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Notations

N denotes the population size.

X denotes the population of N numbers.

n denotes the sample size.

X denotes the sample of size n.

Xk denotes the sample of size n+ k, k = 1, 2, . . . , N − n.

n∗ denotes min{n,N − n}.

N denotes the set of natural numbers, N = {1, 2, . . .}.

R denotes the set of real numbers.

C denotes the set of complex numbers.

[·] denotes the greatest integer function.

I{·} denotes the indicator function.

Mi denotes the difference xi+1−xi of values from the population where x1 ≤ · · · ≤

xN .

∆j:n denotes the difference Xj+1:n −Xj:n of the order statistics.

P {A} denotes the probability of an event A.

EX denotes the expectation of a random variable X.

VarX denotes the variance of a random variable X.

Cov (X, Y ) denotes the covariance of random variables X and Y .(
m
k

)
denotes the binomial coefficient m!/[k!(m− k)!].

HN,n,i(j) denotes the probability
(
i
j

)(
N−i
n−j

)/(
N
n

)
that a hypergeometric random

variable with parameters N , n and i attains the value j.

an = O(bn) as n→∞ means that |an| / |bn| ≤ C, for some C > 0 and all n.

an = o(bn) as n→∞ means that limn→∞(an/bn) = 0.
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Yn = OP (bn) as n → ∞ means that the sequence |Yn| / |bn| is bounded in proba-

bility.

Yn = oP (bn) as n → ∞ means that the sequence |Yn| / |bn| converges to zero in

probability.
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Introduction

An asymptotic theory for random variables (statistics), occurring in problems
of mathematical statistics, plays an important role when we need good approx-
imations to distributions of those statistics. The most fundamental asymptotic
approximation is the normal approximation. Now it is well studied not only for
sums of independent and identically distributed (i.i.d.) random variables, but also
for much more complex statistics as well as for various sampling models. However,
in many practical situations the accuracy of this classical approximation is not
sufficient unless the sample size is (very) large. One of the known methods, which
can improve the normal approximation, is Edgeworth expansions, i.e., the normal
approximation plus one or more correction terms which reflect the specifics of an
underlying statistic and a sampling model.

The main objects of this doctoral dissertation are one-term Edgeworth expan-
sions for distributions of a general class of linear combinations of order statistics
(L-statistics), where samples are drawn without replacement from a finite pop-
ulation. The work done also involves other related questions such as the same
asymptotic normality, the analysis and estimation of variances of the statistics,
an efficient estimation of parameters that define Edgeworth expansions, empirical
Edgeworth expansions, bootstrap approximations, etc. We outline the following
problems.

Aims and problems

• Construct a short Edgeworth expansion for L-statistics.

• Find explicit expressions of the main terms of the Hoeffding decomposition
of L-statistics.

• Construct upper bounds for the variances of order statistics.

• Obtain simple sufficient conditions for the asymptotic normality and validity
of the Edgeworth expansion.

• Construct estimators of variance and parameters that define the Edgeworth
expansion of an L-statistic.
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• Construct and analyze a one-term Edgeworth expansion for a Studentized
L-statistic and empirical Edgeworth expansions.

Let X = {x1, . . . , xN} denote measurements of the study variable x of the
population U = {u1, . . . , uN}, i.e., a real function f : U → R assigns a fixed value
for each element of the population U . Let X = {X1, . . . , Xn} be measurements
of units of the simple random sample of size n < N drawn without replacement
from the population. The observations X1, . . . , Xn are identically distributed, but
they are not independent. Let X1:n ≤ · · · ≤ Xn:n denote the order statistics of X.
Define the L-statistic

Ln = Ln(X) = 1
n

n∑
j=1

cjXj:n. (1)

Here c1, . . . , cn is a given sequence of real numbers called weights. L-statistics
generalize the well-known estimators such as the sample mean (sum), trimmed
means, empirical quantiles, and Gini’s mean difference (each of them can be writ-
ten in form (1)). Usually the weights c1, . . . , cn are determined by the weight
function J : (0, 1)→ R as follows

cj = J
(

j

n+ 1

)
, 1 ≤ j ≤ n. (2)

Denote σ2
L = VarLn. We present some L-statistics in more detail.

Example 1 The trimmed mean is defined as follows: for any fixed numbers
0 < t1 < t2 < 1,

Mt1;t2 = ([t2n]− [t1n])−1
[t2n]∑

j=[t1n]+1
Xj:n, (3)

where [·] represents the greatest integer function. Clearly, it is statistic (1), with
the weight function J(u) = (t2 − t1)−1I{t1 < u < t2}. Here I{·} is the indicator
function. Note that the marginal case, where t1 = 0 and t2 = 1, represents the
usual sample mean. In this case J ≡ 1. The trimmed means are applied in a
robust estimation of a center of population X .

Example 2 In the case of i.i.d. observations, the L-statistic, defined by the weight
function J(u) = 6u(1 − u), is applied as an efficient estimator of the location
parameter for the logistic distribution, see Chernoff et al. [23]. Therefore, if it is
assumed that population X is obtained from the logistic distribution, the defined
statistic may be useful in the estimation of a center of population X .

Example 3 Gini’s mean difference, known as a measure of dispersion,

UG =
(
n

2

)−1 ∑
1≤i<j≤n

|Xi −Xj|
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is the U -statistic of degree 2 and it can be written in form (1) (see, e.g., Arnold
et al. [4, pp. 229–230]), where cj = (n + 1)J(j/(n + 1))/(n− 1), 1 ≤ j ≤ n, with
J(u) = 2(2u−1). It is known that this statistic can be also applied to an efficient
and robust against outliers estimation of the scale parameter (standard deviation)
for the normal distribution, if we take

√
πUG/2 instead of UG. If it is assumed

that population X is obtained from the normal distribution, this statistic may be
useful in the estimation of the variance VarX1 of X .

Note that in Examples 2 and 3, for the interpretation of L-statistics (-estimators),
it was convenient to assume that a fixed finite population X is a random sample
from an infinite population (also called a superpopulation) with a certain distri-
bution function.

Further, when we talk about the asymptotics of L-statistics, we use centered
statistics (1) with n1/2 norming, i.e.,

Sn = n1/2(Ln − ELn). (4)

Denote σ̃2
n = VarSn. We are interested in approximations to the distribution

function
Fn(x) = P {Sn ≤ xσ̃n} . (5)

Denote
τ 2 = Npq, where p = n/N, q = 1− p, (6)

and write
n∗ = min{n,N − n}. (7)

The numbers τ 2 and n∗ will be used in many further statements on the asymptotics
of L-statistics instead of usual n. We note that τ 2 and n∗ are approximately
equivalent because of the inequalities τ 2 ≤ n∗ ≤ 2τ 2. Clearly, if we fix the sample
size n and let the population size N →∞ (the case of independent observations),
then τ 2 → n.

Note that for correct formulations of asymptotic results for finite population
statistics, we need to consider a sequence of populations Xr = {xr,1, . . . , xr,Nr},
with Nr → ∞ as r → ∞, and a sequence of statistics Lnr(Xr), based on simple
random samples Xr = {Xr,1, . . . , Xr,nr} drawn without replacement from Xr. In
order to keep the notation simple we shall skip the superscript r in what follows.

A separate case of the sample mean. First, we discuss the case of the
sample mean, where cj ≡ 1, 1 ≤ j ≤ n. The following asymptotic results hold for
samples drawn without replacement.

The most common approximation to (5) is the normal approximation. Write
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σ2 = VarX1. Let
Φ(x) = 1√

2π

∫ x

−∞
e−t

2/2 dt

denote the standard normal distribution function. We say that the random vari-
able σ̃−1

n Sn or its distribution function Fn(x) is asymptotically standard normal
if, for every x ∈ (−∞,+∞), we have limn→∞ Fn(x) = Φ(x).

Theorem 1 (Erdős and Rényi, [26]) Assume that N, n → ∞, such that n <
N , and σ2 remains bounded away from zero for all N . Say that, for every ε > 0,

E(X1 − EX1)2σ−2I{|X1 − EX1| > ετσ} = o(1) as N, n→∞. (8)

Then σ̃−1
n Sn is asymptotically standard normal.

Here condition (8) is similar to the well-known Lindeberg condition, which ensures
asymptotic normality in the traditional case of independent observations. It is
called the Erdős–Rényi condition.

The closeness between Fn(x) and Φ(x) was studied first by Bikelis [11], but
the speed of convergence of (5) to the standard normal distribution is typically
provided by the Berry–Esseen bound. Assuming that σ2 > 0, we introduce the
notation

α3 = σ−3 E(X1 − EX1)3 and β3 = σ−3 E |X1 − EX1|3 .

The following theorem shows the accuracy of the normal approximation.

Theorem 2 (Höglund, [38]) Assume that σ2 > 0. There exists an absolute
constant C > 0 such that, for every 1 ≤ n < N , we have

sup
−∞<x<+∞

|Fn(x)− Φ(x)| ≤ C

τ
β3.

It follows from Theorem 2 that, if E |X1|3 < ∞ and also σ2 > 0 for all N , then
we have the approximation

sup
−∞<x<+∞

|Fn(x)− Φ(x)| = O(τ−1) as τ →∞.

In fact, Berry–Esseen bounds are of a purely theoretical significance.
One of possible ways to improve the normal approximation is an Edgeworth

expansion. Typically only the first few terms of the Edgeworth expansion are
taken, i.e., one- or two-term Edgeworth expansion can be convenient and sufficient
for applications. Such an Edgeworth expansion was studied first by Robinson [61],
but weaker conditions sufficient for the validity of Edgeworth expansions were

12



obtained by Bloznelis [13]. Here, in the case of sample mean, and also further,
we consider for illustration only one-term Edgeworth expansions. For the sample
mean the one-term Edgeworth expansion is given by

Gn(x) = Φ(x)− (q − p)α3

6τ (x2 − 1)Φ′(x), (9)

where Φ′(x) is the derivative of Φ(x). Depending on additional smoothness con-
ditions, imposed on the distribution function Fn(x), it is possible to obtain an
improvement of the normal approximation,

sup
−∞<x<+∞

|Fn(x)−Gn(x)| = o(τ−1) as τ →∞ (10)

or
sup

−∞<x<+∞
|Fn(x)−Gn(x)| = O(τ−2) as τ →∞. (11)

Given g : R → C, write ‖g‖[a,b] = supa<|t|<b |g(t)|. To obtain (10), we need the
following nonlattice condition: for every ε > 0 and every B > 0, the function
ϕ(t) = E exp{itσ−1X1} satisfies

lim inf
N,n→∞

‖ϕ‖[ε,B] < 1. (12)

To obtain (11), a more stringent Cramer-type condition should be used,

lim inf
N,n→∞

‖ϕ‖[ε,τ ] < 1. (13)

Asymptotic conditions (12) and (13) are finite population analogues of the nonlat-
tice and Cramer conditions familiar from the traditional case of i.i.d. observations.

Theorem 3 (Bloznelis, [13]) Assume that N, n → ∞, such that n < N , and
σ2 remains bounded away from zero for all N .

(i) Assume that (12) holds and E |X1|3 <∞. Let, for every ε > 0,

E |X1 − EX1|3 σ−3I{|X1 − EX1| > ετσ} = o(1) as N, n→∞.

Then we get (10).
(ii) Assume that (13) holds and E |X1|4 <∞. Then we obtain (11).

Since L-statistics can be viewed as a certain generalization of the sample mean,
one can expect that conditions, sufficient for the corresponding asymptotic state-
ments, should be similar, but with some additional restrictions to the weights
c1, . . . , cn.
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A class of symmetric statistics. L-statistics is a subclass of the more general
class of symmetric statistics. The statistic T = t(X) is called symmetric, if the
function t(·) is invariant under permutations of its arguments X1, . . . , Xn. Sym-
metric statistics also include smooth functions of (multivariate) sample means,
U -statistics and many others. A general asymptotic theory is well developed now
not only for the case of i.i.d. observations, see Bentkus et al. [7], but also in the
case of samples drawn without replacement, we refer to Bloznelis and Götze [20].

An asymptotic behavior of many important symmetric statistics (including L-
statistics) differs not so much from that of the simplest linear statistic (the sample
mean is an example), in the sense that usually it is possible to write

T − ET = U1 +R1, (14)

where U1 is a linear statistic and R1 is a stochastically smaller statistic. Then,
under proper normalization, in (14) T is asymptotically standard normal if its
linear part U1 is asymptotically standard normal, and R1 is a degenerate statistic
as the sample size increases. Statistic (14), where R1 = oP (1), is also called
an asymptotically linear statistic. The method, used to decompose a symmetric
statistic as in (14), usually depends on a form (properties) of the statistic T . A
very common method is Taylor’s expansion of the statistic, which is very suitable
for many simple and popular statistics, e.g., for the members of a subclass of
smooth functions of sample means. Unfortunately, this method cannot be applied,
e.g., for many of L-statistics and U -statistics.

An alternative method is Hoeffding’s decomposition. For U -statistics, based
on i.i.d. observations, it was introduced by Hoeffding [37]. In the case of samples
drawn without replacement, Hoeffding decompositions of U -statistics of the fixed
degree m were studied in Zhao and Chen [78]. In the general case of symmetric
statistics, based on the samples drawn without replacement, a decomposition of
this type was studied by Bloznelis and Götze [20]. Hence, if it is aimed to prove
the asymptotic normality of the symmetric statistic Sn (e.g., L-statistic defined
by (4)), one can write, by Theorem 1 of [20], that

Sn = U1 +R1, (15)

where the linear part
U1 =

n∑
i=1

g1(Xi)

and the remainder term R1 are centered and uncorrelated. Here the variance of R1

is bounded as follows: ER2
1 ≤ δ2, where, in the case of the mentioned symmetric
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statistics, typically δ2 = O(n−1
∗ ) as n∗ → ∞. We will give later a more detailed

description of the Hoeffding decomposition in Section 1.1. The main result on the
asymptotic normality of the symmetric statistics is the following statement.

Proposition 4 (Bloznelis and Götze, [20]) Assume that n∗ →∞ and σ̃n re-
mains bounded away from zero for all n∗. Let δ2 = o(1) and for every ε > 0,

n∗E g2
1(X1)I{g2

1(X1) > ε} = o(1) as n∗ →∞. (16)

Then σ̃−1
n Sn is asymptotically standard normal.

An improvement of the normal approximation is provided by the one-term
Edgeworth expansion. To write it, we need more terms of the Hoeffding decom-
position. By Theorem 1 of Bloznelis and Götze [20],

Sn = U1 + U2 +R2, (17)

where the second term
U2 =

∑
1≤i<j≤n

g2(Xi, Xj)

is a U -statistic of degree 2, also called a quadratic part of the decomposition.
Similarly as in the case of short expansion (15), U1, U2 and the remainder term
R2 are centered and mutually uncorrelated. Now ER2

2 ≤ n−1
∗ δ3, where usually

δ3 = O(n−1
∗ ) as n∗ → ∞. The first two terms of (17) are sufficient to write

the one-term Edgeworth expansion for the distribution function Fn(x), i.e., by
Bloznelis and Götze [20],

Gn(x) = Φ(x)− (q − p)α + 3κ
6τ (x2 − 1)Φ′(x), (18)

where

α = σ−3
1 E g3

1(X1) and κ = σ−3
1 τ 2 E g2(X1, X2)g1(X1)g1(X2), (19)

with σ2
1 = E g2

1(X1). Note that the form of one-term Edgeworth expansion (18) for
the general symmetric statistics differs from the corresponding expansion, in the
case of the sample mean, see (9) above, only by the additional parameter κ, which
reflects the influence of the quadratic part U2 of the statistic (decomposition). The
moment and smoothness conditions, sufficient for the approximation

sup
−∞<x<+∞

|Fn(x)−Gn(x)| = o(n−1/2
∗ ) as n∗ →∞ (20)
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or
sup

−∞<x<+∞
|Fn(x)−Gn(x)| = O(n−1

∗ ) as n∗ →∞, (21)

in the case of symmetric statistics, are also similar to those that are sufficient
in the case of the sample mean. Now, by Bloznelis and Götze [20], we need to
require for the validity of (20) that, for every ε > 0 and every B > 0, the function
ϕ(t) = E exp{itσ−1

1 g1(X1)} should satisfy

lim inf
n∗→∞

‖ϕ‖[ε,B] < 1, (22)

and, respectively, for the validity of (21), we need

lim inf
n∗→∞

‖ϕ‖[ε,τ ] < 1. (23)

We see that asymptotic conditions (22) and (23) are imposed on the linear part
of the symmetric statistic only, as well as in the case of the usual sample mean.
For the proof of (21), we also need the cubic part U3 = ∑

1≤i<j<k≤n g3(Xi, Xj, Xk)
of the decomposition Sn = U1 +U2 +U3 +R3, where ER2

3 ≤ n−2
∗ δ4 (see [20]). Let

us introduce the moments

βs = E
∣∣∣n1/2
∗ g1(X1)

∣∣∣s , γs = E
∣∣∣n3/2
∗ g2(X1, X2)

∣∣∣s ,
ζs = E

∣∣∣n5/2
∗ g3(X1, X2, X3)

∣∣∣s . (24)

The following theorem is on the validity of approximations (20) and (21).

Theorem 5 (Bloznelis and Götze, [20]) Assume that n∗ → ∞ and σ̃n re-
mains bounded away from zero for all n∗.

(i) Assume that (22) holds, δ3 = o(n−1/2
∗ ) and, for some δ > 0, the moments

β3+δ and γ2+δ are bounded as n∗ →∞. Then (20) holds.
(ii) Assume that (23) holds, δ4 = O(n−1

∗ ) and, the moments β4, γ4, ζ2 are
bounded as n∗ →∞. Then (21) holds.

The conditions, imposed on the quantities δk, k = 2, 3, 4 and moments (24)
in Proposition 4 and Theorem 5, are quite general and it is difficult to verify
them. Chapter 2 of this dissertation is devoted to a simplification of these general
conditions, in the case of L-statistics. In fact, we will replace these conditions
by the respective sufficient conditions expressed in terms of the weights c1, . . . , cn

and moments of X1. Moreover, in Chapter 1, we give explicit and quite conve-
nient expressions of the functions g1(·) and g2(·, ·), i.e., explicit formulas of the
parameters α and κ that define the Edgeworth correction term in (18). It opens
new ways of a more efficient practical use of Edgeworth expansions, presented in
Chapters 3 and 4.
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Note that there are a few results on Edgeworth expansions, obtained before
the work of Bloznelis and Götze [20], for some important subclasses of finite pop-
ulation symmetric statistics. One can mention the paper of Babu and Singh [5]
on smooth functions of sample means, where the Taylor expansion was applied,
and the work of Kokic and Weber [44] on U -statistics, where other methods than
the finite population orthogonal decomposition were used as well. It is demon-
strated in [20] that, in both cases, the orthogonal decomposition applies well, and
gives practically simpler conditions for the validity of the one-term Edgeworth
expansions.

L-statistics in the case of i.i.d. observations. In fact, in the case of samples
drawn without replacement, there are no works on asymptotic approximations to
distributions of L-statistics, except, e.g., the paper of Shao [64] on the asymptotic
normality of L-statistics under more general sampling models, and the work of
Chatterjee [22] on the asymptotic normality of the sample quantile. In the case of
i.i.d. observations, L-statistics were studied by a number of authors. Strong laws
of large numbers were obtained, e.g., by Wellner [76], van Zwet [73] and Norvaiša
[52]. Laws of the iterated logarithms were established, e.g., by Wellner [77], Lea
and Puri [45] and Norvaiša and Zitikis [53]. Asymptotic normality under various
conditions was shown by Chernoff et al. [23], Shorack [66], Stigler [69] and Mason
[50], among others. See also Serfling [63, Chapter 8]. Berry–Esseen bounds were
obtained by Bjerve [12], Helmers [33], van Zwet [74], and others. Large deviations
were considered by Vandemaele and Veraverbeke [75], Bentkus and Zitikis [8],
Aleškevičienė [3] and Gao and Zhao [27]. Edgeworth expansions for L-statistics
were established by Helmers [34], Putter and van Zwet [59] (see also Putter [58]),
Gribkova and Helmers [28, 30], Alberink et al. [2], Maesono [47] and Maesono and
Penev [48].

We assume (Theorem 15 in Chapter 2) that the weight function J : (0, 1)→ R
is sufficiently smooth, and we impose very mild conditions on the finite population
X . These assumptions, sufficient for the asymptotic normality of L-statistics, are
similar to that obtained by Stigler [69] in the i.i.d. case. The validity of Edgeworth
expansion (Theorem 17) is ensured by similar but more stringent conditions for
J(·) and X . Our conditions are similar to that used in the i.i.d. situation, see
Helmers [34] and Putter [58].

The structure of the thesis results

The thesis consists of four chapters and the bibliography. In most cases, the proofs
of results are given at the end of each section.

• In Chapter 1, we obtain the form of the first three terms of the Hoeffding
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decomposition expressed explicitly via the weights c1, . . . , cn and their dif-
ferences, see Section 1.3. We similarly express the components of remainder
terms of the decomposition.

• The main applications of the orthogonal decomposition are given in Chapter
2. Section 2.1 presents a new upper bound for the variance of the sample
minimum and maximum. This bound is optimal in the form provided. Sim-
ilar bounds are shown for the other order statistics. Sections 2.2 and 2.3
are on the asymptotic normality and the validity of Edgeworth expansion,
respectively. In addition to the asymptotic normality of L-statistics of a
more general form, we also consider the case of the trimmed mean.

• In Chapter 3, we consider the estimation of the variance and parameters
α and κ that define the Edgeworth expansion of L-statistic. We examine
two competitive methods: the classical jackknife and the finite population
bootstrap of Booth et al. [21]. In the case of bootstrap, we give an exact for-
mula of the bootstrap variance estimator, i.e., we reduce the computational
burden and eliminate the approximation error, typically present in resam-
pling approximations based on simulation. We also present similar efficient
formulas for calculating the bootstrap estimators of α and κ directly from
the sample.

• In Chapter 4, we consider several variants of the Edgeworth expansion,
which are more close to practice: an Edgeworth expansion for the Studen-
tized L-statistic, empirical Edgeworth expansions, and (related in a certain
sense) non-parametric bootstrap approximations. We discuss their second-
order correctness and compare their efficiencies for various L-statistics in
the simulation study. In Section 4.2, we present a generalization of one-term
Edgeworth expansions to the case of stratified simple random samples drawn
without replacement, where the L-statistics are quantiles of the stratified
sample. We give an explicit expression of the approximation to distribution
of the quantile, and also its empirical version based on bootstrap.

Methods

The properties of statistics are explored using the Hoeffding decomposition. In
the proofs of results, combinatorial and probabilistic methods are applied.

Novelty

New formulas of the parameters that define Edgeworth expansions are obtained,
which are convenient for the construction of their exact bootstrap estimators.
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Simple sufficient conditions are established, which ensure the improvement of the
normal approximation to distribution of an L-statistic by the one-term Edgeworth
expansion. An exact bootstrap variance estimator is obtained. The new optimal
upper bound for variances of the sample minimum and maximum is constructed
in the case of a sample drawn without replacement.

Maintaining statements

• A one-term Edgeworth expansion was constructed.

• The optimal upper bound for variances of sample extremes was obtained.

• Sufficient conditions for the asymptotic normality and the validity of the
one-term Edgeworth expansion were expressed in terms of smoothness of the
weight function that defines the statistics and boundedness of the moments
of population. Special conditions sufficient for the asymptotic normality of
the trimmed means were also presented.

• Exact formulas of bootstrap estimators of the variance and parameters that
define the Edgeworth expansion of an L-statistic were obtained. Thus, the
additional approximation errors, typically present in resampling approxima-
tions based on simulation, were eliminated.

• The simulation study has showed that the quality of Edgeworth approxima-
tions depends on the smoothness of the weight function of a statistic. It is
also showed that, in the cases where the weight function is not smooth, em-
pirical Edgeworth expansions with bootstrap estimates of the parameters are
more efficient than the corresponding expansions with jackknife estimates.
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Chapter 1

Hoeffding decomposition

1.1 General formulas

Here we give the basic results of Bloznelis and Götze [20] on the Hoeffding de-
composition of the symmetric statistics.

Since L-statistics are the symmetric statistics, our analysis of an asymptotic
behavior of statistic (1) is based on the decomposition

Ln = ELn + U1 + · · ·+ Un, (1.1)

where

Um = Um(Ln) =
∑

1≤i1<···<im≤n
gm(Xi1 , . . . , Xim), 1 ≤ m ≤ n.

Here symmetric and centered kernels gm, 1 ≤ m ≤ n are certain linear combina-
tions of conditional expectations

hj(xk1 , . . . , xkj
) = E

(
Ln − ELn

∣∣∣X1 = xk1 , . . . , Xj = xkj

)
, 1 ≤ j ≤ m,

such that Um, U -statistics of order m, are mutually uncorrelated. The decom-
position in (1.1) is also called an orthogonal decomposition of Ln. Bloznelis and
Götze [20] provides expressions for the first three kernels of the decomposition as
follows

g1(x) = N − 1
N − n

h1(x), (1.2)

g2(x, y) = N − 2
N − n

N − 3
N − n− 1

(
h2(x, y)− N − 1

N − 2
(
h1(x) + h1(y)

))
, (1.3)
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g3(x, y, z) = N − 3
N − n

N − 4
N − n− 1

N − 5
N − n− 2

(
h3(x, y, z)

− N − 2
N − 4

(
h2(x, y) + h2(x, z) + h2(y, z)

)
+ N − 1
N − 3

N − 2
N − 4

(
h1(x) + h1(y) + h1(z)

))
.

(1.4)

See [20], on formula of the kernel of order m. Denote

σ2
m = E g2

m(X1, . . . , Xm), 1 ≤ m ≤ n.

Using the fact that the components of decomposition (1.1) are mutually uncorre-
lated, it is shown in [20] that the variance of (1) can be written as

σ2
L =

n∑
m=1

(
n

m

)(
N − n
m

)(
N −m
m

)−1

σ2
m. (1.5)

Decomposition (1.1) is a stochastic expansion of an L-statistic and the first
few terms of the decomposition, defined by the kernels in (1.2)–(1.4) above, can
be quite an excellent approximation to Ln, i.e., the first few terms of the sum
in (1.5) can contain very large part of σ2

L. In order to control the accuracy of
approximation, one can use the smoothness conditions defined as follows. Let
(X1, . . . , XN) denote a random permutation of the ordered set (x1, . . . , xN) which
is uniformly distributed over the class of permutations. Then, the first n obser-
vations X1, . . . , Xn represent a simple random sample from population X . For
j = 1, . . . , N − n denote X ′j = Xn+j. Define

DjLn = Ln(X1, . . . , Xn)− Ln(X1, . . . , Xj−1, Xj+1, . . . , Xn, X
′
j).

Higher order difference operations are defined recursively:

Dj1,j2Ln = Dj2(Dj1Ln), Dj1,j2,j3Ln = Dj3(Dj2(Dj1Ln)), . . . .

They are symmetric; that is, Dj1,j2Ln = Dj2,j1Ln, etc. Write

δk = δk(Ln) = E
(
n(k−1)
∗ DkLn

)2
, DkLn = D1,2,...,kLn, 1 ≤ k < n∗.

Then the following theorem holds.

Theorem 6 (Bloznelis and Götze, [20]) For 1 ≤ k < n∗, we have

Ln = ELn + U1 + · · ·+ Uk +Rk, with ER2
k ≤ n−(k−1)

∗ δk+1.

Now we have defined all general tools, which are necessary for further analysis
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of Proposition 4 and Theorem 5 on symmetric statistics, presented in Introduction.

1.2 Auxiliary lemmas

The binomial coefficients (
m

k

)
= m!
k!(m− k)!

will appear naturally in the further text, since, in the case of samples drawn
without replacement, we usually need to count a number of ways to choose k
elements from a set of m elements. For convenience, in this section and further,
we use the conventions that, for integers m ≥ 0 and k ≥ 1,(

m

−k

)
= 0 and

(
m

m+ k

)
= 0. (1.6)

Next, we collect some well-known binomial identities. We give them in the
following lemma without a proof.

Lemma 7 For integers m, k, j, p and m1, . . . ,mT , k1, . . . , kT the following identi-
ties hold.

(i) Let m ≥ 1. Then
(
m

k

)
=
(
m− 1
k − 1

)
+
(
m− 1
k

)
. (1.7)

(ii) Let 1 ≤ k ≤ m. Then
(
m

k

)
= m

k

(
m− 1
k − 1

)
. (1.8)

(iii) Let 0 ≤ k ≤ m. Then
(
m

k

)
=
(

m

m− k

)
. (1.9)

(iv) Let 0 ≤ k ≤ m. Then

m∑
j=k

(
j

k

)
=
(
m+ 1
k + 1

)
. (1.10)

(v) Let 0 ≤ j ≤ k ≤ m. Then

m∑
p=0

(
p

j

)(
m− p
k − j

)
=
(
m+ 1
k + 1

)
. (1.11)
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(vi) Let 0 ≤ k ≤ m and 0 ≤ p ≤ m. Then

k∑
j=0

(
p

j

)(
m− p
k − j

)
=
(
m

k

)
. (1.12)

(vii) Let T ≥ 3, 0 ≤ kt ≤ mt for t = 1, . . . , T , and m1 + · · ·+mT = m. Then

∑
k1+···+kT =k

(
m1

k1

)
· · ·

(
mT

kT

)
=
(
m

k

)
. (1.13)

Here (1.12) is called the Vandermonde identity, and (1.13) is its generalization.
The second simple lemma is useful for calculations of probability distributions

of the order statistics in the case where the values x1, . . . , xN of the population X
are not necessarily all distinct.

Lemma 8 (Balakrishnan et al., [6]) Assume that Z = {1, . . . , N} and con-
sider a simple random sample Z1, . . . , Zn of size n < N , drawn without re-
placement from Z. Then, the ordered samples X1:n ≤ · · · ≤ Xn:n from X and
Z1:n < · · · < Zn:n from Z are related through

(X1:n, . . . , Xn:n) d= (g(Z1:n), . . . , g(Zn:n)),

where g : Z → X is given by g(k) = xk, k = 1, . . . , N .

Assume that x1 ≤ · · · ≤ xN . Introduce the number x0 := x1 and define
X0:n := x0 so that, almost surely, X0:n ≤ Xj:n for each 1 ≤ j ≤ n. Let ∆j:n =
Xj+1:n−Xj:n, 0 ≤ j ≤ n−1 denote the sample spacings. We will need expressions
of their moments E ∆u:n, E ∆2

u:n, 0 ≤ u ≤ n − 1, and E ∆u:n∆v:n, 0 ≤ u < v ≤
n − 1 in terms of the population differences Mi= xi+1 − xi, i = 1, . . . , N − 1.
Our expressions, see Lemma 9 below, are similar to those obtained by Jones and
Balakrishnan [42], in the case of i.i.d. observations. Denote

hi(u) =
(
N

n

)−1(
i

u

)(
N − i
n− u

)
, 0 ≤ u ≤ n− 1, 1 ≤ i ≤ N − 1, (1.14)

hij(u) =
(
N

n

)−1(
i

u

)(
N − j
n− u

)
, 0 ≤ u ≤ n− 1, 1 ≤ i < j ≤ N − 1, (1.15)

and

hij(u, v) =
(
N

n

)−1(
i

u

)(
j − i
v − u

)(
N − j
n− v

)
,

0 ≤ u < v ≤ n− 1, 1 ≤ i < j ≤ N − 1.
(1.16)
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Lemma 9 We have

E ∆u:n =
N−1∑
i=1

hi(u) Mi, 0 ≤ u ≤ n− 1, (1.17)

E ∆2
u:n =

N−1∑
i=1

hi(u) M2
i +2

∑
1≤i<j≤N−1

hij(u) MiMj, 0 ≤ u ≤ n− 1, (1.18)

E ∆u:n∆v:n =
∑

1≤i<j≤N−1
hij(u, v) MiMj, 0 ≤ u < v ≤ n− 1. (1.19)

Proof of Lemma 9

Here we need slightly modified Lemma 8. Now we take the ordered samples
X0:n ≤ X1:n ≤ · · · ≤ Xn:n from X and Z0:n < Z1:n < · · · < Zn:n, where Z0:n := 0,
from Z. They are related through

(X0:n, X1:n, . . . , Xn:n) d= (g̃(Z0:n), g̃(Z1:n), . . . , g̃(Zn:n)),

where g̃ : Z ∪ {0} → X ∪ {x0} is given by g̃(k) = xk, k = 0, . . . , N .
First, we will prove (1.17) for 1 ≤ u ≤ n− 1. Since

∆u:n
d= g̃(Zu+1:n)− g̃(Zu:n)

and, for 1 ≤ k < l ≤ N ,

P {Zu:n = k, Zu+1:n = l} =
(
k − 1
u− 1

)(
l − k − 1

0

)(
N − l

n− u− 1

)/(
N

n

)
,

we have

E ∆u:n = E (g̃(Zu+1:n)− g̃(Zu:n))

=
(
N

n

)−1 ∑
1≤k<l≤N

(
k − 1
u− 1

)(
N − l

n− u− 1

)
(xl − xk)

=
(
N

n

)−1 N−1∑
i=1

{
i∑

k=1

(
k − 1
u− 1

)
N∑

l=i+1

(
N − l

n− u− 1

)}
Mi,

where the last identity is obtained by writing

xl − xk =
l−1∑
i=k
Mi

and collecting the terms with Mi. Finally, application of identity (1.10) gives
(1.17) for 1 ≤ u ≤ n− 1.
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For u = 0, we observe that, for 1 ≤ l ≤ N ,

P {Z0:n = 0, Z1:n = l} = P {Z1:n = l} =
(
l − 1

0

)(
N − l
n− 1

)/(
N

n

)
.

The remaining part of the proof is almost the same.
The proof of (1.18) uses the same arguments as that of (1.17). Here we also

need to consider separately the cases u = 0 and 1 ≤ u ≤ n − 1. Here we apply
the expansion

(xl − xk)2 =
l−1∑
i=k
M2
i +2

∑
k≤i<j≤l−1

MiMj

and collect the terms with M2
i and MiMj.

We will prove (1.19). Here we need to consider more separate cases. Let
1 ≤ u < v ≤ n− 1 and u < v − 1. Since

∆u:n∆v:n
d= (g̃(Zu+1:n)− g̃(Zu:n)) (g̃(Zv+1:n)− g̃(Zv:n))

and, for 1 ≤ k < l < s < t ≤ N ,

P {Zu:n = k, Zu+1:n = l, Zv:n = s, Zv+1:n = t}

=
(
k − 1
u− 1

)(
l − k − 1

0

)(
s− l − 1
v − u− 2

)(
t− s− 1

0

)(
N − t

n− v − 1

)/(
N

n

)
,

we have

E ∆u:n∆v:n = E (g̃(Zu+1:n)− g̃(Zu:n)) (g̃(Zv+1:n)− g̃(Zv:n))

=
(
N

n

)−1 ∑
1≤k<l<s<t≤N

(
k − 1
u− 1

)(
s− l − 1
v − u− 2

)(
N − t

n− v − 1

)
(xl − xk)(xt − xs)

=
(
N

n

)−1 ∑
1≤i<j≤N−1

{
i∑

k=1

(
k − 1
u− 1

) ∑
i+1≤l<s≤j

(
s− l − 1
v − u− 2

)

×
N∑

t=j+1

(
N − t

n− v − 1

)}
MiMj,

where the last identity is obtained by writing

(xl − xk)(xt − xs) =
l−1∑
i=k

t−1∑
j=s
MiMj

and collecting the terms with MiMj. Finally, in the braces of the last term, we
apply (1.10), and we do it twice for the middle sum.
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Now let 1 ≤ u < v ≤ n− 1 and u = v − 1. Here, for 1 ≤ k < l < s ≤ N ,

P {Zv−1:n = k, Zv:n = l, Zv+1:n = s}

=
(
k − 1
v − 2

)(
l − k − 1

0

)(
s− l − 1

0

)(
N − s

n− v − 1

)/(
N

n

)
.

The rest of the proof is very similar to that of the previous case.
For u = 0, we need to consider separately the cases 2 ≤ v ≤ n− 1 and v = 1.

The proof of these special cases is very similar to that of the previous cases of
(1.19); therefore, we omit it.

1.3 Explicit expressions

1.3.1 Kernels

Consider statistic (1). We assume that, without loss of generality, the values of
the population X are arranged in non-decreasing order, i.e., x1 ≤ · · · ≤ xN . Given
0 ≤ m ≤ n and 1 ≤ k1 < · · · < km ≤ N , introduce the event

Am = Axk1 ···xkm
= {X1 = xk1 , . . . , Xm = xkm}.

For convenience of notation, we define k0 := 0 and km+1 := N + 1. Introduce
numbers x0 := x1 and xN+1 := xN and define X0:n := x0 and Xn+1:n := xN+1, so
that, almost surely, X0:n ≤ Xj:n ≤ Xn+1:n for each 1 ≤ j ≤ n. In the proof of
Theorem 11 below we represent order statistics by sums of sample spacings

Xj:n =
j−1∑
r=0

∆r:n + x0, 1 ≤ j ≤ n. (1.20)

Here ∆r:n = Xr+1:n − Xr:n, 0 ≤ r ≤ n denote the sample spacings. Write
Mi= xi+1 − xi, 0 ≤ i ≤ N .

Lemma 10 For any m = 0, . . . , n and r = 0, . . . , n we have

E (∆r:n |Am) =
(
N −m
n−m

)−1 m+1∑
s=1

ks−1∑
i=ks−1

(
i− s+ 1
r − s+ 1

)(
N − i−m+ s− 1
n− r −m+ s− 1

)
Mi .

Define differences of the weights c1, . . . , cn recursively by

∆0(cj) = cj, ∆1(cj) = cj − cj−1
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and
∆v(cj) = ∆1(∆v−1(cj)), for v = 2, . . . , n− 1.

Denote by

HN,n,i(j) =
(
i

j

)(
N − i
n− j

)/(
N

n

)

the probability that a hypergeometric random variable with parameters N , n and
i attains the value j. Denote [N ]j = N(N − 1) · · · (N − j + 1). Next we give
explicit and comparatively simple expressions of kernels (1.2)–(1.4).

Theorem 11
(i) For 1 ≤ k ≤ N

g1(xk) = −n−1
n∑
j=1

∆0(cj)
N−1∑
i=1

ϕk(i)HN−2,n−1,i−1(j − 1) Mi, (1.21)

where

ϕk(i) =

−i/N if 1 ≤ i < k,

1− i/N if k ≤ i < N .
(1.22)

(ii) For 1 ≤ k < l ≤ N

g2(xk, xl) = −n−1
n∑
j=2

∆1(cj)
N−1∑
i=1

φk,l(i)HN−4,n−2,i−2(j − 2) Mi, (1.23)

where

φk,l(i) =


i(i− 1)/B2 if 1 ≤ i < k,

−(i− 1)(N − i− 1)/B2 if k ≤ i < l,

(N − i− 1)(N − i)/B2 if l ≤ i < N ,

(1.24)

with B2 = [N − 1]2.
(iii) For 1 ≤ k < l < m ≤ N

g3(xk, xl, xm) = −n−1
n∑
j=3

∆2(cj)
N−1∑
i=1

θk,l,m(i)HN−6,n−3,i−3(j − 3) Mi, (1.25)

where

θk,l,m(i) =



−i(i− 1)(i− 2)/B3 if 1 ≤ i < k,

(i− 1)(i− 2)(N − i− 2)/B3 if k ≤ i < l,

−(i− 2)(N − i− 2)(N − i− 1)/B3 if l ≤ i < m,

(N − i− 2)(N − i− 1)(N − i)/B3 if m ≤ i < N ,

(1.26)
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with B3 = [N − 2]3.

Proof of Lemma 10

Note that the separate case m = 0, for 0 ≤ r ≤ n−1, is already proved in Lemma
9. Here we give a different proof of this case.

Assume that x1 < · · · < xN . Then, for any m = 0, . . . , n and r = 0, . . . , n+ 1,
straightforward combinatorial calculations give

E (Xr:n |Am) =
(
N −m
n−m

)−1[m+1∑
s=1

ks−1∑
i=ks−1+1

(
i− s
r − s

)(
N − i−m+ s− 1
n− r −m+ s− 1

)
xi

+
m+1∑
s=0

(
ks − s
r − s

)(
N − ks −m+ s

n− r −m+ s

)
xks

]
.

The key idea is for r = 0, . . . , n to note that, by (1.7),

E (Xr+1:n |Am) =
(
N −m
n−m

)−1[m+1∑
s=1

ks−1∑
i=ks−1+1

(
i− s

r − s+ 1

)
δ′m,s,i(r)xi

+
m+1∑
s=0

(
ks − s

r − s+ 1

)(
N − ks −m+ s

n− r −m+ s− 1

)
xks

]
,

where
δ′m,s,i(r) =

(
N − i−m+ s

n− r −m+ s− 1

)
−
(
N − i−m+ s− 1
n− r −m+ s− 1

)

and

E (Xr:n |Am) =
(
N −m
n−m

)−1[m+1∑
s=1

ks−1∑
i=ks−1+1

δ′′m,s,i(r)
(
N − i−m+ s− 1
n− r −m+ s− 1

)
xi

+
m+1∑
s=0

(
ks − s
r − s

)(
N − ks −m+ s

n− r −m+ s

)
xks

]
,

where
δ′′m,s,i(r) =

(
i− s+ 1
r − s+ 1

)
−
(

i− s
r − s+ 1

)
.

Then, it is easy to verify that, for r = 0, . . . , n, E (∆r:n |Am) is the same as in
the lemma’s statement. For x1 ≤ · · · ≤ xN the result does not change. It follows
from the argument similar to Lemma 8, i.e., it suffices to assume (without loss of
generality) that coincident values of X are strictly ordered by their unique names,
e.g., by sizes of their indexes.
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Proof of Theorem 11

(i) First we write a kernel of orthogonal decomposition of the order statistic Xj:n,
1 ≤ j ≤ n. For chosen 1 ≤ k ≤ N , using representation (1.20), Lemma 10 for
m = 0, 1 and applying binomial identities (1.8) and (1.9) we have

g1j(xk) =
(
N − 2
n− 1

)−1 j−1∑
r=0

{
k−1∑
i=1

i

N
θ21(i, r) Mi −

N−1∑
i=k

(
1− i

N

)
θ22(i, r) Mi

}
,

where

θ21(i, r) = N

i

(
i

r

){(
N − i− 1
n− r − 1

)
− n

N

(
N − i
n− r

)}

and

θ22(i, r) = − N

N − i

(
N − i
n− r

){(
i− 1
r − 1

)
− n

N

(
i

r

)}
.

It is easy to verify that θ21(i, r) ≡ θ22(i, r). Next, using induction it is easy to
show that for every 1 ≤ j ≤ n

j−1∑
r=0

θ22(i, r) =
(
i− 1
j − 1

)(
N − i− 1
n− j

)

and the proof of part (i) follows from a simple observation that

g1(xk) = n−1
n∑
j=1

cjg1j(xk), 1 ≤ k ≤ N.

(ii) Similarly, for chosen 1 ≤ k < l ≤ N , using representation (1.20), Lemma
10 for m = 0, 1, 2 and applying the simplest identities of Lemma 7, for a single
order statistic we get

g2j(xk, xl) =
(
N − 4
n− 2

)−1 j−1∑
r=0

{
k−1∑
i=1

i(i− 1)
[N − 1]2

θ31(i, r) Mi

−
l−1∑
i=k

(i− 1)(N − i− 1)
[N − 1]2

θ32(i, r) Mi

+
N−1∑
i=l

(N − i)(N − i− 1)
[N − 1]2

θ33(i, r) Mi
}
,
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where

θ31(i, r) = [N − 1]2
i(i− 1)

(
i

r

){(
N − i− 2
n− r − 2

)
− 2 n− 1

N − 2

(
N − i− 1
n− r − 1

)

+ n(n− 1)
[N − 1]2

(
N − i
n− r

)}

and

θ32(i, r) = − [N − 1]2
(i− 1)(N − i− 1)

[(
i− 1
r − 1

){(
N − i− 1
n− r − 1

)
− n− 1
N − 2

(
N − i
n− r

)}

− n− 1
N − 2

(
i

r

){(
N − i− 1
n− r − 1

)
− n

N − 1

(
N − i
n− r

)}]
,

and

θ33(i, r) = [N − 1]2
(N − i)(N − i− 1)

(
N − i
n− r

){(
i− 2
r − 2

)
− 2 n− 1

N − 2

(
i− 1
r − 1

)

+ n(n− 1)
[N − 1]2

(
i

r

)}
.

Similarly θ31(i, r) ≡ θ32(i, r) ≡ θ33(i, r). Next, using induction one can show that,
for every 1 ≤ j ≤ n,

j−1∑
r=0

θ33(i, r) =
(
i− 2
j − 1

)(
N − i− 2
n− j − 1

)
−
(
i− 2
j − 2

)(
N − i− 2
n− j

)
.

To complete the proof of part (ii) we observe that

g2(xk, xl) = n−1
n∑
j=1

cjg2j(xk, xl), 1 ≤ k < l ≤ N

and apply
n∑
j=1

cj(bj+1 − bj) = cnbn+1 − c1b1 −
n∑
j=2

(cj − cj−1)bj,

where
bj =

(
i− 2
j − 2

)(
N − i− 2
n− j

)
.

(iii) The proof of this part is very similar.

1.3.2 Remainder terms

Note that Theorem 11 represents the kernels of the Hoeffding decomposition in
terms of differences of the weights c1, . . . , cn. Here, for k = 1, 2, 3, 4, we write the
differences DkLn, defining quantities δk(Ln) in Theorem 6, in somewhat similar
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form.
For that purpose we need additional notation. Assume that x1 ≤ · · · ≤ xN .

For k = 1, 2, 3, 4, denote by X1:n+k ≤ · · · ≤ Xn+k:n+k order statistics which
correspond to the sample Xk = {X1, . . . , Xn+k}. Let Rk = {R1, . . . , Rn+k} be
the ranks of the sample Xk assigned as follows. We decide that Ri < Rj if
g−1(Xi) < g−1(Xj), where g−1(·) is the inverse function of g(·) defined in Lemma
8. Thus ranks Rk are all distinct, i.e., Rk is a random permutation of the set
{1, . . . , n+ k}. Further, denote R∗k = {R1, . . . , Rk, Rn+1, . . . , Rn+k} and let Rk be
a set of all permutations of the set R∗k, where a particular permutation means the
arrangement of elements of the set by size. Let R1:2k < · · · < Rk:2k < Rn+1:2k <

· · · < Rn+k:2k denote order statistics which correspond to R∗k.

Lemma 12 For each k = 1, 2, 3, 4 there exists a random variable dk = dk(R∗k)
with values in {−1, 0, 1} such that

DkLn = dkn
−1

Rn+1:2k−1∑
j=Rk:2k

∆k−1(cj)∆j:n+k.

Proof of Lemma 12

The set R1 contains only 2 elements, therefore we elaborate the case k = 1. Let
R1 < Rn+1. Then

nD1Ln = n (Ln(X1\{Xn+1})− Ln(X1\{X1}))

=
[ Rn+1−1∑

j=1
cjXj:n+1 +

n∑
j=Rn+1

cjXj+1:n+1

]

−
[
R1−1∑
j=1

cjXj:n+1 +
n∑

j=R1

cjXj+1:n+1

]

= −
Rn+1−1∑
j=R1

cj∆j:n+1.

Let R1 > Rn+1. Then

nD1Ln = n (Ln(X1\{Xn+1})− Ln(X1\{X1}))

=
[ Rn+1−1∑

j=1
cjXj:n+1 +

n∑
j=Rn+1

cjXj+1:n+1

]

−
[
R1−1∑
j=1

cjXj:n+1 +
n∑

j=R1

cjXj+1:n+1

]

=
R1−1∑
j=Rn+1

cj∆j:n+1.
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Next we calculate DkLn, k = 2, 3, 4 recursively. Write D2Ln = D′1Ln − D′′1Ln,
where

D′1Ln = Ln(X2\{Xn+1, Xn+2})− Ln(X2\{X1, Xn+2}),

D′′1Ln = Ln(X2\{X2, Xn+1})− Ln(X2\{X1, X2}).

Note that both components of D′1Ln are dependent on X2 and are independent of
Xn+2. For D′′1Ln it is conversely. Now by constructing the set R2 from the set R1

we find the following cases. For R1 < Rn+1,

nD′1Ln =



−
Rn+1−1∑
j=R1

cj−1∆j:n+2 for Rn+2 < R1,

−
Rn+2−1∑
j=R1

cj∆j:n+2 −
Rn+1−1∑
j=Rn+2

cj−1∆j:n+2 for R1 < Rn+2 < Rn+1,

−
Rn+1−1∑
j=R1

cj∆j:n+2 for Rn+1 < Rn+2,

nD′′1Ln =



−
Rn+1−1∑
j=R1

cj−1∆j:n+2 for R2 < R1,

−
R2−1∑
j=R1

cj∆j:n+2 −
Rn+1−1∑
j=R2

cj−1∆j:n+2 for R1 < R2 < Rn+1,

−
Rn+1−1∑
j=R1

cj∆j:n+2 for Rn+1 < R2.

For R1 > Rn+1,

nD′1Ln =



R1−1∑
j=Rn+1

cj−1∆j:n+2 for Rn+2 < Rn+1,

Rn+2−1∑
j=Rn+1

cj∆j:n+2 +
R1−1∑
j=Rn+2

cj−1∆j:n+2 for Rn+1 < Rn+2 < R1,

R1−1∑
j=Rn+1

cj∆j:n+2 for R1 < Rn+2,

nD′′1Ln =



R1−1∑
j=Rn+1

cj−1∆j:n+2 for R2 < Rn+1,

R2−1∑
j=Rn+1

cj∆j:n+2 +
R1−1∑
j=R2

cj−1∆j:n+2 for Rn+1 < R2 < R1,

R1−1∑
j=Rn+1

cj∆j:n+2 for R1 < R2.

Note that, it suffices to consider only those elements of R2 for which we have
R1 > R2.
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Similarly, write D3Ln = D′2Ln − D′′2Ln, where

D′2Ln = Ln(X3\{Xn+1, Xn+2, Xn+3})− Ln(X3\{X2, Xn+1, Xn+3})

− Ln(X3\{X1, Xn+2, Xn+3}) + Ln(X3\{X1, X2, Xn+3}),

D′′2Ln = Ln(X3\{X3, Xn+1, Xn+2})− Ln(X3\{X2, X3, Xn+1})

− Ln(X3\{X1, X3, Xn+2}) + Ln(X3\{X1, X2, X3}).

Note that all the components of D′2Ln are dependent on X3 and are independent
of Xn+3. For D′′2Ln it is conversely. Now, by constructing the set R3 from the set
R2, similarly as in the case k = 2, we can recursively find D3Ln. Without loss of
generality, we consider only those elements of R3 for which R1 > R2 > R3. The
calculations are routine, long and cumbersome; therefore we omit them.

The calculation of D4Ln is similar. Assuming that R1 > R2 > R3 > R4, it
suffices to consider (only) 8!/4! elements of the set R4.
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Chapter 2

Asymptotic approximations to
distributions

2.1 Maximum variance of sample extremes

We assume further, without loss of generality, that x1 ≤ · · · ≤ xN . To avoid
trivialities, we assume in addition that VarX1 > 0 or, equivalently, x1 < xN .

Theorem 13 For m = 1 and m = n we have

VarXm:n ≤ n
N − n
N − 1 VarX1. (2.1)

Remark 14 The bound (2.1) is optimal for m = 1 and m = n, i.e., there exist
nontrivial populations where the equality is attained in (2.1).

Variance bounds on order statistics were considered by Moriguti [51], Pa-
padatos [54, 55], Rychlik [62] and Jasiński and Rychlik [41]. In particular, for
sample extremes Papadatos [54] showed the bound VarXm:n ≤ nVarX1, in the
case of i.i.d. observations. Rychlik [62] extended this bound to arbitrarily depen-
dent identically distributed observations. Theorem 13 improves these results by
the finite population correction factor (N − n)/(N − 1) < 1, in the case of sam-
ples drawn without replacement. Also, note that for i.i.d. samples, additionally
assuming that X1 has a symmetric distribution, for sample extremes Moriguti [51]
obtained the bound VarXm:n ≤ (n/2) VarX1.

With the references to [54, 55, 62] and [41] on the same sampling model as in
[51], the best possible bounds are also obtained for the variances of order statistics
Xm:n, 2 ≤ m ≤ n − 1. For samples drawn without replacement, the methods
applied allow us to obtain bounds (2.8) on these order statistics, however, in
general, these evaluations are not optimal. We give a disscusion on these bounds
below the proof of Theorem 13.
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Related problems are optimal bounds on the covariances and correlations of
order statistics. For the results in the case of i.i.d. observations we refer to Pa-
pathanasiou [57], Chunsheng [24], Papadatos [56] and Terrell [72], Székely and
Móri [70], respectively. There are a few analogous results for samples drawn
without replacement. On optimal bounds on the covariances and correlations of
order statistics were presented in Balakrishnan et al. [6] and López-Blázquez and
Castaño-Martínez [46], respectively. In the case of samples drawn without replace-
ment, the difficulties arising in similar problems were well discussed in Berred and
Nevzorov [10]; see also Berred and Nevzorov [9]. Some properties of order statis-
tics from finite populations and their connection to variance bounds were also
discussed in Takahasi and Futatsuya [71] and Afendras et al. [1].

Proof of Theorem 13. We consider all 1 ≤ m ≤ n. Clearly, tm(X) = Xm:n is the
symmetric statistic. The basic idea of the proof is an estimation of the error of
approximation of Var tm(X) by exactly zero terms of the Hoeffding decomposition.
In particular, a slight and simple modification of Lemma 2 of Bloznelis and Götze
[20], where for our purposes we take more strict inequalities (up to the constants),
and a trivial extension of Theorem 6 (to the case k = 0) lead to the inequality

VarXm:n ≤
1
2n

(
1− n

N

)
E (D1Xm:n)2 , (2.2)

where
D1Xm:n = tm(X1\{Xn+1})− tm(X1\{X1}).

Now we evaluate E (D1Xm:n)2. Introduce the set

I = {(i, j) : 1 ≤ i < j ≤ n+ 1}

and its subsets

Im0 = {(i, j) : 1 ≤ i < j ≤ m or m < i < j ≤ n+ 1},

Im1 = {(i, j) : 1 ≤ i ≤ m and m < j ≤ n+ 1}.

Clearly, I = Im0 ∪ Im1 and Im0 ∩ Im1 = ∅. By the proof of Lemma 12,

D1Xm:n =

0 if (R1:2, Rn+1:2) ∈ Im0 ,

±∆m:n+1 if (R1:2, Rn+1:2) ∈ Im1 .
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The events R1;ij = {R1:2 = i, Rn+1:2 = j} and {Xm:n+1 = xk, Xm+1:n+1 = xl} for
1 ≤ k < l ≤ N are independent. Also, we find that for 1 ≤ i < j ≤ n+ 1

p1;ij := P {R1;ij} =
(
n+ 1

2

)−1

. (2.3)

Thus, the application of (1.18) of Lemma 9 to the sample of size n + 1 and the
use of simple identity (1.8) give

E (D1Xm:n)2 =
∑

(i,j)∈Im
1

E
(
∆2

m:n+1

∣∣∣R1;ij
)
p1;ij = 2m(n+ 1−m)

(n+ 1)n E ∆2
m:n+1

= 2 N

N − 1

[
N−1∑
i=1

i

N

(
1− i

N

)
pi(m) M2

i

+ 2
∑

1≤i<j≤N−1

i

N

(
1− j

N

)
pij(m) MiMj

]
,

(2.4)

where we denote

pi(m) =
(
i− 1
m− 1

)(
N − i− 1
n−m

)/(
N − 2
n− 1

)
, 1 ≤ i ≤ N − 1,

and

pij(m) =
(
i− 1
m− 1

)(
N − j − 1
n−m

)/(
N − 2
n− 1

)
, 1 ≤ i < j ≤ N − 1.

It is easy to verify that, applying

(xl − xk)2 =
l−1∑
i=k
M2
i +2

∑
k≤i<j≤l−1

MiMj

and collecting the terms with M2
i and MiMj we get

VarX1 = 1
N2

∑
1≤k<l≤N

(xl − xk)2

=
N−1∑
i=1

i

N

(
1− i

N

)
M2
i +2

∑
1≤i<j≤N−1

i

N

(
1− j

N

)
MiMj .

(2.5)

In addition, the inequality

max
1≤i<j≤N−1

pij(m) ≤ max
1≤i≤N−1

pi(m) for all 1 ≤ m ≤ n,

37



holds. Thus, it follows from (2.4) that

E (D1Xm:n)2 ≤ 2 N

N − 1 max
1≤i≤N−1

pi(m) VarX1. (2.6)

For m = 1 and m = n, this inequality together with (2.2) yields (2.1).
We show that bound (2.1) is optimal. In order to obtain the equality in (2.6)

for any 1 ≤ m ≤ n, we need to take a population with the values

x1 = · · · = xi0 < xi0+1 = · · · = xN , (2.7)

where
i0 = i0(m) = arg max

1≤i≤N−1
pi(m).

For this population Lemma 8 implies that Xm:n
d= g(Zm:n) has the distribution

with two values xi0(m) and xi0(m)+1, with

rm = P
{
Xm:n = xi0(m)

}
= P {Zm:n ≤ i0(m)} =

(
N

n

)−1 i0(m)∑
k=1

(
k − 1
m− 1

)(
N − k
n−m

)
.

Therefore VarXm:n = rm(1− rm) M2
i0(m). Then, it is easy to verify that, as m = 1

and m = n, for which i0(1) = 1 and i0(n) = N − 1, the choice of (2.7) also gives
the equality in (2.1). The theorem is proven. �

The proof of Theorem 13 also sets the bounds on variances of the order statis-
tics Xm:n, 2 ≤ m ≤ n− 1. We obtain from (2.6) and (2.2) that

VarXm:n ≤ n
N − n
N − 1 max

1≤i≤N−1
HN−2,n−1,i−1(m− 1) VarX1. (2.8)

In general, for 2 ≤ m ≤ n − 1, these bounds are not optimal in the sense that
inequality (2.8) is always strict for n∗ = min{n,N − n} ≥ 3. For populations
other than (2.7), this easily follows from (2.4) and (2.6). For a population of the
form (2.7), the strict inequality in (2.8) follows from the strict inequality in (2.2).
Indeed, one can show that, for a population of type (2.7), we have, by using, e.g.,
Theorem 11,

max
{ ∑

1≤i<j≤N
g2

2(xi, xj),
∑

1≤i<j<k≤N
g2

3(xi, xj, xk)
}
> 0,

which is equivalent to max {VarU2(D1Xm:n),VarU3(D1Xm:n)} > 0, see (A.21) in
[20]. Here Uj(D1Xm:n), j = 2, 3 are the components of Hoeffding decomposition
(1.1) for the statistic D1Xm:n. The latter inequality implies that inequality (2.2)
is strict.
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Let us mention that for simple random samples our bounds (2.8) outperform
the corresponding bounds of Rychlik [62] in cases where the finite population
correction factor (N − n)/(N − 1) is sufficiently small. Clearly, in the case of
sample extremes, if we fix the sample size n and let the population size N →∞,
then the sampling without replacement approximates the case of i.i.d. observations
and bound (2.1) becomes the same as in Papadatos [54].

2.2 Asymptotic normality

Consider the normalized L-statistic Sn defined by (4). Clearly, for the statistic Sn,
the results on the Hoeffding decomposition in Theorem 11 and Lemma 12 must
be multiplied by n1/2 only. Recall the notions σ̃2

n = VarSn and σ2
1 = E g2

1(X1),
and the numbers τ 2 and n∗ defined in (6) and (7). Let the weights c1, . . . , cn be
determined by the weight function J : (0, 1)→ R as in (2).

First, we give a version of Proposition 4 where the general smoothness condi-
tions (for symmetric statistics) are replaced by that imposed on the weight func-
tion J(·) and the moments of X1. Recall a Lindeberg-type Erdős–Rényi condition
familiar from the case of sample mean (see Theorem 1): for every ε > 0,

E g2
1(X1)σ−2

1 I{|g1(X1)| > ετσ1} = o(1) as n∗ →∞. (2.9)

We say that the function J(·) satisfies the Hölder condition of order δ on (0, 1)
if there are nonnegative real constants B, δ, such that |J(u)− J(v)| ≤ B |u− v|δ

for all u, v ∈ (0, 1).

Theorem 15 Assume that n∗ →∞ and σ̃n remains bounded away from zero for
all n∗. Suppose that EX2

1 <∞ and that J(·) is bounded and satisfies the Hölder
condition of order δ > 1/2 on (0, 1). Let (2.9) hold. Then σ̃−1

n Sn is asymptotically
standard normal.

Second, Theorem 16 below gives sufficient conditions under which the trimmed
means, defined in (3), are asymptotically standard normal. Note that in this
case, the weight function J(u) (recall Example 1 presented in Introduction) is
not sufficiently smooth, i.e., J(u) is bounded, but it does not satisfy the Hölder
condition. Introduce an additional smoothness condition for the population X .
Assume that, without loss of generality, x1 ≤ · · · ≤ xN . Suppose that, for some
constants C > 0 and 1/2 < δ ≤ 1,

|xm − xl| ≤ CN−δ |m− l| (2.10)

is satisfied for all 1 ≤ l < m ≤ N .

39



Theorem 16 Assume that n∗ →∞ and σ̃n remains bounded away from zero for
all n∗. Say that EX2

1 <∞. Assume that (2.10) is satisfied for some 1/2 < δ ≤ 1,
and (1 − n/N)−2 nN2(δ−1) → ∞. Let (2.9) hold. Then, in the case of a trimmed
mean, σ̃−1

n Sn is asymptotically standard normal.

In the case of i.i.d. observations, it was shown by Stigler [68] that in order for
the trimmed mean to be asymptotically normal, it is necessary and sufficient that
the sample is trimmed at sample quantiles for which the corresponding population
quantiles are uniquely defined. Thus, the finite population smoothness conditions
of Theorem 16 seem too strong. On the other hand, for samples drawn without
replacement, condition (2.10) has a specific interpretation. Let us take l = 1 and
m = N . If the population X is bounded, then the condition is satisfied for δ = 1.
In the marginal case of δ = 1/2, (2.10) is satisfied for any finite population by
Nair–Thomson inequality xN − x1 ≤ σ

√
2N , where σ2 = VarX1 (see, e.g., [6]).

Thus, condition (2.10) seems very mild for small ε > 0 in δ = 1/2 + ε, i.e., it holds
for most of possible populations. Obviously, if we are interested in the asymptotic
normality of the trimmed means, then, by the conditions of Theorem 16, for small
ε we should have n → ∞ quite quickly as N → ∞, while in the case δ = 1 it
suffices that n→∞ arbitrarily slowly with respect to the grow of the population
size N .

In the proofs of Theorems 15 and 16 below, we assume that, without loss of
generality, x1 ≤ · · · ≤ xN .

Proof of Theorem 15

First we show that σ̃n is bounded as n∗ → ∞. Then (2.9) is equivalent to (16).
Arguing as in the proof of Theorem 13, we have

σ̃2
n ≤

1
2n

(
1− n

N

)
E (D1Sn)2 . (2.11)

Since J(·) is bounded, there exists an absolute constant a that

max
1≤p≤n

|cp| ≤ a (2.12)

for all n. Introduce the events R1;ij = {R1:2 = i, Rn+1:2 = j}, 1 ≤ i < j ≤ n + 1,
as in the proof of Theorem 13, and recall their probabilities p1;ij, given in (2.3).
By Lemma 12 and (2.12) we obtain

E (D1Sn)2 =
∑

1≤i<j≤n+1
E
[
(D1Sn)2

∣∣∣R1;ij
]
p1;ij

≤ a2n−1 ∑
1≤i<j≤n+1

E
[
(Xj:n+1 −Xi:n+1)2

∣∣∣R1;ij
]
p1;ij.

(2.13)

40



Since the events R1;ij and B1;ijlm = {Xi:n+1 = xl, Xj:n+1 = xm}, 1 ≤ l < m ≤ N

are independent, for x1 < · · · < xN we get

p1;ijlm := P {B1;ijlm |R1;ij} =
(
l − 1
i− 1

)(
m− l − 1
j − i− 1

)(
N −m
n+ 1− j

)/(
N

n+ 1

)
.

For x1 ≤ · · · ≤ xN these probabilities are the same. This fact follows from Lemma
8. We also have that, by the generalized Vandermonde identity, see the case T = 3
in (1.13),

∑
1≤i<j≤n+1

p1;ijlm =
(

N

n+ 1

)−1 n−1∑
s=0

n−1−s∑
t=0

(
l − 1
s

)(
m− l − 1

t

)(
N −m

n− 1− s− t

)

=
(

N

n+ 1

)−1(
N − 2
n− 1

)
.

Then we recall the first expression of VarX1 in (2.5) and continue (2.13),

E (D1Sn)2 ≤ a2n−1 ∑
1≤i<j≤n+1

{ ∑
1≤l<m≤N

(xm − xl)2p1;ijlm

}
p1;ij

= a2n−1
(
n+ 1

2

)−1(
N

n+ 1

)−1(
N − 2
n− 1

) ∑
1≤l<m≤N

(xm − xl)2

= 2a2n−1 N

N − 1 VarX1 ≤ 4a2n−1 VarX1.

Finally, from (2.11) we get

σ̃2
n ≤ 2a2

(
1− n

N

)
VarX1 = O(1) as n∗ →∞.

Next we show that, under the conditions of the theorem, δ2(Sn) = o(1) is
satisfied. Then the theorem will follow from Proposition 4. Since J(·) satisfies
the Hölder condition of order δ > 1/2 on (0, 1), we find that

|cp − cp−1| =
∣∣∣∣J ( p

n+ 1

)
− J

(
p− 1
n+ 1

)∣∣∣∣ ≤ B(n+ 1)−δ

or
max

2≤p≤n
|cp − cp−1| ≤ B(n+ 1)−δ, for some δ > 1/2. (2.14)

Similarly, introduce the events R2;ij = {R2:4 = i, Rn+1:4 = j}, 1 ≤ i < j ≤ n + 2.
Now

p2;ij := P {R2;ij} =
(
i− 1

1

)(
n+ 2− j

1

)/(
n+ 2

4

)
. (2.15)
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We also have

p2;ijlm := P {B2;ijlm |R2;ij} =
(
l − 1
i− 1

)(
m− l − 1
j − i− 1

)(
N −m
n+ 2− j

)/(
N

n+ 2

)
,

where the events R2;ij and B2;ijlm = {Xi:n+2 = xl, Xj:n+2 = xm}, 1 ≤ l < m ≤ N

are independent. By Lemma 12 and (2.14), we obtain

δ2(Sn) = E (n∗D2Sn)2 = n2
∗

∑
1≤i<j≤n+2

E
[
(D2Sn)2

∣∣∣R2;ij
]
p2;ij

≤ B2 n2
∗n
−1

(n+ 1)2δ

∑
1≤i<j≤n+2

E
[
(Xj:n+2 −Xi:n+2)2

∣∣∣R2;ij
]
p2;ij

= B2 n2
∗n
−1

(n+ 1)2δ

∑
1≤l<m≤N

λ2;lm(xm − xl)2,

(2.16)

where
λ2;lm =

∑
1≤i<j≤n+2

p2;ijp2;ijlm.

Taking j = i+ 1 and applying max0≤u≤1 u(1−u) ≤ 1/4, for all 1 ≤ i < j ≤ n+ 2,
we get the inequalities

p2;ij ≤ n2
(
n+ 2

4

)−1
i− 1
n

(
1− i− 1

n

)
≤ 1

4n
2
(
n+ 2

4

)−1

.

Then, noting that, by identity (1.13) as T = 3,

∑
1≤i<j≤n+2

p2;ijlm =
(

N

n+ 2

)−1(
N − 2
n

)
,

we obtain, for all 1 ≤ l < m ≤ N ,

λ2;lm ≤
1
4n

2
(
n+ 2

4

)−1(
N

n+ 2

)−1(
N − 2
n

)
≤ 24N−2.

Finally, it follows from this bound and (2.16) that

δ2(Sn) ≤ 24B2 n2
∗n
−1

(n+ 1)2δ VarX1 = o(1) as n∗ →∞.

It means that the theorem is proven.

Proof of Theorem 16

By the first part of the proof of Theorem 15, condition (2.9) is equivalent to (16).
Thus we need to verify the condition δ2(Sn) = o(1) of Proposition 4 only.
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Write, for short, s = [t1n] + 1 and t = [t2n]. Similarly, as in the proof of
Theorem 15, by Lemma 12 we obtain

δ2(Sn) ≤ n2
∗n

(t− s+ 1)2

∑
1≤i<j≤n+2

p2;ij EA2
ij(s, t), (2.17)

where p2;ij is defined in (2.15) and

Aij(s, t) =
j−1∑
p=i

(c̃p − c̃p−1)∆p:n+2, with c̃p = I{s ≤ p ≤ t}.

Assuming, without loss of generality, that n > (t2−t1)−1, we have s < t. It also
follows, from the same assumption, that the inequality [t2n]− [t1n] ≥ t2n−1− t1n
implies that, for some constant C1 > 0,

n2

(t− s+ 1)2 ≤
(
t2 − t1 −

1
n

)−2
≤ C1. (2.18)

Let us decompose I = {(i, j) : 2 ≤ i < j ≤ n + 1}, for fixed s < t, into
mutually disjoint subsets

I1 = {(i, j) : t+ 2 ≤ i < j ≤ n+ 1},

I2 = {(i, j) : 2 ≤ i < j ≤ s},

I3 = {(i, j) : s+ 1 ≤ i < j ≤ t+ 1},

I4 = {(i, j) : s+ 1 ≤ i ≤ t+ 1, t+ 2 ≤ j ≤ n+ 1},

I5 = {(i, j) : 2 ≤ i ≤ s, s+ 1 ≤ j ≤ t+ 1},

I6 = {(i, j) : 2 ≤ i ≤ s, t+ 2 ≤ j ≤ n+ 1},

such that I = I1 ∪ · · · ∪ I6. Then we get

Aij(s, t) =



0 if (i, j) ∈ I1 ∪ I2 ∪ I3,

−c̃t∆t+1:n+2 if (i, j) ∈ I4,

c̃s∆s:n+2 if (i, j) ∈ I5,

c̃s∆s:n+2 − c̃t∆t+1:n+2 if (i, j) ∈ I6.

Now, by collecting the terms of the sum ∑
i<j with the same value of EA2

ij(s, t)
in (2.17), applying E(∆t+1:n+2 − ∆s:n+2)2 ≤ E ∆2

t+1:n+2 + E ∆2
s:n+2, and then

collecting terms with E ∆2
t+1:n+2 and E ∆2

s:n+2, and also invoking inequality (2.18),
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we obtain

δ2(Sn) ≤ C1n
2
∗n
−1
(
n+ 2

4

)−1[(
t+ 1

2

)(
n− t+ 1

2

)
E ∆2

t+1:n+2

+
(
s

2

){
(n− t+ 1)2 −

(
n− s+ 1

2

)}
E ∆2

s:n+2

]
.

(2.19)

By applying the simple inequality
(
u
v

)
≤ uv/v!, we derive

(
t+ 1

2

)(
n− t+ 1

2

)
≤ (n+ 2)4

4

[
t+ 1
n+ 2

(
1− t+ 1

n+ 2

)]2
≤ (n+ 2)4

64 . (2.20)

Taking s = t, very similarly we get(
s

2

)
(n− t+ 1)2 ≤ (n+ 1)4

2

[
t

n+ 1

(
1− t

n+ 1

)]2
≤ (n+ 1)4

32 . (2.21)

Next, by Lemma 8, for 1 ≤ p ≤ n+ 1,

E ∆2
p:n+2 =

(
N

n+ 2

)−1 ∑
1≤l<m≤N

(
l − 1
p− 1

)(
m− l − 1

0

)(
N −m
n+ 1− p

)
(xm − xl)2.

Then, by (2.10),

E ∆2
p:n+2 ≤

C2

N2δ

(
N

n+ 2

)−1 ∑
1≤l<m≤N

(m− l)2
(
l − 1
p− 1

)(
N −m
n+ 1− p

)

= C2

N2δ
(N + 1)(2N − n)

(n+ 3)(n+ 4) .

(2.22)

Here the last equality is easily obtained by using simple binomial identities (1.10),
(1.8) and (1.11). Indeed, for instance,

∑
1≤l<m≤N

m2
(
l − 1
p− 1

)(
N −m
n+ 1− p

)
=

N∑
m=2

{
m−1∑
l=1

(
l − 1
p− 1

)}
m2
(
N −m
n+ 1− p

)

=
N∑
m=2

m2
(
m− 1
p

)(
N −m
n+ 1− p

)
= (p+ 1)

N∑
m=2

m

(
m

p+ 1

)(
N −m
n+ 1− p

)

= (p+ 1)(p+ 2)
N∑
m=2

(
m+ 1
p+ 2

)(
N −m
n+ 1− p

)

− (p+ 1)
N∑
m=2

(
m

p+ 1

)(
N −m
n+ 1− p

)

= (p+ 1)(p+ 2)
(
N + 2
n+ 4

)
− (p+ 1)

(
N + 1
n+ 3

)
,
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and so on. Finally, applying (2.20), (2.21) and (2.22), and n∗ ≤ 2n(1− n/N), we
continue (2.19),

δ2(Sn) ≤ C1n
2
∗n
−1
(
n+ 2

4

)−1
C2

N2δ
(N + 1)(2N − n)

(n+ 3)(n+ 4)

[
(n+ 2)4

64 + (n+ 1)4

32

]

≤ C2

(
1− n

N

)2 N2(1−δ)

n
,

for some constant C2 > 0. The theorem is proven.

2.3 Edgeworth expansion

Consider the L-statistic Sn defined in (4). We assume that the weight function
J : (0, 1) → R generates the weights c1, . . . , cn as in (2). Theorem 5 implies the
following result on the validity of (20) and (21), where the distribution function
of L-statistic σ̃−1

n Sn is approximated by its one-term Edgeworth expansion (18).
We consider the case where the weight function J(·) is sufficiently smooth.

Theorem 17 Assume that n∗ →∞ and σ̃n remains bounded away from zero for
all n∗.

(i) Assume that (22) holds, J(·) has a bounded second derivative J ′′(·) on (0, 1)
and, for some δ > 0, E |X1|3+δ <∞. Then (20) holds.

(ii) Assume that (23) holds, J(·) has a bounded third derivative J ′′′(·) on (0, 1)
and, E |X1|4 <∞. Then (21) holds.

The conditions of Theorem 17 on the boundedness of the derivatives of J(·) are
quite restrictive. Thus the theorem cannot be applied to such important statistics
as, e.g., trimmed means. Then an interesting question arises whether it is possible
to modify Theorem 17, as a consequence of Theorem 5, so that to impose less
requirements on the weights c1, . . . , cn. In the case of i.i.d. observations, a certain
answer is given in Gribkova and Helmers [28], where the trimmed means were
considered. In particular, it is shown in Lemma A.2 of [28] that there are essential
difficulties in proving that a one-term Edgeworth expansion approximates the
distribution function of the trimmed mean with an error of the order o(n−1/2), if we
try to infer directly from the general result for the symmetric statistics of Putter
and van Zwet [59]. Thus, it seems that, in the case of samples drawn without
replacement, the trimmed means and other similar statistics also need different
methods for the proof of the validity of the one-term Edgeworth expansion. The
next example, in the case of i.i.d. observations, is Alberink et al. [2], where the
general result for the symmetric statistics of Bentkus et al. [7] was applied. In
particular, in [2] only a little weaker conditions for J(·) were obtained. However,
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here, as well as in the case of trimmed means (see [28]), additional smoothness
conditions are imposed on the distribution function of X1.

Before the proof of Theorem 17, we give a simulation example, which shows
how the one-term Edgeworth expansion Gn, defined in (18), improves the usual
normal approximation.

Simulation 1 A population X of size N = 100 was simulated from the logistic
distribution L(0, 1). Our chosen population X has the mean 0.004 and variance
3.270. Consider the L-statistic given in Example 2. Note that the smoothness of
its weight function is suitable to apply Theorem 17.

For samples of sizes n = 5, 15, 30, we present several q-quantiles of the functions
F̃n, Gn and Φ in Table 2.1 below. Here F̃n is the Monte–Carlo approximation to
Fn, see Appendix A.1, where C = 107. Evidently, the functions g1(·) and g2(·, ·),
given in Theorem 11, were used for the calculation of Gn.

Table 2.1: Approximations to F̃n, n = 5, 15, 30.
q = 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99
F̃−1

5 (q) -2.12 -1.53 -1.22 -0.69 -0.06 0.63 1.32 1.75 2.58
G−1

5 (q) -2.08 -1.56 -1.25 -0.70 -0.06 0.64 1.32 1.75 2.56
F̃−1

15 (q) -2.16 -1.58 -1.25 -0.69 -0.04 0.65 1.31 1.71 2.49
G−1

15 (q) -2.16 -1.59 -1.26 -0.70 -0.04 0.65 1.31 1.71 2.49
F̃−1

30 (q) -2.20 -1.60 -1.27 -0.69 -0.03 0.66 1.30 1.69 2.43
G−1

30 (q) -2.22 -1.61 -1.27 -0.69 -0.03 0.66 1.30 1.69 2.43
Φ−1(q) -2.33 -1.64 -1.28 -0.67 0.00 0.67 1.28 1.64 2.33

Table 2.1 shows that, even for a small sample of size n = 5, the Edgeworth
expansion remains much more efficient than the normal approximation.

Proof of Theorem 17

Firstly, we note that it follows from |J ′′(y)| < ∞ for all y ∈ (0, 1) that for some
constants a, b and c we have

max
1≤j≤n

∣∣∣∆0(cj)
∣∣∣ ≤ a, n max

2≤j≤n

∣∣∣∆1(cj)
∣∣∣ ≤ b, n2 max

3≤j≤n

∣∣∣∆2(cj)
∣∣∣ ≤ c, (2.23)

for all n. Similarly, |J ′′′(y)| < ∞ for all y ∈ (0, 1) implies that for some constant
d we have

n3 max
4≤j≤n

∣∣∣∆3(cj)
∣∣∣ ≤ d (2.24)

for all n.
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Following van Zwet [74] we introduce the functions

G(x) =
∫ x

−∞
F (y) dy, H(x) =

∫ +∞

x
(1− F (y)) dy,

M(x) =
∫ x

−∞
F (y)(1− F (y)) dy,

(2.25)

where
F (y) = 1

N

N∑
i=1

I{xi ≤ y} (2.26)

is the distribution function of the random variable X1.
Assume further that, without loss of generality, x1 ≤ · · · ≤ xN . A simple

integration of (2.26) and some work with sums yield that at the points x = xk,
1 ≤ k ≤ N we have

G(xk) =
k−1∑
i=1

i

N
Mi, H(xk) =

N−1∑
i=k

(
1− i

N

)
Mi,

M(xk) =
k−1∑
i=1

i

N

(
1− i

N

)
Mi .

Functions (2.25) are finite and monotone, and, similarly as in Putter [58], we
obtain for 1 ≤ k ≤ N

G(xk) +H(xk) ≤ E |X1|+ |xk| (2.27)

and
M(xN) ≤ G(xk) +H(xk) ≤ E |X1|+ |xk| . (2.28)

One can show (we omit a detailed proof) that the quantities φk,l(i) and θk,l,m(i),
defined by (1.24) and (1.26), satisfy

|φk,l(i)| ≤
(

N

N − 1

)2 ∣∣∣φ′k,l(i)∣∣∣ ≤ 4
∣∣∣φ′k,l(i)∣∣∣ (2.29)

and
|θk,l,m(i)| ≤

(
N

N − 2

)3 ∣∣∣θ′k,l,m(i)
∣∣∣ ≤ 27

∣∣∣θ′k,l,m(i)
∣∣∣ , (2.30)

where we write

φ′k,l(i) = (I{i ≥ k} − i/N) (I{i ≥ l} − i/N)

and
θ′k,l,m(i) = (I{i ≥ k} − i/N) (I{i ≥ l} − i/N) (I{i ≥ m} − i/N) .

Then, by (2.23), (2.27) and because ∑n
j=1HN−2,n−1,i−1(j − 1) = 1 (by (1.12)),
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for 1 ≤ k ≤ N ,

|g1(xk)| ≤ an−1/2
N−1∑
i=1
|ϕk(i)| Mi= an−1/2 [G(xk) +H(xk)]

≤ an−1/2 [E |X1|+ |xk|] ,

and thus for s ≥ 1,

E |g1(X1)|s = 1
N

N∑
k=1
|g1(xk)|s ≤ asn−s/2 1

N

N∑
k=1

[E |X1|+ |xk|]s

≤ asn−s/2 1
N

N∑
k=1

2s−1 [(E |X1|)s + |xk|s] ≤ 2sasn−s/2 E |X1|s .
(2.31)

Also, by (2.23), (2.29), (2.27), (2.28), because of monotonicity of G, H,M and∑n
j=2HN−4,n−2,i−2(j − 2) = 1, for 1 ≤ k < l ≤ N ,

|g2(xk, xl)| ≤ bn−3/2
N−1∑
i=1
|φk,l(i)| Mi≤ 4bn−3/2

N−1∑
i=1

∣∣∣φ′k,l(i)∣∣∣ Mi
≤ 4bn−3/2 [G(xl) +M(xN) +H(xl)] ≤ 8bn−3/2 [E |X1|+ |xl|] ,

and then for s ≥ 1,

E |g2(X1, X2)|s =
(
N

2

)−1 ∑
1≤k<l≤N

|g2(xk, xl)|s

≤ 23sbsn−3s/2
(
N

2

)−1 ∑
1≤k<l≤N

[E |X1|+ |xl|]s

≤ 23sbsn−3s/2
(
N

2

)−1 ∑
1≤k<l≤N

2s−1 [(E |X1|)s + |xl|s]

≤ 24s+1bsn−3s/2 E |X1|s .

(2.32)

Similarly, by (2.23), (2.30), (2.27), (2.28), because of monotonicity of G, H,
M and ∑n

j=3HN−6,n−3,i−3(j − 3) = 1, for 1 ≤ k < l < m ≤ N ,

|g3(xk, xl, xm)| ≤ 34cn−5/2 [E |X1|+ |xm|] ,

and then for s ≥ 1,

E |g3(X1, X2, X3)|s ≤ 2s+234scsn−5s/2 E |X1|s . (2.33)

Note that, it follows from inequalities (2.31), (2.32) and (2.33) that, for both
cases (i) and (ii), the moments βs, γs and ζs in Theorem 5 are bounded if the
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corresponding moments E |X1|s are finite.
Next we evaluate the quantities δ3(Sn) and δ4(Sn). Let us introduce the events

Rk;ij = {Rk:2k = i, Rn+1:2k = j}, 1 ≤ i < j ≤ n + k, k = 3, 4. Similarly, as in the
cases k = 1, 2 (recall (2.3) and (2.15), respectively), we find that

pk;ij := P {Rk;ij} =
(
i− 1
k − 1

)(
n+ k − j
k − 1

)/(
n+ k

2k

)
.

Next, we proceed very similarly as in the proof of Theorem 15. We write Bk;ijlm =
{Xi:n+k = xl, Xj:n+k = xm}, 1 ≤ l < m ≤ N , k = 3, 4, and, by invoking Lemma
8, calculate

pk;ijlm := P {Bk;ijlm} =
(
l − 1
i− 1

)(
m− l − 1
j − i− 1

)(
N −m
n+ k − j

)/(
N

n+ k

)
.

Note that the events Rk;ij and Bk;ijlm, 1 ≤ l < m ≤ N are independent. Denote
C1 = max {c2, d2}. Then application of Lemma 12 and the use of the correspond-
ing conditions (2.23) and (2.24) for k = 3, 4 yield

δk(Sn) = E
(
n(k−1)
∗ DkSn

)2
= n2(k−1)

∗
∑

1≤i<j≤n+k
E
[
(DkSn)2

∣∣∣Rk;ij
]
pk;ij

≤ C1n
−1 ∑

1≤i<j≤n+k
E
[
(Xj:n+k −Xi:n+k)2

∣∣∣Rk;ij
]
pk;ij

= C1n
−1 ∑

1≤l<m≤N
λk;lm(xm − xl)2,

where
λk;lm =

∑
1≤i<j≤n+k

pk;ijpk;ijlm.

Recall the first expression of VarX1 in (2.5). Clearly, to prove the bounds
δk(Sn) = O(n−1

∗ ), k = 3, 4, it will now suffice to show that λk;lm = O(N−2)
for all 1 ≤ l < m ≤ N .

Using
(
u
v

)
≤ uv/v!, taking j = i + 1 and applying max0≤u≤1 u(1 − u) ≤ 1/4,

for all 1 ≤ i < j ≤ n+ k we obtain(
n+ k

2k

)
pk;ij ≤

(i− 1)k−1

(k − 1)!
(n+ k − j)k−1

(k − 1)! ≤ [(i− 1)(n+ k − 1− i)]k−1

[(k − 1)!]2

= (n+ k − 2)2(k−1)

[(k − 1)!]2
[

i− 1
n+ k − 2

(
1− i− 1

n+ k − 2

)]k−1

≤
(1

4

)k−1 (n+ k − 2)2(k−1)

[(k − 1)!]2 .
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Also, applying the case T = 3 of (1.13), for all 1 ≤ l < m ≤ N

∑
1≤i<j≤n+k

pk;ijlm

=
(

N

n+ k

)−1 n+k−2∑
s=0

n+k−2−s∑
t=0

(
l − 1
s

)(
m− l − 1

t

)(
N −m

n+ k − 2− s− t

)

=
(

N

n+ k

)−1(
N − 2

n+ k − 2

)
.

Finally, it follows from the last two evaluations that, for all 1 ≤ l < m ≤ N ,
λk;lm ≤ CkN

−2, where

Ck = 2
(1

4

)k−1 (2k)!
[(k − 1)!]2

(2k − 2)2k−3

(2k − 3)! , k = 3, 4.

Application of Theorem 5 completes the proof of both cases (i) and (ii) of the
theorem.
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Chapter 3

Estimation of parameters

3.1 Variance

3.1.1 Jackknife estimator

A very common method, used for estimating variance of an L-statistic, is the jack-
knife. In the case of i.i.d. observations, see, e.g., Efron and Stein [25] and Karlin
and Rinott [43], regarding the classical Quenouille–Tukey jackknife estimator of
variance. For samples drawn without replacement, the jackknife estimator of
σ2
L = VarLn is defined as follows. Let the weights c1, . . . , cn be determined as in

(2). Then, given the sample X drawn without replacement from X , the jackknife
estimator is

S2(Ln) =
(

1− n

N

)
n− 1
n

n∑
k=1

(
L(k) − L

)2
, L = 1

n

n∑
k=1

L(k), (3.1)

where L(k) = Ln−1(X\{Xk}), 1 ≤ k ≤ n are L-statistics (1) with the weights
c′j = J(j/n), 1 ≤ j ≤ n− 1.

Note that, other than in the case of i.i.d. observations, jackknife estimator (3.1)
includes the finite population correction factor. The properties of this estimator
(such as bias and consistency) were studied by Bloznelis [15], see also Bloznelis and
Götze [20], in the case of finite population symmetric statistics. It is known that,
in the case of i.i.d. observations, the quality of the jackknife variance estimator
depends on the smoothness of the underlying statistic, see, e.g., Shao and Wu
[65]. In the case of L-statistics, we understand it as the smoothness of the weight
function J : (0, 1)→ R.

Next, we give a different expression of (3.1), which will be useful later:

S2(Ln) =
(

1− n

N

) 1
n(n− 1)

n∑
k=1

(
Yk − Y

)2
, Y = 1

n

n∑
k=1

Yk, (3.2)
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where Yk = Yk−1 + c′k−1∆k−1:n for 2 ≤ k ≤ n, and Y1 := 0. We omit the proof of
this identity, which is quite straightforward.

3.1.2 Bootstrap estimator

For samples drawn without replacement, there are a few bootstrap procedures
considered in literature, see, e.g., Rao and Wu [60] and Sitter [67]. We consider
here the finite population bootstrap of Booth et al. [21]. Write N = mn+t, where
0 ≤ t < n. The empirical (bootstrap) population X̃ is defined by taking m copies
Xj = {Xj1, . . . , Xjn}, 1 ≤ j ≤ m of X and, if t > 0, drawing the simple random
sample Y = {Y1, . . . , Yt} of size t without replacement from X. If t = 0, then put
Y = ∅. Then

X̃ =
( m⋃
j=1
Xj
)
∪ Y . (3.3)

For any population parameter (characteristic) θ = θ(X ), the bootstrap estimator
is then defined as the conditional expectation

θ̂B = E
(
θ(X̃ )

∣∣∣X) , (3.4)

i.e., expectation over all empirical populations conditional on X. Note that the
case t = 0 was first considered by Gross [31].

Note that, for L-statistics, the properties of bootstrap estimator (3.4) are still
not well known. As to discussions about possible bias of estimator (3.4) in the
case of variance of statistics, see [21] and references therein and also Bloznelis [17].

Next, we give an exact expression of (3.4) for the parameter σ2
L. Obviously, in

practice the approximation to bootstrap estimate (3.4) can be obtained by using
the Monte–Carlo method (see, e.g., [21]), but it also implies an additional error.
Thus, we eliminate this error. In the case of i.i.d. observations, a similar problem
in the case of the naive bootstrap for variance of an L-statistic was solved by
Hutson and Ernst [40], see also Huang [39].

Let us write

σ2
L = n−2

[
n∑
p=1

c2
p VarXp:n + 2

∑
1≤p<r≤n

cpcr Cov (Xp:n, Xr:n)
]
. (3.5)

First, we express (3.5) in terms of the moments E ∆u:n, E ∆2
u:n, 0 ≤ u ≤ n − 1

and E ∆u:n∆v:n, 0 ≤ u < v ≤ n − 1, which are calculated in Lemma 9 above.
Actually, using representation (1.20), it is easy to get

Cov (Xp:n, Xr:n) = VarXp:n +
p−1∑
u=0

r−1∑
v=p

Cov (∆u:n,∆v:n) , (3.6)
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for 1 ≤ p < r ≤ n, with

VarXp:n =
p−1∑
u=0

Var ∆u:n + 2
∑

0≤u<v≤p−1
Cov (∆u:n,∆v:n) , (3.7)

for 1 ≤ p ≤ n. These expressions of VarXp:n and Cov (Xp:n, Xr:n) are based on
the moments of spacings only. Second, we find bootstrap estimator (3.4) for any
of the population parameters θu = E ∆u:n, θuu = E ∆2

u:n, 0 ≤ u ≤ n − 1 and
θuv = E ∆u:n∆v:n, 0 ≤ u < v ≤ n− 1. Write, for short, bik = Hn,t,i(k), 0 ≤ k ≤ t,
1 ≤ i ≤ n− 1. Denote

bijkl =
(
n

t

)−1(
i

k

)(
j − i
l − k

)(
n− j
t− l

)
, 0 ≤ k ≤ l ≤ t, 1 ≤ i < j ≤ n− 1.

Recall the numbers hi(u), hij(u) and hij(u, v) defined in (1.14), (1.15) and (1.16).

Theorem 18 The bootstrap estimators of θu, θuu, 0 ≤ u ≤ n − 1 and θuv, 0 ≤
u < v ≤ n− 1 are

θ̂uB =
n−1∑
i=1

t∑
k=0

hmi+k(u)bik∆i:n, (3.8)

θ̂uuB =
n−1∑
i=1

t∑
k=0

hmi+k(u)bik∆2
i:n

+ 2
∑

1≤i<j≤n−1

∑
0≤k≤l≤t

hmi+k;mj+l(u)bijkl∆i:n∆j:n,
(3.9)

θ̂uvB =
∑

1≤i<j≤n−1

∑
0≤k≤l≤t

hmi+k;mj+l(u, v)bijkl∆i:n∆j:n, (3.10)

respectively.

Finally, replacing the moments of spacings in (3.7) and (3.6) by their bootstrap
estimators given in Theorem 18, we obtain from (3.5) the bootstrap estimator

σ̂2
B = n−2

[
n∑
p=1

c2
pV̂arXp:n + 2

∑
1≤p<r≤n

cpcr

{
V̂arXp:n

+
p−1∑
u=0

r−1∑
v=p

(θ̂uvB − θ̂uB θ̂vB)
}]
,

(3.11)

where

V̂arXp:n =
p−1∑
u=0

(θ̂uuB − θ̂2
uB) + 2

∑
0≤u<v≤p−1

(θ̂uvB − θ̂uB θ̂vB), 1 ≤ p ≤ n.
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Proof of Theorem 18

Consider the empirical population X̃ = {X1:n, . . . , X1:n, . . . , Xn:n, . . . , Xn:n}.
We prove (3.8). For the population parameter θu = θu(X ), given in (1.17), we

have, for any 0 ≤ u ≤ n− 1, that

θu(X̃ ) =
n−1∑
i=1

hpi
(u)∆i:n,

where pi, 1 ≤ i ≤ n − 1 is a random number from the set {1, . . . , N − 1} with
P {pi = mi+ k} = bik, 0 ≤ k ≤ t. Thus, for 1 ≤ i ≤ n− 1, we get

E (hpi
(u)∆i:n |X) = ∆i:n

t∑
k=0

hmi+k(u)bik.

Formula (3.8) is proven.
Now we prove (3.10). For the population parameter θuv = θuv(X ), given in

(1.19), we have, for all 0 ≤ u < v ≤ n− 1, that

θuv(X̃ ) =
∑

1≤i<j≤n−1
hpirj

(u, v)∆i:n∆j:n,

where (pi, rj), 1 ≤ i < j ≤ n − 1 is a pair of random numbers from the set
{1, . . . , N − 1} with P {pi = mi+ k, rj = mj + l} = bijkl, 0 ≤ k ≤ l ≤ t. Thus,
for 1 ≤ i < j ≤ n− 1, we obtain

E
(
hpirj

(u, v)∆i:n∆j:n

∣∣∣X) = ∆i:n∆j:n
∑

0≤k≤l≤t
hmi+k;mj+l(u, v)bijkl.

Formula (3.10) is proven.
The proof of (3.9) is, in fact, the same as that of (3.8) and (3.10).

3.1.3 Numerical comparisons

We present some more examples of L-statistics. For more details on the following
examples see Chernoff et al. [23].

Example 4 The L-statistic, defined by the weight function J(u) = Φ−1(u), is
applied as an efficient estimator of the scale parameter for the normal distribution.
Denote such an L-statistic by Nσ. In the finite population context, the motivation
of application of Nσ is the same as in Example 3.

Example 5 The L-statistic with weights, generated by the weight function J(u) =
sin 4π (u− 1/2) / tan π (u− 1/2), is applied as an efficient estimator of the location
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parameter for the Cauchy distribution. Denote such an L-statistic by Cµ. If we
assume that the population X is obtained from the superpopulation with the
Cauchy distribution, Cµ will estimate a center of X .

Example 6 The L-statistic with weights, generated by the weight function J(u) =
8 tan π (u− 1/2) / sec4 π (u− 1/2), is applied as an efficient estimator of the scale
parameter for the Cauchy distribution. Denote such an L-statistic by Cσ. This
statistic can be useful in the estimation of the interquartile range of X .

The quality of any variance estimator is always important, when, e.g., we
construct confidence intervals for an L-statistic (-estimator) or, we need to choose
between two or more competing L-statistics. Next, for some of the discussed L-
statistics, we compare the efficiencies of variance estimators S2 = S2(Ln) and σ̂2

B,
given by (3.1) and (3.11), recpectively.

Simulation 2 Let us consider two different populations of sizes N = 50. The first
population XN was simulated from the normal distribution N (2, 4). Our chosen
population XN has the mean 2.002 and variance 3.995. The second population XC
was simulated from the Cauchy distribution C(2, 1). Our chosen population XC
has the median 1.996 and interquartile range 2.013. We choose n = 20 for both
populations.

Table 3.1 presents numerical results for the statistics M0;1, M0.2;0.8 and Cµ,
see Examples 1 and 5. Table 3.2 shows simulation results for the statistics UG,
Nσ and Cσ, see Examples 3, 4 and 6, recpectively. In particular, for each of the
L-statistics, we give the value of its variance σ2

L and estimated values of the mean
square errors (MSEs) and biases (BIASes) of its estimators S2 and σ̂2

B. In order
to estimate MSE and BIAS, we draw independently R = 200 samples from the
population of interest, and, e.g., for realizations σ̂2

B;r, 1 ≤ r ≤ R, of the bootstrap
estimator σ̂2

B, we take

M̂SE(σ̂2
B) = 1

R

R∑
r=1

(
σ̂2
B;r − σ2

L

)2

and
B̂IAS(σ̂2

B) = 1
R

R∑
r=1

σ̂2
B;r − σ2

L. (3.12)

It is seen that for the L-statistics, which are used as estimators of location, see
Table 3.1, the jackknife variance estimator S2 is a little more efficient (see MSE)
as compared to the bootstrap estimator σ̂2

B. On the other hand, in the case of
estimators of scale (Table 3.2), σ̂2

B is more efficient compared to S2. Note that for
both the populations XN and XC, the estimator σ̂2

B outperforms the estimator S2
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Table 3.1: Variances of the estimators of location for XN and XC.
XN XC

M0;1 M0.2;0.8 Cµ M0;1 M0.2;0.8 Cµ
σ2
L 0.118 0.105 0.092 0.370 0.103 0.074

103 M̂SE(S2) 1.13 3.30 5.69 31.98 8.36 1.63
103 M̂SE(σ̂2

B) 1.06 4.06 10.65 30.47 13.77 5.89
103 B̂IAS(S2) 7.73 0.30 -2.83 33.37 5.45 -6.96
103 B̂IAS(σ̂2

B) 5.52 26.92 45.71 26.23 57.27 37.55

Table 3.2: Variances of the estimators of scale for XN and XC.
XN XC

UG Nσ Cσ UG Nσ Cσ
σ2
L 0.095 0.046 0.079 0.670 0.374 0.118

103 M̂SE(S2) 0.70 0.18 2.16 112.10 32.60 15.94
103 M̂SE(σ̂2

B) 0.49 0.13 1.67 82.06 23.57 32.09
103 B̂IAS(S2) 7.65 3.43 15.62 62.11 27.47 30.58
103 B̂IAS(σ̂2

B) -3.70 -2.55 18.40 -36.75 -40.88 94.07

for the statistics M0;1, UG and Nσ, whereas S2 is better for the statistics M0.2;0.8

and Cµ.

3.2 Parameters defining the Edgeworth expan-
sion

3.2.1 Jackknife estimators

Consider the parameters α and κ given in (19). We define jackknife estimators
α̂J and κ̂J of these parameters similarly as in the case of symmetric statistics,
see Bloznelis [14]. Our estimators are based on the sample of size n, whereas, in
the case of symmetric statistics, it is feasible for the sample of size n + 2 only.
Recall the notation used for the definition of S2(Ln) in (3.1). For 1 ≤ k ≤ n,
1 ≤ i, j, r ≤ n, i 6= j, denote

Vk = L− L(k), Ṽr = L− L(r), Wij = L− L(i) − L(j) + L(i,j),

where

L(r) = 1
n− 1

∑
1≤j≤n, j 6=r

L(r,j), L =
(
n

2

)−1 ∑
1≤i<j≤n

L(i,j).
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Here L(i,j) = Ln−2(X\{Xi, Xj}) is the statistic of form (1), with the weights, say,
c′′l = J(l/(n− 1)), 1 ≤ l ≤ n− 2. Then,

α̂J = σ̂−3
J n1/2

n∑
k=1

V 3
k ,

κ̂J = 2σ̂−3
J

(
1− n

N

)
n1/2 ∑

1≤i<j≤n
WijṼiṼj,

(3.13)

where σ̂2
J = ∑n

k=1 V
2
k .

The consistency of very similar jackknife estimators of α and κ was proven by
Bloznelis [14] in the case of general symmetric finite population statistics.

3.2.2 Bootstrap estimators

We present exact expressions of Booth et al. [21] bootstrap estimator (3.4) for
the parameters α and κ. First, similarly as in the case of variance (see Section
3.1.2), we find the exact bootstrap estimators ĝ1B(k) and ĝ2B(k, l) for any of the
population characteristics g1(k) := g1(xk), 1 ≤ k ≤ N and g2(k, l) := g2(xk, xl),
1 ≤ k < l ≤ N defined in (1.21) and (1.23), respectively. Write

g1(xk) =
N−1∑
i=1

ui(k) Mi, 1 ≤ k ≤ N

and
g2(xk, xl) =

N−1∑
i=1

vi(k, l) Mi, 1 ≤ k < l ≤ N,

where, for 1 ≤ i ≤ N − 1, we denote

ui(k) = −n−1
(
I{i ≥ k} − i

N

) n∑
p=1

cpHN−2,n−1,i−1(p− 1), 1 ≤ k ≤ N

and

vi(k, l) = −n−1φk,l(i)
n∑
p=2

(cp − cp−1)HN−4,n−2,i−2(p− 2), 1 ≤ k < l ≤ N,

with φk,l(i) given by (1.24).

Theorem 19
(i) For 1 ≤ k ≤ N

ĝ1B(k) =
n−1∑
j=1

mj+t∑
i=mj

ui(k)Hn,t,j(i−mj)∆j:n. (3.14)
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(ii) For 1 ≤ k < l ≤ N

ĝ2B(k, l) =
n−1∑
j=1

mj+t∑
i=mj

vi(k, l)Hn,t,j(i−mj)∆j:n. (3.15)

Next, we substitute estimators (3.14) and (3.15) into (19) thus obtaining the
bootstrap estimators

α̂B = σ̂−3
1B

1
N

N∑
k=1

ĝ3
1B(k),

κ̂B = σ̂−3
1Bn

(
1− n

N

)(
N

2

)−1 ∑
1≤k<l≤N

ĝ2B(k, l)ĝ1B(k)ĝ1B(l),
(3.16)

where σ̂2
1B = N−1∑N

k=1 ĝ
2
1B(k).

Proof of Theorem 19

The proofs of (3.14) and (3.15) are, in fact, the same as the proof of (3.8) in
Theorem 18. Therefore we omit them.
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Chapter 4

Applications

4.1 Approximations to distributions

4.1.1 Edgeworth expansion for a Studentized statistic

In many practical situations, the variance σ2
L of L-statistic (1) is unknown. There-

fore, if, e.g., we aim to evaluate the reliability of an estimate Ln by constructing
a confidence interval, we need approximations to the distribution function of a
Studentized L-statistic

FnS(x) = P {Ln − ELn ≤ xS(Ln)} , (4.1)

where S2(Ln) is the estimate of σ2
L based on the sample X. Here we consider the

frequently used jackknife variance estimator S2(Ln) given by (3.1). Next, in this
section, we give some theoretical insights on the asymptotic normality and the
one-term Edgeworth expansion, see (4.2) below, of (4.1).

Asymptotic properties of distribution (4.1) are similar to that of Fn(x) given by
(5). By Proposition 3 of Bloznelis and Götze [20], where, in the case of symmetric
statistics, S2(Ln) is defined slightly different (it is based on the extended sample
X1 = {X1, . . . , Xn+1}), the conditions, sufficient for the asymptotic normality of
the Studentized L-statistic (Ln−ELn)/S(Ln), should be the same as in Theorems
15 and 16, since a difference between both similar jackknife estimators of variance
is (asymptotically) negligible.

By Bloznelis [16], where the jackknife variance estimator for symmetric statis-
tics is also based on the sample X1, the one-term Edgeworth expansion of (4.1)
is

GnS(x) = Φ(x) + (q − p+ (q + 1)x2)α + 3(x2 + 1)κ
6τ Φ′(x). (4.2)

Here the numbers τ , p, q are defined in (6), and α and κ are the same character-
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istics of the Hoeffding decomposition of (1), see (19). Theorem 2 in [16] provides
sufficient conditions, which ensure that, in the case of symmetric statistics, the
one-term Edgeworth expansion approximates the distribution function of the Stu-
dentized statistic up to the error o(n−1/2

∗ ). Since jackknife variance estimator (3.1)
is very close to that defined in [16], we can formulate a statement on the validity
of the one-term Edgeworth expansion (4.2), which is similar to (i) of Theorem 17.
Indeed, the condition E |X1|3+δ < ∞, for some δ > 0, of Theorem 17 should be
replaced by E |X1|6+δ <∞ and the additional condition qτ →∞.

4.1.2 Empirical Edgeworth expansions

One-term Edgeworth expansions (18) and (4.2) of distributions (5) and (4.1),
respectively, cannot be applied directly if the population parameters α and κ,
that define them, are unknown. A reasonable alternative to the true expansions
(18) and (4.2) are empirical Edgeworth expansions, where unknown parameters
are replaced by their estimators. Here we use the jackknife estimators, given by
(3.13), and the bootstrap estimators, see (3.16).

Replacing the true parameters α and κ in (18) and (4.2) by their jackknife es-
timators α̂J and κ̂J , we obtain the corresponding empirical Edgeworth expansions

GnJ(x) = Φ(x)− (q − p)α̂J + 3κ̂J
6τ (x2 − 1)Φ′(x) (4.3)

and
GnSJ(x) = Φ(x) + (q − p+ (q + 1)x2)α̂J + 3(x2 + 1)κ̂J

6τ Φ′(x). (4.4)

Replacing the true parameters α and κ in (18) and (4.2) by their bootstrap esti-
mators α̂B and κ̂B, we obtain the corresponding empirical Edgeworth expansions

GnB(x) = Φ(x)− (q − p)α̂B + 3κ̂B
6τ (x2 − 1)Φ′(x) (4.5)

and
GnSB(x) = Φ(x) + (q − p+ (q + 1)x2)α̂B + 3(x2 + 1)κ̂B

6τ Φ′(x). (4.6)

Since the defined empirical Edgeworth expansions depend on the random sam-
ple X, the validity of these expansions is understood as the validity in probability.
To prove the validity of an empirical Edgeworth expansion, if it has already been
proven in the case of a true expansion, it suffices to show the consistency of the
parameters estimators, which define the empirical expansion.

In the case of symmetric finite population statistics, empirical Edgeworth ex-
pansions with jackknife estimators of α and κ were considered by Bloznelis [14, 16],
where the conditions sufficient for the validity of true expansions (18) and (4.2),
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are also sufficient for the consistency of estimators. Note that our estimators α̂J
and κ̂J are almost the same as in [14].

In the case of L-statistics, the properties of the bootstrap estimators, such
as α̂B and κ̂B, are still not quite understood. We examine them by numerical
simulations in Section 4.1.4, as well as the jackknife estimators.

4.1.3 Bootstrap approximations

Non-parametric bootstrap approximations are, in a sense, close to the one-term
Edgeworth approximations, thus the latter are often used in the evaluations of
accuracy of bootstrap approximations. Typically, the accuracy of bootstrap ap-
proximation is of the same order as in the case of the Edgeworth expansion. We
consider here bootstrap approximations to distributions (5) and (4.1) of the L-
statistics.

Let X̃ be the empirical population defined by (3.3). We draw a simple random
sample without replacement X̃ = {X̃1, . . . , X̃n} from X̃ . Then the bootstrap
estimator of statistic (1) is L̃n = Ln(X̃). Denote σ̃2

L = Var (L̃n | X,Y) and let
S̃2(Ln) = S2(L̃n) be jackknife estimate (3.1) of σ̃2

L based on the sample X̃. Then
bootstrap estimators for the distribution functions Fn(x) and FnS(x) are

F ∗n(x) = P {L̃n − E (L̃n | X,Y) ≤ xσ̃L | X} (4.7)

and
F ∗nS(x) = P {L̃n − E (L̃n | X,Y) ≤ xS̃(Ln) | X}, (4.8)

respectively. The theoretical analysis shows that this kind of bootstrap approxi-
mation is second-order correct for statistics which are smooth functions of multi-
variate sample means (see Booth et al. [21]), and U -statistics (see Bloznelis [17]).
However, the case of L-statistics is still not well explored for samples drawn with-
out replacement. Similarly, in the case of i.i.d. observations, there are only several
results in the special case of trimmed means (see, e.g., Hall and Padmanabhan
[32], and Gribkova and Helmers [29]) for the classical Efron bootstrap or the m
out of n bootstrap. A hint on the extension of bootstrap results for U -statistics
to the case of more general L-statistics appeared in Helmers [35], but it is omitted
in the final version of the same paper, see [36]. In the case of samples drawn
without replacement, we similarly expect that the case of U -statistics in [17] can
be extended to the case of L-statistics. We note in addition that, in the special
case of Gini’s mean difference (Example 3), the results of [17] are applicable, and
the general conditions can be very similarly simplified as in the case of Edgeworth
expansion for Studentized L-statistics (recall the discussion at the end of Section
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4.1.1), since, in the proofs of [17], the basic tool is Theorem 1 of Bloznelis [16] on
the validity of Edgeworth expansion for Studentized U -statistics.

In Section 4.1.4, we examine the accuracy of bootstrap approximations for L-
statistics via computer simulation. Note that usually bootstrap estimators (4.7)
and (4.8) cannot be applied directly, since for many statistics it is difficult, if not
impossible, to find their exact expressions. Therefore, in numerical examples, we
apply Monte–Carlo approximations to F ∗n(x) and F ∗nS(x) proposed by Booth et al.
[21]. We conclude this section with an example of L-statistic, where the bootstrap
distribution can be computed analytically.

Example 7 A simple estimator of the finite population q-quantile F−1(q) =
inf{x : F (x) ≥ q}, 0 < q < 1, where F (x) is the distribution function of X , see
(2.26), is a single order statistic (empirical quantile) X[qn]+1:n.

Proposition 20 For a single order statistic Xr:n, where 1 ≤ r ≤ n, we have for
1 ≤ j ≤ n

P {X̃r:n = Xj:n | X} =
t+1∑
s=1

mj+s−1∑
i=m(j−1)+s

pr(i)
(
j − 1
s− 1

)(
n− j

t+ 1− s

)/(
n

t

)

+
t∑

s=1

mj+s∑
i=m(j−1)+s

pr(i)
(
j − 1
s− 1

)(
n− j
t− s

)/(
n

t

)
,

(4.9)

where

pr(i) = P {Xr:n = xi} =
(
i− 1
r − 1

)(
N − i
n− r

)/(
N

n

)
, 1 ≤ i ≤ N.

Proof of Proposition 20

For 1 ≤ j ≤ n, consider a pair of random variables (uj, vj) ∈ {(k, l) : 1 ≤ k ≤
l ≤ N}, where uj and vj are the lowest and the highest positions of Xj:n in the
ordered empirical population X̃ = {X1:n, . . . , X1:n, . . . , Xn:n, . . . , Xn:n}. Consider
the events

As = {(uj, vj) = (m(j − 1) + s,mj + s− 1)}, 1 ≤ s ≤ t+ 1

and
Bs = {(uj, vj) = (m(j − 1) + s,mj + s)}, 1 ≤ s ≤ t.

These events are mutually exclusive and appear with the probabilities

P {As} =
(
j − 1
s− 1

)(
1
0

)(
n− j

t+ 1− s

)/(
n

t

)
, 1 ≤ s ≤ t+ 1
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and
P {Bs} =

(
j − 1
s− 1

)(
1
1

)(
n− j
t− s

)/(
n

t

)
, 1 ≤ s ≤ t,

which sum up to 1. The law of the total probability yields (4.9).

4.1.4 Simulation study

Note that, in the simulation examples below, we use Monte-Carlo approximations
F̃n and F̃nS to the exact distributions Fn and FnS, respectively, see Appendix
A.1, where we choose C = 106. Similarly, we approximate bootstrap distributions
F ∗n and F ∗nS by F̃ ∗n and F̃ ∗nS, respectively, see Appendix A.2, where B = 102 and
R = 104.

In the tables below, we compare the distributions F̃n, Φ, Gn, GnJ , GnB,
F̃ ∗n and also F̃nS, Φ, GnS, GnSJ , GnSB, F̃ ∗nS by taking their q-quantiles, q =
0.01, 0.05, 0.10, 0.90, 0.95, 0.99. Specifically, for the empirical functions GnJ , GnB,
F̃ ∗n and GnSJ , GnSB, F̃ ∗nS we give two characterstics of the empirical quantile: es-
timated values of its expectation and the standard error (SE) based on R = 200
samples drawn independently and without replacement from X . That is, e.g., for
realizations G−1

nJ ;r(q), 1 ≤ r ≤ R, of the empirical quantile G−1
nJ (q), the expectation

EG−1
nJ (q) is estimated by the formula

ÊG−1
nJ (q) = 1

R

R∑
r=1

G−1
nJ ;r(q), (4.10)

and the standard error SG−1
nJ (q) is estimated by

ŜG−1
nJ (q) =

(
1
R

R∑
r=1

(
G−1
nJ ;r(q)− ÊG−1

nJ (q)
)2
)1/2

. (4.11)

We also give values of the parameters α and κ, and estimated values of the biases
(BIASes) and SEs of their estimators α̂J , α̂B and κ̂J , κ̂B. Biases are estimated
just like in (3.12).

Simulation 3 Consider Gini’s mean difference UG, see Example 3. A population
X of size N = 150 was simulated from the normal distribution N (2, 4). Our
chosen population X has the mean 2.01 and variance 4.03. The sample size is
n = 45.

Table 4.1 shows that both Gn and Φ approximate F̃n similarly and quite well,
i.e., the normal approximation seems sufficient in this simulation example. Next,
GnB (as the estimate of Gn) has a larger bias compared to GnJ . It means that the
jackknife estimate of κ is more successful compared to the bootstrap estimate, see
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Table 4.1: Simulation 3. Approximations to F̃n.
q = 0.01 0.05 0.10 0.90 0.95 0.99
F̃−1
n (q) -2.29 -1.64 -1.29 1.29 1.65 2.31

Φ−1(q) -2.33 -1.64 -1.28 1.28 1.64 2.33
G−1
n (q) -2.32 -1.64 -1.28 1.28 1.65 2.33

ÊG−1
nJ (q) -2.30 -1.64 -1.28 1.28 1.65 2.35

ÊG−1
nB(q) -2.36 -1.66 -1.29 1.28 1.63 2.29

Ê F̃ ∗−1
n (q) -2.33 -1.66 -1.29 1.28 1.63 2.28

ŜG−1
nJ (q) 0.06 0.02 0.01 0.01 0.02 0.06

ŜG−1
nB(q) 0.05 0.02 0.01 0.01 0.02 0.05

Ŝ F̃ ∗−1
n (q) 0.06 0.02 0.01 0.01 0.02 0.05

Table 4.2: Simulation 3. Approximations to F̃nS.
q = 0.01 0.05 0.10 0.90 0.95 0.99
F̃−1
nS (q) -2.92 -1.94 -1.47 1.18 1.49 2.05

Φ−1(q) -2.33 -1.64 -1.28 1.28 1.64 2.33
G−1
nS(q) -2.68 -1.88 -1.43 1.16 1.45 1.89

ÊG−1
nSJ(q) -2.65 -1.86 -1.42 1.17 1.46 1.93

ÊG−1
nSB(q) -2.60 -1.81 -1.39 1.20 1.50 2.00

Ê F̃ ∗−1
nS (q) -2.94 -1.92 -1.44 1.21 1.53 2.12

ŜG−1
nSJ(q) 0.13 0.10 0.08 0.06 0.09 0.18

ŜG−1
nSB(q) 0.13 0.10 0.07 0.05 0.08 0.17

Ŝ F̃ ∗−1
nS (q) 0.30 0.16 0.11 0.04 0.06 0.12

Table 4.3: Simulation 3. Parameters α and κ, and their estimates.
α κ α̂J α̂B κ̂J κ̂B

2.04 -0.25 BIAS -0.25 -0.25 0.07 -0.07
SE 0.51 0.50 0.09 0.08

Table 4.3, although the quality of both estimates of κ is almost the same. Note
that the quality of F̃ ∗n is similar to the quality of GnB.

Table 4.2 shows that GnS significantly improves Φ. Here GnSJ and GnSB

estimate GnS analogously as in the previous case, but now their biases and vari-
abilities are larger. Nonetheless, both GnSJ and GnSB seem more efficient than
Φ. The last approximation F̃ ∗nS is the most unbiased on the left tail of F̃nS, but
here its SE is the highest one compared to the other empirical approximations.
On the right tail the situation is converse.

Simulation 4 Consider the trimmed mean M0.2;0.8, see Example 1. A population
X of size N = 150 was simulated from the exponential distribution E(0.5). Our
chosen population X has the mean 1.99 and variance 3.9. The sample size is

64



n = 45.

Table 4.4: Simulation 4. Approximations to F̃n.
q = 0.01 0.05 0.10 0.90 0.95 0.99
F̃−1
n (q) -2.09 -1.55 -1.24 1.31 1.73 2.55

Φ−1(q) -2.33 -1.64 -1.28 1.28 1.64 2.33
G−1
n (q) -2.10 -1.57 -1.25 1.32 1.74 2.54

ÊG−1
nJ (q) -2.15 -1.58 -1.26 1.33 1.74 2.50

ÊG−1
nB(q) -2.10 -1.57 -1.25 1.32 1.74 2.54

Ê F̃ ∗−1
n (q) -2.09 -1.55 -1.24 1.31 1.73 2.56

ŜG−1
nJ (q) 0.19 0.07 0.03 0.13 0.15 0.19

ŜG−1
nB(q) 0.09 0.03 0.01 0.02 0.05 0.08

Ŝ F̃ ∗−1
n (q) 0.09 0.04 0.02 0.01 0.04 0.11

Table 4.5: Simulation 4. Approximations to F̃nS.
q = 0.01 0.05 0.10 0.90 0.95 0.99
F̃−1
nS (q) -2.88 -1.98 -1.50 1.17 1.50 2.13

Φ−1(q) -2.33 -1.64 -1.28 1.28 1.64 2.33
G−1
nS(q) -2.65 -1.87 -1.45 1.14 1.43 1.90

ÊG−1
nSJ(q) -2.59 -1.84 -1.43 1.15 1.46 1.98

ÊG−1
nSB(q) -2.65 -1.87 -1.45 1.13 1.43 1.90

Ê F̃ ∗−1
nS (q) -2.96 -1.98 -1.50 1.16 1.49 2.12

ŜG−1
nSJ(q) 0.20 0.19 0.18 0.15 0.20 0.32

ŜG−1
nSB(q) 0.11 0.09 0.07 0.06 0.08 0.17

Ŝ F̃ ∗−1
nS (q) 0.32 0.16 0.09 0.05 0.07 0.12

Table 4.6: Simulation 4. Parameters α and κ, and their estimates.
α κ α̂J α̂B κ̂J κ̂B

0.34 0.53 BIAS -0.04 0.03 0.01 0.01
SE 0.17 0.16 1.04 0.24

Table 4.4 shows that Gn not only improves Φ, it also approximates F̃n quite
accurate. GnJ is a much more biased estimate of Gn for 0.01 and 0.99 quantiles
compared to GnB, and its SE is larger. It can be explained by large SE of κ̂J , see
Table 4.6. Thus, taking the variability into account, GnB is more efficient than Φ
and GnJ . Next, F̃ ∗n approximates F̃n similarly as GnB.

Table 4.5 shows that GnS outperforms Φ. Now GnSJ is a little more biased
estimate of GnS as compared to the previous case, and also has large SE. Thus,
the approximation GnSB is reasonable again. F̃ ∗nS is the mostly unbiased estimate
of F̃nS. Its drawback is large SE on the left tail.
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Simulation 5 Let us modify Simulation 4 by taking the finite combination of
sample quantiles (Example 7) as follows

n−1(X[0.3n]+1:n + 2X[0.4n]+1:n + 3X[0.5n]+1:n + 2X[0.6n]+1:n +X[0.7n]+1:n)/9. (4.12)

Table 4.7: Simulation 5. Approximations to F̃n.
q = 0.01 0.05 0.10 0.90 0.95 0.99
F̃−1
n (q) -2.13 -1.55 -1.25 1.30 1.73 2.51

Φ−1(q) -2.33 -1.64 -1.28 1.28 1.64 2.33
G−1
n (q) -2.14 -1.58 -1.26 1.31 1.72 2.51

ÊG−1
nJ (q) -1.94 -1.45 -1.13 1.42 1.72 2.28

ÊG−1
nB(q) -2.13 -1.57 -1.26 1.32 1.74 2.52

Ê F̃ ∗−1
n (q) -2.09 -1.55 -1.24 1.30 1.72 2.53

ŜG−1
nJ (q) 1.57 1.33 1.21 0.88 0.96 1.12

ŜG−1
nB(q) 0.12 0.04 0.02 0.03 0.07 0.12

Ŝ F̃ ∗−1
n (q) 0.12 0.07 0.05 0.05 0.07 0.18

Table 4.8: Simulation 5. Approximations to F̃nS.
q = 0.01 0.05 0.10 0.90 0.95 0.99
F̃−1
nS (q) -4.46 -2.47 -1.76 1.40 2.02 3.59

Φ−1(q) -2.33 -1.64 -1.28 1.28 1.64 2.33
G−1
nS(q) -2.58 -1.82 -1.41 1.17 1.48 2.01

ÊG−1
nSJ(q) -2.24 -1.80 -1.53 0.89 1.16 1.59

ÊG−1
nSB(q) -2.59 -1.83 -1.43 1.16 1.46 1.97

ŜG−1
nSJ(q) 1.39 1.22 1.17 1.56 1.68 1.93

ŜG−1
nSB(q) 0.15 0.12 0.10 0.08 0.11 0.22

Table 4.9: Simulation 5. Parameters α and κ, and their estimates.
α κ α̂J α̂B κ̂J κ̂B

0.12 0.46 BIAS -0.02 0.03 38.54 0.05
SE 0.19 0.10 167.36 0.35

Table 4.7 shows a similar efficiency of approximations Gn, GnB and F̃ ∗n as in
Table 4.4, i.e., now only the quality of empirical approximations GnB and F̃ ∗n is
slightly lower. Here the empirical approximation GnJ evidently fails, since the
estimate κ̂J of κ is very unstable, see Table 4.9.

The distribution F̃nS has comparatively heavy tails, see Table 4.8. Now all its
Edgeworth approximations seem to be untrustworthy, i.e., they do not mimic F̃nS
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as in the previous simulation examples. Moreover, the bootstrap approximation
F̃ ∗nS is omitted in Table 4.8, since it is undefined, because for a part of resamples
drawn from empirical population (3.3), the jackknife estimate of variance of (4.12)
is exactly 0. It is evident from (3.2).

4.1.5 Discussions

It is evident from the simulation examples of Section 4.1.4 that a positive effect of
the second-order approximations is most observable for Studentized L-statistics,
and in the case, where the distribution of the population is asymmetric. Clearly,
here the sample size is also important. Thus, the chosen moderate sample size
n = 45 ensures a closeness of distribution of L-statistic to the normal distribution
in the first case of Simulation 3 only.

The L-statistics, considered in Simulations 3–5, have different smoothness
properties, in the sense of smoothness of the weight function J : (0, 1)→ R. Thus,
for a smooth L-statistic of Simulation 3, we conclude that Edgeworth expansions
and empirical Edgeworth expansions with jackknife estimates of the parameters
are efficient. In Simulations 4 and 5, the L-statistics are not smooth. In these
cases (except the case of a Studentized statistic of Simulation 5), Edgeworth ex-
pansions are also much more efficient than the normal approximation. However,
it is not necessarily the case for empirical Edgeworth expansions. In particular,
for the trimmed mean of Simulation 4, the jackknife estimate of κ is of a poorer
quality and its quality is very low for a much more not smooth L-statistic of
Simulation 5. For empirical Edgeworth approximations with bootstrap estimates
of the parameters, we have noticed only one drawback, i.e., they are biased in
Simulation 3. But they are quite unbiased and stable, and thus efficient in Simu-
lation 4 and in the first case of Simulation 5. The last non-parametric bootstrap
approximations behave similarly in some cases, and they can be very unbiased for
Studentized L-statistics, but here their variability is higher.

Less successful results of empirical Edgeworth approximations with jackknife
estimates of the parameters, in the case of not smooth statistics, and inaccuracy
of all Edgeworth approximations, in the case of a Studentized L-statistic of Sim-
ulation 5, can be clarified. There are at least two possible theoretical reasons,
which are familiar from the case of i.i.d. observations, but still not well explored
for samples drawn without replacement. The first one is that, in the cases where
L-statistics are not smooth (or less smooth), typically, the validity of Edgeworth
expansions is ensured by imposing additional smoothness conditions on the dis-
tribution function of the underlying population, see, e.g., Gribkova and Helmers
[28, 30] and Alberink et al. [2]. The finite population, even assuming that it is
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obtained from a smooth superpopulation, is not necessarily sufficiently smooth
if its size N is relatively small. The second reason, why the approximations are
so complicated, particularly in Simulation 5, is the well-known phenomenon of
inconsistency of the classical jackknife variance estimator applied to the sample
quantile, see, e.g., Martin [49], where it is also shown that the asymptotic dis-
tribution of the Studentized quantile is nonnormal (heavy-tailed). It seems that
the jackknife variance estimator also fails in the case of the finite combination
of the sample quantiles of Simulation 5. We also refer to Shao and Wu [65],
where an alternative delete-d jackknife is proposed, with the number d (of deleted
observations in the jackknife) depending on smoothness of a statistic.

4.2 Approximations to distributions of quantiles
in stratified samples

4.2.1 Hoeffding decomposition and approximations

Consider a population X = {x1, . . . , xN} of size N . We assume, without loss of
generality, that x1 ≤ · · · ≤ xN . Let X be divided into h ≥ 1 nonoverlapping
strata X = X ′1 ∪ · · · ∪ X ′h, where X ′k = {xk,1, . . . , xk,Nk

}, 1 ≤ k ≤ h. Evidently,
N = N1 + · · ·+Nh. For convenience, we also assume here that xk,1 ≤ · · · ≤ xk,Nk

.
Let X′k = {Xk,1, . . . , Xk,nk

} be a simple random sample of size nk < Nk drawn
without replacement from the stratum X ′k. We assume that the samples X′1, . . . ,X′h
are independent. Write X′ = X′1 ∪ · · · ∪X′h and denote n = n1 + · · ·+ nh. Denote
the distribution function of the stratum k and its empirical analogue as follows:

FN,k(x) = 1
Nk

Nk∑
i=1

I{xk,i ≤ x} (4.13)

and
F̂n,k(x) = 1

nk

nk∑
i=1

I{Xk,i ≤ x}, (4.14)

respectively. Then the distribution function of the population X and its estimator
are

F (x) =
h∑
k=1

Nk

N
FN,k(x)

(it is the same as (2.26)) and

F̂n(x) =
h∑
k=1

Nk

N
F̂n,k(x),
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respectively. Consider the population β-quantile, 0 < β < 1, defined as follows:
F−1(β) = inf{x : F (x) ≥ β}. Define its estimator

Xβ = F̂−1
n (β) = inf{x : F̂n(x) ≥ β}.

Denote σ2
β = VarXβ. We are interested in approximations to the distribution

function
Fβ(x) = P{Xβ − EXβ ≤ xσβ}.

The asymptotic normality of the quantile Xβ, under a stratified simple random
sampling without replacement, was considered by Shao [64], see also Gross [31].
Here we present an Edgeworth type approximation to Fβ(x), see (4.15) below,
and its empirical analogue based on the bootstrap of Booth et al. [21]. Our main
tool is again Hoeffding’s decomposition

Xβ = EXβ + L+Q+R,

constructed by Bloznelis [15] for general symmetric statistics in the case of strat-
ified simple random samples drawn without replacement. Here, like in the one-
stratum case, L and Q are called linear and quadratic parts of the decomposition,
and R is a remainder term. In the case of U -statistics, where R ≡ 0, Edgeworth
expansions were constructed and their second-order correctness was shown by
Bloznelis [18]. Thus, we expect that, if R is negligible, those Edgeworth expan-
sions will also approximate Fβ(x) well. In particular, we suggest to approximate
Fβ(x) by

Hβ(x) = Φ(x)− αβ + 3κβ
6σ3

β

Φ′(x)(x2 − 1), (4.15)

obtained in [18]. Here

αβ =
h∑
k=1

(1− 2nk/Nk)τ 2
kαk and κβ =

h∑
k=1

τ 4
kκkk + 2

∑
1≤k<u≤h

τ 2
k τ

2
uκku,

with τ 2
k = nk(1− nk/Nk). Here the moments

αk = 1
Nk

Nk∑
s=1

g3
k(xk,s),

κkk =
(
Nk

2

)−1 ∑
1≤s<r≤Nk

ψk(xk,s, xk,r)gk(xk,s)gk(xk,r),

κku = 1
NkNu

∑
1≤s≤Nk, 1≤r≤Nu

ψku(xk,s, xu,r)gk(xk,s)gu(xu,r),
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established in [18], are based on the functions

gk(xk,s) = Nk − 1
Nk − nk

N−1∑
i=1

(
pi(xk,s)− pi

)
Mi, (4.16)

ψk(xk,s, xk,r) = Nk − 2
Nk − nk

Nk − 3
Nk − nk − 1

N−1∑
i=1

(
pi(xk,s, xk,r)

− Nk − 1
Nk − 2

(
pi(xk,s) + pi(xk,r)

)
+ Nk

Nk − 2pi
)
Mi,

(4.17)

ψku(xk,s, xu,r) = Nk − 1
Nk − nk

Nu − 1
Nu − nu

N−1∑
i=1

(
pi(xk,s, xu,r)− pi(xk,s)

− pi(xu,r) + pi
)
Mi,

(4.18)

where, for 1 ≤ i ≤ N − 1, we denote the probabilities

pi = P{Xβ > xi},

pi(xk,s) = P {Xβ > xi |Xk,1 = xk,s} ,

pi(xk,s, xk,r) = P {Xβ > xi |Xk,1 = xk,s, Xk,2 = xk,r} ,

pi(xk,s, xu,r) = P {Xβ > xi |Xk,1 = xk,s, Xu,1 = xu,r} .

We give these probabilities in (4.19) and in Proposition 21 below. Note that
expressions (4.16)–(4.18) are obtained directly from (11) in [15], using the defini-
tions of expectation and conditional expectations, and applying the summation
by parts formula ∑N

i=1(pi−1 − pi)xi = −pNxN + p0x1 +∑N−1
i=1 pi Mi (in the case of

expectation) and noting that, by definition, pN = 0 and p0 = 1, and so forth.
Let T be the set of h-tuples (t1, . . . , th) ∈ {0, . . . , n1} × · · · × {0, . . . , nh},

which satisfy the condition ∑h
j=1 wjtj < β. Here wj = Nj/(Nnj). Denote dij :=

NjFN,j(xi). It is shown in Gross [31] that, for 0 ≤ i ≤ N ,

pi =
∑
T

∏
1≤j≤h

HNj ,nj ,dij
(tj), (4.19)

and then the variance of Xβ in (4.15) is

σ2
β =

N∑
i=1

(pi−1 − pi)x2
i −

(
N∑
i=1

(pi−1 − pi)xi
)2

. (4.20)

Next, we give explicit expressions of the conditional probabilities.
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Proposition 21 Let 1 ≤ i ≤ N − 1.
(i) For 1 ≤ k ≤ h and 1 ≤ s ≤ Nk, we have

pi(xk,s) =
∑
T
ϕk,s(i)

∏
1≤j≤h, j 6=k

HNj ,nj ,dij
(tj),

where

ϕk,s(i) =

HNk−1,nk−1,dik
(tk) if i ∈ I21,

HNk−1,nk−1,dik−1(tk − 1) if i ∈ I22,

with

I21 = {i : xi < xk,s}, I22 = {i : xi ≥ xk,s}.

(ii) For 1 ≤ k ≤ h and 1 ≤ s < r ≤ Nk, we have

pi(xk,s, xk,r) =
∑
T
φk,s;k,r(i)

∏
1≤j≤h, j 6=k

HNj ,nj ,dij
(tj),

where

φk,s;k,r(i) =


HNk−2,nk−2,dik

(tk) if i ∈ I31,

HNk−2,nk−2,dik−1(tk − 1) if i ∈ I32,

HNk−2,nk−2,dik−2(tk − 2) if i ∈ I33,

with

I31 = {i : xi < xk,s ≤ xk,r}, I32 = {i : xk,s ≤ xi < xk,r},

I33 = {i : xk,s ≤ xk,r ≤ xi}.

(iii) For 1 ≤ k < u ≤ h and 1 ≤ s ≤ Nk, 1 ≤ r ≤ Nu, we have

pi(xk,s, xu,r) =
∑
T
θk,s;u,r(i)

∏
1≤j≤h, j 6=k,u

HNj ,nj ,dij
(tj),

where

θk,s;u,r(i) =



HNk−1,nk−1,dik
(tk)HNu−1,nu−1,diu

(tu) if i ∈ I41,

HNk−1,nk−1,dik−1(tk − 1)HNu−1,nu−1,diu
(tu) if i ∈ I42,

HNk−1,nk−1,dik
(tk)HNu−1,nu−1,diu−1(tu − 1) if i ∈ I43,

HNk−1,nk−1,dik−1(tk − 1)HNu−1,nu−1,diu−1(tu − 1) if i ∈ I44,
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with

I41 = {i : xi < xk,s, xi < xu,r}, I42 = {i : xi ≥ xk,s, xi < xu,r},

I43 = {i : xi < xk,s, xi ≥ xu,r}, I44 = {i : xi ≥ xk,s, xi ≥ xu,r}.

Proof. Calculations of all the conditional probabilities are based on the same
arguments as the derivation of (4.19) in Gross [31]. Here, for each case from (i)–
(iii), we need to consider, under fixed conditions of the conditional probabilities,
a few different positions of xi only. Note that the set T is the same for all
probabilities, since we use conventions (1.6). �

Empirical approximation. The parameters αβ = αβ(X ), κβ = κβ(X ) and
σ2
β = σ2

β(X ) that define approximation (4.15) are usually unknown characteristics
of the population X . Thus, they should be estimated in practice. In Gross [31],
for the estimation of the parameter σ2

β, a convenient plug-in rule was proposed,
where strata distribution functions (4.13) were replaced by their corresponding
empirical versions (4.14). However, it is not convenient for the estimation of αβ
and κβ. Another way is to replace the population parameters by their jackknife
estimators, see Bloznelis [18]. But it is well known that, in the case of sample
quantiles, jackknife estimators (of variance) often fail. Recall also the discussion
at the end of Section 4.1.5.

We consider here the bootstrap estimators of the parameters. For 1 ≤ k ≤ h

write Nk = mknk + lk, where 0 ≤ lk < nk. For each 1 ≤ k ≤ h we construct
an empirical stratum X̃ ′k, as in the one-stratum case, see (3.3). Then X̃ ′ = X̃ ′1 ∪
· · ·∪X̃ ′h is an empirical population, and the bootstrap estimator of the population
parameter θ = θ(X ) is

θ̂B = E
(
θ(X̃ ′)

∣∣∣X′) , (4.21)

similarly as in (3.4). Thus, we have the bootstrap estimators α̂βB, κ̂βB and σ̂2
βB of

αβ, κβ and σ2
β. However, it is difficult to obtain their explicit expresions. There-

fore, we apply Monte–Carlo (M–C) approximations to the parameters we are inter-
ested in. In particular, let X̃ ′(1), . . . , X̃ ′(B) be B empirical populations constructed
independently as described above, i.e., we randomly and with replacement select
B empirical populations from all possible ∏h

k=1

(
nk

lk

)
. Then M–C approximation

to (4.21) is

θ̃B = 1
B

B∑
b=1

θ(X̃ ′(b)). (4.22)

Finally, replacing the true parameters αβ, κβ and σ2
β in (4.15) by their estimates
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α̃βB, κ̃βB and σ̃2
βB, we obtain the empirical approximation

H̃β(x) = Φ(x)− α̃βB + 3κ̃βB
6σ̃3

βB

Φ′(x)(x2 − 1) (4.23)

to Fβ(x).

4.2.2 Numerical simulations

In the simulation example below, we approximate the exact distribution Fβ sim-
ilarly as in the case of one-stratum, see Appendix A.1, i.e., we obtain its ap-
proximation F̃β by the M–C simulations, by drawing independently 105 stratified
samples from X . Now the variance of Xβ is given by (4.20) and the expectation
is µβ = ∑N

i=1(pi−1 − pi)xi.
In the tables below, we present q-quantiles, q = 0.01, 0.05, 0.10, 0.90, 0.95, 0.99,

of F̃β, Φ, Hβ, and H̃β. For the approximation H̃β we present two characteristics
for each of the empirical q-quantiles: estimated value Ê H̃−1

β (q) of its expectation
E H̃−1

β (q) and estimated value Ŝ H̃−1
β (q) of its standard error S H̃−1

β (q), based on
R = 100 stratified samples drawn independently from X , see formulas (4.10) and
(4.11). To estimate the parameters αβ, κβ and σ2

β by (4.22), we take B = 30.

Simulation 6 We consider the case of a sample median, i.e., we take β = 0.5.
From the real finite population, which consists of Lithuanian service enterprises,
we take three completely sampled strata, which belong to the economic activity
classified as ‘combined facilities support activities’. The strata sizes are N1 = 25,
N2 = 7 and N3 = 13. Using the measurements of turnover and the number of
persons employed, we form two different populations: X(1) = X ′(1)1 ∪ X ′(1)2 ∪ X ′(1)3

and X(2) = X ′(2)1 ∪ X ′(2)2 ∪ X ′(2)3. Here we use the first-quarter data of 2011. The
simulation results for these populations are presented in Tables 4.10 and 4.11,
respectively. We choose sample sizes n1 = 10, n2 = 3 and n3 = 5.

Table 4.10: The population X(1). Approximations to F̃0.5.

q = 0.01 0.05 0.10 0.90 0.95 0.99
F̃−1

0.5 (q) -2.85 -2.01 -1.94 0.96 0.96 0.96
Φ−1(q) -2.33 -1.64 -1.28 1.28 1.64 2.33
H−1

0.5 (q) -2.82 -1.95 -1.41 1.21 1.46 1.81
Ê H̃−1

0.5 (q) -2.21 -1.64 -1.28 1.32 1.74 2.42
Ŝ H̃−1

0.5 (q) 0.42 0.20 0.08 0.09 0.21 0.42

Table 4.10 shows that H0.5 significantly improves Φ. However, it is not the
case for its empirical version H̃0.5, since, for a large part of the samples, this
approximation to F̃0.5 is less accurate than Φ. Table 4.11 shows thatH0.5 evidently
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Table 4.11: The population X(2). Approximations to F̃0.5.

q = 0.01 0.05 0.10 0.90 0.95 0.99
F̃−1

0.5 (q) -1.60 -1.26 -0.82 1.90 1.99 3.85
Φ−1(q) -2.33 -1.64 -1.28 1.28 1.64 2.33
H−1

0.5 (q) -1.84 -1.47 -1.22 1.40 1.92 2.79
Ê H̃−1

0.5 (q) -2.00 -1.53 -1.24 1.35 1.81 2.63
Ŝ H̃−1

0.5 (q) 0.17 0.06 0.02 0.04 0.10 0.16

outperforms Φ. Here the estimated variability Ŝ H̃−1
0.5 (q) is comparatively small,

therefore H̃0.5 is also more efficient than Φ.

We stress that the proposed approximations may be very efficient in real sur-
veys, where we need to measure the accuracy of a sample quantile in small domains
of a population (for some collections of strata) and where populations are highly
skewed.
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Appendix A

Monte–Carlo approximations

A.1 Approximations to distributions

Here we present Monte–Carlo approximations to distribution functions Fn(x) and
FnS(x) given by (5) and (4.1), respectively. We draw independently C samples
X(c) = {X(c)

1 , . . . , X(c)
n }, 1 ≤ c ≤ C of size n without replacement from X , and

take
F̃n(x) = 1

C

C∑
c=1

I
{
Ln(X(c))− µL(X ) ≤ xσL(X )

}
and

F̃nS(x) = 1
C

C∑
c=1

I
{
Ln(X(c))− µL(X ) ≤ xS(Ln(X(c)))

}
.

Here the population X characteristics µL(X ) = ELn and σ2
L(X ) = VarLn are

expressed by
µL(X ) = 1

n

n∑
p=1

cp EXp:n

and (3.5), respectively, where the moments of the order statistics (inside of these
expressions) are

VarXp:n =
(
N

n

)−1 N∑
i=1

(
i− 1
p− 1

)(
N − i
n− p

)
x2
i − (EXp:n)2 , 1 ≤ p ≤ n (A.1)

and

Cov(Xp:n, Xr:n) =
(
N

n

)−1 ∑
1≤i<j≤N

(
i− 1
p− 1

)(
j − i− 1
r − p− 1

)(
N − j
n− r

)
xixj

− EXp:n EXr:n, 1 ≤ p < r ≤ n,

(A.2)
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with

EXp:n =
(
N

n

)−1 N∑
i=1

(
i− 1
p− 1

)(
N − i
n− p

)
xi, 1 ≤ p ≤ n. (A.3)

If it is assumed that x1 < · · · < xN , the proof of (A.1)–(A.3) is simple. To obtain
these formulas in the case of x1 ≤ · · · ≤ xN , apply Lemma 8.

A.2 Approximations to bootstrap distributions

Here we present Monte–Carlo approximations to distribution functions F ∗n(x) and
F ∗nS(x) given by (4.7) and (4.8), respectively. Given the sample X of size n, we
construct independently B empirical populations X̃ (b), 1 ≤ b ≤ B. Next, for
every 1 ≤ b ≤ B, we draw independently R resamples X̃(b,r) = {X̃(b,r)

1 , . . . , X̃(b,r)
n },

1 ≤ r ≤ R of size n without replacement from X̃ (b), and take

F̃ ∗n(x) = 1
BR

B∑
b=1

R∑
r=1

I
{
Ln(X̃(b,r))− µL(X̃ (b)) ≤ xσL(X̃ (b))

}

and
F̃ ∗nS(x) = 1

BR

B∑
b=1

R∑
r=1

I
{
Ln(X̃(b,r))− µL(X̃ (b)) ≤ xS(Ln(X̃(b,r)))

}
.

Here the expressions of µL(·) and σ2
L(·) are given in Appendix A.1.
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