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Abstract

In this thesis, person identification by combining automatic face and iris
recognition is analyzed. Person identification by his face is one of the most
intuitive from all biometric measures. We are used to recognizing familiar
faces and confirming identity by a short glance at one’s id card which con-
tains image of the face. We are also used to being observed by surveillance
cameras, which can perform biometric authentication without even being
noticed. However, facial biometrics is one of most unstable metrics because
the face gets noticeably older in several years and can frequently change
depending on the mood of its owner. The core algorithm for facial recog-
nition presented in this work is based on Gabor features. Deep analysis of
each step helped to develop the method with better or similar accuracy to
the best published results received on the same datasets, while being simple
and fast.

On the other hand, person identification by his iris is one of the most
sophisticated, stable and accurate biometrics. The core algorithm for iris
recognition presented in this work is based on a novel iris texture repre-
sentation by local extremum points of multiscale Taylor expansion. The
proposed irises comparison method is very different from the classic phase-
based methods, but is also fast and accurate. Combining it with our imple-
mentation of phase-based method results in superior recognition accuracy
which is comparable or better than any published results received on the
same datasets.

A combination of aforementioned algorithms was implemented and suc-
cessfully tested in a recent Multiple Biometrics Grand Challenge Version
2 Portal Challenge experiments, where iris and face videos were captured
simultaneously. As expected, recognition accuracy was significantly better
when both biometrics were combined.
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Chapter 1

Introduction

1.1 Research Area

Automatic person identification using biometric characteristics has huge
potential and thousands of applications starting from everyday personal
computer login applications and finishing by high security demanding sys-
tems like national level border cross control or an instrument to safeguard
democratic elections. The most attractive technologies are those which do
not need a contact to perform the biometric measurements and those which
can capture person’s biometrics without any interaction with the user.

In the last decade, facial recognition was thought to be a holly grail in
biometrics because of huge amount of already installed surveillance cameras
in the world and possibility to perform person identification even without
informing him about that. While society was debating about the privacy
concerns and countries were fighting terrorists by installing facial screening
systems in all the major airports, scientists improved facial recognition ac-
curacy by an order of magnitude [87]. However, major improvements were
done mostly for facial images captured in controlled environment at high
resolution which is not the case of typical surveillance cameras. That didn’t
reduced interest in person identification by face because new imaging tech-
nologies enabled getting face images at high enough resolutions. It’s only
the matter of time when these technologies will be installed everywhere.
On the other hand, there are plenty of other applications which can benefit
from face recognition.
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Iris recognition was always marketed as most stable and accurate bio-
metric measurement which can be used for person identification (except per-
haps DNA). Additionally, similar to face, it can also be "measured" without
a contact and interaction with a person.

The research area of this work is person identification by the biometric
measurements (that can be done at a distance and on the move) - face
and iris images, independently as unimodal and combined as multimodal
biometric systems.

1.2 Problem Relevance

Face recognition is one of the most natural biometrics because humans are
extremely good at recognizing persons by their faces. Recent studies showed
that some face recognition algorithms already surpass humans at match-
ing faces [79]. Nevertheless, high number of applications always demand
better accuracy and robustness to such factors as changing illumination,
expression, pose, aging, facial hair, glasses, etc. Emerging new imaging
technologies suggested to use better image capturing devices which enabled
capturing additional biometrics together with face - iris texture. Although,
recognition algorithms for each of these biometrics are improved constantly,
fusing them together results in even more significant boost in recognition
accuracy.

Recently, several commercial systems which use this concept became
available [3], [51], [93], [97] and several publications were also published
[8], [38], [71], [119], mostly presenting previously mentioned commercial
systems. However, they focus on iris recognition which is more stable and
accurate than face recognition. Additionally, usually two irises are captured
simultaneously, which further improves accuracy of iris only recognition
systems. On the other hand, capturing irises at the distance and on the
move must introduce additional noise, which is not present in typical iris
recognition systems which capture irises in more constrained conditions.
This results in lower than expected accuracy from the most stable and
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accurate biometrics. Thus, we believe that in such case adding face modality
will further improve accuracy of iris only recognition systems.

1.3 Research Object

This thesis research object is person identification at a distance using com-
bination of face and iris biometric modalities which complement each other
by being the least intrusive (face recognition part) and most accurate (iris
recognition part) biometrics.

1.4 The Objectives and Tasks of the Research

The main objective of this thesis is to analyze current state-of-the-art face
and iris recognition algorithms, and propose the improvements to increase
recognition accuracy and speed. Furthermore, to implement core ready-to-
use person identification algorithms for a multi-modal biometrics system
utilizing the strengths of both biometric modalities.

In order to achieve these objectives the following tasks were formulated:

1. To analyze existing face and iris recognition methods.

2. To propose an improvement to a baseline face recognition from single
image algorithm based on Gabor features both in speed and accuracy.

3. To evaluate impact of each face recognition step to identification and
verification accuracy.

4. To create a real-time iris segmentation method.

5. To propose a new representation of iris texture based on local features.

6. To propose a new iris matching method which could complement tra-
ditional binary xor-based matching of phase-based iris texture repre-
sentation.

7. To combine face and iris biometric modalities in one person identifi-
cation system and evaluate its performance.
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1.5 Scientific Novelty

The proposed face recognition method is built on traditional face identifica-
tion from single image scheme: real-time face detection, followed by extrac-
tion of Gabor features and classic vectors’ similarity measure for comparison
of two features sets. Although, the smallest components of the algorithm
are ordinary and they are often used in facial recognition, a unique combi-
nation with deep analysis of each component is created in this thesis:

• Geometric normalization - optimal resolution and cropping parameters
for the proposed features were found.

• Photometric normalization - three different methods were analyzed.
The first method does not influence face recognition accuracy if the
proposed features are used. The other two are comparable and both
significantly improve face recognition accuracy. It was shown that it
is an essential step in facial recognition.

• Number of used features - an optimal density of regular grid (which
controls number of used features) was found.

The proposed accelerated calculation of Gabor features enables real-
time conversion of face image to facial features set. It is always faster than
direct calculation and faster than convolution in frequency domain when
image dimensions are not convenient for fast Fourier transform.

Gabor features similarity score was modified to use the same responses of
Gabor filters in two complementary ways: by forming vectors along different
directions and scales. The proposed modification to Gabor features similar-
ity calculation can be straightforward extended to other object recognition
tasks.

And finally, the proposed method is more accurate than best of the
published algorithms, which do not require training step, by an order of
magnitude, and even more, it is still more accurate than those algorithms,
which are based on training step.
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The proposed iris recognition method is built on proposed novel repre-
sentation of texture - a set of local extrema of multiscale Taylor expansion.

Completely different from traditional ones iris matching method is pro-
posed. It is designed to cope with inaccuracies of iris segmentation step.
Combined with a real-time iris segmentation step it gives similar recognition
accuracy as current state-of-the-art iris recognition algorithms.

Additionally, we showed how the proposed iris texture representation can
be converted into traditional phase-based representation. If both methods
are used simultaneously (this does not introduce additional complexity in
feature extraction step), iris recognition accuracy is improved significantly
and becomes higher than any published results on the tested recently cre-
ated public iris datasets of different quality.

Finally, we showed how both algorithms can be easily fused at a score
level and successfully used together in a complete person identification sys-
tem to further improve recognition accuracy.

1.6 Practical Significance of the Work

The proposed face and iris recognition methods are ready to be deployed as
core algorithms of person identification system either as single modality, or
a combination of both biometric modalities. A modern personal computer
can perform person identification based on the proposed methods in real
time which is an important criteria for real-world applications.

1.7 Defended Propositions

1. Improved Gabor features extraction from facial image speed by an
order of magnitude without any loss in the accuracy of Gabor filters
responses. This enables to use Gabor features based recognition meth-
ods in real time.

2. Analyzed and proposed better parameters for each step of typical face
recognition from single image method. This allowed to achieve identi-
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fication and verification accuracy, which is comparable with accuracy
of the methods which additionally incorporate a training step and re-
quire to have a representative training set of facial images.

3. Proposed Gabor features comparison method which reuses responses of
Gabor filters along directions and scales. Thus, without any additional
features improves identification and verification accuracy to the better
than any known published results.

4. Proposed iris texture representation by a set of multiscale Taylor ex-
pansions. The proposed representation can be encoded in two dif-
ferent and complementary ways - traditional binary phase-based and
novel extrema-based, thus, creating two different iris texture represen-
tations.

5. Proposed similarity metrics to compare the proposed iris texture rep-
resentations encoded as a sets of two-dimensional extrema points. The
proposes similarity metric can cope with minor errors in iris segmen-
tation step and gives similar accuracy as existing state-of-the-art iris
recognition methods.

6. Proposed a way to combine two different iris texture representations
to further improve recognition accuracy.

7. Proposed a way to combine face and iris biometric modalities to im-
prove person identification accuracy when iris images are captured at
a distance because getting a face image at the same time is a cheap
operation. The proposed face and iris recognition algorithms are sim-
ilar in nature - they both compare texture, thus resulting similarities
scores can be easily used in fusion of different biometric modalities at
scores level. It was evaluated in Multiple Biometrics Grand Challenge
Version 2.
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1.8 Approval of Research Results

The results of the proposed methods were presented in the following work-
shops and conferences:

1. "The Multiple Biometrics Grand Challenge Workshop III", 4 December
2009, Washington (USA).

2. "The 3rd IAPR/IEEE International Conference on Biometrics", 2-5
June 2009, Alghero (Italy).

This thesis is an essential continuation of previous scientific work performed
by the author:

1. Justas Kranauskas (2005), "The Attributes of Faces Recognition",
Master Thesis in the Faculty of Mathematics and Informatics, Vil-
nius University.

1.9 Publications

1. Justas Kranauskas: Accelerated Calculation of Gabor Features in Spa-
tial Domain. Electronics and Electrical Engineering, no. 1 (97), pp.
39-44, 2010.

2. Algirdas Bastys, Justas Kranauskas, Rokas Masiulis: Iris Matching by
Local Extremum Points of Multiscale Taylor Expansion. Advances in
Biometrics, Third International Conference, ICB 2009, Alghero, Italy,
June 2-5, Proceedings, vol. 5558, pp. 1070-1079, 2009.

3. Algirdas Bastys, Justas Kranauskas, Rokas Masiulis: Iris Recognition
by Local Extremum Points of Multiscale Taylor Expansion. Pattern
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4. Andrej Kisel, Alexej Kochetkov, Justas Kranauskas: Fingerprint
Minutiae Matching without Global Alignment Using Local Structures.
Informatica (Lithuanian Academy of Sciences), vol. 19, no. 1, pp.
31-44, 2008.
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1.10 Thesis Structure

This thesis is organized as follows. Chapter 2 reviews face recognition
from single still image problem. A survey is followed by an introduction to
method of accelerated calculation of Gabor features in spatial domain. Ga-
bor features make the foundation for a baseline face recognition algorithm,
which is further significantly improved by deep analysis of each face recog-
nition step - geometric normalization, photometric normalization, number
and position of used Gabor features, and proposed similarity metric. The
accuracy is evaluated on FERET - most popular face recognition protocol
and dataset.

Chapter 3 reviews iris recognition from single still image problem. A
survey is followed by the description of the proposed real-time iris segmen-
tation method. Classic iris texture geometric normalization by rubber sheet
method is presented. It is followed by introduction to proposed iris texture
representation by local features as local extrema of multiscale Taylor ex-
pansion and a similarity metric for robust comparison of created features
sets. Further, a way to convert the proposed iris texture representation into
classic phase-based method is presented. Developed iris recognition algo-
rithms are evaluated on largest publicly available iris datasets - CASIA and
ICE. Finally, evaluation results are presented for all datasets.

Chapter 4 presents evaluation results for previously introduced face and
iris recognition algorithms on the Multiple Biometrics Grand Challenge
Version 2 Portal Challenge experiment. Iris localization method is extended
to work with specific very high resolution NIR face images, which contain
part of the face and usually one or two irises visible. This experiment
requires fusion of biometric modalities. The results of fusion at score level
are presented.
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Chapter 2

Face Recognition

2.1 Introduction

Roughly, face recognition problem can be divided into two categories: the
one sample problem and the multiple samples problem [104]. The first as-
sumes that only one image per person is available in the database and the
goal of facial recognition system is to identify a person later in any time,
any pose, any illumination conditions from that single image. While the
second problem assumes that many images of every person are available in
the database and that these images can be used to train the face recognition
system. We will focus on the one sample problem in this thesis.

Most of the previous works in 2D facial recognition from a single still
image rely on the same scheme and we will not make an exception here:

1. Face detection - localization of face in the image, usually combined
with detection of reference points in the localized face.

2. Geometric normalization - face image transformation according to pre-
defined reference points into a reference shape.

3. Photometric normalization - a series of image processing operations
for eliminating different illumination conditions.

4. Features extraction - an extraction of person’s face representative fea-
tures set, usually combined with training step.

5. Features matching - a comparison of previously extracted features sets.
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2.1.1 Face Detection

We will not give much attention to face detection step in this thesis. After
a real breakthrough in face localization [108] even a cell phone is capable of
detecting faces in images. When an open source implementation [64], [63]
appeared as a part of OpenCV library [44] no significant progress in this
field was observed (except plenty of modifications which slightly improve
the performance). The main features of this approach can be summarized
as:

• Highly accurate - our implementation [53] is able to detect ∼99.6% of
all near frontal face images on five publicly available datasets (BANCA
[7], BioID [49], FERET [88], XM2VTS [72], and FRGC [86]) totaling
in more than 50000 face images.

• Real-time - our implementation [53] is capable of processing more than
30 images of 640× 480 pixels per second on a single core of Intel Core
2 Duo CPU P8400 @ 2.26 Ghz.

2.1.2 Geometric Normalization

Since the early methods of human face parametrization [102] and recogni-
tion [106] using Principal Component Analysis (PCA), there was a need to
precisely align face images for getting acceptable recognition accuracy. The
easiest and yet very effective method is a two-dimensional affine face image
transform for mapping several reference points (most often centers of eyes)
to predefined locations, see Fig. 2.1. Similar methods using additional ref-
erence points like center of mouth or nose tip usually did not improved the
recognition of near-frontal faces accuracy. However, they help in compen-
sating the in-depth rotation of faces. Geometric normalization approaches
can be divided into the following major categories:

1. Affine image transform by the centers of eyes.

2. Image warping into a shape-free texture - active shape models (ASM)
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(a) (b)

Figure 2.1: Face alignment and cropping (a) by the centers of eyes in original
image (b).

[57], active appearance models (AAM) [20], 3D morphable models [13],
etc.

3. Local features alignment to the reference points - elastic bunch graph
matching (EBGM) [116], scale invariant feature transform (SIFT) [12],
etc.

We will focus on near-frontal face recognition, thus the first and simplest
geometric normalization method will be used further.

Although affine image transform by the centers of eyes is a simple image
processing operation, several unknowns still need to be explored. Firstly,
face image resolution can greatly affect an algorithm’s performance [68]. It
is concluded that face image of 32×32 pixels is the lower and almost optimal
limit for most typical holistic methods. Some suggest that face image of
6 × 7 pixels still can be used for recognition [113], but this is definitely an
overtraining issue. On the other hand, modern algorithms which took part
in FRVT2006 competition organized by US National Institute of Standards
and Technology (NIST) made advantage of higher resolution images [89].

Secondly, it is not clear how tightly face should be cropped from the
original image. Should we crop a tight square, a rectangle, or even mask out
the background from face oval additionally, see Fig. 2.2. The tight square
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(a) (b) (c)

Figure 2.2: Several types of face cropping: a tight square (a), a rectangle
(b), and rectangle with masked-out background (c)

crop seems reasonable, because we are working on face recognition but not
neck or haircut recognition (which are visible in the rectangular crop). The
looser crop reveals more details on forehead and chin, but can result in
adaptation to the training database because more background is present in
face image. Masking out face oval with ellipse is kind of compromise in
this case. It hides non-facial details, which also could become a reason of
overtraining. On the other hand, the mask could influence local features to
generate very similar values on artificially created border between the face
image and mask. Some [116] recommend blurring out the face image near
image borders (or mask).

2.1.3 Photometric Normalization

One of the main weaknesses of all facial recognition systems is poor recogni-
tion performance when face illumination varies. Several approaches to deal
with this problem are suggested. The first group of them suggest choosing
illumination invariant features - edge maps, Laplacian of a Gaussian fea-
tures, image intensity derivatives, or 2D Gabor-like features [1], local binary
patterns [2]. Authors of [126] also claim that no illumination normalization
is needed after geometric normalization, if local Gabor features are used
to encode facial features. The second group suggest modeling illumination
variation in some subspace or manifold that is closest to the analyzed face
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image [107], [36], [37]. The third group suggest normalizing face image to
the canonical form by image transformation [98] or synthesis [35]. Any of
these techniques can significantly increase face recognition accuracy when
dealing with different illumination. We will focus on the last approach, also
known as photometric face image normalization.

The first attempts of photometric normalization were global image pro-
cessing operations, known as contrast stretching, histogram equalizations,
and histogram fitting [90], [123]. The global methods were followed by their
local versions with the same operations applied within several different re-
gions of geometrically normalized face image [98] or even within the local
neighborhood of each pixel [41]. Recently, a combined approach of global
and local photometric normalization methods has been published [117].

Five different photometric normalization methods were compared in
[101]: principal component analysis method, multiscale retinex method, ho-
momorphic filtering, isotropic smoothing, and anisotropic smoothing. They
were tested on three databases: Yale B [36], XM2VTS [72] and BANCA [7].
The authors conclude that anisotropic smoothing is superior to other tested
methods in dealing with illumination variation. However, all the methods
require training which adds complexity and clumsiness to them. A set of
less complex normalizations were tested in [98]: global histogram equal-
ization (HE), region-based histogram equalization (RHE), global gamma
intensity correction (GIC), region based GIC (RGC), quotient illumination
relighting, and combinations of those methods. They conclude with quo-
tient illumination relighting as superior method, which, on the other hand,
makes assumption that lighting modes of the images are known or can be
estimated.

None of the mentioned photometric normalization methods is revolu-
tionary in dealing with illumination variation. Some of them work better
in one conditions (or on one database) others are better elsewhere. But
generally, they improve face recognition accuracy.
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2.1.4 Features Extraction and Matching

We will not separate features extraction from matching step because unlike
the fingerprint minutiae [52], there exist no standard facial features which
could be reliably extracted and reused by completely different extraction
and matching algorithms. Most often the facial features matching step is
specific for the extraction step and cannot be separated.

2.1.4.1 Holistic Methods

A classic eigenfaces [106] technique was one of the first holistic methods. It
was extended by Linear Discriminative Analysis (LDA) based algorithms
[9], [124], [66], Probablistic-based method [75], Support Vector Machine
(SVM) based method [84], Laplacianfaces [40], Correlation-based methods
[54], etc. All of them are superior to the PCA, but require multiple face
images of the same person and, usually, a length training procedure. On the
other hand, PCA was extended into methods which work on a single image
per person with generating more samples from that image by adding various
type of noise [78], [31], [67]. But most of them improved the recognition
accuracy only marginally.

2.1.4.2 Local Features Methods

Local features methods often achieved higher accuracy compared to holis-
tic ones. Among these were Elastic Bunch Graph Matching (EBGM) [116]
which evolved from Dynamic Link Matching [56]. Additionally, well known
techniques were applied: Convolution Neural Networks (CNN) [58], Hidden
Markov Models (HMM) [59], Gabor jets [126]. Furthermore, Discrete Co-
sine Transform (DCT) [32], modified LDA [42] and other techniques were
applied to the components of the face instead of the whole face at once. A
successful Local Binary Patterns (LBP) [2] application to face recognition
was extended in many ways [122], [105] and significantly improved the upper
bound of face recognition from single image accuracy. In conclusion, most
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of the recent face recognition technologies rely on local features to cope with
the most challenging conditions in facial recognition: pose, lighting, aging,
occlusions, etc.

2.2 Proposed Face Recognition Algorithm

We started developing the proposed face recognition algorithm by choosing
potential set of features and then adapting all the other steps. From a lit-
erature review Gabor features seemed to be the most promising ones. They
have a property of illumination invariance (which we found rather limited
in our experiments), they are closely related to processes in primary visual
cortex in human brains [29], and systems based on Gabor features consis-
tently show one of the best results in many computer vision tasks including
face recognition. To use Gabor features in real-time face recognition sys-
tem we needed a new computationally efficient Gabor features calculation
method.

2.2.1 Accelerated Calculation of Gabor Features in Spatial
Domain

Gabor filters have been widely used in constructing various Gabor features
for different computer vision tasks: competitive texture classification [19],
segmentation [15], [48] and synthesis [16], fast and accurate object detection
and tracking [76], [46], one of most precise biometrics - iris recognition
[24] and other. Gabor features are proved to perform very well because of
their properties like rotation, scale, translation and uniform lighting semi-
invariance [55]. On the other hand, computational complexity still limits
their application in practice. We will focus on most widely used Gabor
features - convolution with multi-resolution structure of Gabor filters of
several frequencies and orientations.

A straight forward implementation of Gabor features extraction would
be an image convolution with Gabor filters in spatial domain. It can be
improved by an order of magnitude using the separability property of 2D
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filters [4] or symmetry/anti-symmetry/wavelet characteristics [92] for spe-
cial cases of Gabor filters orientations and frequencies. Several schemes
of calculating Gabor features more effectively by approximations were pre-
sented: effective area of filters and Laplacian pyramid [43], recursive Gabor
[120], decomposition into Gaussians [10]. However, the most effective Ga-
bor features extraction at every location in the image is done by using Fast
Fourier Transform (FFT) for image convolution with Gabor filters in fre-
quency domain. Several works in pattern recognition [109], [114] use Gabor
features that are calculated at some regular grid but not every pixel of the
image. Motivated by that we will explore how a structure of regular grid
and generalized separability of Gabor filter can be exploited to speed up
the calculation of Gabor features almost to the speed of FFT without loss
of precision.

2.2.1.1 Gabor Features

2.2.1.1.1 Gabor Filter Following [4], we assume complex-valued 2D
Gabor filter as a product of isotropic Gaussian and complex exponential
plane wave, that is,

G (x, y, θ, f) = e−
x2
θ

+y2
θ

2σ2 cos (2πfxθ + φ) ,
xθ = x cos θ + y sin θ,
yθ = −x sin θ + y cos θ,

(2.1)

where θ ∈ [0, π) is filter orientation, f is filter frequency, σ is a standard
deviation of Gaussian function, and φ ∈ {0, π2} corresponds to real and
imaginary parts of Gabor filter. We will show the Gabor filter of any ori-
entation θ and any frequency f becomes linearly-multi-separable (formal
definition will be presented later). Later, we will show how this and the
filter symmetry properties can be exploited for accelerated calculation of
Gabor features.

2.2.1.1.2 Effective Filter Envelope Effective filter envelope corre-
sponds to the filter area with significant coefficients [43]. Filter coefficients

24



outside that area can be discarded depending on what accuracy and speed
ratio is needed. Although speed of convolution in frequency domain is
not affected by smaller filter size1, it can significantly reduce computa-
tional complexity when filtering in spatial domain and memory consump-
tions for storage of filters. Effective filter envelope of Gabor filter can be
calculated directly from standard deviation of approximately normally dis-
tributed data. For all further experiments doubled standard deviation will
be used as the radius of effective filter envelope retaining approximately
95% energy of the filter, which is defined as sum of absolute Gabor filter
coefficients.

2.2.1.1.3 Convolution Direct convolution of a linear M ×M (where
M = 2m+ 1) 2D filter C and image I in spatial domain is defined as

H (r, c) =
m∑

i=−m

m∑
j=−m

C (i, j) I (r − i, c− j), (2.2)

which requires O
(
M2

)
(operations) calculations to calculate convolution at

one point of the image and O
(
M2N2

)
(operations) calculations for convo-

lution with the whole N ×N image. Linear 2D filter is said to be separable
if it can be decomposed as a product of two one-dimensional signals filters.
Convolution of whole image with separable 2D filter can be speeded up by
convolving each row of the image with the horizontal projection of filter,
resulting in the intermediate image. Then, convolving each column of the
intermediate image with the vertical projection of filter. The resulting im-
age is identical to direct convolution, no matter which step (horizontal or
vertical) is performed first, and requires O

(
MN2

)
calculations. We will

generalize notion of separable 2D filter that will be applicable for our com-
plex valued Gabor filter.

Definition It is said that complex-valued 2D filter C (x, y) is linearly multi-
1Here we neglect the fact that convolution by FFT without a signal wraparound requires

complementing of the longer signal by half of the shorter signal with zeros.
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separable if for some finite K1 and K2

C (x, y) =
K1∑
k=1

a1
k (x) b1

k (y) +
√
−1

K2∑
k=1

a2
k (x) b2

k (y), (2.3)

where ajk (x) and bjk (y) are real-valued functions. Sum K1 + K2 is referred
as order of multi-separability.

Note, that N × N image filtration with linearly multi-separable filter
would require 2(K1 + K2)MN2 + (K1 + K2 − 2)N2 arithmetic operations.
We will show that the Gabor filter 2.1 is multi-separable of order 4. The
real part of the Gabor filter can be decomposed in

<G (x, y, θ, f) = e−
(x cos θ+y sin θ)2+(−x sin θ+y cos θ)2

2σ2 ·

cos (2πf (x cos θ + y sin θ))

= e−
x2+y2

2σ2 cos (2πfx cos θ + 2πfy sin θ)

= e−
x2+y2

2σ2 cos (2πfx cos θ) cos (2πfy sin θ)−

e−
x2+y2

2σ2 sin (2πfx cos θ) sin (2πfy sin θ)
= Gh1 (x, θ, f)Gv1 (y, θ, f)−

Gh2 (x, θ, f)Gv2 (y, θ, f) .

(2.4)

Here,
Gh1 (x, θ, f) = e−

x2
2σ2 cos (2πfx cos θ) ,

Gh2 (x, θ, f) = e−
x2

2σ2 sin (2πfx cos θ) ,

Gv1 (y, θ, f) = e−
y2

2σ2 cos (2πfy sin θ) ,

Gv2 (y, θ, f) = e−
y2

2σ2 sin (2πfy sin θ) .

(2.5)

Similarly, the imaginary part of Gabor filter can be decomposed in

=G (x, y, θ, f) = Gh2 (x, θ, f)Gv1 (y, θ, f) +Gh1 (x, θ, f)Gv2 (y, θ, f) . (2.6)

Combining 2.4 and 2.6 we have that complex Gabor filter is linearly multi-
separable of order 4. Using additional benefits of symmetry of 2.4 and 2.6
we can reduce the filtration complexity 8MN2 + 6N2 to 6MN2 + 2N2. The
last significantly improves complexity of direct convolution which requires
4M2N2 arithmetic operations.
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Convolution H in frequency domain is done by converting image I to fre-
quency domain with FFT, multiplying by a converted to frequency domain
filter C and converting back to the spatial domain with IFFT:

H = IFFT (FFT (I) · FFT (F )). (2.7)

This approach gives a periodic version of convolution. If one likes to ob-
tain non-periodic convolution, the approach of filtering in frequency domain
requires a modification involving an additional complexity. For the simplic-
ity of analysis we will restrict ourselves on periodic version of convolution.
Computational complexity of FFT, as well as IFFT, is O(N2 logN), how-
ever the lowest bound of the exact count of arithmetic operations of 1D
FFT (split-radix FFT algorithm [118]) is 4N log2N −6N + 8 real additions
and multiplications2 and applies only for N a power of two greater than
1. Since complexity of convolution in frequency domain does not depend
on filter size (if filter is smaller than the whole image) and complex Gabor
filter can be computed directly in frequency domain by

Γ (u, v, θ, f) = 2πσ2e−(2πσ)2((u−f cos θ)2+(v−f sin θ)2). (2.8)

Arithmetic complexity of convolution with complex Gabor filter is
4N2 log2N − 4N2 + 8N (one IFFT of 2D signal plus one complex multi-
plication in frequency domain, if image and filter are already in frequency
domain3).

2.2.1.1.4 Multi-resolution and Multi-orientation The most at-
tractive property of Gabor feature - orientation and scale semi-invariance -
is achieved by using Gabor filters of many different orientations and scales
which describe local structure of the image. In [43], Laplacian pyramid of
images for faster calculation of multi-resolution Gabor feature is suggested.
However, speed improvement comes with several drawbacks, and once
again works only for very special case of Gabor features:

2Recently it was improved to ≈ 34
9 N log2 N [50].

3The complexity of image conversion to frequency domain is not added here because further
we analyze a Gabor feature (which is composed of several Gabor filters) calculation time.
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1. Pyramid of images can be effectively constructed only for integer scal-
ing factors, downscaling by real factors creates aliasing effects and
should be avoided.

2. Responses of Gabor filters are approximated and, additionally, special
care should be taken to upscale the responses of low frequency filters
back to the higher resolution.

We will focus on calculation of exact values of Gabor filters of equally dis-
tributed directions (covering the [0 . . . π] range with a constant step) which
are not limited to particular scales that are convenient for constructing
Laplacian pyramid of images. Authors of [92] try to calculate convolu-
tion with several Gabor filters at once, but is tuned to orientations with
θ ∈

{
0, π4 ,

2π
4 ,

3π
4

}
and 3 scales (starting from a 3 × 3 discrete filter and

scaling it by a factor of 2). All of the rest deal with each Gabor filter
independently. One of the main contributions of the proposed method is
calculating the whole Gabor feature at once in spatial domain, including
convolution with Gabor filters of all equally distributed directions and any
number of scales.

2.2.1.1.5 Regular Grid Proposed optimizations are most effective if
adjacent points where Gabor features will be calculated are closer than the
half of the largest Gabor filter. The simplest distribution of points in 2D is
a regular grid where each point is in the same distance from the adjacent
points. A regular grid is used in some pattern recognition tasks like [109],
[114]. Furthermore, the proposed method is not limited to regular grids
defined as above but filter separability property can be exploited to speed
up calculations at a grid which is also separable, i. e. can be separated
to one-dimensional vectors of rows and columns. Several examples of such
grid can be seen in Fig. 2.3.
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(a) (b)

Figure 2.3: Examples of regular grids on a 128× 128 image.

2.2.1.2 Implementation

A classical example of Gabor feature is a vector of responses got from image
convolution with Gabor filters of 8 orientations and 5 frequencies homoge-
neously distributed in a frequency band [116]. Number of frequencies is
not limited by the proposed implementation, however number of orienta-
tions should be even to use full ensemble of optimizations. On the other
hand, this limitation is not exceptional because almost every application
of Gabor features in the literature uses even number of orientations. In
section 2.2.1.1.3, we showed that every Gabor filter with isotropic Gaussian
part is multi-separable of order 4 and this can be exploited to speed up
the convolution in spatial domain. Further we will show how symmetry
and anti-symmetry of Gabor filter as well as Gabor feature can be used for
speeding up the convolution at any location in the image up to four times.

2.2.1.2.1 Symmetry (Anti-symmetry) of Gabor Filter Real and
imaginary parts of Gabor filters are symmetric (Fig. 2.4(a), Fig. 2.4(c))
and anti-symmetric (Fig. 2.4(b), Fig. 2.4(d)).

Direct convolution of 1D signal I and filter F = (f0, . . . , fM), where
fi = fM−i, at location x (which requires M + 1 multiplications and M

additions)

H (x) = f0I (x−m) + f1I (x−m+ 1) + . . .+
fM−1I (x+m− 1) + fMI (x+m) ,

(2.9)

where M = 2m + 1, can be replaced by symmetric (or anti-symmetric if
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(a) (b)

(c) (d)

Figure 2.4: Gh1 (a), Gh2 (b), Gv1 (c) and Gv2 (d) parts of Gabor filter with
orientation θ = π

16 .

sums of signal values will be replaced by differences) version (which requires
m+ 1 multiplications and M additions):

Hs (x) = fm+1I (x) + fm (I (x− 1) + I (x+ 1)) + . . .+
f0 (I (x−m) + I (x+m)) .

(2.10)

Although in [43] authors state that this will not lead to any improvement
on modern computers because multiplication is not an expensive operation,
symmetric convolution requires 25% less arithmetic operations which can
reduce convolution time with one filter by one fourth. Additionally, when
symmetric convolution is used to calculate Gabor feature, each Gabor filter
can use the same sums (or differences) of signal and they can be precalcu-
lated only once for the largest filter. Another 25% of arithmetic operations
can be saved for all but the largest filter.

2.2.1.2.2 Symmetry (Anti-symmetry) of Gabor Feature One
more symmetry (anti-symmetry) exists in Gabor feature between filters
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of same scale but different orientations. If D orientations are used in
Gabor feature, full convolution must be performed only with filters of
D
2 + 1 orientations that fall in the range

[
0, . . . , π4

]
. The remaining filters

are symmetric (anti-symmetric) and their responses can be calculated by
reusing previously calculated filters responses as shown below for Gh1 filter
part:

Gh1 (x, π − θ, f0) = e−
x2

2σ2 cos (2πf0x cos (π − θ))

= e−
x2

2σ2 cos (−2πf0x cos (θ))

= e−
x2

2σ2 cos (2πf0x cos (θ))
= Gh1 (x, θ, f0) .

(2.11)

Similarly,
Gh2 (x, π − θ, f0) = −Gh2 (x, θ, f0) ,
Gv1 (y, π − θ, f0) = Gv1 (y, θ, f0) ,
Gv2 (y, π − θ, f0) = Gv2 (y, θ, f0) .

(2.12)

Responses of corresponding Gabor filters can be calculated by:

G (x, y, π − θ, f0, 0) = Gh1 (x, θ, f0)Gv1 (y, θ, f0) +
Gh2 (x, θ, f0)Gv2 (y, θ, f0) ,

G
(
x, y, π − θ, f0,

π
2

)
= −Gh2 (x, θ, f0)Gv1 (y, θ, f0) +

Gh1 (x, θ, f0)Gv2 (y, θ, f0) .

(2.13)

Using symmetry along orientations D
2 − 1 of orientations won’t be recalcu-

lated and will save almost 50% of arithmetic operations if more than two
orientations will be used.

2.2.1.2.3 Filtering at Regular Grid Image convolution with a linear
separable 2D filter can be optimized by an order of magnitude exploiting the
filter multi-separability property. Actually, convolution of the whole image
is the same as convolution at the dense regular grid which has a distance
of one pixel between the adjacent grid positions. Same optimizations are
possible if the distance between adjacent grid positions is greater than one
pixel (but not greater than the length of the filter). Often, there is no need
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to have Gabor response at every location in the image but calculating direct
convolution is time consuming and FFT must be used. Direct convolution,
FFT convolution and the proposed implementation will be evaluated in re-
spect of speed when calculating Gabor feature responses at grids of different
dense in section 2.2.1.3.

2.2.1.2.4 Filtering Near Image Boundary Several practices of fil-
tering near image boundaries when part of the filter slips outside the image
come from image processing:

1. Extend the image with a constant (possibly zero) intensity value.

2. Extend the image periodically or by mirroring it at the boundaries.

3. Normalize the response of convolution by sum of values from filter part
which does not slip outside the image.

Discrete Gabor filters are constructed to have the DC free property, i. e.
sum of filter coefficients equals to zero. When part of the filter slips out-
side the image Gabor filter loses the DC free property and its response can
change unacceptably as it is shown in Fig. 2.5. Filter response normal-

(a) (b)

Figure 2.5: One specific Gabor filter response (a) and absolute error (b)
when filter slips outside the image without and with filter response normal-
ization.

ization is necessary and can be done by subtracting a DC free component:
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HDCfree (r, c) = H (r, c)− gavg
∑
x,y
I (r + y, c+ x), (2.14)

where H (r, c) is Gabor filter response without normalization at row r and
column c, gavg is an average value of filter part which does not slip outside
the image, and (r + y, c+ x) runs through the image part which is under
the filter. The DC free component can be calculated rapidly in a constant
time by using intermediate integral image and integral filter (also called
"summed area tables" in [21]):

1. Integral image is the image representation where location (r, c) con-
tains the sum of all the pixels above and to the left of (r, c) inclusive:

II (r, c) =
∑

r′≤r,c′≤c
I (r′, c′). (2.15)

2. Similarly integral filter is defined:

IG (r, c) =
∑

y′≤y,x′≤x
G (y′, x′). (2.16)

3. DC free component can be calculated by accessing integral image at
four locations as it is shown in Fig. 2.6 (to get a sum of intensity
values under the filter) and integral filter at another four locations (to
get a sum of filter values that do not slip outside the image).

Figure 2.6: Sum of values in light gray rectangle S can be calculated by
accessing integral representation at 4 locations: S = 0 + 3− 1− 2.

As can be seen in Fig. 2.5, compensating for the DC property of the
Gabor filter results in much more stable filter response even when up to
45% of the filter is outside the image.
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2.2.1.3 Evaluation

First of all, arithmetic complexity of the proposed method is compared to
direct and FFT based methods by calculating number of arithmetic opera-
tions (see section 2.2.1.1.3) required to perform Gabor features extraction at
regular grids of different sizes. Regular grids were chosen in the following or-
der: each point, every second point, every third point, . . . , one center point
in the image. The proposed method is expected to be faster than direct cal-
culation of Gabor features and to be faster than convolution in frequency
domain when Gabor features are needed only on every second point of the
image (see Fig. 2.7). Complexity of convolution in frequency domain was

Figure 2.7: Number of arithmetic operations required for the evaluated
methods to calculate Gabor features (9 scales, 16 orientations) at regular
grids of different sizes on 256× 256 image.

calculated according to the split-radix FFT method (see section2.2.1.1.3)
that is applicable only to the signals of power-of-two length. In practice
its complexity heavily depends on effectiveness of implementation. For fur-
ther experiments one of the most efficient publicly available FFT software
- FFTW library [34] will be used. Results of practical experiment with the
same Gabor features, image size and regular girds that were used in theo-
retical evaluation can be seen in Fig. 2.8. Different timings for the same
number of points for the direct Gabor features calculations appear from the
regular grids where the same points are situated further or closer to image
boundary. Gabor filters from the features that are calculated closer to the
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Figure 2.8: Time (in seconds) required for the evaluated methods to calcu-
late Gabor features (9 scales, 16 orientations) at regular grids of different
sizes on 256× 256 image.

image boundary slip outside the image and are calculated faster because
parts of them are not used in convolution. However this does not affect
the speed of the proposed method because the problem of image boundary
is solved at the precalculation of signal sums (and differences) step (see
Section 2.2.1.2.1). One more difference from theoretical evaluation of com-
plexity is the form of the proposed method curve. This can be explained
by the fact that arithmetic complexity was calculated without taking into
account (actually, taking the worst case) how Gabor filters overlap in the
regular grid, i. e. how close are adjacent points in the regular grid.

Images with dimensions of power-of-two are very convenient for the FFT.
To show the efficiency of the proposed method the same experiment was
performed with image of 191× 191 pixels, results can be seen in 2.9. Now
the proposed method outperforms convolution in frequency domain by 10%
even at calculating Gabor features at each point of the image (though, the
difference is only marginal in logarithmic scale).

Similar experiments were performed with different number of scales
(3, 5, 9) and orientations (4, 8, 16, 32) in Gabor features and different sizes
of images (128×128, 191×191, 256×256). The results are almost identical
to those that were presented above.
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Figure 2.9: Time (in seconds) required for the evaluated methods to calcu-
late Gabor features (9 scales, 16 orientations) at regular grids of different
sizes on 191× 191 image.

2.2.1.4 Conclusion

The regular grid together with Gabor filters symmetry (anti-symmetry)
and Gabor features symmetry (anti-symmetry) along directions were suc-
cessfully used to improve Gabor features calculation time. The problem of
filtering near image boundary was also addressed and efficient solution was
proposed. After the detailed comparison of the proposed method with di-
rect and FFT based calculation of Gabor features the following conclusions
can be drawn from the evaluation results:

1. Proposed method is always faster than the direct convolution.

2. Proposed method is faster than convolution in frequency domain if
Gabor features are required at every second (sometimes every third)
point of the image and image dimensions are convenient for FFT.

3. Proposed method is always faster than convolution in frequency do-
main if image dimensions are not convenient for FFT.

Several approaches of optimizations were left out of the scope of this
research. Firstly, it is exploiting Gabor wavelet property, i. e. different
Gabor scales are generated from one mother wavelet. Secondly, modern
processors are able to do several arithmetic operations in parallel and this
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can be used for parallel version of the proposed method. And lastly, var-
ious approximations of Gabor filters could be used to speed up features
extraction with small errors in Gabor responses. If the errors are too small
to influence the quality of further steps in the algorithms, approximations
should be definitely used.

2.2.2 Baseline Face Recognition Algorithm

Instead of using a common baseline algorithm based on PCA [106] we have
chosen to start from a more sophisticated algorithm as a baseline for our re-
search. Similar to [116], we will build our algorithm on Gabor features. In a
previous section we showed how Gabor features can be efficiently calculated
on a fixed regular grid which is overlaid on the image (which contains a hu-
man face in our case). While [116] suggests creating a human face model to
cope with head rotations, we focus on near-frontal face recognition, thus, a
regular grid is a simple but potential approximation of the same idea.

The starting point for our further research is the following algorithm:

1. Find centers of eyes as reference points for geometric face image nor-
malization.

2. Geometrically normalize face image to a constant dimensions of 128×
128 pixels with left and right eyes at fixed positions (32, 32) and
(96, 32) respectively. See Fig. 2.1.

3. Overlay a regular 10× 10 grid over the geometrically normalized face
image.

4. Calculate a classic configuration of Gabor feature (5 scales, 8 orienta-
tions) at each grid’s position.

5. Convert the responses of complex Gabor filters gc = gc,real+igc,imaginary
to their magnitudes by gc,magnitude =

√
g2
c,real + g2

c,imaginary.

6. Similar to [126], save facial features representation as 100 × 5
8-dimensional vectors for each grid position and frequency.
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7. Compare two sets of vectors generated from different face images by
calculating a normalized dot product between the corresponding pairs
of vectors. The mean of received values is a similarity between two
representations of facial images.

One can find some similarities of the proposed baseline algorithm to
the work of [126]. The main difference is the proposed regular grid which
is constant for all scales of Gabor filters. And the main strength of our
method is low computational cost as we showed in section 2.2.1.

2.2.3 Evaluation

To evaluate all variations of the proposed algorithm the most widely publicly
available face recognition protocol was chosen. FERET database along with
the FERET protocol [88] was assembled to support government monitored
testing and evaluation of face recognition algorithms using standardized
tests and procedures. The whole image set is divided into the following
subsets:

1. Fa - serves as a set of 1196 gallery images for simulating persons that
are enrolled into facial recognition system.

2. Fb - serves as a set of 1195 probe images, where images were taken
at the same day as Fa images, with the same camera and illumination
conditions, but changed facial expression.

3. Fc - serves as a set of 194 probe images, where images were taken at the
same day as Fa images, but with different cameras and illumination
conditions.

4. Dup1 - serves as a set of 722 probe images, where images were taken
on different days than Fa images, but within one year.

5. Dup2 - serves as a set of 234 probe images, where images were taken
on different days than Fa images, but at least one year later.
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6. Training - serves as a set of 736 training images, used to train algo-
rithms which require training.

We will further identify our experiments by the probe images subsets iden-
tifiers: experiment Fb, experiment Fc, experiment Dup1, and experiment
Dup2.

As we didn’t want our face recognition algorithm evaluation to be depen-
dent on face detection part, we chose to use manually labeled eyes positions
(which are provided together with FERET database) as reference points for
geometric normalization in all experiments.

FERET protocol evaluates face recognition algorithms in the following
tasks:

1. Verification - by calculating a Detection Error Tradeoff (DET) curve
of the algorithm.

2. Identification - by calculating aRank1 identification rate. Rank1 iden-
tification rate stands for percentage of probe images which were more
similar to their corresponding gallery image than any other gallery
images.

We will skip the easiest Fb experiment and focus on Dup1 experiment
in our research. Fig. 2.10 presents a DET curve for our baseline algorithm.
The proposed baseline algorithm is already better than a top performer [116]
of FERET test performed by NIST until the last testing in 1997. While
typical Rank1 identification rates for Dup1 experiment are 50% − 60%,
our baseline algorithm achieves Rank1 = 65.24%. It is a good performance
compared to twelve years old algorithms but recent publications declare 85%
[126] or even 90% [105] Rank1 identification rate in the same experiment.

2.2.4 Improvements to Baseline Algorithm

2.2.4.1 Geometric Normalization

We fixed Gabor feature as a combination of 40 Gabor filters of 5 scales and
8 orientations. Additionally, we fixed the number of pixels between each
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Figure 2.10: Verification performance of our baseline algorithm (with iden-
tification rate Rank1 = 65.24%).

Gabor feature in the regular grid in three combinations, which generated
regular grids of three different densities: 8× 8, 10× 10 and 12× 12 for the
square geometrically normalized images 2.1(a). Further, we performed the
following experiments to determine how geometric normalization should be
performed:

1. Resolution experiment - to find out, how number of pixels between the
eyes after geometric normalization influence face recognition accuracy.

2. Vertical face alignment - to find out, how vertical alignment of the
face image influence face recognition accuracy.

3. Cropping tightness experiment - to find out, how much of face width
and height should be cropped from the original face image.

2.2.4.1.1 Resolution Experiment We measured identification accu-
racy for the following inter-ocular distances (IOD) in pixels of geometrically
normalized square face images: 32, 48, 64, 80, 96, 112, 128. We could not
fit a 10× 10 density grid in the smallest resolutions (32 and 48), but other
densities showed significantly lower identifications rates in these resolutions
2.11. So, we dropped them from all further experiments. Other resolutions
gave almost identical accuracy with IOD = 96 resolution being slightly
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better in average. Additionally, we noticed that grid of rarest density 8× 8
performed worst, while other two tested densities gave even accuracy. So,
we also dropped this grid density from all further experiments. Best iden-
tification rate achieved in this experiment is Rank1 = 72.30%.

Figure 2.11: Identification accuracy dependency on number of pixels be-
tween the centers of eyes in geometrically normalized face. Three groups
of rankings are shown (from left to right) by grid density: 12× 12, 10× 10
and 8× 8.

2.2.4.1.2 Cropping Tightness and Vertical Face Alignment Ex-

periments Geometric face image normalization into square image seems
reasonable, however, some publications suggest using rectangular face crop-
ping. We tested this in two steps. Firstly, we fixed width of face crop to
twice the inter-ocular distance and adjusted height of face crop by a factor
ranging from 1.00 (height equals to width) to 1.55 (height is larger than
width by this factor), see Fig. 2.12. Every tested factor improved identi-
fication accuracy with 1.25 − 1.45 range of factors giving the best results
across all the resolutions and grid densities. This was not unexpected, be-
cause by expanding the face image and not changing spacing between Gabor
features in the regular grid, we increased number of used Gabor features.
Best identification rate achieved in this experiment is Rank1 = 76.59%.

When geometrically normalized face image was expanded vertically, it
was a good time to find out the vertical face alignment which could im-
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Figure 2.12: Identification accuracy dependency on rectangular cropping,
when face crop is expanded by some factor vertically.

prove identification rate further. The lower face part was fully visible in all
geometrically normalized images after we expanded images vertically Fig.
2.13(a), but often a lot of non-face details were visible. We tried to to avoid
non-face details by gradually lowering positions of the eyes, see Fig. 2.13.
We started from the baseline eyes positions and lowered them by 5% of
inter-ocular distance in the following test.

(a) (b)

Figure 2.13: The highest (a) and the lowest (b) tested positions of the eyes.
Showed on the average geometrically normalized face image.

This time identification rate was also improved when lowering eyes po-
sitions by any percentage of IOD, see Fig. 2.14. Best identification rate
achieved in this experiment is Rank1 = 79.92%.

Finally, we fixed the most successful factor for the height of face crop in
average 1.35 and most successful percentage for lowering eyes positions in
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Figure 2.14: Identification accuracy dependency on vertical face alignment
in vertically expanded face image.

average −40% from the previous experiments and further adjusted the fac-
tor for the width of face crop ranging from 0.85 to 1.15 of original face crop.
As can be seen in Fig. 2.15, this almost did not change identification rate.
Best identification rate achieved in this experiment is Rank1 = 80.33%.

Figure 2.15: Identification accuracy dependency on rectangular cropping,
when face crop is expanded by some factor horizontally.

2.2.4.1.3 Summary Only by changing parameters of geometrical face
image normalization we were able to improve identification rate Rank1 from
65.24% to 80.33%. Verification performance change is presented in Fig.
2.16. Although our parameters were adapted to classic Gabor features, the
achieved results suggest that choosing the right parameters for geometrical
face image normalization can significantly improve face recognition accuracy
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for any other feature set.

Figure 2.16: Verification accuracy improvement from the baseline algorithm
(red curve) to final geometric face image normalization parameters (green
curve).

2.2.4.2 Photometric Normalization

From the previous experiments we fixed classic Gabor features and geomet-
ric face image normalization. Although sometimes it is claimed that Gabor
features are illumination invariant, it is wrong assumption for a complex
texture of human face. To deal with illumination changes we tested the
following photometric normalization methods:

1. Self-quotient image [110].

2. Local mean and variance normalization.

3. Local histogram equalization.

Many more methods exist, but we have chosen to test a representative
simple subset because our goal is an algorithm oriented towards speed.

2.2.4.2.1 Self-Quotient Image Self-quotient image (SQI) is an exten-
sion to quotient image [100]. It has similar lighting invariant properties to
quotient image but can be calculated from one image, does not require
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neither additional empirical learning, nor assumption about face images
[110].The algorithm can be summarized in the following steps:

1. Select several smoothing kernels G1, G2, . . . , Gn and calculate corre-
sponding weights W1,W2, . . . ,Wn according to image I, and than
smooth it by each of the weighted anisotropic filter WGi:

I ′k = I ⊕ 1
N
WGk, k = 1, 2, . . . , n, (2.17)

where weights Wk are constructed for each smoothing kernel at each
image pixel’s neighborhood (i, j) as

W (i, j) =


0, I (i, j) < τ ;
1, I (i, j) ≥ τ.

(2.18)

where τ = meanI (i, j).

2. Calculate self-quotient image between input image and its each
smoothed version:

Qk = I

I ′k
, k = 1, 2, . . . , n. (2.19)

3. Transfer self-quotient image with nonlinear function (logarithm, arct-
angent, or sigmoid):

Dk = T (Qk), k = 1, 2, . . . , n. (2.20)

4. Sum all nonlinear transformation results:

Q =
n∑
k=1

mkDk, k = 1, 2, . . . , n, (2.21)

We used 5 Gaussian smoothing kernels with σk =
√

2k and, as suggested
by the authors, mk = 1, for each k = 1, . . . , 5. Typical normalization results
are presented in Fig. 2.17.

Despite the fact that SQI normalization generates visually better face
images, neither identification, nor verification accuracy of our enhanced
with optimized geometric normalization baseline algorithm was improved.
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(a) (b) (c) (d)

Figure 2.17: Face images before (a), (c) and after SQI photometric normal-
ization (b), (d).

Although the authors [110] show higher face recognition algorithm perfor-
mance after SQI normalization applied to geometrically normalized face
images, they tested that only with the holistic methods, which are very
sensitive to even very small illumination changes.

2.2.4.2.2 Local Mean and Variance Normalization This local nor-
malization is a simple operation for each image pixel. It is computed by
subtracting an estimation of a local mean in neighborhood with radius r
from the original pixel value, and dividing the got value by an estimation
of a local standard deviation in the same neighborhood:

I ′ (x, y) = I(x,y)−mI(x,y,r)
σI(x,y,r) ,

mI (x, y, r) =

r∑
y0=−r

r∑
x0=−r

I (x+ x0, y + y0)

(2r+1)2 ,

σI (x, y, r) =

√√√√√√
r∑

y0=−r

r∑
x0=−r

I (x+ x0, y + y0)2

(2r+1)2 −mI (x, y, r)2
.

(2.22)

Typical normalization results are presented in Fig. 2.18.
We tested how identification rate is influenced by the radius of local

neighborhood 2.19. Best identification rate achieved in this experiment is
Rank1 = 88.23% using neighborhood limited by radius 5.

2.2.4.2.3 Local Histogram Equalization This local normalization is
applied for each image pixel by equalizing the histogram in its local neigh-
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(a) (b) (c) (d)

Figure 2.18: Face images before (a), (c) and after local mean and variance
normalization with local neighborhood radius r = 7 (b), (d).

Figure 2.19: Identification accuracy dependency on local mean and variance
normalization neighborhood radius.

borhood limited by radius r:

I ′ (x, y) = 1
(2r + 1)2

 ∑
y0=−r...r,x0=−r...r
I(x+x0,y+y0)<I(x,y)

1 +
∑

y0=−r...r,x0=−r...r
I(x+x0,y+y0)=I(x,y)

0.5

 . (2.23)

We tested how identification rate is influenced by the radius of local
neighborhood 2.21. Best identification rate achieved in this experiment is
Rank1 = 87.67% using neighborhood limited by radius 5.

2.2.4.2.4 Summary The tested photometric normalizations can reduce
lighting variation between face images. Although SQI gives the most vi-
sually acceptable results, it does not improve recognition accuracy. This
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(a) (b) (c) (d)

Figure 2.20: Face images before (a), (c) and after local histogram equaliza-
tion with local neighborhood radius r = 7 (b), (d).

Figure 2.21: Identification accuracy dependency on local histogram equal-
ization neighborhood radius.

happens because SQI is optimized for holistic methods and is not suitable
for local features. In this case, Gabor features are already resistant to such
type of lighting variation. The other two - LMVN and LHE - improve
face recognition accuracy in the similar manner by emphasizing the noise
(actually, face skin texture) in the regions which seem almost constant in
the original face images. A total improvement of Rank1 from 80.33% to
88.23% was achieved by simple local photometric normalization method.
Verification performance change is presented in Fig. 2.22.
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Figure 2.22: Verification accuracy improvement from the final geometric
face image normalization parameters (red curve) to the final photometric
face image normalization (green curve).

2.2.4.3 Regular Grid Density and Gabor Feature Extension

From the previous experiments we fixed geometric and photometric normal-
izations and further analyzed how identification rate depends on regular grid
density. Fig. 2.23 shows that there are only marginal changes after the grid
is more dense than 13 pixels between adjacent grid positions. 13 pixels cor-
respond to 1

7 of inter-ocular distance, and generates 12 × 20 grid with 240
positions. That is a vector of 9600 Gabor responses.

Figure 2.23: Identification accuracy dependency on regular grid density
(number of pixels between adjacent grid positions).

Decreasing density to 9 pixels between adjacent grid position can im-
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prove identification rate to 88.64%, see Fig. 2.23. However, this increases
number of Gabor responses in features vector more than twice to 20160.
On the other hand, we could extend Gabor feature by increasing number
of used scales or directions. A natural extension of 5 scales to 9 (4 addi-
tional intermediate scales) gives identification rate of 88.09% (17280 Gabor
responses). While adding 8 additional intermediate directions gives iden-
tification rate of 89.64% (19200 Gabor responses). Further, if both, scales
and directions, are extended, identification rate will jump to 90.17% (34560
Gabor responses). If similar number of Gabor responses is generated by
making even more dense Gabor gird but using classic Gabor feature, identi-
fication rate is not improving anymore, see Fig. 2.23. A total improvement
of Rank1 from 88.23% to 90.17% is achieved when number of Gabor re-
sponses was increased by a factor of 3.6. Features extraction time is not
an issue here because of the suggested accelerated calculation of Gabor fea-
tures in spatial domain 2.2.1. But, features vector length is huge and that’s
an open problem in our current algorithm. On the other hand, 33376 of
Gabor responses are used in [126] with significantly lower Rank1 = 85.00%
identification rate.

2.2.4.4 Gabor Feature Similarity

The baseline similarity function between two face images computes the av-
erage of all Gabor jets similarities, where Gabor jet is a set of Gabor re-
sponses calculated at one specific point of one specific frequency but 16
different directions. When in previous section we expanded Gabor feature
to 9 frequencies, it made sense to form the Gabor jet in a different manner,
i.e. use all 9 frequencies of one specific direction as a Gabor jet. However,
Gabor filters of higher frequency tend to generate responses with higher
values than those of lower frequency. We illustrated an average Gabor filter
response for different frequencies in Fig. 2.24. The difference between the
highest and lowest average response is almost 3 times. Additionally, all the
vectors took similar form of descending values, which reduces recognition

50



accuracy of our similarity function.

Figure 2.24: Average Gabor response value dependency on frequency
{1, . . . , 9}.

To overcome this problem we introduce Gabor responses normalization.
We used the gallery dataset 2.2.3 to calculate an average Gabor responses
for each used Gabor filter. Further, we normalize each calculated Gabor re-
sponse by dividing it by previously found average value. After the normal-
ization is performed we used suggested new form of Gabor jet to calculate
similarity between any pair of face images. Identification rate jumped from
90.17% to 91%. An increased verification accuracy is demonstrated in Fig.
2.25.

Furthermore, using the same feature set we can calculate similarity in
two different ways simultaneously. This does not introduce additional com-
putational heaviness but produces almost twice number of similarities be-
tween different Gabor jets. By averaging all the similarities to produce
final similarity score, we increase identification accuracy one more time to
Rank1 = 92.94%.

2.2.5 Further Evaluation

We performed a greedy optimization of different steps from the proposed
baseline algorithm and achieved high face recognition accuracy on one stan-
dard experiment. To validate these results we tested the proposed optimiza-
tions in the rest of FERET experiments 2.2.3. We showed that the proposed
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Figure 2.25: Verification accuracy improvement if Gabor jet formed from
different directions (red curve) is changed to Gabor jet formed from different
frequencies (green curve).

baseline algorithm is highly configurable and the final chosen parameters set
is not always the best choice in real-world applications. Thus, we report the
results for several examples of the parameters sets, which we found during
this research, see Table. 2.1:

1. ProposedBASELINE - the proposed baseline parameters set, as de-
scribed in section 2.2.2.

2. ProposedFINAL - this is the final parameters set found during our
greedy optimization, i.e. geometric normalization to 164× 260 pixels
with fixed eyes positions at (36, 120) and (128, 120), local mean and
variance normalization with radius = 7 local neighborhood, Gabor
features of 9 frequencies and 16 directions calculated at every 13 pixel
in the image resulting in a regular grid of 12× 20 points, each Gabor
response normalization by the average response of gallery dataset, and
calculating similarity of two different forms of Gabor jets simultane-
ously.

3. ProposedLHE+F_ONLY - same as ProposedFINAL but using local his-
togram equalization for photometric normalization, and calculating
similarity only between frequency-based Gabor jets.
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4. ProposedGN_PHN_REV - same as ProposedFINAL but geometric and
photometric normalizations were revisited, i.e. geometric normaliza-
tion to 128×192 pixels with fixed eyes positions at (30, 70) and (98, 70),
local mean and variance normalization with radius = 5 local neigh-
borhood, and regular grid of 12 × 18 points (at every 11 pixel in the
image).

5. ProposedLOW_DIM - same as ProposedGN_PHN_REV but using classic
Gabor features of 5 frequencies and 8 directions.

Final verification accuracy achieved by using best parameters sets in two
most common FERET experiments - Fb and Dup1 - is reported in Fig.
2.26.

Figure 2.26: Final verification accuracy measured in Dup1 experiment using
ProposedGN_PHN_REV parameters set (red curve) and Fb experiment using
ProposedLHE+F_ONLY parameters set (green curve).
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Table 2.1: Identification accuracy as Rank1 (in percents) for different face recognition methods in different FERET experi-
ments. Additional columns indicate whether the method needs training, number of dimensions in features vector, extraction
speed on a single core of Intel Core 2 Duo CPU P8400 @ 2.26 Ghz.

Method
Experiment

Trained Dimensions
Extraction

Fb Fc Dup1 Dup2 Speed (ms)

EBGM [116] 95.00 82.00 59.10 52.10 yes
LBP −Weighted [2] 97.00 79.00 66.00 64.00 yes 2891
Log −GaborPCA [82] 97.99 90.21 72.44 65.81 yes 900
LGBPHS −Weighted [122] 98.00 97.00 74.00 71.00 yes 74000
PGFC [103] 99.00 97.00 87.00 82.00 yes ∼3000
Gabor − LBP −KDCV [105] 98.00 98.00 90.00 85.00 yes
FIGHT −RF [61] 99.58 99.00 91.90 88.89 yes 5000
EPFDA− LGBP [99] 99.58 99.00 92.00 88.89 yes 11000
GRM − Local [67] 97.50 97.90 79.50 83.80 no
GaborJets, BordaCount [126] 99.50 99.50 85.00 79.50 no 33376
ProposedBASELINE 91.05 93.81 66.90 61.97 no 4000 ∼3
ProposedFINAL 99.92 100.00 92.94 88.89 no 34560 ∼30
ProposedLHE+F_ONLY 100.00 100.00 91.55 87.18 no 34560 ∼30
ProposedGN_PHN_REV 99.75 100.00 94.60 93.59 no 31104 ∼20
ProposedLOW_DIM 99.75 100.00 92.38 88.89 no 8640 ∼8
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2.3 Summary

We showed how the proposed baseline face recognition algorithm can be
evolved into the state-of-the-art method, which, to the best of our knowl-
edge, achieves the highest accuracy of all currently published methods, see
Table 2.1. Each face recognition algorithm step was greedily optimized,
which led to very high identification rate, but in the same time generalized
well to other FERET datasets4. We would like to emphasize here that the
proposed method doesn’t require any training step. It achieves better ac-
curacy in comparison with methods which require training. It is also an
order of magnitude more accurate in the most difficult Dup1 experiment
than other methods which do not use training. Additionally, identification
step is not overburden with Borda Count method, as was done in [126].

The proposed rapid calculation of Gabor feature at a regular grid
allows to use Gabor features together with real-time face detection 2.1.1
in real-time face recognition applications. The proposed method with
ProposedGN_PHN_REV parameters set can perform facial features extrac-
tion at 50 faces per second rate. Slightly less accurate ProposedLOW_DIM

parameters set will increase the processing speed to 125 faces per second.
Chosen geometric face image normalization is not novel, yet very simple

and effective. Furthermore, chosen photometric face image normalization
could be replaced by more sophisticated method which in no doubt can
further increase face recognition accuracy, but it was left out of this thesis
scope. However, the proposed Gabor feature similarity metric is not met in
the literature and is a key factor of achieving high recognition accuracy.

One more thing, which was intentionally skipped in this thesis, is face
recognition accuracy degradation when automatic face detection is used
to locate faces in images. We used manually labeled coordinates of eyes,

4We should mention here that we fixed several mistakes in original grayscale FERET protocol
which assigned several different unique identifiers to the same person. These mistakes were
reported and fixed while constructing color FERET database. If someone still works with
original grayscale FERET protocol (and makes a huge mistake by trying to identify different
photos of the same person as belonging to different persons), our results using such faulty
protocol can be found in appendix A
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however, more detailed analysis showed that manual labeling is not very
accurate by itself. Thus, we expect small degradation in recognition ac-
curacy if automatic face detection will be used. On the other hand, that
degradation could be coped with by using Gabor feature ability to estimate
displacement vector [116] in a more flexible matching function.
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Chapter 3

Iris Recognition

3.1 Introduction

For a long time iris recognition was monopolized by one patented algorithm
[30] supported by another patent of the same idea of person identification
by iris [33]. Patent expiration date created enlarged interest in developing
new methods of iris recognition which will surely outperform the fifteen
years old algorithm. Recent studies [85] showed that already more accurate
algorithms exist.

Iris texture features provides a unique high dimensional information
that explains why iris recognition based verification has the lowest false
acceptance rate among all types of biometric verification systems [28], [23].
A transparent and simple distribution of calculated distances between iris
pairs allows to make a fine prediction of verification quality for a chosen dis-
tance threshold [30]. Large-scale application of iris recognition for border-
crossing control showed up robustness of the technology even in case of
more than half million different iris images spanning about 150 nationali-
ties [25]. Appearance of new technologies that enable to capture iris images
even at distance of 20 meters significantly reduced requirements for subject
cooperation with the automated identification system [3].

Iris is an annular part of the eye image with the inner boundary that
coincides with the pupils outer boundary and the outer boundary that bor-
ders with the sclera. The iris image has a complex texture originating from
many particles of different size. The particles comes from freckles, furrows,
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stripes, coronas, superimposed eyelashes, etc. Distribution of the particles
is random from eye to eye and that is the key why iris image is magnificent
biometric source for verification and identification. If one would have an
robust algorithm for detection and classification of iris texture particles,
the iris recognition would be rather similar to fingerprint recognition: local
features, their type, position, and other attributes of the shape, replacing
fingerprints minutiae type, position and orientation information. Such iris
recognition scenario is non-utopic and in parallel to phase-based [23], [24],
[26], [30], [73], and zero-crossing iris representations [14], [77], [96], more
intuitive on iris texture based descriptors, are used for iris recognition [60],
[81], [115], [121], [125]. Using image processing terminology the particles
may be renamed to noisy dark and bright blobs having different shapes and
sizes. It seams that particles or noisy blobs and their attributes can be
detected with essentially bigger uncertainty than the fingerprints minutiae
and their descriptors. The good news are that frequently all iris image is
formed from a lot of particles and one can expect much larger amount of
local features extracted on basis of noisy local blobs than in the case of
fingerprints.

Despite seemingly differences in phase, zero-crossing, and texture based
iris description all approaches are pretty similar. It is well known that
multiscale phase and zero-crossing information is often sufficient for initial
signal reconstruction [65], [70]. For example 256× 256 image can be recon-
structed [22] from the binarized Fourier transform phase with probability
p > 1 − 2−2000. Thus, all three iris descriptions with big probability pre-
serve information about the original image texture. On the other hand,
it is well known that distortion of image complex Fourier phase leads to
major transmutations in reconstructed image and parallel distortions of
the Fourier modulus with preservation of its phase gives still recognizable
reconstructed images. The phase keeps the information "where are the de-
tails" and this is the most significant information that differentiates one iris
pattern from another. We think that’s why phase-based iris recognition
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approach is so efficient and popular.
Typical iris recognition system is comprised of the following steps:

1. Segmentation - localization of iris inner and outer boundaries by circles
[30], ellipses [62], active contours [95], etc. Additionally, localization
of occlusions by eyelids/eyelashes and illumination noise, usually over-
exposed parts of the image.

2. Geometric normalization - warping of iris image into polar coordinate
system.

3. Features extraction - extraction of iris texture encoding features.

4. Features matching - comparison of previously extracted features sets.

3.2 Proposed Iris Recognition Algorithm

3.2.1 Segmentation

Iris segmentation consists of iris inner and outer boundaries localization,
optional detection of superimposed upper and lower eyelids, and detec-
tion/removal of reflections from the cornea or eyeglasses. Our segmentation
algorithm is a sequence of the following basic steps. The input of each step
is the output of the previous algorithm step:

1. Deinterlace the original image.

2. Detect and remove the reflections.

3. Reduce the noise.

4. Estimate approximate pupil center.

5. Estimate second order image derivatives along radii coming from the
pupil center.

6. Group zero crossings of the second order derivatives to connected con-
tours.
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7. Calculate distributions of the connected contours distances to the pupil
center.

8. Group connected contours to iris inner and outer boundaries.

9. Describe the iris inner and outer boundaries by short Fourier series.

Original images of the irises are often captured by devices producing
interlacing artifact. Our approach in solving "interlacing noise" problem is
trivial, we downsample original iris image in horizontal and vertical dimen-
sions by a factor of two. Such deinterlacing entirely excludes interlacing
artifact. Thus, we get four times increased processing speed and decreased
memory consumptions in further segmentation procedures. Additionally,
iris segmentation quality is also increased.

Reflections from the cornea or eyeglasses are removed by contrast
stretching followed by detection of small connected areas having brightness
greater than a threshold and replacing them with an average of neighboring
pixel values that are lower than a threshold. Additionally, some authors
use parallel procedure of removing eyelashes. Our experiments showed that
our implementation of eyelash removal leads to a slight degradation of the
following iris recognition quality, thus, we skipped this procedure from the
segmentation. Our segmentation procedure also skips detection of upper
and lower eyelids and their boundaries.

Dark area of the pupil is detected by convolving original image with
isotropic two-dimensional Gaussian filter followed by additional blurring
with a cross form averaging filter to suppress thin dark eyelashes and pos-
sible small bright areas of reflection that were not correctly detected at
previous stage. Area of the pupil is defined by global minimum point of the
blurred image and its surrounding pixels of similar values (also controlled
by a threshold). The boundary of pupil area is approximated by a short
Fourier series calculated in respect of point A (center of the pupil) that, to-
gether with the Fourier series coefficients, is free parameter in minimization
of the approximation error.
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Further, directional second order image derivatives are calculated. Their
directions goes along radii outgoing from the point A. The derivatives are
calculated only along directions that form angle φ with horizontal line such
that −3π/8 ≤ φ ≤ π/8 or 7π/8 ≤ φ ≤ 11π/8 radians and limited by the
distance which is sufficiently big to cover up irises of the biggest size. An
example of original iris image with its directional second order derivatives
are showed in the Fig. 3.1. Upper and lower black sectors correspond to
skipped angles motivated by a high probability of eyelids and eyelashes.

(a) (b)

Figure 3.1: (a) Original 242116.tiff image of the NIST ICE2005 iris data
set. (b) Directional second order derivatives estimated along radii outgoing
from the point A. White dots mark the zero crossing.

Zero crossings of the directional second order derivative give possible lo-
cations of iris inner and outer boundaries. A histogram of distances to point
A is calculated for each connected contour formed from zero crossings (as
showed in Fig. 3.2). For the particular iris image two histograms with big
maximums around 125 and 135 pixels correspond to left and right iris outer
boundary and two histograms with clear maximum at 55 pixels correspond
to iris left and right inner boundary.
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Figure 3.2: Distributions of zero-crossing points distances to pupil center.
Connected contours of zero-crossings points correspond to different distri-
butions.

The detected iris inner and outer boundaries are approximated by the
following Fourier series:

xα(φ) = aα0 + aα1 cos(φ) + bα1 sin(φ),
yα(φ) = cα0 + cα1 cos(φ) + dα1 sin(φ),

0 ≤ φ < 2π.

(3.1)

Here α = i and α = o stand for inner and outer iris boundary respectively.
The Fourier coefficients and polar axis (angle where φ = 0) are found by
minimizing the approximation error of iris inner and outer boundaries using
equations 3.1. Note that any circles or ellipsis are only particular cases of
boundaries for which the exact Fourier approximations can be found.

3.2.2 Geometric Normalization

Geometric normalization of iris texture is necessary because diameter of
pupil relative to iris diameter is constantly changing, even under steady
illumination. As suggested by [30], we used a rubber sheet method for
converting iris texture from captured image to doubly dimensionless system
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(see Fig. 3.3). The rubber sheet method assigns to each point on the iris,

Figure 3.3: Geometric normalization of the iris image through the rubber
sheet method, adapted from [91].

regardless of its size and pupillary dilation, a pair of real coordinates (r, θ),
where r is on the unit interval [0, 1] and θ is an angle in [0, 2π].

[5] suggests to use linearly-guessed reference point instead of pupil cen-
ter for the rubber sheet method. However, our experiments showed no
improvements to recognition accuracy after such change.

3.2.3 Local Features as Local Extrema of Multiscale Tay-
lor Expansion

We developed our scheme of iris representation by local features consid-
ering the following constraints: number of local features should be easily
controlled and their attributes should be as compact and simple as possible.
The main goal of our representation is to control memory consumption and
iris matching speed, thus, leading to the fast and robust iris-based verifica-
tion and identification. The proposed extraction of compact iris representa-
tion (which could be further compared to other iris representations created
by the proposed method) can be summarized by the following algorithm:

1. Choose the local descriptors of the iris texture.
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2. Calculate the chosen descriptors at each pixel of the iris texture.

3. Leave only the most significant descriptors.

4. Divide iris texture into a fixed number of sectors.

5. Limit the number descriptors in each sector.

3.2.3.1 Local Descriptors

Let us consider one-dimensional iris signal having a fixed pseudopolar ra-
dius r = const as an analytic one-dimensional signal u = u(x), where x
is pseudopolar angle. It is well known that any signal can be expressed
in classic Taylor series expansion centered on any fixed x = xi. The zero
coefficient of the expansion equals to u(xi) and is strongly influenced by iris
lighting conditions, thus cannot be a robust iris descriptor. The second two
coefficients equal to u′(xi)

1! and u′′(xi)
2! . The first derivative u′(x) estimates

transition rate of the signal around point x, i.e. the big positive value of
u′(x) means a fast increasing transition of the signal around point x and a
big negativeu′(x) means a fast decay around the same point. The sign of the
second derivative u′′(x) provides information about the type of concavity of
graph of the transition around x, i.e. if u′′(x) > 0 then graph of transition
of the signal is concave upward and u′′(x) < 0 gives that graph of the signal
that is concave downward around point x. If transition of x values corre-
sponds to transition of u = u(x) from left to right through a dark or bright
blob one can expect the following transitions of the signs: Left and right

Table 3.1: Transitions of signs.
Blob Derivative Transition of signs

Dark
u′(x)
u′′(x)

−+
−+−

Bright
u′(x)
u′′(x)

+−
+−+

64



boundary of a dark blob can be marked by local negative minimum and pos-
itive maximum of the first derivative. The second derivative will have zero
crossings around these local extrema. If we expand such features to two-
dimensional case, only a fraction ofuxx(x, y) zero crossings will correspond
to ux(x, y) local extrema. Therefore, local extrema of both two-dimensional
functions ux(x, y) and uxx(x, y) were used as primary source for derivation
of iris local features. Notice that u′(x) and u′′(x) derivatives can be esti-
mated only numerically in the context of digital iris data and the result of
approximations significantly depends on scale at which increments of the
signal are estimated. u′′(x) approximation will have a positive maximum
close to a dark blob center and a negative minimum close to a bright blob
center if the chosen scale resonates with blob size.

We neglect Taylor series expansion zero term u(xi) which sign do not
provide a meaningful information and is strongly conditioned by background
illumination if no sophisticated normalization or thresholding procedure is
applied. The first two terms of Taylor series expansion defines local linear
and quadratic trend around the center point of the expansion. Extrema of
the first derivative indicate points where signal u = u(x) has greatest local
asymmetry. Similarly, extrema of second derivative indicate points where
u = u(x) has greatest local symmetry. Similar meaning can be provided to
the extrema of higher order derivatives.

The well known Taylor series expansion

u(x) =
∞∑
n=0

u(n)(a)
n! (x− a)n (3.2)

tells us that sufficiently regular function can be reconstructed from its Tay-
lor coefficients u(n)(a)

n! . In theory Taylor coefficients can be derived from
u(x) values known at any narrow surrounding of the center point x = a.
Let us consider some details of estimation of local extrema of the first two
derivatives of iris texture and conditions under which a particular extremum
point is included in the set of iris local features. Estimation technique of
derivatives at different scales is similar to the wavelet multiresolution anal-
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ysis. Let us fix any symmetric (even) smooth filter p = p(x) ≥ 0 having
maximum at centerx = 0 and L1 energy equal to 1:∫ ∞

−∞
p(x) dx = 1. (3.3)

Let us fix some scale σ > 0 and consider convolutions

(u′ ∗Dσp)(x) = 1/σ
∫ ∞
−∞

p(ξ/σ)u′(ξ − x) dξ (3.4)

and
(u′′ ∗Dσp)(x) = 1/σ

∫ ∞
−∞

p(ξ/σ)u′′(ξ − x) dξ. (3.5)

In the bigger scale σ the more blurred version of u′(x) and u′′(x) represents
(u′ ∗ Dσp)(x) and (u′′ ∗ Dσp)(x). One the other hand, if σ approaches
zero then (u′ ∗ Dσp)(x) and (u′′ ∗ Dσp)(x) approaches to u′(x) and u′′(x)
respectively.

Filter p = p(x) defines rule of derivatives averaging. Function sech(x) =
2/(ex + e−x) meets our requirements of symmetry, exponentially tends to
zero at infinity and its L1 norm equals to π. Therefore we chose the following
filter function

p(x) = sech(x)
π

. (3.6)

We have discrete periodic sequence ui = u(i) of length NX in case of iris
texture. Defining u(x) by linear interpolation u(x) = ui+(x− i)(ui+1−ui),
x ∈ [i, i+ 1), we will have

u′′(x) =
∞∑

i=−∞
(ui+1 − 2ui + ui−1)δ(x− i) (3.7)

and

(u′′ ∗Dσp)(x) =
∑∞
i=−∞(ui+1 − 2ui + ui−1)p

(
x+i
σ

)
σ

(3.8)

=
NX−1∑
i=0

∆uipNXσ (x+ i) (3.9)

=
NX−1∑
i=0

ui∆pNXσ (x+ i). (3.10)

Here δ(x) is Dirac’s delta function,

∆ui = u(i+ 1)− 2u(i) + u(i− 1), (3.11)
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and
pNXσ (x) =

∑∞
i=−∞ p(x+i∗NX

σ )
σ

. (3.12)

Similarly, for the first derivative we have

(u′ ∗Dσp)(j) = −
NX−1∑
i=0

∆uiqNXσ(j + i), (3.13)

qNXσ (x) =
∞∑

i=−∞
2 arctg

(
x+ i ∗NX

σ

)
. (3.14)

From symmetry of the filter function 3.6 follows that 3.8 defines a fil-
tration of one-dimensional data {ui} by an even-symmetric filter and 3.13
defines an odd-symmetric filter. In wavelet terminology the even and odd
filters has two and one vanishing moments, respectively. The proposed fil-
ters has more freedom in choosing basic function pσ = pσ(x) in comparison
with dyadic wavelet filtration and do not have dyadic restrictions for the
scale σ. To regularize the filtration results that at different scales σ ap-
proximate second (even filters) or first (odd filters) order derivatives we
used some smoothing in orthogonal direction by applying the same filter
pσ = pσ(y) with smaller scale value σ.

Table 3.2 presents scales, type of symmetry and direction which was used
to calculate differences. The differences calculated along x and y directions
correspond, respectively, to horizontal and vertical type filters. Derivatives
along x direction were estimated at three different scales while derivatives
along y direction were estimated only at one scale.

3.2.3.2 Significant Local Descriptors

Blurred derivative may be considered as the coefficients of Taylor series
expansion beside (x − a)/1! and (x − a)2/2! terms estimated at different
scales or coefficients of wavelet expansion calculated at different scales with
asymmetric or symmetric mother wavelets that have one or two vanishing
moments. It is well known that coefficients with highest absolute values give
the main contribution in approximation of original signal by the expansions.
Thus, extrema or more exactly, positive local maximums and negative local
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Table 3.2: Derivatives and averaging parameters used in derivation of mul-
tiscale Taylor expansion and local features.

Scale and Blurred σx = σ of σy = σ of
filter type derivative horizontal vertical
index s direction direction

0 ux
6
8

1
2

1 ux
9
8

1
2

2 ux
15
8

1
2

3 uxx
9
8

1
2

4 uxx
15
8

1
2

5 uxx
24
8

1
2

6 uy
1
2

9
8

7 uyy
1
2

15
8

minimums of blurred derivatives, are good candidates for local descriptors of
iris texture. Additionally, we required that the local extremum at particular
scale σ0 exceeded the same derivative at the same position but with rougher
scales σ > σ0 (that conditioned more stable extrema). And the very last
condition for including the extremum point to the set of local iris features
was its magnitude. However, we decided to avoid thresholds in this place
and used the following procedure for choosing extrema points (see Fig. 3.4):

1. Divide iris texture annual along polar angle direction into 16 equal
sectors.

2. Enumerate sectors clockwise starting at "0" hour.

3. Eliminate local extrema which are found in upper or lower lids:

(a) Find a convex domain that includes only iris with pupil and ex-
cludes lids.

(b) Ignore sectors 0, 1, 2, 13, 14, and 15 because iris texture in these
sectors will likely be hidden by upper lid. Ignore sectors 7 and 8
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because iris texture in these sectors will likely be hidden by lower
lid.

4. Choose no more than K biggest local extrema from each scale and
each active sector.

(a) original image (b) a convex domain
that includes only iris

(c) iris division into
sectors

Figure 3.4: Elimination of local extrema which are found in upper or lower
lids. In (c), active sectors are marked in white and inactive sectors are
marked in light gray.

Fig. 3.5 illustrates local extrema points that were found in active sectors
for 242116.tiff and 241643.tiff iris images of NIST ICE2005 iris data-set.
These two images constitute genuine pair. The two presented derivatives
uxx and uyy are calculated with averaging parameters defined by the 6th
(s = 5) and 8th (s = 7) row of the table 3.2. White "+" and "-" mark local
maximum and minimum points of the averaged Taylor expansion. The
presented iris texture has no clearly expressed freckles, furrows, stripes or
coronas in active sectors. However there are blurred dark and bright blobs
where local maximum and minimum points indicate the blobs of the size
that resonates with the averaging scale σ.

3.2.4 Similarity Metric for Comparison of Local Features
Sets

Let us fix local features sets A and B formed from Taylor local extrema
estimated at different scales. A particular feature fi = {xi, yi, si, zi} has
the following attributes:
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Figure 3.5: Unwarped 242116 and 241643 iris images of the NIST ICE2005
data-set. "+" and "-" mark local maximums and minimums of averaged
uxx and uyy derivatives (uxx - above, uyy - below). Arrows points to the
examples of extrema points that have correspondences in both images.

• (xi, yi) - local extremum position defined by two integer numbers xi
and yi.

• si ∈ {0, 1, · · · , 7} - scale and filter type index (see table 3.2 for details).

• zi ∈ {0, 1} - extremum type marker. 0 was used for local maximum
points and 1 for local minimum points.

The similarity metric between two local features sets is defined by a normal-
ized sum of similarity scores of feature pairs. A particular pair (fAi , fBj ) can
gain non-zero similarity scores only if fAi and fBj correspond to the same
filter and extremum type. Such features will be further called congeneric

features. Hence the following definition can be formulated:

Definition Two local features fAi = {xAi , yAi , sAi , zAi } and fBj =
{xBj , yBj , sBj , zBj } are congeneric iff they are defined by the same fil-
ter, i.e. sAi = sBj , and correspond to the same type of extremum, i.e.
zAi = zBj .
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Two congeneric features can gain positive similarity only if their positions
are sufficiently close. Distance between two affine (xAi , yAi ) and (xBj , yBj )
points is estimated considering possible alignment of two irises by means
of an angular rotation and radial translation. Angular rotation and radial
translation correspond to some shift along x and y directions respectively1.
With a fixed α and β shifts we use the following scores similarity expression:

s(fAi , fBj ;α, β) =


0, if sAi 6= sBj or zAi 6= zBj ;
|DX − |xAi − xBj − α||+×

×|DY − |yAi − yBj − β||+, otherwise.

(3.15)

Here DX and DY are two positive integer parameters that define maximal
acceptable distance along x and y directions and

|a|+ =


a, if a > 0;
0, otherwise.

(3.16)

The similarity scores between A features set and α rotated and β radially
shifted B set is defined as sum of the similarity scores of local features pairs,
i. e.

score(A,B;α, β) =
NA∑
i=1

NB∑
j=1

s(fAi , fBj ;α, β). (3.17)

Similarity scores between A and B features sets is defined by the following
maximum:

score∗(A,B) = max
−KX≤α≤KX,−KY≤β≤KY

score(A,B;α, β). (3.18)

Here KX and KY are integer parameters defining 2KX + 1 rotations and
2KY + 1 radial shifts under which similarity scores of shifted unwarped
irises are optimized.

3.2.4.1 Warped Similarity

The similarity metric defined by equations 3.15, 3.16, and 3.18, formulas
uses fixed angular and radial shifts. In [26], it is shown that iris descrip-
tion based on two circles model is inaccurate and significant improvement

1Shift along the x direction inherits angular periodicity.
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of iris recognition can be obtained when an elastic adaptive grid is used for
iris pixels positions. The elastic grid is extracted during the segmentation
process. Our idea is to preserve simple and robust pseudopolar model with
rectangular grid in segmentation and perform a sophisticated elastic match-
ing that recovers possible incongruities in the grids. The elastic matching is
based on variable shifts along angular and radial directions that are derived
from principle of maximization of similarity scores. The elastic or warped
similarity metric uses the following modifications of equations 3.15, 3.16,
and 3.18, formulas:

˜score∗(A,B) = max
α,β∈T

˜score(A,B;α, β), (3.19)

˜score(A,B;α, β) =
NA∑
i=1

NB∑
j=1

s̃(fAi , fBj ;α, β), (3.20)

s̃(fAi , fBj ;α, β) =


0, if sAi 6= sBj or zAi 6= zBj ;
|DX − |xAi − xBj − α(x

A
i +xBj

2 )||+×
×|DY − |yAi − yBj − β(x

A
i +xBj

2 )||+, otherwise.

(3.21)

Here α = α(x) and β = β(x) are variable shifts along iris angular and radial
directions and T = {t = t(x), x = 0, 1, . . . ,W −1} is the space of admissible

shifts that are tabular functions defined for x = 0, 1, . . . ,W − 1, where W
is the width of rectangular iris image. The variable shifts potentially can
repair minor and moderate segmentation inaccuracies and give substantial
increase of genuine pairs similarity scores. On the other hand hyper freedom
in shifts may lead to overscoring of impostors pairs similarities. The main
content of our "admissibility" notion consists of continuity in the sense that
the neighbor shifts t(x) and t(x+ 1) do not differ substantially. After some
experimentations we came to the following notion:

The tabular shifts function t = t(x), x = 0, 1, . . . ,W −1, is admissible iff

• t(x) ≡ constk on any interval x = k ∗W/16, k ∗W/16 + 1, . . . , (k +
1) ∗W/16− 1, k = 0, 1, . . . , 15.

• |constk − constk−1| ≤ 1 ∀k = 1, 2, . . . , 15.
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In other words, rectangular iris image is divided into 16 equal slices, shifts
t = t(x) have fixed values on any slice, and the shifts on any two neighbor
slices may not differ more than in one pixel. Note that due angular 2π
periodicity it would be natural to assume that the first (k = 0) and the last
(k = 15) slices are neighbors and require |c0− c15| ≤ 1 condition. However,
such a condition would add some difficulties for constructive algorithm of op-
timization of similarity scores among space of all admissible shifts. Though
angular periodicity condition was refused, we enumerated the slices starting
from the middle of upper lid and excluded 0, 1, 2, 7, 8, 13, 14, and 15 slices
from the sum of similarity scores since these slices could be superimposed by
upper or lower lid with biggest probability. Under such slices enumeration
procedure the problem of refusal of periodicity condition is softened.

Additionally, we will require that max
x
|α(x)| ≤ KX and max

x
|β(x)| ≤

KY in the case of angular and radial shifts respectively. Under these as-
sumptions similarity score of the k-th slice is defined by the equation

scorek(A,B;αk, βk) =
∑

i,j:k∗W/16≤
xA
i

+xB
j

2 <(k+1)∗W/16

s(fAi , fBj ;αk, βk) (3.22)

and can be quickly computed using the scheme described above. However,
the final similarity scores

˜score∗(A,B) = max
{αk,βk}15

k=0∈T 16

15∑
k=0

scorek(A,B;αk, βk),

T 16 =



{αk, βk}15
k=0 :

|αk − αk−1| ≤ 1, k = 1, . . . , 15,
|βk − βk−1| ≤ 1, k = 1, . . . , 15,
|αk| ≤ KX, |βk| ≤ KY, k = 0, 1, . . . , 15


,

(3.23)

require an efficient algorithm. The last sections scores sum maximization
problem can be solved by dynamic programming: let us set initial values
of (2KX + 1)× (2KY + 1) warped sum to zero, we know optimal warped
sums till the (k− 1)-th order, then the k-th order warped sum is calculated
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by the rule

s̃umk(α, β) = scorek(α, β)+
max

i,j=−1,0,1:|α+i|≤KX,|β+j|≤KY
s̃umk−1(α + i, β + j),

(3.24)

and maximum of ˜sum15 gives the final warped or elastic similarity scores,
i.e.

˜score∗(A,B) = max
|α|≤KX,|β|≤KY

s̃um15(α, β). (3.25)

3.3 Experiments and Discussion

We used the following publicly available iris databases in all experiments:
Chinese Academy of Sciences Casia 1.0, Casia 2.0 (device1), Casia 3.0 (in-
terval) [17] and NIST "Iris Challenge Evaluation", experiment 1, (ICE-1)
[85]. Their properties are summarized in table 3.3. Fully automatic iris
segmentation was performed for all iris images in all databases. Firstly, av-

Table 3.3: Iris databases used in all experiments.
Database Images Different eyes Impressions per eye

Casia 1.0 756 108 7
Casia 2.0 (device 1) 1200 60 20
Casia 3.0 (interval) 2655 396 1-26
ICE-1 1425 128 1-31

erage size of iris templates formed from local features is analysed. Further,
verification performance of the proposed method is evaluated by generating
Detection Error Tradeoff (DET) curves for the algorithm.

3.3.1 Size of Template

Since different irises has distinct number of local sharp variations the iris
template size for the proposed features is variable. The average template
size can be controlled by the parameter K, which defines the upper limit of
congeneric local features in one sector (see Fig. 3.4(c)). We used only half
of 16 sectors in the following experiment.
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Each sector of unwarped rectangular iris image (of width W = 256 and
heightH = 32) has 16×32 pixels. Congeneric features of one sector are writ-
ten to the template in the following order: {N, x′1, y1, x

′
2, y2, . . . , x

′
N , yN},

where N is number of congeneric features, (x′n, yn), n = 1, . . . , N - position
of local features in sector. We assumed that K ≤ 7. Thus, 0 ≤ n ≤ 8,
0 ≤ x′i ≤ 16, and 0 ≤ yi ≤ 32 can be represented in 3, 4, and 5 bits
respectively. Therefore, the maximal number bytes in one template is at
most (bitsForN + (bitsForX ′i + bitsForYi) ∗ K) ∗ (# of used sectors) ∗
(# of different congeneric classes))/8) = (3 + (4 + 5) ∗ 7) ∗ 8 ∗ 16)/8 = 1056.
Table 3.4 shows real average iris templates size for three different databases
corresponding to maximal allowable local extrema number K in one sector.
The average size of template in Casia 1.0, Casia 2.0, and ICE-1 is 592 bytes
that constitutes 56% of possible maximal template size for maximum value
K = 7. For K = 5 average template size will be similar to the Daug-
man’s iriscode [30] size. We observed clusters of local extrema at the same
(x′i, yi) positions but different scales. There is no doubt that these clusters
can be used to compress iris templates even more, however analysis of such
compressibility was not done.

Table 3.4: Dependency of average size of template (in bytes) for different
iris databases on maximum allowable local extrema amount in one section
(number K).

K Casia 1.0 Casia 2.0 ICE-1

1 177 190 177
2 290 328 288
3 383 452 379
5 508 619 498
7 556 679 540
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3.3.2 Results of Local Extrema Only Method

For Casia 2.0 (device 1) iris database 20C2 × 60 = 11400 genuine and

60C2 × 202 = 708000 impostor similarity scores were evaluated. It is recog-
nized that Casia 2.0 (device 1) iris database contains iris images of lower
quality than Casia 3.0 (interval) [73]. Best result that can be found in the
literature EER = 0.58% is achieved by [73]. We obtained EER = 0.13%,
ZeroFAR = 1.63%, and ZeroFRR = 2.52% with proposed local extrema
of averaged Taylor expansion coefficients as features (filled diamond marked
curve in Fig. 3.6).

Figure 3.6: DET curves of the proposed algorithm for Casia 2.0 (device 1)
and ICE-1 iris databases.

For Casia 3.0 (interval) iris database 9023 genuine and 3514162 impostor
similarity scores were evaluated. Impostor and genuine pairs are completely
separable that’s why direct estimation of Equal Error Rate (EER) is not
possible. We approximated distributions of genuine and impostor empirical
similarity scores by Gaussian distributions and concluded that proposed
iris verification algorithm has EER = 4.7 × 10−2%. Complete separation
of impostor and genuine pairs was also received on Casia 1.0 database.

For the NIST "Iris Challenge Evaluation", experiment 1, (ICE-1) iris
database local extrema based verification algorithm relatively produced the
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worst results. The image database contains very difficult and corrupted
examples, sometimes with big eyelid occlusion, off-angle or with the iris
partly outside the image frame. Poor focus of a part of the iris images
especially degrade the quality of the verification that uses only information
coming from local extrema. Out of focus iris images lost all subtle details
of the iris texture that results in a significant decay of number of Taylor
decomposition local extrema at tiny scales. For ICE-1 iris database 12214
genuine and 1002386 impostor similarity scores were evaluated. We ob-
tained EER = 0.25%, FRR@FAR0.1 = 0.42%, FRR@FAR0.01 = 0.83%
(filled triangle marked curve in Fig. 3.6).

3.3.3 Results of Fusion with Phase Based Method

Previously described iris recognition method was based on local extrema
points and is more similar to minutiae based fingerprint recognition [52]
than to conventional iris recognition algorithms. The main difference is
a variable template size which depends on number of local extrema - sig-
nificant local descriptors. This requires unique and completely different
from previous approaches matching algorithm 3.2.4.1. On the other hand,
searching for the local extrema could be replaced by a quantization step.
Similar to [30], converting each negative filter response value to a bit with
value 0 and converting greater than or equal to zero filter response values to
bits with values 1 will result in a fixed length vector of bits, which could be
compared to other vectors by calculating a Hamming distance. We imple-
mented such extraction algorithm and applied previously described warped
similarity method for comparison of such iris templates. Although, this
method gave slightly worse accuracy, we fused it in the similarity scores
level with previously described method by a simple sum rule and got im-
pressive iris recognition accuracy, as can be seen in Fig. 3.7 and Fig. 3.8,
respectively for Casia 2.0 (device 1) and ICE-1 databases.

A detailed comparison to other published methods for Casia 2.0 (device
1) and ICE-1 databases is available in table 3.5.
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Figure 3.7: An improvement of the fused algorithm over local extrema only
method for Casia 2.0 (device 1) database.

Figure 3.8: An improvement of the fused algorithm over local extrema only
method for ICE-1 database.
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Table 3.5: Comparison to other published results on the tested
iris databases. Three numbers in each table cell presents: EER,
FRR@FAR=0.1%, and FRR@FAR=0.01% in percents.

Method Casia 2.0 (device 1) ICE-1

Pan [80] 3.98 – – – – –
Tohoku [73] [74] 0.58 – – 2.64 6.94 –
Daugman (1) [26] – – – 0.21 0.30 0.55
Daugman (2) [26] – – – 0.11 0.12 0.30
best ICE2005 [85] – – – – ∼0.10 ∼0.25
proposed method 0.13 0.16 0.50 0.25 0.42 0.83
proposed fused method 0.03 0.00 0.08 0.06 0.04 0.18

3.4 Summary

Each step of the proposed iris segmentation algorithm is not unique or
exclusive. However, stated combination of those steps gave almost perfect
performance on all tested databases. Moreover, suggested implementation
worked in real-time, which together with a near zero failure to enroll rate
is a crucial requirement for a real-world application.

The idea to use local extrema of wavelet [69] or other expansions [6]
for iris recognition is not new either. However, after doing a good job in
extracting discriminant features, they return to comparing fixed length vec-
tors in rigid manner as suggested by the predecessor of all iris recognition
algorithms [30]. Unlike the 1D local extrema, which where used in [69],
we use 2D local extremum points of the multiscale expansion. Such ap-
proach reduces the size or iris template and eliminates correlation of the lo-
cal extremum points along radial direction. We chose the multiscale Taylor
expansion since the first two coefficients of the expansion have a transpar-
ent interpretation and are associated with computationally efficient filters.
Furthermore, a novel and efficient matching algorithm is proposed.

For the proposed method iris template size varies from 452 to 751 bytes
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(for K = 7). Blurred, out of focus or occasionally with simple texture iris
images have reduced number of local extremum points. Therefore, ROC
curves can have increased ZeroFAR that leads to increased slope near the
ZeroFAR point in the opposite to flat ROC curves that are observed for
phase based iris matching technique [27]. One of the possible solutions
could be additional attributes of the local extremum points that would
decrease their matching probability.

The proposed method shows comparable results with other state-of-the-
art algorithms. When fused with fixed length binarized phase vector based
algorithm, it achieves better accuracy than any other published algorithm
on tested databases. Despite of the noticeable improvement of iris verifi-
cation quality due to similarity scores fusion, we should mention that our
binarized phase matrix increases template size by 2048 bytes and signifi-
cantly decreases the matching speed. The decrease in matching speed is
conditioned by the warped similarity calculation. It is likely, however, that
more accurate iris segmentation (as in [26]) can eliminate necessity to search
for optimal shifts along radial direction. On the other hand, matching speed
can be significantly increased by indexing [39] or any other optimization
techniques which were left out of this thesis scope.
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Chapter 4

Fusion

4.1 Introduction

One could wonder why do we need to fuse these two biometric modalities
into one person identification system. Iris recognition is recognized as the
most accurate biometrics. Most of us have two irises with texture which
is unique for each eye and their combination already improves recognition
accuracy by an order of magnitude. So, why do we need even bother about
the face biometric modality?

Firstly, it is cheap. To capture iris at a distance, we need to locate per-
sons eyes, which is an easy step after the human face is detected. Or, in
the opposite, if human eyes are already detected for iris recognition step
by some independent method, that’s everything we need to geometrically
normalize face image, which can be further used for facial recognition. Sec-
ondly, capturing iris at a distance of several meters or more generates iris
images which are not as good as capturing iris images with conventional
iris scanners (those which work at the close range of tens of centimeters).
This could result in lower iris recognition accuracy. In contrary, face can be
captured at very high resolution at the same time because it is needed to
get enough resolution for iris images. Thirdly, it is additional information
that is available even if the person closes his eyes or accidentally blinks at
the same moment when person identification system captures the images
for recognition. Of course, the system could always choose to recapture iris
images, but while the system is performing bunch of calculations to accept
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this decision, the person could already move away or turn his face away
from the cameras.

For testing fusion of our face and iris recognition algorithms we needed
a database. Until recently, there were no such public databases available.
Some small databases were collected in the labs internally [111], but usu-
ally, chimeric databases were composed from existing public databases of
separate biometric modalities [112], [18], [94]. In December of 2007, NIST
announced Multiple Biometric Grand Challenge (MBGC) with the goal
"to investigate, test and improve performance of face and iris recognition
technology on both still and video imagery through a series of challenge
problems and evaluation" [83]. In December of 2008, together with prelim-
inary results on MBGC datasets, the second and much larger set of images
and videos was released under MBGC version 2. MBGC was divided into
three challenges:

1. Still Face Challenge - to improve face recognition performance on im-
ages taken under conditions that are representative of a broad range
of real-world scenarios. One set of experiments uses high resolution
still face images taken in both controlled and uncontrolled illumina-
tion environments. A second set of experiments is designed to meet
the International Civil Aviation Organization’s (ICAO) standard for
electronic passports [45] by addressing the size of the face and com-
pression of the face image.

2. Video Challenge - to encourage the development of face recognition
from video taken in hallways, atria, and outdoors under unconstrained
illumination, pose and camera angle. One set of experiments examined
the effect of high definition (HD) and standard definition (SD) video
on performance. It was further divided into matching video sequences
of walking to walking, activity to activity (usually different face pose),
and walking to activity.

3. Portal Challenge - to improve iris recognition on the move, iris recog-
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nition from video, and fusion of face and iris recognition algorithms.

Portal Challenge problem has the most suitable set of experiments for
the algorithms proposed in chapters 2 and 3 of this thesis. We will discuss
this problem in details in the following section.

4.2 Portal Challenge Problem

The design of this problem was conditioned by a number of new iris recogni-
tion systems which boasted being able to perform human iris identification
at a distance and on the move. The following data was collected for this
challenge:

1. Still iris images were collected with LG2200 sensor with intentionally
degraded quality as described in [85]. See Fig. 4.1.

Figure 4.1: Example of still iris image (640× 480 pixels).

2. Iris video sequences were collected with the same LG2200 sensor, digi-
tized and transcoded to MPEG-4 format with high bit rate allowance,
thus yielding near-lossless encoding. See Fig. 4.2.

Figure 4.2: Several frames from example of iris video (640× 480 pixels).

3. Very high resolution near-infrared (NIR) video of faces were acquired
from a Sarnoff Iris on the Move (IoM) system [97]. The IoM system

83



was designed to capture iris imagery as a person walks through the
portal. See Fig. 4.3.

(a) (b)

Figure 4.3: One frame from example of NIR video (2048 × 2048 pixels)
(a) and cropped left iris from the same frame (320 × 240 pixels) (b). The
diameter of the iris is approximately 140 pixels.

4. Still face images were captured with a digital camera at a medium
resolution in controlled illumination and additionally in uncontrolled
illumination. See Fig. 4.4.

Figure 4.4: Example of still face image (1504× 1000 pixels).

5. High definition (HD) video sequences were captured with HD video
camera which was bore-sighted beside the NIR video cameras in the
IoM chassis. This camera captured persons face in visible light while
the person walked through the portal. See Fig. 4.5.
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Figure 4.5: Several frames from example of HD video sequence (1080×1920
pixels).

Twelve experiments in five different categories were defined in this chal-
lenge (see Table 4.1). With algorithms described in previous chapters of
this thesis, plus iris localization in very high resolution NIR videos of faces,
we were able to take part in eight of them. We were not able to take part
in the following experiments:

• 2C and 2U, because they required completely different approach of
face recognition with partial matching of faces, which was not imple-
mented in proposed face recognition algorithm.

• 4L and 4R, because they required another algorithm for selecting still
iris images which are suitable for enrollment and identification from
video sequences and such algorithm was out of the scope of this thesis.

We performed experiments 1C and 1U with the proposed face recogni-
tion algorithm using the MBGC evaluation framework. The results are pre-
sented in Fig. 4.6. These experiments required to compare high resolution
still face image with HD video sequence in one comparison. The proposed
method is able to compare two face images only, thus, we compared still
face image with each frame of video sequence and chose the maximum sim-
ilarity score of all comparisons as final similarity score between still image
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Table 4.1: Experiment structure for MBGC Version 2 Portal Challenge.
Exp. Gallery Probe

1C Still Face Controlled HD Portal Video
1U Still Face Uncontrolled HD Portal Video
2C Still Face Controlled NIR Portal Video
2U Still Face Uncontrolled NIR Portal Video
3L Left Iris Still NIR Portal Video
3R Right Iris Still NIR Portal Video
4L Left Iris Video NIR Portal Video
4R Right Iris Video NIR Portal Video
5CL Still Face Controlled + Left Iris Still HD+NIR Portal Video
5CR Still Face Controlled + Right Iris Still HD+NIR Portal Video
5UL Still Face Uncontrolled + Left Iris Still HD+NIR Portal Video
5UR Still Face Uncontrolled + Right Iris Still HD+NIR Portal Video

and HD video sequence.

4.3 Localization of Irises in Very High Resolu-
tion NIR Video

A typical frame of very high resolution NIR video is illustrated in Fig. 4.3.
An array of reflections from infra-red lamps are visible on each eye. Number
of reflections vary from zero to eight. They are situated in two columns.
When these reflections are not clearly visible, the frame is useless in iris
recognition sense because iris texture is not lit well. We exploited this IoM
system characteristic to locate eyes in very high resolution NIR videos by
the following algorithm:

1. Smooth the image I with two different scales σ1 and σ2 of image-
bluring filters and calculate a normalized face image by applying the
following equation for each pixel:

I(x, y) = Iσ1(x, y)− Iσ2(x, y)
Iσ1(x, y) + Iσ2(x, y) . (4.1)
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Figure 4.6: DET curves for the proposed face recognition algorithm on
MBGC experiments 1C (red curve) and 1U (green curve).

2. Find all small areas of white pixels after thresholding the normalized
image with a fixed global threshold. These spots correspond to reflec-
tions we are looking for.

3. Group the spots which are closer than some chosen distance vertically
and horizontally.

4. At least three spots must be situated vertically and at least one of
them must have a neighboring spot on the left or on the right. Such
combination identifies reflections on the eye.

5. Declare the average position of all spots in the group as a possible
location of eye.

6. If two such positions of eyes are detected (additionally, they must be
situated horizontally), declare them as right and left eyes.

7. If no two positions are available, lower the required number of spots
in the group vertically (defined in step 4) by one and repeat the eye
selection procedure.

8. If a pair of eyes is found, use them for recognition with identified eye
positions, i.e. use left eye for left iris recognition experiment and right
eye for right iris recognition experiment.
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9. If only one eye (group of spots) was detected, use them both for left
and right iris recognition experiments.

The full data set contained 12236 video frames (images). Only 7300 of
them contained at least on eye that could be identified by checking all the
frames manually. Similar, only 5145 of frames contained both eyes. We
were able to detect both eyes in 2878 of frames where both eyes were visible
with the previously described fully automatic eye detection algorithm. Ad-
ditionally, one eye with unidentified position (left or right eye) was detected
in 3300 of other frames. This results in correct at least one eye localiza-
tion in almost 85% of images. Although, it is not a high detection rate we
should take into account that all visible eyes were selected manually, but
part of them cannot be used for iris recognition because of the poor focus,
high noise and little texture details. These images usually didn’t have the
reflections and were missed by our algorithm. But even if we were able to
locate them, we wouldn’t be able to use them for recognition.

Similar to experiments 1C and 1U, experiments 3L and 3R required
to compare still iris images to high resolution NIR face video sequences
in one comparison, but the proposed algorithm was able to compare two
iris images only. Thus, we compared still image with each frame of video
sequence where iris of unknown or appropriate eye position (left or right)
was located. The results are presented in Fig. 4.7.

4.4 Multiple Biometric Fusion

Fusion of different biometric modalities for person identification can be
performed at several different levels - sensor level, features level, scores level,
and decision level. We will focus on scores level fusion in this thesis because
it was recommended and implemented in MBGC evaluation framework.

Each comparison of a pair of biometric presentations of previously de-
scribed recognition algorithms generates a similarity score. In identification
task one probe (sometimes referred as "query") presentation is compared to
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Figure 4.7: DET curves for the proposed iris recognition algorithm on
MBGC experiments 3L (red curve) and 3R (green curve).

a set of gallery (sometimes referred as "target") presentations, which gener-
ates a set of similarity scores. Number of genuine scores (scores generated
by comparing biometric presentations of the same person) is less than or
equal to one, all other scores belong to impostors (are generated by compar-
ing biometric presentation of different persons). This information can be
used to normalize scores and, thus, improve recognition accuracy. Further-
more, normalized scores from different biometric modalities can be easily
fused because they fall in the same range and have similar distribution
parameters.

It was shown that z-score normalization is optimal when there is no
information on genuine distribution and impostors distribution can be ap-
proximated by Gaussian function [47]. Luckily, this is the case for both of
the proposed recognition algorithms - face and iris. z-score normalization is
already applied in experiments 1C, 1U, 3L, and 3R, reported in Fig. 4.6 and
Fig. 4.7 because it was default scores normalization in MBGC evaluation
framework.

Normalized scores can be fused by simple rules like sum, product, min,
or max. We found that sum and product rules produce almost the same
results, while min and max rules perform significantly worse. After sum-
ming normalized score we applied z-score normalization once more. This
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additionally slightly improved DET curves. Fusion results of the proposed
face and iris recognition algorithms for the respective MBGC experiments
are presented in Fig. 4.8.

Figure 4.8: DET curves for the fusion of the proposed face and iris recogni-
tion algorithms on MBGC experiments 5CL (red curve), 5CR (green curve),
5UL (blue curve), and 5UR (magenta curve).

4.5 Summary

We showed how fusion of face an iris biometric modalities can improve
person identification accuracy. For this purpose we used a recent Multi-
ple Biometrics Grand Challenge protocol and data sets. DET curves for
the face recognition experiments in controlled illumination are comparable
with those of previously performed experiments on FERET dataset (see
Fig. 4.6), but uncontrolled illumination experiment, when face images were
captured outside, is much more challenging. Although, iris recognition is
often used as a synonym for highly accurate biometric modality, MBGC
Portal Challenge experiment showed that it heavily depends on iris image
acquisition device. Iris recognition experiments showed terrible recognition
accuracy (see Fig. 4.7) when compared to traditional twice higher resolu-
tion iris images. MBGC team did not create an experiment were both of the
persons irises could be used for recognition, which is a must for real-world
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applications if such low resolution iris images are being used. In spite of
the fact, that iris images are of such poor quality, fusion with face recog-
nition (in either controlled or uncontrolled illumination) give more than
twice lower false rejection rates at the same false acceptance rates. That’s
a significant improvement over any single modality.

The obtained results are not unexpected, they are often cited in litera-
ture (i.e. fusion of several modalities usually improves overall recognition
accuracy). However, fusion of the proposed face and iris recognition algo-
rithms is attractive because the properties of their impostors distributions
allows to perform it almost at no cost by applying the simplest z-score nor-
malization and sum rule. That was confirmed by experiments performed
on the most recent dataset containing multiple biometric modalities. Fur-
thermore, a modern computer can perform person identification based on
two biometric modalities - face and iris - in real time.

91



Chapter 5

Summary and Conclusions

In this thesis, we presented two state-of-the-art algorithms for two different
biometrics modalities which can be measured at a distance - face and iris.
Face detection was left out of the scope of this thesis because the method
described in [108] is already suitable for our goal - it is fast and accurate
enough for a real-time face localization module in the proposed system.
After successful face detection three modules can start their work in parallel
on a nowaday CPU: one for facial recognition and the other two for each
of the detected eyes. We described the possible implementations of such
modules in details. All of them can work in real-time and with really high
accuracy suitable for real-world applications.

In face recognition module, described in chapter 2, Gabor features were
chosen to encode facial features into a compact representation which can
be later used for rapid comparison of human faces. Instead of using face
model as in [116] for aligning Gabor features to facial features, we chose to
normalize face image geometrically and use a regular grid to place Gabor
features over the face. The benefit of such approach is threefold. Firstly,
there is no need to manually locate facial features for training step, which
is eliminated at all. Secondly, optimization of number and locations of used
features becomes much simpler. And finally, regular grid structure can be
exploited to calculate Gabor features very efficiently in spatial domain. In
section 2.2.1 we showed how structure of regular grid and generalized sep-
arability of Gabor filter can be used to speed up the calculation of Gabor
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features in spatial domain. It is almost as fast as calculating them in fre-
quency domain without the loss of precision, if Gabor features are required
for each pixel in the image. But if regular grid is not so dense, for example,
every 10th pixel in the image, the proposed method is more than 10 times
faster than calculating Gabor features in frequency domain.

For geometric face image normalization a simple yet effective method
of aligning faces by two reference points (centers of eyes in our case) was
used. It was followed by a series of experiments to find out what resolution
face images are the best for the chosen Gabor features. Additionally, the
tightness of cropping face in face images was analyzed. It was shown that
tight rectangular crop, which includes full forehead and usually full chin
but no ears, is superior to square crop, which includes facial features from
eyebrows to lower lip.

For photometric normalization, which is usually performed to elimi-
nate lighting variations, three methods were analyzed: self-quotient image
normalization, local mean and variance normalization and local histogram
equalization. It was shown that self-quotient image normalization does not
improve facial recognition accuracy if Gabor features are chosen as facial
features descriptors. The other two complement Gabor features with addi-
tional invariance to lighting variations and perform similar both in terms of
speed and accuracy.

Finally, we showed how number of Gabor filters used in Gabor features
can improve face recognition accuracy. We showed that extending Gabor
features by adding more frequencies and orientations is more valuable than
extending number of Gabor features by using denser regular grid. Fur-
thermore, a new similarity metric for calculating similarity between two
Gabor features was proposed. A combined similarity metric gave the best
face identification accuracy on the most popular face recognition accuracy
evaluation FERET database.

In iris recognition module, described in chapter 3, an efficient iris seg-
mentation method was proposed. Its main strength is the speed, which is
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comparable to face detection speed. Additionally, it can describe iris inner
and outer boundaries by a more complex than simple circle contours, which
can significantly improve iris recognition accuracy. For geometric iris image
normalization a classic rubber sheet method was implemented.

For iris texture describing features, we proposed to use local extremum
points of multiscale Taylor expansion. The proposed multiscale two-
dimensional features were superior to one-dimensional extrema suggested
by other authors. Number of local extremum points was unacceptably
large, thus, we proposed an efficient way to reduce it by choosing the most
significant texture descriptors. Furthermore, a completely unique method
of calculating similarity between two iris features sets was described.
Two compact representations of iris texture are compared by eliminating
in-plane rotation between the irises as in classic Hamming distance based
methods. But additionally, iris deformations along the radius are elimi-
nated, which not only deals with extreme pupil contractions and dilations
but also copes with little inaccuracies in segmentation step. The proposed
iris recognition method is comparable with other state-of-the-art methods.

Finally, we implemented a classic phase-based version of our features,
which can be compared by a Hamming distance. We showed how to extend
it by using warped similarity, similar to our proposed similarity metric. A
simple sum of normalized similarity scores gave superior results on recent iris
recognition databases by outrunning all the other published iris recognition
algorithms to the best of our knowledge.

Fusion module, described in chapter 4, is constructed based on fusion
at score level after z-score normalization. Literature study showed that it
is optimal when impostor scores distribution is Gaussian-like and no addi-
tional information about genuine scores distribution is available. Experi-
ments with MBGC Version 2 Portal Challenge confirmed that two biometric
modalities complement each other even if their recognition accuracies differ
by several times.

All declared objectives were achieved and all tasks were completed while
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preparing this thesis. All results were carefully documented and presented
in this text. Highly accurate and fast, multi-modal person identification by
face and iris biometric modalities method was created during this research.
Only several such systems (usually as proprietary prototypes) in the world
were known to the author by the time this thesis was prepared. This is the
main contribution of this thesis to the biometrics community.
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Appendix A

Evaluation Results using Original
FERET Protocol

The authors of FERET database carefully labeled more than 14 thousand
images. However, when face recognition algorithms matured they automat-
ically detected several mistakes in the labeling. In our previous experiments
we fixed these mistakes because there is no use in optimizing face recogni-
tion algorithm to differentiate between several photos of the same person
as belonging to different persons. The following reported mistakes were
corrected:

1. 00011fa010_930831.pgm, 00011fb010_930831.pgm - correct subject
ID is 00012.

2. 00240fa010_940128.pgm, 00240fb010_940128.pgm,
00240hl010_940128.pgm, 00240hr010_940128.pgm,
00240pl010_940128.pgm, 00240pr010_940128.pgm - correct subject
ID is 00256.

3. 00274fa010_940422.pgm, 00274fb010_940422.pgm,
00274hl010_940422.pgm, 00274hr010_940422.pgm,
00274pl010_940422.pgm, 00274pr010_940422.pgm - correct subject
ID is 00184.

4. 00277fa010_940422.pgm, 00277fb010_940422.pgm,
00277hl010_940422.pgm, 00277hr010_940422.pgm,

96



00277pl010_940422.pgm, 00277pr010_940422.pgm - correct subject
ID is 00188.

5. 00382fa010_940422.pgm, 00382fb010_940422.pgm,
00382hl010_940422.pgm, 00382hr010_940422.pgm,
00382pl010_940422.pgm, 00382pr010_940422.pgm - correct subject
ID is 00210.

6. 00463fa010_940422.pgm, 00463fb010_940422.pgm,
00463hl010_940422.pgm, 00463hr010_940422.pgm,
00463pl010_940422.pgm, 00463pr010_940422.pgm - correct subject
ID is 00368.

7. 00464fa010_940422.pgm, 00464fb010_940422.pgm,
00464hl010_940422.pgm, 00464hr010_940422.pgm,
00464pl010_940422.pgm, 00464pr010_940422.pgm - correct subject
ID is 00367.

8. 00649fa010_941031.pgm, 00649fb010_941031.pgm,
00649hl010_941031.pgm, 00649hr010_941031.pgm,
00649pl010_941031.pgm, 00649pr010_941031.pgm,
00649ql010_941031.pgm, 00649qr010_941031.pgm,
00649ra010_941031.pgm, 00649rb010_941031.pgm,
00649rc010_941031.pgm - correct subject ID is 00615.

9. 00696fa010_941121.pgm, 00696fb010_941121.pgm,
00696hl010_941121.pgm, 00696hr010_941121.pgm,
00696pl010_941121.pgm, 00696pr010_941121.pgm,
00696ql010_941121.pgm, 00696qr010_941121.pgm,
00696rc010_941121.pgm, 00696rd010_941121.pgm,
00696re010_941121.pgm - correct subject ID is 00621.

10. 00832fa010_940307.pgm, 00832fa010a_940307.pgm,
00832fb010_940307.pgm, 00832fb010a_940307.pgm,
00832hl010_940307.pgm, 00832hl010a_940307.pgm,
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00832hr010_940307.pgm, 00832hr010a_940307.pgm,
00832pl010_940307.pgm, 00832pl010a_940307.pgm,
00832pr010_940307.pgm, 00832pr010a_940307.pgm - correct subject
ID is 00283.

11. 00881fa010_960530.pgm, 00881fb010_960530.pgm,
00881hl010_960530.pgm, 00881hr010_960530.pgm,
00881pl010_960530.pgm, 00881pr010_960530.pgm,
00881ql010_960530.pgm, 00881qr010_960530.pgm,
00881ra010_960530.pgm, 00881rb010_960530.pgm,
00881rc010_960530.pgm - correct subject ID is 00807.

12. 00975fa010_960627.pgm, 00975fb010_960627.pgm,
00975hl010_960627.pgm, 00975hr010_960627.pgm,
00975pl010_960627.pgm, 00975pr010_960627.pgm,
00975ql010_960627.pgm, 00975qr010_960627.pgm,
00975ra010_960627.pgm, 00975rb010_960627.pgm,
00975rc010_960627.pgm - correct subject ID is 00531.

If these mistakes are not corrected, original grayscale FERET protocol will
be used. Then, final verification accuracy achieved by using best parameters
sets in two most common FERET experiments - Fb and Dup1 - is reported
in Fig. A.1. It is obvious that verification performance cannot be measured
correctly because of the strange "tail" of the DET curve starting at false
acceptance rates lower than 0.01% (compare to Fig. 2.26). Identification
accuracy is reported in Table A.1.

Furthermore, several errors in eyes labeling, which is provided by NIST
as a ground-truth metadata, were found for the following images:

00108fa010_960530.pgm, 00877fb010_960530.pgm,
00885fb010_960530.pgm, 00904fb010_960530.pgm.

However, these mistake were corrected in CSU Face Identification Evalu-
ation System [11]. We used ground-truth eyes coordinates from the men-
tioned system in all our experiments as many other researcher did.
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Figure A.1: Final verification accuracy measured in Dup1 experiment using
ProposedGN_PHN_REV parameters set (red curve) and Fb experiment using
ProposedLHE+F_ONLY parameters set (green curve). Original grayscale
FERET protocol is used.

Table A.1: Identification accuracy as Rank1 (in percents) for different face
recognition methods in different FERET experiments. Original grayscale
FERET protocol is used.

Method
Experiment

Fb Fc Dup1 Dup2

ProposedBASELINE 90.79 93.81 66.76 61.97
ProposedFINAL 99.83 100.00 92.80 88.89
ProposedLHE+F_ONLY 99.92 100.00 91.41 87.18
ProposedGN_PHN_REV 99.58 100.00 94.46 93.59

ProposedLOW_DIM 99.58 100.00 92.24 88.89
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