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ABSTRACT
The normality of the distribution of stock returns is one of the basic assumptions in financial mathematics.
Empirical studies, however, undermine the validity of this assumption. In order to flexibly fit complex non-
normal distributions, this article applies a Gaussian Mixture Model (GMM) in the context of Value-at-Risk
(VaR) estimation. The study compares the forecasting ability of GMM with other widespread VaR approaches,
scrutinizing the data on the daily log-returns for a wide range of “S&P 500”stocks in two periods: from 2006 to
2010 and from 2016 to 2021. The statistical and graphical analysis revealed that GMM quickly and adequately
adjusts to significant and rapid stock market changes, although the remaining methods delay. The study also
found that the ratio of short-term and long-term standard deviations significantly improves the GMM and
other methods’ ability to predict VaR, reflecting the observed features of analyzed stock log-returns.
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1. Introduction

Many applied financial mathematics models rely on efficient
market hypothesis and perceive stock returns as independent
and normally distributed. Yet Mandelbrot (1963) revealed that
financial data is more likely to follow asymmetric, heavy-tailed
distributions that admit large deviations. Frequent and severe
socioeconomic changes further undermine the reliability of the
normality assumption. In 2020, the announcement of the coro-
navirus pandemic led to rapid market behavior changes when
staying-at-home consumers significantly reduced their spending
on non-basic goods and services. These excess savings allowed
US households, just in 6 months (November 2020–April 2021),
to invest more money in stock funds than in the earlier 12
years, respectively, 569 and 452 bln. USD (Cox 2021). In 2022,
the annual US inflation hiked at 7.5%—the heights not seen in
40 years (Cox 2022). Besides, Russia’s invasion of Ukraine in
February 2022, nuclear war threats, and the energy crisis boosted
uncertainty of future economic growth, adding to further reduc-
tion of the “S&P 500”, “Nasdaq 100”, and other US stock prices
(Dey 2022). The nature of the most recent events, hence, differs
from that of the global financial crisis of 2007–2008, which was
purely rooted in the distortions related to financial markets.
In a financial crisis, asset prices see a steep decline in value,
businesses and consumers are unable to pay their debts, and
financial institutions experience liquidity shortages. A financial
crisis is often associated with a panic or a bank run, during
which investors sell off assets or withdraw money from savings
accounts because they fear that the value of those assets will drop
if they remain in a financial institution.

In responding to the above shocks, effective risk management
becomes an integral part of investments that aim to mitigate

CONTACT Indrė Morkūnaitė indre.morkunaite@mif.stud.vu.lt Faculty of Mathematics and Informatics, Institute of Applied Mathematics, Vilnius University,
Vilnius, Lithuania.

possible losses and earn higher returns. For nearly 30 years,
one of the most widespread risk assessment methods is the
Value-at-Risk (VaR) model. VaR estimates the value that the
loss will not exceed with X percent probability in the next N
days (Hull 2015). However, since 2012, the Basel Committee
has initiated discussions on the need to change the VaR model
to Expected Shortfall (ES) (Hull 2015). Such a change should
appear in the new publication of regulations “Basel IV” for which
the implementation date is postponed to January 2025. VaR is
the basis of the ES model, as the latter calculates the conditional
expectation of losses exceeding the VaR value. In the future, after
the ES model is implemented in businesses and more technical
standards are defined, it can serve as a standalone research topic.

Variance-Covariance (VC), Historical Modeling (HM), and
Monte-Carlo (MC) simulation methods are among the most
widespread VaR calculation approaches. In 1996, “JP Morgan”
published VaR technical documentation introducing the VC
approach (Morgan 1996). Although the VaR model was already
known and applied by then, the “JP Morgan” paper drastically
popularized its application. The VC method assumes the normal
distribution of the profit-loss (PL) measure. Meanwhile, the
HM approach asserts that the historical PL distribution remains
the same as in the historical period, and there is no need to
define an exact theoretical distribution (Hull 2015). The MC
simulation method is similar to the historical one but, instead of
taking historical data distribution, generates the changes in risk
factors using, for example, a geometric Brownian motion (GBM)
process in which a Gaussian distribution appears.

Developing more realistic VaR methods that, contrary to
VC and MC GBM methods, do not rely on the often invalid
normality assumption, as a reasonable option, researchers pro-
pose the Gaussian Mixture Model (GMM). Tan (2005), Tan and
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Tokinaga (2007), Tan and Chu (2012) showed that the GMM
distribution can adequately account for key stylized facts such
as heavy tails and asymmetry, being relatively simple compared
to distributions such as Student or Generalized Normal.

Furthermore, Contreras (2014) assessed the VaR model,
comparing such methods as parametric Delta, HM, and
Delta-GMM. Bypassing exact derivation, Contreras showed
that the VaR metric for Delta-GMM follows from solving
FL(qα ; ω, μ, σ ) − α = 0 with respect to qα , where FL is the loss
distribution function; ω, μ, σ are GMM parameters (see Section
3); qα is an α-quantile. The empirical results revealed that GMM
and HM likewise predict VaR values for the portfolio, which
consists of stocks, bonds, and currency derivatives. However,
GMM adapts to varying risk factors much faster by changing
ω parameters (see Section 3). The VaR method based on the
assumption of normality performed the worst, which signifi-
cantly underestimated values. Similar conclusions are in Cuevas-
Covarrubias et al. (2017) paper, where the authors propose to
reconsider the appropriateness of the normal distribution in
risk management and quantitative finance theory, paying more
attention to the GMM.

Sarkar et al. (2018) and Wang et al. (2020) allocate the
GMM to unsupervised machine learning approaches when
the parameters of the model are estimated using K-means
and Expectation-Maximization (EM) algorithms. Despite the
widespread view that the behavior of financial markets resembles
a black box with hardly predictable outputs, GMM can discover
and independently learn relationships and structures in large
data arrays, based on which researchers get meaningful insights
about the analyzed data.

Our research elaborates on the Seyfi et al. (2021) paper
that describes how to predict VaR values using GMM together
with clustering algorithms. The authors also conclude that the
GMM method can better account for the risks in the tails and
adapt more quickly to volatile market conditions. In addition,
the authors proposed to adjust the stock returns obtained with
GMM by multiplying them by the ratio σ[70]/σ[250], where σ[x]
is the standard deviation of the last x days, arguing that this
will allow the model to adapt even faster to changing market
conditions. VaR models are often used in conjunction with
Exponential Weighted Moving Averages (EWMAs) by assigning
exponentially declining weights to older observations (Morgan
1996). Such a multiplier is based on a tuning parameter λ which
can be chosen based on cross-validation. In contrast, the dis-
tinctive aspect of σ[70]/σ[250] is that it is estimated directly from
stock return data. Besides, this volatility multiplier similarly
improves VaR prediction accuracy with a shorter calibration
period for VaR models, although simultaneously satisfying reg-
ulatory requirements that the model be calibrated for at least
one year (approx. 250 days) based on historical observations.
To ensure a fair comparison across methods, our paper incorpo-
rates the volatility multiplier into all examined VaR approaches,
encompassing traditional methods. Moreover, we evaluate the
benefits and drawbacks of this supplementary multiplier for one-
day VaR predictions through visual representation and statistical
backtesting analysis.

This article aims to show that the GMM is a practical finan-
cial modeling tool and can be significantly superior to other
widespread VaR methods in predicting losses even in periods of

increased volatility: the 2007–2008 global financial crisis and the
market shock caused by COVID-19. Furthermore, additional
statistical analysis revealed that the GMM distribution closely
tracks the observed unimodal and heavy-tailed distribution (see
Definition 3.1 and considerations below) of the analyzed stock
log-returns. Accordingly, a sufficient condition for the unimodal
probability density of GM distribution with two components is
given, along with the necessary extended proofs. In addition,
the conditions are formulated to define when the tails of the
GM distribution can be heavier than the tails of a single normal
distribution. Moreover, it has been noticed that the GMM can
be used as an additional tool in market risk reporting, including
VaR model breach analysis. Information about GMM compo-
nents and their weights helps determine whether the market
is currently experiencing increased or decreased volatility and
whether positive or negative returns prevail. Also, a detailed
backtesting of different VaR methods and a comparative analysis
of predictions nominated the GMM method as the most appro-
priate, closely followed by the HM approach, while the normality
assumption-based VC and MC methods were the least fit for the
analyzed data.

The article is structured as follows. Section 2 analyses the
features of the data taken in the periods that include the finan-
cial crisis (2006–2010) and COVID-19 pandemic (2016–2021)
events. Section 3 discusses the theoretical underpinnings and
practical aspects of the GMM approach applied in the VaR
context. Section 4 provides a backtesting methodology, while
Section 5 scrutinizes one-day VaR model predictions comparing
with the outcomes of two analyzed periods. Section 6 concludes.

2. Data analysis

According to Taleb (2008), the metaphor “black swan” refers to
shocking and unforeseen events (e.g., war, financial crisis, pan-
demic, energy supply shortage). In financial markets, such events
can cause extremely significant losses. Adams and Thornton
(2013) conclude that VaR models are useful in predicting losses
with a high confidence level, but they are incapable of predicting
extreme or catastrophic losses based on historical data.

Seeking a more accurate identification of the differences
between the VaR methods, we conducted a comparative analysis
of the stock market data for two extremely volatile periods. The
first period is from 01/03/2006 to 12/31/2010 (a total of 1,260
trading days), which includes the global financial crisis of 2007–
2008. The second is the market turbulence period caused by
the COVID-19 pandemic—from 01/04/2016 to 12/31/2021 (a
total of 1,511 trading days). In addition to stressful periods, the
selected time ranges also include more stable intervals, allowing
comparisons of the models’ performances to be made between
calm and volatile intervals, as the model should be able to work
adequately in different volatility periods. Even for very stable
time intervals, the model may not be the most appropriate due to
the possibility of becoming too conservative, resulting in higher
capital requirements and inefficient use of capital.

In this study, an equally weighted portfolio of almost all “S&P
500” index stocks1 is used. In total, 416 stocks are analyzed, while

1Data source—“YahooFinance” (link: https://finance.yahoo.com/).
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Figure 1. Descriptive statistics of stock log-returns3, 2006–2010.

Figure 2. Descriptive statistics of stock log-returns, 2016–2021.

other stocks are eliminated to have identical and comparable
portfolios across both time periods. Box plots below display the
main characteristics of all stocks analyzed.

The descriptive statistics of 2006–2010 in Figure 1 show that
approximately half of the stocks have positively skewed distribu-
tions, while the other half are negatively skewed. For positively
skewed stocks, average of log-returns is larger than the median,
which means that distributions have heavier right tails. Further-
more, the kurtosis coefficients are far from zero, indicating that
density functions of stock return distributions decay faster and
they have heavier tails than the normal distribution. In addition,
the Jarque-Bera test2 rejects the hypothesis of normality of log-
returns for all analyzed stocks.

Heavier tails of the log-returns distribution indicate that
investments are riskier. Also, the correlation among various
stock pairs is positive, resulting in a lower diversification benefit,
overreaction to systematic risk, and higher portfolio volatility.
These conclusions follow from the Law of Diversification pio-
neered by Harry Markowitz (1952) in Modern Portfolio Theory.
Assessing the diversification impact is straightforward: compare
the sum of individual stock VaR measures to that of a portfo-
lio. Higher-correlated stocks result in a smaller diversification
effect. For instance, AmerisourceBergen (ABC) and Arthur J.
Gallagher & Co. (AJG) have a correlation of 0.23, while Albe-
marle Corporation (ALB) and Weyerhaeuser (WY) show 0.61. A
portfolio with less correlated stocks boasts 59% diversification,
whereas a more correlated portfolio sees a 10% smaller effect.

On the other hand, results for the 2016–2021 period in
Figure 2 show that the majority of stocks have a negatively
skewed distribution. This statistic has a median value below zero
and numerous outlying negative values. Such skewness measures
indicate that the mean is less than the median, i.e., the data
likely has large negative outliers too. Also, in the COVID-19
pandemic period, kurtosis values were substantially higher than
in 2006–2010, providing even greater confidence in rejecting
normality hypotheses and bringing JB test p-values for all stocks
close to zero. However, the distribution of standard deviations
associated with the average log-returns uncertainty is relatively

2JB = N/6
(
γ 2

1 + (γ2 − 3)2/4
)

is Jarque-Bera test metric, where γ1 is skew-

ness and γ2 – kurtosis coefficients.

smaller than during the global financial crisis. Although the
correlation among various stock pairs is mainly positive, there
are also negative coefficients, which were not observed during
the stressful period of 2006–2010.

3. Gaussian Mixture Model

Gaussian Mixture Model (GMM) is a probabilistic model based
on the assumption that the data originates from a finite number
of Gaussian distributions (Rudin 2021). In general, the data
generation process with mixture models involves two steps:

1. Generate latent variables zi| ω ∼ Categorical(ω), where
ω = {ω1, . . . , ωNc} is a vector of mixture weights,

∑Nc
j=1 ωj =

1, 0 < ωj < 1;
2. Simulate xi| zi = j ∼ N(μj, �j) variables based on zi values,

where μj, �j – the mean and covariance matrix of the j-th
cluster, j = 1, . . . , Nc.

Thus, the density of the GMM is the weighted sum of N(μ ∈
R

k, � ∈ R
k×k) probability density functions:

p(xi) =
Nc∑
j=1

ωjf (xi| μj, �j).

The main idea of the GMM is that each component (cluster)
is a distinct normal distribution that describes different data
sets. In the market risk context, such groups denote stock mar-
ket states, e.g., the state of increased volatility or, conversely,
decreased (see Figure 3, the color represents the state with the
highest probability). Moreover, mixture weights P(zi = j| ω) =
ωj show how often market states change. For instance, suppose
there is a recent escalation in market volatility paired with an
abnormal increase in negative returns. Then, the GMM allocates
higher weights to the normal distribution, whose parameters
(mean and variance) accurately reflect this market condition.
As a result, it is less likely to choose other normal distributions
when simulating returns. This strategic weighting mechanism
(regime-switching) assists the GMM model in adapting more

3The charts are improved by removing a few outlier values for skewness (less
than -6) and kurtosis (greater than 100).
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Figure 3. Clustering “Microsoft” (MSFT) log-returns with GMM Nc = 3 and Nc = 5, 2006–2010.

swiftly to changing market conditions, ultimately resulting in
more accurate log-return estimates.

3.1. Statistical properties

This subsection examines the unimodality and tail heaviness
of the Gaussian Mixture (GM) distribution. For simplicity, the
analysis uses the GM model with two components.

3.1.1. Unimodal density
The density curve of any unimodal distribution reaches its max-
imum value only at one point x = ν (mode), and values of func-
tion decrease when x recedes from ν. However, the distribution
of stock log-returns can have more than one mode, but in this
case, the unimodal distribution would not be appropriate. In the
presence of other modes, the unimodal distribution would gen-
erate biased, inaccurate stock log-returns, and result in biased
risk measures.

Analyzing the histograms of stock log-returns can help intu-
itively test if the data distribution is unimodal. Due to the wide
range of “S&P 500” stocks, the unimodality of each distribution
of stock log-returns is tested statistically with the Hartigan Dip
(HD) test. This test determines whether the data distribution
is similar to the unimodal distribution (Hartigan and Hartigan
1985). The outcomes of the HD test4 reveal that the hypothesis of
unimodality is accepted for all stocks across two periods because
p-values are greater than α = 0.01. This short analysis shows
that distributions of analyzed stock log-returns are unimodal.
Therefore, an accurate assessment of the data-generating process
requires determining the conditions when the GM distribution
is unimodal.

Eisenberger (1964) derived sufficient conditions when GM
distribution is unimodal or bimodal.

Lemma 3.1. (Eisenberger 1964) Set that Yi ∼ N(μi, σ 2
i ), i =

1, 2 are components of the Gaussian Mixture distribution. Density
of Gaussian Mixture p(x, ω) is unimodal for all ω, 0 < ω < 1
when the following inequality is satisfied:

(μ2 − μ1)
2 <

27σ 2
1 σ 2

2
4(σ 2

1 + σ 2
2 )

.

4HDS test is applied for 250 day rolling time window (2006–2010 and 2016–
2021). Therefore, hypotheses are tested based on the averages of the
obtained p-values.

The proof of Lemma 3.1 is provided in Appendix, including
the additional theoretical justification of the inequality’s right-
hand side omitted in the original proof.

3.1.2. Heavier tails
Heavier tails are a paramount feature of GM distribution that
allows for evaluating stock log-returns more accurately, while
normal distribution is incapable of such implementation.

Lemma 3.2. (Feller 1968) Suppose that X ∼ N(0, 1) and
x > 0. Tails of the standard normal distribution 	(x) =

1√
2π

∫ x
−∞ e−u2/2du meets the following inequalities:

1√
2π

(
1
x

− 1
x3

)
e−x2/2 ≤ 1 − 	(x) = 	̄(x) ≤ 1

x
√

2π
e−x2/2.

(1)

Assume that Y ∼ N(μ, σ 2). According to (1) we get:

P(Y > x) = P
(

Y − μ

σ
>

x − μ

σ

)

= 	̄

(
x − μ

σ

)
∼ σ√

2πx
e−(x−μ)2/2σ 2

= σ e−μ2/(2σ 2)

√
2πx

e−x2/(2σ 2)exμ/σ 2
, x → ∞.

Definition 3.1. Suppose that Yi ∼ N(μi, σ 2
i ), i = 1, 2 and

G(x) := ωP(Y1 ≤ x) + (1 − ω)P(Y2 ≤ x), 0 < ω < 1. Tails
of distribution with distribution function G(x) are heavier than
Y ∼ N(μ, σ 2) if the following property holds:

Ḡ(x)

P(Y > x)
= 1 − G(x)

P(Y > x)
→ ∞, as x → ∞.

This property shows that the probabilities of the GM distri-
bution for higher values of stock log-returns tend slower to zero
than that of a single Gaussian distribution; hence, the ratio of tail
probabilities will tend to infinity. Otherwise, the tails of the GM
distribution would be lighter than a normal distribution if the
ratio tends to zero.

When σ1 �= σ2 �= σ and x → ∞:
Ḡ(x)

P(Y > x)
= ωσ1

σ
exp

{
x2

(
1

2σ 2 − 1
2σ 2

1

)}
exp

{
μ2

1
σ 2

1
− μ2

σ 2

}

× exp
{

1
2

(
μ2

σ 2 − μ2
1

σ 2
1

)}
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Figure 4. “Apple” (AAPL) stock log-returns, 2006–2010.

+ (1 − ω)σ2
σ

exp
{

x2
(

1
2σ 2 − 1

2σ 2
2

)}

× exp
{

μ2
2

σ 2
2

− μ2

σ 2

}
exp

{
1
2

(
μ2

σ 2 − μ2
2

σ 2
2

)}

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞, if min{σ1, σ2} > σ ,
∞, if σ2 < σ < σ1,
∞, if σ1 < σ < σ2,
0 , if max{σ1, σ2} < σ – Tails of GM are

lighter than Y ∼ N(μ, σ 2) tails.

For instance, Figure 4(a) shows that normal distribution can
not adequately describe the distribution of AAPL stock log-
returns and estimate the tail risks.

On the contrary, Figure 4(b) depicts that the distributions of
the {1, 2, 5} components of the GMM Nc = 5 model have tighter
distributions, jointly gauging leptokurtic and asymmetric fea-
tures of the empirical distribution. The distributions of the two
remaining components are much flatter and approximate the
tails. Hence, the combination of such distributions constructs a
GM model that can better estimate the unevenness of the data
distribution. These insights are in line with Tan (2005) who
showed that by changing the mixture weights of components and
other parameters, the GM model can better approximate various
shapes of the data distributions compared to the normal, Cauchy,
and Student distributions.

3.2. The evaluation of VaR based on GMM

This subsection explains how to evaluate VaR using the GM
model. First, we need to choose a period for the backtesting. The
VaR model uses a 250-day rolling window method to calibrate
and predict one-day maximum loss (Capital Requirements Reg-
ulation (575/2013) 2013; Basel Committee on Banking Super-
vision 2016). Then this value is compared with the historical
loss. Later, a 250-day window is shifted forward by one day, and
the described process repeats until the end of the backtesting
interval is reached. The rolling window duration roughly uses
one trading year for the initialization of VaR (see Figure 5).
Hence, the operational sample size in the empirical part of the
paper reduces by one year.

For the estimation of the GM model parameters, the iterative
Expectation Maximization (EM) algorithm is used instead of the

1 250

2 2513 252

L251 > VaR?

250 days

250 days

253

Figure 5. 250-day rolling window method.

maximum likelihood method, for which it is hard to optimize
the log-likelihood function of GM distribution due to latent
variables in the mixture model. In order to reduce computation
time, instead of randomly selecting data points, the K-means5

algorithm is used to initialize the GM model parameters and
then the EM algorithm optimizes them (see Figure 6).

In the first step of the EM algorithm, the initial parameters
are set to (ωi, μi, �i), i = 1, . . . , Nc, and then E and M steps are
sequentially performed. The final step is to check the conver-
gence of the log-likelihood function. If there is no convergence,
the algorithm must repeat E and M steps.

1. E-step: estimate the posterior probabilities for each element:

p(zi = k|xi, θt) = ωkf (xi|μk, �k)∑Nc
j=1 ωkf (xi|μj, �j)

= rik, k ∈ {1, . . . , Nc}.

2. M-step: update the parameters:

ωk =
∑N

i=1 rik
N

; μk =
∑N

i=1 rikxi∑N
i=1 rik

and

�k =
∑N

i=1 rik(xi − μk)(xi − μk)
T∑N

i=1 rik
.

The next step of GMM-based VaR evaluation is to simulate
latent variables z. The z = k value specifies which GMM
component will generate the stock log-returns. Then obtained
values multiplied by additional multiplier σ[70]/σ[250]. The pro-
cess repeats until the number of simulations (mc) reaches
3,000.

5More information about the K-means algorithm can be found in works of
MacQueen (1967) and Raschka (2015).
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Figure 6. The scheme of VaR evaluation based on the Gaussian Mixture Model.

4. Backtesting methodology

VaR models are operational if they can assess potential losses
with sufficient accuracy. Therefore, when applying these models
in practice, it is always necessary to statistically evaluate whether
they are fit and adequate for the available data.

Kupiec (1995) proposed the proportion of failures (PoF) test,
which in this article used as described in Nieppola (2009). The
PoF checks the null hypothesis that the proportion of failure—
the ratio of exceptions6 (n) to the total number of observations
(T) – is not significantly different from the chosen α level. The
PoF statistic is defined as follows:

LRPoF = −2 ln
[
(1 − α)T−nαn] − ln

[
(1 − n/T)T−n (n/T)n] .

If LRPoF is greater than the critical value of the χ2(1) distribu-
tion, then the null hypothesis is rejected, meaning that the VaR
model is not accurate enough.

Observed exceptions can be correlated and form exception
clusters. Correlated losses can be extremely significant and large
in a relatively short period of time. Christoffersen (1998) devel-
oped a test that evaluates not only the number of exceptions
but also accounts for the dependence of losses on previous
observations. However, Silva et al. (2006) noted that the test does
not consider cases with more than one day between exceptions. If
Lt > VaR1−α , where Lt is the loss at time t, then1t = 1 indicates
the appearance of exception, else 1t = 0. Let Tij describe the
number of days when the function 1t passed from the ith to the
jth state (Jorion 2007). Besides, let π be the probability that an
exception will occur, and πi be the conditional probability that
an exception will occur with the registration of ith event the day

6Exception is the case when the loss exceeds the estimated value of the VaR
model (i.e., Lt+1 > VaRt

1−α ).

before:

π0 = T01
T00 + T01

= T01
T0∗

; π1 = T11
T10 + T11

= T11
T1∗

and

π = T01 + T11
T00 + T01 + T10 + T11

= T∗1
T

.

Then, Christoffersen’s test statistic for evaluating the hypoth-
esis that the exceptions are independent is:

LRind = −2 ln
[
(1 − π)T00+T10πT01+T11

]
+ 2 ln

[
(1 − π0)

T00π
T01
0 (1 − π1)

T10π
T11
1

]
,

where the null hypothesis is rejected when LRind exceeds the
critical value of the χ2(1) distribution.

The joint statistic, which takes into account both exception
rates and their interdependence, is computed by adding the two
defined above statistics – LRCC = LRPoF + LRind, the null
hypothesis of which is rejected when LRCC is greater than the
χ2(2) critical value.

The literature indicates that the probability of an exception
today may not only depend on whether an exception occurred
yesterday but may, for example, depend on an exception occur-
ring one week ago (Campbell 2005). Haas (2001) introduced the
Mixed Kupiec test, which estimates the number of exceptions
and their dependence, taking into account that exceptions may
depend on other exceptions that occurred more than a day ago:

LRmix =
n∑

i=2
−2 ln

⎡
⎢⎢⎢⎣

α(1 − α)νi−1

1
νi

(
1 − 1

νi

)νi−1

⎤
⎥⎥⎥⎦

− 2 ln

⎡
⎢⎢⎢⎣

α(1 − α)ν−1

1
ν

(
1 − 1

ν

)ν−1

⎤
⎥⎥⎥⎦ + LRPoF ,
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where νi is the time between the ith and (i − 1)th exception; ν

is the time until the first exception. If LRmix is greater than the
χ2(n + 1) critical value, then the null hypothesis is rejected and
the VaR model is dynamically inaccurate.

5. Comparison of one-day VaR model predictions

This section presents a comparative analysis of the distinct VaR
models’ predictions evaluated at the portfolio and individual
stock levels in two disjoint periods. In the following tables, green
color means that the statistical data does not contradict the
test null hypothesis with p-value > 0.01, i.e., null hypothe-
sis cannot be rejected. Red color —the test null hypothesis is
rejected. For GMM calculations, we use scikit-learn—
a machine learning library that, among many other methods,
includes a GMM function—mixture.GaussianMixture
(scikit-learn developers 2017). High-performance computing
(HPC) resources are used to perform the calculations7.

5.1. 2007–2010 period

This section reviews predictions for the period 2007–2010. For
backtesting, each VaR method is evaluated 1,009 times using
a 250-day rolling window method as defined in Section 3.2.
According to the Basel II traffic light test specification8, dur-
ing this validation period, the VaR99 model is assigned to the
green zone (i.e., the model is accurate) when the number of
breaches is less than 16, the red zone (i.e., it is extremely likely
model is inaccurate) starts at 24 breaches, otherwise—the yellow
zone.

5.1.1. VaR model predictions of portfolio value
According to the number of failed tests, VaR99 values are pre-
dicted the worst by VC and MC GBM methods (see Table 1).
The number of exceptions for these approaches significantly
exceeded 24 exceptions (i.e., Basel II test’s red zone). In addition,
the results of the Kupiec test showed that the number of VaR
exceptions is significantly different from the chosen model’s
confidence level. But the Christoffersen test for these methods

Table 1. The backtesting results (p-values) of portfolio VaR estimates, 2007–2010.

No. of Basel Joint Mixed
Approach breaches II Kupiec Christoffersen test Kupiec

GMM Nc = 3 (BIC = 406 055) 24 FAIL 0.000 0.279 0.001 0.000
GMM Nc = 4 (BIC = 856 044) 18 PASS 0.020 0.418 0.056 0.000
GMM Nc = 5 (BIC = 1 315 178) 13 PASS 0.370 0.560 0.568 0.000

Variance-covariance (VC) 33 FAIL 0.000 0.135 0.000 0.000
Monte-Carlo (MC) GBM 31 FAIL 0.000 0.160 0.000 0.000
Historical 16 PASS 0.080 0.472 0.172 0.000

7The authors are thankful for the HPC resources provided by the Information
Technology Research Center of Vilnius University.

8Yellow zone begins at a point at which the binomial probability of achieving
that number or fewer breaches equals or exceeds 95% confidence level, and
red zone—at a point where the probability equals or exceeds 99.99% (Basel
Committee on Banking Supervision 1996).

assessed that the exceptions are mutually independent, i.e., the
probability that an exception will occur today is independent of
what happened yesterday.

It has been found that a GMM with Nc = 5 method is
the best fit for the available data. This method resulted in the
smallest number of model breaches and passed four out of five
backtesting tests with relatively high p-values. However, GMM
Nc = 5 and other VaR methods result in dependent exceptions
when the difference between them is longer than one day, as in
all cases, the null hypothesis of the Mixed Kupiec test is rejected.
Despite the smallest number of exceptions, the obtained BIC
values show that GMM Nc = 3 is the preferred method for the
current data compared to other GMM methods. Accordingly,
the BIC measure alone does not suffice to select the most suitable
model. In addition, backtesting procedures should be conducted
to make sure that the model is selected properly.

In the calmer time periods of 2007–2010, all methods pre-
dicted relatively similar VaR values (see Figure 7). However, on
September 15, 2008, a “black swan” occurred—one of the largest
US investment banks, Lehman Brothers, declared bankruptcy,
after which market volatility increased rapidly. It is apparent
that all VaR approaches provide a delayed response to such
an event. However, GMM and Historical methods showed a
faster response, while the remaining traditional methods were
insufficiently conservative. During the crisis, the GMM machine
learning approaches proactively redistribute the mixture weights
based on significant recent changes in the data, leading to a
higher prediction rate of negative stock returns and the lowest
number of model breaches. After stock market stabilization, the
additional volatility multiplier helps all VaR methods rapidly
revert to pre-crisis levels, preventing them from predicting too
conservative VaR values. Furthermore, it is evident that GMM
methods provide more fluctuating VaR predictions than other
methods. However, the formula for market risk capital require-
ments in the Basel III framework involves a 60-day average of 10-
day VaR and 10-day Stressed VaR. Therefore, regulatory capital
requirements based on GMM VaR methods will be smoother
and more stable than single one-day VaR predictions.

5.1.2. VaR model predictions for individual stocks
The individual stock level shares its aggregate—the portfolio
level—differences discussed above. Table 2 provides the pro-
portions of passed tests estimated by running each backtesting
test for all analyzed stocks. A comparison of VC and MC GBM
with other methods shows that they have the lowest proportion

Table 2. The backtesting results (proportions of passed tests) of stock VaR esti-
mates, 2007–2010.

Median no. Joint Mixed
Approach of breaches Kupiec Christoffersen test Kupiec

GMM Nc = 3 15 96.39 97.60* 93.27 48.08
GMM Nc = 4 15 97.06 97.36 94.95* 49.76
GMM Nc = 5 14* 97.36* 97.36 93.75 50.72*
Variance-covariance (VC) 18 69.95 96.63 64.42 24.52
Monte-Carlo (MC) GBM 19 66.35 95.67 62.02 24.76
Historical 17 89.42 97.12 84.62 32.93

*The text is bold for the best results, defined as the smallest median number of
breaches and the largest proportion of passed tests.
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Figure 7. VaR99 forecasts for a portfolio value (PV), 2007–2010.

Figure 8. Number of breaches for different individual stock VaR models, 2007–2010.

of passed tests across all backtesting tests. This indicates that
these approaches often tend to underestimate VaR measures,
resulting in an excessive number of model breaches that are also
not independent. This striking similarity between the methods
originates from the fact that both approaches rely on the nor-
mality assumption. A promising exclusion among traditional
methods is the Historical approach, but GM models have higher
proportions of passed tests. GM model with Nc = 5 is the
most suitable method for most stock data because it exhibits the
highest passing rates for Kupiec and Mixed Kupiec tests and has
the smallest median number of model breaches; other GMMs
come in second—overall differences are relatively small.

The histograms in Figure 8 summarize the information
regarding the distribution of recorded breaches for the different
VaR methods that were estimated separately for each stock. The
comparison shows that the VC and MC GBM VaR methods

differ from other approaches, having distributions of model
exceptions considerably shifted to the right side from the green
zone and being flatter than for other approaches, indicating that
the normality assumption based methods more often underesti-
mate VaR measures.

At first glance, the breach data shape seems to be similar
among the GMM and Historical VaR approaches. A closer look
reveals that the Historical method is characterized by a heavier
right tail accompanied by an outlier representing 55 breaches.
Contrary to this, GMM methods have significantly lighter right
tails, with one outlier value of less than 50 model exceptions.
Additionally, the Kolmogorov-Smirnov (KS) test is applied to
evaluate whether breach data distributions statistically differ.
Thus, there is no statistically significant difference in the distri-
bution of breach data across the GMM methods and the pair
of VC and MC GBM approaches, while distinctions for the
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Figure 9. VaR99 forecasts for a portfolio value (PV), 2017–2021.

Table 3. The backtesting results (p-values) of portfolio VaR estimates, 2017–2021.

No. of Basel Joint Mixed
Approach breaches II Kupiec Christoffersen test Kupiec

GMM Nc = 3 (BIC = 408 550) 24 PASS 0.000 0.009 0.001 0.000
GMM Nc = 4 (BIC = 858 106) 20 PASS 0.050 0.003 0.002 0.000
GMM Nc = 5 (BIC = 1 316 484) 21 PASS 0.030 0.004 0.001 0.000

Variance-covariance (VC) 33 FAIL 0.000 0.001 0.000 0.000
Monte-Carlo (MC) GBM 36 FAIL 0.000 0.003 0.000 0.000
Historical 17 PASS 0.230 0.001 0.002 0.000

other pairs are significant. Moreover, the GMM methods have
a higher frequency of model breaches near the green zone area.
It corresponds with the high proportions of passed Kupiec tests
(i.e., more than 96%), while VC, MC GBM have up to 70% and
Historical have 89%.

5.2. 2017–2021 period

This section reviews predictions for the period 2017–2021. For
backtesting, each method is evaluated 1,261 times using a 250-
day rolling window method as defined in Section 3.2. Based
on the Basel II traffic light test8, during this validation period,
the VaR99 model is considered an adequate model (green zone)
when the quantity of model breaches is less than 19, red zone—
greater or equal to 28 breaches.

5.2.1. VaR model predictions of portfolio value
In the pandemic period, VC and MC GBM methods based
on normality assumptions again performed the worst (see
Table 3). MC GBM among the two, is the most suboptimal way
of calculating VaR for different confidence levels, having numer-
ous dependent exceptions significantly exceeding the acceptable
level. Meanwhile, the historical approach is the best method for
the available data, resulting in 17 model breaches and passing
two out of five tests. This is the only case in which the historical
method outperformed the GMM methods. The GMM Nc = 4
is judged to be the second most fitting VaR99 method for the
available data with 20 exceptions when the rest of GMM have
21 and 24 exceptions. Again, it is observed that the minimum

BIC value has a model that does not have the least number
of exceptions. Although the GMM Nc = 3 method has the
lowest BIC estimate, it produced a significantly larger number of
exceptions than the GMM Nc = 4 method, which has a higher
BIC estimate.

Figure 9 shows that all VaR methods combined with an
additional volatility multiplier can maintain the characteristics
observed in the previous period, i.e., faster adaption to rapidly
changed market conditions and more accurate VaR predictions.
But among the other approaches, the VC and MC GBM methods
appear to underestimate losses significantly more often than the
others.

However, despite the advantages of the additional historical
volatility multiplier, it is clear that none of the VaR approaches
is a panacea when a “black swan” appears in the market. In this
period, the “black swan” event corresponds to the sharp stock
market fluctuations observed between February and March
2020. It is evident that before this event, the market volatility
had calmed, so even with a volatility multiplier, it was impossible
to anticipate such sudden and substantial changes using just
historical data.

Additionally, one-day VaR predictions were compared
across different methods during the relatively stable 2017–2019
period, preceding the COVID-19 pandemic (see Table A.1). The
outcomes closely resemble our previous results, with both the
GMM Nc = 5 and the Historical method demonstrating similar
performance by successfully passing all backtesting tests.

5.2.2. VaR model predictions for individual stocks
Likewise, portfolio level, due to the specifics of the 2017–2021
period, the Mixed Kupiec test was usually not passed at the
stock level (see Table 4). Similarly to the previous period, GMMs
remained the VaR methods with the highest rate of passed tests.
However, only a small fraction of individual stocks have also
passed the Mixed Kupiec test, yet significant to conclude that the
passing rate is higher than just random observation—a fact not
refuted for normality based VC and MC approaches.

Noteworthy, the Historical method also often passed 3 out
of 4 tests for most stocks, and the numbers of exceptions are
comparable to those of the GMM methods that follow analysing
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Figure 10. Number of breaches for different individual stock VaR models, 2017–2021.

Figure 11. Volatility σ[70]/σ[250] ratio’s effect on portfolio VC VaR, 2007–2010 and 2017–2021.

Table 4. The backtesting results (proportions of passed tests) of stock VaR esti-
mates, 2017–2021.

Median no. Joint Mixed
Approach of breaches Kupiec Christoffersen test Kupiec

GMM Nc = 3 19 89.66 87.74 77.16 20.19
GMM Nc = 4 19 90.38* 88.46* 78.85 19.23
GMM Nc = 5 19 90.38* 87.02 79.57* 20.67*
Variance-covariance (VC) 29 10.82 77.88 10.34 0.96
Monte-Carlo (MC) GBM 30 9.13 77.4 6.49 1.20
Historical 22 68.27 86.78 56.73 10.58

*The text is bold for the best results, defined as the smallest median number of
breaches and the largest proportion of passed tests.

the histograms summarized in Figure 10. The VC and MC GBM
remained the most suboptimal VaR calculation methods with
flatter and significantly shifted to the red zone distribution of the
number of breaches. There is a high concentration of breaches
in the yellow zone for the historical method, whereas the breach
distribution across green and yellow zones appears to be nearly
equal in the GMM approaches. Furthermore, the KS test failed to
reject the null hypothesis of similar distributions only for pairs
of GMM methods.

Summarizing Section 5, a comparable analysis is performed
because the σ[70]/σ[250] multiplier is applied to both GMM and
traditional VaR methods with a focus on the latter methods as
these, to our knowledge, were not previously used with flexibility
increasing multiplier. In this regard, traditional VaR methods
are compiled for the portfolio and individual stocks without
using an additional volatility multiplier to evaluate its impact
on the accuracy of one-day VaR predictions. The following
plots in Figure 11 (see Figure A.1) illustrate the main idea of
σ[70]/σ[250] multipliers—faster adaptation to changing market
conditions. VaR forecasts with additional volatility multipliers
derived from historical data do not lag behind the dominating
market state. When higher volatility occurs, VaR predictions
become more conservative, capturing the portfolio’s risk more
effectively. Otherwise, when market conditions return to more
stable ones, the forecasts adjust and become less conservative,
preventing inefficient use of capital.

Furthermore, in the “black swan” event of a financial cri-
sis, VaR predictions without a multiplier increased only after
more than a half year, except for the historical method, which
showed slightly faster adaptation. In the wake of another “black
swan” of the COVID-19 pandemic, similar trends are observed.
Backtesting tests are generally improved by the addition of a
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volatility multiplier because it decreases the number of breaches.
However, there are some cases where this property does not
hold. With the addition of the volatility multiplier, the number
of model exceptions is moderately increased for MC GBM stock
VaR and historical portfolio VaR in the period from 2017 to 2021
(see Tables A.2 and A.3). There might be several factors con-
tributing to this, including the number of Monte-Carlo simula-
tions used or the characteristics of the multiplier that is selected.
Nevertheless, this additional multiplier improves accuracy and
performance, while at the same time fulfilling the main regula-
tory requirements of a VaR model calibration based on at least
one year (approximately 250 days) of historical observations.

6. Conclusions

Primary data analysis of the 2006–2010 and 2016–2021 periods
showed that the distribution of stock log-returns is statistically
significantly different from Gaussian. In the first period, the
empirical standard deviations of stock log-returns are signifi-
cantly higher, and all stock pairs have positive correlations, while
in 2016–2021, there are some negative correlations.

The theoretical part of the article presents the Gaussian Mix-
ture Model and reveals its several important statistical proper-
ties. Graphical and statistical analysis showed that the proba-
bility densities of the analyzed stock log-returns are unimodal.
Therefore, a sufficient condition is formulated when the proba-
bility density of a GM distribution consisting of two components
is unimodal. Additionally, the conditions are described when the
tails of the GM distribution can be heavier than the tails of a
single normal distribution. However, this property does not hold
if the standard deviations of both GM component distributions
are less than the estimate of the standard deviation of a single
normal distribution.

According to the evaluation of the accuracy of VaR
predictions, none of the methods can predict “black swan”
events. However, the GMM method, by fine-tuning the weights
of the mixture and using the standard deviation multiplier, can
adapt to the changed market conditions more quickly, which
results in a more accurate assessment of risks and a reduction
in the number of VaR model exceptions. Therefore, the GMM
approach is judged to be the most appropriate approach for the
analyzed data.

A fair comparison and proposal is, hence, to equip the other
approaches with the same multiplier that, to our knowledge,
was not previously considered in the literature. In this regard,
GMM is the most effective, followed by the Historical method.
We conclude that Variance-Covariance and Monte-Carlo GBM
methods based on normality assumptions are among the least
preferable VaR approaches. They underestimate VaR values and
fail to properly reflect the changes in risk factors, implying
correlated model exceptions.

In addition, it is observed that the GMM could be an addi-
tional tool to indicate when the market is operating in condi-
tions of increased or, on the contrary, decreased volatility. These
signals can derive from changes in the weight of the mixture.
It is just a matter of finding out what market condition each
component describes. In addition, it is crucial that such an
assignment makes economic sense. The analysis can provide
additional information when analyzing the causes of exceptions

in internal VaR models and may lead to more informed invest-
ment decisions without applying any other VaR approaches.

In order to further investigate the applicability of GMM
in market risk management, it is necessary to examine the
statistical properties of a finite number of components rather
than a two-component model. However, the derivation of these
properties will be more technical. It is also crucial to derive
the necessary and sufficient conditions for the density of the
GM distribution to be unimodal. Furthermore, considering the
transition to the new Basel regulations for market risk, the GMM
method can be tested for evaluating Expected Shortfall (ES).
Also, it would be beneficial to investigate the ability of GMM
methods to predict VaR or ES values when the portfolio includes
more complex financial instruments, such as bonds or options,
and to explore working with more diversified portfolios similar
to those studied by Fama and French (1993).

Moreover, the consideration of heavy-tailed distributions is
important for robust risk management, particularly in capturing
tail risk adequately. The methodologies proposed by Beran et
al. (2014), Jordanova et al. (2016), and Figueiredo et al. (2017)
explain the estimation of tail behavior and provide valuable
insights into tail index estimation, offering improved accuracy
and robustness. Including heavy-tails-directed VaR develop-
ments into our analysis could further increase the effectiveness
of risk assessment, particularly in identifying extreme “black
swan” events and tail risk. By incorporating methodologies like
the t-Hill estimator, harmonic moment tail index estimator
(HME), and the PORT − MOp VaR estimator, along with other
Extreme Value Theory (EVT) models, can better understand
and quantify tail risk in financial portfolios. Therefore, future
research could focus on combining these advanced tail estima-
tion approaches with the VaR framework, potentially leading to
more accurate and reliable risk measures, especially in cases of
heavy-tailed distributions.
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Appendix

A.1. Proof of Lemma 3.1

Proof. Assume that σ1 �= σ2 and μ1 < μ2. Since x = μ1 is not
a root of p′(x, ω) = {ωf (x|μ1, σ1)+(1 − ω)f (x|μ2, σ2)}′ = 0,
this equality can be divided by the first component of p′(x, ω)

derivative function. Then:

g(x, ω) = p′(x, ω)

A
= μ2 − x

x − μ1
h(x) = ωσ 3

2
(1 − ω)σ 3

1
,

where A = −ω(x − μ1)

σ 3
1
√

2π
exp

{
− (x − μ1)2

2σ 2
1

}
and h(x) =

exp
{
− (x − μ2)2

2σ 2
2

+ (x − μ1)2

2σ 2
1

}
.

Function g(x, ω) is positive only in μ1 < x < μ2. Moreover,
it is continuous function because g(x, ω) → 0, when x →
μ1, μ2. The function g(x, ω) will uniquely map all positive values
if it is monotonically decreasing (i.e., g′(x, ω) < 0, when μ1 <
x < μ2):
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g′(x, ω) =
(

μ2 − x
x − μ1

h(x)

)′
=

(
μ2 − x
x − μ1

)′
h(x) +

(
μ2 − x
x − μ1

)
h′(x)

= h(x)

σ 2
1 σ 2

2 (x − μ1)2

(
−(μ2 − μ1)σ 2

2 σ 2
1

+(μ2 − x)2(x − μ1)σ 2
1 + (μ2 − x)(x − μ1)2σ 2

2
)

<
h(x)

σ 2
1 σ 2

2 (x − μ1)2

(
4

27
(σ 2

1 + σ 2
2 )(μ2 − μ1)3 − σ 2

1 σ 2
2 (μ2 − μ1)

)
.

(A.1)

Thus, g′(x, ω) < 0 only when:

4
27

(σ 2
1 + σ 2

2 )(μ2 − μ1)
3 − σ 2

1 σ 2
2 (μ2 − μ1) < 0

⇒ (μ2 − μ1)
2 <

27σ 2
1 σ 2

2
4(σ 2

1 + σ 2
2 )

. (A.2)

This proves that with all ω and μ1, μ2, σ1, σ2 which satisfies
(A.2) inequality, there is only one x value such that p′(x, ω) = 0.
Moreover, it will have a maximum value since p(x, ω) → 0 when
x → ±∞. However, this inequality is only a sufficient condition
for unimodality of GM distribution for all ω, 0 < ω < 1.

Below is the additional proof of (A.1) inequality because
Eisenberger (1964) proposed it in his paper without theoretical
justification:

(μ2 − x)2(x − μ1)σ
2
1 + (μ2 − x)(x − μ1)

2σ 2
2

≤ 4
27

(σ 2
1 + σ 2

2 )(μ2 − μ1)
3.

To prove (A.1) inequality, it only remains to verify that the
following inequalities are satisfied:

(μ2 − x)2(x − μ1) ≤ 4
27

(μ2 − μ1)
3 and

(μ2 − x)(x − μ1)
2 ≤ 4

27
(μ2 − μ1)

3. (A.3)

Let f (x) := (μ2 − x)2(x −μ1) = x3 − (μ1 + 2μ2)x2 + (μ2
2 +

2μ1μ2)x − μ1μ
2
2.

From f ′(x) = 0 follows that f (x) function in (μ1, μ2) has
maximum at point of x1 = (2μ1 + μ2)/3 because f ′′(x1) < 0.
Then we insert x1 expression into f (x = x1) to show that:

f
(

x = 2μ1 + μ2
3

)
=

(
μ2 − 2μ1 + μ2

3

)2 (
2μ1 + μ2

3
− μ1

)

= 4
27

(μ2 − μ1)
2 ≤ 4

27
(μ2 − μ1)

2.

Likewise, show that f (x) := (μ2−x)(x−μ1)
2 = −x3+(μ2+

2μ1)x2 − (2μ2μ1 − μ2
1)x + μ2μ

2
1 function attains maximum at

point of x2 = (2μ2 + μ1)/3 and f (x = x2) expression shows
that (A.3) inequalities are satisfied.

A.2. One-day VaR model predictions, 2017–2019 period

One-day VaR predictions are presented for 2017–2019 (in total
of 759 observations), along with applied backtesting tests. These
evaluations were conducted during a comparatively tranquil
period before the emergence of the COVID-19 pandemic to
assess the performance of different methods under conditions
of lower volatility (Table A.1).

Table A.1. The backtesting results (p-values) of portfolio VaR estimates, 2017–2019
(759 observations).

No. of Basel Joint Mixed
Approach breaches II Kupiec Christoffersen test Kupiec

GMM Nc = 3 11 PASS 0.240 0.146 0.173 0.005
GMM Nc = 4 10 PASS 0.400 0.116 0.203 0.019
GMM Nc = 5 9 PASS 0.610 0.091 0.210 0.026

Variance-covariance (VC) 18 PASS 0.000 0.007 0.000 0.000
Monte-Carlo (MC) GBM 19 PASS 0.000 0.010 0.000 0.000
Historical 8 PASS 0.870 0.068 0.187 0.023

A.3. Volatility ratio’s effect on traditional VaR methods

Table A.5. Stocks VaR with and without volatility multiplier, 2007–2010 and 2017–2021.

σ[70]/σ[250] Average no. Joint Mixed
Approach Period ratio of breaches Kupiec Christoffersen test Kupiec

Variance-covariance (VC)
2007–2010 added 19 69.95 96.63 64.42 24.52

removed 23 33.41 87.02 28.37 5.77

2017–2021 added 29 10.82 77.88 10.34 0.96
removed 27 25.24 63.46 17.31 1.20

Monte-Carlo (MC) GBM
2007–2010 added 19 66.35 95.67 62.02 24.76

removed 24 32.93 89.66 27.16 6.49

2017–2021 added 30 9.13 77.40 6.49 1.20
removed 28 17.79 60.34 12.5 0.72

Historical
2007–2010 added 17 89.42 97.12 84.62 32.93

removed 20 56.97 89.90 45.91 8.65

2017–2021 added 22 68.27 86.78 56.73 10.58
removed 20 91.11 66.35 59.13 5.53
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Figure A.1. Volatility σ[70]/σ[250] ratio’s effect on traditional portfolio VaR measures, 2007–2010 and 2017–2021.

Table A.3. Portfolio VaR with and without volatility multiplier, 2007–2010 and 2017–2021.

σ[70]/σ[250] No. of Joint Mixed
Approach Period ratio breaches Kupiec Christoffersen test Kupiec

Variance-covariance (VC)
2007–2010 added 33 0.000 0.135 0.000 0.000

removed 38 0.000 0.691 0.000 0.000

2017–2021 added 33 0.000 0.001 0.000 0.000
removed 37 0.000 0.004 0.000 0.000

Monte-Carlo (MC) GBM
2007–2010 added 31 0.000 0.160 0.000 0.000

removed 40 0.000 0.602 0.000 0.000

2017–2021 added 36 0.000 0.003 0.000 0.000
removed 38 0.000 0.005 0.000 0.000

Historical
2007–2010 added 16 0.080 0.472 0.172 0.000

removed 31 0.000 0.160 0.000 0.000

2017–2021 added 17 0.230 0.001 0.002 0.000
removed 16 0.350 0.001 0.002 0.000
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