Abstract [eng] |
One of the major issues of plant genetics is their tolerance and resistance to abiotic factors. Low temperatures, ozone and ultraviolet radiation are the factors that increase ROS formation and oxidative stress in a plant cell. All plants have effective antioxidant systems to detoxify ROS. Researches were carried out to evaluate the resistance of Smooth Hawksbeard (Crepis capillaris L. (Wallr)) and frost resistant asymmetric somatic potato hybrids to abiotic stresses, estimating the morphometrical, biochemical and genetic data after treating the plants with UV-B (2, 4, 8 kJ/m2) and ozone (40 ir 80 ppb) doses. Test data shows, that morphometrical parameters such as fresh and dry weight along with leaf area and count are very sensitive to stress factors. Biochemical parameters such as soluble protein content and the activity of antioxidant enzyme superoxide dismutase (SOD) have risen pro rata from the dose given. The increment of SOD after treating the plants with simulated abiotic factors is annotated as adaptation to UV-B stress. Analysis of the cold acclimation has shown, that potato hybrid H269 has gained DNA fragment from the donor species Solanum commersonii. This fragment is associated with over-expressed genes of mitochondrial electron transfer system which regulates the concentration of ROS in the cell and controls the expression of nuclear genes related with cold-acclimation. With this analysis we have showed that plant resistance to abiotic factors such as ozone, UV-B and low temperatures is operated as one solid defense system and it is responsible for elimination of stress outcome and formation of tolerance. |