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Notations

N denotes the population size.

X denotes the population of N numbers.

n denotes the sample size.

X denotes the sample of size n.

X} denotes the sample of sizen+ k, k=1,2,..., N —n.
n, denotes min{n, N — n}.

N denotes the set of natural numbers, N = {1,2,...}.

R denotes the set of real numbers.

C denotes the set of complex numbers.

[-] denotes the greatest integer function.

I{-} denotes the indicator function.

A; denotes the difference x;,1 — x; of values from the population where z; < ---

TN.
A ., denotes the difference X 1., — Xj., of the order statistics.
P { A} denotes the probability of an event A.

E X denotes the expectation of a random variable X.

Var X denotes the variance of a random variable X.

Cov (X,Y) denotes the covariance of random variables X and Y.

(’z) denotes the binomial coefficient m!/[k!(m — k)!].

IA

Hnni(j) denotes the probability (Z) (N _?) / (]X ) that a hypergeometric random

Jj) \n—j

variable with parameters N, n and ¢ attains the value j.
a, = O(b,) as n — oo means that |a,|/ |b,| < C, for some C' > 0 and all n.

a, = o(b,) as n — oo means that lim,,_,.(a,/b,) = 0.



Y,, = Op(b,) as n — oo means that the sequence |Y,,|/|b,| is bounded in proba-
bility.
Y, = op(b,) as n — oo means that the sequence |Y,,|/|b,| converges to zero in

probability.



Introduction

An asymptotic theory for random variables (statistics), occurring in problems
of mathematical statistics, plays an important role when we need good approx-
imations to distributions of those statistics. The most fundamental asymptotic
approximation is the normal approximation. Now it is well studied not only for
sums of independent and identically distributed (i.i.d.) random variables, but also
for much more complex statistics as well as for various sampling models. However,
in many practical situations the accuracy of this classical approximation is not
sufficient unless the sample size is (very) large. One of the known methods, which
can improve the normal approximation, is Edgeworth expansions, i.e., the normal
approximation plus one or more correction terms which reflect the specifics of an
underlying statistic and a sampling model.

The main objects of this doctoral dissertation are one-term Edgeworth expan-
sions for distributions of a general class of linear combinations of order statistics
(L-statistics), where samples are drawn without replacement from a finite pop-
ulation. The work done also involves other related questions such as the same
asymptotic normality, the analysis and estimation of variances of the statistics,
an efficient estimation of parameters that define Edgeworth expansions, empirical
Edgeworth expansions, bootstrap approximations, etc. We outline the following

problems.
Aims and problems
e Construct a short Edgeworth expansion for L-statistics.

e Find explicit expressions of the main terms of the Hoeffding decomposition

of L-statistics.
e Construct upper bounds for the variances of order statistics.

e Obtain simple sufficient conditions for the asymptotic normality and validity

of the Edgeworth expansion.

e Construct estimators of variance and parameters that define the Edgeworth

expansion of an L-statistic.



e Construct and analyze a one-term Edgeworth expansion for a Studentized

L-statistic and empirical Edgeworth expansions.

Let X = {z1,...,2n} denote measurements of the study variable = of the
population U = {uy,...,un}, i.e., a real function f: & — R assigns a fixed value
for each element of the population Y. Let X = {Xy,..., X,,} be measurements
of units of the simple random sample of size n < N drawn without replacement
from the population. The observations X, ..., X,, are identically distributed, but
they are not independent. Let Xi., < --- < X,,.,, denote the order statistics of X.
Define the L-statistic

L,=L,X) =

1

2 ¢ Xjin- (1)
j=1

Here ¢q,...,c, is a given sequence of real numbers called weights. L-statistics

generalize the well-known estimators such as the sample mean (sum), trimmed

means, empirical quantiles, and Gini’s mean difference (each of them can be writ-

ten in form (1)). Usually the weights c¢y,..., ¢, are determined by the weight

function J: (0,1) — R as follows

cj:J<nil>, 1<j<n. 2)

Denote 02 = Var L,,. We present some L-statistics in more detail.

Example 1 The trimmed mean is defined as follows: for any fixed numbers

0<ty <ty<1,
[tan]

Mt1;t2 = ([th] - [tlnD_l Z Xj:n» (3)

j=[tin]+1
where [] represents the greatest integer function. Clearly, it is statistic (1), with
the weight function J(u) = (ta — 1) 'I{t; < u < to}. Here I{-} is the indicator
function. Note that the marginal case, where ¢t; = 0 and t, = 1, represents the
usual sample mean. In this case J = 1. The trimmed means are applied in a

robust estimation of a center of population X.

Example 2 In the case of i.i.d. observations, the L-statistic, defined by the weight
function J(u) = 6u(l — u), is applied as an efficient estimator of the location
parameter for the logistic distribution, see Chernoff et al. [23]. Therefore, if it is
assumed that population X is obtained from the logistic distribution, the defined

statistic may be useful in the estimation of a center of population X.
Example 3 Gini’s mean difference, known as a measure of dispersion,
-1
n
Ua = (2) Z ‘XZ - Xj‘
1<i<j<n

10



is the U-statistic of degree 2 and it can be written in form (1) (see, e.g., Arnold
et al. [4, pp. 229-230]), where ¢; = (n+1)J(j/(n+1))/(n — 1), 1 < j <n, with
J(u) = 2(2u—1). It is known that this statistic can be also applied to an efficient
and robust against outliers estimation of the scale parameter (standard deviation)
for the normal distribution, if we take \/7Ug/2 instead of Ug. If it is assumed
that population & is obtained from the normal distribution, this statistic may be

useful in the estimation of the variance Var X; of X.

Note that in Examples 2 and 3, for the interpretation of L-statistics (-estimators),
it was convenient to assume that a fixed finite population X is a random sample
from an infinite population (also called a superpopulation) with a certain distri-
bution function.

Further, when we talk about the asymptotics of L-statistics, we use centered

statistics (1) with n!/? norming, i.e.,

S, =n**(L, —ELp,). (4)
Denote 62 = VarS,. We are interested in approximations to the distribution
function
F.(z) =P{S, <uzd,}. (5)
Denote
7 = Npg, where p=n/N, q=1-p, (6)
and write
n. = min{n, N —n}. (7)

The numbers 72 and n, will be used in many further statements on the asymptotics

2 and n, are approximately

of L-statistics instead of usual n. We note that 7
equivalent because of the inequalities 72 < n, < 272 Clearly, if we fix the sample
size n and let the population size N — oo (the case of independent observations),
then 72 — n.

Note that for correct formulations of asymptotic results for finite population
statistics, we need to consider a sequence of populations X, = {z,1,...,2,n,},
with NV, — oo as 7 — 00, and a sequence of statistics L, (X,), based on simple
random samples X, = {X,1,...,X,,,} drawn without replacement from X,. In

order to keep the notation simple we shall skip the superscript r in what follows.

A separate case of the sample mean. First, we discuss the case of the
sample mean, where ¢c; = 1, 1 < j < n. The following asymptotic results hold for
samples drawn without replacement.

The most common approximation to (5) is the normal approximation. Write

11



02 = Var X;. Let

O(x —/2 gt

1 T
)= e

21 J—c0
denote the standard normal distribution function. We say that the random vari-

able 615, or its distribution function F,(x) is asymptotically standard normal

if, for every x € (—o0,4+00), we have lim,,_,o F,,(z) = ®(x).

Theorem 1 (Erd6s and Rényi, [26]) Assume that N,n — oo, such that n <

N, and 0? remains bounded away from zero for all N. Say that, for every e > 0,
E(X: -EX))*0°I{|X; —EXy| >ero} =0(1) as N,n— co. (8)

Then 6,15, is asymptotically standard normal.

Here condition (8) is similar to the well-known Lindeberg condition, which ensures
asymptotic normality in the traditional case of independent observations. It is
called the Erdés—Rényi condition.

The closeness between F,,(x) and ®(x) was studied first by Bikelis [11], but
the speed of convergence of (5) to the standard normal distribution is typically
provided by the Berry-Esseen bound. Assuming that o2 > 0, we introduce the

notation
04320'73E(X1—EX1)3 and B3:O'73E|X1—EX1|3.

The following theorem shows the accuracy of the normal approximation.

Theorem 2 (Hoglund, [38]) Assume that o* > 0. There exists an absolute
constant C' > 0 such that, for every 1 <n < N, we have

C
sup  |Fu(z) — ()| < = .
—oo<x<+00 T

It follows from Theorem 2 that, if E|X;|> < oo and also 0 > 0 for all N, then

we have the approximation

sup  |Fu(z) —®(2)|=0(t7") as 17— <.
—oo<x<+00
In fact, Berry—Esseen bounds are of a purely theoretical significance.

One of possible ways to improve the normal approximation is an Edgeworth
expansion. Typically only the first few terms of the Edgeworth expansion are
taken, i.e., one- or two-term Edgeworth expansion can be convenient and sufficient
for applications. Such an Edgeworth expansion was studied first by Robinson [61],

but weaker conditions sufficient for the validity of Edgeworth expansions were

12



obtained by Bloznelis [13]. Here, in the case of sample mean, and also further,
we consider for illustration only one-term Edgeworth expansions. For the sample

mean the one-term Edgeworth expansion is given by

Gul) = ()~ DB ya/(a), )

T
where ®'(x) is the derivative of ®(z). Depending on additional smoothness con-
ditions, imposed on the distribution function F,(x), it is possible to obtain an

improvement of the normal approximation,

sup  |Fu(2) — Gu(2)|=0o(t7') as 7— o0 (10)
—oco<r<+00
or
sup  |Fu(z) — Gu(2)| = O0(r7?) as 7 — oo (11)
—oo<z<+00

Given g: R — C, write [|g||;,;; = SuPacpy<s [9(t)]. To obtain (10), we need the
following nonlattice condition: for every ¢ > 0 and every B > 0, the function
o(t) = Eexp{itc ™1 X} satisfies

%fﬁlgg el < 1. (12)
To obtain (11), a more stringent Cramer-type condition should be used,

Asymptotic conditions (12) and (13) are finite population analogues of the nonlat-

tice and Cramer conditions familiar from the traditional case of i.i.d. observations.

Theorem 3 (Bloznelis, [13]) Assume that N,n — oo, such that n < N, and
a? remains bounded away from zero for all N.

(i) Assume that (12) holds and E |X;|> < co. Let, for every e > 0,
E|X,—-EX|) o I{|X; —EXy| >er0} =0(1) as N,n— oco.

Then we get (10).
(ii) Assume that (13) holds and E|X;|* < co. Then we obtain (11).

Since L-statistics can be viewed as a certain generalization of the sample mean,
one can expect that conditions, sufficient for the corresponding asymptotic state-
ments, should be similar, but with some additional restrictions to the weights

Cly...,Cp.

13



A class of symmetric statistics. L-statistics is a subclass of the more general
class of symmetric statistics. The statistic T' = ¢(X) is called symmetric, if the
function ¢(-) is invariant under permutations of its arguments X7,..., X,,. Sym-
metric statistics also include smooth functions of (multivariate) sample means,
U-statistics and many others. A general asymptotic theory is well developed now
not only for the case of i.i.d. observations, see Bentkus et al. [7], but also in the
case of samples drawn without replacement, we refer to Bloznelis and Gotze [20].

An asymptotic behavior of many important symmetric statistics (including L-
statistics) differs not so much from that of the simplest linear statistic (the sample

mean is an example), in the sense that usually it is possible to write
T—-ET=U+ Ry, (14)

where U, is a linear statistic and R; is a stochastically smaller statistic. Then,
under proper normalization, in (14) T is asymptotically standard normal if its
linear part U; is asymptotically standard normal, and R; is a degenerate statistic
as the sample size increases. Statistic (14), where R; = op(1l), is also called
an asymptotically linear statistic. The method, used to decompose a symmetric
statistic as in (14), usually depends on a form (properties) of the statistic T. A
very common method is Taylor’s expansion of the statistic, which is very suitable
for many simple and popular statistics, e.g., for the members of a subclass of
smooth functions of sample means. Unfortunately, this method cannot be applied,
e.g., for many of L-statistics and U-statistics.

An alternative method is Hoeffding’s decomposition. For U-statistics, based
on i.i.d. observations, it was introduced by Hoeffding [37]. In the case of samples
drawn without replacement, Hoeffding decompositions of U-statistics of the fixed
degree m were studied in Zhao and Chen [78]. In the general case of symmetric
statistics, based on the samples drawn without replacement, a decomposition of
this type was studied by Bloznelis and Gotze [20]. Hence, if it is aimed to prove
the asymptotic normality of the symmetric statistic S, (e.g., L-statistic defined
by (4)), one can write, by Theorem 1 of [20], that

S, = Ui + Ry, (15)

where the linear part
Ur =) gi1(Xi)
i=1

and the remainder term R; are centered and uncorrelated. Here the variance of R

is bounded as follows: E R? < §,, where, in the case of the mentioned symmetric

14



statistics, typically d, = O(n;!) as n, — oo. We will give later a more detailed
description of the Hoeffding decomposition in Section 1.1. The main result on the

asymptotic normality of the symmetric statistics is the following statement.

Proposition 4 (Bloznelis and Gotze, [20]) Assume that n, — oo and &, re-

mains bounded away from zero for all n,. Let 6o = o(1) and for every e > 0,
n, E g (X){g? (X)) >e} =0(1) as n, — oo. (16)
Then 6,15, is asymptotically standard normal.

An improvement of the normal approximation is provided by the one-term
Edgeworth expansion. To write it, we need more terms of the Hoeffding decom-

position. By Theorem 1 of Bloznelis and Gotze [20],
Sp=Us + Uz + Ry, (17)

where the second term

U= Y (X, X))

1<i<j<n

is a U-statistic of degree 2, also called a quadratic part of the decomposition.
Similarly as in the case of short expansion (15), Uy, Uy and the remainder term
Ry are centered and mutually uncorrelated. Now E R32 < n_'d3, where usually
03 = O(n;') as n, — oo. The first two terms of (17) are sufficient to write
the one-term Edgeworth expansion for the distribution function F,(z), i.e., by
Bloznelis and Gétze [20],

(¢ —p)a+ 3k

Gn(z) = O(x) — =

(2% — 1)®'(x), (18)
where
o= 01_3 Egi’(Xl) and Kk = 01_37'2 E g2( X1, X2)g1(X1)g1(Xo), (19)

with 02 = E ¢?(X;). Note that the form of one-term Edgeworth expansion (18) for
the general symmetric statistics differs from the corresponding expansion, in the
case of the sample mean, see (9) above, only by the additional parameter x, which
reflects the influence of the quadratic part Us of the statistic (decomposition). The

moment and smoothness conditions, sufficient for the approximation

sup | Fp(z) — Gu(2)] = o(n;'?) as n, — oo (20)

*
—oo<x<+00

15



or
sup  |Fu(z) — Gu(z)] = O(n') as n, — oo, (21)

—co<z<+00
in the case of symmetric statistics, are also similar to those that are sufficient
in the case of the sample mean. Now, by Bloznelis and Gotze [20], we need to
require for the validity of (20) that, for every ¢ > 0 and every B > 0, the function
¢(t) = Eexp{ito;'g1(X1)} should satisfy

liminf el < 1 (22)
and, respectively, for the validity of (21), we need

We see that asymptotic conditions (22) and (23) are imposed on the linear part
of the symmetric statistic only, as well as in the case of the usual sample mean.
For the proof of (21), we also need the cubic part Us = 31, jcr<n 93(Xi, Xj, Xi)
of the decomposition S, = Uy + Uy + Us + R, where E R% < n 24, (see [20]). Let
us introduce the moments

s

ﬁs:E
Cs:E

Y

n32 g5 (X1, X>)

n?g (X)), % =E
ni/293(X1, Xo, X3)‘8

(24)

The following theorem is on the validity of approximations (20) and (21).

Theorem 5 (Bloznelis and Gétze, [20]) Assume that n, — oo and &, re-
mains bounded away from zero for all n,.

(i) Assume that (22) holds, d3 = o(n*_l/Q) and, for some § > 0, the moments
P15 and vyor5 are bounded as n, — oo. Then (20) holds.

(ii) Assume that (23) holds, 64 = O(n;') and, the moments B4, V4, (o are
bounded as n, — oo. Then (21) holds.

The conditions, imposed on the quantities dx, k& = 2,3,4 and moments (24)
in Proposition 4 and Theorem 5, are quite general and it is difficult to verify
them. Chapter 2 of this dissertation is devoted to a simplification of these general
conditions, in the case of L-statistics. In fact, we will replace these conditions
by the respective sufficient conditions expressed in terms of the weights ¢y, ..., ¢,
and moments of X;. Moreover, in Chapter 1, we give explicit and quite conve-
nient expressions of the functions g;(-) and gs(+,-), i.e., explicit formulas of the
parameters « and x that define the Edgeworth correction term in (18). It opens
new ways of a more efficient practical use of Edgeworth expansions, presented in
Chapters 3 and 4.

16



Note that there are a few results on Edgeworth expansions, obtained before
the work of Bloznelis and Gotze [20], for some important subclasses of finite pop-
ulation symmetric statistics. One can mention the paper of Babu and Singh [5]
on smooth functions of sample means, where the Taylor expansion was applied,
and the work of Kokic and Weber [44] on U-statistics, where other methods than
the finite population orthogonal decomposition were used as well. It is demon-
strated in [20] that, in both cases, the orthogonal decomposition applies well, and
gives practically simpler conditions for the validity of the one-term Edgeworth

expansions.

L-statistics in the case of i.i.d. observations. In fact, in the case of samples
drawn without replacement, there are no works on asymptotic approximations to
distributions of L-statistics, except, e.g., the paper of Shao [64] on the asymptotic
normality of L-statistics under more general sampling models, and the work of
Chatterjee [22] on the asymptotic normality of the sample quantile. In the case of
i.i.d. observations, L-statistics were studied by a number of authors. Strong laws
of large numbers were obtained, e.g., by Wellner [76], van Zwet [73] and Norvaisa
[52]. Laws of the iterated logarithms were established, e.g., by Wellner [77], Lea
and Puri [45] and Norvaisa and Zitikis [53]. Asymptotic normality under various
conditions was shown by Chernoff et al. [23], Shorack [66], Stigler [69] and Mason
[50], among others. See also Serfling [63, Chapter 8|. Berry-Esseen bounds were
obtained by Bjerve [12], Helmers [33], van Zwet [74], and others. Large deviations
were considered by Vandemaele and Veraverbeke [75], Bentkus and Zitikis [8],
Aleskeviciené [3] and Gao and Zhao [27]. Edgeworth expansions for L-statistics
were established by Helmers [34], Putter and van Zwet [59] (see also Putter [58]),
Gribkova and Helmers [28, 30], Alberink et al. [2], Maesono [47] and Maesono and
Penev [48].

We assume (Theorem 15 in Chapter 2) that the weight function J: (0,1) - R
is sufficiently smooth, and we impose very mild conditions on the finite population
X. These assumptions, sufficient for the asymptotic normality of L-statistics, are
similar to that obtained by Stigler [69] in the i.i.d. case. The validity of Edgeworth
expansion (Theorem 17) is ensured by similar but more stringent conditions for
J(-) and X. Our conditions are similar to that used in the i.i.d. situation, see
Helmers [34] and Putter [58].

The structure of the thesis results

The thesis consists of four chapters and the bibliography. In most cases, the proofs

of results are given at the end of each section.

e In Chapter 1, we obtain the form of the first three terms of the Hoeffding

17



decomposition expressed explicitly via the weights ¢y, ..., ¢, and their dif-
ferences, see Section 1.3. We similarly express the components of remainder

terms of the decomposition.

e The main applications of the orthogonal decomposition are given in Chapter
2. Section 2.1 presents a new upper bound for the variance of the sample
minimum and maximum. This bound is optimal in the form provided. Sim-
ilar bounds are shown for the other order statistics. Sections 2.2 and 2.3
are on the asymptotic normality and the validity of Edgeworth expansion,
respectively. In addition to the asymptotic normality of L-statistics of a

more general form, we also consider the case of the trimmed mean.

e In Chapter 3, we consider the estimation of the variance and parameters
a and k that define the Edgeworth expansion of L-statistic. We examine
two competitive methods: the classical jackknife and the finite population
bootstrap of Booth et al. [21]. In the case of bootstrap, we give an exact for-
mula of the bootstrap variance estimator, i.e., we reduce the computational
burden and eliminate the approximation error, typically present in resam-
pling approximations based on simulation. We also present similar efficient
formulas for calculating the bootstrap estimators of a and x directly from

the sample.

e In Chapter 4, we consider several variants of the Edgeworth expansion,
which are more close to practice: an Edgeworth expansion for the Studen-
tized L-statistic, empirical Edgeworth expansions, and (related in a certain
sense) non-parametric bootstrap approximations. We discuss their second-
order correctness and compare their efficiencies for various L-statistics in
the simulation study. In Section 4.2, we present a generalization of one-term
Edgeworth expansions to the case of stratified simple random samples drawn
without replacement, where the L-statistics are quantiles of the stratified
sample. We give an explicit expression of the approximation to distribution

of the quantile, and also its empirical version based on bootstrap.

Methods

The properties of statistics are explored using the Hoeffding decomposition. In

the proofs of results, combinatorial and probabilistic methods are applied.

Novelty

New formulas of the parameters that define Edgeworth expansions are obtained,

which are convenient for the construction of their exact bootstrap estimators.

18



Simple sufficient conditions are established, which ensure the improvement of the
normal approximation to distribution of an L-statistic by the one-term Edgeworth
expansion. An exact bootstrap variance estimator is obtained. The new optimal
upper bound for variances of the sample minimum and maximum is constructed

in the case of a sample drawn without replacement.
Maintaining statements

e A one-term Edgeworth expansion was constructed.
e The optimal upper bound for variances of sample extremes was obtained.

e Sufficient conditions for the asymptotic normality and the validity of the
one-term Edgeworth expansion were expressed in terms of smoothness of the
weight function that defines the statistics and boundedness of the moments
of population. Special conditions sufficient for the asymptotic normality of

the trimmed means were also presented.

e Exact formulas of bootstrap estimators of the variance and parameters that
define the Edgeworth expansion of an L-statistic were obtained. Thus, the
additional approximation errors, typically present in resampling approxima-

tions based on simulation, were eliminated.

e The simulation study has showed that the quality of Edgeworth approxima-
tions depends on the smoothness of the weight function of a statistic. It is
also showed that, in the cases where the weight function is not smooth, em-
pirical Edgeworth expansions with bootstrap estimates of the parameters are

more efficient than the corresponding expansions with jackknife estimates.

Publications and presentations

The main results are published in the following articles:

1. A. Ciginas. Second-order approximations of finite population L-statistics.
Statistics, 2011. (submitted)

2. A. Ciginas. An Edgeworth expansion for finite population L-statistics. Lith.
Math. J., 2011. (to appear); see also arXiv:1103.4220v2 [math.ST].

3. A. Ciginas. An exact bootstrap for variance of finite-population L-statistic.
Lith. Math. J., 51:322-329, 2011.

4. A. Ciginas and T. Rudys. Approximations to distribution of median in
stratified samples. Liet. Mat. Rink. LMD darbai, 52, 2011. (to appear)

19



5. A. Ciginas. Bootstrap, jackknife and Edgeworth approximations for finite
population L-statistics. Liet. Mat. Rink. LMD darbai, 51:391-396, 2010.

6. A. Ciginas. Orthogonal decomposition of finite population L-statistics. Liet.
Mat. Rink. LMD darbai, 50:287-292, 2009.

Several presentations at conferences were given on the topics of the thesis:

1. A. Ciginas. On an optimal bound for the variance of sample maximum.
The Third Baltic-Nordic Conference on Survey Statistics, 1317 June 2011,

Norrféllsviken, Sweden.

2. A. Ciginas and T. Rudys. Approximations to distribution of median in
stratified samples. LII Conference of the Lithuanian Mathematical Society,
The General Jonas Zemaitis Military Academy of Lithuania, 16-17 June
2011, Vilnius, Lithuania.

3. A. Ciginas. Bootstrap for variance of finite population L-statistic. Work-
shop on Survey Sampling Theory and Methodology, Vilnius University, 23—
27 August 2010, Vilnius, Lithuania.

4. A. Ciginas. An Edgeworth expansion for finite population L-statistics. 10th
International Vilnius Conference on Probability and Mathematical Statis-
tics, Vilnius University, 28 June — 02 July 2010, Vilnius, Lithuania.

5. A. Ciginas. Bootstrap, jackknife and Edgeworth approximations for finite
population L-statistics. LI Conference of the Lithuanian Mathematical So-

ciety, Siauliai University, 17-18 June 2010, Siauliai, Lithuania.

6. A. Ciginas. Orthogonal decomposition of finite population L-statistics. The
Baltic-Nordic-Ukrainian Summer School on Survey Statistics, 23-27 August
2009, Kyiv, Ukraine.

7. A. Ciginas. Orthogonal decomposition of finite population L-statistics. L
Conference of the Lithuanian Mathematical Society, Vilnius University Insti-
tute of Mathematics and Informatics, 18-19 June 2009, Vilnius, Lithuania.

20



Chapter 1

Hoeffding decomposition

1.1 General formulas

Here we give the basic results of Bloznelis and Gétze [20] on the Hoeffding de-
composition of the symmetric statistics.
Since L-statistics are the symmetric statistics, our analysis of an asymptotic

behavior of statistic (1) is based on the decomposition
L,=EL,+U +---+U,, (1.1)
where

Un = Un(Ly) = Z I (Xiys -, Xi))s 1<m<n.
1<ip < <im<n
Here symmetric and centered kernels g,,, 1 < m < n are certain linear combina-

tions of conditional expectations
hi(@rs ) =B (Ly=BLy | Xy = a5, X; =),  1<j<m,

such that U,,, U-statistics of order m, are mutually uncorrelated. The decom-
position in (1.1) is also called an orthogonal decomposition of L,. Bloznelis and
Gotze [20] provides expressions for the first three kernels of the decomposition as

follows
N -1

:N—n

g1(x) hq(z), (1.2)

N -1

o (e - 5 (@ ). ()

92(2,y) =
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N-3 N—-4 N-5
B ] LA
N -2
_ m(hz(il?,y) + ho(x, 2) + ha(y, Z)) (1.4)
N % - ;1),% - i(’h(@“) + Iy (y) + hl(z))).

See [20], on formula of the kernel of order m. Denote

93<:C7 Y, Z) =

o2 =E¢*(X1,...,Xn), 1<m<n.

Using the fact that the components of decomposition (1.1) are mutually uncorre-

lated, it is shown in [20] that the variance of (1) can be written as

RO

Decomposition (1.1) is a stochastic expansion of an L-statistic and the first
few terms of the decomposition, defined by the kernels in (1.2)—(1.4) above, can
be quite an excellent approximation to L,, i.e., the first few terms of the sum
in (1.5) can contain very large part of 0. In order to control the accuracy of
approximation, one can use the smoothness conditions defined as follows. Let
(X1,...,Xn) denote a random permutation of the ordered set (z1,...,zx) which
is uniformly distributed over the class of permutations. Then, the first n obser-

vations Xi,...,X, represent a simple random sample from population X. For
j=1,...,N —ndenote X} = X, ;. Define

DLy = Ly(X1, ., X)) = L(X1, o X1, X, -, X, X)),
Higher order difference operations are defined recursively:
Djl’j2Ln — Dj?(Dlen)7 Djhjz,stn — DJs (Dj2(Dj1Ln)), o
They are symmetric; that is, D192, = D721 [, etc. Write

0 = 0(Ln) = E (ni’f—”DkLn)Q, DL, = D" *L, 1<k <n,.

Then the following theorem holds.

Theorem 6 (Bloznelis and Gétze, [20]) For 1 < k < n,, we have
La=EL,+U + -+ U, +Ry, with ER:<n;* V5.
Now we have defined all general tools, which are necessary for further analysis
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of Proposition 4 and Theorem 5 on symmetric statistics, presented in Introduction.

1.2 Auxiliary lemmas

will appear naturally in the further text, since, in the case of samples drawn

The binomial coefficients

without replacement, we usually need to count a number of ways to choose k
elements from a set of m elements. For convenience, in this section and further,

we use the conventions that, for integers m > 0 and k£ > 1,

(i’;) =0 and <m”fr k) ~0. (1.6)

Next, we collect some well-known binomial identities. We give them in the

following lemma without a proof.

Lemma 7 For integers m,k,j,p and my,...,mp,ky, ..., kr the following identi-
ties hold.
(i) Let m > 1. Then

()= Gio) =) (17)

(ii) Let 1 <k <m. Then
m m{m-—1

(iii) Let 0 < k < m. Then

(iv) Let 0 < k <m. Then
(7 m+ 1
Z<k>:<k+1>. (1.10)
=k
(v) Let 0 < j <k <m. Then
~ (p\(m—p\ [(m+1
S002)-6) a0
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(vi) Let 0 < k <m and 0 < p <m. Then

£0()-()

(vii) Let T > 3,0 < ky <my fort=1,...,T, and my + --- +mqr =m. Then

o (ﬁ (Zf ) - (?) (1.13)

Here (1.12) is called the Vandermonde identity, and (1.13) is its generalization.
The second simple lemma is useful for calculations of probability distributions
of the order statistics in the case where the values x1, ..., zy of the population X

are not necessarily all distinct.

Lemma 8 (Balakrishnan et al., [6]) Assume that Z = {1,...,N} and con-
sider a simple random sample Zi,...,7Z, of size n < N, drawn without re-
placement from Z. Then, the ordered samples Xy, < --- < X, from X and
Ly < <+ < Ly from Z are related through

(Xrns s Xon) = (9(Z1n); - 9(Znn)),
where g: Z — X is given by g(k) =z, k=1,...,N.

Assume that z; < --- < zy. Introduce the number xy := z; and define
Xo.m = x so that, almost surely, Xy, < X, for each 1 < j < n. Let Aj,, =
Xjt1m—Xjm, 0 < j < n—1 denote the sample spacings. We will need expressions
of their moments EA,.,, EA2 0<u<n-1,and EA,,A,,, 0<u<v<
n — 1 in terms of the population differences A= z;y — 2, ¢ = 1,..., N — 1.
Our expressions, see Lemma 9 below, are similar to those obtained by Jones and

Balakrishnan [42], in the case of i.i.d. observations. Denote

hi(u):<N>l<i><N_i>, 0<u<n-1, 1<i<N-1, (1.14)

n u n—u

hij(u):<N>_1<i><N_j>, 0<u<n-—1, 1<i<j<N-1, (1.15)

n u n—u

hij(u,v) = (:) " (;) (i :;) (f:i) (1.16)

0<u<v<n—1, 1<i<j<N-1

and
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Lemma 9 We have

N—-1
EA,, =) hi(u) &, 0<u<n-1, (1.17)
=1

N-1
i=1

1<i<j<N-—1

EA,.A,., = Z hij(u,v) MDA, 0<u<v<n-1. (1.19)

1<i<j<N-1

Proof of Lemma 9

Here we need slightly modified Lemma 8. Now we take the ordered samples
KXo < Xy <o < X from X and Lo < L < -+ < Zn:na where Loy = 0,
from Z. They are related through

(XO:na Xl:n7 v ,Xn:n) i (g(ZO:n)> g(Zl:n)ﬂ e 7§(Znin))a

where g: ZU {0} — X U {xo} is given by g(k) = 2, k=0,..., N.
First, we will prove (1.17) for 1 <u <n — 1. Since

Au:n i g(Zu-i—l:n) - g(Zun)

and, for 1 <k <[l <N,

iz =tz -0 = (A () /()

we have

where the last identity is obtained by writing

-1
Ty — T = Z Aj
i=k

and collecting the terms with A;. Finally, application of identity (1.10) gives
(117) for 1 <u<n-—1.
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For u = 0, we observe that, for 1 <[ < N,

P{Zym =021 =1} =P{Zy,, =1} = (l:)l) (g:f)/(:)

The remaining part of the proof is almost the same.
The proof of (1.18) uses the same arguments as that of (1.17). Here we also
need to consider separately the cases u = 0 and 1 < u < n — 1. Here we apply

the expansion

ZEl — l‘k Z A —|—2 Z AiA]‘

k<i<j<l—1

and collect the terms with A? and A;A;.
We will prove (1.19). Here we need to consider more separate cases. Let

l1<u<v<n-—1and u<v—1. Since

Au:nAv:n i (g(Zu-l—l:n) - g(Zun)) (g(Zv—i—l:n) - g(Zvn))
and, for 1 <k <l<s<t<N,

P {Zu:n = ka Zu+1:n = la Zv:n =S, Zv+1:n - t}

o ) | GOt [ it [ A G B

E Au:nAfu:n - E (g(Zu-‘rl o} § ~(Zv—i—lzn) - g(Zvn))

() LB )(;:;—_;) N
N k s—1—
- (n) 1<'<z<:N—1{kZ=:1 <u— 1) '+1<122 <j (v—u—12>
x iv: (n]—vv_—t 1>}AZ‘AJ.7

t=7+1

we have

where the last identity is obtained by writing
1—1t—1
(21— xp) (@ — 25) =D Ay

i=k j=s

and collecting the terms with A;A;. Finally, in the braces of the last term, we

apply (1.10), and we do it twice for the middle sum.
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Nowlet l <u<v<n—1landu=wv—1. Here, for 1 <k <l <s<N,

P {valzn = k; Zv:n = l, Z'L;Jrl:n - S}

L)) /G

The rest of the proof is very similar to that of the previous case.
For u = 0, we need to consider separately the cases 2 <v <n —1and v =1.
The proof of these special cases is very similar to that of the previous cases of

(1.19); therefore, we omit it.

1.3 Explicit expressions

1.3.1 Kernels

Consider statistic (1). We assume that, without loss of generality, the values of
the population X are arranged in non-decreasing order, i.e., r; < --- < xy. Given
0<m<nand 1<k <---<k, <N, introduce the event

Am == Axkl...ka == {Xl = Tkyy--- ,Xm = [Ekm}.

For convenience of notation, we define kg := 0 and k,,11 := N + 1. Introduce
numbers xy := z; and xy.1 ;= xy and define X, := x¢ and X, 11., := N1, SO
that, almost surely, Xo.,, < X, < X410, for each 1 < j < n. In the proof of

Theorem 11 below we represent order statistics by sums of sample spacings

7—1
Xjn=Y App+z, 1<j<n. (1.20)
r=0
Here A,., = X,11.0 — Xion, 0 < r < n denote the sample spacings. Write

Ai=xip —x;, 0 <1 <N

Lemma 10 For any m =0,...,n andr =0,...,n we have

N—m\ 'md k=l i st I\(N—i—m+s—1
E<AmrAm>:< ) 35 <r_s+1>( >A

n—m i n—r—m+s-—1
Define differences of the weights ¢y, ..., ¢, recursively by

A%¢j) =¢;, AYej) =¢ —cjm
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and

AY(c;) = AY A Y (ey)), for v=2,....,n—1.

)= (3) (0 2)) /()

Denote by

the probability that a hypergeometric random variable with parameters N, n and
i attains the value j. Denote [N]; = N(N —1)---(N —j 4+ 1). Next we give

explicit and comparatively simple expressions of kernels (1.2)—(1.4).

Theorem 11
(i) For 1 <k <N

n

N—-1
gi(zr) = =Y A%e) DD ok Hn—on-1-1(7 — 1) 2,
1 =1

j:
where
, —i/N if 1 <i<k,
on(i) =
1—i/N ifk<i<N.

(ii) For 1 <k <l<N

n N-1
Go(wp,x) = —n Y AN) Y b H—an-2i—20 — 2) A
= =

where
i(i —1)/Bs if 1 <i<k,

(i) =3 —(i = 1) (N —i—1)/By ifk<i<lI,
(N—i—1)(N—1i)/By, ifl<i<N,

(iii) For 1 <k <l<m<N

n N-—1
93(@k, Ty, T) = —n 7 Z Az(Cj) Z Ok 1m (1) HN—6n-3i-3(] —3) L,
=3 i—1
where
—i(i—1)(i —2)/Bs if1 <1<k,
, (t—1)(t —2)(N —i—2)/Bs ifk <i<l,
ek,l,m(i) =

—(i—2)(N—i—2)(N—i—1)/By ifl<i<m,
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(N—i—2)(N—i—1)(N—i)/B; ifm<i<N,

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)
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Proof of Lemma 10

Note that the separate case m = 0, for 0 < r < n—1, is already proved in Lemma
9. Here we give a different proof of this case.
Assume that ;1 < --- < xy. Then, forany m =0,...,nandr =0,...,n+1,

straightforward combinatorial calculations give

n—m ik \r—sJ\n—r—m+s—1
+ T, |-
o \r—s n—r—m+s
The key idea is for » = 0,...,n to note that, by (1.7),

N —m “1rm+1  ks—1 i—s .
E (Xr—f—l:n | Am) - < ) [ Z (7" — s+ 1) 6m,s,z‘(r>xi

n—m s=1 i=ks_1+1

S \r—s+1)\n—r—-m+s—1 ke

6;n,s,i(r>:< N—-—i—m-+s )_(N—z—m—l—s—l)

n—r—m-+s—1 n—r—m-+s—1

where

and

E (Xyn | An) = <N_m>_ [mz: i 5&,s,i(r)<N_i_m+S_1>xi

n—m ik n—r—m-+s—1

SRR () (N ke,
Z\r—s)\n—r—m+s ko]

5 () 1—s+1 1— 5
AT = —_— .
st r—s+1 r—s+1

Then, it is easy to verify that, for r = 0,...,n, E(A,., | A,) is the same as in

where

the lemma’s statement. For x; < --- < xy the result does not change. It follows
from the argument similar to Lemma 8, i.e., it suffices to assume (without loss of
generality) that coincident values of X are strictly ordered by their unique names,

e.g., by sizes of their indexes.
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Proof of Theorem 11

(1) First we write a kernel of orthogonal decomposition of the order statistic Xj.,,,
1 < j < n. For chosen 1 < k < N, using representation (1.20), Lemma 10 for
m = 0,1 and applying binomial identities (1.8) and (1.9) we have

g1 (n) = (::f) S { 5 7 B - 3 (1- le> Oaai 1) }

r=0 \ =1 i=k

b (i, 7) = ]ZV@{@__Z:D B ;@1)}
bt == () ()

It is easy to verify that 0a1(i,7) = 6099(i,r). Next, using induction it is easy to

where

and

show that for every 1 <7 <n

=, . i—1\(N—-i—1
2922(2,7”): ( )( ; >
=0 g—1J\ n—j

and the proof of part (7) follows from a simple observation that

g(zp) =nt chglj(xk), 1<k<N.
7=1

(#) Similarly, for chosen 1 < k < 1 < N, using representation (1.20), Lemma
10 for m = 0,1,2 and applying the simplest identities of Lemma 7, for a single

order statistic we get

g2;(Tx, 1) = (Z:;)l jl{ kf Hem(iﬂ’) A

_ 4 [N — 1]2 932(@,7”) Al
RN =) (N—-i—1),
+ ph [N — 1]2 633(%71) Ay }7
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where

931(1}7"):%:11];(7{){(]5__::;) _2]?7_—126?—_;:11)

L)
and
n—1 (12 N—-i1—1 n N —1
_N—2<T>{<n—r—1> _N—1<n—7“>H7

%ﬂ%ﬂz(N_gi&?z_n<g:j>{cié>_231;<?:D
el

Similarly 031 (i, 7) = 032(i,r) = 053(i, 7). Next, using induction one can show that,

and

for every 1 < j <mn,

=, i—2\ (N —i—2 i—2\ (N —i—2
Z 933(17 T‘) =1. . 1. ) .
o 17—1/\n—753—-1 j—2 n—7
To complete the proof of part (i) we observe that
gz, 1) =n~t chggj(xk,xl), 1<k<I<N

j=1

and apply
¢i(bjs1 = ;) = cabpa — a1y = Y _(¢; — ¢;-1)by,

1 j=2

(0

(iii) The proof of this part is very similar.

n n
1=

where

1.3.2 Remainder terms

Note that Theorem 11 represents the kernels of the Hoeffding decomposition in
terms of differences of the weights ¢y, ..., c,. Here, for k = 1,2, 3,4, we write the

differences Dy L, defining quantities d(L,) in Theorem 6, in somewhat similar

31



form.

For that purpose we need additional notation. Assume that x; < --- < xp.
For £ = 1,2,3,4, denote by Xi.,1x < -+ < X, ipnak order statistics which
correspond to the sample X; = {Xj,..., X,ux}. Let Ry = {Ry,..., Rk} be
the ranks of the sample X assigned as follows. We decide that R; < R; if
g HX:) < g7 1(X;), where g~ (+) is the inverse function of g(-) defined in Lemma
8. Thus ranks Ry are all distinct, i.e., Ry is a random permutation of the set
{1,...,n+k}. Further, denote R} = {Ry,..., Rg, Rpni1,- .., Ruyr} and let Ry be
a set of all permutations of the set R}, where a particular permutation means the
arrangement of elements of the set by size. Let Rior < -+ < Rpor < Rpy1.0k <

-+ < R4k, denote order statistics which correspond to Rj.

Lemma 12 For each k = 1,2,3,4 there exists a random variable d, = di(R})
with values in {—1,0,1} such that

Ryi1:2k—1
]D)kLn = dkn_l Z Ak_l(Cj>Aj;n+k.

J=Rk:2k
Proof of Lemma 12
The set R, contains only 2 elements, therefore we elaborate the case k = 1. Let
R; < Rn+1. Then

nD{L, =n (Ln(Xl\{Xn+l}) - Ln(Xl\{Xl}))

Ryy1—1 n
:[ Z CiXjmt1 + Z Cij+1:n+1]

J=1 J=Rnt1

R1—1 n
— [ Z CiXjms1 + Z Cij+1:n+1‘|
i=1 i=Ri

Rn+171

== Z CjAjint1.

Jj=R1

Let Ry > R, 1. Then

nDiL, = n (L,(X;\{Xn11}) — Lo (X \{X1}))

Ryy1—-1 n
Z[ > GXjmnt+ X Cij+1:n+11
=1 j=Ras1

Ri—1 n

- [ > X+ > Cij+1:n+1‘|
Jj=1 j=R

R1—1

= Z STAVERSE

j:R'rH—l
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Next we calculate Dy L,,, k = 2,3, 4 recursively. Write DyL,, = DL, — DL,

where

]D)/an = Ln(XQ\{Xn—i-la Xn+2}) - Ln<X2\{Xla Xn+2})>

/L,

L (Xo\{ X2, X1 }) — Lo (X\{ Xy, Xo}).

Note that both components of D} L,, are dependent on X5 and are independent of

Xp12. For DL, it is conversely. Now by constructing the set Ry from the set R,
we find the following cases. For Ry < R,,1,

nD} L,

nD{L,

Rn+171
- Z ijlAj:n+2

Jj=Ra1

Rn+2_1 Rn+1_1
- Z CjAj;n+2— Z ijlAj:nJrQ

j:Rl j:R7l+2
Rn+1 —1

- Z CjAj:n+2

Jj=R

Rn+1—1

- Z ijlAj:nJrZ
J=R1
Ro—1

— D A2 —
=
Rn+1—1

- Z CjAj:n+2
Jj=R1

Rn+1—1

Z Cj—lAj:n+2
Jj=Rz

For Ry > Rn—i—la

nD} L,

Ri—1

Z ijlAj:nJrQ

Jj=Rn41
Rn+2 -1 R1 —1

Z CiAjinyo + Z Ci—18 2
Jj=Rn+1 Jj=Rn+2
Ri1—1

nD{L, =

Z CjAj:n+2

J=Rn+1

Ri—-1

Z Cj—lAj:n+2

j:Rn+l
Ro—1 Ri—1

Z CjAj:n+2+ Z Cj—lAj:n—i-Q

Jj=Rn+1 Jj=R2
R1—1

Z CjAj:nJrZ

j:Rn+1

for R0 < Ry,

for R1 < Rpy2 < Rpqa,

for Rn+1 < Rn+27

for Ry < Ry,

for R < Ry < Rn—&—l,

for Rn+1 < RQ.

for Rn+2 < Rn+17

for R, < Rpyo < Ry,

for Ri < Ry,19,

for Ry < Rn+1,
for Rn-i—l < Ry < Rl,

for Ry < Rs.

Note that, it suffices to consider only those elements of Rs for which we have

Ry, > R,.
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Similarly, write D3L,, = D, L, — DJL,,, where

D5 Ly, = Ly (X3\{ X011, Xnvo, Xnas}) — Ln(X3\{ X2, Xpi1, Xnis})
— Ln(Xs\{ X1, Xnyo, Xngs}) + Ln(Xs\{ X1, Xo, Xy y3}),
D5 Ly = Lu(Xs\{ X5, Xnt1, Xnto}) — Lu(Xs\{ X2, X5, X1 })
— L, (X3\{X1, X3, Xpnio}) + Lo (X3\{ X1, X5, X3}).

Note that all the components of D, L,, are dependent on X3 and are independent
of X, 43. For Dj L, it is conversely. Now, by constructing the set R3 from the set
R, similarly as in the case k = 2, we can recursively find D3L,,. Without loss of
generality, we consider only those elements of R3 for which Ry > Ry > R3. The
calculations are routine, long and cumbersome; therefore we omit them.

The calculation of D4L,, is similar. Assuming that R; > Ry > R3 > Ry, it
suffices to consider (only) 8!/4! elements of the set Ry.
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Chapter 2

Asymptotic approximations to

distributions

2.1 Maximum variance of sample extremes

We assume further, without loss of generality, that z; < --- < xy. To avoid

trivialities, we assume in addition that Var X; > 0 or, equivalently, z; < zy.
Theorem 13 For m =1 and m = n we have

N —n
N —1

Var X,,., <n Var X;. (2.1)

Remark 14 The bound (2.1) is optimal for m =1 and m = n, i.e., there exist

nontrivial populations where the equality is attained in (2.1).

Variance bounds on order statistics were considered by Moriguti [51], Pa-
padatos [54, 55], Rychlik [62] and Jasinski and Rychlik [41]. In particular, for
sample extremes Papadatos [54] showed the bound Var X,,.,, < nVar X, in the
case of i.i.d. observations. Rychlik [62] extended this bound to arbitrarily depen-
dent identically distributed observations. Theorem 13 improves these results by
the finite population correction factor (N —n)/(N — 1) < 1, in the case of sam-
ples drawn without replacement. Also, note that for i.i.d. samples, additionally
assuming that X; has a symmetric distribution, for sample extremes Moriguti [51]
obtained the bound Var X,,., < (n/2) Var Xj.

With the references to [54, 55, 62] and [41] on the same sampling model as in
[51], the best possible bounds are also obtained for the variances of order statistics
Xmmy 2 < m < n — 1. For samples drawn without replacement, the methods
applied allow us to obtain bounds (2.8) on these order statistics, however, in
general, these evaluations are not optimal. We give a disscusion on these bounds

below the proof of Theorem 13.
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Related problems are optimal bounds on the covariances and correlations of
order statistics. For the results in the case of i.i.d. observations we refer to Pa-
pathanasiou [57], Chunsheng [24], Papadatos [56] and Terrell [72], Székely and
Méri [70], respectively. There are a few analogous results for samples drawn
without replacement. On optimal bounds on the covariances and correlations of
order statistics were presented in Balakrishnan et al. [6] and Lépez-Blazquez and
Castano-Martinez [46], respectively. In the case of samples drawn without replace-
ment, the difficulties arising in similar problems were well discussed in Berred and
Nevzorov [10]; see also Berred and Nevzorov [9]. Some properties of order statis-
tics from finite populations and their connection to variance bounds were also
discussed in Takahasi and Futatsuya [71] and Afendras et al. [1].

Proof of Theorem 13. We consider all 1 < m < n. Clearly, t"(X) = X,,.,, is the
symmetric statistic. The basic idea of the proof is an estimation of the error of
approximation of Var ¢"(X) by exactly zero terms of the Hoeffding decomposition.
In particular, a slight and simple modification of Lemma 2 of Bloznelis and Gétze
[20], where for our purposes we take more strict inequalities (up to the constants),

and a trivial extension of Theorem 6 (to the case k = 0) lead to the inequality
Var X,,,, < - (1 ”)E(DX )2 (2.2)
ar Amm > SN AT mmn) .
2 N '

where

Dy X = " (X \{ Xga }) — " (X \{ X1 }).

Now we evaluate E (D; X,n.n)?. Introduce the set
IT={(j):1<i<j<n+1}
and its subsets

Iy ={(,7):1<i<j<morm<i<j<n+l1},
I =A{(G,j):1<i<mand m<j<n-+1}

Clearly, Z = Z)" UZ]" and Z;* N Z7* = (. By the proof of Lemma 12,

0 if (Ri:2, Rns12) € I3,
D, (Ri2, Rny12) € Iy
A1 i (Rig, Ruga) € 17
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The events Ry.; = {Ri2 = 4, Rpy12 = J} and { X1 = 2k, Xong 11 = @y} for
1 <k <1< N are independent. Also, we find that for 1 <i<j<n+1

~1
n+1
prij =P {R} = ( 9 ) . (2.3)

Thus, the application of (1.18) of Lemma 9 to the sample of size n + 1 and the
use of simple identity (1.8) give

+1—
E(DiXpn) = > E(AZ,|Ruy)pu = o m(n m) s

(m)g{n (n + 1)n m:n+1
N [N_l i < i
o Ny L 1—>pl(m)A12 (2.4)
N-1|&=NU "N
[ J
+2 (1—>p2 (m) N,
1<icien NV N/ ’

where we denote

pi(m) = (;;_i) (Nn__i;) /(Z:f) . 1<i<N-1,
pij(m) = <T;__11> (Nn__jn; 1) /(f:f) , 1<i<j<N-1

It is easy to verify that, applying

and

l’l — ZEk Z A +2 Z AZ'AJ'

k<i<j<l—1

and collecting the terms with A? and A;A; we get

1
Var X, = — Z () — xg)
1<k<I<N
N-1 ; ; i (2.5)
— — (1= =) AZ 49 (1—>AiA-.
. N( N) SREND DR 2 Gl o KL

1<i<j<N-1

In addition, the inequality

< < <
1<z<]<N 1p”( m) 1<Izrg}\)7{ 1p’( m) forall 1<m<n,
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holds. Thus, it follows from (2.4) that

N
2
. <2—— ;
E (D X)) < 2N | 1§r%z}\)[<71pl(m) Var X;. (2.6)
For m = 1 and m = n, this inequality together with (2.2) yields (2.1).
We show that bound (2.1) is optimal. In order to obtain the equality in (2.6)

for any 1 < m < n, we need to take a population with the values
Ty =" = Tig < Tig+1 = -+ = TN, (2.7)

where

ip = io(m) = argmax p;(m).
1<i<N-1

For this population Lemma 8 implies that Xmmi 9(Zmn) has the distribution

with two values ;) and z;,(m)4+1, with

o :P{Xmm :xio(m)} =P {Zp < io(m)} = <N>_l iof:n) (k_ 1) (N_k)

n o \m—1/\n—m

Therefore Var X,,,., = rp,(1—7r,,) A2

io(m

and m = n, for which i3(1) = 1 and iy(n) = N — 1, the choice of (2.7) also gives

)- Then, it is easy to verify that, as m =1

the equality in (2.1). The theorem is proven. [

The proof of Theorem 13 also sets the bounds on variances of the order statis-
tics Xy, 2 <m < n — 1. We obtain from (2.6) and (2.2) that

Var X,,., <n max Hpy_2n-1,-1(m —1) Var X;. (2.8)

N — 1 1<i<N-1

In general, for 2 < m < n — 1, these bounds are not optimal in the sense that
inequality (2.8) is always strict for n, = min{n, N —n} > 3. For populations
other than (2.7), this easily follows from (2.4) and (2.6). For a population of the
form (2.7), the strict inequality in (2.8) follows from the strict inequality in (2.2).
Indeed, one can show that, for a population of type (2.7), we have, by using, e.g.,
Theorem 11,

max{ Z gg(xi,xj), Z gg(xi,xj,xk)} >0,
1<i<j<N 1<i<j<k<N
which is equivalent to max {Var Uy (D X,,,.,,), Var Us(D; X,,.,)} > 0, see (A.21) in
20]. Here U;(D1X,,.,), j = 2,3 are the components of Hoeffding decomposition
(1.1) for the statistic Dy X,,.,. The latter inequality implies that inequality (2.2)

is strict.
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Let us mention that for simple random samples our bounds (2.8) outperform
the corresponding bounds of Rychlik [62] in cases where the finite population
correction factor (N — n)/(N — 1) is sufficiently small. Clearly, in the case of
sample extremes, if we fix the sample size n and let the population size N — oo,
then the sampling without replacement approximates the case of i.i.d. observations

and bound (2.1) becomes the same as in Papadatos [54].

2.2 Asymptotic normality

Consider the normalized L-statistic S,, defined by (4). Clearly, for the statistic .S,,,
the results on the Hoeffding decomposition in Theorem 11 and Lemma 12 must
be multiplied by n'/? only. Recall the notions 62 = Var S, and ¢? = E ¢?(X,),
and the numbers 72 and n, defined in (6) and (7). Let the weights ci,...,c, be
determined by the weight function J: (0,1) — R as in (2).

First, we give a version of Proposition 4 where the general smoothness condi-
tions (for symmetric statistics) are replaced by that imposed on the weight func-
tion J(-) and the moments of X;. Recall a Lindeberg-type Erdés—Rényi condition

familiar from the case of sample mean (see Theorem 1): for every € > 0,
E ¢}(X1)o ’I{|g1(X1)| > eTo1} = o(1) as n, — co. (2.9)

We say that the function J(-) satisfies the Holder condition of order ¢ on (0, 1)
if there are nonnegative real constants B, 6, such that |.J(u) — J(v)| < B |u — v|°
for all u,v € (0,1).

Theorem 15 Assume that n, — oo and G, remains bounded away from zero for
all n... Suppose that E X? < oo and that J(-) is bounded and satisfies the Hdlder
condition of order § > 1/2 on (0,1). Let (2.9) hold. Then G,'S, is asymptotically

standard normal.

Second, Theorem 16 below gives sufficient conditions under which the trimmed
means, defined in (3), are asymptotically standard normal. Note that in this
case, the weight function J(u) (recall Example 1 presented in Introduction) is
not sufficiently smooth, i.e., J(u) is bounded, but it does not satisfy the Holder
condition. Introduce an additional smoothness condition for the population X.
Assume that, without loss of generality, z; < --- < xxy. Suppose that, for some
constants C' > 0 and 1/2 < § <1,

|2 — 2] < CN70|m — 1| (2.10)
is satisfied for all 1 <l <m < N.
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Theorem 16 Assume that n, — oo and &, remains bounded away from zero for
all n,. Say that E X? < co. Assume that (2.10) is satisfied for some 1/2 < § <1,
and (1 —n/N)"2nN?®=1) — oo. Let (2.9) hold. Then, in the case of a trimmed

mean, 5,5, is asymptotically standard normal.

In the case of i.i.d. observations, it was shown by Stigler [68] that in order for
the trimmed mean to be asymptotically normal, it is necessary and sufficient that
the sample is trimmed at sample quantiles for which the corresponding population
quantiles are uniquely defined. Thus, the finite population smoothness conditions
of Theorem 16 seem too strong. On the other hand, for samples drawn without
replacement, condition (2.10) has a specific interpretation. Let us take [ = 1 and
m = N. If the population X is bounded, then the condition is satisfied for § = 1.
In the marginal case of § = 1/2, (2.10) is satisfied for any finite population by
Nair-Thomson inequality zy — z; < 02N, where 0> = Var X (sce, e.g., [6]).
Thus, condition (2.10) seems very mild for small € > 0in § = 1/2+¢, i.e., it holds
for most of possible populations. Obviously, if we are interested in the asymptotic
normality of the trimmed means, then, by the conditions of Theorem 16, for small
e we should have n — oo quite quickly as N — oo, while in the case § = 1 it
suffices that n — oo arbitrarily slowly with respect to the grow of the population
size N.

In the proofs of Theorems 15 and 16 below, we assume that, without loss of

generality, z; < --- < zp.

Proof of Theorem 15

First we show that &, is bounded as n, — oo. Then (2.9) is equivalent to (16).

Arguing as in the proof of Theorem 13, we have

1
52 < on (1 - ;) E (D;5,). (2.11)

Since J(-) is bounded, there exists an absolute constant a that

max lep] < a (2.12)
for all n. Introduce the events Ry,;; = {R12 =14, Rop12=J}, 1 <i<j<n-+1,
as in the proof of Theorem 13, and recall their probabilities py,;, given in (2.3).
By Lemma 12 and (2.12) we obtain

E (ID)lSn)z = Z E [(Dlsn)2 ‘ ml;i]} P1;ij
1<i<j<n+1 (2.13)
<a*nt Z E [(Xj:n+1 - Xi:n+1)2 ’ EJCil;ij] D1sij-

1<i<j<n+1
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Since the events Ry.;; and Biijim = {Xim1 = 0, Xjip1 =}, 1 <l <m < N

are independent, for x1 < --- < zy we get

I—1\(m—1-1\( N—m N
pl;ijlm::P{%Mﬂm|%l;ij}:(i—l)(j—i—l)(n—l—l—j)/(n—l—l)'

For 1 < --- < xn these probabilities are the same. This fact follows from Lemma
8. We also have that, by the generalized Vandermonde identity, see the case T' = 3
n (1.13),

N\ Thacdedos m—1—1 N-—m
Z Piiijim = ( 1) Z Z ( )( ) < )
1<i<j<n+1 n+ r, — t n—1—-s—1
(N \T'(N-2
C\n+1 n—1)
Then we recall the first expression of Var X in (2.5) and continue (2.13),

E (]D)lsn)2 < a’nt Z { Z (T — $l)2p1;iﬂm }pl;ij

1<i<j<n+1 \ 1<i<m<N

—1 —1
. (n+1 N N —2
:aQn 1( 5 ) <n+1> <n_1> Z (Q}m—gjl)Z
1<l<m<N

N
= 2a2n_1ﬁ Var Xl S 4(1277,_1 Var Xl-

Finally, from (2.11) we get
52 < 2a* (1—N)VarX1 O(1) as n. — oo.

Next we show that, under the conditions of the theorem, d2(S,) = o(1) is
satisfied. Then the theorem will follow from Proposition 4. Since J(-) satisfies
the Holder condition of order 6 > 1/2 on (0,1), we find that

p—1>' -5

- J —J <B 1

& = el = ‘ ( +1) <n+1 <Bln+1)

or
Jnax lc, —cp1| < B(n+1)7°,  for some §>1/2. (2.14)
<p<n

Similarly, introduce the events Ro;; = {Rou =, Rpp1a =7} 1 <i<j<n+2.

oy =P {Rn} = (Z B 1) (” * f _j> /("12> . (2.15)

Now
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We also have

[—1\(m—1-1\( N-m N
p2,z]lm:P{%Qﬂﬂmlfﬁzw}:<2_1>(]—2—1><n+2_]>/<n+2>7

where the events mQ;Z‘j and %Q;Z‘jlm = {Xi:n+2 = I17Xj:n+2 = ZL‘m}, 1 S [ <m S N
are independent. By Lemma 12 and (2.14), we obtain

02(Sy) = E (n*]D)QSn)2 =n? Z E {(DQSn)2 ‘ 9{2;@']} D2:ij

1<i<j<n4-2
< B2 nznfl Z B {(X L X 2>2 ‘ R, }pg 516
~ T aNos n+2 in+4 ¥ ¥ X
(n+1)% 520 7 3] P2 (2.16)
) nfn’l

Z )\Q;Zm(xm - Z'Z)Q,

(n+1)% 1<l<m<N
where

/\2;lm = Z D2;iiP2;ijim -
1<i<j<n+2

Taking j =i+ 1 and applying maxo<,<i u(l—u) < 1/4, forall 1 <i < j <n+2,

we get the inequalities

—1. . -1
n+2 7 —1 7 —1 1 n+2

< n? 1— ><2 .
p27]_n< 4 ) n ( n )=4" 4

Then, noting that, by identity (1.13) as T = 3,

> =) (1)
DP2;ijim = 3
1<i<j<n+2 ’ n+2 n

we obtain, for all 1 <l <m < N,

1, /n+2\"'"/ N\ '/N=-2
e 12 < 24N72
A“m—ﬂ"( 4 ) <n+2> ( n >—

Finally, it follows from this bound and (2.16) that

n?n~!
mVaer =o0(l) as n,— 0.

It means that the theorem is proven.

55(Sy) < 24B*

Proof of Theorem 16

By the first part of the proof of Theorem 15, condition (2.9) is equivalent to (16).
Thus we need to verify the condition d5(S,,) = o(1) of Proposition 4 only.
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Write, for short, s = [t1n] + 1 and t = [tyn]. Similarly, as in the proof of

Theorem 15, by Lemma 12 we obtain

2

nn
(t—s+1)2 1§i<]2n+2 ! ’

where py.;; is defined in (2.15) and

j—1

Aij(s,8) = (Gp — Gpo1)Apinsa,  with & =I{s <p <t}

p=i

Assuming, without loss of generality, that n > (to—t;)™!, we have s < t. It also
follows, from the same assumption, that the inequality [ton|— [tin] > tan—1—1tn

implies that, for some constant C; > 0,

n? 1\ 2

Let us decompose Z = {(4,j) : 2 < i < j < n+ 1}, for fixed s < ¢, into

mutually disjoint subsets

{G,j):t+2<i<j<n+1},
() 2<i<i<s)

Iy ={(i,j) :s+1<i<j<t+1},
{(i,§) :s+1<i<t+1,t+2<j<n+1},
{(1,§) :2<i<s,s+1<j<t+1},
{(4,7):2<i<s, t+2<j<n+1}

such that Z =7, U---UZs. Then we get

0 if (Z,j) e, U1, UI3,
—C A1, if (,7) € 1y,
Aij(s,t) _ T7A VIR PONE)) ( J) 4
éSAs:n+2 lf (Z’]) € I57
CsDgnio — Gl p1mye  if (1,7) € Te.

Now, by collecting the terms of the sum 3>, ; with the same value of E AZ,(s,t)
in (2.17), applying E(Aif1m42 — Agni2)? < EAY ., + EAZ ., and then

collecting terms with EAZ?, | ., and EA?Z ., and also invoking inequality (2.18),
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we obtain

(n+2\ [/t (n—t+1
52(Sn)§01n3” 1( 4 ) [( 9 )( 9 )EA?+1;n+2

+<;){(n—t—l—1)2— ("j“)}EAgml.

By applying the simple inequality ( ) < u’/v!, we derive

(3077 ) S R 0 = e

Taking s = ¢, very similarly we get

L

n+1 n+1 32

(2.19)

Next, by Lemma 8, for 1 < p <n+ 1,

N \ ! I—1\/m—-1-1 N —m
e TR0 I N )| ) [ A [ESSs
n 1<i<m<N \P n p

Then, by (2.10),

c:( N\ I—1\({ N—m
2 V2
ERpniz < 7 <n+2> 2, (m=1) <p— 1) <n—|—1 —p)

1<l<m<N
C2 (N + 1)(2N —n)
N2 (n+3)(n+4)

(2.22)

Here the last equality is easily obtained by using simple binomial identities (1.10),
(1.8) and (1.11). Indeed, for instance,

B R V)| PN D 34 > P} 5 i
-7 ) ) e o))
D (p+2) iV: (m—l—l)( N—m)

o \p+2)/\n+1-p

o))

N + N+1
1)( 2) 1
- (n ()
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and so on. Finally, applying (2.20), (2.21) and (2.22), and n. < 2n(1 —n/N), we
continue (2.19),

52(S) < Crnn! (“ + 2>_1 C* (N+ 1N —n) [(n+2)! | (n+1)!

4 N% (n+3)(n+4) 64 32
n >2 N2(1-6)

S@@‘N

)
n

for some constant Cy > 0. The theorem is proven.

2.3 Edgeworth expansion

Consider the L-statistic S, defined in (4). We assume that the weight function
J:(0,1) — R generates the weights c1,...,¢, as in (2). Theorem 5 implies the
following result on the validity of (20) and (21), where the distribution function
of L-statistic 6,15, is approximated by its one-term Edgeworth expansion (18).

We consider the case where the weight function J(-) is sufficiently smooth.

Theorem 17 Assume that n, — oo and G, remains bounded away from zero for
all n,.

(i) Assume that (22) holds, J(-) has a bounded second derivative J"(-) on (0,1)
and, for some § >0, E|X{*** < co. Then (20) holds.

(ii) Assume that (23) holds, J(-) has a bounded third derivative J"(-) on (0,1)
and, B | X" < co. Then (21) holds.

The conditions of Theorem 17 on the boundedness of the derivatives of J(-) are
quite restrictive. Thus the theorem cannot be applied to such important statistics
as, e.g., trimmed means. Then an interesting question arises whether it is possible
to modify Theorem 17, as a consequence of Theorem 5, so that to impose less
requirements on the weights ¢y, ..., ¢,. In the case of i.i.d. observations, a certain
answer is given in Gribkova and Helmers [28], where the trimmed means were
considered. In particular, it is shown in Lemma A.2 of [28] that there are essential
difficulties in proving that a one-term Edgeworth expansion approximates the
distribution function of the trimmed mean with an error of the order o(n='/2), if we
try to infer directly from the general result for the symmetric statistics of Putter
and van Zwet [59]. Thus, it seems that, in the case of samples drawn without
replacement, the trimmed means and other similar statistics also need different
methods for the proof of the validity of the one-term Edgeworth expansion. The
next example, in the case of i.i.d. observations, is Alberink et al. [2], where the
general result for the symmetric statistics of Bentkus et al. [7] was applied. In

particular, in [2] only a little weaker conditions for J(-) were obtained. However,
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here, as well as in the case of trimmed means (see [28]), additional smoothness
conditions are imposed on the distribution function of X;.

Before the proof of Theorem 17, we give a simulation example, which shows
how the one-term Edgeworth expansion G,,, defined in (18), improves the usual

normal approximation.

Simulation 1 A population X of size N = 100 was simulated from the logistic
distribution £(0,1). Our chosen population & has the mean 0.004 and variance
3.270. Consider the L-statistic given in Example 2. Note that the smoothness of
its weight function is suitable to apply Theorem 17.

For samples of sizes n = 5, 15, 30, we present several g-quantiles of the functions
F,, G, and ® in Table 2.1 below. Here F, is the Monte—Carlo approximation to
F,, see Appendix A.1, where C' = 107. Evidently, the functions g;(-) and gs(,-),

given in Theorem 11, were used for the calculation of G,,.

Table 2.1: Approximations to F,, n = 5,15, 30.
q= 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

Fs'(q) -2.12 -153 -1.22 -0.69 -0.06 0.63 132 1.75 2.58
Gs'(g) -2.08 -1.56 -1.25 -0.70 -0.06 0.64 132 1.75 2.56
Fz'(g) -216 -1.58 -1.25 -0.69 -0.04 0.65 1.31 1.71 2.49
Gi(q) -2.16 -1.59 -1.26 -0.70 -0.04 0.65 1.31 1.71 2.49
Fil(g) -2.20 -1.60 -1.27 -0.69 -0.03 0.66 1.30 1.69 2.43
G (q) -2.22 -1.61 -1.27 -0.69 -0.03 0.66 130 1.69 2.43
®'(q) -2.33 -1.64 -1.28 -0.67 0.00 0.67 1.28 1.64 2.33

Table 2.1 shows that, even for a small sample of size n = 5, the Edgeworth

expansion remains much more efficient than the normal approximation.

Proof of Theorem 17

Firstly, we note that it follows from |.J”(y)| < oo for all y € (0,1) that for some
constants a, b and ¢ we have

max ‘Ao(cj)‘ < a, nQIQ%)%)Al(cj)‘ <b, n? 31;1;1%@2(0]-)‘ <, (2.23)
for all n. Similarly, |J"”(y)| < oo for all y € (0,1) implies that for some constant

d we have
n® max ‘A?’(cj)’ <d (2.24)

4<j<n

for all n.

46



Following van Zwet [74] we introduce the functions

G = [ Py, H@= [0 Fw)dy,

T (2.25)
M(@) = [ Fy)(1 - F(y)dy,
where
1 N
y) = v >z <y) (2.26)
i=1
is the distribution function of the random variable Xj.
Assume further that, without loss of generality, z; < --- < zy. A simple

integration of (2.26) and some work with sums yield that at the points = = z,
1 <k < N we have

Glay) = kzlji[ n Hzg) = 3 (1 _ ;V> A

=1 i=k
k=l i

Functions (2.25) are finite and monotone, and, similarly as in Putter [58], we
obtain for 1 < k< N

G(zy) + H(xg) < E|Xq| + |2k (2.27)

and
M(zy) < G(zy) + H(xg) < E|Xq| + |2 (2.28)

One can show (we omit a detailed proof) that the quantities ¢ ;(7) and g, (7),
defined by (1.24) and (1.26), satisfy

i) < (57 )

a1 < (55)

()\<4

()] (2.29)

and

L (D) <2704, )

, (2.30)

where we write

Ga(i) = ({i = k} —i/N) (I{i > 1} —i/N)

and
lem( y=({i >k} —i/N)(I{i > 1} —i/N)(I{i > m} —i/N).

Then, by (2.23), (2.27) and because >37_; Hy-2,-1,-1(j — 1) = 1 (by (1.12)),
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for 1<k <N,

g1 ()| < an™/? Z o(8)] A= an™ "2 [G(ar) + H ()]

=1
<an~'/? [E | X1| + |zk]]

and thus for s > 1,

1 X 1 X .
E |g:1(X1)| _Nz g1(ze)| <ans/2NZ[E\X1\+\xk|]
h=1 , h=1 (2.31)
< asnfsmﬁ Z 2B X)) + |zi|’] < 2%a*n P E | X,

k=1

Also, by (2.23), (2.29), (2.27), (2.28), because of monotonicity of G, H, M and
Yo HN-an2i20—2)=1for 1<k <I<N,

N-1

g2 (g, )| < b3/ Z |610(1)| £:< Abn /2 ()] &
i=1 i=1

< 4bn~*?[G(x)) + M (xy) + H(z))] < 822 [B| X | + |z]],

and then for s > 1,

E |g2(X31, Xo)|" = <N>_ > gk, )|’

2 1<k<I<N

N\ s
< 238b8n_35/2<2> S [EIX]+ ]
1<k<I<N (2:32)

N e
O RSP

1<k<I<N

< 24s+1bsn73s/2 E |X1|S )

Similarly, by (2.23), (2.30), (2.27), (2.28), because of monotonicity of G, H,
M and Y5 _3Hn 6n-3:-3(j —3)=1,for 1<k <l<m<N,

‘93(5%7 33'1737m)’ < 3ten /2 [E ’Xl, + ’me )
and then for s > 1,
E |g3(X1, Xo, X3)|® < 2°723% 50 52 E | X4|°. (2.33)

Note that, it follows from inequalities (2.31), (2.32) and (2.33) that, for both
cases (4) and (i), the moments f;, 75 and (s in Theorem 5 are bounded if the
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|* are finite.

corresponding moments E | X
Next we evaluate the quantities d5(.S,,) and d4(S,,). Let us introduce the events
Riij = {Riok = 4, Rp1or = 7}, 1 < i < j <n+k, k=3,4. Similarly, as in the

cases k = 1,2 (recall (2.3) and (2.15), respectively), we find that

r= ()02

Next, we proceed very similarly as in the proof of Theorem 15. We write By =
{Xintk =20, Xjinsr = T}, 1 <1 <m < N, k= 3,4, and, by invoking Lemma

8, calculate

I—1\(m—1-1\( N—m N

Note that the events Ry.;; and By.ijm, 1 <1 <m < N are independent. Denote
C) = max {c?, d*}. Then application of Lemma 12 and the use of the correspond-
ing conditions (2.23) and (2.24) for k = 3,4 yield

0r(Sn) = E (”&kil)DkSn)Q = n2(k=1) Z E [(Dksn)Q ‘ %k;ij} Dkij

1<i<j<n+k

< Ol’fl_l Z E {(Xj:n-‘rk - Xi:n—i-k)Q ‘ i‘Hk;i]} Pk;ij

1<i<j<n+k
- Cfln_1 Z /\k;lm(l‘m - xl)2a

1<l<m<N

where

)\k;lm = Z DPrk;ijPk;ijim -
1<i<j<n+k

Recall the first expression of Var X in (2.5). Clearly, to prove the bounds
0x(Sn) = O(n;t), k = 3,4, it will now suffice to show that A\, = O(N7?)
foralll <l <m<N.

Using (Z‘) < w’/vl, taking j = i + 1 and applying maxg<,<1 u(l —u) < 1/4,
for all 1 <1i < j <n+ k we obtain

(n + k)ﬁm < (=D n+k=—) _ [ -Dn+k—1-0"

2k (k—1)! (k—1)! - [(k—1)1?
C(n4k—20 -1 i—1 k-1
IR (CESVIE [n+k;—2 <1_n+/~c—2ﬂ
1\ k-1 (n 4+ k- 2)2(k—1)
= <4> (k=112
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Also, applying the case T'= 3 of (1.13), forall 1 <l <m < N

Z Pk;ijim

1<i<j<n+k

[ N 1"J§2”+I§_5 I—1\(m—-1-1 N —m
C\n+k = = 5 t n+k—2—s—1
( N\ N-2
\n+k n+k—2)
Finally, it follows from the last two evaluations that, for all 1 <[ < m < N,
)\k;lm < CkN_2, where

LIV (2R (2K — 2)% B
Cr=2 (4) [(k— D2 (2k —3)1 k=34

Application of Theorem 5 completes the proof of both cases (i) and (ii) of the

theorem.
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Chapter 3

Estimation of parameters

3.1 Variance

3.1.1 Jackknife estimator

A very common method, used for estimating variance of an L-statistic, is the jack-
knife. In the case of i.i.d. observations, see, e.g., Efron and Stein [25] and Karlin
and Rinott [43], regarding the classical Quenouille-Tukey jackknife estimator of
variance. For samples drawn without replacement, the jackknife estimator of
a% = Var L, is defined as follows. Let the weights ¢y, ..., ¢, be determined as in
(2). Then, given the sample X drawn without replacement from X, the jackknife

estimator is

SX(L,) = (1—Z>n_1i(L(k)—L)2, L=

nooo

> L, (3.1)
k=1

where Ly = Lnp—1(X\{X;}), 1 < k < n are L-statistics (1) with the weights
y=J(/n),1<j<n—1

Note that, other than in the case of i.i.d. observations, jackknife estimator (3.1)
includes the finite population correction factor. The properties of this estimator
(such as bias and consistency) were studied by Bloznelis [15], see also Bloznelis and
Gotze [20], in the case of finite population symmetric statistics. It is known that,
in the case of i.i.d. observations, the quality of the jackknife variance estimator
depends on the smoothness of the underlying statistic, see, e.g., Shao and Wu
[65]. In the case of L-statistics, we understand it as the smoothness of the weight
function J: (0,1) — R.

Next, we give a different expression of (3.1), which will be useful later:

n n

S0 = (1- %) smp 5 (6 7)

k 1

i (3.2)

1
n;
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where Y, = Y1 + ¢, A1, for 2 < k < n, and Y; := 0. We omit the proof of
this identity, which is quite straightforward.

3.1.2 Bootstrap estimator

For samples drawn without replacement, there are a few bootstrap procedures
considered in literature, see, e.g., Rao and Wu [60] and Sitter [67]. We consider
here the finite population bootstrap of Booth et al. [21]. Write N = mn+t, where
0 <t < n. The empirical (bootstrap) population X is defined by taking m copies
X ={X;1,...,X;n}, 1 <j <mof Xand, if £ > 0, drawing the simple random
sample Y = {Y7,...,Y;} of size t without replacement from X. If ¢ = 0, then put
Y = (. Then -
X = (U Xj) Uy, (3.3)
j=1
For any population parameter (characteristic) § = 6(X’), the bootstrap estimator

is then defined as the conditional expectation
05 = E (0(X)|X), (3.4)

i.e., expectation over all empirical populations conditional on X. Note that the
case t = 0 was first considered by Gross [31].

Note that, for L-statistics, the properties of bootstrap estimator (3.4) are still
not well known. As to discussions about possible bias of estimator (3.4) in the
case of variance of statistics, see [21] and references therein and also Bloznelis [17].

Next, we give an exact expression of (3.4) for the parameter o%. Obviously, in
practice the approximation to bootstrap estimate (3.4) can be obtained by using
the Monte—Carlo method (see, e.g., [21]), but it also implies an additional error.
Thus, we eliminate this error. In the case of i.i.d. observations, a similar problem
in the case of the naive bootstrap for variance of an L-statistic was solved by
Hutson and Ernst [40], see also Huang [39].

Let us write

o2 =n? Z 012) Var X, +2 Z cpCr Cov (X, Xpn) |- (3.5)
p=1

1<p<r<n

0<u<<n-1

and EA., A, 0 < u < v <n—1, which are calculated in Lemma 9 above.

First, we express (3.5) in terms of the moments E A,.,, E AZ

umn?

Actually, using representation (1.20), it is easy to get
p—1r—1

Cov (Xpn, Xyn) = Var X, + Z Z Cov (Aun, Ava), (3.6)

u=0 v=p
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for 1 < p<r <n, with

—1

Var X,,.,, = 3 Var A,,., + 2 Z Cov (Aun, Ava), (3.7)
u=0 0<u<v<p—1

for 1 < p < n. These expressions of Var X,,,, and Cov (X,.,, X,.,) are based on

the moments of spacings only. Second, we find bootstrap estimator (3.4) for any

of the population parameters 6, = EA,.,, 0, = EA%2 0 <u <n-—1and

O = EAL A, 0 <u < v <n-—1. Write, for short, by, = H,+:(k), 0 <k <t,

1 <i<n—1. Denote

-1 /. . . .
n (4 J—1 n-—y . .

Recall the numbers h;(u), h;j(u) and h;;(u,v) defined in (1.14), (1.15) and (1.16).

Theorem 18 The bootstrap estimators of 6,, Oy, 0 < u < n—1 and 0,,, 0 <

u<v<n-—1are

n—1 t

Oun = D > hunirr(Wbir A, (3-8)
i=1 k=0
R n—1 t
i=1 k=0 (3.9)

+2 > > Piskmrt(Whij A in Ao,
1<i<j<n—10<k<i<t

A

HUUB = Z Z hmi—l—k;mj—i—l(ua U>bijklAi:nAj:n> (310)

1<i<j<n—10<k<I<t

respectively.

Finally, replacing the moments of spacings in (3.7) and (3.6) by their bootstrap

estimators given in Theorem 18, we obtain from (3.5) the bootstrap estimator

6p=n"2> civ;rXp;n +2 ) cpcr{v;rXp;n
p=1

1<p<r<n

.11
+ Z Z(GuvB - QuBevB>}17
u=0v=p
where
VarXp:n - Z(euuB - GUB) + 2 Z (euvB - euBevB)a 1< P S n
u=0 0<u<v<p—1
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Proof of Theorem 18

Consider the empirical population X = {Xp.n, ..., X1y - s Xnens - - - s X }-
We prove (3.8). For the population parameter 6, = 6, (X'), given in (1.17), we
have, for any 0 < u <n — 1, that

n—1
0u(X) = Ty, (W) A,
i=1

where p;, 1 < i < n —1is a random number from the set {1,..., N — 1} with
P{pi=mi+k} =0y, 0 <k <t Thus, for 1 <i<n-—1, weget

¢
E (hpi(u)Ai:n | X) = Ay Z Ptk (u)bzk
k=0

Formula (3.8) is proven.
Now we prove (3.10). For the population parameter 6, = 0,,(X), given in
(1.19), we have, for all 0 < u < v <n — 1, that

euv(-)e) = Z hqurj (u, U>Ai:nAj:n>

1<i<j<n—1

where (p;,7;), 1 < i < j < n—11is a pair of random numbers from the set
{1,...,N — 1} with P{p, = mi+ k,r; =mj + 1} = bjju, 0 < k <[ <t. Thus,
for 1 <7< j <n-—1, we obtain

E (hpirj (u7 U)Ai:nAj:n ’ X) = Ai:nAj:n Z hmi—i—k;mj—i—l(ua U)bijk:l-

0<k<LI<t

Formula (3.10) is proven.
The proof of (3.9) is, in fact, the same as that of (3.8) and (3.10).

3.1.3 Numerical comparisons

We present some more examples of L-statistics. For more details on the following

examples see Chernoff et al. [23].

Example 4 The L-statistic, defined by the weight function J(u) = ®~!(u), is
applied as an efficient estimator of the scale parameter for the normal distribution.
Denote such an L-statistic by /V,. In the finite population context, the motivation

of application of N, is the same as in Example 3.

Example 5 The L-statistic with weights, generated by the weight function J(u) =

sindm (u —1/2) /tanm (u — 1/2), is applied as an efficient estimator of the location
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parameter for the Cauchy distribution. Denote such an L-statistic by C),. If we
assume that the population X is obtained from the superpopulation with the

Cauchy distribution, C,, will estimate a center of X.

Example 6 The L-statistic with weights, generated by the weight function J(u) =
8tanm (u — 1/2) /sect 7w (u — 1/2), is applied as an efficient estimator of the scale
parameter for the Cauchy distribution. Denote such an L-statistic by C,. This

statistic can be useful in the estimation of the interquartile range of X.

The quality of any variance estimator is always important, when, e.g., we
construct confidence intervals for an L-statistic (-estimator) or, we need to choose
between two or more competing L-statistics. Next, for some of the discussed L-
statistics, we compare the efficiencies of variance estimators S* = S?(L,,) and 6%,

given by (3.1) and (3.11), recpectively.

Simulation 2 Let us consider two different populations of sizes N = 50. The first
population Xy was simulated from the normal distribution N (2,4). Our chosen
population X has the mean 2.002 and variance 3.995. The second population Ap
was simulated from the Cauchy distribution C(2,1). Our chosen population A¢
has the median 1.996 and interquartile range 2.013. We choose n = 20 for both
populations.

Table 3.1 presents numerical results for the statistics My, My2,08 and C,
see Examples 1 and 5. Table 3.2 shows simulation results for the statistics Ug,
N, and C,, see Examples 3, 4 and 6, recpectively. In particular, for each of the
L-statistics, we give the value of its variance 0% and estimated values of the mean
square errors (MSEs) and biases (BIASes) of its estimators S? and 6%. In order
to estimate MSE and BIAS, we draw independently R = 200 samples from the
population of interest, and, e.g., for realizations &%;T, 1 < r < R, of the bootstrap

estimator 6%, we take

— 1 E 2
MSE(O—%) = E 7; (UzB;r - U%)
and
— 1 B
BIAS(6%) = 7 > 6%, — 01 (3.12)

It is seen that for the L-statistics, which are used as estimators of location, see
Table 3.1, the jackknife variance estimator S? is a little more efficient (see MSE)
as compared to the bootstrap estimator 6%. On the other hand, in the case of
estimators of scale (Table 3.2), 6% is more efficient compared to S?. Note that for

both the populations Xy and Xe, the estimator 6% outperforms the estimator S?
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Table 3.1: Variances of the estimators of location for Xy and Ap.

Xy Xe
Moy Moaos Cy Mo Moo Cy
o2 0.118  0.105 0.092 0.370  0.103 0.074
10% MSE(S?) 113 330 5.69 3198 836 1.63
10° MSE(62) 1.06  4.06 10.65 3047 1377 5.89
10° BIAS(S?) 773 030 -2.83 33.37 545 -6.96
10° BIAS(62) 552 26.92 45.71 26.23  57.27 37.55

Table 3.2: Variances of the estimators of scale for X and Ap.

XN XC
Us N, C, Us N, G,
o2 0.095 0.046 0.079 0.670 0.374 0.118
10° MSE(S?) 0.70 0.18 2.16 11210 32.60 15.94
10° MSE(62) 049 013 167 82.06 23.57 32.0
10° BIAS(S?) 7.65 3.43 15.62 62.11 27.47 30.58
10° BIAS(6%) 370 -2.55 18.40 -36.75 -40.88 94.07

for the statistics Moy.1, Ug and N,, whereas S? is better for the statistics My .05

and C,,.

3.2 Parameters defining the Edgeworth expan-

sion

3.2.1 Jackknife estimators

Consider the parameters o and  given in (19). We define jackknife estimators

&y and kjy of these parameters similarly

as in the case of symmetric statistics,

see Bloznelis [14]. Our estimators are based on the sample of size n, whereas, in

the case of symmetric statistics, it is feasible for the sample of size n + 2 only.
Recall the notation used for the definition of S*(L,) in (3.1). For 1 < k < n,

1<4,j,7 <n,i#j, denote
Vi =L — Ly, Vrzf—f(r)?

where

1
Liy = Y Loy,

=1 e
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Here L; ;) = Ln—o(X\{X;, X;}) is the statistic of form (1), with the weights, say,
o =J(/(n—1)),1<1<n—2. Then,

&y = 673n1/? zn: V3,
b= (3.13)
Ro=2070 (1= )n' S WVl
1<i<j<n
where 6% = 37, V2.
The consistency of very similar jackknife estimators of o and k was proven by

Bloznelis [14] in the case of general symmetric finite population statistics.

3.2.2 Bootstrap estimators

We present exact expressions of Booth et al. [21] bootstrap estimator (3.4) for
the parameters a and k. First, similarly as in the case of variance (see Section
3.1.2), we find the exact bootstrap estimators §;5(k) and gop(k,1) for any of the
population characteristics g1(k) := g1(zx), 1 < k < N and go(k, 1) := go(k, 71),
1 <k <1< N defined in (1.21) and (1.23), respectively. Write

gi(ze) = > wi(k) ry, 1<k<N

and
Nf

g2($k>$l) = Z 'U,L(k/’,l) Ai7 1 S k<l S N?

i=1
where, for 1 <i < N — 1, we denote

—

wi(k) = —n~! (]1{2' > k) — ]’V> S My omriap—1), 1<k<N
p=1

and

n

Ui(ka l) = _n_1¢k,l(i) Z(Cp - Cp—l)HN—4,n—2,i—2(p - 2)7 1 S k < [ S N7
p=2
with ¢y(7) given by (1.24).

Theorem 19
(i) For 1 <k <N
n—1mj+t

(k) =" > wi(k)Hne (i — mj) A, (3.14)

j=11i=mj
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(ii) For 1 <k <l<N
n—1mj+t

ggB k’ l Z Z ’Ul k l nt,j(i —mj)Ajn (315)

7j=11i=my

Next, we substitute estimators (3.14) and (3.15) into (19) thus obtaining the

bootstrap estimators

ap = 01BN Z Gip(k
(3.16)

R L ny\ (N\"' N N N
kp = Gipn (1 — N) <2> Y sk, Das(k)ais(),

1<k<I<N
. 1N
where 6%, = N71 S0 gig(k).

Proof of Theorem 19

The proofs of (3.14) and (3.15) are, in fact, the same as the proof of (3.8) in

Theorem 18. Therefore we omit them.
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Chapter 4

Applications

4.1 Approximations to distributions

4.1.1 Edgeworth expansion for a Studentized statistic

In many practical situations, the variance 0% of L-statistic (1) is unknown. There-
fore, if, e.g., we aim to evaluate the reliability of an estimate L,, by constructing
a confidence interval, we need approximations to the distribution function of a
Studentized L-statistic

Fos(z) =P {L, —EL, <2S(L)}, (4.1)

where S?(L,) is the estimate of o7 based on the sample X. Here we consider the
frequently used jackknife variance estimator S?(L,) given by (3.1). Next, in this
section, we give some theoretical insights on the asymptotic normality and the
one-term Edgeworth expansion, see (4.2) below, of (4.1).

Asymptotic properties of distribution (4.1) are similar to that of F},(z) given by
(5). By Proposition 3 of Bloznelis and Gotze [20], where, in the case of symmetric
statistics, S*(L,) is defined slightly different (it is based on the extended sample
Xy ={Xy,...,X,11}), the conditions, sufficient for the asymptotic normality of
the Studentized L-statistic (L,, —E L,)/S(Ly), should be the same as in Theorems
15 and 16, since a difference between both similar jackknife estimators of variance
is (asymptotically) negligible.

By Bloznelis [16], where the jackknife variance estimator for symmetric statis-
tics is also based on the sample X, the one-term Edgeworth expansion of (4.1)
: (0= p-+ (g+ D)o+ 3z + U

67

Here the numbers 7, p, ¢ are defined in (6), and o and x are the same character-

Gns(z) = ®(z) + (). (4.2)
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istics of the Hoeffding decomposition of (1), see (19). Theorem 2 in [16] provides
sufficient conditions, which ensure that, in the case of symmetric statistics, the
one-term Edgeworth expansion approximates the distribution function of the Stu-
dentized statistic up to the error o(n. Y ?). Since jackknife variance estimator (3.1)
is very close to that defined in [16], we can formulate a statement on the validity
of the one-term Edgeworth expansion (4.2), which is similar to (i) of Theorem 17.
Indeed, the condition E |X;[*™ < oo, for some § > 0, of Theorem 17 should be
replaced by E|X;|°"° < 0o and the additional condition g7 — o.

4.1.2 Empirical Edgeworth expansions

One-term Edgeworth expansions (18) and (4.2) of distributions (5) and (4.1),
respectively, cannot be applied directly if the population parameters o and x,
that define them, are unknown. A reasonable alternative to the true expansions
(18) and (4.2) are empirical Edgeworth expansions, where unknown parameters
are replaced by their estimators. Here we use the jackknife estimators, given by
(3.13), and the bootstrap estimators, see (3.16).

Replacing the true parameters o and « in (18) and (4.2) by their jackknife es-
timators &; and &k, we obtain the corresponding empirical Edgeworth expansions
Gy + 3ky
67

Cr() = d(z) — =P (2~ 1)#' () (4.3)

and o A ) R
(q—p+(g+ 1))y + 3(x* + 1)k,

67
Replacing the true parameters o and ~ in (18) and (4.2) by their bootstrap esti-

Grss(r) = B(z) + (). (4.4)

mators &g and Apg, we obtain the corresponding empirical Edgeworth expansions

ap + 3kp
67

o) = () — =P (22 — 1)@ (2) (4.5)

and o A ) A
(g —p+ (¢g+1Dx?)ap + 3(x* + 1)k

67T

Since the defined empirical Edgeworth expansions depend on the random sam-

Grsp(z) = ®(z) + Bo/(z).  (4.6)

ple X, the validity of these expansions is understood as the validity in probability.
To prove the validity of an empirical Edgeworth expansion, if it has already been
proven in the case of a true expansion, it suffices to show the consistency of the
parameters estimators, which define the empirical expansion.

In the case of symmetric finite population statistics, empirical Edgeworth ex-
pansions with jackknife estimators of a and x were considered by Bloznelis [14, 16],

where the conditions sufficient for the validity of true expansions (18) and (4.2),

60



are also sufficient for the consistency of estimators. Note that our estimators &
and & are almost the same as in [14].

In the case of L-statistics, the properties of the bootstrap estimators, such
as ap and kg, are still not quite understood. We examine them by numerical

simulations in Section 4.1.4, as well as the jackknife estimators.

4.1.3 Bootstrap approximations

Non-parametric bootstrap approximations are, in a sense, close to the one-term
Edgeworth approximations, thus the latter are often used in the evaluations of
accuracy of bootstrap approximations. Typically, the accuracy of bootstrap ap-
proximation is of the same order as in the case of the Edgeworth expansion. We
consider here bootstrap approximations to distributions (5) and (4.1) of the L-
statistics.

Let X be the empirical population defined by (3.3). We draw a simple random
sample without replacement X = {Xl, . ,Xn} from X. Then the bootstrap
estimator of statistic (1) is L, = Ln(X). Denote 62 = Var (L, | X,)) and let
S?(L,) = S?(L,) be jackknife estimate (3.1) of 2 based on the sample X. Then

bootstrap estimators for the distribution functions F,(z) and F,s(x) are
Fi(zr) =P{L, - E(L, | X,Y) <5, | X} (4.7)

and
vs(x) =P{L, —E(L, | X,¥) <2S(L,) | X}, (4.8)

respectively. The theoretical analysis shows that this kind of bootstrap approxi-
mation is second-order correct for statistics which are smooth functions of multi-
variate sample means (see Booth et al. [21]), and U-statistics (see Bloznelis [17]).
However, the case of L-statistics is still not well explored for samples drawn with-
out replacement. Similarly, in the case of i.i.d. observations, there are only several
results in the special case of trimmed means (see, e.g., Hall and Padmanabhan
[32], and Gribkova and Helmers [29]) for the classical Efron bootstrap or the m
out of n bootstrap. A hint on the extension of bootstrap results for U-statistics
to the case of more general L-statistics appeared in Helmers [35], but it is omitted
in the final version of the same paper, see [36]. In the case of samples drawn
without replacement, we similarly expect that the case of U-statistics in [17] can
be extended to the case of L-statistics. We note in addition that, in the special
case of Gini’s mean difference (Example 3), the results of [17] are applicable, and
the general conditions can be very similarly simplified as in the case of Edgeworth

expansion for Studentized L-statistics (recall the discussion at the end of Section
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4.1.1), since, in the proofs of [17], the basic tool is Theorem 1 of Bloznelis [16] on
the validity of Edgeworth expansion for Studentized U-statistics.

In Section 4.1.4, we examine the accuracy of bootstrap approximations for L-
statistics via computer simulation. Note that usually bootstrap estimators (4.7)
and (4.8) cannot be applied directly, since for many statistics it is difficult, if not
impossible, to find their exact expressions. Therefore, in numerical examples, we
apply Monte-Carlo approximations to F;'(x) and F'¢(z) proposed by Booth et al.
[21]. We conclude this section with an example of L-statistic, where the bootstrap

distribution can be computed analytically.

Example 7 A simple estimator of the finite population g-quantile F~(q) =
inf{z : F(z) > q}, 0 < ¢ < 1, where F(x) is the distribution function of X, see

(2.26), is a single order statistic (empirical quantile) Xgnj4 1.

Proposition 20 For a single order statistic X,.,, where 1 < r < n, we have for
1<j<n

P{X,p = X | X} = % mjf_l P (1) (Z ) 1) (t Z 1_i s) /Ctl)

s=1li=m(j—1)+s

t mj—+s . .
fi—1\(n—7 n
P> ]“”< )( )/()’
= img_:l)Jrs s—1/\t—s t
where

pr(i) = P{Xp = 7} = (i: i) @Z__TZ) /(Z) , 1<i<AN.

Proof of Proposition 20

(4.9)

For 1 < j < n, consider a pair of random variables (u;,v;) € {(k,{) : 1 <k <
[ < N}, where u; and v; are the lowest and the highest positions of Xj., in the
ordered empirical population X = {Xi.n, ..., Xty -+ Xnims - - - » Xnm }. Consider

the events
As = {(uj,vj;) = (m(j —1) +s,mj+s—1)}, 1<s<t+1

and
B, = {(uj,v;) = (m(j — 1) +s5,mj + s)}, 1<s<t.

These events are mutually exclusive and appear with the probabilities

i (Y05 /). e
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S (R Y B

which sum up to 1. The law of the total probability yields (4.9).

4.1.4 Simulation study

Note that, in the simulation examples below, we use Monte-Carlo approximations
F, and F,s to the exact distributions F, and F,g, respectively, see Appendix
A.1, where we choose C' = 10°. Similarly, we approximate bootstrap distributions
F* and F'g by F¥ and Fg, respectively, see Appendix A.2, where B = 10? and
R = 10%

In the tables below, we compare the distributions E,, ®, G, Gns, Gnp.
F,’f and also Fns, ®, Ghs, Gnsy, Gusa, F;S by taking their g-quantiles, ¢ =
0.01,0.05,0.10,0.90, 0.95,0.99. Specifically, for the empirical functions G,,;, G5,
F;j and G5, GnsB, F;:S we give two characterstics of the empirical quantile: es-
timated values of its expectation and the standard error (SE) based on R = 200
samples drawn independently and without replacement from X. That is, e.g., for

-1
nJ;r

E G, }(q) is estimated by the formula

realizations G, }. (q), 1 <r < R, of the empirical quantile G }(q), the expectation

. 1 &
BG,j(0) = 5 3 Gl (a). (4.10)
r=1

and the standard error S G, (q) is estimated by

. 1 R - . 9 1/2
5600 = (X (G0 - B@)') (a1)
r=1
We also give values of the parameters « and k, and estimated values of the biases
(BIASes) and SEs of their estimators &, g and &y, Ap. Biases are estimated
just like in (3.12).

Simulation 3 Consider Gini’s mean difference Ug, see Example 3. A population
X of size N = 150 was simulated from the normal distribution N (2,4). Our
chosen population X has the mean 2.01 and variance 4.03. The sample size is
n = 45.

Table 4.1 shows that both G,, and ® approximate [, similarly and quite well,
i.e., the normal approximation seems sufficient in this simulation example. Next,
G5 (as the estimate of G,,) has a larger bias compared to G,,;. It means that the

jackknife estimate of x is more successful compared to the bootstrap estimate, see
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Table 4.1: Simulation 3. Approximations to F},.

q= 0.01 0.05 0.10 0.90 0.95 0.99
Fn_l(q) -2.29 -1.64 -1.29 129 1.656 231
CD_l(q) -2.33 -1.64 -1.28 1.28 1.64 2.33
G q) -2.32 -1.64 -1.28 1.28 1.65 2.33
EG )¢ -230 -1.64 -1.28 128 165 2.35
EG L(g) -236 -1.66 -1.29 128 1.63 229
EF1(q) -233 -166 -1.29 128 163 228
gG;}(q) 0.06 0.02 0.01 0.01 0.02 0.06
ané g) 005 0.02 0.01 0.01 0.02 0.05
§F;*1(q) 0.06 0.02 0.01 0.01 0.02 0.05
Table 4.2: Simulation 3. Approximations to Flg.
q= 0.01 0.05 0.10 0.90 0.95 0.99
F &g 292 -1.94 -147 118 149 2.05
CID_l(q) -2.33 -1.64 -1.28 1.28 1.64 2.33
G s(q) 2.68 -1.88 -143 1.16 1.45 1.89
EG,l (¢) -2.65 -1.86 -1.42 117 146 1.93
EG ls(q) 260 -1.81 -1.39 1.20 1.50 2.00
Eﬁggl(q) -2.94 -1.92 -144 1.21 1.53 2.12
gG;éj(q) 0.13 0.10 0.08 0.06 0.09 0.18
§G;§B(q) 0.13 0.10 0.07 0.05 0.08 0.17
SF'5'¢) 030 016 0.11 004 0.06 0.12

Table 4.3: Simulation 3. Parameters a and k, and their estimates.

&J dB IAiJ /%B
BIAS -0.25 -0.25 0.07 -0.07
SE 0.51 0.50 0.09 0.08

0% K

2.04 -0.25

Table 4.3, although the quality of both estimates of x is almost the same. Note
that the quality of F;{ is similar to the quality of G,5.

Table 4.2 shows that G,gs significantly improves ®. Here G,s; and G,sp
estimate G,5 analogously as in the previous case, but now their biases and vari-
abilities are larger. Nonetheless, both G,s; and G, s seem more efficient than
®. The last approximation F;L"S is the most unbiased on the left tail of F,g, but
here its SE is the highest one compared to the other empirical approximations.

On the right tail the situation is converse.

Simulation 4 Consider the trimmed mean M 2,5, see Example 1. A population
X of size N = 150 was simulated from the exponential distribution £(0.5). Our

chosen population X has the mean 1.99 and variance 3.9. The sample size is
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Table 4.4: Simulation 4. Approximations to F),.

q= 0.01 0.05 0.10 090 0.95 0.99
F(q) -2.09 -1.55 -1.24 131 1.73 255
d1(q) -2.33 -1.64 -1.28 1.28 1.64 2.33
G (q) -2.10 -1.57 -1.25 1.32 1.74 254
EG Y q) -215 -158 -126 133 1.74 250
EG L(¢) -210 -157 -125 132 174 254
EF~'(¢) -2.09 -155 -124 131 1.73 2.56
SG:Yg) 019 007 003 013 0.15 0.19
SG;h(g) 009 0.03 001 002 005 008
SE*1(g) 0.09 004 002 001 004 011

Table 4.5: Simulation 4. Approximations to F,g.
q= 0.01 0.05 0.10 0.90 0.95 0.99
F5(q) -2.88 -1.98 -1.50 1.17 1.50 2.13
d1(q) 233 -1.64 -1.28 1.28 164 233
G(q) 2.65 -1.87 -145 1.14 1.43 1.90
EGl,(¢) -259 -1.84 -143 1.15 1.46 1.98
EGls(q) -265 -1.87 -145 1.13 143 1.90
EFg(¢) -296 -1.98 -1.50 1.16 1.49 2.12
SG;i(g) 020 019 018 0.15 020 0.32
SGris(g) 011 0.09 007 006 008 0.17
SES(¢) 032 016 0.09 005 0.07 0.12

Table 4.6: Simulation 4. Parameters o and k, and their estimates.

a K &y Aap Ry Rp
0.34 0.53 BIAS -0.04 0.03 0.01 0.01
SE 0.17 0.16 1.04 0.24

Table 4.4 shows that G, not only improves ®, it also approximates F, quite
accurate. G,; is a much more biased estimate of GG,, for 0.01 and 0.99 quantiles
compared to G, 5, and its SE is larger. It can be explained by large SE of %, see
Table 4.6. Thus, taking the variability into account, GG,z is more efficient than ®
and G,,;. Next, ﬁ’; approximates F, similarly as G,,p.

Table 4.5 shows that GG,,¢ outperforms ®. Now (,g; is a little more biased
estimate of GG, as compared to the previous case, and also has large SE. Thus,
the approximation G, s is reasonable again. F;{S is the mostly unbiased estimate
of E,g. Its drawback is large SE on the left tail.
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Simulation 5 Let us modify Simulation 4 by taking the finite combination of

sample quantiles (Example 7) as follows

n (Xpsnj+1m + 2X 040410 + 3X 0501410 + 2X (060410 + X(o.7nj41m)/9.  (4.12)

Table 4.7: Simulation 5. Approximations to £,.

q= 0.0l 0.05 010 090 0.95 0.99
F-'(q) -213 -155 -1.25 130 1.73 251
d1(g)  -233 -1.64 -1.28 128 1.64 233
G:l(q)  -214 -158 -1.26 131 1.72 251
EG;}(q) -1.94 -145 -1.13 142 1.72 228
EG5(q) -213 -157 -1.26 132 1.74 2.52
EF1(q) -2.09 -155 -1.24 130 1.72 253
SG;ig) 157 133 121 088 096 1.12
SG;h(g) 012 0.04 0.02 003 0.07 0.12
SF*'(g) 0.12 007 005 005 007 0.18
Table 4.8: Simulation 5. Approximations to [)g.
q= 0.0l 0.05 0.10 0.90 0.95 0.99
Fd(q)  -446 -247 -1.76 140 2.02 3.59
d1(q) 233 -1.64 -1.28 128 1.64 233
Grilg)  -2.58 -1.82 -1.41 117 148 201
EG i (q) -2.24 -180 -1.53 089 1.16 1.59
EG iz(q) -259 -1.83 -143 116 146 1.97
SG7i(g) 139 122 117 156 1.68 1.93
SGris(g) 015 012 0.10 0.08 0.11 0.22

Table 4.9: Simulation 5. Parameters a and k, and their estimates.

dJ @B /Aij /%B
BIAS -0.02 0.03 3854 0.05
SE 0.19 0.10 167.36 0.35

(6] K

0.12 0.46

Table 4.7 shows a similar efficiency of approximations G,,, G,,p and 15; as in
Table 4.4, i.e., now only the quality of empirical approximations G,z and F'; is
slightly lower. Here the empirical approximation G, ; evidently fails, since the
estimate R of k is very unstable, see Table 4.9.

The distribution F,g has comparatively heavy tails, see Table 4.8. Now all its

Edgeworth approximations seem to be untrustworthy, i.e., they do not mimic F,g
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as in the previous simulation examples. Moreover, the bootstrap approximation
Fﬁks is omitted in Table 4.8, since it is undefined, because for a part of resamples
drawn from empirical population (3.3), the jackknife estimate of variance of (4.12)

is exactly 0. It is evident from (3.2).

4.1.5 Discussions

It is evident from the simulation examples of Section 4.1.4 that a positive effect of
the second-order approximations is most observable for Studentized L-statistics,
and in the case, where the distribution of the population is asymmetric. Clearly,
here the sample size is also important. Thus, the chosen moderate sample size
n = 45 ensures a closeness of distribution of L-statistic to the normal distribution
in the first case of Simulation 3 only.

The L-statistics, considered in Simulations 3-5, have different smoothness
properties, in the sense of smoothness of the weight function J: (0,1) — R. Thus,
for a smooth L-statistic of Simulation 3, we conclude that Edgeworth expansions
and empirical Edgeworth expansions with jackknife estimates of the parameters
are efficient. In Simulations 4 and 5, the L-statistics are not smooth. In these
cases (except the case of a Studentized statistic of Simulation 5), Edgeworth ex-
pansions are also much more efficient than the normal approximation. However,
it is not necessarily the case for empirical Edgeworth expansions. In particular,
for the trimmed mean of Simulation 4, the jackknife estimate of x is of a poorer
quality and its quality is very low for a much more not smooth L-statistic of
Simulation 5. For empirical Edgeworth approximations with bootstrap estimates
of the parameters, we have noticed only one drawback, i.e., they are biased in
Simulation 3. But they are quite unbiased and stable, and thus efficient in Simu-
lation 4 and in the first case of Simulation 5. The last non-parametric bootstrap
approximations behave similarly in some cases, and they can be very unbiased for
Studentized L-statistics, but here their variability is higher.

Less successful results of empirical Edgeworth approximations with jackknife
estimates of the parameters, in the case of not smooth statistics, and inaccuracy
of all Edgeworth approximations, in the case of a Studentized L-statistic of Sim-
ulation 5, can be clarified. There are at least two possible theoretical reasons,
which are familiar from the case of i.i.d. observations, but still not well explored
for samples drawn without replacement. The first one is that, in the cases where
L-statistics are not smooth (or less smooth), typically, the validity of Edgeworth
expansions is ensured by imposing additional smoothness conditions on the dis-
tribution function of the underlying population, see, e.g., Gribkova and Helmers

28, 30] and Alberink et al. [2]. The finite population, even assuming that it is
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obtained from a smooth superpopulation, is not necessarily sufficiently smooth
if its size N is relatively small. The second reason, why the approximations are
so complicated, particularly in Simulation 5, is the well-known phenomenon of
inconsistency of the classical jackknife variance estimator applied to the sample
quantile, see, e.g., Martin [49], where it is also shown that the asymptotic dis-
tribution of the Studentized quantile is nonnormal (heavy-tailed). It seems that
the jackknife variance estimator also fails in the case of the finite combination
of the sample quantiles of Simulation 5. We also refer to Shao and Wu [65],
where an alternative delete-d jackknife is proposed, with the number d (of deleted

observations in the jackknife) depending on smoothness of a statistic.

4.2 Approximations to distributions of quantiles

in stratified samples

4.2.1 Hoeffding decomposition and approximations

Consider a population X = {xy,...,zx} of size N. We assume, without loss of
generality, that z; < --- < zy. Let X be divided into h > 1 nonoverlapping
strata X = X[ U---UA&], where X] = {zx1,...,2xn,}, 1 < k < h. Evidently,

N = Nj +---+ Nj,. For convenience, we also assume here that z; < --- < a n,.
Let X}, = {Xg1,..., Xkn,} be a simple random sample of size ny < N drawn
without replacement from the stratum &7}. We assume that the samples X/, ..., X},

are independent. Write X' = X U---UX]}, and denote n = ny + - - - + n;. Denote

the distribution function of the stratum k and its empirical analogue as follows:

1
Fnp(r) = 5 2 Haws < (4.13)
k=1
and o
Fop(z) = — > Xy < (4.14)
k i=1

respectively. Then the distribution function of the population X and its estimator

are
h Nk
F(z) =Y —ZFyi(z)
o v
(it is the same as (2.26)) and
~ N ~
Fu() = 3 S Fux(a),

k=1



respectively. Consider the population S-quantile, 0 < § < 1, defined as follows:
F~Y(B) = inf{z : F(x) > B}. Define its estimator

X5 = E;(8) = inf{a : Fu(x) > B},

Denote ag = Var X3. We are interested in approximations to the distribution
function
Fﬁ(l’) = P{Xﬁ — EXB S ZL’O‘,g}.

The asymptotic normality of the quantile Xz, under a stratified simple random
sampling without replacement, was considered by Shao [64], see also Gross [31].
Here we present an Edgeworth type approximation to Fs(z), see (4.15) below,
and its empirical analogue based on the bootstrap of Booth et al. [21]. Our main

tool is again Hoeffding’s decomposition
Xg=EXg+L+Q+R,

constructed by Bloznelis [15] for general symmetric statistics in the case of strat-
ified simple random samples drawn without replacement. Here, like in the one-
stratum case, L and () are called linear and quadratic parts of the decomposition,
and R is a remainder term. In the case of U-statistics, where R = 0, Edgeworth
expansions were constructed and their second-order correctness was shown by
Bloznelis [18]. Thus, we expect that, if R is negligible, those Edgeworth expan-
sions will also approximate Fj(z) well. In particular, we suggest to approximate
Fs(x) by

3
Hy(w) = B(z) - L2000~ 1), (4.15)
95
obtained in [18]. Here
h h
ag = (1—=2n/Np)micy, and kg =Y Tokee+2 Y.  TeTeKku,
k=1 k=1 1<k<u<h

with 77 = ng(1 — ni/Ny). Here the moments

1,
ap = E;gk(ajk,s);

N
Hka( k) S U@k, o) G (ks ) G (Thr )

2 1<s<r<Ng
1
Ry = NkN Z wku(xk:,s;xu,r)gk($k75)gu($uvr)’

U 1<s<N,1<r<Ny
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established in [18], are based on the functions

gk(xk,s) = m Z (pz(ﬂfk s) — pz) i (4.16)
=1

Ni—2 Ny—-3 &
Nk—nka—nk—l

1
¢k(xk,57xk,r> — (pz fL’k sy Lk r)
1

ol £ N (4.17)
E— k
———(p; s i r 7 Ai7
Nk;—2<p (k) + pilas, )> i Nk—Qp)
Ny—1 N, —1 ¥=!
d)ku(xk’,sa xu,r) - Nk: — Ny Nu — Ny, ; ( Z(xk787 xu,r) B pZ(ZL‘k’S) (418)

- pi(tru,r) + pz) Ai;
where, for 1 <i < N — 1, we denote the probabilities

pi = P{Xp > x;},

pi(xrs) =P{Xg > x| X1 = vis},
i@k try) = P{Xg > ;| Xoa = Trs, Xk2 = Thp b
pi(mk,sa mu,r) =P {X,B > T | Xk,l = Tk,s, Xu,l - xu,r} .

We give these probabilities in (4.19) and in Proposition 21 below. Note that
expressions (4.16)—(4.18) are obtained directly from (11) in [15], using the defini-
tions of expectation and conditional expectations, and applying the summation
by parts formula SN | (pi_1 — pi)@i = —pyan + pozr1 + 7' pi A; (in the case of
expectation) and noting that, by definition, py = 0 and py = 1, and so forth.

Let T be the set of h-tuples (t1,...,t,) € {0,...,n1} x -+ x {0,...,np},
which satisfy the condition ¥"_, w;t; < 8. Here w; = N;/(Nn;). Denote d;; :=
N;Fn j(z;). It is shown in Gross [31] that, for 0 <i < N,

=2 II Hwmpa, (), (4.19)

T 1<j<h

and then the variance of X3 in (4.15) is

N 2
:Zpll_pzx_<zpz 1_pz z>- (420)

Next, we give explicit expressions of the conditional probabilities.
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Proposition 21 Let1 << N — 1.
(i) For 1 <k <h and 1 < s < Ny, we have

xks ngks ) H H n],”( )

1<j<h, j#k
where
. HNk—LTLk—Ldik (tk) if i € Loy,
Pr,s(i) = .
HN—1mp—t,di—1(te — 1) if i € Ipy,
with

Ty ={i:mi <apsht, Zoo={i:a;> x5}
(i) For 1 <k <h and1<s <r < N, we have

Di xksaxkr Z¢kskr() H Hy nj,”( )

1<j<h, j#k
where
HN—2,m—2.di () if i € Iy,
Drsihr (1) = Hne—2np—2.d—1(tk — 1) if i € L,
HN 20245 —2(tk — 2)  if i € Iy,
with

Ty ={i: @i < s < Thp), Tso={i:aps <y < Tpypl,

Tg3 = {i: s <@gy < 5}

(iii) For 1 <k <u<hand1<s < Ng, 1 <r <N,, we have

Di mk S xur Zek,s,u T‘(Z) H HNj,nj,dij (tj)a

1<j<h, j#ku
where
HN—1mp—1.dy. (E) HNy—1m0—1.d5 (T
. Hne—1mp—1.d—1(Ck — 1) Hny—1.00-1.ds, (tu)
ek,s;u,r (2) =

HNk—l,nk—l,dik (tk) HNu—l,TLu—l,diu—l(tu - 1)
Hn—1mp—1.dg—1 (ke — 1) Hny—1.00-1.ds—1(ta — 1)
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with

I ={i:x <Tps, T < Tuyt, Lao={i:2; > Tps, Ti < Ty,l,

Tz ={i: 0 < Tps, Ti > Tuyr}y Laa={i:2; > Tps, Ti > Typ}

Proof. Calculations of all the conditional probabilities are based on the same
arguments as the derivation of (4.19) in Gross [31]. Here, for each case from (7)—
(i), we need to consider, under fixed conditions of the conditional probabilities,
a few different positions of x; only. Note that the set 7 is the same for all

probabilities, since we use conventions (1.6). O

Empirical approximation. The parameters ag = ag(X), kg = kp(X) and
0% = 03(X) that define approximation (4.15) are usually unknown characteristics
of the population X'. Thus, they should be estimated in practice. In Gross [31],
for the estimation of the parameter ag,, a convenient plug-in rule was proposed,
where strata distribution functions (4.13) were replaced by their corresponding
empirical versions (4.14). However, it is not convenient for the estimation of g
and k3. Another way is to replace the population parameters by their jackknife
estimators, see Bloznelis [18]. But it is well known that, in the case of sample
quantiles, jackknife estimators (of variance) often fail. Recall also the discussion
at the end of Section 4.1.5.

We consider here the bootstrap estimators of the parameters. For 1 < k < h
write Ny = mygng + [, where 0 < [, < ng. For each 1 < k < h we construct
an empirical stratum X}, as in the one-stratum case, see (3.3). Then X' = X] U
- U )E,’L is an empirical population, and the bootstrap estimator of the population
parameter 6 = 0(X) is

0p = E(0(X")

X'), (4.21)

similarly as in (3.4). Thus, we have the bootstrap estimators dsp, Agp and 635 of
ag, kg and O’%. However, it is difficult to obtain their explicit expresions. There-
fore, we apply Monte—Carlo (M—C) approximations to the parameters we are inter-
ested in. In particular, let /'\?(’1), e ,/'P(’ ) be B empirical populations constructed

independently as described above, i.e., we randomly and with replacement select
[

B empirical populations from all possible HZ=1 ( ) Then M—-C approximation

to (4.21) is
- 1 B -,
B b=1

Finally, replacing the true parameters ag, k3 and 02 in (4.15) by their estimates
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agp, Rgp and 65 5, We obtain the empirical approximation

~ _ agp + 3KgR

Hg(z) = ®(x) ' (x)(z* — 1) (4.23)

6575

to Fg(m)

4.2.2 Numerical simulations

In the simulation example below, we approximate the exact distribution Fj sim-
ilarly as in the case of one-stratum, see Appendix A.l, i.e., we obtain its ap-
proximation F, 5 by the M-C simulations, by drawing independently 10° stratified
samples from X'. Now the variance of Xj is given by (4.20) and the expectation
is pug = S0, (pic1 — pi)i-

In the tables below, we present g-quantiles, ¢ = 0.01,0.05,0.10,0.90, 0.95,0.99,
of F’B, ®, Hg, and H 3. For the approximation H 3 we present two characteristics
for each of the empirical ¢-quantiles: estimated value E 5 (q) of its expectation
Eﬁﬁ_l(q) and estimated value S ﬁﬁ_l(q) of its standard error S ﬁﬁ_l(q), based on
R = 100 stratified samples drawn independently from X', see formulas (4.10) and
(4.11). To estimate the parameters o, kg and o by (4.22), we take B = 30.

Simulation 6 We consider the case of a sample median, i.e., we take § = 0.5.
From the real finite population, which consists of Lithuanian service enterprises,
we take three completely sampled strata, which belong to the economic activity
classified as ‘combined facilities support activities’ The strata sizes are N; = 25,
Ny = 7 and N3 = 13. Using the measurements of turnover and the number of
persons employed, we form two different populations: X(;) = X(’l)l U X(/l)Z U X(ll)S
and X(g) = Xy U X(p)p U Xy)3. Here we use the first-quarter data of 2011. The
simulation results for these populations are presented in Tables 4.10 and 4.11,

respectively. We choose sample sizes ny = 10, ny = 3 and ng = 5.

Table 4.10: The population &{;). Approximations to Fos.

0.0l 0.05 0.0 090 095 0.99
)  -2.85 -201 -1.94 096 096 0.96
)  -233 -1.64 -128 1.28 1.64 2.33
Hyi(q) -2.82 -195 -1.41 121 146 181
EHyi(q) -2.21 -1.64 -1.28 132 1.74 242
SHyi(q) 042 020 0.08 0.09 021 0.42

Table 4.10 shows that H s significantly improves ®. However, it is not the
case for its empirical version Hys, since, for a large part of the samples, this

approximation to Fy5 is less accurate than ®. Table 4.11 shows that Hy 5 evidently
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Table 4.11: The population &{3). Approximations to Fys.

q 0.01 0.05 0.10 0.90 0.95 0.99
Fys(g) -1.60 -1.26 -0.82 1.90 1.99 3.85
d1(q) -233 -1.64 -128 128 1.64 2.33
Hii(q) -1.84 -147 -122 140 192 2.79
E 1

S

5(q) -2.00 -1.53 -1.24 135 1.81 2.63
a(g) 0.17 006 0.02 004 0.10 0.16

outperforms ®. Here the estimated variability S Hj, 2(q) is comparatively small,

therefore ﬁof) is also more efficient than ®.

We stress that the proposed approximations may be very efficient in real sur-
veys, where we need to measure the accuracy of a sample quantile in small domains
of a population (for some collections of strata) and where populations are highly

skewed.
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Appendix A

Monte—Carlo approximations

A.1 Approximations to distributions

Here we present Monte—Carlo approximations to distribution functions F),(z) and

F,s(x) given by (5) and (4.1), respectively. We draw independently C' samples

x© = {Xfc), ., X9}, 1 < ¢ < C of size n without replacement from X, and
take
: I (©
Fula) = 5 S La(X') = pp(X) < 2o (X))}
c=1
and

C
Fus(e) = & S La(XY) - s (¥) < 2S(L (X))},

Here the population X characteristics ur(X) = EL, and ¢%(X) = Var L,, are
expressed by

1 n
pL(X) = - Y GEX,,

p=1
and (3.5), respectively, where the moments of the order statistics (inside of these

expressions) are

VarXp:n:<N>1i(i:11><N_i>x?—(EXp:n)2, l<p<n (A1)

n i—1 \P

and

—1 . . .
COV(Xp:n, Xr:n) = (JT\Z) Z (Z : i) <j : ! : 11> (N__ j>$ixj
1<i<j<N \P r—p n—r (A.2)

_EXp:nEXr:na 1§p<7“<n,
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with

BX,, = (N>§ 0 [ A EP RS

n S \w—1)\n—p
If it is assumed that z; < --- < zy, the proof of (A.1)—(A.3) is simple. To obtain

these formulas in the case of z; < --- < zy, apply Lemma 8.

A.2 Approximations to bootstrap distributions

Here we present Monte—-Carlo approximations to distribution functions F(z) and
Fry(z) given by (4.7) and (4.8), respectively. Given the sample X of size n, we
construct independently B empirical populations X®, 1 < b < B. Next, for
every 1 < b < B, we draw independently R resamples X" = {X L , X ()Y

1 <r < R of size n without replacement from X®, and take

and

Frgla) = 5153 S H{ L&) = g (B0) < 2S(L,(E07))).

b=1r=1

Here the expressions of ur(+) and o7 (-) are given in Appendix A.1.
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