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Summary

This Thesis analyzed convolutional neural network feature transferability to the
problem of visual object tracking. It started with a theoretical analysis of how
the tracking problem is approached using convolutional neural networks. Based on
the analysis, a methodology was designed to quantify transferability. It included
choosing a rich tracking dataset with provided ground-truth annotations, several
convolutional neural network architectures with three different layers for each of
them as features that are compared in their efficiency in representing a tracked ob-
ject and a quantitative measure based on the classification accuracy by a Linear
Support Vector machine that uses those representations as input. Using the above
methodology various qualitative and quantitative measures were acquired that com-
pares the architectures, their layers, different ways to split the data into train and
test sets for the SVM and different ways to generate negative examples, that are
not of the tracked object, for the classification. Based on the acquired measures
a number of recommendations were proposed for methods that use convolutional

neural networks for tracking.



Santrauka

Sis darbas tyré konvoliuciniy neuroniniy tinkly pozymiy efektyvuma vaizdiniui sekimui.
Pradzioje buvo atlikta literaturos analizé apie tai, kaip konvoliuciniai neuroniniai
tinklai yra panaudojami sekimo problemai spresti. Remiantis Sia analize, buvo
sukurta detali metodologija kaip jvertinti §j efektyvumg. Buvo parinkta turininga
sekimo duomeny bazé, parinktos kelios skirtingos konvoliuciniy neuroniniy tinkly
architekturos su jy trimis sluoksniais, kurie buvo panaudoti kaip pozymiai skirti
reprezentuoti sekama objekta. Sie poZzymiai buvo naudojami ir pritaikant tiesines
atraminiy vektoriy masinas, kuriy klasifikavimo tikslumai ir buvo parinkti kaip
pozymiy efektyvumo jvertinimas. Buvo gauti jvertinimai, palyginantys skirtingas
architekturas, juy sluoksnius, skirtingus budus isskaidyti duomenis j mokymo ir tes-
tavimo aibes atraminiy vektoriy masinai bei neigiamy pavyzdziy, tai yra ty, kurie
néra sekamas objektas, generavimo budus. Remiantis gautais jvertinimas buvo
pateikta keletas rekomendacijy sekimo metodams, kurie naudoja konvoliucinius neu-

rony tinklus.
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Introduction

Object tracking is considered to be one of the most important computer vision
problems; as it is a fundamental task which has many applications. Deep learning
and more specifically convolutional neural networks relatively recently emerged as a
dominant method to solve various computer vision tasks. This makes the application
of convolutional neural networks to the problem of visual object tracking a promising
and important area of research and this was the general direction of this Thesis.

More specifically, the goal was to provide valuable insights and recommendations
for methods that apply convolutional neural networks to visual object tracking.
Other works have already shown that convolutional neural network features are
indeed transferable to other tasks, different from the ones on which the networks
were trained on, however, detailed research of transferability to visual object tracking
is still lacking. What is more, even though convolutional neural networks work very
well in practice, there is still relatively little understanding about what the network
actually learns and applying them usually involves heuristics found by trial and
error. Understanding these networks in the context of visual object tracking was
the motivation for this Thesis.

To achieve the above goal, several tasks had to be done:

o Designing a methodology by which convolutional neural network feature trans-

ferability could be analyzed

o Acquiring both qualitative and quantitative measures for transferability using

the above methodology

» Giving suggestions for visual object tracking methods that are based on con-

volutional neural networks based on the above measures



1 Theory

1.1 Deep Learning

The success of machine learning algorithms depends greatly on data representation,
namely the features of the data [BCV12]. For this reason, when designing various
machine learning applications, a great deal of time and effort is spent on hand-
crafting the right features, suited for a specific task with its associated data. It
would be very convenient if these features were automatically learned by the learn-
ing algorithm and this is what Deep Learning tries to achieve [BCV12]. It takes as
input raw data and tries to automatically learn the right features. It does it in a hi-
erarchical fashion, which means it starts with raw data and non-linearly transforms
it into a slightly more abstract representation. This slightly more abstract repre-
sentation is then used as input to another layer, which transforms it into an, even
more, abstract representation. With some number of such transformations, very
complex functions can be learned that map the raw data into a representation form
which is free from irrelevant variations and is only left with the most discriminative
information present in the data [LBH15].

There are various architectures and algorithms associated with the name of Deep
Learning. Two prominent examples, namely autoencoders and convolutional neural

networks, will be presented in the next subsections.

1.1.1 Autoencoders

One of the factors that make solving the problem of visual object tracking hard is a
limited amount of labeled data that can be used to train the designed systems. For
this reason, unsupervised approaches, that do not require the data to be labeled,
might be very useful for an object tracking system. One important example of an
architecture that can be trained with unlabeled data is the autoencoder, which is a
particular type of a neural network.

An autoencoder tries to learn a representation of the data that retains as much
information as possible [VLLT10]. It consists of two parts: an encoder part and a
decoder part. The encoder part transforms the input into a hidden representation.
Assume that the input to the autoencoder x is a d dimensional vector of real values.

Then, the encoder is a mapping [VLL*10]:



fo(z) =s(Wz+b) (1)

Where 6 is the parameter set of the encoder {W, b}, W is d’ x d matrix of weights

and b is a d’ dimensional offset vector. s(x) is the sigmoid function:

and if the input is a vector:

s(x) = (s(21), s(22), .. s(wa))" (3)

The decoder part of an autoencoder transforms the hidden representation y back

to the input space, attempting to reconstruct it [VLL*10]:

gor(y) = s(W'y + 1) (4)

Where ' is the parameter set of the decoder part {W’ b'}, similarly to 6.

As mentioned before, the autoencoder tries to retain information that was present
in the input. However, only being able to retain information is not a sufficient re-
quirement for learning a useful representation of the input [VLL*10], as the autoen-
coder could simply learn the identity mapping, which is a perfect reconstruction of
the input. Hence, additional constraints are required.

One option is to make the number of hidden neurons smaller than the number
of input neurons, or, using our previous notation, to make d’ < d. The represen-
tation learned this way is a compression of the input which tries to retain as much
information as possible [VLL*10].

Another option is to use an overcomplete representation, one which is of higher
dimension than that of the input, that is to have d’ > d, but to impose the so-called
sparsity constraint [VLL10]. The sparsity constraint forces the hidden neurons to
be inactive most of the time, activating only for a subset of the training samples.
Denote the activation of a hidden neuron j as a;, the ith training sample as x* and
the number of training samples as m. Then, the average activation of the hidden

neuron j:



The sparsity constraint requires that p would be approximately equal to the
sparsity parameter p, a small constant, such as 0.05.

The above two options both constrain the representation learned to avoid learn-
ing the identity mapping. However, [VLL'10] proposes a different strategy - slightly
corrupting the initial data vector before giving it as input to the autoencoder. This

strategy is partially based on the following ideas [VLL*10]:

o A higher level representation that is learned by the autoencoder should be

robust under corruptions of the input.

o Performing the denoising task, that is reconstructing the uncorrupted version
of the input, requires extracting features that capture the structure of the

input distribution well.

First of all, the input vector x is corrupted to obtain . Then, the corrupted
version of the input  is mapped to the hidden representation y via the mapping fy
defined earlier. The decoder part of the autoencoder is then used to map the hidden
representation y back to the input space, attempting to reconstruct the uncorrupted
input z, acquiring z. The reconstructed version of the uncorrupted input z is then
compared to x and the reconstruction error Ly(z, z) is calculated.

There are various ways the initial input  could be corrupted [VLL*10]:
« Adding isotropic Gaussian noise: T|r ~ N(x,02I).

o Masking noise: a percentage of the coordinates of x are set to be 0, where the

coordinates are randomly chosen for each input vector.

o Salt-and-pepper noise: a percentage of the coordinates of x are set to be their

minimal or maximal possible value, chosen randomly.

Up to this point, the autoencoder was presented as a single layer neural network.
However, several layers of autoencoders can be stacked on top of each other to acquire
a deep architecture.

After training, the stacked denoising autoencoder can act as a feature extractor

for a classification layer, obtaining a deep architecture which could be fine-tuned

using labeled data [VLLT10].



1.1.2 Convolutional neural networks

Convolutional neural network is an architecture which is very well suited for data
that consists of several multi-dimensional arrays and where the local statistics are
translation invariant in those arrays. This means that if it is known that a specific
feature is useful for a particular location in the array, it will likely be useful in the
other locations [LeC12]. Convolutional neural networks make use of this property
by using shared weights, which reduce the number of parameters that need to be
learned from data and this reduces data and computational power required to train a
convolutional neural network. It also has pooling layers to reduce the dimensionality
of data and it also makes the architecture less sensitive to small local variations in
the data [LeC12].

Assume that our input consists of images, that is of two-dimensional arrays of
data, possibly with multiple color channels. The goal of the first convolutional layer
is to extract patterns found within local regions in the input images [ZF13a]. This
is achieved by convolving a filter with the input image pixels, resulting in a feature
map, one for each filter. Additionally, a non-linear function f is applied point-wise
to each of the feature maps. Various non-linear functions can be used for f, such as

the hyperbolic tangent function:

F() = tanh(z) = & (6)
) = tanh(x) = T
Or the logistic function:
fla) = — (7)
X g
1+e*®

Or the linear rectification function:

f(z) = max(0, x) (8)

The resulting activations a, that is the feature map values after applying the
chosen non-linear function, are given as input to the sub-sampling layer. It combines
information in each of a set of small local regions R in the input and produces pooled
feature maps as output, that is of smaller size than the input [ZF13a]. There is also
a variety of ways to sub-sample, such as taking the average value of the values in

the region R:

10
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Or taking the largest value in the region R:

s = maxa (10)

The above two sub-sampling operations are deterministic. There are also stochas-
tic operations, such as the one presented in [ZF13a].

The process of applying convolution and sub-sampling layers can be repeated,
potentially resulting in a very deep architecture.

Finally, after several stages of convolutions and sub-sampling, the resulting fea-
tures are given as input to a fully connected multi-layer perceptron, which performs
classification or some other task.

Convolutional neural networks recently became very popular due to their success
in various pattern recognition tasks [Ben09]. One prominent example of those tasks

is visual object recognition [KSH12].

1.1.3 Transfering convolutional neural network features to other tasks

Convolutional neural network layer activations have been found to be transferable as
features to other tasks, different from the one that was used to train the convolutional
neural network [DJV*13]. What is more, different layers provide different features,
where it is intuitively understood that features which are closer to the input are
more general and the ones closer to the output more specific [YCBL14]. These
different features extracted from various layers of a convolutional neural network

have differences in their effectiveness for the new task, for which those features are

used [HXHZ15].
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1.2 Object tracking

Visual object tracking is the estimation of the size and location of an object as it
moves in the scene [YOMO6]. It is considered to be one of the most important com-
ponents in various applications of computer vision [WLY13]. Possible applications

include [YOMOG6]:

Surveillance

o Human-Computer Interaction
» Robotics

e Autonomous Driving
It is a hard problem due to various reasons [YOMO06]:

o Complicated object motion

Partial or full occlusion of the tracked object
» Noisiness of the visual information

Complicated and flexible form of the object

o [llumination changes of the scene

o Real-time requirement for various applications

Many approaches have been proposed to solve the visual tracking problem, as

can be seen from the review [YOMO6] or a more recent one [WLY13].

1.2.1 Deep Learning for object tracking

As Deep Learning techniques, especially convolutional neural networks, have been
found to be very successful at various computer vision tasks, a variety of methods
that use Deep Learning have been proposed to solve the visual tracking problem

too. Some of these works will be reviewed in the following paragraphs.

12



1.2.1.1 Tracking with Deep Neural Networks [JDB"13] uses a convolu-
tional neural network for tracking a single object, given its location in the first
frame. Their architecture also includes a Radial Basis Function Network (RBFN)
to produce a confidence map of the object location.

In their architecture, both convolutional layers include 32 kernels of size 7 x
7. The non-linear function that is applied to the convolution result is hyperbolic

tangent tanh. As for sub-sampling, they used L2-pooling, which, using our previous

s = ’];’Zag (11)

Where the region R is of size 2 x 2. Once the feature vector was extracted by

notation, is defined as:

the two layers of convolution and sub-sampling (pooling), it was given to the RBFN
to either construct a positive prototype neuron in the case of the first frame or to
compare the feature vector to the positive prototype and estimate the similarity in
the case of the other frames. Comparing the extracted feature vector of various
locations in the frame to the saved feature vector extracted from the object location
in the first frame resulted in a confidence map of the object location in the current
frame. The estimated rectangle was chosen from positions in the map where the

confidence exceeded a given threshold 7.

1.2.1.2 Learning a Deep Compact Image Representation for Visual Track-
ing [WY13] used the architecture of a stacked denoising autoencoder to train it
offline, that is before the tracking process began, and then used the encoder part of
the autoencoder together with a classification layer to perform online tracking.

They trained the autoencoder using Tiny Images dataset [TFFO08], randomly
sampling 1 million images of size 32 x 32 from it.

The autoencoder was trained by minimizing two sums, the first one being:

k
2 M = &il5 + AWE + 1W][7), (12)
=1

where W and W' are the weight matrices for the encoder and decoder parts,
respectively, ; is the i-th input vector, #; is it’s corrupted version, h; = f(Wx; +b)
is the hidden representation and & = f(W'h; + ') is the reconstruction of the input.

f is a non-linear function, which was either logistic sigmoid or hyperbolic tangent

13



function, defined earlier. By minimizing the above sum, the autoencoder learns to

reconstruct the input, while the parameter A\, which was set to 0.0001, controls the

penalty of large values of the weights W and W', as || - ||r is the Frobenius norm.
The second sum, due to the imposed sparsity constraint, was the cross-entropy

of the target sparsity p and the average empirical activation rate p:

H(pl|p) = = (pjlog(p;) + (1 — p;)log(1 — p;)), (13)
7=1

where m was the number of hidden units, p; was a constant set to 0.05 and
the p; were the average empirical activation rates for each of the hidden units. To
minimize this sum, gradient method with momentum was used.

To generate hypotheses about the current location of the object, particle filtering
approach was used. With this approach, when a new frame arrived, 1000 particles
were drawn and each of the predicted positions was given a weight depending on the
likelihood estimated by propagating the hypothesized location in the image through
the above network. If the likelihood of all the particles was lower than a constant 7,
set to 0.9, the whole network was tuned again to adapt to the significant appearance
change, which likely had happened. However, to avoid overfitting, a larger value of
A was used, equal to 0.002. The tracking result for each frame was the particle with

the largest weight.

1.2.1.3 Robust Online Visual Tracking with a Single Convolutional Neu-
ral Network [LLP15] used a convolutional neural network to use the tracking-
by-detection framework, where the three-layer network learned to distinguish the
target object from the background in an online manner.

First of all, using the input gray-scale frame, 4 different image cues were gen-
erated - 3 locally normalized images were the normalization was carried out using
different parameter sets and one gradient image. Each of these image cues was
propagated through a convolutional neural network and the final responses were
concatenated before giving it as input to the fully-connected classification layer.

When training a convolutional neural network, a particular loss function is min-

imized. For binary classification problems, a common choice is:
1 N
= X7 ns Q) — 1n ) 14
¥ 22 I @) = 1l (14)
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where N is the number of training samples, x,, is the input patch, 1,, is it’s ground
truth label and f is the response of the network, parametrized by 2. However, for
object localization, [LLP15] propose various modifications of the above equation.

First of all, different training patches are given different weights, that is patches
that are considered to be negative cases (not belonging to the tracked target) which
are far away from the estimated position of the target and patches that are con-
sidered to be positive cases (belonging to the tracked target) and are close to the
estimated position are given larger weight than those that are in between. What
is more, as only the first estimate of the target’s location, which is given as input,
is of high confidence, negative samples that are far away from the estimated loca-
tion, but have a high convolutional neural network score are given lower weights.
Finally, to speed up the process of training the convolutional neural network using
backpropagation, a truncated [, norm is proposed, which means that only patches
that have high error are used in the training process.

To train the convolutional neural network online, Stochastic Gradient Descent
was used. Positive samples were sampled in a way that would allow the network to
learn the long term appearance of the object and it wouldn’t overfit to the most re-
cent frame while negative samples were sampled differently - more recent background
patches were more likely to be used for training the network.

Finally, to improve the performance of the tracking algorithm, the convolutional
neural network was only retrained when the loss function was above some predefined
threshold.

When a new frame arrived, hypotheses about the current object location were
randomly sampled from a Gaussian distribution centered at the previous object
location with standard deviations equal to 10 for the two position parameters and

equal to 0.02 for the relative scale parameter.

1.2.1.4 Other works Other significant works which use Deep Learning archi-
tectures, possibly fusing them with various other algorithms, for the problem of
visual tracking, will be briefly summarized in this section.

[BFL*11] used Restricted Boltzmann Machines, which is another architecture
related to Deep Learning, particle filtering, and gaze estimation to simultaneously
track and recognize objects. [KLL15] use stacked convolutional autoencoders to

learn invariant features offline from unlabeled data. The trained stacked autoen-
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coders are then used in a particle filtering framework to perform online tracking.
[WLGY15] pre-trained a convolutional neural network offline and then fine-tuned it
online to adapt to the appearance changes of the object. The convolutional neural
network was trained to provide a probability map instead of a class label, which is

the more usual output.

1.2.2 Transfering convolutional neural network features to tracking

As was mentioned previously, using convolutional neural network layer activations
as features for other tasks is more effective than learning that task from scratch
[YCBL14]. However, even though there already exist works that use convolutional
neural network features as representations for the object to be tracked, there do
not seem to be any detailed experiments that compare the effectiveness of various
representations for tracking, where those representations come from pre-trained con-
volutional neural networks with different architectures. One work which is related is
that of [WOWL15]. They used the architecture of [SZ14] and looked at the feature
maps of two convolutional layers - 10th and 13th. They found that the 10th con-
volutional layer captures more discriminative information for intra-class variations
and as a result helps with discriminating the tracked object from distractors while
13th convolutional layer captures more semantic information and helps distinguish
the tracked object category [WOWL15]. The work of [MHYY15], where they also
use the feature maps from different convolutional layers for target representation, is

similar to [WOWL15] in this respect.
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2 Methods

This section explains various methodological details about the experiments that were
conducted. The first subsection presents five convolutional neural network architec-
tures that were used to study the convolutional neural network feature transfer to
visual tracking. The second subsection describes the data that was used for the
experiments. Finally, the third subsection explains how different features that were
extracted from those five convolutional neural network architectures were compared

to each other in the context of visual object tracking.

2.1 Specific convolutional neural network architectures

Various convolutional neural network architectures have been proposed up to this
date, differing in various aspects such as network depth, the number of neurons per
each layer, size of the convolutional filters at each convolutional layer, convolution
stride, max-pooling downsampling factor and others. As it is uncertain which archi-
tectures suit the task of visual object tracking better, several different architectures

have been chosen for the experiments of this Thesis. They are the following:

1. The first convolutional neural network architecture is taken from [CSVZ14],
in which the authors mention that it is similar to the architecture of [KSH12].
In the Thesis, similarly to the original work of [CSVZ14], this architecture will
be named CNN-F. For this network, the input image is of size 224 x 224. It
consists of 8 layers with learnable parameters - 5 convolutional and 3 fully-
connected. What makes this architecture fast is a large stride for the first

convolutional layer, which is 4 pixels.

2. The second convolutional neural network architecture, which is also taken from
[CSVZ14], in which the authors say that is similar to the architecture from
[ZF13b]. In the Thesis, similarly to the original work of [CSVZ14], this ar-
chitecture will be named CNN-M. For this network, the input image is also
of size 224 x 224, and it also consists of 8 layers with learnable parameters -
5 convolutional and 3 fully-connected. Compared to the CNN-F architecture,
this architecture has a larger stride and a smaller receptive field in the first

convolutional layer. However, for this architecture to remain relatively compu-
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tationally nonintensive, a larger stride was used for the second convolutional

layer.

. The third convolutional neural network architecture, once again taken from
[CSVZ14], which, according to the authors, is similar to the architecture from
[SEZ"13]. In the Thesis, similarly to the original work of [CSVZ14], this archi-
tecture will be named CNN-S. For this network, the input image is also of size
224 x 224, and it also consists of 8 layers with learnable parameters - 5 convo-
lutional and 3 fully-connected. This architecture, similarly to the architecture
of CNN-M, has stride equal to two in the first convolutional layer. However,
differently from CNN-M, it also has stride equal to one in the second convo-
lutional layer, which makes it slower than CNN-M. To partially compensate
for this, CNN-S uses increased max-pooling downsampling factor for the first

and fifth convolutional layers.

. The fourth convolutional neural network architecture, taken from [SZ14], is
quite different from the three architectures listed above. First of all, it is
much deeper - it consists of 16 layers with learnable parameters, 13 of which
are convolutional and 3 are fully-connected. All of the convolutional layers
use the same receptive field size, which is 3 x 3, smaller than the ones used
for the above architectures. However, some of these convolutional layers are
stacked together without max-pooling layers in between, so, for example, two
such layers have an effective receptive field size of 5 x 5, even though there
are non-trivial differences, such as the fact that after each convolutional layer
follows a non-linear rectification layer [SZ14]. This architecture will be called

CNN-D.

. The last one, which is fifth, architecture is also taken from [SZ14]. It is quite
similar to the fourth one, however, it is even deeper - it consists of 19 layers
with learnable parameters, 16 of which are convolutional and 3 of them are

fully-connected. This architecture will be called CNN-E.

As we see from the above, all of the chosen architectures differ in non-trivial
ways. Additionally, the last two architectures, namely CNN-D and CNN-E,
have much better classification accuracies on ILSRVC 2012 validation dataset

[RDST15], which, according to caffe Model Zoo [JSD14], are as follows:

18



e CNN-F achieves 16.7% top-5 classification error, which is the percentage
of images where the true label was not included among the five labels

considered most likely by the convolutional neural network
o CNN-M achieves 13.7% top-5 classification error,
o CNN-S achieves 13.1% top-5 classification error,
o CNN-D achieves 7.5% top-5 classification error,

o CNN-E achieves 7.5% top-5 classification error,

It might be interesting to see if the above classification accuracies correlate to

the effectiveness in representing a tracked object.

Aside from differences, they also have important similarities, such as, first of
all, they all use the same input image size, which is 224 x 224. Different input
image sizes might change the amount of information that a neural network
receives and it might make the comparison of representations acquired by
these neural networks more difficult. What is more, they all have the same
number of fully-connected layers which all have the same dimensionality, and
it is exactly these layers that will be used to acquire feature representations
for the experiments of this Thesis. More specifically, three fully connected
layers, named fc6, fc7 and fc8, respectively, will be used as representations,
where fc6 and fc7 are of dimension 4096 while fc8 is of dimension 1000 for
all the chosen convolutional neural networks. Different vector dimensionality
could also make the direct comparison of the feature representations harder.
Lastly, all of these convolutional neural networks have been trained using
the same training data and using very similar training protocols, which is of
[KSH12], where the training data consists of 1.2 million images that each has
a single label out of 1000 possible. As training on such large amounts of data
takes significant computational resources, already trained models of the above

architectures were downloaded from caffe Model Zoo [JSD*14].

2.2 Dataset used for experiments

As the tracked object can undergo a variety of transformations, a dataset which

covers many of them is required for meaningful experiments. After an extensive

search for such a dataset, VOT2015 dataset was chosen [KML*15]. It consists of
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60 short sequences in which a variety of different objects, one object per sequence,
are labeled with a rotated rectangle in every frame. However, as the convolutional
neural networks expect input in the form of a 224 x 224 sized rectangular image,
the labeled rotated rectangles were converted to upright ones and then resized to
the required size using linear interpolation. Some images, generated this way, are

depicted below:

Figure 1: Example images from the generated sequences.

As we can see from the above figure, the sequences do include a variety of different
object types undergoing a variety of different transformations. What is more, the
third row with a bird shows that there are other similarly looking birds that act
as distractors, which indicates that feature representations that capture very fine
details are necessary for successful tracking.

Additionally, the original images in which the tracked object was labeled were
used to generate samples for negatives - rectangles which either not include the
tracked object at all or only include it partially. More specifically, such negative
crops were generated:

1) Rectangles shifted to the left or right by 25%, 50%, 75% and 100% of the
original object rectangle width value, where if the resulting rectangle moved outside
of the original image, it was skipped. Some examples of such images, shifted to the

right by 50%, are depicted below:

20



o =

Figure 2: Example images from the sequences, shifted to the right by 50% of the

rectangle width value.

2) Rectangles shifted to the top or bottom by 25%, 50%, 75% and 100% of the
original object rectangle height value, where if the resulting rectangle moved outside
of the original image, it was skipped. Some examples of such images, shifted to the

top by 50%, are depicted below:

Figure 3: Example images from the sequences, shifted to the top by 50% of the

rectangle height value.

3) Rectangles scaled by a factor of 0.5. More precisely, the center of the rectangle
was fixed while width and height became two times smaller. Several examples of

such images are depicted below:

- —— p—

Figure 4: Example images from the sequences, scaled by a factor of 0.5

4) Rectangles scaled by a factor of 2.0. More precisely, the center of the rectangle
was fixed while width and height became two times larger. Several examples of such

images are depicted below:

Figure 5: Example images from the sequences, scaled by a factor of 2.0
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There was a total of 19 crops, including the non-shifted one. As the number of
images for the central crop for all the 60 object sequences was above 20 000, the
total number of images that were used to compute convolutional neural network

features was around 380 000.

2.3 Quantifying convolutional neural network feature trans-

ferability to tracking

It is not clear how one should compare the effectiveness of different representations
for visual object tracking. However, using the convolutional neural network layer
activations as features that are used to train an online classifier which discrimi-
nates object and its surrounding background is currently a popular and successful
approach. For example, the work of [NH15], which recently won the VOT2015 track-
ing challenge [KML"15], follows a similar framework. They use pre-trained shared
layers of a convolutional neural network, even though it has a simpler architecture
than the ones used in this Thesis, to acquire a target representation and then follows
a domain-specific layer, that is trained separately for each sequence, including the
testing phase one. The domain specific layer acts as a classifier which is trained
online to discriminate the object patches versus background patches.

Another relevant approach is that of [HYKH15]. Their algorithm starts with a
collection of image samples that are propagated through a pre-trained convolutional
neural network acquiring a representation, using which a SVM classifier classifies
the sample as either a positive one, that is of the tracked object, or a negative one,
that is belonging to the background.

As using an online trained Support Vector Machine (SVM) to discriminate object
versus background seems to be popular more generally, SVM was chosen to be the
classifier which uses the convolutional neural network features to learn to discrim-
inate the object from its surrounding background. What is more, even though the
chosen dataset might not be the best dataset to study multi-object tracking, as it
consists of sequences of individual moving objects, it might be interesting to see how
well a multi-class SVM can classify each of the 60 objects using the fully-connected
layer activations from the five chosen convolutional neural networks as features.

To summarize, the following experiments have been conducted for this Thesis:

o Testing how well a Linear SVM is able to discriminate a tracked object from its
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background, varying the distance with which background samples are shifted
relative to the true object location by the procedure described in the previous
subsection, using the responses of the three fully-connected layers of the chosen
five convolutional neural networks, which in total gives 15 different representa-
tions, as features. Such a test is three-dimensional, as, first of all, it tests how
discriminability of the object from its background varies as background sam-
ples gradually move away from the true target location. Secondly, it checks
how discriminability changes as you move further in the convolutional neural
network, that is as you take the fully-connected layer responses closer to the
output of the network. Thirdly, it provides information about which convo-
lutional neural network architectures are more suited towards representing a

tracked object with its fully-connected layer activations.

Testing how well a Linear SVM is able to discriminate a tracked object from
its background, where the background patches are either two times smaller
or two times larger than the true object patch, using features similar to the

description above.

Testing how well a Linear SVM is able to discriminate a tracked object from

other objects, using the 15 different representations.

Additionally, as there are many ways to split the feature vectors into train and
test sets for training and evaluating a Linear Support Vector Machine, several
schemes have been chosen. First of all, using the whole feature vector set as
training set was chosen to quantify how linearly separable are the vectors in the
feature space, as defined by the particular convolutional neural network and its
fully-connected layer. Using every odd vector as train sample and every even
vector as test sample quantifies something related, however, it avoids using the
same set for both training and testing. What is more, in the online tracking
scenario, only the locations in the previous frames are known. To simulate
such a scenario, some percentage of the first frames are used for training while

another percentage of subsequent frames are used for testing.
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3 Experiments

This section provides various results of the experiments, the methodology of which
are explained in the previous section. The first subsection deals with the case of
discriminating image patches containing a single tracked object from image patches
that were shifted or scaled by the procedure described in the previous section. The
second subsection provides results about the discriminability of image patches con-

taining a single tracked object from image patches containing other tracked objects.

3.1 Discriminating objects from background

First of all, to visualize how different convolutional neural networks and their vari-
ous fully-connected layers are able to discriminate objects from background, t-SNE
[vdM13] plots were made. t-Distributed Stochastic Neighbor Embedding (t-SNE) is
a technique for dimensionality reduction, which helps to visualize large dimensional
datasets. In this work, the variant of t-SNE with Barnes-Hut approximations was
used to speed up calculations. t-SNE plots for the sequence named "carl" and the

CNN-F convolutional neural network are depicted below:
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Figure 6: t-SNE plots for the carl sequence using CNN-F fully-connected layer

activations as representations.

As we can see from the above, central image crops, which are the correctly
localized images of the tracked object, and the shifted crops seem to cluster in a
more structured way for the fc6 layer, as compared to the fc8 layer. What is more,
the central crops, which are depicted as white circles, seem to be more separable from
the shifted crops in the fc6 layer, as they seem to cluster in two localized clusters

that do not overlap the shifted image representations. For comparison, t-SNE plots
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for the same sequence, but for the CNN-S convolutional neural network are depicted

below:

T T T T
o central @ shifted by 50% # shifted by 100%
¢ shifted by 25% ¢ shifted by 75%

15

(a) fc6
T T T T
o central @ shifted by 50% # shifted by 100%
15H ¢ shifted by 25% @ shifted by 75% B

< N

(b) fc8

Figure 7: t-SNE plots for the carl sequence using CNN-S fully-connected layer

activations as representations.

As it is visible from the above plots, once again fc6 layer seems to provide repre-
sentations that are better suited for discriminating object images from background
images. What is more, the CNN-M fc6 representation only makes a single cluster
for the correctly localized object patches, as compared to the two clusters of CNN-F

fc6 representation, which might be important for being able to track an object based
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on this representation.

Secondly, similar t-SNE plots for a different object, but with additional negative
crops, that are centered on the true object location while being scaled either 0.5 or
2.0 times, are presented below. For a better visualization, only every 10th frame

was used.
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Figure 8: t-SNE plots for the sheep sequence using CNN-F fully-connected layer

activations as representations.
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We can see from the above figure that negative crops which are scaled versions of
the true object patch seem to cluster together and isolate from the central patches
more than the shifted crops, at least the ones which still partially overlap the tracked
object. A similar trend was also seen for other object t-SNE visualizations, which
might suggest that discriminating a tracked object from its scaled versions is rela-
tively easier than discriminating it from slightly shifted versions, at least using the
tracking framework analyzed in this Thesis.

Another trend, showing that discriminating an object from its scaled version by
a factor of 0.5 is easier than discriminating it from a similarly scaled version, but
with a factor of 2.0, may be visible in the below t-SNE plot, which was acquired
using the fc7 feature of the CNN-M network for a sequence called "graduate":

I I I
204 © central ¢ shifted by 50% ¢ shifted by 100% + scaled by 200%
¢ shifted by 25% ¢ shifted by 75% # scaled by 50%

o B T
o

10|

10+

20+

=20 =10 0 10 20

Figure 9: t-SNE plots for the graduate sequence using CNN-M fully-connected layer

activations as representations.
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Previously depicted figures showing t-SNE projections do seem to suggest a few
hypotheses, however, interpreting them is quite subjective and some more objective
criteria are necessary. As was mentioned in the previous section, using a Linear
Support Vector Machine (SVM) to separate objects from the background is quite
popular in the tracking literature. For this reason, the classification accuracies of
a SVM were used to quantify how effective a representation is for visual object
tracking.

First of all, all of the samples were used as training data and the training ac-
curacy was used as a quantification of effectiveness. Training accuracy quantifies
how linearly separable are the representations of the object and background. As
was mentioned in the previous section, this analysis will be three dimensional. The
first dimension is how the SVM accuracy depends on the distance by which the
background crops are shifted relative to the true object location. The distances are
quantified by percentages of height or width of the object, depending on whether the
object was shifted up/down or left /right, respectively. How SVM training accuracy,
averaged for all the object sequences, depends on this distance for the convolutional

neural network fully-connected layer representations is depicted below:
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Figure 10: SVM classification training accuracy dependance on background image

patch distances to the true object location.

As we see from the above figures, for all the convolutional neural network ar-
chitectures the pattern is similar - as the distance increases, the training accuracy
moves from, depending on the layer, about 85% for background patches that are
only shifted by 25% of rectangle height or width value and hence still include a large
portion of the object to around 98-99% for patches that do not include the object
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at all. The accuracies seem to be quite high, which might indicate that in the fully-
connected feature space, the problem is almost linearly separable, at least for the
data in question. What is more, even though the difference in accuracies between
different layer representations is relatively high for 25% distance, it seems to dimin-
ish as the classification problem becomes easier and accuracies start to approach
100%.

Secondly, instead of using all the data for SVM training and reporting the train-
ing accuracy, another approach was used. In this approach, half of the data, that
is every even frame, was used for training and the rest of the data, that is every
odd frame, was used for testing. As the general pattern seems to remain similar,
except that the accuracies now become lower, only results for CNN-F and CNN-E

are depicted:

o fcb o fc6
4 fc7 2 fc7
+  fc8 ¢ fc8

i i X i i
25% 50% 75% 100% 25% 50% 75% 100%
Distance from center Distance from center

(a) CNN-F (b) CNN-E

Figure 11: SVM classification testing accuracy dependance on background image

patch distances to the true object location, using half of the data for training.

As for the second dimension of these experiments, it was tested how the SVM
accuracies depend on which fully-connected layer was used as the representation.
Even though the above figures seem to already suggest the answer, below are the

results for all the chosen convolutional neural network architectures:
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Figure 12: SVM classification training accuracy dependance on which fully-

connected layer was chosen as the representation.

The above figures again demonstrate that the fully-connected layers that are
closer to the output are less effective for discriminating an object from the back-
ground around him. This might be because the layers fc7 and fc8 are too specialized
towards classification, the original problem on which the convolutional neural net-

works were trained on.
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What is more, fc8 is of more than 4 times lower dimensionality than that of fc6
and fc7, which might additionally explain the large performance drop when going
from fc7 to fc8.

Once again as the general pattern seems to remain the same when using only
half of the data for training and using the other half for testing, only the results for
CNN-F and CNN-E are shown:

Accuracy

25%
50%
75%
100%

< AV >

0.80 i — . L
fc6 fc7 fcb fc7 fc8

Layer Layer

(a) CNN-F (b) CNN-E

Figure 13: SVM classification testing accuracy dependance on which fully-connected

layer was chosen as the representation, using half of the data for training.

The third dimension of these experiments is that of comparing different convo-
lutional neural network architectures. Plots that show how accuracies change as
we vary the architecture in the order of their top-5 classification accuracy on the

ILSRVC 2012 validation dataset [RDS*15] are shown below:
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Figure 14: SVM classification training accuracy dependance on the convolutional
neural network architecture for different distances between the object and back-

ground patches, quantified as percentages of the object rectangle width or height.

As we can see from the above figures, the first three convolutional neural network
architectures seem to provide better representations, especially for the fc8 layer, even
though the last two architectures have much better accuracies on the task on which
the networks were trained. This might be explained by the fact that the last two
architectures are also much deeper, so the representations that they provide at their
fully-connected layers are too specialized for the object classification task and they
do not generalize too well to this new task of discriminating object from shifted
patches around the object.

Accuracy plots generated using the approach that only uses half of the data for
training provided similarly looking results and they are not presented here.

Lastly, as was mentioned in the previous section, in the online tracking scenario
only the location in some number of previous frames is known, where the number of

frames is usually as small as one while it is necessary to predict the object location
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in the subsequent frames. To simulate such a scenario at least to some degree, the
following train and test sets for the Linear SVM were used:

1) Training on a small number of first frames, which was set to be 10 percent
and testing on a small number of subsequent frames, which was also 10 percent of
the total frames for the object sequence.

First of all, the figures below depict Linear SVM testing accuracies for discrim-
inating between the true object location patches and variously translated patches,

but keeping the scale fixed:

i i i i | R
CNN-F CNN-M CNN-S CNN-D CNN-E CNN-F CNN-M CNN-S CNN-D CNN-E
Network Network

(a) 25% (b) 50%

CNN-F CNN-M CNN-S CNN-E "CNN-F CNN-M CNN-S
Network Network

(c) 75% (d) 100%

Figure 15: SVM classification testing accuracy dependance on the convolutional neu-
ral network architecture for different distances between the object and background

patches, quantified as percentages of the object rectangle width or height.

Uninterestingly, the trends are somewhat similar to the ones seen above.
Secondly, the figures below depict Linear SVM testing accuracies for discrimi-
nating between the true object location patches and patches scaled by a factor of

either 0.5 or 2.0:
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Figure 16: SVM classification testing accuracy dependance on the scale factor by
which negative patches were scaled for different convolutional neural network archi-

tectures and their fully-connected layers.

Firstly, we can see that as was suggested by the t-SNE plots, patches that are
scaled by a factor of 0.5 do seem to be easier to distinguish from the true object
patches than are the patches scaled by a factor of 2.0. This may be the result of

the original dataset on which the networks were trained on having images of objects
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that either take up most of the image or are only centered in the middle. Training
on such images may have resulted in features that are partially invariant to scaling
by a factor of 2.0 and this shows up in reduced accuracies in the above plots.

Secondly, the overall accuracies seem to be higher than in the case of discrimi-
nating against translated patches. This was also suggested by the t-SNE plots made
in the previous subsection.

Thirdly, even though fc6 remains the most accurate representation for most of
the networks, for two of them fc7 is actually more accurate for the case of the scale
factor of 2.0. This might show that fc6 and fc7 might be more effective in different
scenarios and could complement each other, especially when computing fc7 is cheap
from a computational perspective.

2) Training on a small number of first frames, which was set to be 10 percent
and testing on a large number of subsequent frames, which was set to 50 percent of
the total frames for the object sequence.

First of all, the figures below depict Linear SVM testing accuracies for discrim-
inating between the true object location patches and variously translated patches,

but keeping the scale fixed:
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Figure 17: SVM classification testing accuracy dependance on the convolutional neu-
ral network architecture for different distances between the object and background

patches, quantified as percentages of the object rectangle width or height.

As we can see from the above, the trends are mostly similar to the ones seen
above. However, there are some interesting variations seen in the figure (a) which
again suggest that different feature representations could complement each other.

Secondly, the figures below depict Linear SVM testing accuracies for discrimi-
nating between the true object location patches and patches scaled by a factor of

either 0.5 or 2.0:

38



0.89+

0.87

Scale factor Scale factor

(a) CNN-F (b) CNN-M

091 091

0.90

0.89 -

0.89

Accuracy
Accuracy

0.881

0.87}

0.85}

0.84 L
0.5 2.0

Scale factor Scale factor

0.86

(c) CNN-S (d) CNN-D

o fc6
x fc7
¢ fc8

0911

0.90

Accuracy

0.87f

0.85

0.5 2.0
Scale factor

(e) CNN-E

Figure 18: SVM classification testing accuracy dependance on the scale factor by
which negative patches were scaled for different convolutional neural network archi-

tectures and their fully-connected layers.

Here we see tendencies that are similar to the ones seen before.
3) Training on a large number of first frames, which was set to be 50 percent
and testing on a small number of subsequent frames, which was set to 10 percent of

the total frames for the object sequence.
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First of all, the figures below depict Linear SVM testing accuracies for discrim-
inating between the true object location patches and variously translated patches,

but keeping the scale fixed:

CNN-F CNN-M CNN-S CNN-D CNN-E "CNN-F CNN-M CNN-S CNN-D CNN-E
Network Network

(a) 25% (b) 50%

0.965

0.960 oo

0.955 1

0.950 -

0.945 1

Accuracy

0.940 -

0.935

0.930 -

0.84 L L L 0.925 L L
CNN-F CNN-M CNN-S CNN-D CNN-E CNN-F CNN-M CNN-S CNN-D CNN-E

Network Network

(c) 75% (d) 100%

Figure 19: SVM classification testing accuracy dependance on the convolutional neu-
ral network architecture for different distances between the object and background

patches, quantified as percentages of the object rectangle width or height.

Secondly, the figures below depict Linear SVM testing accuracies for discrimi-
nating between the true object location patches and patches scaled by a factor of

either 0.5 or 2.0:
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Figure 20: SVM classification testing accuracy dependance on the scale factor by
which negative patches were scaled for different convolutional neural network archi-

tectures and their fully-connected layers.

In the figure above, the subfigure (c) shows something new - fc8 achieved the
highest accuracy, even though it was usually the inferior representation in the sce-
narios already presented.

4) Training on a large number of first frames, which was set to be 50 percent
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and testing on a large number of subsequent frames, which was also 50 percent of
the total frames for the object sequence.

First of all, the figures below depict Linear SVM testing accuracies for discrim-
inating between the true object location patches and variously translated patches,

but keeping the scale fixed:
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Figure 21: SVM classification testing accuracy dependance on the convolutional neu-
ral network architecture for different distances between the object and background

patches, quantified as percentages of the object rectangle width or height.

Secondly, the figures below depict Linear SVM testing accuracies for discrimi-
nating between the true object location patches and patches scaled by a factor of

either 0.5 or 2.0:
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Figure 22: SVM classification testing accuracy dependance on the scale factor by
which negative patches were scaled for different convolutional neural network archi-

tectures and their fully-connected layers.
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3.2 Discriminating objects from other objects

As it was mentioned before, the dataset that was used for experiments is better suited
for single object tracking. However, it might still be useful to see how the 15 different

representations compare in this respect - how effective they are at representing an

object so it would be easy to discriminate it against other objects.

As in the previous section, we start with presenting t-SNE plots to visually
see how different representations are able to cluster together instances of the same
object. To speed up computations only every 10th frame was used for every object,

so in total around 2000 points will be drawn. Below is the t-SNE plot for CNN-F

fc6 representation:
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Figure 23: t-SNE plot of all the object sequences for CNN-F fc6 representation.

Legend shows names of the sequences used.

As we can see from above, different object sequences do separate from each
other, even though there are some overlaps. For comparison, the figure below de-

picts similar t-SNE plot for the same convolutional neural network, but for its fc8

representation:
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Figure 24: t-SNE plot of all the object sequences for CNN-F fc8 representation.

Legend shows names of the sequences used.

Here we see much more overlap between different objects, for example between

hand and helicopter sequences, which is a bit surprising, as these classes are very

different semantically while fc8 layer should be able to capture semantic properties

of images.

Now, using a similar approach as was used before, we look at the SVM train-

ing accuracy when varying the convolutional neural network architecture used for

representing object images. This is depicted in the two figures below:
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Figure 25: SVM classification accuracy of different tracked objects using various

representations.

As we can see from the above two figures, the last two architectures, which are

the most accurate on the original task on which the networks were trained, seem
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to provide inferior results for fc8 layers. However, differently than in the case of
discriminating object from its background, fc6 representation provided by these two
networks seems to be more effective than provided by other architectures, or at least
as effective. One possible explanation for this might be that discriminating an object
from other objects is very close to the original problem of object classification, hence
the learned features transfer more efficiently.

Additionally, similarly as in the section above, different training and testing splits

was used to simulate slightly different online tracking scenarios:
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Figure 26: SVM classification accuracy of different tracked objects using various

representations and different training and testing sets.

As we can see from the subfigures (c) and (d) above, deeper architectures, namely
CNN-D and CNN-E, perform better than shallow architectures when tested on a
relatively small amount of future frames while they are worse when tested on a
relatively large amount. This might indicate that two different representations could
be used for effective tracking - one for long term tracking and one for short-term

tracking.
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3.3 Summary of experimental results

A relatively large number of experiments have been conducted for this Thesis, com-
paring different architectures, layers and other factors for convolutional neural net-
work feature transferability.

First of all, a comparison of different convolutional neural network architectures
has shown that the first three architectures that are shallower than the second two
are actually more effective for visual tracking, even though they were less accurate
for the original problem on which they were trained on. This may suggest that
using simpler and even less accurate architectures may be better when transferring
between different tasks.

Secondly, the features coming from the fc6 layer were usually the most effective
for the majority of the scenarios considered, even though for some of them fc7 and
fc8 were more efficient. This may suggest that features from different layers could
complement each other in a tracking method that is based on convolutional neural
networks.

Thirdly, it seemed that discriminating the true object location from its translated
variants was harder than discriminating it from its scaled variants. This might
suggest using denser sampling for various locations as compared to various scales
when designing a tracking method based on convolutional neural networks.

Lastly, when comparing between different test and train splits for training a
Linear SVM and when considering the multi-object tracking scenario, where the
goal is to discriminate between different objects instead of one object against its
background, it has been found that the deeper architectures are more effective in
some scenarios. This might suggest using different architectures or representations

for short-term and long-term tracking.
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Conclusion

The goal of this Thesis was to provide valuable insights and recommendations for
methods that apply convolutional neural networks to visual object tracking. Several
tasks have been completed.

First of all, a methodology was designed to quantify feature transferability.
Tracking was reduced to a classification problem, that of discriminating an object
from its background, which is a popular and a successful approach. Fully-connected
layers of five different convolutional neural network architectures, trained on an ob-
ject classification task, were chosen as a representation using which linear classifiers
were trained on some subset of the frames for a tracked object.

Secondly, using the above methodology many experiments were conducted and
qualitative, namely t-SNE plots, and quantitative, that were Linear Support Vector
Machine testing accuracies averaged for all the objects in the used dataset, measures
have been acquired.

Both the qualitative and quantitative measures do indicate that convolutional
neural network features are indeed successfully transferable to the visual object
tracking task, as they provide relatively high, in the range from 60 to 99, classifi-
cation accuracies when the tracking problem is reduced to a classification problem.
The variation in these accuracies was provided for a variety of important tracking
scenarios, revealing strengths and weaknesses of different fully-connected layers and
different convolutional neural network architectures.

Lastly, using the measures acquired from experiments and analyzing their re-
sults, several recommendations for the design of methods using convolutional neural

networks have been proposed:

 Using simpler and even less accurate (on the original task) architectures may be
better when transferring to the visual object tracking task, as the architecture
is less specialized to the task on which it was trained on and the features are

more generalizable to other tasks as a result

o Fully-connected layers closer to the input are usually more effective for rep-
resenting a tracked object. Layers close to the network output are probably

overspecialized for the original task
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o Discriminating an object from its translated patches is harder than discrim-
inating it from its scaled variants. This might be explained by the fact that
convolutional neural networks for object classification are specifically designed
to be translation-invariant and hence discriminating an object from its slightly
shifted version is especially hard. Some architectural modifications may be re-

quired to alleviate this issue

o There is a difference in which architecture is more effective when testing on a
large or a small amount of future frames. This may be related to the fact that

different representations are required for short-term and long-term tracking
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