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Abstract: In the paper, we prove a joint limit theorem in terms of the weak convergence of probability
measures on C2 defined by means of the Epstein ζ(s; Q) and Hurwitz ζ(s, α) zeta-functions. The
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parameter α are required. The theorem obtained extends and generalizes the Bohr-Jessen results
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1. Introduction

Let P, N, N0, Z, R, C, as usual, denote the sets of primes, positive integers, non-
negative integers, integers, real, and complex numbers, respectively, s = σ + it a complex
variable, n ∈ N, Q a positive-defined n × n matrix, and Q[x] = xTQx for x ∈ Zn. In [1],
Epstein considered a problem to find a zeta-function as general as possible and having a
functional equation of the Riemann type. For σ > n

2 , he defined the function

ζ(s; Q) = ∑
x∈Zn\{0}

(Q[x])−s.

Now, this function is called the Epstein zeta-function. It is analytically continuable to the
whole complex plane, except for a simple pole at the point s = n

2 with residue

π
n
2

Γ( n
2 )
√

detQ
,

where Γ(s) is the Euler gamma-function. Epstein also proved that the function ζ(s; Q)
satisfies the functional equation

π−sΓ(s)ζ(s; Q) =
√

detQπs− n
2 Γ
(n

2
− s
)

ζ
(n

2
− s; Q

)
for all s ∈ C.

It turned out that the Epstein zeta-function is an important object in number theory,
with a series of practical applications, for example, in crystallography [2] and mathematical
physics, more precisely, in quantum field theory and the Wheeler–DeWitt equation [3,4].

The value distribution of ζ(s; Q), like that of other zeta-functions, is complicated,
and has been studied by many authors including Hecke [5], Selberg [6], Iwaniec [7],
Bateman [8], Fomenko [9], and Pańkowski and Nakamura [10]. In Refs. [11,12], the charac-
terisation of the asymptotic behaviour of ζ(s; Q) was given in terms of probabilistic limit
theorems. The latter approach for the Riemann zeta-function

ζ(s) =
∞

∑
m=1

1
ms , σ > 1,
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was proposed by Bohr in [13], and realised in [14,15]. Denote by B(X) the Borel σ-field
of the space X, and by measA the Lebesgue measure of a measurable set A ⊂ R. For
A ∈ B(C), define

PQ
T,σ(A) =

1
T

meas{t ∈ [0, T] : ζ(σ + it; Q) ∈ A}.

Under the restrictions that Q[x] ∈ Z for all x ∈ Zn \ {0}, and n ≥ 4 is even, it was
shown [11] that PQ

T,σ, for σ > n−1
2 , converges weakly to an explicitly given probability

measure PQ
σ as T → ∞. The discrete version of the latter theorem was given in [12].

The above restrictions on the matrix Q and [9] imply the decomposition

ζ(s; Q) = ζ(s; EQ) + ζ(s; FQ) (1)

with the zeta-function ζ(s; EQ) of a certain Eisenstein series, and the zeta-function ζ(s; FQ)
of a certain cusp form.

Let χ be a Dirichlet character modulo q, and

L(s, χ) =
∞

∑
m=1

χ(m)

ms , σ > 1,

the corresponding Dirichlet L-function having analytic continuation to the whole complex
plane if χ is a non-principal character, and except for a simple pole at the point s = 1 if χ is
the principal character. Then, (1) and [5,7] lead to the representation

ζ(s; Q) =
K

∑
k=1

L

∑
l=1

akl
ksls L(s, χk)L

(
s − n

2
+ 1, χ̂l

)
+

∞

∑
m=1

bQ(m)

ms , (2)

where χk and χ̂l are Dirichlet characters, akl ∈ C, k, l ∈ N, and the series with coeffi-
cients bQ(m) converges absolutely in the half-plane σ > n−1

2 . Thus, the investigation of
the function ζ(s; Q) reduces to that of Dirichlet L-functions which, for σ > 1, have the
Euler product

L(s, χ) = ∏
p∈P

(
1 − χ(p)

ps

)−1

.

Our aim is to describe in probabilistic terms the joint asymptotic behaviour of the
function ζ(s; Q) and a zeta-function having no Euler product over primes. For this, the most
suitable function is the classical Hurwitz zeta-function. Let 0 < α ≤ 1 be a fixed parameter.
The Hurwitz zeta-function ζ(s, α) was introduced in [16], and is defined, for σ > 1, by

ζ(s, α) =
∞

∑
m=0

1
(m + α)s .

Moreover, ζ(s, α) has analytic continuation to the whole complex plane, except for a simple
pole at the point s = 1 with residue 1, ζ(s, 1) = ζ(s), and

ζ

(
s,

1
2

)
= ζ(s)(2s − 1).

The analytic properties of the function ζ(s, α) depend on the arithmetic nature of the
parameter α. Some probabilistic limit theorems for the function ζ(s, α) can be found,
for example, in [17].

The statement of a joint limit theorem for the functions ζ(s; Q) and ζ(s, α) requires
some notation. Denote two tori

Ω1 = ∏
p∈P

{s ∈ C : |s| = 1} and Ω2 = ∏
m∈N0

{s ∈ C : |s| = 1}.



Mathematics 2024, 12, 1922 3 of 15

With the product topology and pointwise multiplication, Ω1 and Ω2 are compact topological
Abelian groups. Therefore,

Ω = Ω1 × Ω2

again is a compact topological group. Hence, on (Ω,B(Ω)), the Haar probability measure
mH exists, and we have the probability space (Ω,B(Ω), mH). Denote the elements of Ω by
ω = (ω1, ω2), where ω1 = (ω1(p) : p ∈ P) ∈ Ω1 and ω2 = (ω2(m) : m ∈ N0) ∈ Ω2, and,
on the probability space (Ω,B(Ω), mH) define, for σ1 > n−1

2 and σ2 > 1
2 , the C2-valued

random element
ζ(σ, ω, α; Q) = (ζ(σ1, ω1; Q), ζ(σ2, ω2, α)),

where σ = (σ1, σ2),

ζ(σ1, ω1; Q) =
K

∑
k=1

L

∑
l=1

aklω1(k)ω1(l)
kσ1 lσ1

L(σ1, ω1, χk)L
(

σ1 −
n
2
+ 1, ω1, χ̂l

)
+

∞

∑
m=1

bQ(m)ω1(m)

mσ1
,

with

L(σ1, ω1, χk) = ∏
p∈P

(
1 − χk(p)ω1(p)

pσ1

)−1

,

L
(

σ1 −
n
2
+ 1, ω1, χ̂l

)
= ∏

p∈P

(
1 − χ̂l(p)ω1(p)

pσ1− n
2 +1

)−1

,

ω1(m) = ∏
pr |m

pr+1∤m

ωr
1(p), m ∈ N,

and

ζ(σ2, α, ω2) =
∞

∑
m=0

ω2(m)

(m + α)σ2
, m ∈ N.

Let
L(P, α) = {(log p : p ∈ P), (log(m + α) : m ∈ N0)}.

Moreover, denote by PQ,α
ζ,σ the distribution of the random element ζ(σ, ω, α; Q), i.e.,

PQ,α
ζ,σ (A) = mH

{
ω ∈ Ω : ζ(σ, ω, α; Q) ∈ A

}
, A ∈ B(C2).

The main result of the paper is the following joint limit theorem of Bohr–Jessen type for the
functions ζ(s; Q) and ζ(s, α).

For brevity, we set

ζ(σ + it, α; Q) = (ζ(σ1 + it; Q), ζ(σ2 + it, α)).

Theorem 1. Suppose that the set L(P, α) is linearly independent over the field of rational numbers
Q, and σ1 > n−1

2 , σ2 > 1
2 . Then,

PQ,α
T,ζ,σ(A) =

1
T

meas
{

t ∈ [0, T] : ζ(σ + it, α; Q) ∈ A
}

, A ∈ B(C2),

converges weakly to the measure PQ,α
ζ,σ as T → ∞.

For example, if the parameter α is transcendental, then the set L(P, α) is linearly
independent over Q.

It should be emphasised that the requirements on the matrix Q are related to a pos-
sibility of representation of non-negative integers by the quadratic form xTQx, x ∈ Zn.
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Let r(m), m ∈ N0 denotes the number of x ∈ Zn that xTQx = m. Then, for even n ≥ 4,
the theta-series

∞

∑
m=0

r(m)e2πims

can be expressed as a sum of an Eisenstein series and a cusp form [9], and this leads to
the representation (1). Moreover, the requirement on the linear independence over Q of
the set L(P, α) is necessary for the identification of the limit measure in Theorem 1. This
restriction for α is used essentially in the proofs of Lemmas 1 and 5, and thus, in the proof
of Theorem 1.

We divide the proof of Theorem 1 into several lemmas, which are limit theorems
in some spaces for certain auxiliary objects. The crucial aspect of the proof lies in the
identification of the limit measure.

2. Limit Lemma on Ω

For A ∈ B(Ω), set

PT,Ω(A) =
1
T

meas
{

t ∈ [0, T] :
((

p−it, p ∈ P
)

,
(
(m + α)−it, m ∈ N0

))
∈ A

}
.

Lemma 1. Suppose that the set L(P, α) is linearly independent over the field of rational numbers
Q. Then, PT,Ω converges weakly to the Haar measure mH as T → ∞.

Proof. The characters of the torus Ω are of the form

∏∗

p∈P
ω

kp
1 (p) ∏∗

m∈N0

ωlm
2 (m),

where the star “∗” shows that only a finite number of integers kp and lm are non-zero. There-
fore, the Fourier transform FT,Ω(k, l), k =

(
kp : kp ∈ Z, p ∈ P

)
, l = (lm : lm ∈ Z, m ∈ N0), is

given by

FT,Ω(k, l) =
∫
Ω

(
∏∗

p∈P
ω

kp
1 (p) ∏∗

m∈N0

ωlm
2 (m)

)
dPT,Ω.

Thus, in view of the definition of PT,Ω,

FT,Ω(k, l) =
1
T

T∫
0

(
∏∗

p∈P
p−itkp ∏∗

m∈N0

(m + α)−itlm

)
dt

=
1
T

T∫
0

exp

{
−it

(
∑∗

p∈P
kp log(p) + ∑∗

m∈N0

lm log(m + α)

)}
dt. (3)

We have to show that FT,Ω(k, l) converges to the Fourier transform of the measure mH as
T → ∞ [18], i.e., to

FΩ(k, l) =
{

1 if (k, l) = (0, 0),
0 otherwise,

(4)

where 0 = (0, . . . , 0, . . . ). Since the set L(P, α) is linearly independent over Q,

L(k, l)
de f
= ∑∗

p∈P
kp log(p) + ∑∗

m∈N0

lm log(m + α) ̸= 0

for (k, l) ̸= (0, 0). Therefore, in this case, the equality in (3) gives

FT,Ω(k, l) =
1 − exp{−iTL(k, l)}

iTL(k, l)
.
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Thus, for (k, l) ̸= (0, 0),
lim

T→∞
FT,Ω(k, l) = 0.

Since, obviously, FT,Ω(0, 0) = 1, this shows that FT,Ω(k, l) converges to (4) as T → ∞.
The lemma is proved.

Lemma 1 is a starting point for the proof of limit lemmas in C2 for certain objects given
by absolutely convergent Dirichlet series.

3. Absolutely Convergent Series

Let β > 1
2 be a fixed number and, for N ∈ N, let

uN(m) = exp
{
−
(m

N

)β
}

, m ∈ N,

and

uN(m, α) = exp

{
−
(

m + α

N

)β
}

, m ∈ N0.

Define

LN

(
s − n

2
+ 1, χ̂l

)
=

∞

∑
m=1

χ̂l(m)uN(m)

ms− n
2 +1

,

LN

(
s − n

2
+ 1, ω1, χ̂l

)
=

∞

∑
m=1

χ̂l(m)ω1(m)uN(m)

ms− n
2 +1

,

and

ζ(s, α) =
∞

∑
m=0

uN(m, α)

(m + α)s ,

ζ(s, ω2, α) =
∞

∑
m=0

ω2(m)uN(m, α)

(m + α)s .

Since uN(m) and uN(m, α) decrease exponentially with respect to m, the above series are
absolutely convergent for σ > σ0 with arbitrary fixed finite σ0. For σ1 > n−1

2 and σ2 > 1
2 , let

ζN(σ, α; Q) = (ζN(σ1; Q), ζN(σ2, α))

with

ζN(σ1; Q) =
K

∑
k=1

L

∑
l=1

akl
kσ1 lσ1

L(σ1, χk)LN

(
σ1 −

n
2
+ 1, χ̂l

)
+

∞

∑
m=1

bQ(m)

mσ1
,

and
ζN(σ, ω, α; Q) = (ζN(σ1, ω1; Q), ζN(σ2, ω2, α))

with

ζN(σ1, ω1; Q) =
K

∑
k=1

L

∑
l=1

aklω1(k)ω1(l)
kσ1 lσ1

L(σ1, ω1, χk)LN

(
σ1 −

n
2
+ 1, ω1, χk

)
+

∞

∑
m=1

bQ(m)ω1(m)

mσ1
.

For A ∈ B(C2), define

PQ,α
T,N,σ(A) =

1
T

meas
{

t ∈ [0, T] : ζN(σ + it, α; Q) ∈ A
}

and
PQ,α,Ω

T,N,σ (A) =
1
T

meas
{

t ∈ [0, T] : ζN(σ + it, ω, α; Q) ∈ A
}

.
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This section is devoted to the weak convergence of PQ,α
T,N,σ and PQ,α,Ω

T,N,σ as T → ∞. Let the

mapping vQ,α
N,σ : Ω → C2 be given by

vQ,α
N,σ(ω) = ζN(σ, ω, α; Q), σ1 >

n − 1
2

, σ2 >
1
2

,

and VQ,α
N,σ = mH

(
vQ,α

N,σ

)−1
, where, for A ∈ B(C2),

VQ,α
N,σ (A) = mH

((
vQ,α

N,σ

)−1
A
)

.

Since all Dirichlet series in the definition of ζN(σ, ω, α; Q) are absolutely convergent in the con-

sidered region, the mapping vQ,α
N,σ is continuous, hence (B(Ω),B(C2))-measurable. Therefore,

the probability measure VQ,α
N,σ is defined correctly; see, for example, [19], section 5.

Lemma 2. Under the hypotheses of Theorem 1, PQ,α
T,N,σ and PQ,α,Ω

T,N,σ both converge weakly to the

same probability measure VQ,α
N,σ as T → ∞.

Proof. We apply the principle of preservation of the weak convergence under continuous
mappings (see section 5 of [19]). By the definitions of PQ,α

T,N,σ, PT,Ω, and vQ,α
N,σ, we have

PQ,α
T,N,σ(A) =

1
T

meas
{

t ∈ [0, T] :
((

p−it, p ∈ P
)

,
(
(m + α)−it, m ∈ N0

))
∈ (vQ,α

N,σ)
−1 A

}
PT,Ω

(
(vQ,α

N,σ)
−1 A

)
for every A ∈ B(C2). Thus, PQ,α

T,N,σ = PQ,α
T,Ω

(
vQ,α

N,σ

)−1
. This continuity of vQ,α

N,σ, Lemma 1, and

Theorem 5.1 of [19] imply that PQ,α
T,N,σ converges to VQ,α

N,σ as T → ∞.

It remains to show that PQ,α,Ω
T,N,σ also converges to VQ,α

N,σ as T → ∞. Let ω̂ ∈ Ω, and the

mapping wQ,α
N,σ : Ω → C2 be given by

wQ,α
N,σ(ω) = ζN(σ, ωω̂, α; Q).

Thus, we have that

wQ,α
N,σ(ω) = vQ,α

N,σ(ω)(a(ω)), (5)

where a : Ω → Ω is given by a(ω) = ωω̂. Along the same lines as in the case of PQ,α
T,N,σ, we

find that PQ,α,Ω
T,N,σ converges weakly to the measure WQ,α

N,σ = mH

(
wQ,α

N,σ

)−1
. However, by (5)

and the invariance of the Haar measure, we obtain

WQ,α
N,σ = mH

(
vQ,α

N,σ(a)
)−1

=
(

mHa−1
)(

vQ,α
N,σ

)−1
= mH

(
vQ,α

N,σ

)−1
= VQ,α

N,σ .

This completes the proof of the lemma.

4. Approximation Lemmas

In this section, we approximate ζ(σ + it, α; Q) by ζN(σ + it, α; Q) and ζ(σ + it, ω, α; Q)
by ζN(σ + it, ω, α; Q).

Let, for z1 = (z11, z12), z2 = (z21, z22) ∈ C2,

ρ(z1, z2) =
(
|z11 − z21|2 + |z12 − z22|2

)1/2
.

Lemma 3. For σ1 > n−1
2 and σ2 > 1

2 ,
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lim
N→∞

lim sup
T→∞

1
T

T∫
0

ρ
(

ζ(σ + it, α; Q), ζN(σ + it, α; Q)
)

dt = 0,

and, for almost all ω ∈ Ω,

lim
N→∞

lim sup
T→∞

1
T

T∫
0

ρ
(

ζ(σ + it, ω, α; Q), ζN(σ + it, ω, α; Q)
)

dt = 0.

Proof. The first equality of the lemma is a corollary of the equalities

lim
N→∞

lim sup
T→∞

1
T

T∫
0

|ζ(σ1 + it; Q)− ζN(σ1 + it; Q)|dt = 0

and

lim
N→∞

lim sup
T→∞

1
T

T∫
0

|ζ(σ2 + it, α)− ζN(σ2 + it, α)|dt = 0. (6)

The first of them was obtained in [11], Lemma 4. Its proof is based on the integral representation

LN

(
σ1 −

n
2
+ 1, χ̂l

)
=

1
2πi

β+i∞∫
β−i∞

L
(

σ1 −
n
2
+ 1 + z, χ̂l

)
lN(z)dz

with

lN(z) =
1
β

Γ
(

z
β

)
Nz,

where β > 1
2 is the same as in the definition of uN(m), and on the mean square estimate for

Dirichlet L-functions in the half-plane σ > 1
2 .

For the proof of (6), we use, for σ2 > 1
2 , the representation

ζN(s, α) =
1

2πi

β+i∞∫
β−i∞

ζ(s + z, α)lN(z)dz. (7)

Since σ2 > 1
2 , there exists ϵ > 0 such that 1

2 + ϵ < σ2. Let β = σ2 and β1 = 1
2 + ϵ − σ2. The

integrand in (7) has simple poles z = 0 and z = 1 − s in the strip β1 < Rez < β. Therefore,
by the residue theorem and (7),

ζN(σ2 + it, α)− ζ(σ2 + it, α) =
1

2πi

β1+i∞∫
β1−i∞

ζ(σ2 + it + z, α)lN(z)dz + lN(1 − σ2 − it).

Hence,

ζN(σ2 + it, α)− ζ(σ2 + it, α) ≪
∞∫

−∞

∣∣∣∣ζ(1
2
+ ϵ + it + iτ, α

)∣∣∣∣∣∣∣∣lN

(
1
2
+ ϵ − σ2 + iτ

)∣∣∣∣dτ

+|lN(1 − σ2 − it)|

and

1
T

T∫
0

|ζ(σ2 + it, α)− ζN(σ2 + it, α)|dt

≪
∞∫

−∞

 1
T

T∫
0

∣∣∣∣ζ(1
2
+ ϵ + it + iτ, α

)∣∣∣∣dt

∣∣∣∣lN

(
1
2
+ ϵ − σ2 + iτ,

)∣∣∣∣dτ
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+
1
T

T∫
0

|lN(1 − σ2 − it)|dt
de f
= I1(T, N) + I2(T, N), (8)

where the classical notation a ≪η b, a ∈ C, b > 0 means that there exists a constant
c = c(η) > 0 such that |a| ≤ cb. It is well known (see, for example, [17]) that, for 1

2 < σ < 1,
T∫

−T

|ζ(σ + it, α)|2dt ≪σ,α T.

Therefore, for large T,

1
T

T∫
0

∣∣∣∣ζ(1
2
+ ϵ + it + iτ, α

)∣∣∣∣dτ ≪

 1
T

T∫
0

∣∣∣∣ζ(1
2
+ ϵ + it + iτ, α

)∣∣∣∣2dt

1/2

≤

 1
T

T+|τ|∫
−|τ|

∣∣∣∣ζ(1
2
+ ϵ + it, α

)∣∣∣∣2dt


1/2

≪ϵ,α

(
T + |τ|

T

)1/2

≪ϵ,α (1 + |τ|)1/2. (9)

For the gamma-function, the estimate

Γ(σ + it) ≪ exp{−c|t|}, c > 0, (10)

uniformly for σ in every finite interval is valid. Therefore,

lN

(
1
2
+ ϵ − σ2 + iτ

)
≪σ2 N

1
2+ϵ−σ2 exp

{
− c

σ2
|τ|
}

.

This, together with (9), shows that

I1(T, N) ≪ϵ,σ2,α N
1
2+ϵ−σ2

∞∫
−∞

(1 + |τ|)1/2 exp
{
− c

σ2
|τ|
}

dτ ≪ϵ,σ2,α N
1
2+ϵ−σ2 . (11)

By (10) again,
lN(1 − σ2 − it) ≪σ2 N1−σ2 exp

{
− c

σ2
|t|
}

,

and thus,

I2(T, N) ≪σ2 N1−σ2

∞∫
0

exp
{
− c

σ2
|t|
}

dt ≪σ2 N1−σ2
log T

T
.

Since 1
2 + ϵ − σ2 < 0, this, with (11) and (8), proves (6).

The second equality of the lemma follows from the following two equalities:

lim
N→∞

lim sup
T→∞

1
T

T∫
0

|ζ(σ1 + it, ω1; Q)− ζN(σ1 + it, ω1; Q)|dt = 0

and

lim
N→∞

lim sup
T→∞

1
T

T∫
0

|ζ(σ2 + it, α, ω2)− ζN(σ2 + it, α, ω2)|dt = 0

for almost all ω1 ∈ Ω1 and almost all ω2 ∈ Ω2, respectively.
The first of these was obtained in [11], Lemma 7, while the second is proved similarly to
Equality (6) by using the representation, for σ > 1

2 ,
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ζN(s, α, ω) =
1

2πi

β+i∞∫
β−i∞

ζ(s + z, α, ω)lN(z)dz,

as well as the bound, for 1
2 < σ < 1 and almost all ω2 ∈ Ω2,

T∫
−T

|ζ(σ + it, α, ω2)|2dt ≪σ,α T,

see, for example, [17].

5. Tightness

Let {P} be a family of probability measures on (X,B(X)). We recall that the family
{P} is called tight if, for every ϵ > 0, there exists a compact set K ⊂ X such that

P(K) > 1 − ϵ

for all P ∈ {P}. The family {P} is relatively compact if every sequence {Pn} ⊂ {P} contains
a subsequence {Pn} weakly convergent to a certain probability measure on (X,B(X)) as
n → ∞.

A property of relative compactness is useful for the investigation of weak convergence
of probability measures. By the classical Prokhorov theorem, see, for example, [19], every
tight family {P} is relatively compact as well. Therefore, often it is convenient to know the
tightness of the considered family. In our case, this concerns the measure VQ,α

N , N ∈ N.

Lemma 4. The family {VQ,α
N : N ∈ N} is tight.

Proof. Consider the marginal measures of the measure VQ,α
N , i.e., for A ∈ B(C),

VQ
N,σ1

(A) = VQ,α
N,σ (A ×C)

and
Vα

N,σ2
(A) = VQ,α

N,σ (C× A).

It is easily seen that the measure VQ
N,σ1

appears in the process related to weak convergence

of the measure PQ
T,σ and the measure Vα

N,σ2
is used for study of

Pα
T,σ2

(A) =
1
T

meas{t ∈ [0, T] : ζ(σ2 + it, α) ∈ A}, A ∈ B(C).

Thus, in [17], the tightness of the family {VQ
N,σ1

: n ∈ N} was obtained, i.e., for every ϵ > 0,
there exists a compact set K1 ⊂ C such that

VQ
N,σ1

(K1) > 1 − ϵ

2
(12)

for all N ∈ N. We will prove a similar inequality for Vα
N,σ2

.
Repeating the proofs of Lemmas 1 and 2 leads to weak convergence of

Pα
T,N,σ2

(A) =
1
T

meas{t ∈ [0, T] : ζN(σ2 + it, α) ∈ A}, A ∈ B(C),

to Vα
N,σ2

as T → ∞. Let θT be a random variable defined on a certain probability space
(Ξ,A, µ) and uniformly distributed in [0, T], i.e., its density function p(x) is of the form

p(x) =


0, x ≤ 0,
1
T , 0 < x ≤ T,
0, x > T.
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Define
ξα

T,N,σ2
= ξα

T,N,σ2
(σ) = ζN(σ2 + iθT , α),

and denote by D−→ the convergence in distribution. Then, the above remark can be written as

ξα
T,N,σ2

D−−−→
T→∞

ξα
N,σ2

, (13)

where ξα
N,σ2

is a random variable with distribution Vα
N,σ2

. Since the series for ζN(s, α) is
absolutely convergent, we have

sup
N∈N

lim sup
T→∞

1
T

T∫
0

|ζN(σ2 + it, α)|2dt = sup
N∈N

∞

∑
m=1

v2
N(m, α)

(m + α)2σ2
≤

∞

∑
m=1

1
(m + α)2σ2

≤ Cα,σ2 < ∞.

Then, in view of (13),

sup
N∈N

µ

{∣∣ξα
N,σ2

∣∣ ≥ √Cα,σ2

( ϵ

2

)−1
}

= sup
N∈N

lim sup
T→∞

µ

{∣∣ξα
T,N,σ2

∣∣ ≥ √Cα,σ2

( ϵ

2

)−1
}

≤ sup
N∈N

1
Cα,σ2

ϵ

2
lim sup

T→∞

1
T

T∫
0

|ζN(σ2 + it, α)|2dt

≤ ϵ

2
. (14)

Let K2 =

{
z ∈ C : |z| ≤

√
Cα,σ2

(
ϵ
2
)−1
}

. Then, K2 is a compact set in C and, by (14),

Vα
N,σ2

(K1) > 1 − ϵ

2
(15)

for all N ∈ N.
Now, define K = K1 × K2. Then, K is a compact set in C2. Moreover, taking into

account (12) and (15) gives

VQ,α
N,σ (C

2 \ K)) ≤ VQ
N,σ1

(C \ K1) + Vα
N,σ2

(C \ K2) ≤
ϵ

2
+

ϵ

2
= ϵ

for all N ∈ N. Thus, VQ,α
N,σ (K) ≥ 1 − ϵ for all N ∈ N, and the proof is complete.

6. Limit Theorems

Now, we are ready to prove weak convergence for PT,ζ,σ and

PΩ
T,ζ,σ(A) =

1
T

meas
{

t ∈ [0, T] : ζ(σ + it, ω, α; Q) ∈ A
}

, A ∈ B(C2).

Proposition 1. Suppose that the set L(P; α) is linearly independent over Q, and σ1 > n−1
2 ,

σ2 > 1
2 . Then, PT,ζ,σ and PΩ

T,ζ,σ, for almost all ω ∈ Ω; both converge to the same probability
measure Pσ as T → ∞.

Proof. Let θT be the same random variable as in Section 5. Introduce the C2-valued
random elements

ξQ,α
T,N,σ = ζN(σ + iθT , α; Q)

and
ξQ,α

T,σ = ζ(σ + iθT , α; Q).
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Moreover, let ξQ,α
N,σ be a C2-valued random element having the distribution VQ,α

N,σ . Then, the

assertion of Lemma 2 for PQ,α
T,N,σ can be written as

ξQ,α
T,N,σ

D−−−→
T→∞

ξQ,α
N,σ. (16)

By the Prokhorov theorem (see, for example, [19]), every tight family of probability mea-
sures is relatively compact. Thus, in view of Lemma 4, the family {VQ,α

N,σ : N ∈ N} is

relatively compact. Hence, we have a sequence {VQ,α
Nr ,σ} ⊂ {VQ,α

N,σ } and a probability mea-

sure VQ,α
σ on (C2,B(C2)) such that

ξQ,α
Nr ,σ

D−−−→
r→∞

VQ,α
σ . (17)

Now, it is time for the application of Lemma 3. Thus, using Lemma 3, we obtain that,
for every ϵ > 0,

lim
r→∞

lim sup
T→∞

µ
{

ρ
(

ξQ,α
T,σ , ξQ,α

T,Nr ,σ

)
≥ ϵ

}
= lim

r→∞
sup
T→∞

1
T

meas{t ∈ [0, T] : ρ(ζ(σ + it, α; Q), ζNr (σ + it, α; Q)) ≥ ϵ}

≤ lim
r→∞

sup
T→∞

1
ϵT

T∫
0

ρ(ζ(σ + it, α; Q), ζNr (σ + it, α; Q))dt = 0.

This equality, and relations (16) and (17), show that theorem 4 from [19] can be applied for
the random elements ξQ,α

T,Nr ,σ, ξQ,α
Nr ,σ, and ξQ,α

T,σ . Thus, we have

ξQ,α
T,σ

D−−−→
T→∞

VQ,α
σ , (18)

in other words, PT,ζ,σ converges weakly to the measure VQ,α
σ as T → ∞.

It remains to prove that PΩ
T,ζ,σ, as T → ∞, converges weakly to the measure VQ,α

σ as

well. Relation (18) shows that the limit measure VQ,α
σ does not depend on the sequence

{VQ,α
Nr ,σ}. Since the family {VQ,α

N,σ } is relatively compact, the latter remark implies the relation

ξQ,α
N,σ

D−−−→
N→∞

VQ,α
σ . (19)

Define the random elements

ξQ,α
T,N,σ(ω) = ζN(σ + iθT , ω, α; Q)

and
ξQ,α

T,σ (ω) = ζ(σ + iθT , ω, α; Q).

By Lemma 2, for PQ,α,Ω
T,N,σ , the relation

ξQ,α
T,N,σ(ω)

D−−−→
T→∞

ξQ,α
N,σ (20)

holds. Moreover, Lemma 3, for every ϵ > 0 and almost all ω ∈ Ω, implies

lim
N→∞

lim sup
T→∞

µ
{

ρ
(

ξQ,α
T,σ (ω), ξQ,α

T,N,σ(ω)
)
≥ ϵ

}
≤ lim

N→∞
lim sup

T→∞

1
ϵT

T∫
0

ρ
(

ζ(σ + it, ω, α; Q), ζN(σ + it, ω, α; Q)
)

dt = 0.
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This, (19) and (20), and theorem 4.2 of [19] yield, for almost all ω ∈ Ω, the relation

ξQ,α
T,σ (ω)

D−−−→
T→∞

VQ,α
σ ,

i.e., that PΩ
T,ζ,σ, as T → ∞, converges weakly to VQ,α

σ . The proposition is proved.

7. Proof of Theorem 1

Let t ∈ R and et =
((

p−it : p ∈ P
)
,
(
(m + α)−it, m ∈ N0

))
. Obviously, et is an element

of Ω. Using et, define a transformation gt : Ω → Ω by

gt(ω) = etω, ω ∈ Ω.

In virtue of the invariance of the Haar measure mH , gt is a measurable measure preserving
transformation on Ω. Then, Gt = {gt : t ∈ R} is the one-parameter group of transfor-
mations on Ω. A set A ∈ B(Ω) is invariant with respect to Gt if for every t ∈ R the sets
At = gt(A) and A can differ one from another at most by a set of mH-measure zero. All
invariant sets form a σ-subfield of B(Ω). We say that the group Gt is ergodic if its σ-field of
invariant sets consists only of sets having mH-measure 1 or 0.

Lemma 5. Suppose that the set L(P, α) is linearly independent over Q. Then, the group Gt
is ergodic.

Proof. We fix an invariant set A of the group Gt, and consider its indicator function IA. We
will prove that, for almost all ω ∈ Ω, IA(ω) = 1 or IA(ω) = 0. For this, we will use the
Fourier transform method.

By the proof of Lemma 1, we know that characters χ of Ω are of the form

χ(ω) = ∏∗

p∈P
ω

kp
1 (p) ∏∗

m∈N0

ωlm
2 (m),

where the star “∗” indicates that only a finite number of integers kp and lm are non-zero.
Hence, if χ is a non-trivial character,

χ(gt) = ∏∗

p∈P
p−itkp ∏∗

m∈N0

(m + α)−itlm

= exp

{
−it

(
∑∗

p∈P
kp log(p) + ∑∗

m∈N0

lm log(m + α)

)}
.

Since χ is a non-principal character, i.e., χ(ω) ̸≡ 1. The linear independence of the set
L(P, α) shows that

∑∗

p∈P
kp log(p) + ∑∗

m∈N0

lm log(m + α) ̸= 0

for kp ̸≡ 0 and lm ̸≡ 0. These remarks imply the existence of t0 ̸= 0 such that

χ(gt0) ̸= 1. (21)

Moreover, by the invariance of A, for almost all ω ∈ Ω,

IA(gt0) = IA(ω). (22)

Let ĥ denote the Fourier transform of h. Then, by (22), the invariance of mH , and the
multiplicativity of characters

ÎA(χ) =
∫
Ω

IA(ω)χ(ω)dmH = χ(gt0)
∫
Ω

IA(ω)χ(ω)dmH = χ(gt0) ÎA(χ).
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Thus, (21) gives
ÎA(χ) = 0. (23)

Now, suppose that χ(ω) ≡ 1 and ÎA(χ) = a. Then,

â(χ) =
∫
Ω

a(χ)χ(ω)dmH = a
∫
Ω

χ(ω)dmH =

{
a if χ(ω) ≡ 1,
0 otherwise,

by orthogonality of characters. This, and (23), gives

ÎA(χ) = â(χ).

The latter equality shows that IA(ω) = a for almost all ω ∈ Ω. In other words, a = 1 or
a = 0 for almost all ω ∈ Ω. Thus, IA(ω) = 1 or IA(ω) = 0 for almost all ω ∈ Ω. Therefore,
mH(A) = 1 or mH(A) = 0, and the proof is complete.

For convenience, we recall the classical Birkhoff–Khintchine ergodic theorem; see,
for example, [20].

Lemma 6. Suppose that a random process ξ(t, ω̂) is ergodic with finite expectation E|ξ(t, ω̂)|,
and we sample paths integrable almost surely in the Riemann sense over every finite interval. Then,
for almost all ω,

lim
T→∞

1
T

T∫
0

ξ(t, ω̂)dt = Eξ(0, ω̂).

Proof of Theorem 1. In virtue of Proposition 1, it suffices to identify the limit measure Pσ

in it, i.e., to show that Pσ = PQ,α
ζ,σ .

Let A ∈ B(C2) be a continuity set of the measure Pσ (A is a continuity set of the
measure P if P(∂A) = 0, where ∂A is the boundary of A). Then, by Proposition 1, for almost
all ω ∈ Ω,

lim
T→∞

1
T

meas
{

t ∈ [0, T] : ζ(σ + it, ω, α; Q) ∈ A
}
= Pσ(A). (24)

On the probability space (Ω,B(Ω), mH), define the random variable

ξ = ξ(ω) =

{
1 if ξ(σ, ω, α; Q) ∈ A,
0 otherwise,

Obviously,

Eξ =
∫
Ω

ξdmH = mH

{
ω ∈ Ω : ξ(σ, ω, α; Q) ∈ A

}
. (25)

By Lemma 5, the random process ξ(gt(ω)) is ergodic. Therefore, an application of
Lemma 6 yields

lim
T→∞

1
T

T∫
0

ξ(gt(ω))dt = Eξ (26)

for almost all ω ∈ Ω. On the other hand, from the definitions of ξ and Gt, we have

1
T

T∫
0

ξ(gt(ω))dt =
1
T

meas
{

t ∈ [0, T] : ζ(σ + it, ω, α; Q) ∈ A
}

.

Therefore, equalities (25) and (26), for almost all ω ∈ Ω, lead to

lim
T→∞

1
T

meas
{

t ∈ [0, T] : ζ(σ + it, ω, α; Q) ∈ A
}
= PQ,α

ζ,σ (A).
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This, together with (24), shows that

Pσ(A) = PQ,α
ζ,σ (A). (27)

Since A is an arbitrary continuity set of Pσ, equality (27) is valid for all A ∈ B(C2). This
proves the theorem.

8. Concluding Remarks

Theorem 1 shows that, for sufficiently large T, the value density of the pair
(ζ(σ1 + it; Q), ζ(σ2 + it, α)) is close to a certain probabilistic distribution. Unfortunately,
the distribution of PQ,α

ζ,σ is too complicated; it is defined only for almost all ω ∈ Ω. Hence, it

is impossible to give a visualisation of PQ,α
ζ,σ .

We plan to further investigate the joint value distribution of the Epstein and Hurwitz
zeta-functions using probabilistic methods. First, we will prove the discrete version of
Theorem 1, i.e., the weak convergence for

1
N + 1

#{0 ≤ k ≤ N : (ζ(σ1 + ikh1; Q), ζ(σ2 + ikh2, α)) ∈ A}, A ∈ B(C2),

as N → ∞. Here, #B denotes the cardinality of the set B ∈ N0, and h1, h2 are fixed positive
numbers. Further, we will obtain extensions of limit theorems in the space C2 for the
pair (ζ(s; Q), ζ(s, α)) to the space H2(D), where D = {s ∈ C : 1

2 < σ < 1}, and H(D) is
the space of analytic in D functions endowed with the topology of uniform convergence
on compacta. Using the limit theorems in H2(D), we expect to obtain some results on
approximation of a pair of analytic functions by shifts (ζ(σ1 + iτ; Q), ζ(σ2 + iτ, α)). This
would be the most important application of probabilistic limit theorems in function theory
and practice.
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