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Abbreviations and Common Notations

DOF – degrees of freedom

RDO – reduced density operator

ADO – auxiliary density operator

QME – Quantum Master Equation

FRET – Förster resonance energy transfer

HEOM – Hierarchical equations of motion

TR – thermal relaxation

RGS – relaxation to the ground state

Chl – chlorophyll

Car – carotenoid

Pc – phthalocyanine

PSII – photosystem II

NPQ – non-photochemical quenching

TRF – time-resolved fluorescence

2D PE – two-dimensional photon echo (spectroscopy)

EADS – evolution-associated decay spectra

Tr{} – trace operation

δij – Kronecker delta

Re/Im – real / imaginary part
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1. Introduction

The research of molecular complexes and aggregates has a long and rich
history. It can be dated back to the 1930’s, when Frenkel formulated the
concept of a non-conductive electronic excitation, now known as the zero-
radius or simply Frenkel exciton [1]. The excitonic features where soon dis-
covered not only in molecular crystals, but also in highly concentrated solu-
tions of pseudoisocyanine dye, which was the first example of molecules
forming the so-called J-aggregates [2]. Today it is an active field that at-
tracts a lot of attention from both experimentalists and theoreticians. The
main reason for that is the extraordinary optical properties of molecular
aggregates, which differ strongly from single molecules or pure crystals.
The exciton theory of molecular complexes found a particularly important
and fruitful application in describing the photosynthetic pigment–protein
complexes [3, 4]. The boost in the field began with the precise molecular
structure of photosynthetic aggregates, starting with the reaction centre of
purple bacteria in 1984 [3]. The photosynthetic antennae of plants and bac-
teria involve only a limited number of different types of small molecules as
building blocks. Nonetheless, the antenna aggregates appear in great vari-
ety, differing in the spectral and energy transfer properties. The variability
is largely due to the influence of inter-chromophore interactions within these
closely packed protein–chromophore complexes.

Excitation energy transfer, or exciton dynamics, is a very active area of
the molecular aggregate research. The early attempts to describe the excita-
tion transport was by Förster and Dexter in terms of the rate equations. The
expression obtained by Förster in the 1940s [5] gave the the transfer rate
in terms of intuitive concepts, such as the Coulomb coupling strength and
the overlap of donor fluorescence spectrum with the absorption spectrum of
the acceptor. It has successfully described the excitation dynamics in many
cases. Moreover the Förster rate expression found various interesting ap-
plications, such as the “molecular ruler” for determining distances between
chromophores. However, such an approach treats the exciton transport as
an incoherent process, i.e., as a diffusive motion (also termed “hopping”) of
localized excitations. Such localized excitations are sometimes termed inco-
herent excitons. The given description is well justified under the condition of
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1. Introduction

weak inter-chromophore coupling, but in the opposite case we have a differ-
ent physical picture. Namely, depending on the chromophore–bath coupling,
an excitation can be shared by several or even all the chromophores within
the aggregate. The excited state of the aggregate is a coherent superposition
of the excited states of its constituents, and in terms of wave-functions, the
excitation is delocalized. The degree of delocalization and the character of
the coherent exciton transfer are largely determined by the coupling of the
chromophores to the bath, e.g., the nuclear intra-molecular motion. The
two extreme regimes can be identified by comparing the time scales of in-
tramolecular relaxation and intermolecular transitions. In the case of strong
coupling to the bath and fast intramolecular relaxation, the excitation is loc-
alized and the energy transfer is incoherent. Whereas in the opposite case,
the excitation remains delocalized and the transfer is coherent.

Recent development of non-linear spectroscopies, such as the two-dimen-
sional photon echo (2D PE) spectroscopy [6–9], triggered active studies
of exciton coherence in photosynthetic pigment–protein complexes [10, 11].
2D PE spectroscopy was a key tool demonstrating a complex pathway net-
work of the energy transfer in the peripheral light-harvesting complexes
from the purple bacteria, LH2 [12] and LH3 [13], also the long-lasting coher-
ence in Fenna–Matthews–Olson (FMO) complexes [7,14] and in LHCII, the
major light-harvesting complex from photosystem II (PSII) of plants [15].
Recently the 2D PE spectra were also recorded for the photosynthetic re-
action centres from bacteria [16] and for other molecular aggregates, for
instance, polymer chains [17] or cylindrical (bi-tubular) J-aggregates [18].
Apart from the clear identification of exciton transfer between pigment mo-
lecules or their clusters, quantum coherence and population oscillations were
also observed. All the new data gave rise to the currently active research
area sometimes referred to as “quantum biology”, which aims to evaluate the
importance of coherence, entanglement and noise in the energy transport
in biological molecular complexes [19–24].

Theoretical description of the exciton evolution in molecular aggregates
is usually formulated in terms of perturbative dynamics. The peculiarity
of such systems arises from the characteristic size which is intermediate
between that of a single chromophore and a molecular crystal. One is no
longer able to take the advantage of the periodicity and “rigidness” asso-
ciated with the crystalline phase, nor the relative simplicity of a single
molecule. Within the perturbative approach, the interaction of electronic
excitations with intra- and inter-molecular vibrations causes a disruption
of the phase relationship between the excited states of the molecules. Such

10



type of interaction makes a distinct influence on the coherence in the exciton
dynamics and plays the dominant role in determining the exciton relaxation
pathways. As pointed out earlier, the actual details of the excitation evol-
ution depend on the competition between the inter-chromophore and the
system–bath interactions. These two types of interaction are of similar or-
der in photosynthetic aggregates, therefore the question of the applicability
of some specific perturbative theory goes hand in hand with the study of a
concrete system. For instance, the Redfield theory [25], which is a popular
tool for the description of exciton dynamics in photosynthetic complexes,
imposes a natural restriction for the possibility of obtaining the long-lasting
coherent oscillations, as demonstrated for molecular dimers [26–28]. Regard-
less of the exact nature of the oscillations in 2D PE experiments, which is
a topic of lively debate, the influence of quantum coherence in the energy
flow within an excited molecular complex is an important question. This
question is approached here by studying the simplest molecular aggregate
— a molecular dimer — which is a good model system already displaying
effects caused by the excitonic quantum coherence [29,30].

Main goal and tasks of the research work

The main goal of this research work is to asses the influence of quantum
coherence on the energy transfer in molecular complexes, concentrating on
the hierarchy of the relaxation processes within a molecular dimer: vibra-
tional relaxation, energy redistribution within the single exciton manifold
and the relaxation to the ground state. In order to achieve this goal the
following tasks are to be performed:

• Derive equations of motion for the reduced density operator and ana-
lytical expressions for the third-order response function in the limit of
weak resonance inter-chromophore coupling.

• Investigate the excitation evolution, as a function of the asymmetry
in model parameters, in an excitonic heterodimer in the intermediate
inter-chromophore coupling and strong system–bath coupling regimes.

• Analyse the relaxation to the ground state in the resonantly coupled
dimer in the coherent and incoherent regimes, when one of the con-
stituent monomers has an intrinsically short excited state lifetime.
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1. Introduction

Novelty and relevance of the results

A molecular homodimer, which is a pair of resonantly coupled identical
molecules, is the usual system to be employed for consideration of various
aspects of the exciton dynamics and relaxation [27, 28, 31, 32]. In the case
of a heterodimer, the distinctness of the constituent monomers is often lim-
ited to excitation energies [11, 29]. Although some aspects which could be
attributed to the heterodimer were also disclosed by analysing the mixing
of excitons with charge-transfer states [33, 34], a systematic investigation
of the asymmetry of the dimer parameters in various resonance interac-
tion and system–bath coupling regimes employing various widely accepted
methods have not been performed. Additionally, the derivation of equations
of motion in the limit of weak resonance coupling and the expansion of the
evolution operators in powers of the resonance coupling are novel techniques
to study the coherent phenomena.

The obtained results and conclusions can be extended to larger systems
since the excitonic dimer is the simplest system having all ingredients in-
herent in larger systems. It has to be emphasized that the photosynthetic
molecular aggregates are often disordered assemblies of molecules and the
exciton delocalization length is of the order of a few molecules. Thus, the ex-
citonic properties of a dimer must be quite close to the realistic properties of
photosynthetic excitons. Moreover, the heterodimers have been proposed as
possible candidates for the quenching centres in the protective mechanism
of energy dissipation during photosynthesis, know as the non-photochemical
quenching (NPQ). The presented results provide insights into the possible
role of a special pigment dimer in the NPQ and explain the experimental
results in artificial dyad molecules [35–37].

Statements presented for the defence

1. The developed method of perturbative treatment of the resonance in-
teraction, in the form of equations of motion and the direct calculation
of time-resolved fluorescence, captures all significant excitonic effects
while staying in the basis of monomeric states.

2. In the coherent excitation transfer regime, under certain combinations
of reorganization energies, two excitonically coupled states can become
energetically swapped with respect to the uncoupled ones, which is in
stark contrast to the incoherent regime.
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3. The unified treatment of incoherent and coherent regimes of energy
transfer with relaxation to the ground state allows to demonstrate that
in the asymptotic dynamics of excitonically mixed states no qualitat-
ively new features arise. Although the formation of excitonic states
is sometimes distinguished as a separate regime of excitation quench-
ing, due to the exciton–phonon coupling the long-time evolution of
the excitation is in principle equivalent to that within an incoherent
donor–quencher system.

Author’s contribution and approbation of the results

The author of this dissertation has derived all the analytical expressions in
Sections 3.3 and 5.2, numerically implemented and performed calculations
for Chapter 3, performed data analysis and formulated the final results in
Chapters 4 and 5.

The results are presented in 5 scientific papers:

1. V. Balevičius Jr., D. Abramavicius, L. Valkunas. Ultrafast time-resol-
ved fluorescence in weakly coupled aggregates (in preparation).

2. V. Balevičius Jr., L. Valkunas, D. Abramavicius. Exciton dynamics in
photosynthesis Proceedings of the ICMAT 2013 symposium (in press).

3. V. Balevičius Jr., A. Gelzinis, D. Abramavicius, L. Valkunas. Exci-
tation energy transfer and quenching in a heterodimer: applications to
the carotenoid–phthalocyanine dyads J. Phys. Chem. B 117, 11031–
11041 (2013).

4. V. Balevičius Jr., A. Gelzinis, D. Abramavicius, T. Mančal, L. Valku-
nas. Excitation dynamics and relaxation in a molecular heterodimer
Chem. Phys. 404, 94–120 (2012).

5. T. Mančal, V. Balevičius Jr., L. Valkunas. Decoherence in weakly
coupled excitonic complexes J. Phys. Chem. A 115, 3845–3858 (2011).

The results have been presented at the conferences:

1. V. Balevičius (jaun.), D. Abramavicius, L. Valkunas (2013). "Laikinės
skyros fluorescencijos spektroskopija silpnos rezonansinės sąveikos arti-
niu" 40-osios Lietuvos nacionalinės fizikos konferencijos programa ir
pranešimų tezės, p. 220. Vilnius.
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2. V. Balevičius Jr., A. Gelzinis, D. Abramavicius, L. Valkunas (2012).
"Excitation energy transfer and quenching in phthalocyanine-caroten-
oid dyads" Abstracts of Vilnius Workshop on Non-Linear Spectroscopy
and Open Quantum Systems, p. 12 Vilnius.

3. V. Balevičius Jr., A. Gelzinis, D. Abramavicius, L. Valkunas (2012).
"Excitonic dimer as a quenching centre in photosynthetic pigment-
protein complexes" Abstracts of the tenth International Conference
on Excitonic Processes in Condensed Matter, Nanostructured and Mo-
lecular Materials, p. 28. Groningen.

4. V. Balevičius Jr., A. Gelzinis, D. Abramavicius, T. Mančal, L. Valku-
nas (2011). "Exciton Dynamics and Relaxation in Heterodimer" Ab-
stracts of Vilnius Workshop on Non-Linear Spectroscopy and Open
Quantum Systems, p. 9. Vilnius.

5. V. Balevičius (jaun.), A. Gelžinis, D. Abramavičius, L. Valkūnas (2011).
"Eksitonų dinamika ir relaksacija heterodimere" 39-osios Lietuvos na-
cionalinės fizikos konferencijos programa ir pranešimų tezės, p. 220.
Vilnius.

6. V. Balevičius Jr., A. Gelzinis, D. Abramavicius, L. Valkunas (2011).
"Exciton Dynamics and Relaxation in a Heterodimer" Abstracts of the
12th International Conference on Electronic and Related Properties of
Organic Systems, p. 77. Vilnius.

7. V. Balevičius Jr., T. Mančal and L. Valkunas (2010). "Decoherence in
Weakly Coupled Excitonic Complexes" Abstracts of the 14th Interna-
tional Symposium on Ultrafast Phenomena in Semiconductors, p. 29.
Vilnius.
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2. Quantum description of energy transfer in mo-

lecular aggregates

In this chapter the theoretical concepts and models used throughout the dis-
sertation are reviewed. At the heart of this overview is the density operator
theory, which is one of the most elaborated ways to treat the non-stationary
dissipative dynamics of open quantum systems. In principle, one could also
solve the Schrödinger equation in a larger Hilbert space by including the
environment degrees of freedom (DOF), or use the stochastic Schrödinger
equations like the Haken–Strobl model [4]. However, the density operator
(matrix in a specific representation) characterizes state populations (diag-
onal elements of the matrix) and interstate phase relations — coherences
(off-diagonal elements of the matrix) in a unified way and, thus, makes a
direct relation with the dynamics of observables. The dynamics of the joint
system–environment density operator Ŵ are governed by the quantum Li-
ouville equation (or von Neuman equation):

d

dt
Ŵ = −i

[
Ĥ, Ŵ

]
. (2.1)

Here and in the following, we take ~ = 1, so that energy and frequency are
used equivalently.

In the total Hamiltonian we distinguish three terms:

Ĥ = ĤS + ĤB + ĤSB. (2.2)

The system (first term) is directly observable and is described by the Frenkel
exciton Hamiltonian. The system is in contact with the environment that
constitutes a thermal bath (second term), which is not directly observed and
is considered to be in the thermal equilibrium. The system–bath coupling is
represented by ĤSB, which is a system operator parametrically dependent
on the bath coordinates. In the following, we discuss each term of the total
Hamiltonian, Eq. 2.2, the strategies of dealing with the Liouville equation,
Eq. 2.1, and the connection between the density matrix and spectroscopic
experiments.
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2. Quantum description of energy transfer in molecular aggregates

2.1. The concept of Frenkel excitons

The quantum-mechanical description of molecules and their complexes em-
bedded in various environments, e.g., solvents or matrices, is the starting
point in molecular aggregate theory. Solving the stationary Schrödinger
equation directly would pose an insoluble problem because of the large num-
ber of all the stationary states relevant to such a composite system. Thus,
let us consider molecular aggregates consisting of electronically neutral mo-
lecules interacting with each other through electrostatic dipole–dipole type
couplings, which are weak compared to the molecular excitation energies;
in this limit we assume that we can solve the Schrödinger equation of the
isolated molecules.

The general Hamiltonian for the aggregate of N molecules in the Born–
Oppenheimer approximation is given by

Ĥagg (R) =
N∑

i

M∑

α

(
p̂2
iα

2m
+

K∑

k

V (x̂iα,Rik)

)

+
1

2

N∑

i6=j

M∑

αβ

η

|x̂iα−x̂jβ|
+

N∑

i 6=j

K∑

αk

ηZk
|x̂iα−Rjk|

, (2.3)

where the indices i and j label different molecules, α and β — different elec-
trons and k — nuclei. There areM electrons and K nuclei in each molecule.
x̂iα and p̂iα denote the coordinate and momentum operators of the α-th elec-
tron of the i-th molecule, Rik is the position of the k-th nucleus. The other
parameters are the charge of the k-th nucleus, Zk, and η=e2 (4πεε0)

−1. The
first double sum in the Hamiltonian denotes molecules isolated from each
other, while the remaining two terms denote the inter-molecular interac-
tions. Note that the nuclear coordinates in this Hamiltonian are parameters,
thus, the molecular geometry is assumed to be known.

Since an optical excitation is resonant with one particular electronic
transition, we are not interested in the whole spectrum of each molecule
but only in the characteristics of two electronic states — the electronic
ground and excited states. Let us denote the corresponding state vectors of
the j-th molecule by |ψ(g)

j 〉 and |ψ
(e)
j 〉, accordingly. These vectors are taken

as the basis set for the problem formulation: the state vector of an aggregate
is constructed as a direct product of sate vectors of the isolated molecules
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2.1. The concept of Frenkel excitons

(the Heitler–London approximation):

|g〉=
N∏

j

|ψ(g)
j 〉 (2.4)

for the ground state and

|i〉=|ψ(e)
i 〉

N∏

j 6=i

|ψ(g)
j 〉 (2.5)

for the excited state.
In the space of single- and double-excitations — the so-called site repres-

entation — the Frenkel exciton Hamiltonian for an aggregate, the system
Hamiltonian in the current case, is given by

ĤS=
N∑

i

εi|i〉〈i|+
N∑

i6=j

Jij|i〉〈j|, (2.6)

where

εi=ε
0
i+η

N∑

j 6=i

ˆ
dr1

ˆ
dr2

[
ρ

(ee)
i (r1)−ρ(gg)

i (r1)
]
ρ

(gg)
j (r2)

|r1−r2|
(2.7)

is the transition energy of a molecular excitation in the presence of other
molecules in their ground states. The parameters are as follows: ε0

i is the
transition energy of the molecule isolated from the rest of the aggregate,
ρ

(gg)
i (r) is the total charge density of the i-th molecule in its ground state

and ρ(ee)
i (r) is the charge density of the electronic excited state of the i-th

molecule. For neutral molecules we have
ˆ

drρ
(ss)
i (r) = 0, (2.8)

where (ss) is either (gg) or (ee). The inter-molecular coupling

Jij=η

ˆ
dr1

ˆ
dr2

ρ
(eg)
i (r1)ρ

(eg)
j (r2)

|r1−r2|
(2.9)

is the Coulomb interaction between transition charge densities ρ(eg)
i (r) [38].

When intermolecular distances are larger than the molecular dimensions,
a dipole approximation for charge densities is often assumed [4]. It approx-
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2. Quantum description of energy transfer in molecular aggregates

imately represents all charge densities by simple dipole vectors: transition
dipoles µig represent the transition charge densities ρ(eg)

i (r) and permanent
dipoles di represent the difference densities

(
ρ

(ee)
i (r)− ρ(gg)

i (r)
)
. The di-

pole vectors can be obtained from charge densities by calculating their first
moments. Alternatively, they are given by the dipole operator expectation
values: µig = 〈i|µ̂|g〉 and di = 〈i|µ̂|i〉 − 〈g|µ̂|g〉; they are both given in
terms of the dipole operator in the coordinate representation

µ̂ =
∑

mα

qmα (x̂mα −Rm) , (2.10)

where the sum is over all charges α of the molecule m, denoted by qαm; Rm

is the molecular centre. Under these condition we obtain the dipole–dipole
coupling expression:

Jij=
1

4πεε0

(
(µig · µjg)
|Rij|3

− 3
(Rij · µig)(Rij · µjg)

|Rij|5
)
. (2.11)

According to the Heitler–London approximation, an aggregate contain-
ing N chromophores has a single ground state and N singly-excited states.
Additionally, there are N(N−1)/2 doubly-excited states, however, they are
disregarded in this dissertation, although they should be taken into account
if certain experimental techniques, such as the 2D PE, are considered. The
exciton eigenstate properties are obtained by diagonalizing the Hamiltonian
defined by Eq. (2.6). The N single-excitons |α〉 are related to the molecular
excitations |i〉 by a unitary transformation matrix S:

|α〉 =
N∑

i

S†αi|i〉. (2.12)

Here and further, the Latin indices are reserved for the electronic (site)
states, while the Greek indices denote the excitonic states. The exciton
energies (eigenvalues) εα form a diagonal matrix:

ε = S†hS, (2.13)

where hij = Jij + δijεi and δij is the Kronecker delta. The exciton states
defined this way determine the basic properties of a molecular aggregate.
The relation between the site and the excitonic representations is shown
graphically in Fig. 2.1.

A special case of molecular aggregates is a molecular dimer. From the
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2.2. Coupling the excitons to the bath

εN

J12

ε2

}

ε1

J23 JN−1,N

single
exciton
manifold

Figure 2.1 Assembly of interacting chromophores in the site and the ex-
citonic representations.

theoretical point of view, a dimer is an interesting object because it is the
simplest system, where the excitonic effects can be observed and studied.
The simplicity allows us to obtain the analytical expression for the trans-
formation matrix S, which reads

S =

(
cos θ − sin θ

sin θ cos θ

)
, (2.14)

where the so-called mixing angle is defined as

θ ≡ 1

2
arctan

2J12

ε1 − ε2
(2.15)

and has values θ ∈ [−π/4; π/4]. The mixing angle describes the degree of
delocalization of excitation over the monomeric states.

2.2. Coupling the excitons to the bath

In the realistic molecular aggregate the electronic DOF are coupled to the
nuclear DOF constituting the environment. The latter include both the in-
tramolecular vibrational DOF and the intermolecular ones, e.g., the fluctu-
ations of the protein scaffold in the case of light-harvesting complexes. The
coupling of the system DOF to the environmental ones induces damping
and relaxation. To include this effect we additionally couple the aggregate
to the harmonic bath. The Hamiltonians of the bath and the system–bath
interaction are then given respectively by [39]:

ĤB = T̂ (p̂) + V̂g(q̂), (2.16)
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2. Quantum description of energy transfer in molecular aggregates

ĤSB =
N∑

i

Q̂i∆V̂i(q̂). (2.17)

Operators T̂ (p̂) and V̂i(q̂) denote the kinetic energy of the nuclei and the
nuclear potential energy surface of the i-th site, accordingly, p̂ and q̂ are
the generalized momenta and coordinates of the bath. Q̂i = |i〉〈i| is the
projector onto the i-th site. The energy gap operator given by

∆V̂i(q̂) = V̂i(q̂)− V̂g(q̂)− 〈V̂i(q̂)− V̂g(q̂)〉eq (2.18)

describes the thermal fluctuations of the energy gap between the ground
and the excited state potential energy surfaces. The angular brackets 〈. . .〉eq

denote the averaging over the equilibrium bath. In this notation we define
the reorganization energy as

λi = 〈V̂i(q̂)− V̂g(q̂)〉eq, (2.19)

which is a twofold parameter. On the one hand, the reorganization energy
renormalizes the transition energies of the bare system as

ĤS =
N∑

i

(ε0
i + λi)|i〉〈i|+

N∑

i6=j

Jij|i〉〈j|, (2.20)

and, thus, defines the Stokes shift. On the other hand, it describes the
system–bath coupling strength.

In terms of the DOF the bath is usually considered to be much larger
than the system, thus, it is described using thermodynamical or statistical
concepts, and its thermodynamic state is not affected by the system. The
main characteristic of the bath is the temperature kBT ≡ β−1, where kB

is the Boltzmann constant. According to statistical physics the bath at a
fixed temperature performs equilibrium fluctuations, which in turn induce
the fluctuations of chromophore transition energies, conf. Eq. (2.17). These
fluctuations can be characterized by the correlation functions of the bath:

Cij(t) = 〈∆V̂i(t)∆V̂j(0)〉eq, (2.21)

were, ∆V̂i(t) is the energy gap operator in the interaction picture: ∆V̂i(t) =

eiĤBt∆V̂i(q̂)e
−iĤBt. These functions fully determine the effect of the bath on

the system.
In practice a correlation function is usually obtained from the spectral
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2.3. Propagation of the density matrix

density of the bath C ′′ij(ω), which is the odd part of the Fourier transform
of the correlation function. Due to the fluctuation–dissipation relation [40]
the correlation function can then be given by

Cij(t) =

∞̂

−∞

dω

2π
C ′′ij(ω) [cos(ωt) coth(βω/2)− i sin(ωt)] , (2.22)

or

Cij (t) =
1

π

∞̂

−∞

dωe−iωt 1

1− e−βω
C ′′ij(ω). (2.23)

The advantage of the spectral density is that it can be determined directly
from fluorescence line-narrowing measurements [41,42] or molecular dynam-
ics simulations [43], and it does not depend on temperature and therefore
encompasses the spectral content of the bath alone.

It is usually assumed that the bath modes at different sites are not
correlated, C ′′ij (ω) = δijC

′′
i (ω), and some specific model for the spectral

density is used. Throughout this dissertation the overdamped Brownian
oscillator spectral density [40,44] is employed:

C ′′i (ω) = 2λi
ωγi

ω2 + γ2
i

, (2.24)

where the parameter γ−1
i corresponds to the correlation time of the i -th

monomer site energy fluctuations.

2.3. Propagation of the density matrix

We start by looking at the quantum Liouville equation, Eq. (2.1), in the
Liouville space [40], where allN×N operator matrices becomeN×N length
vectors and operations on these vectors are denoted by superoperators. The
Liouville superoperator (the Liouvillian) is defined as

LŴ ⇔
[
Ĥ, Ŵ

]
, (2.25)

hence, we rewrite Eq. (2.1) as

d

dt
Ŵ = −iLŴ . (2.26)

The solution of Eq. (2.26) can formally be written as
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2. Quantum description of energy transfer in molecular aggregates

Ŵ (t) = U(t0, t)Ŵ (t0) (2.27)

where we introduce the evolution superoperator (the Liouville space Green’s
function) U(t0, t). For a time-independent Liouvillian it reads

U(t0, t) = exp(−iL(t− t0)). (2.28)

However, in physically relevant situations, such as an aggregate perturbed
by its environment and/or by the probing electromagnetic fields, the solu-
tion for U(t0, t) is too difficult or impossible. In that case we partition the
Liouvillian L into the reference and the perturbation parts as

L = L0 + L′. (2.29)

The reference part is usually simpler than the total Liouvillian and results
in an evolution U0(t0, t), given by

U0(t0, t) = exp(−iL0(t− t0)), (2.30)

which can be calculated exactly. We next introduce the interaction picture
using this evolution superoperator

ŴI(t) = U †0(t0, t)Ŵ (t). (2.31)

In the interaction picture we can write down the equation of motion that
describes only the dynamics generated by the perturbation part:

d

dt
ŴI(t) = −iL′I(t)ŴI(t), (2.32)

where we define the perturbation term in the interaction representation

L′I(t) = U †0(t0, t)L′U0(t0, t). (2.33)

Note that L′ might be explicitly time dependent, hence the time dependence
of L′I(t) comes from both the original time dependence (if present), and the
transformation to the interaction picture.

The solution of Eq. (2.32) is given by

ŴI(t) = UI(t0, t)ŴI(t0), (2.34)

where the evolution superoperator in the interaction picture reads
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2.3. Propagation of the density matrix

UI(t0, t) = exp+

(
−i

ˆ t

t0

dτL′I(τ)

)
, (2.35)

as can be demonstrated by the iterative solution of Eq. (2.32). Here, we
have introduced the time ordered exponential exp+, defined by

exp+

(
−i

ˆ t

t0

dτL′I(t)
)
≡ 1 +

∞∑

n=1

(−i)
n
ˆ t

t0

dτn

ˆ τn

t0

dτn−1 . . .

×
ˆ τ2

t0

dτ1L′I(τn)L′I(τn−1) . . .L′I(τ1). (2.36)

Comparing Eq. (2.31) with Eq. (2.34) and bearing in mind that ŴI(t0) =

Ŵ (t0), we conclude, that the full evolution superoperator can be partitioned
as

U(t0, t) = U0(t0, t)UI(t0, t). (2.37)

The quantum Liouville equation, Eq. (2.1), is not being solved for the full
density operator Ŵ as given, since we are usually interested only in a limited
number of DOF rather than the full density operator. Those few DOF that
constitute the observable system are called relevant, while others that affect
the system, but are not directly observed, are in this sense called irrelevant.
To describe the relevant DOF the reduced density operator (RDO) of the
system is introduced as

ρ̂ = TrB

{
Ŵ
}
, (2.38)

where TrB{} denotes the trace over the bath (irrelevant) DOF.
In order to obtain the time evolution of the RDO, we need to generate

a closed set of equations in the state space of the relevant system. Several
methods are used in this dissertation. The most straightforward method
to describe the density matrix dynamics is the FRET theory for weakly
coupled chromophores. In this case, a rate equation for the populations
of the RDO in the site representation is given, which describes the inco-
herent hopping of localized excitation from one chromophore to another.
In the case of strong interchromophore interactions, the coherent exciton
transfer must be described by including the coherence dynamics, i.e., the
evolution of phase relationships between different states. An example could
be the well known Quantum Master Equation (QME), including the deriv-
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2. Quantum description of energy transfer in molecular aggregates

ative forms, such as the multilevel Redfield equations [25]. Alternatively,
Hierarchical equations of motion (HEOM) have been presented as an ex-
act non-perturbative theory, which interpolates between the two regimes
described above [29,45,46].

Förster theory for energy transfer

The probability of finding molecule i in its excited state at time t is given by
the corresponding diagonal element of the density matrix, the population,
in the site representation: ρii(t). Under the conditions that apply to the
FRET theory, the population evolution is given by the rate equations:

d

dt
ρii(t) = −

∑

j 6=i

kijρii(t) +
∑

j 6=i

kjiρjj(t), (2.39)

where kij are the rates of the excitation transfer from the molecule i to the
molecule j. According to FRET, the rates are given by the expression

kij =
|Jij|2
2π

ˆ ∞
−∞

dωF̃i(ω)Ãj(ω), (2.40)

where F̃i(ω) and Ãj(ω) are the fluorescence and absorption profiles of mo-
lecule i (in FRET terms, the donor) and molecule j (the acceptor), accord-
ingly. Tilde denotes the Fourier transform, and the profile functions in the
time domain read:

{
Fi(t) = exp

(
−i(ε0

i − λi)t− g∗i (t)
)
,

Aj(t) = exp
(
−i(ε0

j + λj)t− gj(t)
)

;
(2.41)

here, g(t) is the so-called line shape function [40] defined as

gi(t) =

ˆ t

0

dt1

ˆ t1

0

dt2Ci(t2), (2.42)

and Ci(t) is the energy gap correlation function of the monomer, Eq. (2.21).
Here, we have neglected the cross-correlations, i.e., assumed Cij(t) = δijCi(t).

Quantum Master Equation

In the case of strong excitonic coupling, we need a description of exciton
dynamics, which treats both the populations and the coherences on equal
grounding. Such a description can be obtained by carrying out a perturba-
tion theory with respect to the system–bath interaction. One of the results
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2.3. Propagation of the density matrix

of such an approach is the QME. Here, the outline of the derivation of the
equations is given in greater detail, because the equations of motion for the
RDO presented in the following chapter are derived in close analogy to the
derivation of QME.

Following Eq. (2.29), we split the total Liouvillian into the reference and
the interaction parts as

L = L0 + LSB. (2.43)

The free evolution is described by the first term L0Ŵ ⇔
[
ĤS + ĤB(p̂, q̂), Ŵ

]
,

and is given by the free-evolution superoperator U0(t0, t), Eq. (2.30),which
is time-reversible due to the block-diagonal structure of the Hamiltonians
comprising the free-evolution Liouvillian,

U0(t0, t)U0(t0,−t) = U0(t0, t)U †0(t0, t) = I, (2.44)

where I is the identity (super)operator.
The equation of motion in the interaction picture then reads:

d

dt
ŴI(t) = −iLSB(t)ŴI(t), (2.45)

where the system–bath interaction Liouvillian LSBŴ ⇔
[
ĤSB(q̂), Ŵ

]
is

given in the interaction picture with respect to L0 by

LSB(t) = U †0(t0, t)LSBU0(t0, t). (2.46)

We derive an approximate closed equation for the RDO by applying
the projection operator technique [9, 39] to Eq. (2.45). Let us consider an
operator P2 = P and its orthogonal complement Q = I − P acting on the
full density operator Ŵ , separating it into the relevant and irrelevant parts
accordingly: PŴ , QŴ . Using the identity ŴI(t) = PŴI(t) + QŴI(t) we
can split the Eq. (2.45) into two coupled equations. The first one reads:

d

dt
PŴI(t) = −iPLSB(t)

(
PŴI(t) +QŴI(t)

)
. (2.47)

Similarly, an equation for QŴI(t) is obtained. Iterative solution of these
coupled equations generates a perturbation expansion of PŴI(t) in powers
of LSB(t) on the r.h.s. of Eq. (2.47). Truncating the expansion at the second
order and omitting the so-called initial term QŴI(t0) yields
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2. Quantum description of energy transfer in molecular aggregates

d

dt
PŴI(t) = −iPLSB(t)PŴI(t)−

ˆ t

t0

dτPLSB(t)(I − P)LSB(τ)PŴI(τ).

(2.48)
Although Eq. (2.48) is valid for an arbitrary projector P , to justify this
omission as well as to ensure the maximum quality of the second order
approximation, the choice of the operator P is essential, and it is best
dictated by the physical situation in question. For instance, in the case of
optical excitation, we can assume that the system is initially in the ground
state, ρ̂(t0) = |g〉〈g|, and the bath is in the canonical equilibrium, so that
the total density matrix is factorized as Ŵ (t0) = |g〉〈g|Ŵeq, where Ŵeq is
defined by

Ŵeq = e−βĤB
/

TrB

{
e−βĤB

}
. (2.49)

Then, according to the Franck–Condon principle, upon the photoexcita-
tion the bath part remains unchanged and the system–bath state remains
factorized. This way the appropriate projection operator reads

P• = TrB {•} Ŵeq, (2.50)

and therefore, QŴI(t0) = 0, which eliminates the initial term. This amounts
to saying, that the projection of type Eq. (2.50) does not lead to the loss of
information about the system at time t0. In specific setups other forms of
the projector are also applicable [47].

The last step is to perform the trace operation over the equilibrium bath
variables. This gives the QME for the RDO in the interaction representation,
which is of the second-order with respect to LSB:

d

dt
ρ̂I(t) = −

ˆ t

t0

dτTrB

{
LSB(t)(I − P)LSB(τ)ρ̂I(τ)Ŵeq

}
, (2.51)

with the condition
TrB

{
LSB(t)ρ̂I(t)Ŵeq

}
= 0. (2.52)

Eq. (2.52) is satisfied for the harmonic bath and the linear system–bath
interaction, where LSB ∝ q̂. That can be easily checked by noting that
TrB

{
q̂Ŵeq

}
= 0. Additionally, the Green’s function of the free evolution

can be factorized into the system and the bath Green’s functions since the
Hamiltonian of free evolution is block-diagonal in these spaces.

The RDO and the density operator of the bath in Eq. (2.51) are fac-
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2.3. Propagation of the density matrix

torised. This is in analogy to the Born approximation, which assumes that
due to small coupling the influence of the system on the bath is negligible.
This also explains the condition that the bath maintains its equilibrium at
all times. Any type of system–bath interaction introduces the system–bath
coherences in the total density matrix Ŵ . These coherences are thus intro-
duced perturbatively in the integral kernel. However, the perturbations are
included up to infinite order through the integral over the relaxation ker-
nel. Only the initial time t0 is the time where the system–bath coherences
are never included. Thus we have to understand Eq. (2.51) as follows: at
time t < t0 the system and the bath are uncoupled. Their dynamics are
uncorrelated and the total density matrix is block-diagonal with respect to
the system and the bath. At t = t0 the interaction is switched on and the
dynamics become correlated. If the bath is not in equilibrium at time t0 or
if it is correlated with the system, then the system has to be extended to
include these correlation effects.

We next rewrite the QME in the Schrödinger picture in Hilbert space.
Using the system–bath interaction defined in Eq. (2.17), after some re-
arrangements we obtain

d

dt
ρ̂(t) = −i

[
ĤS, ρ̂(t)

]
−
∑

i,j

ˆ t−t0

0

dτ(Cij(τ)
[
Q̂i, ÛS(τ)Q̂j ρ̂(t− τ)Û †S(τ)

]
−

Cji(−τ)
[
Q̂i, ÛS(τ)ρ̂(t− τ)Q̂jÛ

†
S(τ)

]
). (2.53)

ÛS(τ) are the Hilbert space evolution operators corresponding to the system
Hamiltonian. Eq. (2.53) is an integro-differential equation for the RDO due
to the retarded time argument t − τ . The latter means that the evolution
of the system depends not only on its actual state at time t but also on
its history at times t− τ . Such processes are known from the probabilistic
theory as non-Markovian. Thus, the reduction of the full quantum Liouville
equation (which is Markovian) to the QME resulted in dynamics which
include “memory effects”. However, under certain circumstances these effects
can be neglected to recover Markovian dynamics. Namely, if the RDO does
not change substantially on the time scale of the memory effects, we can
perform the so-called Markovian approximation by setting ρ̂(t − τ) ≈ ρ̂(t)

in Eq. (2.53), which yields an effectively (i.e., not physically) Markovian
QME.

Notice that the form of the Markovian QME in the Liouville space can
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2. Quantum description of energy transfer in molecular aggregates

be generalized as

d

dt
ρ̂(t) = −iLSρ̂(t) +Dρ̂(t). (2.54)

The first term governs the unitary coherent evolution of the system, while
the second term introduces irreversible processes, i.e. damping and relaxa-
tion. The dissipation superoperator denoted by D is an abstract object, the
form of which is determined depending on the specific description of the
dissipative dynamics. In the case of QME, the action of D is defined by the
second term in Eq. (2.53) after replacing ρ̂(t− τ) with ρ̂(t).

The well known Redfield equations are obtained by evaluating the Marko-
vian QME in the energy (i.e., excitonic) representation. In this case, the first
term on the r.h.s. of Eq. (2.54) for an element ρ̂αβ(t) is −iωαβρ̂αβ(t),where
ωαβ = εα − εβ. The dissipative part reads

(Dρ̂(t)) αβ = −
∑

α′β′

Rαβ,α′β′(t)ρα′β′(t). (2.55)

The tetradic relaxation matrix Rαβ,α′β′(t) is the Redfield tensor given as
follows:

Rαβ,α′β′(t) ≡δββ′
∑

µ

Γαµ,µα′(t) + δαα′
∑

β

Γ∗βµ,µβ′(t)

− Γβ′β,αα′(t)− Γ∗α′α,ββ′(t). (2.56)

Here, Γ’s are certain damping matrices defined as

Γαβ,α′β′(t) ≡
∑

ij

〈α|Q̂i|β〉〈α′|Q̂j|β′〉
ˆ t

0

dτCij(τ)eiωβ′α′τ . (2.57)

The matrix elements 〈α|Q̂i|β〉 represent the basis transformation from mo-
lecular states to the delocalized eigenstates, and Cij(t) is the energy gap
correlation function in the site basis Eq. (2.21).

At this stage the Redfield equations can already be used in calcula-
tions, however, assuming the electronic dynamics are much slower than the
decay of the bath correlation function, the scheme can be further simpli-
fied by shifting the integration limit in Eq. (2.57) to t → ∞. This yields a
time-independent Redfield tensor. The so-called secular approximation [39],
which decouples the evolution of populations from that of the coherences,
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2.3. Propagation of the density matrix

can be additionally applied. Formally, this approximation is realized by
keeping only the tensor elements Rαβ,αβ and Rαα,ββ while setting the oth-
ers to zero.

Hierarchical equations of motion

Both FRET and QME are perturbative methods, based on either weak
or strong — in comparison to the system–bath interaction — resonance
coupling, accordingly. In order to describe the dynamics in situations where
both interactions are of comparable strength, recently the so-called HEOM
scheme has been developed. HEOM is a non-perturbative approach based
on the assumption of Gaussian bath fluctuations [45, 46]. It attracts a lot
of attention after demonstrating its benefits in the description of the elec-
tronic excitation dynamics in pigment–protein complexes [29]. While com-
putationally expensive, HEOM has been applied to systems as large as
∼ 50 chromophores [48] — this is possible due to extensive parallelization
and time-adaptive integration. Other methods to optimize HEOM include
on-the-fly filtering [49] and utilization of graphical processing units for cal-
culations [50].

The actual form of HEOM depends on the approximation of the integral
in Eq. (2.23) in the form of exponential series

Ci(t) =
K∑

k=0

cike
−γikt + δCiK(t), (2.58)

which is based on a certain sum-over-poles scheme and the residue the-
orem of contour integration. Term δCiK(t) takes into account the difference
between the exact correlation function and the approximation. Index k = 0

corresponds to the pole of the spectral density defined by Eq. (2.24), while
the remaining indices k = 1, . . . , K correspond to the poles from the Bose–
Einstein distribution function. The conventional form of the expansion given
by Eq. (2.58) is the summation over the terms with γik≥1 = 2πk/β, the well
known Matsubara frequencies [51], however, this scheme suffers from slow
convergence. Another option is the recently proposed Padé spectrum de-
composition of the Bose–Einstein function [52]. We employ here the scheme
that uses the [K/K] Padé approximant, which was shown to provide the op-
timal expansion in the case of the Brownian oscillator spectral density [53].
The coefficients cik and γik are given in terms of system characteristics, e.g.,
in the Appendix of Ref. [54]. We split the coefficients cik into the real and
imaginary parts as cik = c<ik + ic=ik for later convenience. Term δCiK(t) is
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2. Quantum description of energy transfer in molecular aggregates

approximated by a Markovian-white-noise residue ansatz [55]:

δCiK(t) ≈ 4RKλiγiβδ(t) ≡ ∆iKδ(t), (2.59)

where δ(t) is the Dirac delta function and

RK =
1

4(K + 1)(2K + 3)
. (2.60)

The general form of the equations is obtained after replacing the RDO
in Eq. (2.54) by a set of auxiliary density operators (ADOs) ρ̂(t) → ρ̂n(t),
where we define a matrix n = (n10, . . . , n1K ; . . . ;nN0, . . . , nNK) of non-
negative integers nik for an aggregate of N chromophores. The ADO with
index 0 = (0, . . . , 0; . . . ; 0, . . . , 0) is the RDO itself, while the remaining
ones take into account the development of the system-bath correlations.
The second term on the r.h.s. of Eq. (2.54) then reads:

Dρ̂n(t) = −
N∑

i=1

(
K∑

k=0

γiknik + δRiK

)
ρ̂n(t)+

N∑

i=1

K∑

k=0

(
Biknikρ̂n−ik +Aiρ̂n+

ik

)
,

(2.61)
where n±ik = (n10, . . . , n1K ; . . . ;ni0, . . . , nik ± 1, . . . , niK ; . . . ;nN0, . . . , nNK).
The auxiliary superoperators are:

δRiK• ⇔
∆iK

2
[Q̂i, [Q̂i, •]], (2.62)

Bik• ⇔ i
(
c<ik[Q̂i, •]− ic=ik{Q̂i, •}

)
, (2.63)

Ai• ⇔ i[Q̂i, •]. (2.64)

The curly brackets denote the anticommutator.
The sum of indices L =

∑
i

∑
k nik defines a tier of ADOs, and as can

be seen, the superoperators A and B connect ADOs from the tier L to
those from the tiers L ± 1. Thus, formally the hierarchy continues to in-
finity. Of course, in practical calculations the hierarchy must be truncated
at some finite length. Various truncation schemes are possible [56], but the
choice of the scheme is of no consequence if the converged results have been
reached. In this dissertation, the most simple truncation scheme is adopted,
where all the ADOs with the tier L > Ltrunc are simply discarded. Ltrunc is
chosen to guarantee converged results. Note that HEOM, as given above,
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2.4. Density matrix in the modelling of spectroscopic experiments

propagate the ADOs in the site basis, yet the results can be presented in
any other basis, e.g., the excitonic one. As far as the measurable quantities
are concerned, such as the absorption spectra, they are basis-independent,
and HEOM intrinsically ensure that the delocalization effects are properly
taken into account.

2.4. Density matrix in the modelling of spectroscopic ex-
periments

In the presence of an electric field, e.g., the one probing molecules in the
spectroscopic experiments, the total Hamiltonian Eq. (2.2) needs to be ex-
panded to include the coupling of the system to the field:

ĤSF(t) = −µ̂E(t) ≡ −
∑

i

E(t)
(
µig|i〉〈g|+ h.c.

)
, (2.65)

where µ̂ is the dipole operator Eq. (2.10) (h.c. stands for Hermitian conjug-
ate) and E(t) is the electric field. The matter–light interaction Hamiltonian,
Eq. (2.65), is called “semi-classical” due to the classical treatment of the field
E(t) while retaining the quantum description of the system. The current
form of ĤSF also assumes the so-called dipole or long-wave approximation,
which means that the wavelength is much larger than the physical size of
the system, thus, the particles are represented by point dipoles with respect
to the field. This approximation is well justified for molecular aggregates
probed by visible light.

We apply the partitioning of the total Liouvillian in the manner of
Eq. (2.29) by setting the perturbation part as LSF(t) ≡ −E(t)V , where
V ⇔ [µ̂, •], while the reference part L0 corresponds to the total Hamilto-
nian of the system and the bath, Eq. (2.2). Then using Eqs. (2.27) and
(2.37) we can write the solution for the density operator as

Ŵ (t) = U0(t0, t) exp+

(
i

ˆ t

t0

dτE(τ)VI(τ)

)
Ŵ (t0). (2.66)

The time ordered exponential now yields an expansion of the density oper-
ator in powers of the electric field E(t),

Ŵ (t) ≡ Ŵ (0)(t) + Ŵ (1)(t) + Ŵ (2)(t) + . . . , (2.67)

where Ŵ (0)(t) = Ŵ (t0), and we assume that the whole system is initially
in the thermal equilibrium. The n-th term of the expansion reads
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Ŵ (n)(t) = (i)
n
ˆ t

t0

dτn

ˆ τn

t0

dτn−1 . . .

ˆ τ2

t0

dτ1E(τn)E(τn−1) . . .E(τ1)

× U0(τn, t)VU0(τn−1, τn)V . . .U0(τ1, τ2)VŴ (t0). (2.68)

We have returned to the Schrödinger picture of the dipole superoperator
V = U0(t0, t)VI(t)U †0(t0, t), and used the fact, that U0(t0, τ1)Ŵ (t0) = Ŵ (t0),
which means that in the absence of the field the system does not evolve in
time, but rather stays in the canonical equilibrium. Here, τj with t > τn >

. . . > τ1 > t0, represent the actual times of system–field interactions.
From the unitarity it follows that U0(τn−1, τn) = U0(0, τn − τn−1), thus,

we can change the time variables from the actual interaction times τj into
the intervals between the interactions as

t1 = τ2 − τ1, . . . , tn = t− τn (2.69)

and then send t0 → −∞, which results in

Ŵ (n)(t) = (i)
n
ˆ ∞

0

dtn

ˆ ∞
0

dtn−1 . . .

ˆ ∞
0

dt1

U0(0, tn)VU0(0, tn−1)V . . .U0(0, t1)VŴ (t0)

× E(t− tn)E(t− tn − tn−1) . . .E(t− tn − tn−1 . . .− t1). (2.70)

The physical quantity relevant in the spectroscopic experiments is the
time-dependent polarization of the material, which is given by the expect-
ation value of the dipole operator µ̂:

P (t) = Tr
(
µ̂Ŵ (t)

)
. (2.71)

By substituting Eq. (2.67) into Eq. (2.71) we obtain the expansion of the
polarization in powers of the field E(t). In analogy to Eq. (2.67),

P (t) = P (1)(t) + P (2)(t) + P (3)(t) + . . . , (2.72)

where

P (n)(t) ≡ Tr
(
µ̂Ŵ (n)(t)

)
. (2.73)

It is assumed, that in the absence of the radiation field the polarization
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vanishes, thus, P (0) = 0. Each other term in the expansion Eq. (2.72) is
related to a certain class of optical measurements. For instance, the linear
polarization P (1) is responsible for the linear absorption spectroscopy, while
P (3) describes such techniques as the pump-probe spectroscopy and various
four wave mixing setups.

By combining Eqs. (2.70) and (2.72) we notice that the nth-order polar-
ization can be given by a multiple time-convolution of the incoming fields
with a field-independent function, which describes the material response:

P (n)(t) =

ˆ ∞
0

dtn

ˆ ∞
0

dtn−1 . . .

ˆ ∞
0

dt1S
(n) (tn, tn−1, . . . , t1)

× E(t− tn)E(t− tn − tn−1) . . .E(t− tn − tn−1 . . .− t1), (2.74)

where we define the nth-order non-linear response function S(n) [40] as

S(n) (tn, tn−1, ..., t1) ≡ (i)
n

Tr
(
µ̂U0(0, tn)VU0(0, tn−1)V ...U0(0, t1)VŴ (t0)

)
.

(2.75)
The non-linear response function, which is formally a multipoint dipole–
dipole correlation function times (i)

n, carries the complete microscopic in-
formation about the system that is necessary for the calculation of an optical
measurement. It can be uniformly applied to a broad range of non-linear
optical measurements, which differ by the temporal sequences of pulses,
their frequencies and wave-vectors.

In this dissertation two types of spectroscopic experiments are of in-
terest: the linear absorption and the time-resolved fluorescence (TRF) spec-
troscopy. Both methods have a common grounding based on the response
function formalism. For instance, the linear absorption is described by the
absorption coefficient κa(ω), which is given in terms of the linear response
function by [40]

κa(ω) =
4πω

n(ω)c
Im

ˆ ∞
0

dteiωtS(1)(t), (2.76)

where n(ω) is the refractive index and c denotes the speed of light.
From this perspective, the TRF is characterized by four system–radiation

interactions and, thus, falls into the category of third-order non-linear ex-
periments. The first two interactions are with the incoming pump pulse,
while the third and the fourth interactions are with the vacuum fluctu-
ations of the scattered field. We approximate the envelope of the pumping
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2. Quantum description of energy transfer in molecular aggregates

field as the delta function and treat the first two interactions as instantan-
eous. We denote the interval between the second and the third interaction
by t. We call this time interval the waiting (or delay) time in analogy to the
pump–probe experiments, however unlike in the pump-probe experiment,
we do not have control over this interval. The time interval between the
last two interactions is denoted by τ and is called the coherence time as
will be clear from the further considerations. The “ideal” TRF spectrum,
STRF(ω, t̃), at time t̃ = t+ τ is given by the expectation value of the photon
emission rate [40]. In the limit of impulsive excitation, the spectrum reads

STRF(ω, t̃) ∝ Re

ˆ ∞
0

dτeiωτRTRF(τ, t̃− τ), (2.77)

where the third-order response function RTRF(τ, t) is given by [30]

RTRF(τ, t) = TrBTrS

{
µ̂Û(t; t+ τ)Û(0; t)Ŵ0Û

†(0; t)µ̂Û †(t; t+ τ)
}
.

(2.78)
Here, U(t0; t) are the Hilbert space evolution operators, which correspond
to the total Hamiltonian, Eq. (2.2), µ̂ are the dipole operators and Ŵ0 is
the initial density operator of the joint system. TrB/S{} denotes the trace
operation over the nuclear/electronic DOF.

As can be seen, the calculation of STRF(ω, t̃) requires sweeping along all
the values of t, over which we do not have control, as mentioned previously.
However, the maximum information content about the system is enclosed
within the response function, Eq. (2.78). Therefore we define another, aux-
iliary, form of the TRF spectrum

F (ω, t) = Re

ˆ ∞
0

dτeiωτRTRF(τ, t). (2.79)

In this dissertation, Eq. (2.79), rather than STRF(ω, t̃), will be referred to
as the TRF spectrum.
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3. Energy transfer in the weak resonance coupling

limit

In this chapter we formulate and develop a theoretical model, which allows
us to describe exciton dynamics in weakly coupled molecular aggregates in
terms of the RDO in the basis of the site representation of the chromo-
phores. The excitonic coupling is treated as a perturbation and equations
of motion for the RDO are derived in the second order. This enables us to
retain the main excitonic effects such as transition dipole moment redis-
tribution and transition energy shift, while simultaneously working within
the basis of localized states [47]. Although FRET is the usual tool for the
treatment of weakly coupled chromophores, it describes the energy transfer
at longer times, after the transient coherent dynamics are suppressed by de-
phasing. Hence, FRET completely disregards the coherence effects, which
can be important at early times of the excitation evolution. The method
presented in this chapter takes such effects into account. In addition to the
mentioned excitonic effects, a “dynamic localization” in the long-time limit
is anticipated due to the perturbative treatment of the resonance coupling.

A proper description of initial coherent dynamics is necessary for certain
dynamic spectroscopic techniques, such as 2D PE, or TRF spectroscopy.
Therefore, in the second part of the chapter, a perturbative treatment of
the TRF is formulated. It is based on the direct calculation of the response
function by expanding it in powers of the resonance coupling up to the
second order. The TRF spectra are calculated, showing both the excitonic
effects and their decay, which is apparently intrinsic to the proposed scheme.

3.1. Equations of motion in the weak coupling limit

The efficient development of a certain master equation for the RDO from
the Quantum Liouville equation depends on the right partitioning of the full
Hamiltonian into the reference part and the perturbation. It is essentially
expected that the dynamics of the RDO generated by the reference part
is known (at least in principle). This is the case with the QME, where
the partitioning of the Liouvillian, Eq. (2.43), ensures that in the limit of
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3. Energy transfer in the weak resonance coupling limit

negligible system–bath interaction, the excitonic system experiences unitary
coherent evolution, which is solvable exactly. However, an analytical solution
of a monomer interacting with a Gaussian bath is also known [40], which
opens a possibility for an alternative approach.

The derivation of a dynamical description of the RDO in the weak res-
onance coupling limit is similar to that of the QME, except that this time
the resonance coupling instead of the system–bath interaction is treated as
a perturbation. Therefore we split the system Hamiltonian in the following
way:

ĤS = Ĥε + ĤJ. (3.1)

Here, Ĥε and ĤJ denote accordingly the diagonal and the off-diagonal parts
of the Frenkel exciton Hamiltonian, Eq. (2.6). We next define the reference
part of the total Hamiltonian Eq. (2.2):

Ĥ0 = Ĥε + ĤSB + ĤB. (3.2)

This leaves out the resonance coupling part ĤJ as a perturbation. Switching
into the Liouville space notation, we split the total Liouvillian in analogy
to Eq. (2.43) as

L = L0 + LJ, (3.3)

where LJŴ ⇔
[
ĤJ, Ŵ

]
.

All the other steps are identical to those given in Sec. 2.3 and lead to
the following equation for the relevant part of the density operator

d

dt
PŴI(t) = −iPLJ(t)PŴI(t)−

ˆ t

t0

dτPLJ(t)(I − P)LJ(τ)PŴI(τ), (3.4)

which is of the second-order now with respect to ĤJ.
Denoting ˆ̄ρ(t) = TrB

{
ŴI(t)

}
and resolving the projectors and commut-

ators (thus, returning to the Hilbert space), we can rewrite Eq. (3.4) in
terms of ˆ̄ρ(t):

d

dt
ˆ̄ρ(t)Ŵeq = −iTrB

{
ĤJ(t)Ŵeq

}
ˆ̄ρ(t)Ŵeq+iˆ̄ρ(t)TrB

{
ŴeqĤJ(t)

}
Ŵeq−R(J2),

(3.5)
where ĤJ(t) denotes the resonance coupling term in the interaction picture,
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3.1. Equations of motion in the weak coupling limit

ĤJ(t) ≡ Û †0(t0; t)ĤJÛ0(t0; t), (3.6)

and

R(J2) =

ˆ t

t0

dτ

[
TrB

{
ĤJ(t)ĤJ(τ)Ŵeq

}
ˆ̄ρ(τ)− TrB

{
ĤJ(t)Ŵeq

}
TrB

{
ĤJ(τ)Ŵeq

}
ˆ̄ρ(τ)

−TrB

{
ĤJ(t)ˆ̄ρ(τ)ŴeqĤJ(τ)

}
+ TrB

{
ĤJ(t)Ŵeq

}
ˆ̄ρ(τ)TrB

{
ŴeqĤJ(τ)

}

−TrB

{
ĤJ(τ)ˆ̄ρ(τ)ŴeqĤJ(t)

}
+ TrB

{
ĤJ(τ)Ŵeq

}
ˆ̄ρ(τ)TrB

{
ŴeqĤJ(t)

}

+ˆ̄ρ(τ)TrB

{
ŴeqĤJ(τ)ĤJ(t)

}
− ˆ̄ρ(τ)TrB

{
ŴeqĤJ(τ)

}
TrB

{
ŴeqĤJ(t)

}]
.

(3.7)

The traces can be evaluated as follows. Taking the matrix element of
TrB

{
ĤJ(t)Ŵeq

}
we obtain the expression

Jab(t) ≡ 〈a|TrB

{
ĤJ(t)Ŵeq

}
|b〉 = JabeiωabtTrB

{
Û †a(t)Ûb(t)Ŵeq

}
, (3.8)

where Û(t) is the evolution operator corresponding to the Hamiltonians
involving the nuclear coordinates q̂: ĤSB(q̂) + ĤB(q̂, p̂); i.e., Ûi(t) is still an
operator in the bath sub-space. The trace can now be evaluated employing
the second order cumulant approximation:

TrB

{
Û †a(t)Ûb(t)Ŵeq

}
= exp [−(1− δab)(g∗a(t) + gb(t))] , (3.9)

where ga(t) is the line shape function, Eq. (2.42). And thus, the resonance
coupling appears effectively dressed in the line shape functions, which rep-
resent the action of the bath upon the system:

Jab(t) = Jabeiωabt−(1−δab)(g∗a(t)+gb(t)). (3.10)

Similarly, the larger traces in Eq. (3.7) can be evaluated. Then changing the
integration variable in Eq. (3.7) to τ ′ = t − τ we can employ the Markov
approximation ˆ̄ρ(t − τ) ≈ ˆ̄ρ(t). Setting t0 = 0 (e.g., the optical excitation
giving the time reference) we obtain the equations of motion in the final
form:
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3. Energy transfer in the weak resonance coupling limit

d

dt
ρ̄ab(t) = −i

∑

c

Jac(t)ρ̄cb(t) + i
∑

c

ρ̄ac(t)Jcb(t)

−
∑

cd

[Raccd(t)ρ̄db(t)−R∗cabd(t)ρ̄cd(t)−Rdbac(t)ρ̄cd(t) +R∗bddc(t)ρ̄ac(t)].

(3.11)

The relaxation tensor reads:

Rabcd(t) =

ˆ t

0

dτ [JabJcdMabcd(t, t− τ)− Jab(t)Jcd(t− τ)], (3.12)

where the auxiliary function is given as:

Mabcd(t, τ) = eFabcd(t,τ)+iωabt+iωcdτ , (3.13)

and

Fabcd(t, τ) = −g∗a(t)− gb(t)− g∗c (τ)− gd(τ)

− δac(ga(t)− ga(t− τ) + g∗a(τ)) + δad(ga(t)− ga(t− τ) + g∗a(τ))

+ δbc(gb(t)− gb(t− τ) + g∗b (τ))− δbd(gb(t)− gb(t− τ) + g∗b (τ)). (3.14)

Once we choose a specific form of the spectral density, the relaxation
tensor Eq. (3.12) can be evaluated. We then solve the equations of motion
for the RDO in the interaction picture, Eq. (3.11). Finally, the connection
between the RDO in the interaction picture ˆ̄ρ(t) = TrB

{
ŴI(t)

}
and in the

Schrödinger picture ρ̂(t) = TrB

{
Ŵ (t)

}
is given by the equation:

ρ̄ab(t) = eiωabt+(1−δab)[ga(t)+g∗b (t)]ρab(t). (3.15)

To calculate the response functions needed for the evaluations of the
optical spectra in general (conf., Eq. (2.76)), one needs to calculate the
Liouville space evolution operators U(t) which fulfil the relation

ρab(t) =
∑

cd

Uabcd(t)ρcd(0). (3.16)

We use a simple consequence of this equation, namely
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3.2. Main features of the weak resonance coupling model

Uabcd(t) = ρ
(cd)
ab (t), (3.17)

where ρ(cd)
ab (t) is calculated using equations of motion, Eq. (3.11), with the

initial condition ρ(cd)
ab (0) = δacδbd. If any of the indices a, b, c, d equals g, we

have Rabcd = 0. For the optical coherences involving the ground state we
therefore obtain the following equations of motion:

d

dt
ρ̄ag(t) = −i

∑

c

Jac(t)ρ̄cg(t) +
∑

c

∑

d 6=a,c

Raddc(t)ρ̄cg(t). (3.18)

The absorption spectrum, Eq. (2.76), is then given by the expression

κa(ω) ≈ ω

n(ω)
Re

∞̂

0

dteiωt

〈∑

ab

µgaUagbg(t)µbgρgg
〉
, (3.19)

where 〈. . . 〉 represents the averaging the over isotropic distribution of ori-
entations of the molecular transitions with respect to the light polarization.
The transition dipole moments µag have to be understood as projections
of the transition dipole moments on the light polarization vector e, that is,
µag = µag ·e. The averaging is done over the product of two such quantities.
We have the orientational factor

Ωab ≡
〈(µag · e)(µbg · e)〉orient.

|µag||µbg|
=

1

3

µag · µbg
|µag||µbg|

. (3.20)

If one now defines µ̄ag as µ̄ag ≡ |µag|, one can write

κa(ω) ≈ ω

n(ω)
Re

∞̂

0

dteiωt
∑

ab

Ωabµ̄gaµ̄bgUagbg(t)ρgg. (3.21)

We use Eq. (3.21) in subsequent simulations of the absorption spectra. It is
important to note that because we do not work with electronic eigenstates
one cannot assume the secular approximation (Uabcd(t) = δacδbdUabab(t)) to
be valid, and the orientational factor does not reduce to simple 1/3.

3.2. Main features of the weak resonance coupling model

To demonstrate the main features of the theory given above, we model
a molecular dimer, which is the simplest system, where the effects of a
weak excitonic coupling can be observed. Namely, the resonance interac-
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Figure 3.1 Absorption spectra of an excitonic dimer. The spectra display
the splitting of the levels (a), as well as the transition dipole moment re-
distribution (b). The dashed vertical lines in (a) denote the position of the
peak, corresponding to certain resonance coupling J , as expected from the
excitonic theory. In (b), φ is the angle between the dipole moment vectors
µag and µbg lying in one plane.

tion should lead to the splitting of the excited states, redistribution of the
transition dipole moments and a shift of excited state absorption. The first
two effects will be demonstrated in the absorption spectrum. In addition,
one can also expect energy transfer between the two split excitonic levels,
formation of a coherence between excitonic levels upon excitation by light
and its dephasing. This class of effects is associated with the evolution of
the system in the excited state band, which we will show afterwards.

The absorption spectra of a dimer are shown in Fig. 3.1. The energies of
the monomers are defined as εa,b = ωref ± δε, where ωref is some reference
energy and 2δε is the energy difference. Coupling to the bath is parametrized
by identical reorganization energies λ = 20 cm−1 and vibrational relaxation
times γ = 100 fs−1; the temperature is 300 K.

Fig. 3.1(a) presents the absorption spectra of a model homodimer (δε =

0) with resonance coupling J varying from 50 cm−1 to 200 cm−1. Because
the monomeric transition energies of the two levels are the same, excitonic
mixing of the two levels is maximal at any resonance coupling value. We
have artificially chosen the dipole moments perpendicular to each other to
eliminate the effect of the transition dipole moment redistribution. We can
see from Fig. 3.1(a) that the prediction of the absorption maxima agrees
rather well with the prediction of the excitonic model (splitting of 2J).
It can also be noticed that the splitting is smaller than predicted by the
excitonic theory when resonance coupling is small, most likely due to the
bath changing the excitonic coupling term in Eq. (3.10).
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Figure 3.2 Evolutions of the populations of an excitonic dimer. The evolu-
tions are calculated by the weak resonance coupling (WRC) method (full
black lines), the HEOM (dashed black lines) and the FRET method (grey
lines): (a) T = 70 K; (b) T = 300 K.

The effect of the transition dipole moment redistribution is illustrated in
Fig. 3.1(b). A heterodimer with a gap of 2δε = 200 cm−1 between the trans-
ition energies of the two monomers was chosen, and the absorption spectrum
was calculated for a fixed resonance coupling value of J = 50 cm−1. Different
mutual orientations of the dipole moments lead to enhancement of the ab-
sorption of one or the other split level, depending on the mutual orientation
of the molecules.

To study the dynamical properties of the method for the weak resonance
coupling, we look at the population evolutions within a molecular dimer.
Fig. 3.2 shows the evolutions calculated by three methods: the current (weak
resonance coupling) method, the HEOM, which is exact in various coupling
regimes, and the FRET, which is the central method for the treatment of en-
ergy transfer between weakly coupled chromophores. The dimer parameters
are: 2δε = 400 cm−1 and J = 80 cm−1; the system–bath coupling paramet-
ers are: λ = 20 cm−1 and γ = 100 fs−1. The evolutions were calculated for
the low and high temperatures: (a) 70 K and (b) 300 K, accordingly. Ini-
tially the population of the upper state is unity, while the lower state is not
populated, and we observe the relaxation to equilibrium.

In the case of low temperature, Fig. 3.2(a), the HEOM initially show
short-living coherent oscillations, which are to some extent reproduced by
the current method: the temporal parameters (frequency, lifetime) are in
good agreement, but the amplitude is smaller. At longer times the HEOM
solutions approach the FRET ones, while the weak resonance coupling
scheme shows faster population transfer. At high temperatures, Fig. 3.2(b),
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3. Energy transfer in the weak resonance coupling limit

the initial oscillations are significantly shorter, but still present in both the
HEOM and the weak resonance coupling scheme evolutions. The latter af-
terwards closely follows the FRET results, which considerably diverge from
the HEOM at long times. On the one hand, these results demonstrate that
the results of the weak resonance coupling scheme are trustworthy at the
initial times only, which is of course expected for a method based on the
perturbative expansion. On the other hand, the evolutions given by the cur-
rent scheme correlate well with the FRET and at the same time add the
correct initial behaviour, e.g., the coherent oscillations.

To additionally assess the validity of the current method in the long-time
limit, we look at the stationary population values. The detailed balance
condition ensures, that in the thermodynamical equilibrium the relation
ρaa/ρbb = exp(−2δε/kBT ), εb < εa, holds. Whether this condition applies
to the current method or not, one can check by plotting the logarithm
of the ratio of the stationary populations against the energy gap between
the states. This is shown in Fig. 3.3. The resonance coupling was set to
J = 80 cm−1, while the system–bath coupling parameters are the same as
in Fig. 3.2. As can be seen, for energy gaps 2δε ≤ kBT the equilibrium pop-
ulation obey the detailed balance that corresponds to the monomeric (i.e.,
not excitonically split) energy gap. For larger energy gaps, the equilibrium
population values deviate appreciably from the detailed balance condition.
Two conclusions can be drawn from the observations. Firstly, it can be con-
cluded that the equations of motion, Eq. (3.11), largely obey the detailed
balance condition with respect to the monomeric energy gap. Secondly, it
must be noted, that the method describes the thermodynamics well only
for energy gap comparable to kBT , and by the same token, the long-time
behaviour of the equations Eq. (3.11) is in a better agreement with the
detailed balance condition at higher temperatures.

Generalizing the results of this Section, we can conclude that the equa-
tions of motion, based on the perturbative treatment of the resonance coup-
ling, capture the excitonic effects, which can be either static (e.g., the energy
level splitting, redistribution of the dipole moments) or dynamic (such as
the coherent oscillations). In addition to that, as follows from the equilib-
rium population values, the excitations initially displaying signs of excitonic
delocalization tend to be localized during the course of time. Thus, we are
able to describe an effect of dynamic localization, where the bath destroys
not only a wavepacket created in the complex by ultrafast excitation, but
also the coherence established by the weak resonance coupling.
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Figure 3.3 Equilibrium population values of the weak resonance coupling
model. The full lines shown the detailed balance condition for the mono-
meric energy gap, ∆ε = 2δε, while the dashed lines show the same de-
pendence for the excitonic energy gap, ∆eε = ∆ε

√
1 + J/δε. The dots

represent the values calculated within the current model. The high temper-
ature (300 K) results are shown in black, while the low temperature (150 K)
results are in grey. The dotted horizontal line corresponds to energy gap
∆ε = kBT.
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3.3. Time-resolved fluorescence in weakly coupled dimer

Although the evolution of the density operator reveals certain features of
coherent dynamics, such as the oscillatory populations, the density operator
itself is not an observable quantity. Therefore, in order to investigate the
coherence in energy transfer and the dynamical excitation localization, ap-
parently intrinsic to the method developed here, we look at the time-resolved
fluorescence, which allows us to follow the evolution of the excited state. To
that end we need to evaluate the corresponding third-order response func-
tion, Eq. (2.78). One way to do that would be by calculating the evolution
operators in the manner of Eq. (3.17). However, this would not give the ex-
pected result, because the evolution operators would be calculated with the
wrong initial condition. Namely, the evolution during the second interval
need not start with the bath being in the equilibrium with respect to the
ground state, as implied by the projector of the type Eq. (2.50). Therefore,
we provide an alternative treatment of the problem. The main idea is to
expand the evolution operators in powers of the resonance coupling, per-
forming the trace over the nuclear DOF as the last operation, which allows
for a continuous evolution of the bath.

Evaluating the trace in Eq. (2.78) only over the electronic DOF, TrS{},
we can write RTRF as

RTRF(τ, t) =
∑

a,b,c,e

µgaµcg

× TrB

{
Ûab(t; t+ τ)Ûbe(0; t)ρeeŴeqÛ

†
ec(0; t)Û †gg(t; t+ τ)

}
.

(3.22)

We have made an assumption, that initially the density operator can be
partitioned into the diagonal reduced density operator of the system and
the equilibrium density operator of the bath. The structure TrB

{
. . . Ŵeq

}

has the meaning of averaging over the nuclear DOF, and again we note that
Ûij(t0; t) are still operators in the bath sub-space. The expression within the
trace is the evolution of the reduced density matrix, which can be repres-
ented by means of the double-sided Feynman diagram [40], Fig. 3.4. The
vertical arrows correspond to the evolution of the ket and the bra of the
density operator, while the wiggly arrows indicate the interaction of the
system with the radiation field of either the laser pulse or the vacuum. As
shown, initially the system is in the population state |e〉〈e|, which in the
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Figure 3.4 Double-sided Feynman diagram corresponding to the TRF.

general case evolves into a coherence |b〉〈c| during the waiting time t. An
optical coherence, |b〉〈g|, is then created, which evolves during the coherence
time τ (possibly, into some other optical coherence |a〉〈g|), thus, emitting
the signal. The TRF spectrum, Eq. (2.79), thus allows us to study the dy-
namics of the excited state by the parametric dependence on the waiting
time t.

In order to evaluate the Eq. (3.22), we need to calculate the elements
of the evolution operators Ûij(t0; t). To this end we first split the evolution
operator in the following manner:

Û(t0; t) = Û0(t0; t) ˆ̃U(t0; t), (3.23)

here, Û0(t0; t) represents the individual evolution of monomers interacting
with the environment and independent from each other, while ˆ̃U(t0; t) de-
scribes the evolution induced by the resonance interaction. We can write
down ˆ̃U(t0; t) in terms of time-ordered exponential:

ˆ̃U(t0; t) = exp+

[
−i

ˆ t

t0

dτĤJ(τ)

]
, (3.24)

where ĤJ(t) is the resonance coupling in the interaction picture, Eq. (3.6).
Given these definitions, an operator Ûab(t0; t) reads:

Ûab(t0; t) = e−iεa(t−t0)Ûa(t0; t) ˆ̃Uab(t0; t), (3.25)

where Ûa(t0; t) denotes the evolution of the bath associated with the state
|a〉, and ˆ̃Uab(t0; t) is given as the following expansion:
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3. Energy transfer in the weak resonance coupling limit

ˆ̃Uab(t0; t) = δab − i

ˆ t

t0

dτJabe
iωab(τ−t0)Û †a(t0; τ)Ûb(t0; τ)+

∞∑

n=2

(−i)
n
∑

c1...cn−1

ˆ t

t0

dτn . . .

ˆ τ2

t0

dτ1Jacn−1 . . . Jc1be
iωacn−1(τn−t0) . . . eiωc1b(τ1−t0)

× Û †a(t0; τn)Ûcn−1(t0; τn) . . . Û †c1(t0; τ1)Ûb(t0; τ1). (3.26)

We can then rewrite Eq. (3.22) as:

RTRF(τ, t) =
∑

a,b,c,e

µgaµcge
−iωagτ−iωbct

× TrB

{
Ûa(t; t+ τ) ˆ̃Uab(t; t+ τ)Ûb(0; t) ˆ̃Ube(0; t)ρeeŴeq

ˆ̃U †ec(0; t)Û †c (0; t)
}
.

(3.27)

By expanding the elements ˆ̃U(t0; t) in powers of resonance coupling as given
in Eq. (3.26) we can write the response function RTRF(τ, t) as a perturbation
series:

RTRF(τ, t) = R(0)(τ, t) +R(1)(τ, t) +R(2)(τ, t) + . . . (3.28)

The zeroth-order term R(0)(τ, t) corresponds to the sum of the TRF of
individual (uncoupled) monomers: R(0)(τ, t) =

∑
eR

(0)
e (τ, t). In this case an

exact result can be recovered by means of cumulant expansion of the bath
correlations [40,47], namely

TrB

{
Û †e (0; t)Ûe(0; t+ τ)Ŵeq

}
= exp (−g∗e(τ) + 2iIm {ge(t)− ge(t− τ)}) .

(3.29)
Any cross-correlations between the sites are again excluded, which is a some-
what artificial limitation set here only for convenience. By setting the initial
condition for the electronic sub-system as ρee = |µeg|2 we get

R(0)
e (τ, t) = i3|µeg|4e−iωegτ−g∗e (τ)+2iIm {ge(t)−ge(t−τ)}. (3.30)

Higher-order terms of Eq. (3.27) describe various processes, depending
on which of the three ˆ̃U(t0; t) terms or their combinations we expand. This
can be also represented pictorially by means of the double-sided Feynman
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3.3. Time-resolved fluorescence in weakly coupled dimer

|g〉

〈g|

〈g|

|g〉

〈e|
〈g|

|e〉
|e〉

〈e|

|e〉
|a〉

t

τ

R
(1)
1

|g〉

〈g|

〈g|

|g〉

〈e|
〈g|

|e〉
|b〉

〈e|

|b〉
|b〉

t

τ

R
(1)
2

|g〉

〈g|

〈g|

|g〉

〈c|
〈g|

|e〉
|e〉

〈e|

|e〉
|e〉

t

τ

R
(1)
3

|g〉

〈g|

〈g|

|g〉

〈e|
〈g|

|e〉
|b〉

〈e|

|b〉
|a〉

t

τ

R
(2)
1

|g〉

〈g|

〈g|

|g〉

〈c|
〈g|

|e〉
|e〉

〈e|

|e〉
|a〉

t

τ

R
(2)
2

|g〉

〈g|

〈g|

|g〉

〈c|
〈g|

|e〉
|b〉

〈e|

|b〉
|b〉

t

τ

R
(2)
3

|g〉

〈g|

〈g|

|g〉

〈e|
〈g|

|e〉
|b〉

〈e|

|b〉
|b〉

t

τ

R
(2)
4

|g〉

〈g|

〈g|

|g〉

〈c|
〈g|

|e〉
|e〉

〈e|

|e〉
|e〉

t

τ

R
(2)
5

|g〉

〈g|

〈g|

|g〉

〈e|
〈g|

|e〉
|e〉

〈e|

|e〉
|a〉

t

τ

R
(2)
6

Figure 3.5 Double-sided Feynman diagrams of the first and the second order
with respect to the resonance interaction. The dots denote the change of
the bra/ket due to the action of the resonance coupling.

diagrams: the three first-order and the six second-order terms (the num-
bering is arbitrary) are shown in Fig. 3.5. For a dimer a natural restriction
JabJbc ⇔ a = c applies, which somewhat simplifies the expressions. Hence,
the three first-order terms for a dimer read:

R
(1)
1 (τ, t) =

∑

e,b

(−iJbe)µgbµeg|µeg|2e−iωbgτ+2iIm {ge(t)}

×
ˆ t+τ

t

dτ1 exp [iωbe(τ1 − t)− 2iIm {ge(τ1)} − gb(t+ τ − τ1)− g∗e(τ1 − t)] ;

(3.31)

R
(1)
2 (τ, t) =

∑

e,b

(−iJbe)µgbµeg|µeg|2e−iωbgτ+2iIm {ge(t)}−iωbet

×
ˆ t

0

dτ1 exp [iωbe(τ1)− 2iIm {ge(τ1)} − gb(t+ τ − τ1)− ge(t− τ1)] ;

(3.32)
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3. Energy transfer in the weak resonance coupling limit

R
(1)
3 (τ, t) =

∑

e,b

(+iJeb)µbgµge|µeg|2e−iωegτ−2iIm {ge(t+τ)}−iωebt

×
ˆ t

0

dτ1 exp [iωeb(τ1) + 2iIm {ge(τ1)} − g∗e(t+ τ − τ1)− g∗b (t− τ1)] .

(3.33)

The six second-order terms for a dimer read:

R
(2)
1 (τ, t) = −

∑

e,b

|Jeb|2R(0)
e (τ, t)

×
ˆ t+τ

t

dτ2 exp [iωebτ2 + 2iIm {ge(τ2)} − ge(t+ τ − τ2) + g∗e(τ2 − t)]

×
ˆ t

0

dτ1 exp[iωbeτ1 − 2iIm {ge(τ1)}+ ge(t+ τ − τ1)− ge(t− τ1)

− ge(τ2 − τ1)− gb(τ2 − τ1)]; (3.34)

R
(2)
2 (τ, t) =

∑

e,b

|Jeb|2|µeg|2|µbg|2e−iωbgτ−g∗b (τ)

×
ˆ t+τ

t

dτ2 exp [iωbeτ2 − 2iIm {ge(τ2)} − gb(t+ τ − τ2) + gb(t− τ2)]

×
ˆ t

0

dτ1 exp[iωebτ1 + 2iIm {ge(τ1)}+ g∗b (t+ τ − τ1)− g∗b (t− τ1)

− g∗e(τ2 − τ1)− g∗b (τ2 − τ1)]; (3.35)

R
(2)
3 (τ, t) =

∑

e,b

|Jeb|2|µeg|2|µbg|2e−iωbgτ−g∗b (τ)

×
ˆ t

0

dτ2 exp [iωebτ2 + 2iIm {ge(τ2)}+ g∗b (t+ τ − τ2)− g∗b (t− τ2)]

×
ˆ t

0

dτ1 exp[iωbeτ1 − 2iIm {ge(τ1)} − gb(t+ τ − τ1) + gb(t− τ1)

− ge(τ2 − τ1)− gb(τ2 − τ1)]; (3.36)
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3.3. Time-resolved fluorescence in weakly coupled dimer

R
(2)
4 (τ, t) = −

∑

e,b

|Jeb|2R(0)
e (τ, t)

×
ˆ t

0

dτ2 exp [iωebτ2 + 2iIm {ge(τ2)} − ge(t+ τ − τ2) + ge(t− τ2)]

×
ˆ τ2

0

dτ1 exp[iωbeτ1 − 2iIm {ge(τ1)}+ ge(t+ τ − τ1)− ge(t− τ1)

− ge(τ2 − τ1)− gb(τ2 − τ1)]; (3.37)

R
(2)
5 (τ, t) = −

∑

e,b

|Jeb|2R(0)
e (τ, t)

×
ˆ t

0

dτ2 exp [iωbeτ2 − 2iIm {ge(τ2)}+ g∗e(t+ τ − τ2)− g∗e(t− τ2)]

×
ˆ τ2

0

dτ1 exp[iωebτ1 + 2iIm {ge(τ1)} − g∗e(t+ τ − τ1) + g∗e(t− τ1)

− g∗e(τ2 − τ1)− g∗b (τ2 − τ1)]; (3.38)

R
(2)
6 (τ, t) = −

∑

e,b

|Jeb|2R(0)
e (τ, t)

×
ˆ t+τ

t

dτ2 exp [iωebτ2 + 2iIm {ge(τ2)} − ge(t+ τ − τ2) + g∗e(τ2 − t)]

×
ˆ τ2

t

dτ1 exp[iωbeτ1 − 2iIm {ge(τ1)}+ ge(t+ τ − τ1)− g∗e(τ1 − t)

− ge(τ2 − τ1)− gb(τ2 − τ1)]. (3.39)

To demonstrate the main features of the theory presented above, we
have modelled the TRF spectra, Eq. (2.79), of an excitonic heterodimer,
described by the energy gap 2δε = 400 cm−1 and resonance coupling J =

80 cm−1. The reorganization energies are λ = 30 cm−1 and the vibrational
relaxation rates are γ−1 = 100 fs. The transition dipole moments are chosen
|µag| = |µbg| = 0.5, which leads to equally populated states at t = 0; the
dipole moments are additionally treated as being parallel (for simplicity we
also disregard the orientational averaging). The temperature is 70 K.

We first calculate the TRF signal at waiting time t = 0, when the re-
laxation effects are absent, and the TRF spectrum coincides with the linear
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Figure 3.6 TRF signal at early times. The waiting time is t = 0 fs. Black lines
show the signal corresponding to J = 80 cm−1 (full line) and J = 40 cm−1

(dashed line). The monomeric signal is shown in dots. The horizontal lines
demonstrate the intensity estimates for the stronger (light grey lines) and
weaker (dark grey lines) transitions from the exciton theory (see text for
details).

absorption. In Fig. 3.6 the TRF signal is shown at t = 0 fs. Two rather well
separated peaks can be seen because of the small reorganization energies,
λ� 2δε, and low temperature. The black dotted line represents the mono-
meric signal, i.e., it corresponds to R(0), while the two other black lines
show the total signal for two values of resonance coupling: J = 80 cm−1

(full line) and J = 40 cm−1 (dashed line). The difference in amplitude of
the total and the monomeric signals, resembles the effect of the excitonic
oscillator strength redistribution. We estimate the latter as given by the
exciton theory. Namely, the excitonic dipole strength D± of a dimer of two
identical dipoles in a parallel configuration is given by [4]

D± = d

(
1± 1√

1 + (δε/J)2

)
, (3.40)

where ± denotes a corresponding exciton state, d = |µag|2 = |µbg|2 is the
molecular dipole strength and δε/J is the excitonic mixing parameter. Mul-
tiplying the maximum value of the R(0) signal, R(0)

max, by the corresponding
dipole strength, we obtain the estimates for the signal, that would fol-
low from the excitonic picture. The predicted levels of the stronger and
weaker transitions (R(0)

maxD+ and R
(0)
maxD−) are shown in Fig. 3.6 by the

light and dark gray lines accordingly. Evidently, our results correlate well
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3.3. Time-resolved fluorescence in weakly coupled dimer
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Figure 3.7 Time dependence of the TRF spectra. The spectra are calculated
for waiting times t = 0, . . . , 900 fs, shown form dark grey to light grey.

with Eq. (3.40), and we note that decreasing the resonance coupling yields
a better agreement with the excitonic theory. Thus, the comparison of the
two methods can be used to evaluate the limits for the resonance coupling
with respect to the energy gap 2δε in the current scheme.

Let us now look at the time evolution of the spectrum, which is shown
in Fig. 3.7. Surprisingly, the dynamics of the two peaks are very differ-
ent. While the fluorescence of the upper peak shows a clearly pronounced
time-dependent Stokes shift [40] and a rather steady decrease in amplitude,
the lower peak is fairly stationary in frequency, and its amplitude firstly
decreases (0 − 200 fs) and later grows (300 fs and up). The evolution in
short times (up to ≈ 100 fs) is even more complicated due to the coherent
oscillations, therefore we do not show it in the form of spectra. The inform-
ation content in Fig. 3.7 is too large to analyze directly, therefore we look
separately at the time dependence of the amplitudes and positions of the
peaks.

Firstly, we plot the frequency of the fluorescence maxima as a function
of the waiting time. Figure 3.8 shows the results for the upper (a) and
lower (b) peaks (full dots). Additionally, we show the maxima of the R(0)

only (open dots), which corresponds to the fluorescence of the monomeric
states. As far as the latter is concerned, the curves in both (a) and (b) are
identical, only shifted by ωab, and they demonstrate the time-dependent
Stokes shift. Looking at the upper peak, Fig. 3.8(a), we notice, that at
short times the peak within the dimer is at higher frequencies than the
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Figure 3.8 Peak analysis of the TRF spectra: frequencies of the maxima.
The time dependence of the frequencies for the higher/lower peak (a/b) are
shown. The full dots denote the position of the maximum within the dimer,
while the empty dots show the position of the fluorescence maximum of the
corresponding monomeric state.

monomeric counterpart, while at long times the peak positions coincide.
The first effect is the result of the excitonic splitting. The fact that at long
times both peaks have the same frequencies points to the suppression of the
excitonic splitting. Bearing these results in mind we can see the analogy for
the case of the lower peak Fig. 3.8(a). Namely, at short times the peak is
“excitonically pushed” away to the lower frequencies, while at longer times
the excitonic splitting is suppressed. This seems to be in accord with the
suppression of the resonance interaction as given by Eq. (3.10).

Next, we plot the peak intensities against the waiting time in Fig. 3.9.
As can be seen, the evolution is relatively “flat” with an initial oscillatory
pattern. At later times the oscillations die out and the redistribution of the
signal strength among the peaks becomes visible. The long-time behaviour is
dictated by the population transfer, and the main reason for the apparently
sluggish relaxation is the low temperature and relatively large energy gap.
However, at early times the evolution is governed by other processes, two of
which can be identified. Firstly, upon comparison with Fig. 3.7 (e.g., looking
at the lower peak), we can attribute some loss of the signal intensity to the
slight broadening of the peak. Secondly, we notice that both intensities are
modulated by an in-phase oscillation with a period of ≈ 80 fs.

In order to understand the evolution of the spectrum and the origin of
various processes, we can look at the time evolution of the signal compon-
ents, originating from different R(i)

j terms, and evaluate their contributions
to the total TRF spectrum. The results are shown in Fig. 3.10. Initially,
Fig. 3.10(a), apart from the trivial component R(0), only R

(1)
1 and R

(2)
6

52
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Figure 3.9 Peak analysis of the TRF spectra: amplitudes. The intensities
are normalized to the amplitude of the upper peak at zero waiting time.

contribute to the signal. At later times, we can distinguish four types of
diagrams: decaying (R(2)

6 ), steady amplitude (R(1)
1 ), growing and saturating

(R(1)
2,3 and R(2)

1,2), growing indefinitely (R(2)
3−5). By t = 500 fs, Fig. 3.7(b), and

longer times, the saturating diagrams have attained their final shape and
amplitude, and the signal is dominated by R(0), R(1)

1 and R(2)
3−5.

The described components contribute to the spectra in the following
way. The R(1)

1 and R(2)
6 diagrams, as visible from Fig. 3.10(a), yield the os-

cillator strength redistribution and the excitonic splitting accordingly. The
diagrams R(1)

2 + R
(1)
3 create an initially oscillating signal, which modulates

the overall amplitude of R(1). The R(2)
3 term corresponds to the population

transfer into the fluorescing state. Therefore it has purely positive values,
and the corresponding signal becomes stronger in time at lower frequen-
cies. Similarly, the sum R

(2)
4 +R

(2)
5 corresponds to the de-population of the

fluorescing state, hence, it has negative values and yields stronger signal at
higher frequencies. The diagrams R(2)

1 +R
(2)
2 seem to have a minor effect on

the overall signal.
The analysis of the TRF signal in the presented method is greatly sim-

plified by the fact that contributions from various diagrams of any order
are simply additive. This has two important implications. Firstly, at time
t = 0 the comparison of our method with the exciton theory can be used to
evaluate the limits for the resonance coupling (with respect to the detuning
ωab), which defines the applicability of the current scheme, conf. Fig. 3.6.
Secondly, the additivity allows us to “dissect” the full spectrum into the
components, which can be attributed to one or another process manifest
in the overall time evolution. The redistribution of signal intensity and the
peak-shift in the case of a weakly coupled molecular heterodimer can be
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Figure 3.10 Evolution of signal components corresponding to different ex-
pansion terms R(i)

j of the response function. The contributing signals are
calculated for (a) short times (t = 0 fs) and (b) long times (t = 500 fs). The
first-order terms are summed for clarity and not shown individually, how-
ever, the R(1)

1 term is dominant; R(1) in (a) entirely consists of this term.
The summation R(2)

4 +R
(2)
5 is performed due to the fact that these diagrams

are complex conjugate; the summation R(2)
1 + R

(2)
2 is performed for clarity

mostly, because these two diagrams partly compensate each other.
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3.3. Time-resolved fluorescence in weakly coupled dimer

examined as particular examples.
The time evolution of peak intensities, Fig. 3.9, reveals two major pro-

cesses: the intensity redistribution and the in-phase oscillation of both peaks.
We start with the latter effect by looking at the diagrams R(1)

2 +R
(1)
3 , which

are the apparent cause of the oscillation. Upon the inspection of Fig. 3.5, we
notice that the system emits the signal while being in a coherent state. When
two coherently excited levels emit to a common final state, the modulation
of emission spectrum, the so-called quantum beat, is observed with the fre-
quency equal to the energy difference between the levels. In the current
case, the period of the oscillation (80 fs) is in agreement with the detuning
ωab = 400 cm−1. The in-phase oscillation of both peaks would result in a
modulation of the frequency-integrated signal, which is experimentally em-
ployed in the quantum beat spectroscopy [57]. Since the system is coupled
to the bath, the coherences subsequently dephase and the oscillations cease.

The intensity redistribution is governed by the energy transfer process,
which is in turn represented by the sum of the diagrams R(2)

3 +R
(2)
4 +R

(2)
5 .

Bearing in mind, that the presented theory is based on the perturbative ex-
pansion in terms of the resonance interaction, one may again wonder about
the relation between the current method and the FRET theory. Instead of
making a direct comparison, we argue that the two approaches have es-
sentially different starting points. The FRET approach is derived for the
vibrationally relaxed donor state incoherently transferring energy to the vi-
brationally hot excited state of the acceptor. The outcome of such theory
is the energy transfer rate, which is of the second order in J . In our case,
the donor can be in any vibrational state and the coherent aspects of the
transfer process are to some extent taken into account. The price to pay for
these advantages is that now the amplitude rather than the rate is propor-
tional to J2. This introduces the restriction for the waiting time t, and our
results should be trustworthy within the constraint Jt . 1. Besides that, it
is interesting to mention, there are oscillations in the transfer diagrams as
well (not shown). Unlike the oscillations visible in Fig. 3.9, the latter are
of opposite phase for both peaks, which suggests the oscillatory evolution
of the populations. However, because of their appearance in early times
only, their contribution to the total signal is overwhelmed by the “stronger”
diagrams.

The interpretation of the difference in the peak frequency evolutions,
Fig. 3.8, is twofold. On the one hand, we notice from Fig. 3.10(a) that the
diagram component R(2)

6 is responsible for the effective excitonic splitting.
However, this diagram is decaying in time due to the boundaries of the
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3. Energy transfer in the weak resonance coupling limit

integrals within its definition. Hence, from the technical point of view, the
decay of R(2)

6 , and subsequently of the excitonic splitting, increases the
red-shift of the upper peak and partly compensates the red-shift of the
lower peak. On the other hand, the situation can be interpreted in physical
terms by looking at the potential energy surfaces of the excited states,
depicted in Fig. 3.11. In the case of slow bath (which is the current case
due to γ−1 = 100 fs), initially, at t = 0, fluorescence and absorption spectra
are identical, because there is no time for the reorganization dynamics to
take place [40]. Therefore we can depict the fluorescence as the vertical
transition from the potential energy surface of the excited state (dashed
line), which does not coincide with its monomeric counterpart (full line) due
to the resonance interaction. The frequency of the fluorescence in the long-
time limit, ωmax(t = ∞), in the current scheme indicates that the relaxed
fluorescence takes place from the minima of the monomeric potential energy
surfaces, ε0

a/b. Which means that the current scheme describes two processes
taking place at the same time: the vibrational relaxation (wiggly arrows)
and the simultaneous renormalization of the potential energy surfaces due
to the suppressed resonance interaction. This leads to the larger Stokes shift
of the upper state, ωup

max(t), and smaller one for the lower state, ωlo
max(t).

In summary, as can be seen from the calculated spectra, the proposed
theory is capable of reproducing the notable effects that would be anticip-
ated in the TRF of an excitonic system: the excitonic splitting, oscillator
strength redistribution and quantum beats. As mentioned previously, the
long-time limit should be treated with caution. This includes both the pop-
ulation transfer rates and the complete localization of the excitations, as
presented in Fig. 3.11. However, at early times or in the case of really small
resonance coupling, the method allows to follow the system dynamics in
greater detail and broader initial conditions than, e.g., the FRET theory.
We also note, that the the perturbative treatment of the resonance inter-
action can in principle be extended to calculate the response functions in
the case of more sophisticated non-linear spectroscopic experiments, such
as the 2D PE spectroscopy.
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Figure 3.11 Interpretation of the time dependence of the TRF peak position.
The potential energy surfaces of the ground and the corresponding excited
states are shown in full lines. Due to the resonance coupling the excitonic
splitting yields new, excitonic, potential energy surfaces, shown in dashed
lines and denoted V up/lo

exc for the upper and lower excitonic states accordingly.
The grey arrows indicate the fluorescence, while the wiggly arrows show the
vibrational relaxation.
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4. The intermediate resonance coupling regime

In this chapter, the coherent excitation dynamics is investigated in the inter-
mediate resonance coupling regime (as compared to the system–bath inter-
action). In biological systems, such as the photosynthetic pigment–protein
complexes, various interactions, especially the intramolecular couplings and
the couplings to the phonon bath are of similar order: J ≈ λ. In addition
to that, the bath correlations are not decaying almost instantaneously as
presupposed by the Markovian approximation. Under these conditions the
usage of all the perturbative methods becomes questionable. Therefore we
use the HEOM approach as a reference method in analysing an excitonic
heterodimer.

Usually, a homodimer — a pair of identical chromophores — is used
for considering various aspects of the coherent exciton dynamics and re-
laxation [27,28,31,32]. In the discussions of a heterodimer system, the dis-
tinctness of constituent monomers is often limited to the excitation energies
only [11, 58]. Some aspects which could be attributed to the heterodimer
were also disclosed by analyzing the exciton–charge-transfer state mixing
problems [33, 34]. Here, we consider the effects originated from the differ-
ences in both the excitation and the reorganization energies of the constitu-
ent molecules of the heterodimer. Particularly, we examine the effects of
the asymmetry in reorganization energies in Section 4.1, then discuss the
signs of the breakdown of the exciton concept in Section 4.2. In Section 4.3
we investigate the thermalization dynamics in the case of non-Markovian
bath correlation. Finally, in Section 4.4 we make some notes on the RDO
propagation schemes based on the given findings.

4.1. Influence of the asymmetric reorganization energies on

the excitation dynamics

The main parameter characterizing a heterodimer is the difference of site en-
ergies, or simply the energy gap. On the one hand, the energy gap is a crucial
parameter in describing the excitonic mixing of states, conf. Eq. (2.15). On
the other hand, it determines the asymptotics of the evolution, namely the
thermal equilibrium conditions. However, upon the asymmetry in reorgan-
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Figure 4.1 Potential energy surfaces of the monomers constituting an ex-
citonic heterodimer. Different displacements of the excited state potential
energy surfaces yield different reorganization energies.

ization energies, λa 6= λb, the energy gap becomes an ambiguous concept.
As shown in Fig. 4.1, two non-equivalent definitions of the energy gap in the
one-exciton manifold can be given: we can define it either as ∆ε = εa − εb
or as ∆ε0 = ε0

a − ε0
b (even though the relation ∆ε = ∆ε0 + λa − λb holds).

Evidently, these two cases contain different physical meanings.
Since the energy εi refers to the Franck–Condon transition region of the

i-th potential energy surface (grey vertical arrows in Fig. 4.1), ∆ε corres-
ponds to the distance between the peak positions in the absorption spectra.
Therefore we can loosely call it the “optical energy gap”. This has a perfectly
clear meaning in the absorption spectroscopy, however, the thermal equi-
librium does not establish itself with respect to this energy gap. Should the
resonance coupling be simply perturbative, we could expect the thermaliz-
ation with respect to ∆ε0 as the first approximation. Since this gap enters
the FRET theory [4, 39] we shall call it the “Förster energy gap”.

We will now study the dynamics of the excitation in the given system
by means of the Redfield equations and the HEOM. We consider the ex-
citation of the dimer by a broad-band optical pulse, which is much shorter
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4.1. Influence of the asymmetric reorganization energies on the excitation
dynamics

than the time scale of the relaxation dynamics. By setting the transition di-
pole moments µag, µbg appropriately, one of the constituent monomers can
be considered a donor for further excitation transfer (µag = 1), while the
other one is treated as an acceptor (µbg = 0). Hence, the initial condition
for the evolution of the RDO in the site basis is given by ρij(0) = δij|µig|2
(ρaa(0) = 1, while other elements are zero). We note that, by switching
into the exciton representation, both single-exciton states are initially pop-
ulated, which weakens the distinction between the donor and the acceptor,
yet in the non-degenerate case, ∆ε 6= 0, the character of a state can still be
distinguished. The constant parameters used in the calculations are the fol-
lowing: T = 300 K (which corresponds to kBT ≈ 208 cm−1), J = 100 cm−1,
γ−1 = 100 fs. The tunable parameters are the reorganization energies λa, λb,
given as four combinations of the values 30 cm−1 and 150 cm−1, and the
gap between the site excitation energies, either the “optical” or the “För-
ster”, with value +100 cm−1 (“+” indicates the donor state being above the
acceptor).

The results are shown in Fig. 4.2. For now we concentrate on the top row,
which represents the HEOM results ((a) and (b)), and the middle row, which
represents the Redfield results ((c) and (d)). The left column corresponds to
∆ε = +100 cm−1 as a fixed energy gap, while the right column corresponds
to ∆ε0 = +100 cm−1 being fixed. In the right-hand column the initial values
are scattered simply because fixing ∆ε0 with different λ’s gives us different
∆ε used in the definition of the excitonic basis.

First, consider the amount of energy dissipated in each exciton state
during the vibrational relaxation. Let us denote this by the exciton reor-
ganization energy. We would expect that for the fixed optical energy gap,
in the case of λa = λb an equal amount of energy associated with each
state will be dissipated, and therefore the equilibrium populations will not
depend on λa (or λb): the exciton levels will shift by the same amount.
This coincides exactly with the result of the Redfield equations (full lines,
Fig. 4.2(c) and (d)), but not with the HEOM results. The latter point to
the action of the bath upon the systems, which is discussed in detail in the
following Section 4.2. In the non-trivial case of λa 6= λb [34], the vibrational
relaxation would shift the exciton levels by a different amount (∆ε0 6= ∆ε),
and equilibrium populations will depend on λa and λb. This effect is appar-
ently captured by both the HEOM and the full Redfield schemes (dashed
lines in Figs. 4.2(a) and (c)). The energy gap between the states, as inferred
from the equilibrium population values, is effectively decreased (grey-dashed
lines) or increased (black-dashed lines). We also note the failure of the Red-
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Figure 4.2 Evolutions of the higher excitonic state population. The insets
show the combination of reorganization energies given in the form λa/λb
(cm−1/cm−1). The left column corresponds to ∆ε = +100 cm−1, the right
one — to ∆ε0 = +100 cm−1. (a) and (b), (c) and (d), (e) and (f) correspond
to the HEOM, the full and the secular Redfield equations, respectively.
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4.2. Breakdown of the exciton concept

field scheme in Fig. 4.2(c).
Consider now the case of a fixed Förster energy gap. Note that the op-

tical energy gap is now the function of λa− λb. One would expect that ∆ε0

governs the equilibrium populations of excitons. However, the equilibrium
populations in both the HEOM and the full Redfield schemes (Fig. 4.2(b)
and (d)) are related to neither ∆ε nor ∆ε0: this shows a complex mixing
of the monomeric reorganization energies, which defines an effective coun-
terpart of the Förster gap in the excitonic basis, ∆eε

0. All possible config-
urations of λ’s for the fixed Förster energy gap are schematically shown in
Fig. 4.3. When λa = λb (top panel), the optical energy gap and the För-
ster energy gap coincide and the reorganization energies of both excitons
are identical, and the energy gap between the relaxed exciton states can
be obtained by the transformation to the exciton basis, ∆eε

0 = ∆eε. The
middle panel demonstrates the case λa 6= λb, where the exciton reorganiz-
ation energies come from the nontrivial mixing of λa, λb and ∆ε. Hence,
the Förster energy gap alone can be a poor benchmark for assessing the
equilibrium populations. The bottom panel reveals the peculiar situation,
where the exciton states are swapped in comparison with the monomeric
states (both initially and in the long-time limit). The corresponding popu-
lation evolution is represented by the black-dashed line in Figs. 4.2(b) and
(d): the initial population (< 0.5) indicates that the higher excitonic state
originates form the “acceptor” state in the site basis.

4.2. Breakdown of the exciton concept

The HEOM solutions (Fig. 4.2(a) and (b)) and the results that follow from
the Redfield equations look qualitatively similar. However, an unexpected
feature is the difference between equilibrium population values for the case
when λa = λb, which again tells us about different energy gaps in each case.
This points to the action of the bath upon the system. Indeed, we find that
the conventional excitonic basis is approximate.

So far we have treated the excitonic states, defined by Eq. (2.12), as
the eigenstates of the system. However, HEOM solutions in the excitonic
basis, as given above, exhibit non-vanishing steady state coherences. The
presence of the steady state coherences can be interpreted as a reflection of
renormalization of the system eigenbasis [59] taking place in the course of
time. Contrary to the Redfield scheme, HEOM is not subject to any specific
predefined basis, even though the equations are originally formulated using
the projectors onto the site basis. Therefore, it allows us to identify the
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Figure 4.3 Schematic representation of the Förster energy gap in the pres-
ence of the resonance coupling. Monomeric units with identical ∆ε0 are
shown on the left. The grey arrows on the right represent the vibrational
relaxation, which defines the effective Förster energy gap in the excitonic
basis, ∆eε

0. The top row corresponds to λa = λb, the middle and the bottom
ones — to λa > λb and λa < λb accordingly.
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4.3. Optimal energy gap in the non-Markovian regime

so-called preferred basis [60], in which the density matrix is diagonal in the
long-time limit. This can be obtained by diagonalizing the stationary part
of the solution in the excitonic basis. Representing the RDO in the preferred
basis for the fixed ∆ε configuration has the effect of shifting the equilib-
rium population values. Their order, however, remains the same as in the
excitonic basis. Meanwhile for the fixed ∆ε0 configuration, we have not just
quantitative but also qualitative changes in comparison with Fig. 4.2(b).
Evidently, the solutions for λa 6= λb configurations now converge into the
same steady state value, which is in-between the ones for equal reorganiza-
tion energies. This shows that the energy gap determining the equilibrium
population values depends on the sum of the reorganization energies rather
than their individual values.

Establishing the preferred basis by diagonalising the density matrix after
it reaches equilibrium has led to the conclusion, that a good measure of the
action of the bath is an effective resonance coupling Jeff . It has been used
to replace the original J value with to reproduce the effective energy gap
defined by the thermal equilibrium in the preferred basis [30]. The effective
system properties are a well known concept from the solid state theory [61],
and suppressed resonance coupling was already mentioned by considering
the manifestation of dynamical exciton localization in the spectral proper-
ties of photosynthetic reaction centres [33, 34]. In our case, it appears that
the connection between the original resonance coupling and the effective
one resembles the so-called small polaron transformation [62]. The empir-
ical form of the effective resonance coupling was found to be [30]

Jeff = J exp

(
−Aλa + λb

kBT

)
, (4.1)

where the constant A was found by the authors to be 0.15.

4.3. Optimal energy gap in the non-Markovian regime

It has been shown that in the region of intermediate and strong reorgan-
ization energies, the Redfield equations describe the energy transfer rates
inadequately, because these rates become independent of the reorganization
energies [58]. This is explained by the fact that the Redfield equations do
not capture the reorganization of the phonon modes, which in turn comes
from the Markov approximation. To study the approach to the interme-
diate regime in the case of Markovian and non-Markovian dynamics, we
use the HEOM method. Additionally, we use the FRET theory for compar-
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Figure 4.4 Comparison of thermalization times given by HEOM and FRET
schemes for different energy gaps. For the sake of consistency, all the rates
were extracted from the evolution of RDO by numerical fitting. Two cases
of resonance coupling correspond to: (a) J = 20 cm−1; (b) J = 80 cm−1.

ison, which provides the upward and downward population transfer rates,
kab, kba, for the master equation Eq. (2.39), which takes the form

{
ρ̇aa = − kab ρaa + kba ρbb;

ρ̇bb = kab ρaa − kba ρbb.
(4.2)

We investigate the time scale of the thermal relaxation (TR), τTR =

(kab+kba)
−1, which is obtained by solving the HEOM and subsequently per-

forming numerical fitting by means of the least square routine. We examine
the cases of parameters mostly relevant for the FRET regime, λ� J . Tak-
ing λa = λb = 400 cm−1 let us consider the cases of λ/J = 20 (J = 20 cm−1),
which is fully consistent with the FRET regime, and λ/J = 5 (J = 80 cm−1),
which reflects the breaking of the validity of FRET. The calculated depend-
ence of τTR on the energy gap between the monomers is shown in Fig. 4.4.
Calculations at temperature 300 K (β−1 ≈ 208 cm−1) are performed for two
different values of γ−1 = γ−1

a = γ−1
b : 10 fs and 100 fs. We omit the case when

the energy gap is ∆ε = 0 cm−1, because the dynamics in that case are not
given by the FRET scheme due to the degeneracy of monomer energies.

In the case of small resonance coupling and fast correlation decay of
the bath (black squares, Fig. 4.4(a) the monotonic rise in the TR time is
obtained upon the increase of the energy gap. This is an intuitively clear
picture of thermalization and corresponds to a Markovian regime of the bath
relaxation. In this case the transfer rates predicted by HEOM and FRET
almost match each other. When we switch to the slow correlation decay
of the bath (grey dots), the dependence changes. Now an optimal system
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4.3. Optimal energy gap in the non-Markovian regime

configuration for the excitation transfer around ∆ε ≈ 700 cm−1 is well dis-
tinguished. This is a non-Markovian regime of the bath dynamics, and the
HEOM and FRET predictions are qualitatively identical. The FRET ap-
proach thus properly describes the parameter regime ∆ε � J and λ � J .
We note that the dependence τTR(∆ε) is symmetric around ∆ε = 0 because
the TR rate, being the sum of the upward and downward rates kab + kba, is
invariant under the change of the sign of ∆ε.

In the case of larger resonance coupling, Fig. 4.4(b), the relaxation is sub-
stantially faster, as should be expected. Another difference is visible in the
HEOM results when energy gaps are ∆ε ≤ 300 cm−1. The decrease of τTR

for smaller energy gaps is the manifestation of the excitonic delocalization
effects. For larger gaps both HEOM and FRET have an optimal energy gap
configuration in the non-Markovian regime. While the absolute difference in
τTR values calculated by HEOM and FRET is similar as in Fig. 4.4(a), the
relative difference between them in the non-Markovian regime now becomes
significant. However, the FRET approach still gives a reasonable prediction.
There are two more points to mention which are not shown here explicitly.
The first one is that the rate kab + kba does not depend on individual reor-
ganization energies, but rather on their sum λa+λb. The second one is that
the speed-up seen in the non-Markovian regime diminishes upon decreasing
λa + λb.

Our calculations of the thermalization dynamics reveals the existence
of an optimal energy gap that depends on the system–bath coupling and
the relaxation time scale of the bath correlations. Similar results demon-
strating the speed-up of the energy transfer upon increasing the value of
∆ε in a certain region have also been previously demonstrated [63,64]. For
better understanding of its origin, let us start the consideration from the
case of the small resonance coupling, when the site and the excitonic bases
almost coincide and the results of HEOM and FRET are directly compar-
able. This allows us to follow the details of the energy gap dependence of
the excitation transfer in terms of FRET, where the transfer rates have an
explicit form. Namely, they are proportional to the overlap of the donor
emission and acceptor absorption profiles, Eq. 2.40. The profile functions
for the transitions |gi〉 → |ei〉 define the absorption/emission line-shapes
in the various bath regimes separated by values of a corresponding dimen-
sionless modulation parameter χ = 2λ/βγ2 [40]. Fig. 4.5(a) demonstrates
absorption (black line) and emission (grey lines) profiles for different dis-
placements ∆ε of the donor in the case of γ−1 = 10 fs (fast bath). Parameter
χ = 0.59 is close to the fast modulation (homogeneous) limit χ� 1, which
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Figure 4.5 Emission/absorption profiles of the donor and the acceptor in the
case of: (a) fast bath; (b) slow bath. Absorption of the acceptor (black line)
is fixed, while the donor emission profiles (grey) are given for different energy
gaps. The donor is above the acceptor, and the values of ∆ε (cm−1) read
(left to right): a) 100, 200, 300, 400, 500, 600; b) 100, 300, 500, 700, 900.
The emission profile producing the maximal overlap with the absorption
profile is given by dashed lines; note that it does not exactly match the
optimal ∆ε and is given for the purpose of illustration only. Frequency is
centred around the maximum of the acceptor absorption.

manifests in Lorentzian profiles and the absence of the Stokes shift [30].
In Fig. 4.5(b) the same situation is depicted for the case of γ−1 = 100 fs,
which corresponds to χ = 59. Condition χ� 1 is known as the slow mod-
ulation (inhomogeneous) limit, and it manifests in Gaussian profiles and a
clearly developed Stokes shift [30]. The interpretation of relaxation rates
in terms of Fig. 4.5 is the following. In the Markovian bath regime there is
little-to-none Stokes shift, and the donor fluorescence yields the best overlap
with the acceptor absorption at small ∆ε. Whereas in the non-Markovian
regime, there is a Stokes shift close to its maximum of 2λ that needs to
be compensated by displacement ∆ε to yield the maximum overlap. This
is shown in Fig. 4.4(a), where the energy gap for optimal relaxation in the
case of slow bath is close to λa + λb [64].

The case of the relatively large resonance coupling, 4.4(b), demonstrates
similar dependencies even though the relative difference between HEOM
and FRET is considerable in the case of the slow relaxation of the bath
correlation. The main difference other than the globally increased rates, is
the speed-up in the region of ∆ε where the excitonic mixing is significant. It
is interesting to note, that the transfer rates actually depend on the energy
gap between the relaxed states ∆ε0 (conf. Fig. 4.1) as opposed to ∆ε. In the
case of different reorganization energies, ∆λ = λa − λb 6= 0, the following
consequences arise. If the resonance coupling is small, the two energy gaps
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are simply mutually shifted by ∆λ. The relaxation time should then be
plotted as a function of the gap ∆ε0, and the decrease in τTR(∆ε0) that
is now centred at ∆ε0 = 0, would be centred at ∆ε0 = ∆λ. However, if
the resonance coupling is large, the relation between ∆ε0 and ∆ε, or rather
∆eε

0 and ∆eε, is no longer that simple, as shown in Section 4.1.

4.4. Comparison of propagation schemes in the intermedi-

ate coupling regime

In the light of the results from the previous sections, we can discuss the ap-
plicability and validity of various schemes in describing the energy transfer
in the intermediate coupling limit. It must be noted that certain drawbacks
of the methods applied above have been recognized and documented. For
instance, the positivity problems of the Redfield equations is a known is-
sue [59], and the failure of the method in the reorganization dynamics has
been discussed [58, 63]. In addition to that, many more methods, such as
the Lindblad equations in its original [65] and modified forms [66, 67], the
modified Redfield [63] and others [22,68,69], have been suggested. Therefore
we would like to point out several additional peculiarities that follow from
our study.

Despite being plagued by the positivity problems, the Redfield equa-
tions have been one of the standard tools to study excitation dynamics
in the pigment-protein complexes for some time, and moreover, they are
well documented in textbooks [9, 39, 51]. We can asses the validity of the
method by looking at Fig. 4.2, and comparing it to the HEOM. The equal
reorganization energies (full lines) serve as a good starting point for com-
parison of the methods. As we can see, the initial stages of the Redfield
and HEOM solutions (∼ 100 fs) look very similar, while the rates of the
thermalization and the frequencies of the coherent oscillations are different
(the coherent oscillations are more dramatic but shorter-lived when using
the Redfield theory). Moreover, different methods give us different equilib-
rium population values, and within the HEOM approach the latter do not
coincide for two pairs of identical λ’s, as discussed above. This tells us that
the Redfield equations, even though they are designed for the weak system–
bath interaction, provide a fair qualitative description of the dynamics when
the inter-chromophore and system–bath coupling strengths are comparable.
However, quantitatively the Redfield results are far from conclusive.

The non-trivial case of different reorganization energies (dashed lines)
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4. The intermediate resonance coupling regime

reveals the well-known problem of the Redfield scheme, namely, that it
does not guarantee positivity. The increase of the energy gap is seemingly
the reason for the failure of the Redfield scheme. At this point we can take
a look at the solutions of the secular Redfield scheme, which was actually
introduced in part to avoid the negative populations. Indeed, the solutions
do not suffer from this problem, however they are both qualitatively and
quantitatively different from both the HEOM and the full Redfield. In this
case all four λ combinations give relaxation to the same equilibrium position.
The equilibration is fully determined by the optical energy gap ∆ε and
does not depend on λa− λb, which shows the failure of this approach when
λa 6= λb. The dynamics modelled by the secular Redfield scheme in the case
of a fixed Förster energy gap, Fig. 4.2(f), again follow the optical energy
gap. Hence, we are to conclude, that the secular approximation is not a
suitable tool for expanding the applicability of the Redfield scheme.

There are several remarks to be made about the HEOM as well. The
question is: what price needs to be paid for the method being exact? The an-
swer is twofold, and it starts with the somewhat “technical” aspects. Firstly,
similarly to all the exact methods, HEOM is numerically very expensive, as
the number of ADOs, required for a converged result, grows rapidly with
the number of chromophores, which in turn boosts the memory require-
ments and the computation time. Setting aside the computational issues,
another problem is the intrinsic dependence of the form of the equations on
the form of the spectral density. Every model of spectral density requires
a (re)derivation of the explicit form of the equations due to a specific de-
composition of the correlation function, Eq. (2.58). And last but not least,
the interpretation of the results, provided by the HEOM, is somewhat chal-
lenging, if an underlying physical mechanism of some process need to be
established. Both the Redfield scheme and the FRET have a well under-
stood picture of the underlying physics, while the HEOM lack it. The results
of Section 4.3, namely, the ability of the FRET to explain the energy-gap-
dependent speed-up in thermal relaxation, which is of course captured by
HEOM as well, nicely illustrates the situation. Hence, it seems that the
perturbative approaches, even though flawed in some situations, but cap-
able of providing insights into the exact evolution, should not be completely
disregarded.
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system

The influence of the excitonic effects in the energy transfer is studied mostly
within the single-excitation manifold. This is based on the assumption that
the time scales of energy transfer and relaxation to the ground state are
well separated. This is true in many cases of interest as the typical transfer
times are in the range of femto- to picoseconds, while the excited state
lifetime can be as long as nanoseconds. In turn this is due to the typical
energy gaps to the first excited state being larger than kBT by orders of
magnitude. Therefore it is assumed, that the only coupling channel from
the ground state to the excited state (or vice versa) is opened by the action
of the electric field, i.e., the transitions from/to the ground state are possible
only through optical pumping/emission. However, in certain problems the
relaxation to the ground state (RGS) is of both interest and importance.
One particular case is a process in the plant photosynthesis, known as the
non-photochemical quenching, which is briefly introduced in the Section 5.1.
To address one of the possible mechanisms of this process, we analyse the
RGS in the heterodimer in Section 5.2, using the results from the previous
chapter as well. We apply our calculations for experimentally studied model
systems, called carotenoid–phthalocyanine dyads, in Sections 5.3 and 5.4.

5.1. Non-photochemical quenching in plant photosynthesis

The photosynthetic light-harvesting complexes are responsible for collection
of solar energy and its subsequent delivery to the reaction centre, where this
energy is stabilized in the form of a trans-membrane electrochemical poten-
tial [3,4]. Chlorophylls (Chls) and carotenoids (Cars) are the most abundant
pigment molecules assembled in these complexes, which are responsible for
all the light-induced processes in plants. In addition to the principle role
of delivering the absorbed light energy to the reaction centre, the light-
harvesting complexes from plant photosynthesis, namely from the PSII, are
also involved in self-protection and regulation of the excitation density de-
pending on the excitation conditions (see [70] for a recent review). The Car
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molecules play the self-protection role against the triplet state formation on
Chl molecules. Population of the triplet states on Chl molecules is possible
as a result of intersystem crossing from the singlet excited states, which
play the major role in the light-harvesting processes. Being in the triplet
state Chl molecules contain sufficient energy to convert ground state triplet
molecular oxygen to an excited singlet state, known to be destructive to
the surrounding medium. Formation of singlet oxygen is inhibited by Car
molecules as they accept Chl triplets through triplet energy transfer and
the resulting Car triplet excitation is energetically too low to excite sing-
let oxygen [71]. In addition to such self-protection mechanism caused by
the triplet state transfer from Chl to Car molecules, a further mechanism
responsible for the excitation density control in oxygen generating PSII is
invoked. This regulatory mechanism termed as non-photochemical quench-
ing (NPQ), ensures a high efficiency and robustness of plant photosynthesis
under fluctuating light, even at very high intensities.

Though the significance of NPQ in green plants is well identified, the ex-
act nature of the underlying mechanism still remains a matter of debate [70].
Of the many proposed NPQ mechanisms several involve Car molecules —
xanthophylls. One proposed mechanism is based on the assumption that
a radical [72] or a charge-transfer state of a Chl–Car pair [73, 74] may be
responsible for NPQ. According to later spectroscopic observations Lutein 1
in LHCII has been identified as a strong candidate to be responsible for the
feedback de-exitation, which is the main component of NPQ [75]. More re-
cently [76] a complex charge transfer state involving Lutein 1 and two Chls
as an intermediate state in quenching by Lutein 1 has been identified. The
notion of lutein (or another Car) as a quencher is attractive in part due to
the fact that it possesses a very short (∼ 10 ps) excited state lifetime. In-
terestingly, according to recent model simulations, the excitation quenching
mechanism at the heart of NPQ should be very fast, possessing a charac-
teristic time of a few ps or even less [77]. Alternatively, the modulation
possibility of interactions between Cars and Chls [78] or the energy position
of the Car molecule interacting with Chls [79] might be attributed to the
quenching ability of Chl dimers due to changes in their mutual interaction
driven by an anisotropic polar environment.

Since the possible role of the Car molecule in the NPQ process remains
unsettled, additional studies of the excitation dynamics in the artificial dy-
ads composed of covalently linked Car and zinc phthalocyanine (Pc) mo-
lecules, Fig. 5.1, have been performed [35–37, 80]. The experimental data
provide means to observe the energy transfer pathways in a structure similar
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Figure 5.1 Carotenoid–phthalocyanine dyad.

to the Car–Chl dimer without the complementary effects of the surrounding
pigments and the protein scaffold. The conclusions drawn from the energy
gap dependence of various relaxation time scales serve as an inspiration
to perform a rigorous modelling based on the quantum relaxation theory.
To describe the excitation evolution of the dyads composed of covalently
linked Car and Pc molecules, the evolution of a molecular heterodimer can
be considered by assuming that one monomer (Car molecule in this case) is
responsible for excitation quenching. Such quality arises when the spontan-
eous decay time τQ of the chosen monomer is comparable to the excitation
energy transfer time. Indeed, the evolution of the excitation in such sys-
tems reveals two characteristic time scales [81]. The first one arises from
the thermal relaxation (TR), discussed in the previous chapter, while the
second one — from the RGS. In the next section, we examine the two
processes and their interplay as a function of the resonance coupling, the
interaction with the thermal bath and, most importantly, the energy gap
between the monomeric excited states in the weak-to-intermediate reson-
ance coupling regimes, which seem to be appropriate judging by the results
obtained for the dyads (especially, [35]). To cover a broad scope of dynam-
ical regimes of the model system under consideration, we use the HEOM
method. Since the properties of the constituent monomers can be matched
to those of Car S1 and Chl/Pc Qy electronic states, we are able to give a
comprehensive interpretation of excitation dynamics in the dyads and make
the conclusions about the possible sensitivity to characteristic parameters
of the system and, thus, about the mechanism of energy dissipation.

5.2. Energy transfer and quenching in an excitonic heterodi-
mer

In order to describe the RGS in an aggregate, we must add a corresponding
superoperator to the Eq. (2.54):
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d

dt
ρ̂(t) = −iLSρ̂(t) +Dρ̂(t) +Kρ̂(t). (5.1)

The RGS superoperator is defined as K• ⇔ −∑i
κi
2 {Q̂i, •}, where κi is the

decay rate of the ith excited state. Parameters κi can be phenomenologically
defined in the site basis [81]. The form of the RGS superoperator guarantees
that the diagonal elements of the RDO (the populations) ρii(t) decay with
the rates κi, while the corresponding off-diagonal elements (the coherences)
ρij(t) decay with rates 1

2(κi + κj).
In the following we consider the time scales of relaxation in the dimer,

which are defined as τTR (for the thermal relaxation as previously) and as
τrgs for the relaxation to the ground state. As for the monomers, we assume
that state |a〉 is a long-living excited state, and hence κa = 0. The short-
living state |b〉 (lifetime τQ) decays with the rate κb = τ−1

Q ≡ κ and, thus,
plays the role of the quencher. We will now present a simplified model to
describe the long-time evolution in such a system.

We can describe the processes of relaxation within the dimer by the
following effective Master equation in the excitonic basis:

{
ρ̇11 = − (k12 + κ cos2 θ) ρ11 + k21 ρ22;

ρ̇22 = k12 ρ11 − (k21 + κ sin2 θ) ρ22.
(5.2)

Here, k12, k21 are the effective transfer rates, in analogy to Eq. (2.40), that
satisfy the detailed balance condition k12/k21 = exp(−β∆eε

0), where ∆eε
0

again denotes the energy gap between the relaxed excitonic states. If the
reorganization energies are identical, ∆eε

0 coincides with the excitonic split-
ting ∆eε =

√
∆ε2 + (2J)2, as discussed in the previous chapter. We call

Eq. (5.2) effective in the sense that the full quantum dissipative dynam-
ics are parametrized by the effective rates, which can be extracted from
some general equation of motion for the RDO in the absence of RGS (in
the current case, the HEOM), by numerical fitting. The sine and cosine
in Eq. (5.2) originate from the transformation matrix, Eq. (2.12), which is
used to represent the RGS superoperator in the excitonic basis.

The solution of Eq. (5.2) is of the form ρii(t) = Ai1eξ1t + Ai2eξ2t, where
Ai1, Ai2 are the amplitudes, and ξ1;2 are the eigenvalues of Eq. (5.2). The
latter read:

−|ξ1;2| = −
k12 + k21

2
− κ

2
± 1

2
S, (5.3)

where
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S =

√
(k12 + k21)2 − 2κ(k12 + k21)√

(2J/∆ε)2 + 1
tanh

β∆eε

2
+

κ2

(2J/∆ε)2 + 1
. (5.4)

The eigenvalues correspond to the time scales of interest as τrgs = |ξ1|−1 and
τTR = |ξ2|−1. Such attribution might look dubious as the origin of the net
decay, described by ξ1;2, is a mixture of both the exciton thermalization due
to the interaction between the monomers and the presence of the quencher
within the system. However, a closer inspection of the limiting case κ→ 0

reveals, that |ξ1| → 0 and |ξ2| → k12+k21, which is the classical result for the
relaxation to the thermal equilibrium. More generally, when k12 + k21 � κ

(usually, thermalization is much faster than the spontaneous decay) we can
simplify S as follows:

S ≈ k12 + k21 − κΦ(J, ∆ε), (5.5)

where the auxiliary function Φ is defined as

Φ(J, ∆ε) = tanh

(
β∆ε

2

√
(2J/∆ε)2 + 1

)
/
√

(2J/∆ε)2 + 1. (5.6)

The eigenvalues now read:

|ξ1| ≈
κ

2
(1 + Φ(J, ∆ε)) , (5.7)

|ξ2| ≈ k12 + k21. (5.8)

This shows how the effect of the quencher emerges in the dynamics: the first
eigenvalue corresponds purely to the RGS, while the second one still gives
the rate of thermalization as if the spontaneous decay were absent. We can
estimate the time scale for the RGS as:

τrgs =
2τQ

1 + Φ(J, ∆ε)
. (5.9)

Since Φ(J, ∆ε) ∈ [−1; 1], RGS takes place on the time scale within the
range [τQ; 2τQ] if the quenching state is below the donor state (Φ > 0),
and on the time scale [2τQ; ∞) otherwise (Φ < 0). Of course, this relation
becomes less accurate when ∆ε � kBT or the resonance and system–bath
couplings are very small, because the condition k12 +k21 � κ breaks, yet we

75



5. Relaxation to the ground state in an excitonic system

0 1 0 2 0 3 00 , 0

0 , 5

1 , 0 a

 

 
po

pu
lat

ion
s

t   ( p s )

,   � 1 1
,   � 2 2

0 1 0 2 0 3 00 , 0

0 , 5

1 , 0 b ,   � 1 1
,   � 2 2

 

 

po
pu

lat
ion

s

t   ( p s )

Figure 5.2 Relaxation in the dimer. The dotted lines correspond to thermal
relaxation alone, while the full lines correspond to the combined process.
The energy gap is: (a) ∆ε = +200 cm−1; (b) ∆ε = −200 cm−1. Temperature
and reorganization energies are the same as in Fig. 4.4; J = 20 cm−1, γ−1 =
100 fs.

can use Eq. (5.9) as a lower bound for τrgs. We will use this analytical result
later in the analysis of the results obtained by the numerical simulations.

Let us now take the RGS into account by considering the excitation
dynamics in the dimer while assuming τQ = 10 ps. Fig. 5.2 shows the excit-
ation evolutions both in the presence (full lines) and in the absence (dotted
lines) of the RGS in the cases of ∆ε = ±200 cm−1 (J = 20 cm−1). As can
be seen, the energetic position of the quencher has an effect on both the
rates and the amplitudes of the process. The amplitude dependence largely
comes from the unquenched dynamics. The latter gives us the time scale
for TR alone as k12 + k21 = 1/3.8 ps. By performing a two-exponential
fitting we obtain the following time scales for the combined process: (a)
τTR = 3.2 ps, τrgs = 15.6 ps; (b) τTR = 2.8 ps, τrgs = 46.2 ps. Although the
condition k12 + k21 � κ is not very accurate in this situation, we still can
check the time scale τrgs against the theoretical limit given by Eq. (5.9). For
the current parameters it gives: (a) τrgs = 13.8 ps; (b) τrgs = 36.1 ps. As we
can see, Eq. (5.9) gives the right tendency although the numerical value is
appreciably different for ∆ε = −200 cm−1.

To demonstrate the net effect of the RGS and TR in the non-Markovian
regime we calculate evolutions for the energy gaps ∆ε = −200 cm−1 and
∆ε = −650 cm−1, as shown in Fig. 5.3. Other parameters are the same as in
Fig. 5.2, only the reorganization energies are such that λa+λb = 1000 cm−1.
The parameters are chosen to yield a rough fit of the signal decay time scales
corresponding to dyads 2 and 3 from Ref. [35]. Energy gap ∆ε = −200 cm−1

(black line) corresponds to the time scales τTR = 3.7 ps, τrgs = 49.9 ps,
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Figure 5.3 Relaxation in the dimer upon the increase of the energy gap.
The black lines correspond to the smaller gap (∆ε = −200 cm−1), the grey
ones correspond to the larger gap (∆ε = −650 cm−1).

whereas for the gap ∆ε = −650 cm−1 (grey line) we get τTR = 2.7 ps,
τrgs = 311 ps. Note the decrease of the amplitude associated with the TR.

As follows from our analysis presented above, the two time scales of the
evolution of the donor-quencher combined dimer have the following origin.
One of the rates and the corresponding amplitude is largely determined
by details of the relaxation to the thermal equilibrium in the absence of
quenching, Fig. 5.2. While this rate is independent of the sign of ∆ε, the
amplitude indicates the sign due to thermodynamic reasoning as follows.
State |1〉 being optically accessible is always initially over-populated with
respect to the equilibrium, therefore ρ11(t) is always decreasing. Yet, the
amplitude of the decrease is significantly larger for ∆ε > 0 (state |1〉 is
the upper state) than for ∆ε < 0 (dark state |2〉 is the upper state). The
second rate is determined by the quencher lifetime and its energy position.
Interestingly, if the lifetime and the thermal relaxation time scale are well
separated, the RGS time scale does not depend on the system-bath coup-
ling, conf. Eq. (5.9), yet the asymmetry between the situations of ∆ε > 0

and ∆ε < 0 again arises from the thermodynamic groundings, conf. the
hyperbolic tangent function in Eq. (5.6). In this case, the values of τrgs for
various resonance couplings and energy gaps are shown in Fig. 5.4. We can
see that when the excited state of the quencher is below the donor excited
state (∆ε > 0), the relaxation time τrgs is less than twice the quencher life-
time and weakly depends on the resonance coupling and the absolute value
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Figure 5.4 Time scale of the relaxation to the ground state τrgs as a function
of the energy gap and the resonance coupling according to Eq. (5.9). The
time scale is normalized to the lifetime of the quencher τQ.

of the energy gap. In the opposite case, τrgs > 2τQ and the dependence on
the energy gap is clearly pronounced.

5.3. Carbonyl-linked carotenoid–phthalocyanine dyads

The model of excitonically coupled dimer described above can be used for
the analysis of the excitation kinetics in Car-Pc dyads, which consist of a
zinc Pc covalently linked to a series of Cars with different number of carbon-
carbon conjugated double bonds. The evolution of excitation within such
systems has been recently traced by means of transient absorption spec-
troscopy [35, 37]. The experiments focused on determining the correlation
between the lifetime of the Pc excited state and the number of conjugated
double bonds within Car moiety. Berera et al. studied carbonyl-linked dy-
ads [35] (the name comes from the terminal group of Car moiety), while
Kloz et al. performed identical measurements on phenylamino-linked dy-
ads [37]. After pumping the system into the Qy absorption band of the
Pc (670 − 680 nm), the decay of the Qy signal (ground state bleach and
stimulated emission) was observed both in the kinetic traces at the same
wavelength and the evolution-associated decay spectra (EADS) obtained by
the global analysis of the time-resolved data [82]. Several time components
were needed for an adequate fit, however, we take into consideration only
the two fastest ones since we find the rest to be in agreement with the in-
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terpretation proposed by the authors. The values of the relevant time scales
taken from the figures of the EADS in Refs. [35] and [37] are summarized
accordingly in Tables 5.1 and 5.2.

We map the dyads onto our model assuming that a dimer is formed due
to the coupling of the Car first excited state S1 to the Pc Qy state. Car
S1 is an optically dark state, moreover, it is an extremely short-lived state
(τS1 ≈ 5− 10 ps) due to the ultrafast internal conversion [71,83]. Therefore
Car S1 corresponds to the state |b〉 from our generic model, and the long-
lived (τQy ∼ 3 ns), bright state Qy corresponds to the state |a〉. Upon these
definitions the condition ∆ε0 > 0 corresponds to Qy being above S1. We
note that εS1, and hence ∆ε0, as of today is still a debated parameter [83],
therefore we use ∆ε0 as an adjustable variable in our calculations.

Firstly, let us discuss the carbonyl-linked dyads in tetrahydrofuran (THF)
[35]. The experimentally determined decay times for all these dyads are
presented in Table 5.1. Starting with dyad 3 (11 double bonds) the first two
time scales (3.8 ps and 56 ps) are of the order of correspondingly the energy
transfer in weakly coupled molecular aggregates and the lifetime of the S1

state. If we subsequently assume that these time scales correspond to the
rates ξ2 and ξ1, Eq. (5.3), the following estimates are to be proposed. Since
the longer time scale is more than twice the Car S1 lifetime τS1 (which we
approximated here and further as τS1 ≡ τQ = 10 ps), we can expect that
the S1 state is actually above the Qy state. Next, by noting that the sum of
the eigenvalues Eq. (5.3) yields k12 + k21 = |ξ1|+ |ξ2| − κ, we can estimate
the thermalization time scale to be (k12 +k21)−1 ≈ 5 ps. This indicates that
the transfer proceeds within the Förster regime, i.e. the resonance coupling
is small (J � ∆ε) and the reorganization energies are large (λ� J), which
is plausible in the dyad, since the Car S1 state, while being close to the
Pc, optically carries no transition dipole. To obtain the set of parameters
consistent with both time scales we have performed modelling by using the
HEOM scheme with the RGS for certain ranges of J , λ and ∆ε. The results
are given in Fig. 5.3 (black line), and the determined parameters yield the
time scales τTR = 3.7 ps, τrgs = 49.9 ps when the relaxed Car S1 is 200 cm−1

above the relaxed Pc Qy. Such a slow thermalization requires not only a
small resonance coupling (J = 20 cm−1) but also considerably large reorgan-
ization energies: λa+λb = 1000 cm−1. This might look surprising bearing in
mind that the FWHM of the Qy absorption, which is proportional to λQy , is
roughly 400 cm−1 at most. However, we cannot assess λS1 in the same way,
and the latter might make a significant contribution [84]. To make sure that
the obtained time scales are not just coincidental, but are instead indicative
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Table 5.1 Comparison of experimentally detected and theoretically obtained
time scales for carbonyl-linked dyads in THF. DB denotes the number of
conjugated double bonds of Car moiety; τ1st denotes the fastest time scale
shown in Fig. 2 from Ref. [35] and τ2nd is the second fastest time scale.

Experiment Theory
DB τ1st (ps) τ2nd (ps) ∆ε0 (cm−1) τTR (ps) τrgs (ps)

9 1.25 3000 -1100 2.7 2700
10 (1− 8)? 300 -650 2.7 311
11 3.8 56 -200 3.7 49.9

?these are two individual time scales in Ref. [35]; see text for details.

of a consistent physical mechanism, we varied the energy gap while keep-
ing all the other parameters unchanged. We found that shifting the energy
gap to ∆ε0 = −650 cm−1 yields τTR = 2.7 ps, τrgs = 311 ps, Fig. 5.3 (grey
line). The latter time scales are characteristic for dyad 2 (10 double bonds),
although global analysis indicates three time scales: 1 ps, 8 ps and 300 ps.
Here, we make an assumption that the actual rate most probably has the
value between (1 ps)−1 and (8 ps)−1, because both processes have relatively
small amplitudes. A further shift in energy, ∆ε0 = −1100 cm−1, yields time
scales τTR = 2.7 ps, τrgs = 2.7 ns, which resemble those of dyad 1 (9 double
bonds): 1.25 ps, 3 ns. The time scale τTR almost coincides with the previous
value due to approximate symmetry of the non-Markovian rate function
τTR(∆ε). What is important, the value of τrgs illustrates the highly non-
linear dependence τrgs(∆ε) in the region of negative energy gaps, Fig. 5.4.
These results are summarized in Table 5.1.

Before formulating the general conclusion from these findings we would
like to note that in dyad 3, the rise at > 550 nm on the 3.8 ps time scale
has been previously attributed to the inverted kinetics behaviour. However,
the rise of the mentioned component could in principle be due to the initial
under-population (with respect to the equilibrium) of the optically dark
state |2〉 as discussed above. In Fig. 5.3 we can see the initial rise of ρ22

on the time scale τTR, and the amplitude is decreasing upon the increase
of ∆ε0, which correlates with the experimental observations. Therefore we
can suggest that in the the carbonyl-linked dyads in THF, the Car S1 state
approaches Pc Qy state from above upon increasing the conjugation length
of the carotenoid from 9 double bonds (no significant quenching; S1 state
“too high”) to 11 double bonds (S1 state right above the Qy state; significant
quenching). The modelling presented here demonstrates how the so-called
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Table 5.2 Comparison of experimentally detected and theoretically obtained
time scales for phenylamino-linked dyads in toluene. Notation is the same
as in Table 5.1; the experimental data is taken from Fig. 2 from Ref. [37]

Experiment Theory
DB τ1st (ps) τ2nd (ps) ∆ε0 (cm−1) τTR (ps) τrgs (ps)

10 0.4 67 -300 0.42 52
11 0.5 29 -150 0.53 31

“molecular gear shift mechanism” [85] could function in the presence of a
small resonance coupling and without switching of the states due to addition
of a single double bond.

5.4. Phenylamino-linked carotenoid–phthalocyanine dyads

Let us now consider the phenylamino-linked dyads in toluene and THF
[37]. Since the evolutions have a strikingly different character depending on
the solvent, we start with Dyad-10 and Dyad-11 (10 and 11 double bonds,
accordingly) in toluene, and the corresponding decay times are presented in
Table 5.2. Again, the first two time scales resemble those of thermalization
and relaxation: 0.4 ps and 67 ps for Dyad-10, 0.5 ps and 29 ps for Dyad-
11. The TR on the time scale of several hundreds of femtoseconds points to
larger resonance coupling than previously. The RGS time scale suggests that
the quenching state is again above the donor state. On the assumption that
the dyads are similar to those of Ref. [35], we keep all parameters the same
only setting the resonance coupling to J = 80 cm−1. Varying the energy gap
we find that ∆ε0 = −150 cm−1 yields τTR = 530 fs, τrgs = 31 ps, and ∆ε0 =

−300 cm−1 yields τTR = 420 fs, τrgs = 52 ps. The results are summarized
in Table 5.2. Both the time scales and the amplitudes correlate with the
observed Pc Qy signal, except that experimentally no rising component in
the excited state absorption of Car S1 was detected. It has been suggested
[37] that this could be due to excitonic mixing of the states which would
instantaneously populate the state |2〉 as well as |1〉 and therefore only the
decay would be observed. In our calculations this is not the case, because
despite rather large J , the difference in reorganization energy ∆λ makes
the energy gap ∆ε too broad to yield detectable excitonic mixing. This
introduces a discrepancy between our model and the spectroscopic data,
unless the Car S1 contribution to the signal is overwhelmed by the decay
of the components from other participating states.
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The same dyads evolve on entirely different time scales in THF. The
thermalization time scale (k12 + k21)−1 varies from 8.7 ps to 5.6 ps (Dyads
-8 to -11), which is again indicative of the Förster regime. Such a drastic
drop in the transfer rates suggests that some other state than S1 should be
responsible for the quenching. Yet if we consider the lifetime of this quencher
to be similar to the one of the Car S1, we can notice, that τrgs < 2τQ,
which means that the excitation energy of the quencher is now below the
one of the donor. There are two more arguments that would support this
hypothesis. Firstly, the decrease of the signal at 700 nm proceeds in two
steps of comparable amplitudes (conf., Fig. 5.2(a)). Secondly, there is no
significant energy gap dependence on τrgs (conf., Fig. 5.4). What weakens
the hypothesis is the absence of a rising counterpart component in the
spectra.

Our treatment thus leads to a unified picture of processes within a range
of different dyads. As an important result we have demonstrated that a
significant decrease in the quenching time for Pc in the dyads for longer
Cars does not necessarily indicates that the Car S1 state is below the Pc Qy,
although such an argument is sometimes given. At this point it is interesting
to note that if our assignment of the rates ξ1 and ξ2 to the observed time
scales is correct, the experiments on the dyads provide a direct proof of an
energy gap dependent speed-up of the TR due to non-Markovian bath. We
would like to note that by the modelling discussed above we did not intend to
actually pinpoint the parameters yielding the experimentally detected time
scales. For instance, we did not include the variation of τQ with the length
of the Car backbone. At this stage we also do not consider whether the
quenching state is actually the S1 or S∗, or a charge transfer state. Instead,
our goal was to provide insights into the evolution of the donor–quencher
system, especially focusing on the role of the system–bath interaction which
is usually neglected.

Calculations with different resonance couplings show that there is no
significant difference in the quenching mechanism while changing from the
incoherent energy transfer (Förster) regime to the coherent one. Although
the excitations are localized in our current scheme due to large energy gap
∆ε, in our previous work [81] we have taken into consideration a finite
delocalization (as due to ∆ε = J , J ≈ λ). We have demonstrated therein
that the excitation decays with a single rate because the joint system of
excitonically mixed states is kept in a dynamical equilibrium. The time scale
of the decay is governed by the same law, Eq. (5.9). This discloses a common
misconception associated with the role of excitonic mixing in the quenching
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of excitation energy. Namely, it has been implied that the efficient quenching
might arise as a consequence of the excitonic mixing of lifetimes [86]. As can
be seen, when the excitation decay is rigorously included into the quantum
dissipative dynamics, Eq. (5.1), the rates κ cos2 θ and κ sin2 θ are not the
true rates of the global energy dissipation. Instead, the exciton–phonon
interaction leads to the Master equation of the type given by Eq. (5.2),
thus the actual rate of the RGS is ξ1, and ξ1 > κ sin2 θ for all ∆ε 6= 0.
Hence, from our unified perspective it does not seem that the quenching
mechanisms termed as “energy transfer” and “excitonic coupling” [36, 37]
would really be distinct from one another.
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6. Summary of the results and conclusions

In the dissertation, the excitation energy transfer was studied in an ex-
citonic dimer under various conditions of inter-chromophore resonance in-
teraction and in different regimes of the system–bath coupling. In order to
capture the coherence effects in the limit of weak resonance interaction a
novel technique has been presented. While it is based on the perturbative
expansion in terms of the resonance coupling in apparent similarity to the
FRET theory, unlike in the FRET approach, we are able to reproduce the
coherence effects in the simulation of both static and dynamic spectroscopic
experiments. Namely, we can reproduce the excitonic splitting and dipole
strength redistribution in the linear absorption and early TRF spectra, as
well as the coherent oscillations in the evolution of the TRF spectra. The
coherent component of the population evolution of the RDO can be repro-
duced at early times in a good agreement with the results from HEOM,
which is a non-perturbative method. Thus, we are able to capture the ex-
citonic effects while working in the base of the monomeric, i.e. localized,
states. The drawback of the perturbative treatment of the resonance coup-
ling is that the system is driven towards the equilibrium with respect to
the monomeric states, and the overall dynamics is best described in short
times, approximately as J · t ≤ 1.

The study of an excitonic heterodimer under various system–bath coup-
ling conditions revealed both coherent and incoherent excitation evolutions.
The dynamics in the case of the hetero-dimer are rich in non-trivial effects,
several of which are distinguished. Perhaps the most prominent effect arising
in the situation of different reorganization energies, in the case of strong ex-
citonic mixing, is the swapping of the vibrationally relaxed excited state
energy levels with respect to the monomeric counterparts. The novel results
regarding the influence of the bath upon the system dynamics are the fol-
lowing. Firstly, in the case of non-Markovian bath correlations, there exists
a non-zero optimal energy gap for the excitation energy transfer both in
the weak and the intermediate resonance coupling regimes. Secondly, the
bath acts upon the system reducing the energy gap that defined the thermal
equilibrium. This effect is recognized as the formation of an “excitonic po-
laron”, a state different than the conventional Frenkel exciton, and can be
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6. Summary of the results and conclusions

quantitatively described by introducing an effective resonance coupling.
Lastly, the study of the relaxation of the excitonic dimer to the ground

state revealed that the resonant coupling strength and the energy gap
between the states — the parameters, which determine the excitonic mixing
— only control the rate of the process but not the character. This demon-
strates that there is no substantial difference in the relaxation mechanism
in the coherent and incoherent regimes. By the same token, it is demon-
strated that a short-lived state can efficiently quench the excitation within
the dimer even if it is above the long-lived state. This finding helped us ex-
plain the dissipation mechanism and time scales in the artificial carotenoid–
pthalocyanine dyads, and may be helpful in determining the mechanism(s)
of the non-photochemical quenching in photosynthesis.
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