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Abstract
Siamese networks excel at comparing two images, serving as an effective class verification
technique for a single‐per‐class reference image. However, when multiple reference im-
ages are present, Siamese verification necessitates multiple comparisons and aggregation,
often unpractical at inference. The Centre‐Loss approach, proposed in this research,
solves a class verification task more efficiently, using a single forward‐pass during
inference, than sample‐to‐sample approaches. Optimising a Centre‐Loss function learns
class centres and minimises intra‐class distances in latent space. The authors compared
verification accuracy using Centre‐Loss against aggregated Siamese when other hyper-
parameters (such as neural network backbone and distance type) are the same. Experi-
ments were performed to contrast the ubiquitous Euclidean against other distance types
to discover the optimum Centre‐Loss layer, its size, and Centre‐Loss weight. In optimal
architecture, the Centre‐Loss layer is connected to the penultimate layer, calculates
Euclidean distance, and its size depends on distance type. The Centre‐Loss method was
validated on the Self‐Checkout products and Fruits 360 image datasets. Centre‐Loss
comparable accuracy and lesser complexity make it a preferred approach over sample‐
to‐sample for the class verification task, when the number of reference image per class
is high and inference speed is a factor, such as in self‐checkouts.
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1 | INTRODUCTION

Self‐checkout systems were introduced to cut cashier labour
costs in food retail stores, but they have led to new issues:
slower product identification without barcodes and increased
shoplifting. Studies indicate a 75% rise in theft in stores with
self‐checkouts compared to those without. Shoplifting occurs
through selecting the wrong item, barcode switching, failing to
scan items, or leaving without paying. Retailers try to tackle this
with security scales, which work for consistent‐weight products
but not variable‐weight ones such as fresh produce. Some use
RFID tags on high‐value items, but this is costly and imprac-
tical for many products, especially unpacked fruits and
vegetables.

The process for checking out a product without a barcode
involves these steps: (1) The customer selects a product from a
menu. (2) The chosen product is placed on a scale for
weighing. (3) Once the weight is confirmed, the customer’s
choice is recorded. (4) The product is then placed on security
scales. To enhance this process, a computer vision system is
necessary to verify if the product in the image matches the
customer’s selection after step 3. If there is a high likelihood of
a product mismatch, an attendant is alerted to visually confirm
the product.

There is a scarcity of representative datasets for real‐world
self‐checkout barcodeless products. In contrast to synthetic
counterparts, authentic self‐checkout datasets comprise items
enclosed in plastic bags, objects partially occluded by
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anatomical features, and variable lighting conditions. It is
imperative to underscore that only computer vision solutions
validated against authentic self‐checkout datasets apply to real‐
world self‐checkout environments. Of all the publicly acces-
sible image sets, Fruits 360 [1], although synthetic, is the closest
match to a self‐checkout barcodeless products image set. It
contains 65 K images within 95 categories. Figure 1 illustrates
sample images from our self‐checkout dataset compared to
Fruits 360 [1]. Several publicly accessible image collections
feature packaged products typically equipped with barcodes.
The “RPC: A Large‐Scale Retail Product Dataset” [2] stands
out as the most extensive retail dataset available to the public,
comprising approximately 83,000 images within 200 categories.
This dataset was artificially compiled in a controlled environ-
ment using cameras positioned at various degrees. The back-
ground is uniform, facilitating easy removal. Another
noteworthy dataset is the MVTec Densely Segmented Super-
market Dataset (MVTec D2S), presented in ref. [3], encom-
passing around 21,000 images across 60 categories—a fraction
of the categories found in supermarkets. This dataset features
labels at the pixel level, allowing for extensive application of
data augmentation techniques. The GroZi‐120 image set [4]
includes around 12,000 images depicting 120 products, sourced
from a combination of web images and actual grocery store
shelves. Smaller retail product image sets are also available to
the public, such as those presented in refs. [5, 6], containing up
to 10,000 images. However, since products with barcodes can
be easily identified through barcode scanning, these datasets
are less applicable to research focusing on computer vision‐
based product selection assistance at self‐checkouts.

The authors utilised an authentic dataset of retail products
collected in a self‐checkout environment and removed empty
images and images having unsatisfactory product visibility as
in ref. [7]. Alternatively, depth estimators [8, 9] could have
been used to segment the product area and then remove
images having too‐small product area. This dataset encom-
passes 194 diverse food retail items that typically lack barc-
odes. The dataset was split 64%–16%–20% into training‐
validation‐test subsets. The training subset was balanced to
contain approximately 10,000 distinct images per class
through data augmentation. All the training, validation, and
testing sets excluded out‐of‐distribution samples (samples of
unknown classes). Negative samples, denoted as “Incorrect”
selections, were generated by labelling an image with a class
other than the correct one. The omission of out‐of‐
distribution samples was due to challenges in their collec-
tion. The authors acknowledge the potential value of
including out‐of‐distribution samples in future research
endeavours.

The proposed computer vision solution aims to reduce
theft through class verification. This task involves two inputs:
an image and a claimed class, which must be among the known
classes. The image can contain an object of the claimed class,
another known class, an unknown class, or no object at all. The
verification task’s goal is to distinguish the claimed class object
from the rest (excluding differentiation between other known
classes, unknown classes, and no objects). Unlike verification,

classification only uses the image as input, producing a prob-
ability vector across known classes. While verification tasks are
well‐studied in security with human face datasets, research
using other datasets is limited.

Different research domains use various strategies to select
negative [image; claimed class] pairs. In computer vision safety,
the goal is to differentiate real images from those generated by
Generative Adversarial Networks (GAN) [10, 11]. Negative
samples for this task consist of GAN‐generated images. In face
verification, classes represent different individuals, with
research often using faces from the same dataset paired with
other individuals’ identities as negative samples [12–18]. In the
self‐checkout domain, negative samples should include two
types of images likely to be incorrectly chosen in a self‐
checkout picklist menu: (1) barcodeless images in the self‐
checkout dataset and (2) images of expensive barcode‐
containing products sold in the same stores. Self‐checkout
datasets often contain hundreds of images per class. In
contrast, face datasets typically have fewer images per identity
(Digi‐Face 1M [19] has 11, CelebA [20] has 20. Wider Face [21]
has nine images‐to‐identities ratio), sometimes even less in
security applications. This research explores verification
methods using a self‐checkout dataset.

Research in the realm of class verification tasks spans
multiple directions. One approach involves employing sample‐
to‐sample comparison using neural networks, such as Siamese.
Another avenue explores the learning of class prototypes
during training. During inference, sample‐to‐sample methods
assess the image being verified by comparing it to one (or
possibly several) images of the same class from the training
dataset. In contrast, class‐prototype‐based methods evaluate
the image being verified by comparing it to the learnt
prototypes.

Sample‐to‐sample methods yield pairwise distances but
lack aggregation capability. Verification tasks require selecting
which training samples to compare during inference and
aggregating results across multiple samples. To address this,
some researchers model intra‐class distance distributions [22]
and measure class probability based on distribution parameters.
Others use Earth Mover’s Distance (EMD) [23, 24] to quantify
dissimilarity between the training set’s intra‐class distance
distribution and the distance distribution of the test sample
compared to same‐class training samples.

Certain class verification applications need to run inference
on hardware with limited storage, processing power, and
without GPUs, such as retail self‐checkout computers. Previ-
ous research found that on machines with an Intel iCore3 CPU,
the inference for a single image takes about 0.75 s. However,
attempting to select random subsets of training samples and
varying the number of samples during inference can lead to
unpredictable results. Moreover, when using sample‐to‐sample
methods and comparing against multiple training images dur-
ing inference, the demands on storage space and computation
time increase proportionally with the number of training im-
ages. Consequently, conducting inference for multiple images
on low‐powered self‐checkout machines makes sample‐to‐
sample methods impractical.
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Unlike sample‐to‐sample methods, class‐prototype‐based
approaches compare the image being verified only against
the class prototype. This results in significantly faster compu-
tation times (1 � 0.75 s compared to N x 0.75 s with sample‐
to‐sample methods, where N is the number of images).
However, there is a research gap in comparing the verification
accuracy between these two approaches. This study aims to fill
that gap by evaluating their accuracy. If the class‐prototype‐
based approach demonstrates comparable or superior accu-
racy, it becomes the preferred choice for low‐powered infer-
ence machines.

Many researchers typically follow a two‐step process when
quantifying image differences: first, they extract higher‐level
features, and then they calculate the Euclidean distance.
However, the choice of distance metric can impact verification
results. When measuring the distance between neural network
embeddings (i.e. higher‐level image features), alternatives such
as Cosine and various Minkowski distances (including Man-
hattan, Euclidean, Chebyshev) are valid options. In contrast,
distance types such as Hamming, Jaccard, and Dice are more
suitable for comparing binary data. It is worth noting that
Minkowski distances are scale‐variant, while Cosine distance is
not. The p parameter in Minkowski distances allows for flex-
ibility, with special cases such as Manhattan (p = 1), Euclidean
(p = 2), and Chebyshev (p = þ∞). Despite the prevalence of
Euclidean distance in research, there is a dearth of studies
comparing it to other distance metrics in class verification
tasks. In this research, the authors aim to investigate how the
choice of distance metric between embeddings affects verifi-
cation accuracy.

Given a classifier with a Softmax function, the authors
have optimised a class verifier encompassing a Centre‐Loss
function. The architecture was validated against an authentic
self‐checkout dataset as well as a public dataset Fruits 360. The
accuracy of the Centre‐Loss verifier was compared against that
of sample‐to‐sample verifiers (Siamese and Triplet) using
various distance types.

2 | RELATED WORKS

Computer vision classifiers such as [25, 26] and [27] assign
probabilities to known classes. However, many real‐world ap-
plications, such as self‐checkout product verification, require
identifying out‐of‐distribution samples, a task classifiers are not
designed for. Verification, in contrast, distinguishes between
in‐distribution and out‐of‐distribution samples. Efforts to
address this issue include [28], which sets a lower threshold for
the Top 1 classifier’s prediction to consider a sample as in‐
distribution and [29], which modifies the classifier architec-
ture by adding a confidence branch. However, both approaches
may struggle with datasets containing similar classes, such as
self‐checkout products with multiple similar‐looking tomato
types, leading to complex probability distribution issues.

In a class verification task, one approach is to treat it as
outlier detection, identifying outliers as incorrect [image;
claimed‐class] pairs. Outlier detectors create a boundary to
separate in‐distribution from out‐of‐distribution samples,
experimenting with various boundary shapes such as hyper-
planes in Support Vector Machines (SVM) [30], ellipsoids in
robust covariance models [31], and any shape in isolation
forests [32]. In this research, the choice of boundary shape
depends on the distance type used: Manhattan leads to a hy-
percube boundary, Euclidean results in a hypersphere, and
Cosine forms a cone. Traditional outlier detection methods do
not explicitly minimise intra‐class distances, but they enhance
separability using techniques such as Gaussian Radial Basis
Function (RBF) kernels [33]. This study aims to minimise
intra‐class distances for all latent layer embeddings, a distinc-
tion from typical outlier detection methods.

A class prototype is a generalised representation of a class
used in class verification tasks. In ref. [34], they create pro-
totypes based on activations and use Earth Mover’s Distance
(EMD). However, these prototypes often have high intra‐class
variation. In Centre‐Loss [13], class centres are learnt by
averaging class samples in the same embedding space, pushing

F I GURE 1 Sample images from self‐checkout dataset (ours) versus Fruits 360.
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embeddings towards them with a two‐fold loss function: In
addition to Softmax, the other summand Centre‐Loss pushes
samples towards their respective class centres. We adopt this
method in our experiments, extending it to various distance
types. Proxy‐NCA [35] learns class centres using a loss func-
tion that pushes samples not only towards their own but also
away from other class centres. It measures cosine distance,
which, by definition, loses the scale component. Proxy‐NCA’s
spin‐offs SoftTriple [36] uses several single class centres, and
Proxy‐Anchor [37] trains more efficiently by minimising both
sample‐to‐centre and sample‐to‐sample distances. Artificial
Immune Networks, as in ref. [38], form high‐density clusters
for each class but do not explicitly minimise cluster size,
resulting in expected high intra‐class variance. Some re-
searchers use text data to build class prototypes, as in ref. [39].
However, obtaining such data for self‐checkout products is
challenging.

In class verification research, face identity verification takes
the spotlight. The common approach involves comparing
image features through sample‐to‐sample methods. Siamese
networks, pioneered by [17], learn to distinguish between pairs
of images, labelling them as 0 for the same person and 1 for
different individuals. An extension, the Triplet network [12],
uses three images: an anchor, a positive (from the same per-
son), and a negative (from a different person). Both Siamese
and Triplet networks excel at comparing multiple samples, but
they require storing samples or their embeddings in an infer-
ence machine. This is feasible with a small number of images
per class but becomes impractical in low‐powered machines
like self‐checkouts. The sample‐to‐sample approach for veri-
fication also involves principles of selecting reference images
for inference, an area where research is lacking. Considering
the proven accuracy of Siamese and Triplet networks, our
experiments contrast them with class‐prototype‐based
methods.

While numerous research papers delve into class‐
prototype‐based class verification and sample‐to‐sample‐
based verification separately, there is a research gap when it
comes to comparing these two approaches. Surprisingly, our
investigation did not uncover any articles focused on a verifi-
cation task that directly compares these two approaches while
maintaining identical hyperparameters, including the neural
network architecture and dataset.

Class verification research is distinguished by the type of
negative samples used. In face verification, negative samples, as
in refs. [12–18], typically consist of images associated with a
different person’s identity. In the context of AI safety, like [40],
negative samples are generated by GANs, while positive
samples are real images. However, in self‐checkout product
verification, negative samples should be either images from a
different in‐distribution class or any out‐of‐distribution prod-
uct not in the training data. Unfortunately, there is a shortage
of datasets for retail barcodeless products, so we used the same
dataset as in refs. [41, 42].

Researchers addressing verification tasks employ various
methods to model distributions of class samples. For instance,
open set deep networks, as in ref. [22], create a Weibull

distribution for each class, enabling varying variance levels
among different classes. Similarly, the authors in ref. [43] learn
per‐class distributions and establishes a fixed Mahalanobis
distance from the class centres to determine a sample’s class
membership. Both of these approaches are more flexible than
ours, as they accommodate different variance levels per class.
However, none of these studies train models to reduce intra‐
class variance. We propose that training models that mini-
mise intra‐class variance can reduce the necessity to model
distinct per‐class distributions.

The use of non‐Euclidean distance types remains relatively
underexplored in research. Some language‐focused researchers
opt for metrics such as Manhattan, as evident in refs. [44, 45]
and [46] or Chebyshev distance, as in ref. [47]. In the realm of
computer vision, the authors in ref. [48] conduct a comparison
involving Manhattan, Euclidean, and Chebyshev distances us-
ing an emotion‐labelled dataset. We expand upon their work by
including Minkowski distances with varying p values (3 and 4)
as well as Cosine distance, conducting experiments on our
focus‐of‐interest self‐checkout products dataset. While the
authors in ref. [49] examine architectures using Manhattan and
Chebyshev distances, it is important to note that their two
architectures differ in other aspects, making direct distance
type comparison inconclusive. On the other hand, the author
in ref. [50] undertakes a comprehensive comparison of various
distance types (Manhattan, Euclidean, Minkowski, Chebyshev,
and Cosine) in an image retrieval task. We aim to conduct a
similar comparison, albeit in a different context—the verifi-
cation task.

3 | METHODS

This research aimed to assess the effectiveness of class
prototype‐based verification technique Centre‐Loss [13]
compared to widely‐used sample‐to‐sample Siamese [17] and
Triplet [12]. Additionally, it explored whether alternative dis-
tance metrics, beyond Euclidean, could enhance similarity
measurement between image embeddings.

Centre‐Loss, a departure from traditional sample‐to‐
sample verification methods, focuses on learning virtual
class centres (Figure 2). These class centres represent the
mean point within the same space as image embeddings for a
given neural network layer. The Centre‐Loss network’s loss
function incorporates a distance measurement between an
image’s embeddings and its respective class centre. Optimis-
ing this loss function encourages embeddings to move closer
to their corresponding class centres (LC in Figure 2a). Class
centres are continually updated to reflect changes in embed-
dings due to weight updates, effectively learning class pro-
totypes and bringing image embeddings closer to their
respective centres.

During the evaluation, the distance between each data
point and every class centre is computed. A maximum‐
distance‐from‐centre threshold (dashed line in Figure 2b) is
established. Data points are classified as positive (inside the
circles) or negative (outside the circles). Correct predictions
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involve data points inside the same‐class circle and outside the
circle of another class. Receiver Operating Characteristics
(ROC) are derived by incrementally adjusting the threshold.

The referenced methods, including Siamese, Triplet, and
Centre‐Loss, commonly employ Euclidean distance to calcu-
late differences between sample‐to‐sample embeddings or
sample‐to‐class embeddings. However, as one of the research
goals was to compare various distance types, experiments were
conducted, and results are presented using not just Euclidean
but also other distance metrics: Manhattan, Minkowski, and
Cosine. Minkowski distance, which encompasses both
Euclidean (p = 2) and Manhattan (p = 1) distances, offers
numerous versions based on different integer values of p. For
practical reasons, this research focused on p values within the
range [1, 4], considering resource and time constraints. The
results section illustrates how varying the p value impacts
performance. In contrast, Cosine distance is scale‐invariant,
limiting its values when measuring differences between data
points with unknown scales. Consequently, Cosine distance

was included in the research. However, other distance types
like Hamming, Jaccard, and Dice were excluded due to their
inability to quantify distances for non‐binary values.

L¼ LS þ λ1 ∗ LC ð1Þ

where: L ‐ total loss; LS ‐ cross entropy loss of softmax;
λ1 ‐ centre loss weight; LC ‐ centre loss.

In the Centre‐Loss part of this research, the overall loss
function (Eq. 2) comprises two components. The first
component, denoted as LS, utilises the familiar cross‐entropy
loss with the softmax function. Its role is to prevent all class
centres from collapsing into a single point. The second
component, LC (Centre‐Loss), imposes penalties on data
samples based on their distances from class centres. The
absence of cross‐entropy loss would likely lead to all data
centres collapsing to a single point; the absence of centre‐loss
leads to a classifier that provides class separability but not
sample concentration in the embedding space.

F I GURE 2 Centre‐Loss, training and evaluation. The “targets” represent class centres (one per class). The “X”s represent data points (activations of a
selected neural network layer). Different classes are represented by different colours. The arrows in (a) represent data point movement upon optimising a loss
function summand LC in Eq. 2 and centre movement—upon optimising LInter in Eq. 4. The dashed circles around class centres in (b) represent thresholds of
verifying a datapoint’s belonging to a class. Values in subscript at data points mark their verification predictions and correctness, for example, the left‐most point
X(TP,TN) is correctly verified as the member of the red class (TP) and as the non‐member of the blue class (TN).

F I GURE 3 Centre‐Loss Architecture. Negative numbers in parenthesis signify layer indexes (referred to in pre‐Centre‐Loss layer experiments). Lines
connecting the Centre‐Loss layer to its predecessor are marked in one solid line (best result) and nine alternative dashed lines (experiments performed on). The
“backbone” refers to the architecture described in detail in ref. [41].
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LC ¼
1
m

Xm

i¼1
∥xi − cyi ∥p ð2Þ

where: LC ‐ centre loss; m ‐ number of samples; xi ‐ ith
sample’s activations of the extra dense layer; yi ‐ ith sample’s
label; cyi ‐ centre of the yi‐th class; ∥…∥p ‐ pth Norm
(distance).

LC ¼
1
m

Xm

i¼1

�

1 −
xi ∗ cyi

∥xi ∥ ∗ ∥ cyi∥

�

ð3Þ

where: LC ‐ centre loss; m ‐ number of samples; xi ‐ ith
sample’s activations of the extra dense layer; yi ‐ ith sample’s
label; cyi ‐ centre of the yi‐th class.

The Centre‐Loss component, denoted as LC, varies based
on the chosen distance type. For Minkowski distance types,
including Manhattan (p = 1) and Euclidean (p = 2), the for-
mula is detailed in Eq. 2. In contrast, for Cosine distance, the
formula is specified in Eq. 3. Optimising the Centre‐Loss in-
volves two main steps: (1) moving sample embeddings closer
to their respective class centres and (2) shifting class centres
towards sample embeddings within a mini‐batch. The formula
for Minkowski‐distance‐based Centre‐Loss (Eq. 2) generalises
the approach used in ref. [13] to accommodate any value of the
parameter p for Minkowski distance, whereas [13] is limited to
p = 2 (Euclidean). The Cosine‐distance‐based Centre‐Loss
(Eq. 3) computes negative cosine similarity within the range
of 0–2.

The weights in the neural network backbones were initiated
from the pre‐trained classifier on the same dataset. At first,
training was performed with no fixed weights. However, a
decline in performance during the initial epochs was observed,
prompting to consider weight fixation. To make this choice,
the authors drew from common practices in transfer learning
tasks, where researchers often fix weights in shallower layers
while training deeper ones [51, 52].

The Centre‐Loss approach defines the loss function but
does not define a neural network architecture (such as pre‐
Centre‐Loss layer selection and neuron count in pre‐Centre‐
Loss layer) and requires tuning hyperparameters specific to
Centre‐Loss (such as centre‐loss weight). Tuning the archi-
tecture and hyperparameters is described in this section
below.

The Centre‐Loss architecture has two outputs: Softmax
and Centre‐Loss that are used to calculate LS and LC in Eq. 2,
respectively. Initially in ref. [13] connected to the last layer
before Softmax (solid line in Figure 3), experiments were
conducted to assess if better results could be achieved by
connecting the Centre‐Loss layer to different shallower layers.
Ten experiments were performed, connecting the Centre‐Loss
layer to various layers beyond the Convolutional backbone
(dashed lines in Figure 3).

Optimising the Centre‐Loss architecture involved selecting
the appropriate pre‐Centre‐Loss layer size, represented by the

Dense 3 block’s FC layer in Figure 3. The authors began with a
small 2‐neuron layer and incrementally doubled its size. They
continued this process until either metrics reached saturation
or hardware limitations were encountered, with the maximum
size being 2048 neurons.

The Centre‐Loss function relies on a hyperparameter λ1 in
Eq. 2. A low λ1 value prioritises the softmax’s cross‐entropy
loss, undermining the goal of bringing class embeddings
closer to their respective centres. Conversely, a high λ1 value
risks collapsing all class centres into a single point, rendering
class differentiation impossible. In the original Centre‐Loss
paper [13], λ1 was empirically determined to be 3e‐3, with
similar results achieved in the range of 1e‐4–5e‐2. In this
research, the authors started within this range and systemati-
cally expanded it by a factor of 3.0 until metric saturation was
observed.

The training complexity of the suggested Centre‐Loss
approach is O (MC) (where M—the overall number of sam-
ples, and C—the number of classes): every sample’s distance is
calculated to every class’ centre. The Siamese’ training
complexity is O (M2/B) (where B—number of batches), as
every pair of samples is compared, but pairs are limited to the
samples within a batch. The Triplet’s complexity is O (M3/B2),
as every sample/anchor is compared to every positive sample
and every negative sample. Still, triplets are limited to sample
combinations within a batch, and every pass through data
places every sample as anchor once. The actual training ranged
between 48 and 53 min/epoch for Centre‐Loss, 68–83 for
Siamese, 125–138 for Triplet networks.

L¼ LS þ λ1 ∗ LC þ λ2 ∗ LInter ð4Þ

TABLE 1 Verification ROC AUC and Accuracy @EER by type of
the neural network.

Neural Network ROC AUC Accuracy @EER

Siamese 0.981 0.937

Triplet 0.980 0.940

Centre loss 0.979 0.927

F I GURE 4 Verification ROC by type of the neural network.
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where: L ‐ total loss; LS ‐ cross entropy loss of softmax;
λ1 ‐ centre loss weight; LC ‐ centre loss; λ2 ‐ inter‐centre loss
weight; LInter ‐ inter‐centre Loss.

While Centre‐Loss aims to minimise distances between
samples and their centres, it does not attempt to increase the
distance between centres of different classes. This article
investigated a possible enhancement to the Centre‐Loss loss

function to push class centres apart during training (LInter in
Figure 2a), denoted in Eq. 4. The third component, referred
to as LInter (Inter‐Centre loss), applies penalties to class
centres according to their cosine similarity within the range of
0–2 and is outlined in Eq. 5. The optimisation of this
particular loss component drives class centres to move away
from each other.

F I GURE 5 Verification ROC by distance‐between‐embeddings type.

TABLE 2 Verification ROC AUC and
Accuracy @EER by
distance‐between‐embeddings type. Distance type

ROC AUC Accuracy @EER

Centre‐Loss Siamese Triplet Centre‐Loss Siamese Triplet

Manhattan 0.962 0.981 0.971 0.901 0.937 0.922

Euclidean 0.979 0.980 0.980 0.927 0.935 0.940

Minkowski (p = 3) 0.948 0.981 0.980 0.879 0.937 0.939

Minkowski (p = 4) 0.839 0.980 0.979 0.759 0.936 0.936

Cosine 0.961 0.981 0.913 0.905 0.938 0.884

Note: Bold values indicate the best distance type for each method, i.e. the maximum values in each column.
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LInter ¼
1

m ∗ ðn − 1Þ

Xm

i¼1

Xn

j¼1
j≠yi

 

1þ
cyi ∗ cj

∥cyi ∥ ∗ ∥cj∥

!

ð5Þ

where LInter ‐ inter‐centre loss; m ‐ number of samples; n ‐
number of classes; yi ‐ ith sample’s label; cyi, cj ‐ centres of the
yi‐th, jth class.

The Inter‐Centre loss component necessitates a relative
weight hyperparameter, denoted as λ2 in Eq. 4. To determine

F I GURE 6 Verification ROC by number of trainable layers.

TABLE 3 Verification ROC AUC and Accuracy @EER by the
number of trainable layers.

Trainable layers

ROC AUC Accuracy @EER

Siamese Triplet Siamese Triplet

Last 2 dense blocks 0.981 0.979 0.937 0.935

Last 1 dense block 0.952 0.972 0.884 0.921

All 0.903 0.946 0.825 0.885

Note: Bold values indicate the highest value in the column, which indicates that the row
of the bold value is the optimal hyper‐parameter.

F I GURE 7 Centre‐Loss Verification ROC by the pre‐Centre Loss
layer.

TABLE 4 Centre‐Loss Verification ROC AUC and Accuracy @EER
by the pre‐Centre Loss layer.

Pre‐centre Loss layer ROC AUC Accuracy @ EER

−1 0.969 0.910

−2 0.545 0.535

−3 0.573 0.551

−4 0.596 0.569

−5 0.502 0.501

−6 0.535 0.530

−7 0.648 0.607

−8 0.667 0.620

−9 0.545 0.533

−10 0.507 0.505

Note: Bold values indicate the highest value in the column, which indicates that the row
of the bold value is the optimal hyper‐parameter.

F I GURE 8 Centre‐Loss Verification ROC AUC by Neuron Count in
Centre‐Loss layer.

8 - CIAPAS and TREIGYS
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its optimal value, the authors initially explored a range of λ2
values akin to that of λ1 (as both pertain to distance in the same
dimensional space). Notably, the authors observed improved
metrics with smaller λ2 values. They continued to reduce λ2 by
a factor of 3.0 until results showed negligible differences from
the case of λ2 being set to 0.

Throughout the experiments, the primary performance
metric employed by the authors was the Area Under Curve
(AUC) of the Receiver Operating Characteristic (ROC).
Furthermore, the authors provide the verification accuracy
achieved at the Equal Error Rate (EER), which corresponds to

the point on the ROC curve where the False Positive Rate
(FPR) matches the False Negative Rate (FNR).

4 | RESULTS

The primary outcome of this study revolves around the per-
formance evaluation of two distinct class verification ap-
proaches: sample‐to‐sample and class‐prototype‐based
methods. To conduct this assessment, the authors employed
three different neural network models in the context of bar-
codeless product verification using a self‐checkout dataset:
Centre‐Loss (representing the class‐prototype approach), Sia-
mese, and Triplet (representing the sample‐to‐sample
methods). Figure 4 and Table 1 showcase the Receiver Oper-
ating Characteristics (ROC) curve and provides detailed in-
formation regarding verification accuracy at the Equal Error
Rate (EER) and the Area Under Curve (AUC) for each neural
network type1. Remarkably, the differences in performance
among all the network types are marginal. This suggests that
sample‐to‐sample comparing networks (Siamese and Triplet)
do not perform better than a class‐prototype‐based network
(Centre‐Loss).

The study investigated the impact of various distance types
on accuracy metrics, which measure the dissimilarity between
samples (Siamese, Triplet) or between a sample and a class
centre (Centre‐Loss). Experiments encompassed Manhattan,
Euclidean, Minkowski (p = 3, 4), and Cosine distance types.
Table 2 summarises accuracy results at an equal error rate
(EER) and ROC AUC by the distance type, while detailed
ROC curves for each distance type are in Figure 5a (Centre‐
Loss), Figure 5b (Siamese), and Figure 5c (Triplet). All distance
types exhibited similar performance for Siamese and Triplet
networks, except for a slight degradation observed with the

F I GURE 9 Centre‐Loss Verification ROC by Centre‐Loss hyperparameters λ1 and λ2.

TABLE 5 Centre‐Loss Verification by Centre‐Loss weight λ1.

Centre‐loss Weight λ1 ROC AUC Accuracy @ EER

1.000 0.977 0.925

0.300 0.972 0.914

0.100 0.965 0.902

3.000 0.948 0.883

9.900 0.903 0.805

0.030 0.772 0.702

0.010 0.579 0.556

Note: Bold values indicate the highest value in the column, which indicates that the row
of the bold value is the optimal hyper‐parameter.

TABLE 6 Centre‐Loss Verification by Inter‐centre weight λ2.

Inter‐centre Weight λ2 ROC AUC Accuracy @ EER

0.000 0.961 0.900

0.003 0.960 0.895

0.001 0.957 0.890

0.010 0.883 0.799

0.030 0.681 0.619

0.100 0.536 0.533

Note: Bold values indicate the highest value in the column, which indicates that the row
of the bold value is the optimal hyper‐parameter.

1
In this and all the other experiments, the reported results utilise the optimal
hyperparameter values, including distance type (for all network types), the number of
trainable layers (Siamese and Triplet), pre‐Centre‐Loss layer index, neuron count in the
pre‐Centre‐Loss layer, λ1, and λ2 values (all four for Centre‐Loss).

CIAPAS and TREIGYS - 9
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Cosine distance type in the Triplet network. In Centre‐Loss,
most distance types (Cosine, Manhattan, Euclidean, and Min-
kowski) performed similarly, although degradation was noted
for higher Minkowski p values (p = 3, 4).

Training all layers in Siamese and Triplet architectures led
to declining metrics after the first epoch. To address this, the
authors conducted experiments, fixing the weights of the last
one and the last two dense blocks (see Figure 3) that were
initialised from the original classifier. As depicted in Figure 6a
(Siamese) and 6b (Triplet), the best ROC AUC was achieved
when the last two dense blocks were fixed in both Siamese and
Triplet networks. Conversely, performance deteriorated when
no weights were fixed or when only the last dense block was
fixed. Table 3 summarises Accuracy@EER and ROC AUC by
the number of fixed blocks. In contrast, training all layers in the
Centre‐Loss architecture did not exhibit declining metrics;
thus, all layers were trainable.

To optimise the Centre‐Loss architecture, the authors
conducted a series of experiments. Initially, they compared
Centre‐Loss architectures with the Centre‐Loss layer attached
to various layers of the original classifier. Figure 7 and
Table 4 provide a summary of ROC AUC and Accu-
racy@EER for 10 different architectures, with the Centre‐
Loss layer attached from the last (‐first) to the 10th from
the end (−10th) layer in the original classifier. The results
clearly highlight that the pre‐last (‐first) layer is optimal for
Centre‐Loss measurement.

Secondly, the authors empirically determined the optimal
number of neurons in the pre‐Centre‐Loss layer. Figure 8 il-
lustrates the growth and saturation of verification ROC AUC
with respect to the neuron count in the pre‐Centre‐Loss layer.
ROC AUC demonstrates a positive correlation with the neuron
count for all distance types until it reaches saturation. The
saturation point for ROC AUC occurs with a smaller number
of neurons when the Minkowski coefficient p is low: Man-
hattan (p = 1) saturates at 256 neurons, Euclidean (p = 2) at
768 neurons, while higher p values (p = 3 and 4) do not
saturate even at 2048 neurons.

The authors conducted experiments to determine the
optimal hyperparameter values for Centre‐Loss: the Centre‐
Loss relative weight (λ1 in Eq.2) and the Inter‐Centre Loss
relative weight (λ2 in Eq.2). Figure 9a displays the verification
ROC, while Table 5 provides detailed ROC AUC and Accu-
racy@EER figures for various λ1 values. The results indicate
that λ1 values between 0.1 and 3.0 produce similar metrics,
while values outside this range lead to degraded performance.
This underscores the importance of both summands in the
Centre‐Loss function: the Cross‐Entropy summand for class
separation and the Centre‐Loss summand for reducing intra‐
class distances. The robust performance across a wide range
of λ1 values suggests that the Centre‐Loss function is not
highly sensitive to variations within this range. However,
including the Inter‐Centre summand in the loss function did
not yield positive effects. Table 6 and Figure 9b show that the

F I GURE 1 0 Comparing verification results on Fruits 360 [1] versus self‐checkout (our) dataset.

F I GURE 1 1 Sample images and their distances from selected class centres.

10 - CIAPAS and TREIGYS
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optimal value for λ2 is 0; increasing λ2 led to lower ROC AUC
and Accuracy@EER values.

In addition to the authentic self‐checkout dataset, the au-
thors also assessed the method’s performance using the Fruits
360 dataset [1]: Models of each network type in question
(Centre‐Loss, Siamese, and Triplet) were trained on Fruits 360
training subset and evaluated on its test subset. The verification
ROC curves for Fruits 360 are illustrated in Figure 10a, and a
comparison of ROC AUC between Fruits 360 and our self‐
checkout dataset is presented in Figure 10b. With the excep-
tion of Siamese, most methods exhibited improved perfor-
mance on Fruits 360, primarily due to the dataset’s clean and
synthetic images.

Figure 11 illustrates a set of sample images alongside their
corresponding distances from selected class centres. Correct
selections are denoted by green, while red dashes indicate
incorrect ones. The blue dashed line represents the equal error
rate (EER) threshold, delineating the boundary between cor-
rect (below the threshold) and incorrect (above the threshold)
selections.

5 | CONCLUSIONS

Almost identical verification accuracy metrics between class‐
prototype‐based (ROC AUC Centre‐Loss: 0.979) and
sample‐to‐sample (ROC AUC Siamese: 0.981, Triplet: 0.980)
approaches were shown on the retail self‐checkout barcodeless
products dataset. This fact makes class centre a preferred
approach in low‐computing‐power inference machines.

Authors experimentally showed that using Euclidean
distance in loss functions to measure sample‐to‐sample or
class‐centre‐to‐sample distances always results in equal or
better accuracy over other distance types (Manhattan, Min-
kowski, and Cosine), although using other nearby Minkowski
p values (p = 1 Manhattan, p = 3) performs similarly. Using
higher Minkowski p values requires more neurons to achieve
saturation. In the Centre‐Loss approach, using Euclidean
distance achieved 0.979 ROC AUC, whereas nearby Min-
kowski p values resulted in 0.962 (p = 1 Manhattan) and
0.948 (p = 3).

Experiments with Centre‐Loss architecture revealed the
penultimate layer as the layer of choice to minimise intra‐class
distances upon training. The optimum size of the penultimate
layer depends on the Minkowski p value.

The value of the Centre‐Loss summand was experimentally
proven. However, a suggested update in the Centre‐Loss
function to increase Inter‐Class distance did not give a posi-
tive result.

The future research spans several directions. First, other
class‐prototype‐based approaches, such as Proxy‐NCA, Soft-
Triple, and Proxy‐Anchor, should be applied to verify the
product selection on the self‐checkout products dataset. Sec-
ond, the class verification accuracy of class‐prototype‐based
approaches should be compared against sample‐to‐sample
approaches on wider image sets, such as ImageNet.
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