

layer is relatively thick (d > 1µm), the used variations of enzyme and hydro-

gen peroxide have similar effect on the fluorescence (see curves 1, 4, 5, 6 and

7). This can be explained by production of the same amount of the compound

I, limited by the equation (2.1).

The effect of the enzyme layer thickness on the biosensor dimensionless sens-

itivity BS is shown in Fig. 4.19. The sensitivity of the biosensor increases ex-

tending the enzyme layer. With exception of curves 2 and 7, the high values of

sensitivity (BS > 0.8) are observed within specified interval. At higher outer

substrate concentration S0 the enzyme becomes saturated and cannot respond

effectively to the change of the substrate concentration (curve 2). The almost

similar results were obtained at lower concentration of hydrogen peroxide H0

(curve 7). The sensitivity is significantly reduced because of the lower con-

centration of the formed compound I in comparison with the concentration of

the substrate. In both cases, the sensitivity BS of the biosensor can be greatly

enhanced by increasing the thickness of the enzyme layer.
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Figure 4.18: Dependence of the dimensionless steady state fluorescence FR on
the thickness d of the enzyme membrane at three substrate concentrations S0:
10 (3), 100 (1, 4, 5, 6, 7), 1000 (2) µM, three enzyme concentrations E0: 0.1 (5), 1
(1, 2, 3, 6, 7), 10 (4) nM and three hydrogen peroxide concentrations H0: 0.1 (7),
1 (1, 2, 3, 4, 5), 10 (6) mM

The Effect of the Outer Substrate Concentration

The effect of outer substrate concentration S0 on the dimensionless steady state

fluorescence FR is depicted in Fig. 4.20. The approximately linear curves of

the fluorescence FR increase asymptotically approaching the steady states. A

variation in the initial concentration E0 of the enzyme affects the fluorescence,

but has no effect on the limit of linearity of the calibration curve (see curves 2

and 3). However, the initial concentration H0 of hydrogen peroxide have an

effect upon the dynamic range of the calibration curves (curves 4 and 5). An

increase of the concentration H0 expands the limit of linearity and wise versa.

The dimensionless sensitivity BS is markedly reduced as the concentration of

the substrate S0 increases (see Fig. 4.21). The change of the initial enzyme

concentration E0 has slight effect on the biosensor sensitivity (curves 2 and 3).

However, the lower concentration of enzyme (curve 3) causes an unacceptable

94



Computational Modeling of Multi-step Biosensors

10
-1

10
0

10
1

0.0

0.2

0.4

0.6

0.8

1.0

 

 

B
S

d, µm

 1

 2

 3

 4

 5

 6

 7

Figure 4.19: Dependence of the dimensionless sensitivity BS on the thickness d
of the enzyme membrane. The parameters and notation are the same as in Fig.
4.18
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Figure 4.20: Dependence of the dimensionless steady state fluorescence FR on
the substrate concentration in the bulk solution S0 at three concentrations E0

of the enzyme: 0.1 (3), 1 (1, 4, 5), 10 (2) nM and three concentrations H0 of the
hydrogen peroxide: 0.1 (5), 1 (1, 2, 3), 10 (4) mM
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sensitivity at S0 ≈> 1.1 × 102µM. The high values of the sensitivity up to S0 ≈

104µM can be observed with the increased initial concentration H0 of hydrogen

peroxide (curve 4).
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Figure 4.21: Dependence of the dimensionless sensitivity BS on the substrate
concentration S0 in the bulk solution. The parameters and notation are the
same as in Fig. 4.20

4.2 Computational Modeling of Laccase-based Syn-

ergetic Biosensor

4.2.1 Digital simulation

In our computational modeling we assume the biosensor response IR calcu-

lated at the moment TR as the steady state response,

IR = I(TR) ≈ I∞, TR = min
j>0,Ij>0

{

τj :
Ij − Ij−1

Ij

< ε

}

, τj = τj, (4.10)
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where τ stands for the size of time step, Ij = I(τj). We used ε = 10−3 for the

calculations.

The values and references of the model parameters employed in the numerical

experiments are summarized in Table 4.1.

Table 4.1: Simulation parameters.

Parameter Value Reference
a1 100µm [83]
a2 18.7µm [83]
a3 64.2µm [81]
k1 2.44µM−1s−1 [136]
k2 0.26µM−1s−1 [83]
k3 18µM−1s−1 [83]
k4 330µM−1s−1 [85]
E0 2.76µM [83]
S1,0 28µM [83]
S2,0 11µM [83]
O0 253µM [83]

DS1,1
, DS2,1

, DP1,1
, DP2,1

3.2 × 10−10m2s−1 [59]
DS1,2

, DS2,2
, DP1,2

, DP2,2
5.6 × 10−11m2s−1 [59]

DS1,3
, DS2,3

, DP1,3
, DP2,3

6.3 × 10−10m2s−1 [59]
DO1

2.01 × 10−9m2s−1 [25]
DO2

2.01 × 10−9m2s−1 [25]
DO3

2.01 × 10−9m2s−1 [25]
DEred,1

, DEox,1
3.6 × 10−11m2s−1 [130]

ne 1 [83]
A 7 × 10−6m2 [83]

Similarly to peroxidase-based optical biosensor (section 4.1), the computer sim-

ulation was performed using the developed software program (see Chapter 3).

4.2.2 Results and discussion

The behaviour of the laccase-based biosensor response was investigated by us-

ing computer simulation. By changing input parameters the biosensor action
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was analysed with a special emphasis to the influence of the species concentra-

tions on the synergy of the simultaneous substrates conversion. The simulation

was performed at wide ranges of the parameter values.

Fig. 4.22 shows the steady-state profiles of the concentrations simulated at val-

ues given in Table 4.1. As expected, the concentrations of S1 and S2 are lower

than the concentrations of P1 and P2 due to the enzymatic conversion of the

substrates to the products. In the outer part of the enzyme layer, the concentra-

tions are constant and they change gradually in the dialysis membrane and the

diffusion layer. In the close proximity to the electrode, the increase of S1 and

the concomitant decrease of P1 are observed due to the electrochemical reaction

(2.35). A similar but relatively smaller change is followed by S2 and P2 which

was probably caused by the reaction (2.36) .
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Figure 4.22: The steady state concentration profiles of the ferrocyanide (S1),
mediator (S2), ferricyanide (P1), oxidased mediator (P2) and oxygen (O) in the
enzyme layer (0 < x < 100µm), dialysis membrane (100 < x < 118.7µm) and
the diffusion layer (118.7 < x < 182.9µm). The grey zone represents the dialysis
membrane. Values of the model parameters are given in Table 4.1.

To see the effect of the mediator (substrate S2) on the biosensor response, two
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different experiments were simulated. The simulated biosensor currents are

depicted in Fig. 4.23. In the initial stage of both simulated experiments, only

the first substrate S1 (S1,0 = 28µM) was infused into the buffer solution. When

the system has reached the steady state (t = 800 s), an additional substrate was

infused. In the first case of the biosensor operation (curve 1), the mediator

(second substrate, S2,0 = 11µM) was infused keeping the concentration of S1

unchanged, while in the second case (curve 2) an additional amount of S1 was

infused keeping the zero concentration of S2. Finally, the total concentration

of the substrates was the same (S1,0 + S2,0 = 39µM) in both cases. As one case

see in Fig. 4.23 that the addition of the hexacyanoferrate(II) (substrate S1, curve

2) increases the bioelectrode current, which after ca. 200 s reaches the steady-

state. However, the addition of the mediator (substrate S2, curve 1) causes a

supplementary increase of the bioelectrode response over that which is attained

with equal amount of S1.

The addition of the mediator cases additional increase of the bioelectrode re-

sponse (Fig. 4.23). To investigate this effect in details, the bioelectrode re-

sponses were simulated at a wide range of the mediator concentrations. Fig.

4.24 shows the dependence of the steady state bioelectrode response IR on the

concentration S2,0 of the mediator at three enzyme concentrations E0. The in-

crease of the current notably depends on the mediator concentration. The de-

pendence of IR on S2,0 is practically linear up to 10µM. At higher concentrations

of the mediator, the dependence of the current on the mediator concentration

shows a saturation character. Very similar dependence of the response on the

mediator concentration was observed in real experiments [83]. In [83] the ob-

servation was made that the bioelectrode sensitivity was dependent on immob-

ilized laccase concentration. Contradictory results were obtained by using the

modeling as sensitivity was nearly unchanged in the range of E0 from 0.69 to

2.76 µM.
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Figure 4.23: The change of the laccase-based biosensor current I(t) in two op-
eration cases: (1) the concentration S2,0 of the mediator was set to 11µM at time
t = 800s, (2) in absence of mediator (S2,0 = 0) the concentration S1,0 of the fer-
rocyanide was increased to 39µM at time t = 800s. The other parameters are
the same as in Fig. 4.22.

Fig. 4.25 presents the dependence of the bioelectrode response on the concen-

tration S1,0 of ferrocyanide (S1) and time (t). As it is apparent from Fig. 4.25,

the increase of the current upon the addition of the mediator also depends on

the concentration S1,0 of ferrocyanide. With the higher amount of S1,0, a relat-

ively smaller increase of the current is obtained. This can be explained by the

competitive action of S1 and S2. S1 competes with S2 for the binding to the

active site of laccase, and, at the high concentrations S1,0 of ferrocyanide, there

is almost none of P2, which participates in the synergistic reaction, produced.

In order to estimate the limits of synergistic effect it is useful to introduce the

difference IS ,

IS = IR − I0R, (4.11)

where I0R stands for the steady state current before the addition of the me-
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Figure 4.24: The dependence of steady state bioelectrode response IR on the
concentration S2,0 of the mediator at three enzyme concentrations E0: 2.76 (1),
1.38 (2), 0.69 (3) µM. The other parameters are listed in Table 4.1.
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Figure 4.25: The dynamics of the bioelectrode response at different concentra-
tions S1,0 of ferrocyanide. The other parameters are listed in Table 4.1.
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diator [83]. IS is the the current calculated by withdrawing from the overall

bioelectrode current the bioelectrode current in the presence of ferrocyanide at

zero mediator concentration. The difference IS between the steady state cur-

rents IR and I0R can be called as the synergistic current [83].

Fig. 4.26 shows the dependence of the synergistic current IS on the enzyme

concentration E0. The source currents IR and I0R are also depicted in Fig. 4.26.

As one can see in Fig. 4.26 the synergistic current IS is a non-monotonous

function of E0. It shows that the synergistic current reaches a maximum at

E0 = 5µM. Below that value, small amount of product P2 is produced for the

synergetic reaction to occur. Above the peak value, most of S1 is consumed in

reaction (2.32) hindering the synergetic reaction.
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Figure 4.26: The steady state bioelectrode responses IR and I0R as well as the
synergistic current IS vs. the enzyme concentration E0. The other parameters
are listed in Table 4.1.

Fig. 4.27 shows the dependence of the synergistic current IS on the concentra-

tion S1,0 of the ferrocyanide (substrate S1). This dependence can be explained

similarly as the dependence of IS on the enzyme concentration E0. At very
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high concentrations S1,0 of the substrate S1, the enzyme is mostly involved in

reaction (2.32) and this slows down the production of the product P2 which is

necessary for the synergetic reaction.
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Figure 4.27: The dependences of the steady state bioelectrode responses IR

and I0R as well as the synergistic current IS on the substrate concentration S1,0

at values of the model parameters given in Table 4.1.

4.3 Conclusions

The mathematical models of peroxidase-based optical and laccase-based syn-

ergetic biosensors can be specified in SBML together with the annotations.

The computational modeling of the peroxidase-based optical biosensor were

produced. The results indicated that the sensitivity of the optical biosensor

increases with an increase in the thickness δ of the external diffusion layer

(Fig. 4.12). The light absorbance is less sensitive to changes in the thickness

δ at higher concentrations of the enzyme and of the hydrogen peroxide than at

lower concentrations of those species.
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Assuming the relatively thick external diffusion layer, the biosensor response

is highly stabile to changes in the enzyme layer thickness d when d varies from

one hundredth to one tenth of the thickness δ of the diffusion layer (0.01δ < d <

0.1δ, Fig. 4.13). The response stability to changes in d reduces at low concentra-

tions of the hydrogen peroxide and at high concentrations of the substrate (Fig.

4.15).

The sensitivity of the optical biosensor decreases with a decrease in the concen-

tration of the enzyme (Fig. 4.17).

The developed mathematical model of a peroxidase-based fluorescent biosensor

can be also used for biosensors digital simulations and research.

By providing a relatively thick enzyme layer d a high sensitivity and fluores-

cence values can be obtained. However, a great care must be taken in cases

of high outer substrate and low initial hydrogen peroxide concentrations (Fig.

4.19).

The higher sensitivity of fluorescent biosensor can be achieved at increased

values of hydrogen peroxide (Fig. 4.21).

The properties of the laccase-based synergetic biosensor were also investigated.

According to the results the synergistic current IS is a non-monotonous func-

tion of the enzyme concentration E0 (Fig. 4.26) as well as of the substrate con-

centration S1,0 (Fig. 4.27). The limits of synergistic effect were estimated with

the maximum synergistic current IS obtained at E0=5µM and S1,0=12µM. Taken

together, these results confirm the synergistic effect in the laccase biosensor

[83].

The synergistic effect of the laccase-based biosensors can be increased by se-

lecting an appropriate concentration of the enzyme as well as values of some

other model parameters. The computational simulation of the biosensor re-
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sponse can be used as a tool in design of novel highly sensitive laccase-based

biosensors.

To prove conclusions made the experiments are running using peroxidase-

based optical biosensors and laccase-based biosensors with different geometry

and catalytical parameters.
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1. The detail applicability analysis of various finite difference schemes for

the computational solution of reaction-diffusion problem with Michaelis-

Menten kinetics showed that the fastest schemes to achieve the required

relative error are implicit calculation and Hopscotch approaches. For the

problems where accuracy is not a significant factor but the speed is, the

simplest explicit scheme should be used.

2. The multi-step character of chemical processes in complex biosensors can

be specified extending SBML language. The developed tool can be ap-

plied for the computational modeling of the various multi-step biosensors.

3. A synergistic mathematical model with new regeneration boundary con-

ditions can be used for the computational simulations of the synergistic

multi-step biosensors action. The computational modeling of the laccase-

based biosensor qualitatively explained and confirmed the experiment-

ally observed synergistic effect of the mediator on the biosensor response

[83].

4. The mathematical model of a peroxidase-based optical biosensor can be

successfully used to investigate the kinetic peculiarities of the biosensor

response. The results of the computational modeling indicated that bio-

sensor response is highly stable at the relatively thick external diffusion
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layer, which has little effect on the response at high enzyme concentra-

tions.
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[9A] E. Gaidamauskaitė, R. Baronas. Automatizuotas biojutiklių kompiuterinių
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ematik und Physik, 49(1):46–85, 1998.

[102] L. Michaelis and M. Menten. Die kinetik der invertinwirkung. Bio-

chemische Zeitschrift, 49(352):333–369, 1913.

[103] R. W. Missen, C. A. Mims, and B. A. Saville. Introduction to Chemical

Reaction Engineering and Kinetics. John Wiley & Sons, Inc., 1999.

[104] W. E. Moerner. Single-molecule chemistry and biology special feature:

New directions in single-molecule imaging and analysis. Proceedings of

the National Academy of Sciences of the United States of America, 104(31):

12596–12602, 2007.

[105] J. E. Moreira, S. P. Midkiff, M. Gupta, P. V. Artigas, M. Snir, and R. D.

Lawrence. Java programming for high-performance numerical comput-

ing. IBM Systems Journal, 39(6):21–56, 2000.

[106] C. L. Morgan, D. J. Newman, and C. P. Price. Immunosensors: technology

and opportunities in laboratory medicine. Clinical Chemistry, 42(2):193–

209, 1996.

[107] O.V. Morozova, G.P. Shumakovich, M. A. Gorbacheva, S. V. Shleev, and

A. I. Yaropolov. "Blue" laccases. Biochemistry (Moscow), 72(10):1136–1150,

2007.

[108] N. Nikolaus and B. Strehlitz. Amperometric lactate biosensors and their

119



Bibliography

application in (sports) medicine, for life quality and wellbeing. Mi-

crochimica Acta, 160(1-2):15–55, 2008.

[109] C. B. Ojeda and F. S. Rojas. Recent development in optical chemical

sensors coupling with flow injection analysis. Sensors, 6(10):1245–1307,

2006.

[110] V. M. N. Passaro, F. Dell’olio, B. Casamassima, and F. De Leonardis.

Guided-wave optical biosensors. Sensors, 7(4):508–536, 2007.

[111] M. Pohanka and P. Skládal. Electrochemical biosensors - principles and

applications. Journal of Applied Biomedicine, 6(2):57–64, 2008.

[112] R. Popovtzer, A. Natan, and Y. Shacham-Diamand. Mathematical model

of whole cell based bio-chip: an electrochemical biosensor for water tox-

icity detection. Journal of Electroanalytical Chemistry, 602(1):17–23, 2007.

[113] P. N. Prasad. Introduction to Biophotonics. John Wiley & Sons, Inc., 2003.

[114] M. Puida, F. Ivanauskas, I. Ignatjev, G. Valinčius, and V. Razumas. Com-
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