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Notation

N denotes the set of natural numbers, N = {1, 2, . . . }.

Z denotes the set of integers, Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

Ia denotes the distribution concentrated at real a, I = I0.

U = I1 − I.

z = Û(t) = eit − 1.

Let V , M be two �nite (signed) measure concentrated on Z. Then

the total variation norm of M is denoted by

‖M‖ =
∞∑

k=−∞

|M{k}|,

the local norm of M is denoted by

‖M‖∞ = sup
k∈Z
|M{k}|,

the uniform Kolmogorov norm is denoted by

|M | = sup
k∈Z
|M{(−∞, k]}|,

the Wasserstein norm is denoted by

‖M‖W =
∞∑

k=−∞

|M{(−∞, k]}|.

M̂(t) =
∑
k∈Z M{k}eit denotes the Fourier transform of M , (t ∈ R) .

ÊY1Y 2 · · ·Yk is de�ned recursively by

ÊY1Y2 · · ·Yk = EY1Y2 · · ·Yk −
k−1∑
j=1

ÊY1 · · ·YjEYj+1 · · ·Yk,

where Y1, Y2, . . . form a sequence of arbitrary complex-valued random variables.
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C,C1, C2, . . . denote positive absolute constants.

Θ denotes the �nite signed measure on Z satisfying ‖Θ‖ 6 1.

θ stands for any complex or real number, satisfying |θ| 6 1.

νk denotes the kth factorial moment by

νk = EX(X − 1) · · · (X − k + 1).

L(S) denotes the distribution of S = η1 + η2 + · · ·+ ηn, where ηj = ξjξj−1 and ξj , j = 0, 1, 2, . . . , n
are independent identically distributed Bernoulli variables.

G2 and G3 denote measures used for approximations of L(S).

Fn denotes the distribution of X1 +X2 + · · ·+Xn, where X1, X2, . . . , Xn are identically distributed
1-dependent random variables concentrated on Z.

D1, D2 and D3 denote measures used for approximations of Fn.

Pn denotes the distribution of X̂1 + X̂2 + · · · + X̂n, where X̂1, X̂2, . . . , X̂n is a triangular array
of 1-dependent identically distributed three-point random variables.

Bn denotes measure used for approximations of Pn.

S̃ = X̃1 + X̃2 + · · · + X̃n, where X̃j , j = 1, 2, . . . , n is a sequence of 1-dependent not identically
distributed Bernoulli variables.

M1, M2 and M3 denote compound Poisson measures used for approximations of Nn.

a(i1, i2, . . . , im) = EX1(X1−1)···(X1−i1+1)···Xm(Xm−1)···(Xm−im+1)
i1!i2!···im! .

Z ∼ Be(p) means that Z is Bernoulli random variable, P(Z = 1) = p = 1− P(Z = 0).

Pois(λ) denotes Poisson distribution with the mean λ.
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Chapter 1

Introduction

As it follows from the title, our aim is to investigate Poisson type approximations to the sums of
dependent integer-valued random variables. In this thesis, only one type of dependence is considered,
namely m-dependent random variables. We recall that the sequence of random variables (Xk),
k = 1, . . . is called m-dependent if, for 1 < s < t < ∞, t − s > m, the σ-algebras generated by
X1, . . . , Xs and Xt, Xt+1 . . . are independent.

1.1 Metrics

In this thesis, the accuracy of approximation is measured in the total variation, local, uniform
(Kolmogorov) and Wasserstein metrics. For an integer-valued measure M , the de�nitions of these
metrics are given in the notation section at the beginning of our thesis. In particularly, when we
have two integer-valued random variables ξ and ζ, the following relations are true. For the total
variation, we have

‖L(ξ)− L(ζ)‖ =
∞∑

k=−∞

|P(ξ = k)− P(ζ = k)| = 2 sup
A
|P(ξ ∈ A)− P(ζ ∈ A)|.

Here supremum is taken over all Borel sets. For the uniform (Kolmogorov), local (point) and
Wasserstein metrics, we have

|L(ξ)− L(ζ)| = sup
k∈Z
|P(ξ 6 k)− P(ζ 6 k)|, ‖L(ξ)− L(ζ)‖∞ = sup

k∈Z
|P(ξ = k)− P(ζ = k)|,

‖L(ξ)− L(ζ)‖W =
∞∑

k=−∞

|P(ξ 6 k)− P(ζ 6 k)|,

respectively. Note that there exist many alternative de�nitions of the metrics given in above. Let
f be a function de�ned on Z. Then, for example, it is possible to de�ne the total variation, local
and Wasserstein metric as supf |Ef(ξ) − Ef(ζ)|, where supremum is taken over all supk |f(k)| 6 1
or supk |f(k + 1) − f(k)| 6 1 or

∑
k∈Z |f(k)| 6 1, respectively, see [8]. Note also that, all metrics

by no means are restricted to the discrete case, though, of course, the de�nitions then should be
formulated in more general terms. Note also that, in the literature, the Wasserstein metric is also
called the Fortet-Mourier metric and is a partial case of the Kantorovich metric, see [35].

Let Ia denote the distribution concentrated at real a and set I = I0. Let V and M be two �nite
signed measures concentrated on integers Z. Products and powers of V and M are understood in
the convolution sense, i.e, VM{A} =

∑∞
k=−∞ V {A − k}M{k} for a set A ⊆ Z; further M0 = I.

Using the simple equality
‖(I1 − I)M‖W = ‖M‖, (1.1)

it is possible to switch from the Wasserstein norm to the total variation norm. Note also that

‖M‖∞ 6 ‖M‖, |M | 6 ‖M‖, ‖VM‖∞ 6 ‖V ‖‖M‖∞, ‖VM‖ 6 ‖V ‖‖M‖.
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1.2 Poisson type approximation

Now we discuss what, in this thesis, is called the Poisson type approximation. We recall that if
ζ ∼ P (λ) then

P(ζ = k) =
λk

k!
e−λ, (k = 0, 1, 2, . . . )

and the characteristic function of ζ is equal to exp{λ(eit− 1)}. The compound Poisson distribution
can be de�ned in many alternative ways. For exmple, we can view the compound Poisson ran-
dom variable as random sum of independent identically distributed random variables Zj , when the
number of summands ζ ∼ P (λ) is independent of Zj , that is as the distribution of

ζ∑
j=1

Zj , ζ ∼ P (λ).

It is not di�cult to check that the characteristic function of the compound Poisson distribution is
equal to exp{λ(f(t)− 1)}, where f(t) is the characteristic function of Z1. If Z1 is concentrated on
non-negative integers the characteristic function can be written in the form:

exp
{ ∞∑
j=1

λj(ejit − 1)
}
. (1.2)

Here λj are some positive quantities. As it follows from (1.2), if the compound Poisson distribution
is concentrated on integers, then it can be viewed as the distribution of a sum of independent Poisson
variables ζj . Here ζj is concentrated on the lattice with the maximum span j. Compound Poisson
distributions are used as approximations in this thesis. However, sometimes we apply (1.2) with
some negative λj , that is we deal with the compound Poisson structured signed measures. In this
case, it is very inconvenient to write the de�nition in terms of random variables. Therefore, for
our purposes, we use the measure notation. We de�ne the (signed) compound Poisson measure as
exponential of some measure M :

eM = exp{M} =
∞∑
k=0

1
k!
Mk.

Note that the Fourier-Stieltjes transform of exponential measure is equal to

êxp{M}(t) = exp{M̂(t)}.

By Poisson type approximation we call the exponential measure exp{M}, where M is chosen to
match some factorial moments of approximated distribution. As a rule, M has a quite simple
structure. Let us explain the construction of approximating Poisson type measure in detail. Let
F̂ (t) be a characteristic function of random variable taking non-negative integer values, and let κj
be its jth factorial cumulant. We then can write formally

F̂ (t) = exp{ln F̂ (t)} = exp
{
κ1(eit − 1) +

κ2(eit − 1)2

2!
+
κ3(eit − 1)3

3!
+ . . .

}
.

If, in the exponent, we drop all summands except the �rst one, the resulting characteristic function
is that of the Poisson law. The idea of (signed) compound Poisson approximation is to leave more
than one factorial cumulant in the exponent. In this case, the resulting Fourier-Stieltjes transform
corresponds to a compound Poisson-structured signed measure which can have negative Poisson
parameters. It matches more than one moment of the initial distribution and can be viewed as a
special kind of asymptotic expansion.

The construction of the Poisson type approximation is more complicated when the approximated
distribution is concentrated on negative and positive integers. We then can apply the idea of Kruopis
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[28] and use the formal expansion

F̂ (t) = 1 +
∞∑
j=1

F{j}(eitj − 1) +
∞∑
k=1

F{−k}(e−itk − 1)

= exp
{

ln
(

1 +
∞∑
j=1

F{j}(eitj − 1) +
∞∑
k=1

F{−k}(e−itk − 1)
)}

= exp
{ ∞∑
j,k=1

κjk(eit − 1)j(e−it − 1)k
}
. (1.3)

If we choose Ms in such a way that M̂(t) =
∑s
j,k=1 κjk(eit − 1)j(e−it − 1)k then we can expect

exp{Ms} to be close to F . Of course, (1.3) gives just an idea of the construction of approximation.
Application of this idea in practice depends on the assumed dependence of summands.

If M has complicated structure, then exp{M} is even more complicated. Therefore, we also
used second order approximations to the Poisson type measures, that is asymptotic expansion of
the form

exp{M}(I +A(I1 − I)k).

1.3 Known results

Literature on Poisson approximations is enormous, we just mention [8], [11], [23], [29], [34] and the
references therein.

Compound and signed compound Poisson approximations are commonly applied in insurance
models and in limit theorems; see [9], [10], [3], [20], [24], [27], [32], [38], and the references therein.
Note that the discussed approach of constructing approximations does not necessarily result in
signed measure. Under certain conditions one can get compound Poisson distribution. Roughly the
main bene�ts of such approximations are the following:

1) the accuracy of approximation is of the same or better order than can be obtained by the
normal approximation,

2) the estimates hold for the total variation, which is impossible for the normal law due to the
di�erences in supports,

3) unlike the Edgeworth expansion no additional smoothing terms are needed for asymptotics.

Thus, when dealing with (signed) compound Poisson measures, we usually investigate some discrete
alternatives to the normal law. We recall some of the results relevant to the results of our thesis.
We are primarily interested in the order of accuracy. Therefore, we usually assume some additional
restriction allowing for simpler form of estimate. To make expressions shorter we also set U = I1−I.

We begin from the classical Poisson approximation to the so-called Poisson binomial distribution.
Let Zj ∼ Be(pj) , (j = 1, 2, . . . , n) be independent Bernoulli random variables, 0 6 pj 6 1. Let
np̄ :=

∑n
j=1 pj and let Pois(np̄) denote Poisson distribution, that is Pois(np̄) = exp{np̄U}. The

following estimates hold

1
16(1 ∧ np̄)

n∑
j=1

p2
j 6 ‖

n∏
j=1

(1 + pjU)− Pois(np̄)‖ 6 2(1− e−np̄)
np̄

n∑
j=1

p2
j , (1.4)

see [7]. Approximation of the binomial and Poisson binomial distributions by the Poisson distri-
bution has a long history and many names to it, the �rst result being that of Prokhorov [34], see
introduction of [8]. In the case when pj ≡ p < 1/2, we have

1
16

min(np2, p) 6 ‖(I + pU)n − Pois(np)‖ 6 2 min(np2, p). (1.5)
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It is obvious, that (1.5) is sharp for small p only and trivial for p = O(1). Now let us write the
Berry-Esseen estimate for the binomial distribution. Let Y ∼ N(np, np(1− p)), 0 < p < 1/2. Then

|(I + pU)n − L(Y )| 6 C1√
np
. (1.6)

Here C1 is an absolute constant. Therefore, we see that the normal approximation, as expected holds
for the weaker uniform norm and is sharper, if p > n−1/3. The best order of accuracy O(n−1/2) is
achieved when p = O(1). If p < n−1/3 the better order of accuracy gives (1.5). It is remarkable,
that Poisson limit occurs, if p = O(n−1) only. Thus, we see that some prelimiting distribution can
be much sharper then the limiting one.

The accuracy in (1.4) can be improved by the second order asymptotic expansion. However, this
improvement is insigni�cant if pi = O(1). Indeed, let pj 6 1/2, then∥∥∥ n∏

j=1

(1 + pjU)− Pois(np̄)
(
I − 1

2

n∑
j=1

p2
jU

2

)∥∥∥ 6 C2

n∑
j=1

p3
j min

(
1, (np̄)−1

)
. (1.7)

The estimate (1.7) follows from the more general asymptotic expansion in [2]. For the binomial
distribution the estimate becomes C min(np3, p2). Therefore, some improvements are available, for
p = o(1) only.

If we apply signed compound Poisson measure matching two moments of the Poisson binomial
distribution (just like in the Normal approximation) then we get much better accuracy. Let again
pj < 1/2, then∥∥∥ n∏

j=1

(1 + pjU)− exp
{
np̄U − 1

2

n∑
j−1

p2
jU

2
}∥∥∥ 6 C3

n∑
j=1

p3
j min

(
1, (np̄)−3/2

)
. (1.8)

The estimate follows from a more general theorem 3 in [27], see also theorem 4.1 in [6]. For the
binomial distribution we get the following estimate∥∥∥(I + pU)n − exp

{
npU − np2

2
U2
}∥∥∥ 6 C4 min

(
np3,

p
√
p

√
n

)
. (1.9)

Note that (1.9) was proved earlier than (1.8) in [32].
Comparing (1.9) with (1.5) and (1.6) we see that it is uniformly better than the Poisson or

Normal approximations. The accuracy in (1.9) is always at least of the order O(n−1/2) and always
at least of the order O(p2).

The total variation norm is the main metric considered in this thesis. Therefore, we note only
that, in the local metric, the accuracy of approximation is of better order and, in the Wasserstein
metric, is of worse order, than can be obtained for the total variation norm . For example,

‖(I + pU)n − Pois(np)‖∞ 6 C5 min(np2, p(np)−1/2),
‖(I + pU)n − Pois(np)‖W 6 C5 min(np2, p(np)1/2),

see Introduction of [8] and [5]. The accuracy of compound Poisson approximation increases dra-
matically if the initial distribution is symmetric. We give just one example of this phenomena. Let
p < 1/4, then

‖((1− 2p)I + pI1 + pI−1)n − exp{np(I1 + I−1 − 2I)}‖ 6 C6 min(np2, n−1). (1.10)

The estimate can be obtained, for example, from the general Theorem 1 in [45].
Application of the Poisson type approximation to the sum of random variables, which are more

general than Bernoulli ones, usually requires ful�lment of some additional restrictive condition. One
of the best known of such condition was introduced by Franken [22]. Let X be random variable
concentrated on non-negative integers and having distribution F . We then denote its kth factorial
moment by

νk = EX(X − 1) · · · (X − k + 1).
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If
ν1 − ν2 − ν2

1 > 0, (1.11)

then

|Fn − Pois(nν1)| 6 C7
n(ν2 + ν2

1)
1 ∨ n(ν1 − ν2 − ν2

1)
. (1.12)

The estimate (1.12) is partial case of more general Franken's result for non-identically distributed
summands, see [22]. Assumption (1.11) is called Franken's condition. In principle, Franken's con-
dition means that almost all probability mass of F is concentrated at zero and unity. It is easy to
check that any Bernoulli variable satis�es (1.11). Therefore, we can view (1.12) as a generalization
of the Poisson approximation to the binomial law. Though in (1.12) the weaker uniform metric is
used, it is not di�cult to prove similar result in total variation, applying, for example Theorem 1
from [45]. By adding second factorial cumulant to the Poisson approximation in the exponent we
obtain analogue of (1.9). If ν3 <∞ and condition (1.11) is satis�ed, then∣∣∣Fn − exp

{
nν1U +

1
2
n(ν2 − ν2

1)U2
}∣∣∣ 6 C8

n(ν3
1 + ν1ν2 + ν3)

(1 ∨ n(ν1 − ν2 − ν2
1))3/2

. (1.13)

The estimate (1.13) follows from Theorem 3 in [28]. The estimate (1.13) can be easily generalized
for the total variation norm by summing non-uniform estimates from [13], Theorem 2 and applying
estimate for concentration function from p. 117,∥∥∥Fn − exp

{
nν1U +

1
2
n(ν2 − ν2

1)U2
}∥∥∥

6 C9
n(ν3

1 + ν1ν2 + ν3)
(1 ∨ n(ν1 − ν2 − ν2

1))3/2

(
1 +

nν1

n(ν1 − ν2 − ν2
1)

)2

. (1.14)

Let νi � C, then (1.14) is of order O(n−1/2). Note that, in this case, Poisson approximation (1.12) is
of the order O(1) as n→∞. Any standard Poisson asymptotic expansion gives the same trivial order
with respect to n. Thus, two-parametric compound Poisson approximation has some similarities to
the normal approximation. One bene�t of (1.14) over the standard normal approximation is that it
holds for stronger total variation distance.

Roughly our goal is to obtain some analogues of (1.8)�(1.14) in the case of weakly dependent
summands. Therefore, let us discuss �rst what results are already known for m-dependent random
variables. Normal approximation to the sum of m-dependent random variables has been thoroughly
investigated; see, for example, [25], [26], [41], [43], [44], [46], and the references therein. For the
completeness we formulate one result of Sunklodas.

Let Y1, Y2, . . . be m-dependent random variables and EYi = 0, i = 1, . . . , n, d = max1≤i≤n E|Yi|s <
∞, where 2 < s ≤ 3. Let

Sn =
n∑
i=1

Yi, B2
n = ES2

n, Zn = Sn/Bn, Fn(x) = P(Zn < x),

Φ(x) = (2π)−1/2

∫ x

−∞
e−u

2/2du.

Let B2
n > c0n, where 0 < c0 <∞ and m+ 1 6 (B2

n/c
1/2
0 ). Then

1. if d > cs/20 , then for all n > 1 and m > 0

sup
x
|Fn(x)− Φ(x)| 6 C(m+ 1)s−1 d

c0B
s−2
n

, (1.15)

2. if 0 < d < c
s/2
0 , then for all n > 1 and m + 1 > ln 4 n

lnn = m0 we have the same inequality
(1.15),
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see Theorem 3 from [43].
We see that, in principle, normal approximation has almost the same properties as in the famous

Berry-Esseen theorem, that is, it holds for uniform metric and under mild assumptions when s = 3
and we do not consider the triangle array it ensures the accuracy of approximation of order O(n−1/2).
When approximating lattice variables in the total variation metric one can not expect to get non-
trivial result due to the di�erences of supports.

There are numerous papers dealing with Poisson approximations for dependent summands. After
Chen's seminal paper [18] the vast majority of them uses the Stein method. Poisson approximation
is one-parametric approximation and usually its parameter is chosen to match the mean of approx-
imated distribution. Therefore, the order of accuracy depends on the assumption that almost all
probability mass of approximated distribution is concentrated at zero. As a rule, the summands
form triangular array and are Bernoulli variables. For some results and discussion; see [40], [8], [1],
[4]. We formulate one general result from [1].

Let Xi ∼ Be(pi), (i = 1, . . . , n) be a sequence of Bernoulli random variables and S =
∑n
i=1Xi.

Assume that the random variables Xi are dependent only in a certain neighborhood de�ned by

Ni := {Xj : j 6= i,Xj and Xi are dependent} (1.16)

so that Xi and Xj are nearly independent for j /∈ Ni. Let np̄ =
∑n
i=1, and let Pois(np̄) denote

Poisson distribution with the mean np̄. Let

b1 =
n∑
i=1

∑
j∈Ni∪{i}

pipj ,

b2 =
n∑
i=1

∑
j∈Ni

E(XiXj),

b3 =
n∑
i=1

E|E(Xj − pj |Si)|,

Here Si = S −Xi. Then

‖L(S)− Pois(np̄)‖ 6 2
[

1− e−np̄

np̄
(b1 + b2) + b3

(
1 ∧ 1.4√

np̄

)]
. (1.17)

There is no general result for two-parametric (signed) compound Poisson approximations to the
sums of dependent indicators. There are many studies of the approximation to the Markov binomial
distribution, see [14], [15], [48] and the references therein. Note that Markov binomial distribution
is a sum of not m-dependent random variables and, in this thesis, is not considered.

The best investigated case of compound Poisson approximations for m-dependent random vari-
ables is k-runs statistic. The run statistic was introduced in [30]. It plays important role in reliability
theory. The negative binomial approximation to k-runs distribution is investigated in [47]; see also
[12], [21]. Translated Poisson approximation to 2-runs is used in [36]. Compound Poisson approx-
imation to 2-runs is applied in [6]. Two-runs statistic has the arguably the simplest dependence
structure and is also thoroughly investigated in this thesis. Therefore, we formulate relevant results.

Let ξj ∼ Be(pi), j = 0, 1, 2, . . . , n, ηj = ξjξj−1, S = η1 + η2 + · · ·+ ηn. It is obvious, that ηj are
1-dependent random variables. To take care of the edge e�ect it is also assumed that ξ1 depends on
ξ1 (that is, ξn is treated as ξ0). Let

G̃2 = exp{bU + aU2/2}, b =
n∑
i=1

pi−1pi, (1.18)

a =
n∑
i=1

pi−1pi
[
(1− pi−1)pi−2 − (1− pi)pi+1 + pi−1pi

]
,

γ =
n∑
i=1

(1 + pi+1)2pi(1− pi)pi−1 − 6 max
1≤j≤n

(1− pj+1)2pj(1− pj)pj−1.

11



If |a|/b < 1
2 , then

‖L(S)− G̃2‖ 6
9.2

(b− 2|a|)√γ

×
n∑
i=1

[
3pi−2pi−1pipi+1 + p3

i−1p
3
i + 4p2

i−1p
2
i pi+1 + 4pi−2p

2
i−1p

2
i + 7pi−3p

2
i−2p

2
i−1pi

]
.

In particular, if pi = p < 1/4, n > 7, then

‖L(S)− G̃2‖ 6
27.6p+ 73.6(p2 + p3)

(1− 2p(2− 3p))
√

(n− 6)(1− p)3
, (1.19)

see Theorem 5.2 from [6]. For small p the order of accuracy, in (1.19), is Cpn−1/2. Thus, the
accuracy of approximation is always at least of the same order (and for p = o(1) of a better order)
than in the Berry-Esseen theorem and better than in Poisson approximation, see (1.20) below.
Consequently, we have analogue of (1.9). Note that, in the case pi = p,

G̃2 = exp
{
np2U +

1
2
np3(2− 3p)U2

}
.

Though parameters of G̃2 are chosen to match two factorial cumulants of S, for p 6 2/3, the
resulting approximation is compound Poisson distribution not a signed measure. Indeed, one can
check that

G̃2 = exp
{
np2((1− p)2 + 2p2)(I1 − I) +

1
2
np3(2− 3p)(I2 − I)

}
.

The accuracy of Poisson approximation to S can be obtained as a partial case of (1.17). Indeed,
we get

‖L(S)− Pois(np2)‖ 6 2(2 + 3p) min(np3, p). (1.20)

We see that Poisson approximation is applicable for small p only. Moreover, the accuracy does not
depend on the number of summands n.

Barbour and Xia result was generalized to k-runs in [48]. However, talking about Poisson type
approximation for m-dependent integer-valued random variables, we are unaware about

• any three - or more -parametric approximation,

• any lower bound result,

• any non-uniform estimate for discrete approximation,

• estimates in other than total variation metric,

• application of two-parametric approximations, when the summands are not Bernoulli variables.

• any approximation, when the symmetry of distribution is taken into account.

In this thesis, we partially solve all mentioned problems.

1.4 Actuality

Aims and problems

The main problems considered in this thesis are the following:

1. Construction of two and three-parametric Poisson type approximations to the distribution of
two-runs statistic.

2. Establishing of the lower bound estimates for two-runs statistic that are of the same order as
the upper bound estimates.

12



3. Calculation of asymptotically sharp constants.

4. Obtaining of non-uniform estimates.

5. Application of (signed) compound Poisson measures for approximation of sums of 1-dependent
integer-valued random variables under analogue of Franken's condition.

6. Application of Poisson-type approximation for sums of dependent random variables, when the
symmetry of approximated distribution is taken into account;

7. Investigation of possibility to extend results to the case of non-identically distributed random
variables.

Methods

The characteristic function method (Heinrich's method) is used in the proofs.

Novelty

All results of the thesis are new. Considering Poisson and (signed) compound Poisson approxima-
tions to the sum of 1-dependent random variables, we obtained �rst lower bound estimates, �rst
asymptotically sharp constants, �rst nonuniform results for discrete approximations, and �rst results
when symmetry of distribution is taken into account.

Statements presented for the defence

1. Approximation of two-runs statistic by Poisson and compound Poisson distributions has direct
similarities to approximation of the binomial distribution: two-parametric compound Poisson
approximation is sharper than second order Poisson approximation and can be improved by
asymptotic expansion. The accuracy of approximation is estimated in the total variation and
the local metrics. For a special case, asymptotically sharp constants are calculated.

2. Lower bound estimates obtained for Kolmogorov metric demonstrates that a) upper bound
estimates are of the right order, b) the same order of accuracy can be achieved for the total
variation and Kolmogorov norms.

3. Integer random variables, satisfying analogue of Franken's condition can be used for transition
from m-dependent to 1-dependent random variables. Signed compound Poisson approxima-
tions are of the same order of accuracy as known results for the sums of similar independent
random variables.

4. When random variables are symmetric, the accuracy of compound Poisson approximation is
much better than in nonsymmetric case.

5. The sum of 1-dependent non-identically distributed Bernoulli variables ia a direct general-
ization of the Poisson binomial distribution. The accuracy of its approximation by the two-
parametric Poisson-type measure is similar to the one, when all summands are independent.
This can be said about the local, total variation and Wasserstein norms.

Approbation

Several presentations at conferences were given on the topic of this thesis:

1. V. �ekanavi£ius, J. Petrauskien
e, On lower bounds for Poisson apporoximation to Two-runs
statistic. LI Conference of the Lithuanian Mathematical Society held at Institute of Mathe-
matics and Informatic on 17-18 June 2010 in �iauliai, Lithuania.
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2. V. �ekanavi£ius, J. Petrauskien
e, Poisson-type approximation for sums of 1-dependent indica-
tors. L Conference of the Lithuanian Mathematical Society held at Institute of Mathematics
and Informatic on 18-19 June 2009 in Vilnius, Lithuania.

3. V. �ekanavi£ius, J. Kelmelyt
e, Poisson-type approximation for sums of 1-dependent indicators.
XLIX Conference of the Lithuanian Mathematical Society held at Vytautas Magnus University
on 25-26 2008 June in Kaunas, Lithuania.

4. V. �ekanavi£ius, J. Kelmelyt
e, Poisson-type approximation for sums of 1-dependent indicators.
Conference "Number theory and probability theory" held on 2007 September in Druskininkai,
Lithuania.
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e and V. �ekanavi£ius, Poisson-type approximation for sums of 1-dependent indi-
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e and V. �ekanavi£ius, Poisson-type approximation for sums of 1-dependent
indicators, Lith. Math. J. 50, (spec. nr.), 431�436, 2009.

3. J. Petrauskien
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1.5 Thesis structure

All results are divided into four parts. The �rst (and largest) part is devoted to 2-runs, when pi = p.
We generalize (1.19) in two directions: by estimating the second order asymptotic expansion and
asymptotic expansion in the exponent. Moreover, lower bound estimates are established, proving
the optimality of upper bound estimates. Since, the method of proof does not allow to get small
constants, in certain cases, we calculate asymptotically sharp constants.

In the second part, we consider sums of 1-dependent random variables, concentrated on non-
negative integers and satisfying analogue of Franken's condition. This case is more general than
approximation of 2-runs statistic, since the case of independent random variables is also included.
All result of this part are comparable to the known results for independent summands.

In the third part, we consider Poisson type approximations for sums of 1-dependent symmetric
three-point distributions. Our goal is to prove analogue of (1.10). As already mentioned in above, we
are unaware about any Poisson-type approximation result for dependent random variables, when
symmetry of the distribution is taken into account. We know about numerous Poisson-type ap-
proximations that are obtained via the Stein method. However, the Stein method is applicable to
non-negative random variables only. Thus, it can not be applied in our case.

In the last part, we consider 1-dependent non-identically distributed Bernoulli random variables.
It is shown, that even for this simple generalization of the Poisson binomial model, very elaborative
calculations are needed. However, we succeed to obtain partial generalization of (1.8).

The rest of thesis is devoted to proofs. For the proofs, we use Heinrich's method, which is a
version of the characteristic function method, see [25].
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Chapter 2

Results

2.1 Compound Poisson approximations for 2-runs statistic

In this section, we generalize and extend known results for 2-runs. Let ξj , j = 0, 1, 2, . . . , n be
independent identically distributed Bernoulli variables, P (ξ1 = 1) = p, P (ξ1 = 0) = 1 − p. Let
ηj = ξjξj−1, S = η1 + η2 + · · · + ηn. It is obvious, that ηj are 1-dependent random variables. We
recall that L(S) denotes the distribution of S; C1, C2, . . . are positive absolute constants, Ia denotes
the distribution concentrated at real a, set I = I0. To make expressions shorter we use notation
U = I1 − I. All products of measures are understood in convolution sense.

In this section we use the following approximating distributions and measures:

G1 = Pois(γ1) = exp{γ1U}, G2 := exp{γ1U + γ2U
2}, G3 := exp{γ1U + γ2U

2 + γ3U
3}.

Here

γ1 = np2, γ2 =
np3(2− 3p)− 2p3(1− p)

2
, γ3 =

np4(3− 12p+ 10p2)− 6p4(1− p)(1− 2p)
3

.

Note that G2 slightly di�ers from G̃2 used in (1.19). We allow for the edge e�ect. Indeed, all ηj
(j = 2, 3, . . . , n− 1) depend on two random variables (ηj−1 and ηj+1). On the other hand, each of
variables η1 and ηn depends on one neighboring random variable only. In (1.19), ξ0 is treated as
ξn. Consequently, η1 is treated as dependent on ηn. We do not assume this simpli�cation. Note
that the dependence of variables changes the main probabilistic characteristics of S. For example,
though we investigate sum of Bernoulli variables, we have ES < VarS.

We begin with a demonstration that one can not expect much of an improvement if Poisson
approximation is replaced by a standard second order asymptotic expansion.

Theorem 2.1.1 Let p 6 1/5, n > 3. Then

‖L(S)−G1(I + γ2U
2)‖ 6 C1 min(np4, p2), (2.1)

‖L(S)−G1(I + γ2U
2)‖∞ 6 C2 min

(
np4,

p√
n

)
. (2.2)

It is easy to check, that Theorem 2.1.1 is a direct analogous of (1.7) reformulated for 2-runs.
Comparing (2.1) with (1.20) we see that both estimates are trivial, if p = O(1). The situation
is di�erent for G2. For the completeness of results we formulate an analogue of (1.19) and add the
local estimate.

Theorem 2.1.2 Let p 6 1/5, n > 3. Then

‖L(S)−G2‖ 6 C3 min
(
np4,

p√
n

)
, (2.3)

‖L(S)−G2‖∞ 6 C4 min
(
np4,

1
n

)
.
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As expected, G2 approximates L(S) with the same order of accuracy as G̃2. Since, for p = Const,
the accuracy in (2.3) is of order O(n−1/2), it can be treated as discrete version of the normal
approximation.

Unlike the Stein method, which was used for (1.19), we apply the characteristic function method
(Heinrich's method); see [25], [26]. As a consequence, we do not get reasonably small constants.
Asymptotically sharp constants give an impression of their magnitude. For the completeness of the
results we also give asymptotically sharp constants for Poisson approximation. Let

C̃1 =
4√
2πe

= 0, 967883, C̃2 =
1√
2π

= 0, 398942, C̃3 =

√
2
π

(1 + 4e−3/2) = 1, 51,

C̃4 =

√
3
π

exp
{√3

2
− 3

2

}√
3−
√

6 = 0, 550588.

Theorem 2.1.3 Let p 6 1/5, np2 > 1. Then∣∣∣‖L(S)−G1‖ − C̃1p
∣∣∣ 6 C

(
p2 +

1√
n

)
,∣∣∣‖L(S)−G1‖∞ −

C̃2√
n

∣∣∣ 6 C

(
p√
n

+
1
np

)
,∣∣∣‖L(S)−G2‖ − C̃3

p√
n

∣∣∣ 6 C

(
p2

√
n

+
1
n

)
, (2.4)∣∣∣‖L(S)−G2‖∞ −

C̃4

n

∣∣∣ 6 C

(
p

n
+

1

n
√
np2

)
.

Corollary 2.1.1 Let p→ 0, np2 →∞. Then

‖L(S)−G1‖ ∼ C̃1p, ‖L(S)−G1‖∞ ∼
C̃2√
n
.

‖L(S)−G2‖ ∼
C̃3p√
n
, ‖L(S)−G2‖∞ ∼

C̃4

n
.

The accuracy of approximation can be improved by asymptotic expansions. We can further
develop the idea of exponential expansion.

Theorem 2.1.4 Let p 6 1/5, n > 3. Then

‖L(S)−G3‖ 6 C5 min
(
np5,

p

n

)
, (2.5)

‖L(S)−G3‖∞ 6 C6 min
(
np5,

1
n
√
n

)
. (2.6)

It can be checked that G3 is a compound Poisson distribution. Therefore, it can be viewed
not as asymptotic expansion, but rather as more sharp probabilistic approximation. However, it
is di�cult to calculate probabilities of compound Poisson measures with complicated compounding
distributions. Therefore, we formulate a second order asymptotic expansion to G2, which has a
more common form.

Theorem 2.1.5 Let p 6 1/5, n > 3. Then

‖L(S)−G2(I + γ3U
3)‖ 6 C7 min

(
np5,

p

n

)
, (2.7)

‖L(S)−G2(I + γ3U
3)‖∞ 6 C8 min

(
np5,

1
n
√
n

)
. (2.8)
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If p = Const, then the accuracy in (2.7) is of order O(n−1), the same order as the one expected
from the appropriate Edgeworth expansion. However, there is one very important di�erence. As
a rule, Edgeworth expansions for lattice distributions incorporate one additional term, which com-
pensates the di�erences of supports. No such term is needed in (2.7), since both distributions are
concentrated on integers.

As far as we know, no lower bound estimates were proved for Poisson-type approximations for
m-dependent random variables. We obtain lower bound estimates, for Poisson approximation, a
second order asymptotic expansion and two-parametric compound Poisson approximation. The
estimates are obtained for the uniform and local metrics.

Theorem 2.1.6 Let p 6 1/5, n > 3. Then

|L(S)−G1| > C9 min(np3, p), (2.9)

‖L(S)−G1‖∞ > C10 min
(
np3,

1√
n

)
. (2.10)

Thus, we see that (1.20) is of the correct order.

Theorem 2.1.7 Let p 6 1/5, n > 3. Then

|L(S)−G1(I + γ2U
2)| > C11 min(np4, p2), (2.11)

‖L(S)−G1(I + γ2U
2)‖∞ > C12 min

(
np4,

p√
n

)
. (2.12)

Theorem 2.1.8 Let p 6 1/5, n > 3. Then

|L(S)−G2| > C13 min
(
np4,

p√
n

)
, (2.13)

‖L(S)−G2‖∞ > C14 min
(
np4,

1
n

)
. (2.14)

Since |M | 6 ‖M‖, we see, that, in general, upper bound estimates are of the right order.
Moreover, the order of the accuracy of approximation can not be improved if the weaker uniform
Kolmogorov metric is used instead of the total variation norm. We also draw conclusion that the
accuracy of approximation essentially depends on the chosen form of expansion. Expansion in the
exponent is signi�cantly more accurate.

We end this section by formulating non-uniform estimates.

Theorem 2.1.9 Let p 6 1/5, np2 > 1. Then, for m = 0, 1, 2, . . . ,∣∣∣(L(S)−G1){[0,m)}
∣∣∣(1 +

|m− np2|√
np

)
6 C9p, (2.15)∣∣∣(L(S)−G2){[0,m)}

∣∣∣(1 +
(m− np2)2

np2

)
6 C10

p√
n
, (2.16)∣∣∣(L(S)−G3){[0,m)}

∣∣∣(1 +
(m− np2)2

np2

)
6 C11

p

n
. (2.17)

We see that (2.15)�(2.17) give estimates comparable to the total variation estimates in (1.20)�(2.5).
Of course, when m is far from the mean, one can not expect our result to be very accurate. Then
some large deviation result is needed.

Summing up nonuniform estimates leads us to the following corollary.

Corollary 2.1.2 If p 6 1/5 and np2 > 1, then

‖L(S)−G2‖W 6 Cp2,

‖L(S)−G3‖W 6 C
p2

√
n
.

As expected the order of accuracy is worse than in total variation.
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2.2 Compound Poisson approximations for sums of 1-dependent

random variables under analogue of Franken's condition

When we deal with 2-runs statistic, the corresponding random variables ηj have very explicitly
de�ned 1-dependence.In this section, we consider sums of more general 1-dependent random vari-
ables, concentrated on nonnegative integers. This case of integer-valued random variables, which
satisfy Franken's condition, is more general than 2-runs statistic. For example, all results hold also
for sums of independent random variables. On the other hand, results are not so explicit. When
proving results of this Section we seek to get such results, that, one one hand, for 2-runs statistic are
comparable to the results from previous section and, on the other hand, for independent summands
are comparable to known results, such as (1.12) and (1.14).

For the sake of convenience we repeat the main notation. Let X be random variable concentrated
on non-negative integers. We then denote its kth factorial moment by

νk = EX(X − 1) · · · (X − k + 1).

Let X1, X2, . . . , Xn be identically distributed 1-dependent random variables concentrated on non-
negative integers. Let, for m = 1, 2, . . . ; ij = 1, 2, . . . ; j = 1, . . . ,m,

a(i1, i2, . . . , im) =
EX1(X1 − 1) · · · (X1 − i1 + 1) · · ·Xm(Xm − 1) · · · (Xm − im + 1)

i1!i2! · · · im!
.

For formulation of our results we need the following notation. Let

Γ1 = nν1, Γ2 =
n(ν2 − ν2

1)
2

+ (n− 1)(a(1, 1)− ν2
1),

Γ3 = n

(
ν3

6
− ν1ν2

2
+
ν3

1

3

)
+ (n− 1)

(
a(1, 2) + a(2, 1)− ν1ν2 + 2ν1(ν2

1 − a(1, 1))
)

+(n− 2)(a(1, 1, 1)− 2ν1a(1, 1) + ν3
1),

r1 = ν3 + ν1ν2 + ν3
1 + a(1, 2) + a(2, 1) + ν1a(1, 1) + a(1, 1, 1), (2.18)

r = a(3, 1) + a(2, 2) + a(1, 3) + a(1, 1, 1, 1) + a2(1, 1) + a(2, 1, 1) + a(1, 2, 1)
+a(1, 1, 2) + ν1a(2, 1) + ν1a(1, 2) + ν1a(1, 1, 1) + ν4 + ν1ν3 + ν2

2 + ν4
1 . (2.19)

The distribution of X1 +X2 + · · ·+Xn we denote by Fn.
Recalling the de�nition of factorial moments, we see that

a(1) = ν1, a(2) =
ν2

2
, a(3) =

ν3

3!
, a(1, 1) = EX1X2.

Further on we use notation a(i, j) for mixed moments only, since then, it is easier to compare our
results with (1.14).

We assume that, for n→∞,

ν1 = o(1), ν2 = o(ν1), a(1, 1) = o(ν1), |X1| 6 C15, nν1 →∞. (2.20)

Further on we assume C15 > 1. It is easy to check that (2.20) is stronger than Franken's condition
(1.11). On the other hand, there are many variables which satisfy condition (2.20). As can be
checked, 2-runs statistic satis�es (2.20) if p→ 0. However, we think that investigation of 1-dependent
random variables under (2.20) is more natural in the following context. Let us consider the sum of
m-dependent indicator variables. Rede�ning partial sums consisting of m subsequent variables as
new random variables we switch from m-dependent case to 1-dependent case. The new variables
now are not the indicator variables. However, one can expect that under quite mild assumptions on
the initial variables the analogue of Franken's condition will hold.

For example, let us consider 3-runs, that is ξ1ξ2ξ3 + ξ2ξ3ξ4 + ξ3ξ4ξ5 + · · · , where ξj are i.i.d.
Bernoulli variables, P (ξ1 = 1) = p = 1− P (ξ1 = 0). Let η̃1 = ξ1ξ2ξ3 + ξ2ξ3ξ4, η̃2 = ξ3ξ4ξ5 + ξ4ξ5ξ6,
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etc. It is easy to check that η̃1, η̃2, η̃3, . . . form the series of 1-dependent random variables satisfying
(2.20), provided that p→ 0.

It also should be mentioned, that, in principle, (2.20) can be replaced by weaker condition:
ν2 < C̃ν1, |a(1, 1)| 6 C̃ν1, where C̃ is very small absolute constant. However, the proofs then
become extremely long.

Distributions satisfying (2.20) have dominating probability mass at zero. This condition is
natural for the so-called aggregate claim distribution in the individual model. More precisely, if we
assume that Xi = ξ̄iη̄i where ξ̄i and η̄i are independent, ξ̄i is Bernoulli random variable and η̄i is a
positive random variable concentrated on integers, then one can give the following interpretation:
ξ̄i re�ects possibility of occurrence of claim with the small probability and η̄i has the distribution
of the claim amount. Then, though η̄i can have large factorial moments, the factorial moments of
Xi are small.

Let us de�ne measures for approximations of Fn:

D1 = exp{Γ1U}, D2 = exp{Γ1U + Γ2U
2}, D3 = exp{Γ1U + Γ2U

2 + Γ3U
3}.

Note that, in general, we deal with signed measures, since Γ2, Γ3 can be negative. For the com-
pleteness of results we begin from the Poisson approximation.

Theorem 2.2.1 Let assumptions (2.20) be satis�ed. Then

‖Fn −D1‖ = O

(
ν2 + a(1, 1) + ν2

1

ν1

)
, (2.21)

‖Fn −D1‖∞ = O

(
ν2 + a(1, 1) + ν2

1

ν1
√
nν1

)
. (2.22)

In (2.21) the accuracy is no better than O(ν1). Though we know that due to assumption (2.20)
ν1 = o(1), its convergence to zero can be very slow. The next theorem shows that situation can not
be much improved by the standard Poisson asymptotic expansion.

Theorem 2.2.2 Let assumptions (2.20) be satis�ed. Then

‖Fn −D1(I + Γ2U
2)‖ = O

(
(ν2 + a(1, 1) + ν2

1)2

ν2
1

+
r1

ν1
√
nν1

)
, (2.23)

‖Fn −D1(I + Γ2U
2)‖∞ = O

(
(ν2 + a(1, 1) + ν2

1)2

ν2
1

√
nν1

+
r1

nν2
1

)
. (2.24)

We see that the second-order Poisson approximation improved the accuracy of approximation. How-
ever, it is no better than O(ν2

1), which can mean a very poor accuracy. Let us check how approxi-
mation improves when the signed compound Poisson approximations are applied.

Theorem 2.2.3 Let assumptions (2.20) be satis�ed. Then

‖Fn −D2‖ = O

(
r1

ν1
√
nν1

)
, (2.25)

‖Fn −D2‖∞ = O

(
r1

nν2
1

)
. (2.26)

The accuracy in (2.25) is at least of the order O((nν1)−1/2). Moreover, if, in addition, we assume
that all Xi are independent, then the order of accuracy coincides with the right hand-side of (1.14).
It is natural to expect that asymptotic expansion to D2 will improve the accuracy even more.

Theorem 2.2.4 Let assumptions (2.20) be satis�ed. Then

‖Fn −D3‖ = O

(
r

nν2
1

)
, (2.27)

‖Fn −D3‖∞ = O

(
r

nν2
1

√
nν1

)
. (2.28)
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In Theorem 2.2.4, we used longer expansion in the exponent. One can also apply an expansion
of a more standard form.

Theorem 2.2.5 Let assumptions (2.20) be satis�ed. Then

‖Fn −D2(I + Γ3U
3)‖ = O

(
r

nν2
1

+
r2
1

nν3
1

)
, (2.29)

‖Fn −D2(I + Γ3U
3)‖∞ = O

(
r

nν2
1

√
nν1

+
r2
1

nν3
1

√
nν1

)
. (2.30)

From the point of practical calculations, D2(I+Γ3U
3) is simpler than D3, because convolution with

U3 just means the third backward di�erence for the 'probabilities' of D2.
It was mentioned in above, that if p = o(1) and np2 → ∞, then 2-runs statistic considered in

the �rst part of this paper satis�es assumptions (2.20). For 2-runs statistic ν1 = p2, a(1, 1) = p3,
a(1, 1, 1) = p4, a(1, 1, 1, 1) = p5 and all other quantities (ν2, ν3, a(2, 1) . . . ) are equal to zero. There-
fore, it is not di�cult to check that (2.21) � (2.30) have the same order of accuracy as corresponding
estimates from the �rst part of this paper with absolute constants replaced by the symbol O(·).
If we consider the case of independent summands, then (2.21) and (2.25) have the same order of
accuracy as (1.12) and (1.14), respectively.

2.3 Poisson type approximations for sums of 1-dependent sym-

metric three point distributions

In this section, we prove one analogue of (1.10). As far as we know symmetry of distribution so far
was not taken into account, when compound Poisson approximations were used for sums of weakly
dependent random variables.

Let X̂j , j = 1, 2, . . . , n be a triangular array of 1-dependent identically distributed three-point
random variables, P (X̂j = 1) = p1, P (X̂j = −1) = p−1, P (X̂j = 0) = 1− p1 − p−1. We denote the
distribution and characteristic function of Sn = X̂1 + X̂2 + · · ·+ X̂n by Pn and P̂n(t), respectively.
Let z = eit − 1, z−1 = z̄ = e−it − 1, p̄ = p−1 + p1,

h(j1, j2) = P (X̂1 = j1, X̂2 = j2)− P (X̂1 = j1)P (X̂2 = j2),
h(j1, j2, j3) = P (X̂1 = j1, X̂2 = j2, X̂3 = j3)− P (X̂1 = j1)P (X̂2 = j2)P (X̂3 = j3),

bj = E(eitX̂1 − 1) · · · (eitX̂j − 1),

Hj = Ê(eitX̂1 − 1) · · · (eitX̂j − 1) := bj −
j−1∑
k=1

Hkbj−k, H1 = p1x+ p−1x̄,

K1 = |h(−1,−1)− h(−1, 1)− h(1,−1) + h(1, 1)|+ p̄|p1 − p−1|,
K2 = |h(−1, 1)− 2h(1, 1) + h(1,−1)|+

∑
j,k∈{−1,1}

|h(j, k,−1)− h(j, k, 1)|,

K3 =
∑

j,k∈{−1,1}

|h(j, k)|+ p̄2.

Our goal is to investigate the closeness of Pn to its accompanying compound Poisson law. More
precisely, let Bn be a compound Poisson distribution with the following characteristic function:

B̂n(t) = exp{nH1} = exp{np1z + np−1z̄}.

The closeness is estimated in the uniform Kolmogorov and local metrics.

Theorem 2.3.1 Let ∑
j,k∈{−1,1}

|h(j, k)|/p̄+ 90
√
p̄ 6 1/3. (2.31)
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Then, for all n = 1, 2, . . . ,

sup
x
|Pn{(−∞, x]} −Bn{(−∞, x]}| 6 C16nK1 min

(
1,

1
np̄

)
+

+C17nK2 min
(

1,
1

np̄
√
np̄

)
+ C18nK3 min

(
1,

1
(np̄)2

)
(2.32)

and

sup
x
|Pn{x} −Bn{x}| 6 C19nK1 min

(
1,

1
np̄
√
np̄

)
+

+C20nK2 min
(

1,
1

(np̄)2

)
+ C21nK3 min

(
1,

1
(np̄)2

√
np̄

)
. (2.33)

Condition (2.31) is a technical one and quite probably can be improved. It is only marginally better
than p = o(1), a(j, k) = o(p). Formally, it allows for p to be a (very) small absolute constant.
If X̂1, X̂2, . . . , X̂n are symmetric independent random variables, then the right-hand-side in (2.32)
becomes C22n

−1, which is consistent with (1.10). It is not di�cult to construct an example of
dependent array, which satis�es (2.31). Let ξ1, ξ2, . . . be symmetric i.i.d. r.v., having distribution
P (ξ1 = 1) = P (ξ1 = −1) = α, P (ξ1 = 0) = 1− 2α. Let X1 = ξ1ξ2, X2 = ξ2ξ3, etc. If α = o(1), then
(2.31) holds and the accuracy of approximation in (2.32) is O(nα3 ∧ (nα)−1).

2.4 Poisson type approximations for sums of 1-dependent non-

identically distributed Bernoulli variables

In this section, we obtain some generalization of (1.8). Let X̃j , j = 1, 2, . . . , n be a sequence of
1-dependent not identically distributed Bernoulli variables, P (X̃j = 1) = pj = 1− P (X̃j = 0). We
denote the distribution and characteristic function of S̃ = X̃j + X̃j+1 + · · ·+ X̃j+n−1 by L(S̃) and
M̂n(t) respectively. Let λi =

∑n
k=1 p

i
k, (i = 1, 2), for the sake of brevity, denote by λ = λ1.

Further we need the following notation. Let

p̃i,j = P (X̃j = 1, X̃j+1 = 1, . . . , X̃j+i−1 = 1),

and let

ai,j = ÊX̃jX̃j+1 . . . X̃j+i−1 =

=
i∑
l=1

(−1)l−1
∑

i1+···+il=i
im>1

EX̃j . . . X̃j+i1−1EX̃j+i1 . . . X̃j+i1+i2−1 . . . EX̃j+i1+···+il−1 . . . X̃j+i−1.

Note that due to 1-dependence and Holder's inequality

p̃i,j =


EX̃1 . . . X̃j 6

√
EX̃2

1 X̃
2
3 . . . X̃

2
j+i−2EX̃2

2 . . . X̃
2
j+i−1

=
√
pjpj+1 . . . pj+i−1 if j + i− 1 - even number,

EX̃1 . . . X̃j 6
√

EX̃2
1 X̃

2
3 . . . X̃

2
j+i−1EX̃2

2 . . . X̃
2
j+i−2

=
√
pjpj+1 . . . pj+i−1 if j + i− 1 - odd number.

(2.34)

Consequently,
ai,j 6 C

√
pjpj+1 . . . pj+i−1. (2.35)

If r.v. are independent then ai,j = 0. For any real t and k > j we have

ai,j(eit − 1)i = Ê(eitX̃j−i+1 − 1)(eitX̃j−i+2 − 1) . . . (eitX̃j − 1).
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For approximation of L(S̃) we use signed compound Poisson measures Mi, i = 1, 2, 3:

M1 = eλU , M2 = exp
{
λU +

( n∑
k=2

a2,k −
1
2
λ2

)
U2
}
,

M3 = exp
{
λU +

( n∑
k=2

a2,k −
1
2
λ2

)
U2

+
( n∑
k=3

a3,k −
n∑
k=2

a2,k(pk + pk−1) +
1
3
λ3

)
U3
}
.

Moreover, let

M11 =
( n∑
k=2

a2,k −
1
2
λ2

)
,

M21 =
n∑
k=3

a3,k −
n∑
k=2

a2,k(pk + pk−1) +
1
3
λ3.

The results of this section will be obtained under the following assumption{
max1≤j≤n pj = o(1),∑n
j=1 a2,j = o(λ1).

(2.36)

In principle, the �rst condition in (2.36) can be replaced by the weaker one, requiring max pj to be
smaller than some absolute constant. We assume that pj is small and the dependence of variables
is weak. Unfortunately, due to the estimates used in the proofs, the constant is very small.

We can formulate our results.

Theorem 2.4.1 Let (2.36) hold. Then, for all n = 1, 2, . . . ,

‖L(S̃)−M1‖∞ = O

{ n∑
k=1

(
p2
k + |2a2,k|

)
min

(
1,

1
λ3/2

)
+

n∑
k=1

(
|a3,k|

)
min

(
1,

1
λ2

)}
, (2.37)

‖L(S̃)−M1‖ = O

{ n∑
k=1

(
p2
k + |2a2,k|

)
min

(
1,

1
λ

)
+

n∑
k=1

(
|a3,k|

)
min

(
1,

1
λ3/2

)}
, (2.38)

‖L(S̃)−M1‖W = O

{ n∑
k=1

(
p2
k + |2a2,k|

)
min

(
1,

1
λ1/2

)
+

n∑
k=1

(
|a3,k|

)
min

(
1,

1
λ

)}
. (2.39)
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Theorem 2.4.2 Let (2.36) hold. Then, for all n = 1, 2, . . . ,

‖L(S̃)−M2‖∞ = O

{ n∑
k=1

(
p3
k + |a3,k|+ |a2,k|pk

)
min

(
1,

1
λ2

)
+

n∑
k=1

(
|a4,k|+ a2

2,k + |a3,k|pk
)

min
(

1,
1

λ5/2

)
+

n∑
k=1

(
|a5,k|+ |a2,ka3,k|

)
min

(
1,

1
λ3

)}
, (2.40)

‖L(S̃)−M2‖ = O

{ n∑
k=1

(
p3
k + |a3,k|+ |a2,k|pk

)
min

(
1,

1
λ3/2

)
+

n∑
k=1

(
|a4,k|+ a2

2,k + |a3,k|pk
)

min
(

1,
1
λ2

)
+

n∑
k=1

(
|a5,k|+ |a2,ka3,k|

)
min

(
1,

1
λ5/2

)}
, (2.41)

‖L(S̃)−M2‖W = O

{ n∑
k=1

(
p3
k + |a3,k|+ |a2,k|pk

)
min

(
1,

1
λ

)
+

n∑
k=1

(
|a4,k|+ a2

2,k + |a3,k|pk
)

min
(

1,
1

λ3/2

)
+

n∑
k=1

(
|a5,k|+ |a2,ka3,k|

)
min

(
1,

1
λ2

)}
. (2.42)

Theorem 2.4.3 Let (2.36) hold. Then, for all n = 1, 2, . . . ,

‖L(S̃)−M3‖∞ = O

{
R4 min

(
1,

1

λ
5/2
1

)
+R5 min

(
1,

1
λ3

)
+ R6 min

(
1,

1
λ7/2

)
+R7 min

(
1,

1
λ4

)}
, (2.43)

‖L(S̃)−M3‖ = O

{
R4 min

(
1,

1
λ2

)
+R5 min

(
1,

1
λ5/2

)
+ R6 min

(
1,

1
λ3

)
+R7 min

(
1,

1
λ7/2

)}
, (2.44)

‖L(S̃)−M3‖W = O

{
R4 min

(
1,

1
λ3/2

)
+R5 min

(
1,

1
λ2

)
+ R6 min

(
1,

1
λ5/2

)
+R7 min

(
1,

1
λ3

)}
, (2.45)
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where

R4 =
n∑
k=1

(
p4
k + |a2,k|(p2

k + |a2,k|) + |a3,k|pk + |a4,k|
)
,

R5 =
n∑
k=1

(
pka

2
2,k + |a2,ka3,k|+ |a3,k|p2

k + |a4,k|pk + |a5,k|
)
,

R6 =
n∑
k=1

(
|a2,ka3,k|pk + a2

3,k + |a2,ka4,k|+ |a2,k|3 + |a5,k|pk + |a6,k|
)
,

R7 =
n∑
k=1

(
a2

2,k|a3,k|+ |a3,ka4,k|+ |a2,ka5,k|+ |a7,k|
)
.

Theorem 2.4.4 Let (2.36) hold. Then, for all n = 1, 2, . . . ,

‖L(S̃)−M1(I +M11)‖ = O

{( n∑
k=1

(
p2
k + |2a2,k|

))2

min
(

1,
1
λ2

)}
. (2.46)

Theorem 2.4.5 Let (2.36) hold. Then, for all n = 1, 2, . . . ,

‖L(S̃)−M2(1 +M21)‖ = O

{( n∑
k=1

(
p3
k + |a3,k|+ |a2,k|pk

))2

min
(

1,
1
λ3

)}
. (2.47)

Examples
It is easy to check that if, in Theorem 2.4.2 and Theorem 2.4.3, X̃1, X̃2, . . . , X̃n are independent

r.v., then

1. Local estimates (2.37), (2.40) and (2.43) become:

‖L(S̃)−M1‖∞ = O

(
λ2 min

(
1,

1
λ3/2

))
,

‖L(S̃)−M2‖∞ = O

(
λ3 min

(
1,

1
λ2

))
,

‖L(S̃)−M3‖∞ = O

(
λ4 min

(
1,

1
λ5/2

))
.

2. Total variations (2.38), (2.41) and (2.44) becomes:

‖L(S̃)−M1‖ = O

(
λ2 min

(
1,

1
λ

))
,

‖L(S̃)−M2‖ = O

(
λ3 min

(
1,

1
λ3/2

))
,

‖L(S̃)−M3‖ = O

(
λ4 min

(
1,

1
λ2

))
,

which up to constant coincides with (1.8) and similar results for other metrics in [27].

3. Let us consider 2-runs as de�ned in the �rst section of this thesis. Then from (2.40) and (2.41)
we obtain

‖L(S̃)−M2‖∞ = O

(
1
n

)
and

‖L(S̃)−M2‖ = O

(
p√
n

)
.

Both estimates are of the right order, see Theorem 2.1.2. Note that, in this case, M2 = G2.
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Chapter 3

Proofs

3.1 General auxiliary results

Further on we denote by C positive absolute constants. The letter Θ stands for any �nite signed
measure on Z satisfying ‖Θ‖ 6 1. The values of C and Θ can vary from line to line, or even within
the same line. Sometimes to avoid possible ambiguity, the C are supplied with indices. Throughout
this paper, we set 00 = 1.

If ‖M − I‖ < 1, then we set the logarithm of measure M , to be

lnM =
∞∑
k=1

(−1)k+1

k
(M − I)k.

For the proof of theorems we need general auxiliary results.

Lemma 3.1.1 Let M be a �nite variation measure concentrated on integers. For all v ∈ R and
u > 0, we then have

‖M‖ 6
(
1 + uπ

)1/2( 1
2π

π∫
−π

|M̂(t)|2 +
1
u2
|
(
e−itvM̂(t)

)′|2dt)1/2

, (3.1)

and

‖M‖∞ 6
1

2π

∫ π

−π
|M̂(t)|dt, (3.2)

|M | 6 1
4

∫ π

−π

|M̂(t)|
|t|

dt. (3.3)

The estimate (3.1) is well-known; see, for example, [33]. The estimate (3.2) follows from the
formula of inversion, the estimate (3.3) is the well-known Tsaregradskii's inequality.

In the following four lemmas, C(k) denotes an absolute positive constant depending on k.

Lemma 3.1.2 Let M be concentrated on Z, α ∈ R, b > 1. Then,

|M | > C

∣∣∣∣ ∫ ∞
−∞

e−t
2/2M̂

( t
b

)
e−itαdt

∣∣∣∣, (3.4)

‖M‖∞ >
C

b

∣∣∣∣ ∫ ∞
−∞

e−t
2/2M̂

( t
b

)
e−itαdt

∣∣∣∣. (3.5)

The estimates (3.4) and (3.5) remain valid if e−t
2/2 is replaced by te−t

2/2.
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Lemma's proof can be found in [47].

Lemma 3.1.3 Let t ∈ (0,∞) and k = 0, 1, 2, . . . . We then have

‖U2etU‖ 6 3
te
, ‖UketU‖ 6

(2k
te

)k/2
, ‖UketU‖∞ 6

C(k)
t(k+1)/2

.

The �rst inequality was proven in [37]. The second bound follows from formula (3.8) in [19] and the
properties of the total variation norm. The third relation follows from the formula of inversion.

For our asymptotically sharp estimates we need the following lemma. Set

ϕk(x) =
1√
2π

dk

dxk
e−x

2/2, ‖ϕk‖1 =
∫

R
|ϕk(x)|dx, ‖ϕk‖∞ = sup

x∈R
|ϕk(x)| (k = 0, 1, . . . ).

Lemma 3.1.4 Let t > 0 and k = 0, 1, 2 . . . . Then∣∣∣‖UketU‖ − ‖ϕk‖1
tk/2

∣∣∣ 6 C(k)
t(k+1)/2

,∣∣∣‖UketU‖∞ −
‖ϕk‖∞
t(k+1)/2

∣∣∣ 6 C(k)
tk/2+1

.

The proof follows from a more general Proposition 4 in [39]. Note that ‖ϕ2‖1 = C̃1, ‖ϕ2‖∞ = C̃2,
‖ϕ3‖1 = C̃3, ‖ϕ3‖∞ = C̃4, see [17].

Lemma 3.1.5 Let λ > 0, k = 0, 1, 2, . . . . Then

| sin(t/2)|ke−λ sin2(t/2) 6
C(k)
λk/2

,∫ π

−π
| sin(t/2)|ke−λ sin2(t/2)dt 6

C(k)
max(1, λ(k+1)/2)

. (3.6)

The �rst estimate is trivial. For possible constants in the second estimate one can consult [27], p.47.

Lemma 3.1.6 If A,B are complex numbers and, for some V > 0,

|eA| 6 eV , |eB | 6 eV ,

Then
|eA − eB | 6 eV |A−B|.

Proof. Let Re(A−B) 6 0. Then

|eA − eB | 6 |eB(eA−B − 1)| 6 eV
∣∣∣ ∫ 2

0

(e(A−B)τ )′dτ
∣∣∣

6 eV |A−B|
∫ 1

0

|e(A−B)τ |dτ 6 eV |A−B|.

The proof for the case when Re(B −A) 6 0 is absolutely symmetric.

Let Z1, Z2, . . . be a sequence of arbitrary complex-valued random variables. Then ÊZ1 = EZ1

and, for a product of k > 2 random variables Z1Z2 · · ·Zk, the symbol ÊZ1Z2 · · ·Zk is de�ned
recursively by

ÊZ1Z2 · · ·Zk = EZ1Z2 · · ·Zk −
k−1∑
j=1

ÊZ1 · · ·ZjEZj+1 · · ·Zk. (3.7)

This symbol was introduced by V. Statulevi£ius [42]; see also, [25], and the references therein.
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Lemma 3.1.7 ([25]) Let Z1, . . . , ZN be a sequence of 1-dependent rv's. Then the product represen-
tation

EezSN = ϕ1(z)ϕ2(z) . . . ϕN (z)

holds for each z ∈ KN , where ϕ1(z) = EezZ1 and for k = 2, . . . , N

ϕk(z) =
EezSk

EezSk−1
= EezZk +

k−1∑
j=1

Ê(ezZj − 1)(ezZj+1 − 1) . . . (ezZk − 1)
ϕj(z)ϕj+1(z) . . . ϕk−1(z)

,

where
wN = max

16k6N
(E|ezZk − 1|2)1/2, KN = {z ∈ C1 : wN (z) 6 1/6}.

Furthermore, the following estimates are true for each z ∈ KN and k = 1.2. . . . , N :

|ϕk(z)− 1| ≤
(>)
|EezZk − 1| +

(−)

2(E|ezZk−1 − 1|2E|ezZk − 1|2)1/2

1− 4wn(z)

or
|ϕk(z)− 1| ≤

(>)
|EezZk − 1| +

(−)
6(wN (z))2.

Lemma 3.1.8 Let Z1, . . . , ZN be a sequence of 1-dependent rv's. Then the estimate

∣∣∣ ln EezSN −
N∑
k=1

E(ezZk − 1)−
N∑
k=2

Ê(ezZXk−1 − 1)(ezZk − 1)
∣∣∣

6 2wN (z)
( N∑
k=1

|EezZk − 1|+ 22
N∑
k=1

E|ezZk − 1|2
)

holds for each z ∈ KN

Lemma 3.1.9 ([25]) Let Z1, Z2, . . . Zk be 1-dependent random variables with
E|Zj |2 <∞, j = 1, . . . , k. Then

|ÊZ1Z2 . . . Zj | 6 2j−1

j∏
k=1

√
E|Zk|2.

Lemma 3.1.10 ([25]) Let Z1, Z2, . . . , Zn be a sequence of 1-dependent rv's with Mpn = E|Zk|p <
∞. If wn(it) 6 1/6 then ∣∣∣∣dpϕ̂kdtp

∣∣∣∣ 6 C(p)Mpn,

where C(p) is a constant only depending on p.

3.2 Auxiliary results for compound Poisson approximations

for runs statistic

We recall that ηj = ξj−1ξj , where all ξj are independent Bernoulli (indicator) variables, P (ξj =
1) = p = 1− P (ξ1), (j = 0, 1, 2, . . . ). Let Sn = η1 + · · ·+ ηn, ϕ1(t) = E exp{itη1} and

ϕk(t) =
E exp{itSk}

E exp{itSk−1}
(k = 2, 3, . . . , n).

For the sake of brevity further on we write ϕk instead of ϕk(t). We recall that z = eit − 1. All
derivatives are taken with respect to t.
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Lemma 3.2.1 Let 0 < p < 1, k = 1, 2, . . . . Then

Ê(exp{itη1} − 1)(exp{itη2} − 1) · · · (exp{itηk} − 1) = zkpk+1(1− p)k−1

Proof. The proof easily follows by induction from the de�nition (3.7).
Let k = 1, then

Ê(exp{itη1} − 1) = zp2.

Let k = 2, then
Ê(exp{itη1} − 1)(exp{itη2} − 1) = z2p3(1− p).

Say, that for k proof is standing. Let k = k + 1, then

Ê exp{itη1} − 1)(exp{itη2} − 1) · · · (exp{itηk + 1} − 1)
= E(exp{itη1} − 1)(exp{itη2} − 1) · · · (exp{itηk + 1} − 1)

−
k∑
j=1

Ê(exp{itη1} − 1) · · · (exp{itηj} − 1)E(exp{itηj+1} − 1) · · · (exp{itηk+1} − 1)

= zk+1pk+2 −
k∑
j=1

zjpj+1(1− p)j−1pk−j+2zk−j+1 = zk+1[pk+2 −
k∑
j=1

pk+3(1− p)j−1]

= zk+1pk+2[1− p
k∑
j=1

(1− p)j−1] = zk+1pk+2(1− p)k.

�

Lemma 3.2.2 Let 0 < p < 1, k = 1, 2, . . . , n. Then

E exp{itSn} =
n∏
k=1

ϕk (3.8)

and, for k = 2, 3, . . . , n,

ϕk = p2z +
k−1∑
j=1

zk−j+1pk−j+2(1− p)k−j

ϕjϕj+1 · · ·ϕk−1
. (3.9)

Proof. The proof follows from Lemma 3.1 in 3.1.7 and Lemma 3.2.1. Note that we use only the
�rst part of Lemma 3.1 and, as can be seen from its proof, the additional assumption E| exp{itXk}−
1|2)1/2 6 1/6 is not needed . �

Lemma 3.2.3 Let p 6 1/5. Then, for all k = 1, 2, . . . ,

|ϕk − 1| 6 16p2

5
, |ϕk − 1− p2z| 6 2|z|2p3(1− p), 1

|ϕk|
6

125
109

, (3.10)

|ϕ′k| 6 4p2, |ϕ′k − p2z′| 6 C|z|p3, |ϕ′′k | 6 10p2. (3.11)

Proof. Note that the last estimate in (3.10) follows from the �rst estimate. Indeed, we have

||ϕk| − 1| 6 |ϕk − 1| 6 16
5
p2 6

16
5
· 1

25
=

16
125

.

Therefore,

|ϕk| − 1 > − 16
125

, |ϕk| >
109
125

,
1
|ϕk|

6
125
109

.
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The �rst estimate of (3.10) is proved by induction. For k = 1 the proof follows easily from the
de�nition of ϕ1. Let us assume that it holds for ϕ1, . . . , ϕk−1. Taking into account trivial estimate
|z| 6 2 and (3.9), we then obtain

|ϕk − 1| 6 2p2 +
k−1∑
j=1

|z|k−j+1pk−j+2(1− p)k−j

|ϕj | · · · |ϕk−1|
6 2p2 +

k−1∑
j=1

2k−j+1pk−j+2(1− p)k−j
(

125
109

)k−j

6 2p2

{
1 +

∞∑
j=1

(
2p(1− p)125

109

)j}
6 2p2

∞∑
j=0

(
40
109

)j
6

16p2

5
.

For the proof of the second estimate in (3.10) we once more apply (3.9):

|ϕk − 1− p2z| 6
k−1∑
j=1

|z|k−j+1pk−j+2(1− p)k−j
(

125
109

)k−j

6 |z|2p3(1− p)125
109

∞∑
j=0

(
40
109

)j
6 2|z|2p3(1− p).

The estimate (3.11) is proved arguing similarly. First, we calculate derivative of (3.9), then prove
the �rst estimate by induction and, �nally, obtain the second estimate. Note that for the proof of
(3.11) one must apply (3.10). We prove the last estimate of (3.11). From Lemma 3.2.2 it follows
that

ϕ′′k = −eitp2 +
k−1∑
j=1

Ψ′′

ϕj · · ·ϕk−1
− 2

k−1∑
j=1

Ψ′

ϕj · · ·ϕk−1

k−1∑
i=j

ϕ′i
ϕi

+
k−1∑
j=1

Ψ
ϕj · · ·ϕk−1

( k−1∑
i=j

ϕ′i
ϕi

)2

−
k−1∑
j=1

Ψ
ϕj · · ·ϕk−1

k−1∑
i=j

[
ϕ′′i
ϕi
−
(
ϕi
ϕi

)2]
. (3.12)

Here
Ψ = zk−j+1pk−j+2(1− p)k−j .

Applying (3.10) and obvious estimate p(1− p) 6 4/25 we get

|ϕ′′k | 6 p2 + p2
k−1∑
j=1

(
40
109

)k−j[ (k − j + 1)(k − j)
2

+ (k − j + 1)
]

+
40
109

p2
k−1∑
j=1

(
40
109

)k−j
(k − j + 1)(k − j)

+2p2
k−1∑
j=1

(
40
109

)k−j[( 20
109

)2

(k − j)2 +
(

50
109

+
16 · 25
1092

)
(k − j)

]
6 10p2.

�

Lemma 3.2.4 Let p 6 1/5. For all t, k = 1, 2, 3, . . . , we then have

|ϕk| 6 1− 16
25
p2 sin2 t

2
6 exp

{
−16

25
p2 sin2 t

2

}
. (3.13)

Proof. It is easy to check, that

|1 + p2z|2 = (1− p2 + p2 cos t)2 + p4 sin2 t = 1− 4p2(1− p2) sin2(t/2).

Consequently, |1 + p2z| 6 1 − 2p2(1 − p2) sin2(t/2). Therefore, applying the second estimate from
(3.10), we obtain

|ϕk| 6 |1 + p2z|+ |ϕk − 1− pz2| 6 1− 2p2(1− p2 − 4p(1− p)) sin2 t

2
6 1− 16

25
p2 sin2 t

2
.

31



The second estimate in (3.13) trivially follows from the �rst one . �
In Lemmas 3.2.5 � 3.2.9, the values of θ = θ(p, t) can vary from line to line, but θ always satis�es

inequality |θ| 6 1.

Lemma 3.2.5 Let p 6 1/5, k = 3, 4, .... Then

ϕ1 = 1 + p2z,

ϕ2 = 1 + p2z + p3(1− p)z2 − p5(1− p)z3 + Cθp5|z|4,
ϕk = 1 + p2z + p3(1− p)z2 + p4(1− p)(1− 2p)z3 + Cθp5|z|4.

Proof. We give the proof for k = 3, 4, . . . only. Applying (3.9) we obtain

ϕk − 1 = p2z +
z2p3(1− p)

ϕk−1
+
z3p4(1− p)2

ϕk−2ϕk−1
+
k−3∑
j=1

zk−j+1pk−j+2(1− p)k−j

ϕj · · ·ϕk−1
. (3.14)

Applying the last estimate of (3.10) to the sum in (3.14) we get the following estimate

|z|4p5
k−3∑
j=1

(2p)k−3−j(1− p)k−j
(

125
109

)k−j
6 Cp5|z|4

k−3∑
j=1

(
40
109

)k−j−3

6 Cp5|z|4. (3.15)

Once more applying (3.10) we obtain

1
ϕk

=
1

1 + (ϕk − 1)
= 1− (ϕk − 1) + Cθ|ϕk − 1|2

∞∑
j=0

(
16p2

5

)j

= 1− pz + Cθ|ϕk − 1− pz2|+ Cθp4|z|4
∞∑
j=0

(
16
125

)j
= 1− p2z + Cθp3|z|2. (3.16)

The proof of Lemma now follows from (3.16) , (3.15) and (3.14) . �

Lemma 3.2.6 Let p 6 1/5, k = 3, 4, .... Then

ϕ′1 = p2z′,

ϕ′2 = p2z′ + p3(1− p)(z2)′ − p5(1− p)(z3)′ + Cθp5|z|3,
ϕ′k = p2z′ + p3(1− p)(z2)′ + p4(1− p)(1− 2p)(z3)′ + Cθp5|z|3.

Proof. For k = 1 and k = 2 the required estimates follow directly from the de�nition of ϕ1 and
(3.9). For k = 3, 4, . . . we calculate derivative of (3.14)

(ϕk − 1)′ = p2z′ +
(z3)′p4(1− p)2

ϕk−2ϕk−1
−
z3p4(1− p)2(ϕ′k−2ϕk−1 + ϕk−2ϕ

′
k−1)

(ϕk−2ϕk−1)2

+
(z2)′p3(1− p)

ϕk−1
−
z2p3(1− p)ϕ′k−1

ϕ2
k−1

+
( k−3∑
j=1

zk−j+1pk−j+2(1− p)k−j

ϕj · · ·ϕk−1

)′
.

We treat various summands di�erently. Applying Lemma 3.2.3 to the third summand we prove
that it is Cθp5|z|3. We use (3.16) for estimation of the second, the fourth and the �fth summands.
Moreover, from (3.11) it follows that ϕ′ = p2z′ +Cθp3|z|. We use this short expansion for the �fth
summand. It remains to estimate the last, sixth summand. Note that( k−3∑

j=1

zk−j+1pk−j+2(1− p)k−j

ϕj · · ·ϕk−1

)′
=

k−3∑
j=1

(k − j + 1)zk−jz′pk−j+2(1− p)k−j

ϕj · · ·ϕk−1

−
k−3∑
j−1

zk−j+1pk−j+2(1− p)k−j

ϕj · · ·ϕk−1

k−3∑
m=j

ϕ′m
ϕm

.
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Applying Lemma 3.2.3 we obtain that each sum is less than

Cp5|z|4
k−3∑
j=1

(k − j + 1)
(

40
109

)k−j−3

6 Cp5|z|4.

The last estimate completes Lemma's proof . �

Lemma 3.2.7 Let p 6 1/5, k = 3, 4, .... Then

ϕ′′1 = p2z′′,

ϕ′′2 = p2z′′ + p3(1− p)(z2)′′ − p5(1− p)(z3)′′ + Cθp5|z|2,
ϕ′′k = p2z′′ + p3(1− p)(z2)′′ + p4(1− p)(1− 2p)(z3)′′ + Cθp5|z|2.

Proof. We prove Lemma for k > 3 only. Applying (3.12) and estimating the last two sums just as
in the proof of Lemma 3.2.3 and applying estimate |Ψ| 6 p3(4/25)k−j−1 we prove that they are less
than Cp5|z|2. Similarly, taking into account Lemmas 3.2.3�3.2.6 we obtain

k−1∑
j=1

Ψ′

ϕj · · ·ϕk−1

k−1∑
i=j

ϕ′i
ϕi

=
k−1∑
j=k−2

+
k−3∑
j=1

=
k−1∑
j=k−2

+Cθp5|z|2 =
(z)′p3(1− p)ϕ′k−1

ϕ2
k−1

+ Cθp5|z|2

and
k−1∑
j=1

Ψ′′

ϕj · · ·ϕk−1
=
p3(1− p)(z2)′′

ϕk−1
+
p4(1− p)2(z3)′′

ϕk−2ϕk−1
+ Cθp5|z|2.

To complete the proof one should apply (3.10). �

Lemma 3.2.8 Let p 6 1/5, k = 3, 4, .... Then

lnϕ1 = p2z − p4

2
z2 +

p6

3
z3 + Cθp5|z|4,

lnϕ2 = p2z +
p3(2− 3p)

2
z2 +

p5(7p− 6)
3

z3 + Cθp5|z|4,

lnϕk = p2z − p3(2− 3p)
2

z2 +
p4(3− 12p+ 10p2)

3
z3 + Cθp5|z|4.

Proof. Note that due to (3.10) |ϕk − 1| 6 16p2/5 6 16/125. Therefore,

lnϕk =
∞∑
j=1

(−1)j+1(ϕk − 1)j

j
=

3∑
j=1

(−1)j+1(ϕk − 1)j

j
+ Cθ|ϕk − 1|4.

Now, it remains to apply Lemma 3.2.5 . �
The proof of the following Lemmas is almost identical to the proof of Lemma 3.2.8 and, therefore,

is omitted

Lemma 3.2.9 Let p 6 1/5, k = 3, 4, .... We then have

(lnϕ1)′ = p2z′ − p4

2
(z2)′ +

p6

3
(z3)′ + Cθp5|z|3,

(lnϕ2)′ = p2z′ +
p3(2− 3p)

2
(z2)′ +

p5(7p− 6)
3

(z3)′ + Cθp5|z|3,

(lnϕk)′ = p2z′ − p3(2− 3p)
2

(z2)′ +
p4(3− 12p+ 10p2)

3
(z3)′ + Cθp5|z|3.

33



Lemma 3.2.10 Let p 6 1/5, k = 3, 4, .... We then have

(lnϕ1)′′ = p2z′′ − p4

2
(z2)′′ +

p6

3
(z3)′′ + Cθp5|z|2,

(lnϕ2)′ = p2z′′ +
p3(2− 3p)

2
(z2)′′ +

p5(7p− 6)
3

(z3)′′ + Cθp5|z|2,

(lnϕk)′ = p2z′′ − p3(2− 3p)
2

(z2)′′ +
p4(3− 12p+ 10p2)

3
(z3)′′ + Cθp5|z|2.

Now, we investigate some properties of approximating measures.

Lemma 3.2.11 Let p 6 1/5. Then, for all t,

|Ĝ2(t)| 6 C exp
{
−6np2

5
sin2 t

2

}
, |Ĝ3(t)| 6 C exp

{
−np2 sin2 t

2

}
. (3.17)

Proof. It is easy to check that

|Ĝ2(t)| 6 C exp{np2Rez + |z|2np3(2− 3p)/2}.

Here Rez = −2 sin2(t/2) denotes the real part of z. Since |z|2 = 4 sin2(t/2) and p 6 1/5 the desired
result easily follows. The estimate for Ĝ3(t) is proved similarly applying the estimate |z|3 6 2|z|2 .
�

Lemma 3.2.12 Let M be �nite variation signed measure concentrated on integers, p 6 1/5, τ ∈
[0, 1], α ∈ [0, 1]. Then

‖M exp{np2U + αγ2U
2 + τγ3U

3}‖ 6 C‖M exp{0.4np2U}‖,
‖M exp{np2U + αγ2U

2 + τγ3U
3}‖∞ 6 C‖M exp{0.4np2U}‖∞.

Proof. For p 6 1/5 the following estimate holds

p
(2− 3p)

2
+ p3(3− 12p+ 10p2)

2
3
6

1
6
.

Therefore, taking into account that ‖I‖ = 1 and ‖U‖ 6 2, we obtain

np2U + αγ2U
2 + τγ3U

3

= np2U + np2U2

(
α
p(2− 3p)

2
I + τp2(3− 12p+ 10p2)

U

3

)
+ ΘC

= np2U +
np2

6
U2Θ + ΘC.

Consequently,

‖M exp{np2U + αγ2U
2 + τγ3U

3}‖ 6 C
∥∥∥M exp

{
np2U +

np2

6
U2Θ

}∥∥∥
6 C

∥∥∥M exp
{

0.4np2U
}∥∥∥∥∥∥ exp

{
0.6np2U +

np2

6
U2Θ

}∥∥∥.
To complete the proof one needs to show that the second norm is bounded by absolute constant.
This can be proved applying the de�nition of exponential measure and Lemma 3.1.3:∥∥∥ exp

{
0.6np2U +

np2

6
U2Θ

}∥∥∥ 6 1 +
∞∑
m=1

1
m!

∥∥∥np2

6
U2 exp

{0.6np2

m
U
}∥∥∥m

6 1 +
∞∑
m=1

em

mm
√

2πm

(
m

2e0.6

)m
6 C.
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We used the fact that the total variation norm of any distribution equals unity. Therefore, ‖ exp{0.6np2U}‖ =
1. Estimate for the local norm follows from

‖M exp{np2U + αγ2U
2 + τγ3U

3}‖∞

6 C
∥∥∥ exp

{
0.6np2U +

np2

6
U2Θ

}∥∥∥∥∥∥M exp
{

0.4np2U
}∥∥∥
∞
.

�

3.3 Proof of Theorems 2.1.1 � 2.1.9

Proof of Theorem 2.1.4. To make expressions shorter we write ϕk and Ĝ3 instead ϕk(t) and
Ĝ3(t), respectively. Taking into account (3.8), (3.13), (3.17) and Lemma 3.2.8 we obtain

∣∣∣ n∏
k=1

ϕk − Ĝ3

∣∣∣ 6 Ce−Cnp
2 sin2(t/2)

∣∣∣ n∑
k=1

lnϕk − ln Ĝ3

∣∣∣
6 Cnp5| sin(t/2)|4e−Cnp

2 sin2(t/2). (3.18)

From Lemma 3.2.9 it follows that∣∣∣ n∑
k=1

(lnϕk)′ − inp2
∣∣∣ 6 np2|eit − 1|+ Cnp3|z|2 6 Cnp2|z|.

Therefore, applying Lemma 3.2.9, (3.18) and (3.6), we obtain∣∣∣∣(e−itnp2
n∏
k=1

ϕk − e−itnp2Ĝ3

)′∣∣∣∣
=

∣∣∣∣( n∑
k=1

lnϕk − itnp2
)′ n∏
k=1

ϕke−itnp2 − (ln Ĝ3 − itnp2)′Ĝ3e−itnp2
∣∣∣∣

6

∣∣∣∣( n∑
k=1

lnϕk − itnp2
)′( n∏

k=1

ϕk − Ĝ3

)
e−itnp2 + e−itnp2Ĝ3

( n∑
k=1

(lnϕk)′ − (ln Ĝ3)′
)∣∣∣∣

6 Ce−Cnp
2 sin2(t/2)

{∣∣∣ n∑
k=1

(lnϕk)′ − inp2
∣∣∣np5| sin(t/2)|4 + np5| sin(t/2)|3

}
6 Ce−Cnp

2 sin2(t/2)np5| sin(t/2)|3. (3.19)

Let us take in Lemma 3.1.1 v = np2 and u = max(1, np2) and M = L(S)−G3. The estimates (2.5)
and (2.6) follow from (3.18), (3.19) and (3.6) . �

Proof of Theorem 2.1.2. Taking into account Lemma 3.2.12 we obtain

‖G3 −G2‖ = ‖G2(exp{lnG3 − lnG2} − I)‖ =
∥∥∥G2

∫ 1

0

(exp{τ(lnG3 − lnG2)})′dτ
∥∥∥

=
∥∥∥G2(lnG2 − lnG3)

∫ 1

0

exp{τ(lnG3 − lnG2)}dτ
∥∥∥

=
∥∥∥(lnG2 − lnG3)

∫ 1

0

exp{τ lnG3 + (1− τ) lnG2}dτ
∥∥∥

6 C‖(lnG3 − lnG2) exp{0.4np2U}‖ 6 C‖np4U3 exp{0.4np2U}‖
6 Cnp4 min(1, (np2)−3/2).
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For the last estimate we used Lemma 3.1.3. Similar estimate holds for local norm. To complete the
proof of Theorem 2.1.3 one needs to use Theorem 2.1.4 and the triangle inequality. �

Proof of Theorem 2.1.5. We have

G3 −G2(I + γ3U
3) = G2(exp{γ3U

3} − I − γ3U
3) = G2(γ3U

3)2

∫ 1

0

(1− τ) exp{τγ3U
3}dτ.

From Lemma 3.2.12 and Lemma 3.1.3 it follows that

‖G3 −G2(I + γ3U
3)‖ 6 C‖γ2

3U
6 exp{0.4np2U}‖ 6 C(np4)2 min(1, (np2)−3).

The triangle inequality and Theorem 2.1.4 complete the proof of (2.7). The proof of (2.8) is abso-
lutely analogous. One simply needs to replace the total variation norm by the local one. �

Proof of Theorem 2.1.1. We have

G2 −G1(I + γ2U
2) = G1(exp{γ2U

2} − I − γ2U
2) = G1(γ2U

2)2

∫ 1

0

(1− τ) exp{τγ2U
2}dτ.

From Lemma 3.2.12 and Lemma 3.1.3 it follows that

‖G2 −G1(I + γ2U
2)‖ 6 C‖γ2

2U
4 exp{0.4np2U}‖ 6 C(np3)2 min(1, (np2)−2).

The triangle inequality and Theorem 2.1.2 complete the proof of (2.1). The proof of (2.2) is abso-
lutely analogous. One simply needs to replace the total variation norm by the local one. �

Proof of Theorem 2.1.3. All proofs are very similar. Therefore, we prove (2.4) only. Arguing
as in the proof of Theorem 2.1.2 and applying Lemma 3.1.3 and Lemma 3.2.12 we obtain

‖(G2 −G1)U3‖ =
∥∥∥U3G1

∫ 1

0

γ2U
2 exp{τγ2U

2}dτ
∥∥∥

6 Cnp3

∫ 1

0

∥∥∥G1eτγ2UU5dτ
∥∥∥ 6 Cnp3

∥∥∥U5e0.4np2U
∥∥∥ 6 Cp√

n
. (3.20)

It is not di�cult to check that, for any �nite measuresM , V and constant C0, the following inequality
holds ∣∣∣‖M‖ − C0

∣∣∣ 6 ‖M − V ‖+
∣∣∣‖V ‖ − C0

∣∣∣.
Consequently applying Theorem 2.1.5, Lemma 3.1.3, (3.20) and Lemma 3.1.4 we obtain∣∣∣∣‖L(S)−G2‖ −

C̃3p√
n

∣∣∣∣ 6 ‖L(S)−G2(I + γ3U
3)‖+

∣∣∣∣‖G2γ3U
3‖ − C̃3p√

n

∣∣∣∣
6

Cp

n
+ ‖G2U

3(γ3 − np4)‖+
∣∣∣np4‖G2U

3‖ − C̃3p√
n

∣∣∣
6

Cp2

√
n

+ np4‖(G2 −G1)U3‖+
∣∣∣∣np4‖G1U

3‖ − C̃3p√
n

∣∣∣∣
6

Cp2

√
n

+ np4

∣∣∣∣‖G1U
3‖ − C̃3

(np2)3/2

∣∣∣∣
6

Cp2

√
n

+
C

n
.

For the local estimates one should use the local metric. �
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Proof of Theorem 2.1.8. We assumed that p 6 1/5 and n > 3. Therefore,

|γ3| = γ3 >
np4(3− 12p+ 10p2)

3
>
np4

3
. (3.21)

Applying Lemma 3.2.8 and Lemma 3.2.11 we obtain

|F̂ (t)− Ĝ3(t)| 6 | ln F̂ (t)− ln Ĝ3(t)| 6 Cnp5|z|4 6 Cnp5|t|4, (3.22)

We have

|Ĝ3(t)− Ĝ2(t)(1 + γ3z
3)| = |Ĝ2(t)(exp{γ3z

3} − 1− γ3z
3)|

= |Ĝ2(t)γ2
3z

6

∫ 1

0

(1− τ) exp{τγ3z
3}dτ | (3.23)

6 Cγ2
3 |z|6 6 Cn2p8t6,

and

F̂ (t)− Ĝ2(t) = Ĝ2(t)γ3(it)3 + Ĝ2(t)γ3(z3 − (it)3)

+(Ĝ3(t)− Ĝ2(t)(1 + γ3z
3)) + (F̂ (t)− Ĝ3(t)). (3.24)

Let b = hmax(1,
√
np), h > 1. Then applying (3.21) and (3.24) we obtain∣∣∣∣ ∫ ∞

−∞
te−t

2/2(F̂ (t/b) − Ĝ2(t/b))e−itαdt
∣∣∣∣ > ∣∣∣∣ ∫ ∞

−∞
te−t

2/2Ĝ2(t/b)e−itα γ3t
3

b3
dt
∣∣∣∣

− C1

∣∣∣∣ ∫ ∞
−∞

te−t
2/2

(
|γ3||t|4

b4
+
n2p8t6

b6
+
np5|t|4

b4

)
dt
∣∣∣∣

>
|γ3|
b3

∣∣∣∣ ∫ ∞
−∞

t4e−t
2/2dt

∣∣∣∣− C2

∣∣∣∣ ∫ ∞
−∞

t2
|γ3|np3t6

b6
e−t

2/2dt
∣∣∣∣

− C3

(
np4

b4
+
n2p8

b6
+
np5

b4

)
> C4

np4

b3
− C5

n2p6

b6
− C6

np4

b4

> C4
np4

b3
− C7np

4

h4 max(1,
√
np)3

> C4
np4

h3 max(1, n3/2p3)

(
1− C7

h

)
>

C4

h3
min(

p√
n
, np4)

(
1− C7

h

)
.

It su�ces to take h = 2C7 an apply Lemma 3.1.2 with α = np2. �

Proof of Theorem 2.1.6 We assumed that p 6 1/5 and n > 3. Therefore,

|γ2| = γ2 >
np3(2− 3p)

2
>

7np3

10
. (3.25)

Applying Lemma 3.2.8 and Lemma 3.2.11 we obtain

|F̂ (t)− Ĝ2(t)| 6 | ln F̂ (t)− ln Ĝ2(t)| 6 Cnp4|z|3 6 Cnp4|t|3, (3.26)

We have

|Ĝ2(t)− Ĝ1(t)(1 + γ2z
2)| = |Ĝ1(t)(exp{γ2z

2} − 1− γ2z
2)|

= |Ĝ1(t)γ2
2z

4

∫ 1

0

(1− τ) exp{τγ2z
2}dτ | (3.27)

6 Cγ2
2 |z|4 6 Cn2p6t4,
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and

F̂ (t)− Ĝ1(t) = Ĝ1(t)γ2(it)2 + Ĝ1(t)γ2(z2 − (it)2) (3.28)

+(Ĝ2(t)− Ĝ1(t)(1 + γ2z
2)) + (F̂ (t)− Ĝ2(t)).

Let b = hmax(1,
√
np), h > 1. Then applying (3.25) and (3.28) we obtain

∣∣∣∣ ∫ ∞
−∞

e−t
2/2(F̂ (t/b) − Ĝ1(t/b))e−itαdt

∣∣∣∣ > ∣∣∣∣ ∫ ∞
−∞

e−t
2/2Ĝ1(t/b)e−itα γ2t

2

b2
dt
∣∣∣∣

− C8

∣∣∣∣ ∫ ∞
−∞

e−t
2/2

(
|γ2||t|3

b3
+
n2p6t4

b4
+
np4|t|3

b3

)
dt
∣∣∣∣

>
|γ2|
b2

∣∣∣∣ ∫ ∞
−∞

t2e−t
2/2dt

∣∣∣∣− C9

∣∣∣∣ ∫ ∞
−∞

t2
|γ2|np2t4

b4
e−t

2/2dt
∣∣∣∣

− C10

(
np3

b3
+
n2p6

b4
+
np4

b3

)
> C11

np3

b2
− C12

n2p5

b4
− C13

np3

b3

> C11
np3

b2
− C14np

3

h3 max(1,
√
np)2

> C11
np3

h2 max(1, np2)

(
1− C14

h

)
>

C11

h2
min(p, np3)

(
1− C14

h

)
.

It su�ces to take h = 2C14 an apply Lemma 3.1.2 with α = np2. �

Proof of Theorem 2.1.7. We have

∣∣∣Ĝ2(t)− Ĝ1(t)
(

1 + γ2z
2 +

(γ2z
2)2

2

)∣∣∣ =
∣∣∣G1(t)

(
e(γ2z

2)2/2 − 1− γ2z
2 − (γ2z

2)2

2

)∣∣∣
=

∣∣∣G1(t)(γ2z
2)3/2

∫ 1

0

(1− τ)2eτγ2z
2
∣∣∣ (3.29)

6 Cγ3
2 |z6| 6 Cn3p9t6,

and

(
F̂ (t)− Ĝ1(t)(1 + γ2z

2)
)

=
(
Ĝ1(t)

(γ2z
2)2

2

)
(3.30)

+
(
Ĝ2(t)− Ĝ1(t)

(
1 + γ2z

2 +
(γ2z

2)2

2

))
+ (F̂ (t)− Ĝ2(t)).
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Let b = hmax(1,
√
np), h > 1. Then applying (3.25) and (3.30) we obtain∣∣∣∣ ∫ ∞

−∞
e−t

2/2(F̂ (t/b)− Ĝ1(t/b)(1 + γ2z
2))e−itαdt

∣∣∣∣ > ∣∣∣∣ ∫ ∞
−∞

e−t
2/2Ĝ1(t/b)e−itα γ

2
2t

4

2b4
dt
∣∣∣∣

− C15

∣∣∣∣ ∫ ∞
−∞

e−t
2/2

(
n3p9t6

b6
+
np4|t|3

b3

)
dt
∣∣∣∣

>
|γ2

2 |
2b4

∣∣∣∣ ∫ ∞
−∞

t2e−t
2/2dt

∣∣∣∣− C16

∣∣∣∣ ∫ ∞
−∞

t2
|γ2

2 |np2t6

b6
e−t

2/2dt
∣∣∣∣

−C17

(
n3p9

b6
+
np4

b3

)
> C18

n2p6

b4
− C19

n3p8

b6
− C20

np4

b3

> C18
np4

b3
− C21np

4

h3 max(1,
√
np)2

> C18
np4

h2 max(1, np2)

(
1− C21

h

)
>

C18

h2
min(p2, np4)

(
1− C21

h

)
.

It su�ces to take h = 2C21 an apply Lemma 3.1.2 with α = np2. �

Proof of Theorem 2.1.9. All proofs are similar. Therefore, we prove (2.15) and (2.16) only. Let
a = np2, M = L(S)−G2. Summing up the formula of inversion we obtain:

M{[m,h]} =
1

2π

∫ π

−π

M̂(t)(e−itm − e−it(h+1))
1− e−it

dt.

Considering limit as h→∞, by Lebesgue theorem we get

M{[m,∞)} =
1

2π

∫ π

−π

M̂(t)e−itm

1− e−it
dt.

Let

u(t) =
M̂(t)e−ita

1− e−it
.

Let us assume that m − a 6= 0. Integrating by parts and taking into account that eiπ = e−iπ and,
consequently, u(π) = u(−π), leads us to the following relation

M{[m,∞)} = − 1
2π(a−m)2

∫ π

−π
u(t)′′eit(a−m) dt.

Consequently,

|M{[m,∞)}| 6 1
2π(a−m)2

∫ π

−π
|u(t)′′|dt. (3.31)

On the other hand,

|M{[m,∞)}| 6 1
2π

∫ π

−π
|u(t)|dt. (3.32)

Taking into account Lemmas 3.1.4�3.1.5 we obtain

|u(t)| 6 C exp
{
−16

25
np2 sin2 t

2

}∣∣∣ ln∑n
1 ϕk − Ĝ2

∣∣∣
|z|

6 C exp
{
− 4

25
np2 sin2 t

2

}
np4| sin(t/2)|2.
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Similarly we prove

|u′(t)| 6 C
p√
n
np2 exp

{
−4

5
np2 sin2 t

2

}
, (3.33)

|u′′(t)| 6 C
p√
n
np2
√
np2 exp

{
−4

5
np2 sin2 t

2

}
. (3.34)

Substituting these estimates into (3.31) and (3.32) we complete the proof. Note thatM{[0,∞} =
0. Therefore,

M{[m,∞)} = −M{[0,m)}.

The estimates for Wasserestein metric follow from

∞∑
k=0

1
1 + (k − a)2/a2

6 C

(
1 + a

∫ ∞
−∞

1
1 + y2

dy
)
.

�

3.4 Auxiliary results for approximations of sums under ana-

logue of Franken's condition

Let X1, X2, . . . , Xn be identically distributed 1-dependent random variables concentrated on non-
negative integers, t ∈ R and let

z = eit − 1, Sn = X1 +X2 + · · ·+Xn, F̂n(t) = EeitSn ,

Yk = eitXk − 1, ψ1(t) = EeitX1 , ψk(t) =
EeitSk

EeitSk−1
(k = 2, 3, . . . , n),

wn(t) := (E|eitXk − 1|2)1/2, K(t) := {t : wn(t) 6 1/6}.

Lemma 3.4.1 If t ∈ K(t), then

F̂n(t) =
n∏
k=1

ψk(t),

ψk(t) = EeitXk +
k−1∑
j=1

Ê(eitXj − 1)(eitXj+1 − 1) · · · (eitXk − 1)
ψj(t)ψj+1(t) · · ·ψk−1(t)

(3.35)

and
|ψk(t)− 1| 6 |EeitXk − 1|+ 6(wn(t))2.

Lemma 3.4.1 is a partial case of Lemma 3.1.7.

Lemma 3.4.2 If t ∈ K(t), then∣∣∣ ln F̂n(t)− nEY1 −
n∑
k=2

ÊYk−1Yk

∣∣∣ 6 2wn(t)
(
n|EY1|+ 22nE|Yk|2

)
.

Lemma 3.4.2 is a partial case of Lemma 3.1.8.

Lemma 3.4.3 If 1 6 j 6 k, then

|ÊYjYj+1 · · ·Yk| 6 2k−j(C0ν1)(k−j+1)/2|z|k−j+1, (3.36)

|(ÊYjYj+1 · · ·Yk)′| 6 (k − j + 1)2k−j(C0ν1)(k−j+1)/2|z|k−j . (3.37)
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Proof. We have

|eitXm − 1| 6 Xm|z|, E|Ym|2 6 |z|2EX2
m 6 C0ν1|z|2, (m = j, . . . , k). (3.38)

From (3.38) and Lemma 3.1.9 follows (3.36). As follows from the formula in [25] p. 502

(ÊYjYj+1 · · ·Yk)′ =
k∑
i=j

ÊYj . . . Y ′i . . . Yk.

We have E|Y ′i |2 = EX2
i 6 C0ν1. Therefore, for the proof of (3.37) it remains to apply Lemma 3.1.9.

�

Lemma 3.4.4 If (2.20) is satis�ed and n is su�ciently large, then, for all t,

|F̂n(t)| 6 exp{−Cnν1 sin2(t/2)}, |D̂j(t)| 6 exp{−Cnν1 sin2(t/2)}, (j = 1, 2, 3). (3.39)

Proof. For su�ciently large n, wn(t) ∈ K(t). Indeed, |Y1| 6 X1|z|, |z| = 2| sin(t/2)|. Therefore,

wn(t) 6 |z|
√

EX2
1 6 2

√
C0
√
ν1| sin(t/2)| 6 2

√
C0
√
ν1. (3.40)

For su�ciently large n, the last estimate is less than 1/6. Therefore, applying Lemma 3.4.2, we
obtain ∣∣∣ ln F̂n(t)− nEY1 −

n∑
k=2

ÊYk−1Yk

∣∣∣ 6 2wn(t)
(
n|EY1|+ 22nE|Yk|2

)
6 2

√
C0
√
ν1| sin(t/2)|

(
nν1|z|+ 22n|z|2EX2

1

)
6 2

√
C0
√
ν1| sin(t/2)|

(
nν1|z|+ 44n|z|C0ν1

)
= 4

√
C0(1 + 44C0)nν1

√
ν1 sin2(t/2). (3.41)

Note that, for non-negative integers s, k,

eitk − 1 =
s−1∑
j=1

(
k

j

)
zj + zs

k∑
j=s

(
j − 1
s− 1

)
e(k−j)it =

s−1∑
j=1

(
k

j

)
zj + θ

(
k

s

)
|z|s. (3.42)

Here, as usual, we assume
(
k
j

)
= 0, if k < j. Therefore,

EY1 = ν1z + θ
ν2

2
|z|2 = ν1z + θ2ν2 sin2(t/2). (3.43)

Similarly,

|ÊY1Y2| = |EY1Y2 − EY1EY2| 6 |EY1Y2|+ |EY1EY2| 6 |EY1Y2|+ 4ν2
1 sin2(t/2)

and
|EY1Y2| 6 a(1, 1)|z|2 = 4a(1, 1) sin2(t/2).

Combining the last two estimates with (3.43) and (3.41), we obtain

| ln F̂n(t)− nν1z| 6 2n
(
ν2 + 2ν2

1 + 2a(1, 1) + 42
√
C0(1 + 44C0)nν1

√
ν1

)
sin2(t/2).

Therefore, for su�ciently large n,

|F̂n(t)| 6 | exp{nν1z}| exp{| ln F̂n(t)− nν1z|}
6 exp{−2n sin2(t/2)ν1(1− o(1))} 6 exp{−Cν1 sin2(t/2)}.
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If n su�ciently large, then

|Γ2| = o(nν1), |Γ3| = o(nν1). (3.44)

Indeed, due to (2.20), we have

ν3 = EX1(X1 − 1)(X1 − 2) 6 C0ν2 = o(ν1), a(1, 2) 6 C0a(1, 1) = o(ν1).

Consequently,

|Γ2| 6 n
(
|ν2 − ν2

1 |
2

+ |a(1, 1)− ν2
1 |
)

= o(nν1)

and

|Γ3| 6 n
∣∣∣∣ν3

6
+
ν1ν2

2
+
ν3

1

3

∣∣∣∣+ n

∣∣∣∣a(1, 2) + a(2, 1)
2

− ν1ν2 + 2ν1(ν2
1 − a(1, 1))

∣∣∣∣ = o(nν1).

Taking into account (3.44) we obtain

|D̂3(t)| 6 exp{−2nν1 sin2(t/2) + 4 sin2(t/2)(|Γ2|+ |z||Γ3|)} = exp{−2nν1 sin2(t/2)(1− o(1))}.

If n is su�ciently large, then |D̂3(t)| 6 exp{−Cnν1 sin2(t/2)}. Estimates for D̂1(t) and D̂2(t) are
proved similarly. �

To shorten our expressions let

b1 = ν1, b2 =
ν2

2
+ a(1, 1)− ν2

1 , b3 = b̃3 + a(1, 1, 1)− 2ν1a(1, 1) + ν3
1 ,

b̃3 =
ν3

6
+ [a(1, 2) + a(2, 1)− ν1ν2] + ν1(ν2

1 − a(1, 1))

and let r be de�ned as in (2.19). For the sake of brevity we write ψj instead of ψj(t).

Lemma 3.4.5 If (2.20) is satis�ed, and n is su�ciently large, then

ψ1(t) = 1 + ν1z +
ν2

2
z2 +

ν3

6
z3 + Cθν4|z|4,

ψ2(t) = 1 + b1z + b2z
2 + b̃3z

3 + Cθr|z|4,
ψk(t) = 1 + b1z + b2z

2 + b3z
3 + Cθr|z|4, (k > 3).

Proof. Let k > 8. From Lemma 3.4.1 it follows that

ψk = 1 + EYk +
k−1∑
j=1

ÊYjYj+1 · · ·Yk
ψjψj+1 · · ·ψk−1

= 1 + EYk +
k−1∑
j=k−2

+
k−3∑
j=k−6

+
k−7∑
j=1

. (3.45)

Applying (3.42) to the second term in (3.45) we obtain

EYk = ν1z +
ν2

2
z2 +

ν3

6
z3 + Cθν4|z|4. (3.46)

Due to Lemma 3.4.1 and (3.40) we have

|ψk − 1| 6 ν1|z|+ 6C0ν1|z|2 6 2(1 + 12C0)ν1| sin(t/2)|. (3.47)

We have ν1 = o(1). Therefore, for su�ciently large n,

C0ν1 6
1

400
, |ψk − 1| 6 1

10
,

1
|ψk|

6
10
9
. (3.48)
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Taking into account (3.48) and (3.36) we can estimate the last term in (3.45):∣∣∣∣ k−7∑
j=1

ÊYjYj+1 · · ·Yk
ψjψj+1 · · ·ψk−1

∣∣∣∣ 6 k−7∑
j=1

(
10
9

)k−j
2k−j |z|k−j+1(C0ν1)(k−j+1)/2

6 (C0ν1)4|z|8
k−7∑
j=1

(
10
9

)k−j
2k−j2k−j−7

(
1
20

)k−j−7

6 Cν4
1 |z|4. (3.49)

From (3.48) it follows that∣∣∣∣ k−3∑
j=k−6

ÊYjYj+1 · · ·Yk
ψjψj+1 · · ·ψk−1

∣∣∣∣ 6 k−3∑
j=k−6

|ÊYjYj+1 · · ·Yk|
(

10
9

)k−j−1

6 C
k−3∑
j=k−6

|ÊYjYj+1 · · ·Yk|.

Applying inequality |eiX − 1| 6 X|z| it is easy to check that

E|Y1Y2 · · ·Ym| 6 a(1, 1, . . . , 1)|z|m, E|Y1(Y1 − 1)Y2| 6 2a(2, 1)|z|3 (3.50)

and so on. Thus, from (3.7) we get

|ÊY1Y2| 6 E|Y1Y2|+ E|Y1|E|Y2| 6 (a(1, 1) + ν2
1)|z|2, (3.51)

|ÊY1Y2Y3| 6 E|Y1Y2Y3|+ E|Y1|E|Y2Y3|+ |ÊY1Y2|E|Y3|
6

(
a(1, 1, 1) + 2ν1a(1, 1) + ν2

1

)
|z|3. (3.52)

and

|ÊY1Y2Y3Y4| 6 E|Y1Y2Y3Y4|+ E|Y1|E|Y2Y3Y4|+ |ÊY1Y2|E|Y3Y4|+ |ÊY1Y2Y3|E|Y4|
6 a(1, 1, 1, 1)|z|4 + ν1a(1, 1, 1)|z|4 + |ÊY1Y2|a(1, 1)|z|2 + |ÊY1Y2Y3|ν1|z|
6 a(1, 1, 1, 1)|z|4 + ν1a(1, 1, 1)|z|4 + (a(1, 1) + ν2

1)a(1, 1)|z|4

+[a(1, 1, 1) + 2ν1a(1, 1) + ν2
1 ]ν1|z|

6 [a(1, 1, 1, 1) + 2ν1a(1, 1, 1) + 3a(1, 1)ν2
1 + a2(1, 1) + ν4

1 ]|z|4

6 [a(1, 1, 1, 1) + 2ν1a(1, 1, 1) + 4a2(1, 1) + 4ν4
1 ]|z|4 6 Cr|z|4.

Similarly estimating all remaining terms, we �nally obtain∣∣∣∣ k−3∑
j=k−6

ÊYjYj+1 · · ·Yk
ψjψj+1 · · ·ψk−1

∣∣∣∣ 6 Cr|z|4. (3.53)

Collecting the last estimate, (3.46) and (3.49) and substituting them into (3.45) we have

ψk = 1 +
3∑
j=1

νj
zj

j
+

ÊYk−2Yk−1Yk
ψk−2ψk−1

+
ÊYk−1Yk
ψk−1

+ Cθr|z|4. (3.54)

It is easy to see that ν4 6 C2
0ν2, ν4 6 C2

0ν2, a(1, 1, 1) 6 C0a(1, 1), a(k, 1) 6 C(k)a(1, 1), since all
Xj are bounded by C0. Therefore, from (3.54), arguing as in above, we obtain the following rough
estimate

ψk = 1 + ν1z + Cθ(ν2 + a(1, 1) + ν2
1)|z|2. (3.55)

Taking into account (3.48) and (3.55), for a su�ciently large n, we prove

1
ψk

=
1

1− (1− ψk)
= 1 + (1− ψk) + Cθ|1− ψk|2

∞∑
j=0

|1− ψk|j

+ 1 + (1− ψk) + Cθν2
1 |z|2

∞∑
j=0

1
10j

= 1− ν1z + Cθ[ν2 + a(1, 1) + ν2
1 ]|z|2. (3.56)
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From (3.48) it follows that∣∣∣∣ 1
ψk−2ψk−1

− 1
∣∣∣∣ 6 C|1− ψk−2ψk−1| 6 C

(
|1− ψk−2|+ |ψk−2| |1− ψk−1|

)
6 Cν1|z|. (3.57)

Combining estimates (3.56), (3.57), (3.51) and (3.52) with (3.54) we obtain

ψk = 1 +
3∑
j=1

νjz
j

j
+ ÊYk−2Yk−1Yk + ÊYk−1Yk(1− ν1z) + Cθr|z|4. (3.58)

Applying (3.42) with s = 4 and s = 3, we get

EY1Y2 = E
{
X1z +

X1(X1 − 1)z2

2
+
X1(X1 − 1)(X1 − 2)z3

6

}
Y2 +Xθa(3, 1)|z|4

= EX1z

{
X2z +

X2(X2 − 1)z2

2
+ CθX2(X2 − 1)(X2 − 2)|z|3

}
+E

X1(X1 − 1)z2

2
(
X2z + CθX2(X2 − 1)|z|2

)
+ Cθa(3, 1)|z|4

= a(1, 1)z2 +
(
a(1, 2) + a(2, 1)

)
z3 + Cθ

(
a(3, 1) + a(2, 2) + a(1, 3)

)
|z|4. (3.59)

Similarly

EY1EY2 = ν1z

(
ν1z +

ν2z
2

2
+ Cθν3|z|3

)
+
ν2z

2

2
(ν1z + Cθν2|z|2) + Cθν1ν3|z|4

= ν2
1z

2 + ν1ν2z
3 + Cθ(ν1ν3 + ν2

2)|z|4. (3.60)

Combining the last two expressions with the de�nition of ÊY1Y2 we obtain

ÊY1Y2(1−ν1z) = [a(1, 1)−ν2
1 ]z2 +

{
[a(1, 2) +a(2, 1)−ν1ν2]−ν1[a(1, 1)−ν2

1 ]
}
z3 +Cθr|z|4. (3.61)

Arguing in the similar way we prove

ÊY1Y2Y3 = [a(1, 1, 1)− 2ν1a(1, 1) + ν3
1 ]z3 + Cθr|z|4.

Putting the last expression and (3.61) into (3.58) we get ψk = 1 + b1z + b2z
2 + b3z

3 + Cθr|z|4. If
k = 3, 4, . . . , 7 then arguing is exactly the same if not simpler, since the last term in (3.45) is absent.
The case k = 2 is proved similarly. The case k = 1 follows from (3.42) with s = 4. �

Lemma 3.4.6 If (2.20) is satis�ed and n is su�ciently large, then

|ψ′k| 6 6C0ν1, (k = 1, 2, ...). (3.62)

Proof. We prove (3.62) by induction. It is easy to check that

|ψ′1| 6 |iEX1eitX1 | 6 E|X1eitX1 | = ν1 6 C0ν1. (3.63)

Let us assume that (3.62) holds for m = 1, 2, . . . , k − 1. From (3.35) it follows that

|ψ′k| 6 ν1 +
k−1∑
j=1

|(ÊYj · · ·Yk)′|
|ψj · · ·ψk−1|

+
k−1∑
j=1

|ÊYj · · ·Yk|
|ψj · · ·ψk−1|

k−1∑
m=j

∣∣∣ψ′m
ψm

∣∣∣. (3.64)

Taking into account (3.37) and (3.48) we obtain

k−1∑
j=1

|(ÊYj · · ·Yk)′|
|ψj · · ·ψk−1|

6
k−1∑
j=1

(
10
9

)k−j
(k − j + 1)2k−j |z|k−j(C0ν1)(k−j+1)/2

6 C0ν1

k−1∑
j=1

(
10
9

)k−j
(k − j + 1)4k−j

(
1

400

)(k−j−1)/2

= 20C0ν1

k−1∑
j=1

(k − j + 1)
(

2
9

)k−j
6 4.5C0ν1. (3.65)
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For estimation of the last sum, we used a standard combinatorial approach by taking x = 2/9 and
applying the following formula

k−2∑
j=1

(k − j + 1)xk−j 6 3x2 + 4x3 + · · · =
( ∞∑
m=3

xm
)′

=
(

x3

1− x

)′
=

3x2

1− x
+

x3

(1− x)2
.

Taking into account inductions assumption, (3.48) and (3.36) we obtain

k−1∑
j=1

|ÊYj · · ·Yk|
|ψj · · ·ψk−1|

k−1∑
m=j

∣∣∣ψ′m
ψm

∣∣∣ 6 6C0ν1

k−1∑
j=1

(
10
9

)k−j+1

(k − j)2k−j |z|k−j+1(C0ν1)(k−j+1)/2

6 6C0ν1

k−1∑
j=1

(k − j)
(

10
9

)k−j+1

2k−j2k−j+1(20)−k+j−1

= 3C0ν1

k−1∑
j=1

(k − j)
(

2
9

)k−j+1

6
12C0ν1
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. (3.66)

Combining (3.66) and (3.65) with (3.64) we complete Lemma's proof. �

Lemma 3.4.7 If (2.20) is satis�ed and n is su�ciently large,then

ψ′1(t) = ν1z
′ +

ν2

2
(z2)′ +

ν3

6
(z3)′ + Cθν4|z|3,

ψ′2(t) = b1z
′ + b2(z2)′ + b̃3(z3)′ + Cθr|z|3,

ψ′k(t) = b1z
′ + b2(z2)′ + b3(z3)′ + Cθr|z|3, (k > 3).

Proof. Lemma's proof is a combination of the proofs of Lemma 3.4.5 and Lemma 3.4.6 and is
therefore omitted. �

Lemma 3.4.8 If (2.20) is satis�ed and n is su�ciently large, then

lnψ1(t) = ν1z +
ν2 − ν2

1

2
z2 +

(
ν3

6
− ν1ν2

2
+
ν3

1

3

)
z3 + Cθr|z|4,

lnψ2(t) = b1z +
(
b2 −

b21
2

)
z2 +

(
b̃3 − b1b2 +

b31
3

)
z3 + Cθr|z|4,

lnψk(t) = b1z +
(
b2 −

b21
2

)
z2 +

(
b3 − b1b2 +

b31
3

)
z3 + Cθr|z|4, (k > 3).

Proof. From (3.47) and (3.48) it follows that

lnψk = (ψk − 1)− (ψk − 1)2

2
+

(ψk − 1)3

3
+ Cθ|ψk − 1|4

∞∑
j=0

|ψk − 1|j

j

= (ψk − 1)− (ψk − 1)2

2
+

(ψk − 1)3

3
+ Cθν4

1 |z|4
∞∑
j=0

(
1
10

)j
.

Applying Lemma 3.4.5 we complete the proof. �

Lemma 3.4.9 If (2.20) is satis�ed and n is su�ciently large, then

(lnψ1(t))′ = ν1z
′ +

ν2 − ν2
1

2
(z2)′ +

(
ν3

6
− ν1ν2

2
+
ν3

1

3

)
(z3)′ + Cθr|z|3,

(lnψ2(t))′ = b1z
′ +
(
b2 −

b21
2

)
(z2)′ +

(
b̃3 − b1b2 +

b31
3

)
(z3)′ + Cθr|z|3,

(lnψk(t))′ = b1z
′ +
(
b2 −

b21
2

)
(z2)′ +

(
b3 − b1b2 +

b31
3

)
(z3)′ + Cθr|z|3, (k > 3).
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Proof. We have

(lnψk)′ =
ψ′k
ψk
.

Arguing as in (3.56) we prove

1
ψk

= 1 + (1− ψk) + (1− ψk)2 + Cθν3
1 |z|5.

The proof now follows from Lemmas 3.4.7 and 3.4.5. �

Lemma 3.4.10 Let M be �nite variation signed measure concentrated on integers, τ ∈ [0, 1], α ∈
[0, 1]. If (2.20) is satis�ed and n is su�ciently large, then

‖M exp{nν1U + αΓ2U
2 + τΓ3U

3}‖ 6 ‖M exp{0.5nν1U}‖,
‖M exp{nν1U + αΓ2U

2 + τΓ3U
3}‖∞ 6 ‖M exp{0.5nν1U}‖∞.

Proof. Due to (3.44), if n is su�ciently large, then

‖Γ2 + Γ3U‖ = Θ(|Γ2|+ 2|Γ3|) = Θ
nν1

10
.

Total variation norm of a distribution is always equal to unity. Consequently, ‖ exp{0.5γ1U}‖ = 1.
If n is su�ciently large, then, taking into account Lemma 3.1.3 below, we obtain

‖ exp{0.5Γ1U + αΓ2U
2 + τΓ3U

3}‖ = ‖ exp{0.5nν1U + 0.1nν1Θ}‖

6 1 +
∞∑
m=1

1
m!

∥∥∥nν1

10
U2 exp

{nν1

2m
U
}∥∥∥m 6 1 +

∞∑
m=1

em

mm
√

2πm

(
3m
5e

)m
6 C.

The proof of Lemma's assertion now follows from the properties of the total variation and local
norms. Indeed, we have

‖M exp{Γ1U + αΓ2U
2 + τΓ3U

3}‖∞
6 ‖M exp{0.5Γ1U}‖∞‖M exp{0.5Γ1U + αΓ2U

2 + τΓ3U
3}‖.

Similar relation also holds for the total variation norm. �

3.5 Proof of Theorems 2.2.1�2.2.5

Proof of Theorem 2.2.4. To make expressions shorter we write F̂n and D̂3 instead of F̂n(t) and
D̂3(t), respectively. We assume that n is su�ciently large and all auxiliary results hold. Taking into
account (3.39) and Lemma 3.4.8 we obtain

|F̂n − D̂3| 6 Ce−Cnν1 sin2(t/2)| ln F̂n(t)− ln D̂3|
6 Cnr| sin(t/2)|4e−Cν1 sin2(t/2). (3.67)

Applying formula of inversion (3.2) and (3.6) we easily prove (2.28). From Lemma 3.4.9 it follows
that

|(ln F̂n)′ − nν1i| 6 |(ln F̂n)′ − nν1z
′|+ nν1|z′ − i| 6 Cnν1|z|.

Therefore, applying Lemma 3.4.9, (3.67) and (3.6), we obtain∣∣∣(e−itnν1 F̂n − e−itnν1D̂3

)′∣∣∣
=

∣∣∣( ln F̂n − itnν1

)′
F̂ne−itnν1 − (ln D̂3 − itnν1)′D̂3e−itnν1

∣∣∣
6

∣∣∣( ln F̂n − itnν1

)′(F̂n − D̂3)e−itnν1 + e−itnν1D̂3

(
(ln F̂n)′ − (ln D̂3)′

)∣∣∣
6 Ce−Cnν1 sin2(t/2)

{
|(ln F̂n)′ − inν1|nr| sin(t/2)|4 + nr| sin(t/2)|3

}
6 Ce−Cnν1 sin2(t/2)nr| sin(t/2)|3. (3.68)
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Let us take in Lemma 3.1.1 v = u = nν1 and M = Fn −D3. If n is su�ciently large and nν1 > 1,
then the estimate (2.27) follow from (3.67), (3.68) and (3.6) . �

Proof of Theorem 2.2.5. We have

D3 −D2(I + Γ3U
3) = D2(exp{Γ3U

3} − I − Γ3U
3) = D2(Γ3U

3)2

∫ 1

0

(1− τ) exp{τΓ3U
3}dτ.

From Lemma 3.4.10 and Lemma 3.1.3 it follows that

‖D3 −D2(I + Γ3U
3)‖ 6

∫ 1

0

‖D2 exp{τΓ3U
3}Γ2

3U
6‖dτ

6 C|Γ3|2‖U6 exp{0.5nν1U}‖ 6 C
|Γ3|2

(nν1)3
.

Estimate (2.29) follows from the triangle inequality and Theorem 2.2.4. For the proof of (2.30) one
must replace the total variation norm by the local one. �

Proof of Theorem 2.2.3. If n is su�ciently large, then nν1 > 1. Therefore, applying Lemmas
3.4.10 and 3.1.3 and Theorem 2.2.5, we obtain

‖Fn −D2‖ 6 ‖Fn −D2(I + Γ3U
3)‖+ ‖Γ3U

3D2‖

6
Cr

nν2
1

+
Cr2

1

nν3
1

+ Cnr1‖U3 exp{0.5nν1U}‖

6
Cr

ν1
√
nν1

+
Cr2

1

nν3
1

+
Cr1

ν1
√
nν1
6

Cr1

ν1
√
nν1

.

�
Proof of Theorem 2.2.2. We have

D2 −D1(I + Γ2U
2) = D1(exp{Γ2U

2} − I − Γ2U
2) = D1(Γ2U

2)2

∫ 1

0

(1− τ) exp{τΓ2U
2}dτ.

From Lemma 3.4.10 and Lemma 3.1.3 it follows that

‖D2 −D1(I + Γ2U
2)‖ 6

∫ 1

0

‖D1 exp{τΓ2U
2}Γ2

2U
4‖dτ

6 C|Γ2|2‖U4 exp{0.5nν1U}‖ 6 C
|Γ2|2

(nν1)2
.

Estimate (2.23) follows from the triangle inequality and Theorem 2.2.3. For the proof of (2.24) one
must replace the total variation norm by the local one. �

Proof of Theorem 2.2.1. If n is su�ciently large, then nν1 > 1. Therefore, applying Lemmas
3.4.10 and 3.1.3 and Theorem 2.2.2, we obtain

‖Fn −D1‖ 6 ‖Fn −D1(I + Γ2U
2)‖+ ‖Γ2U

2D1‖

6
(ν2 + a(1, 1) + ν2

1)2

ν2
1

+
r1

ν1
√
nν1

+ Cn(ν2 + a(1, 1) + ν2
1)‖U2 exp{0.5nν1U}‖

6
(ν2 + a(1, 1) + ν2

1)2

ν2
1

+
r1

ν1
√
nν1

+
(ν2 + a(1, 1) + ν2

1)
ν1

6
(ν2 + a(1, 1) + ν2

1)
ν1

.

�
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3.6 Auxiliary results for Poisson type approximations for sums

of 1-dependent symmetric three point distributions

Let s = it and υ1 = υ1(s) = EesX̂1 ,

υk =
EesSk

EesSk−1
, wn(it) :=

√
E|eitXj − 1|2, k = 2, 3, . . . , n.

The following lemma follows from Lemma 3.1 and Lemma 3.2 [25].

Lemma 3.6.1 Let (2.31) hold. Then, for k = 1, 2, . . . n, and all real t

υk = EesX̂k +
k−1∑
j=1

Ê(esX̂j − 1)(esX̂j+1 − 1) . . . (esX̂k − 1)
υjυj+1 . . . υk−1

,

|υk − 1| 6 |EesX̂k − 1|+ 2
√

E|esX̂k−1 − 1|2E|esX̂k − 1|2/(1− 4wn(z))

6 13p̄|es − 1| ≤ 1/5,

| ln B̂n(t)− nH1| 6 np̄

(∑
j,k∈{−1,1} |h(j, k)|

p̄
+ 90
√
p̄

)
|z|2.

Lemma 3.6.2 Let (2.31) be satis�ed. Then, for all |t| 6 π,

max{|P̂n(t)|, |B̂n(t)|} 6 exp{−C8np̄ sin2(t/2)}.

Proof. Note that
|P̂n(t)| 6

∣∣∣ exp{nH1}
∣∣∣ exp{| ln P̂n(t)− nH1|}

and apply Lemma 3.6.1. The estimate for B̂n(t) follows directly from its de�nition and (2.31). �

Lemma 3.6.3 Let condition (2.31) be satis�ed. Then, for k > 7, we have

υk − 1 = H1 +H2 +H3 −H2H1 +H4 − 2H3H1 +H2(H2
1 −H2)

+ H5 − 3H4H1 +H3(3H2
1 − 3H2) + 3H2

2H1

+ H6 − 4H5H1 +H3(12H2H1 − 2H3) +H2(2H2
2 − 4H4)

+ H7 +H3(10H2
2 − 5H4)− 5H2H5 + C9θp̄

4|z|4. (3.69)

Moreover, for k = 2, 3, 4, 5, 6 the estimate (3.69) holds with H3 = H4 = H5 = H6 = H7 = 0,
H4 = H5 = H6 = H7 = 0, H5 = H6 = H7 = 0, H6 = H7 = 0, H7 = 0 respectively.

Proof. Applying Lemma 3.6.1 we obtain

υk − 1 = H1 +
H2

υk−1
+

H3

υk−2υk−1
+

H4

υk−3υk−2υk−1
+

H5

υk−4υk−3υk−2υk−1

+
H6

υk−5υk−4υk−3υk−2υk−1
+

H7

υk−6υk−5υk−4υk−3υk−2υk−1

+
k−7∑
j=1

Ê(esX̂j − 1)(esX̂j+1 − 1) . . . (esX̂k − 1)
υjυj+1 . . . υk−1

. (3.70)

and
1
|υk|
6

1
1− |1− υk|

6
5
4
.

From Lemma 3.1.9 we obtain

|Ê(esX̂j − 1)(esX̂j+1 − 1) . . . (esX̂k − 1)| 6 2k−j
k∏

m=j

√
E|esX̂m − 1|2

= 2k−j |z|k−j+1p̄(k−j+1)/2 6 C10p̄
4|z|4(4

√
p̄)k−j−7.
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Noting that, due to (2.31), we can assume p̄ to be small. Therefore,

k−7∑
j=1

Ê(esX̂j − 1)(esX̂j+1 − 1) . . . (esX̂k − 1)
υjυj+1 . . . υk−1

6 C11p̄
4|z|4

k−7∑
j=1

(5
√
p̄)k−j−7 6 C12p̄

4|z|4. (3.71)

From (3.70) and (3.71) we get

1
υk

= 1 + (1− υk) + (1− υk)2 + C13θp̄
3|z|4 = 1−H1 −

H2

υk−1
− H3

υk−1υk−2

− H4

υk−1υk−2υk−3
− H5x

5

υk−1υk−2υk−3υk−4
+ (1− υk)2 + C14θp̄

3|z|4

= 1−H1 +H2
1 −H2 + 3H2H1 −H3 + 2H2

2 + 4H3H1 −H4 + 5H2H3 −H5 + C15θp̄
3|z|4.

Putting the last expression into (3.70) we complete the proof of Lemma 3.6.3, for k > 7. The cases
k = 2, 3, 4, 5, 6 are proved similarly. �

Lemma 3.6.4 Let condition (2.31) be satis�ed. Then, for k > 7,

ln υk = H1 + C16θ(K1|z|2 +K2|z|3 +K3|z|4).

Proof. Applying Lemma 3.6.1 and Lemma 3.6.3, it is not di�cult to show that

ln υ = H1 + C17θ

( 7∑
j=2

|Hj |+ |H1|2 + p̄2|z|4
)
.

Since z = −z̄ − |z|2 one can easily obtain the following estimates

H1 = (p1 − p−1)z − p−1|z|2,
H2

1 = C17θ(p̄|p1 − p−1||z|2 + p̄2|z|4),
|H2| 6 |h(−1,−1)− h(−1, 1)− h(1,−1) + h(1, 1)| |z|2 +

|h(−1, 1) + h(1,−1)− 2h(1, 1)| |z|3 + |h(1, 1)| |z|4,
|H3| 6

∑
j,k∈{−1,1}

|h(j, k,−1)− h(j, k, 1)| |z|3 +
∑

j,k∈{−1,1}

|h(j, k,−1)| |z|4 + |H2|.

Let h(j1, j2, . . . , jk) = P (X̂1 = j1, X̂2 = j2, . . . , X̂k = jk) − P (X̂1 = j1)P (X̂2 = j2) · · ·P (X̂k = jk)
and let

∑∗
k denote the sum over all j1, . . . , jk ∈ {−1, 1}. Then, for k = 4, 5, 6, 7,

|Hk| 6
∑∗

k
|h(j1, j2, . . . , jk)| |z|k + C18

k−1∑
m=2

|Hm|.

Lemma's statement now follows from the following estimate

|h(j1, j2, . . . , jk)| 6 C19|a(j1, j2)|+ C20p̄
2.

�

Lemma 3.6.5 Let (2.31) be satis�ed and let |t| 6 π. Then

|P̂n(t)− B̂n(t)| 6 C21 exp{−C22npt
2}[K1|t|2 +K2|t|3 +K3|t|4].
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3.7 Proof of Theorem 2.3.1

Proof. Applying Lemma 3.6.2 we get

|P̂n(t)− B̂n(t)| 6 C23 exp{−C22np̄t
2}| ln P̂n(t)− ln B̂n(t)|.

Note that ln P̂n(t) =
∑n
k=1 ln υk. Consequently, from Lemma 3.6.4 we get the required estimate.

Theorems proof now follows from Lemmas 3.6.5 and 3.1.1. �

3.8 Auxiliary results for sums of 1-dependent non-identically

distributed Bernoulli variables

For the sake of brevity set s = it, z = eit−1. Moreover, we denote by θ all quantities satisfying |θ| 6 1
and use C for all absolute constants, which may vary from line to line. Let ϕ1 = ϕ1(z) = EezX1 ,

ϕk =
EezSk

EezSk−1
, wn(it) :=

√
E|eitXj − 1|2, k = 2, 3, . . . , n.

More precisely, let
2
∑n
j=1 a2,j∑n
j=1 pj

+ 180 max
1≤j≤n

√
pj ≤ C < 1. (3.72)

The following lemma follows from Lemma 3.1 and Lemma 3.2 in Heinrich [25].

Lemma 3.8.1 Let condition (3.72) hold. Then, for k = 1, 2, . . . n, and all real t

ϕ̂k = EesX̃k +
k−1∑
j=1

Ê(esX̃j − 1)(esX̃j+1 − 1) . . . (esX̃k − 1)
ϕ̂jϕ̂j+1 . . . ϕ̂k−1

(3.73)

and

|ϕ̂k − 1| 6 |EesX̃k − 1|+ 2

√
E|esX̃k−1 − 1|2E|esX̃k − 1|2

1− 4wn(z)
6 pk|es − 1|+ 12

√
pkpk−1|es − 1|

6 C(pk + pk−1)|es − 1|, (3.74)

| ln EeitS̃ − λ1(es − 1)| 6 λ1

(
|
∑n
k=1 a2,k|
λ1

+ 90 max
1≤k≤n

√
pk

)
|es − 1|2. (3.75)

Lemma 3.8.2 Let condition (3.72) be satis�ed. Then, for all |t| 6 π,

max{|EeitS̃ |, |D̂(t)|} 6 exp{−Cλ1(es − 1)}.

Proof. Note that

|EeitS̃ | 6
∣∣∣∣ exp

{
λ1(es − 1)

}∣∣∣∣ exp
{
| ln EeitS̃ − λ1(es − 1)|

}
and apply (3.75). The estimate for M̂(t) follows directly from its de�nition and (3.72). �
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Lemma 3.8.3 Let condition (3.72) be satis�ed. Then, for k > 7, we have

ϕ̂k − 1 = pkz + a2,kz
2 + (a3,k − a2,kpk−1)z3

+ (a4,k − a3,k(pk−2 + pk−1) + a2,k(p2
k−1 − a2,k−1))z4

+ (a5,k − a4,k(pk−3 + pk−2 + pk−1) + a3,k(p2
k−1 + p2

k−2 + pk−1pk−2 − a2,k−1 − a2,k−2)
+ a2,k(2a2,k−1pk−1 + a2,k−1pk−2 − a3,k−1))z5

+ (a6,k − a5,k(pk−4 + pk−3 + pk−2 + pk−1)− a4,k(a2,k−1 + a2,k−2 + a2,k−3)
+ a3,k(2a2,k−1pk−1 + 2a2,k−2pk−2 + 2a2,k−1pk−2 + a2,k−2pk−3 + a2,k−2pk−1 − a3,k−1

− a3,k−2) + a2,k(a2,k−1a2,k−2 + a2
2,k−1 + 2a3,k−1pk−1 + a3,k−1pk−2 + a3,k−1pk−3

− a4,k−1))z6 + (a7,k − a5,k(a2,k−1 + a2,k−2 + a2,k−3 + a2,k−4)
− a4,k(a3,k−1 + a3,k−2 + a3,k−3) + a3,k(a2,k−2a2,k−3 + a2

2,k−2

+ 2a2,k−1a2,k−2 + a2
2,k−1 − a4,k−1 − a4,k−2)

+ a2,k(2a2,k−1a3,k−1 + a2,k−2a3,k−1 + a2,k−3a3,k−1 + a2,k−1a3,k−2 − a5,k−1))z7

+ Cθ(p4
k + p4

k−1 + p4
k−2 + p4

k−3 + p4
k−4 + p4

k−5 + p4
k−6 + p4

k−7)|z|4. (3.76)

Moreover, for k = 2, 3, 4, 5, 6 the estimate (3.76) holds with a3,k = a4,k = a5,k = a6,k = = a7,k = 0,
a4,k = a5,k = a6,k = a7,k = 0, a5,k = a6,k = a7,k = 0, a6,k = a7,k = 0, a7,k = 0, respectively.

Proof. Let k > 7. Then from (3.73) we obtain

ϕ̂k − 1 = pkz +
a2,kz

2

ϕ̂k−1
+

a3,kz
3

ϕ̂k−2ϕ̂k−1

a4,kz
4

ϕ̂k−3ϕ̂k−2ϕ̂k−1

+
a5,kz

5

ϕ̂k−4ϕ̂k−3ϕ̂k−2ϕ̂k−1

a6,kz
6

ϕ̂k−5ϕ̂k−4ϕ̂k−3ϕ̂k−2ϕ̂k−1

+
a7,kz

7

ϕ̂k−6ϕ̂k−5ϕ̂k−4ϕ̂k−3ϕ̂k−2ϕ̂k−1

+
k−7∑
j=1

Ê(esX̃j − 1)(esX̃j+1 − 1) . . . (esX̃k − 1)
ϕ̂jϕ̂j+1 . . . ϕ̂k−1

. (3.77)

From Lemma 3.1.9 we obtain

|Ê(esX̃j − 1)(esX̃j+1 − 1) . . . (esX̃k − 1)|

6 2k−j
k∏

m=j

√
E|esX̃m − 1|2

= 2k−j |z|k−j+1√pjpj+1 . . . pk. (3.78)

From (3.74) it follows that

1
|ϕ̂k|

6
1

1− |1− ϕ̂k|
6

5
4
. (3.79)

Consequently, noting that due to (3.72) all pj are very small, from (3.78), (3.79) we get

k−7∑
j=1

Ê(esX̃j − 1)(esX̃j+1 − 1) . . . (esX̃k − 1)
ϕ̂jϕ̂j+1 . . . ϕ̂k−1

6
√
pk−7 . . . pk|z|4

k−7∑
j=1

5k−j
(

1
180

)k−j−8+1

6 C
√
pk−7 . . . pk|z|4

k−7∑
j=1

(
5

180

)k−j
6 C
√
pk−7 . . . pk|z|4 (3.80)
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From (2.35), (3.74) and (3.80) we get

1
ϕ̂k

= 1 + (1− ϕ̂k) + (1− ϕ̂k)2 + Cθ(p3
k + p3

k−1)|z|4

= 1− pkz −
a2,kz

2

ϕ̂k−1
− a3,kz

3

ϕ̂k−1ϕ̂k−2
− a4,kz

4

ϕ̂k−1ϕ̂k−2ϕ̂k−3
− a5,kz

5

ϕ̂k−1ϕ̂k−2ϕ̂k−3ϕ̂k−4
+ (1− ϕ̂k)2

+ Cθ(p3
k + p3

k−1)|z|4 = 1− pkz + (p2
k − a2,k)z2 + (2a2,kpk + a2,kpk−1 − a3,k)z3

+ (a2
2,k + a2,ka2,k−1 + 2a3,kpk + a3,kpk−1 + a3,kpk−2 − a4,k)z4

+ (2a2,ka3,k + a2,ka3,k−1 + a3,ka2,k−1 + a3,ka2,k−2 − a5,k)z5

+ Cθ(p3
k + p3

k−1 + p3
k−2 + p3

k−3 + p3
k−4 + p3

k−5)|z|4. (3.81)

Putting the last expression into (3.77) we complete the proof of Lemma 3.8.3, for k > 7. The cases
k = 2, 3, 4, 5, 6 are proved similarly. �

Lemma 3.8.4 Let condition (3.72) be satis�ed. Then, for k > 7,

d

dt
(ϕ̂k) = ieit

[
pk + 2a2,kz + 3(a3,k − a2,kpk−1)z2

+ 4(a4,k − a3,k(pk−2 + pk−1) + a2,k(p2
k−1 − a2,k−1))z3

+ 5(a5,k − a4,k(pk−3 + pk−2 + pk−1) + a3,k(p2
k−1 + p2

k−2 + pk−1pk−2 − a2,k−1 − a2,k−2)
+ a2,k(2a2,k−1pk−1 + a2,k−1pk−2 − a3,k−1))z4

+ 6(a6,k − a5,k(pk−4 + pk−3 + pk−2 + pk−1)− a4,k(a2,k−1 + a2,k−2 + a2,k−3)
+ a3,k(2a2,k−1pk−1 + 2a2,k−2pk−2 + 2a2,k−1pk−2 + a2,k−2pk−3 + a2,k−2pk−1 − a3,k−1

− a3,k−2) + a2,k(a2,k−1a2,k−2 + a2
2,k−1 + 2a3,k−1pk−1 + a3,k−1pk−2 + a3,k−1pk−3

− a4,k−1))z5 + 7(a7,k − a5,k(a2,k−1 + a2,k−2 + a2,k−3 + a2,k−4)
− a4,k(a3,k−1 + a3,k−2 + a3,k−3) + a3,k(a2,k−2a2,k−3 + a2

2,k−2

+ 2a2,k−1a2,k−2 + a2
2,k−1 − a4,k−1 − a4,k−2)

+ a2,k(2a2,k−1a3,k−1 + a2,k−2a3,k−1 + a2,k−3a3,k−1 + a2,k−1a3,k−2 − a5,k−1))z6
]

+ Cθ(p4
k + p4

k−1 + p4
k−2 + p4

k−3 + p4
k−4 + p4

k−5 + p4
k−6 + p4

k−7)|z|5. (3.82)

Proof. Let k > 7. Then from (3.73) we obtain

d

dt
(ϕ̂k) =

d

dt

(
pkz +

a2,kz
2

ϕ̂k−1
+

a3,kz
3

ϕ̂k−2ϕ̂k−1
+

a4,kz
4

ϕ̂k−3ϕ̂k−2ϕ̂k−1
+

a5,kz
5

ϕ̂k−4ϕ̂k−3ϕ̂k−2ϕ̂k−1

+
a6,kz

6

ϕ̂k−5ϕ̂k−4ϕ̂k−3ϕ̂k−2ϕ̂k−1
+

a7,kz
7

ϕ̂k−6ϕ̂k−5ϕ̂k−4ϕ̂k−3ϕ̂k−2ϕ̂k−1

+
k−7∑
j=1

Ê(esX̃j − 1)(esX̃j+1 − 1) . . . (esX̃k − 1)
ϕ̂jϕ̂j+1 . . . ϕ̂k−1

)
. (3.83)

Noting that due to (3.72) all pj are very small, we get

k−7∑
j=1

Ê(esX̃j − 1)(esX̃j+1 − 1) . . . (esX̃k − 1)
ϕ̂jϕ̂j+1 . . . ϕ̂k−1

6
√
pk−7 . . . pk|z|3

k−7∑
j=1

(k − j + 1)5k−j
(

1
180

)k−j−8

6 C
√
pk−7 . . . pk|z|3

k−7∑
j=1

(k − j + 1)
(

5
180

)k−j
6 C

√
pk−7 . . . pk|z|3 6 C(p4

k−7 + p4
k−6 + p4

k−5 + p4
k−4

+ p4
k−3 + p4

k−2 + p4
k−1 + p4

k)|z|3. (3.84)
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From (3.74), (3.81), (3.84) and Lemma 3.1.10 we get

d

dt

(
a2,kz

2

ϕ̂k−1

)
= ieit

(
2a2,kz − 3a2,kpk−1z

2 + 4a2,k(p2
k−1 − a2,k−1)z3 + 5a2,k(2a2,k−1pk−1

+ a2,k−1pk−2 − a3,k−1)z4 + 6a2,k(a2
2,k−1 + a2,k−1a2,k−2 + 2a3,k−1pk−1 + a3,k−1pk−2

+ a3,k−1pk−3 − a4,k−1)z5 + 7a2,k(2a2,k−1a3,k−1 + a2,k−1a3,k−2 + a3,k−1a2,k−2

)
+ a3,k−1a2,k−3 − a5,k−1)z6 + Cθ(p4

k + p4
k−1 + p4

k−2 + p4
k−3 + p4

k−4 + p4
k−5 + p4

k−6

+ p4
k−7)|z|5, (3.85)

d

dt

(
a3,kz

3

ϕ̂k−1ϕ̂k−2

)
= ieit

(
3a3,kz

2 − 4(a3,kpk−1 − a3,kpk−2)z3 + 5a3,k(p2
k−1 + p2

k−2

+ p2
k−2 + pk−1pk−2 − a2,k−1 − a2,k−2)z4 + 6a3,k(2a2,k−2pk−2 + a2,k−2pk−3

+ a2,k−2pk−1 + 2a2,k−1pk−2 + 2a2,k−1pk−1 − a3,k−1 − a3,k−2)z5

+ 7a3,k(a2
2,k−2 + 2a2,k−1a2,k−2 + a2,k−2a2,k−3 + a2

2,k−1 − a4,k−1 − a4,k−2)z6
)

+ Cθ(p4
k + p4

k−1 + p4
k−2 + p4

k−3 + p4
k−4 + p4

k−5 + p4
k−6 + p4

k−7)|z|5, (3.86)

d

dt

(
a4,kz

4

ϕ̂k−1ϕ̂k−2ϕ̂k−3

)
= ieit

(
4a4,kz

3 − 5a4,k(pk−1 + pk−2 + pk−3)z4 − 6a4,k(a2,k−1

+ a2,k−2 + a2,k−3z
5)− 7a4,k(a3,k−1 + a3,k−2 + a3,k−3)z6

)
+ Cθ(p4

k + p4
k−1 + p4

k−2

+ p4
k−3 + p4

k−4 + p4
k−5 + p4

k−6 + p4
k−7)|z|5, (3.87)

d

dt

(
a5,kz

5

ϕ̂k−1ϕ̂k−2ϕ̂k−3ϕ̂k−4

)
= ieit

(
5a5,kz

4 − 6ieita5,kz
5(pk−1 + pk−2 + pk−3 + pk−4)|z|)

− 7a5,kz
6(a2,k−1 + a2,k−2 + a2,k−3 + a2,k−4)

)
+ Cθ(p4

k + p4
k−1 + p4

k−2 + p4
k−3

+ p4
k−4 + p4

k−5 + p4
k−6 + p4

k−7)|z|5, (3.88)

d

dt

(
a6,kz

6

ϕ̂k−1ϕ̂k−2ϕ̂k−3ϕ̂k−4ϕ̂k−5

)
= 6ieita6,kz

5 + Cθ(p4
k + p4

k−1

+ p4
k−2 + p4

k−3 + p4
k−4 + p4

k−5 + p4
k−6 + p4

k−7)|z|5, (3.89)

d

dt

(
a7,kz

7

ϕ̂k−1ϕ̂k−2ϕ̂k−3ϕ̂k−4ϕ̂k−5ϕ̂k−6

)
= 7ieita7,kz

6 + Cθ(p4
k + p4

k−1

+ p4
k−2 + p4

k−3 + p4
k−4 + p4

k−5 + p4
k−6 + p4

k−7)|z|5. (3.90)

Putting the (3.84)-(3.90) into (3.83)we complete the proof Lemma 3.8.4 for k > 7. The cases
k = 2, 3, 4, 5, 6 are proved similarly . �
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Lemma 3.8.5 Let condition (3.72) be satis�ed. Then, for k > 7,

lnϕk = pkz +
(
a2,k −

1
2
p2
k

)
z2 +

(
a3,k − a2,k(pk + pk−1) +

1
3
p3
k

)
z3

+
(
a4,k − a3,k(pk + pk−1 + pk−2) + a2,k(p2

k + p2
k−1 + pkpk−1 −

1
2
a2,k − a2,k−1)

)
z4

+
(
a5,k − a4,k(pk−3 + pk−2 + pk−1 + pk) + a3,k(pkpk−1 + pkpk−2 + pk−1pk−2 + p2

k

+ p2
k−1 + p2

k−2 − a2,k − a2,k−1 − a2,k−2) + a2,k(a2,kpk + a2,kpk−1 + a2,k−1pk

+ 2a2,k−1pk−1 + a2,k−1pk−2 − a3,k−1)
)
z5

+
(
a6,k − a5,k(pk−4 + pk−3 + pk−2 + pk−1 + pk)− a4,k(a2,k−3 + a2,k−2 + a2,k−1 + a2,k)

+ a3,k(a2,k−1pk + a2,k−2pk + 2a2,kpk + 2a2,kpk−1 + a2,kpk−2 + 2a2,k−1pk−1

+ 2a2,k−2pk−2 + 2a2,k−1pk−2 + a2,k−2pk−3 + a2,k−2pk−1 −
1
2
a3,k − a3,k−1 − a3,k−2)

+ a2,k(a2,ka2,k−1 + a2,k−1a2,k−2 + a2
2,k−1 + a3,k−1pk + 2a3,k−1pk−1 + a3,k−1pk−2

+ a3,k−1pk−3 − a4,k−1 +
1
3
a2

2,k)
)
z6

+
(
a7,k − a5,k(a2,k + a2,k−1 + a2,k−2 + a2,k−3 + a2,k−4)− a4,k(a3,k + a3,k−1 + a3,k−2

+ a3,k−3) + a3,k(2a2,k−1a2,k−2 + a2,k−2a2,k−3 + a2
2,k−1 + a2

2,k−2 − a4,k−1 − a4,k−2)
+ a2,k(a2,ka3,k−1 + 2a2,k−1a3,k−1 + a2,k−2a3,k−1 + a2,k−3a3,k−1 + a2,k−1a3,k−2 − a5,k−1)
+ a2,ka3,k(a2,k + 2a2,k−1 + a2,k−2)

)
z7

+ Cθ(p4
k + p4

k−1 + p4
k−2 + p4

k−3 + p4
k−4 + p4

k−5 + p4
k−6 + p4

k−7)|z|4.

Proof. From (3.74) we obtain

ln ϕ̂k = (ϕ̂k − 1)− (ϕ̂k − 1)2

2
+

(ϕ̂k − 1)3

3
+ Cθ(p4

k + p4
k−1)|ez − 1|4.

To complete the proof one needs to apply Lemma 3.8.5 . �

Lemma 3.8.6 Let condition (3.72) be satis�ed. Then, for k > 7,

d

dt

(
lnϕk

)
= ieit

[
pk +

(
2a2,k − p2

k

)
z +

(
3a3,k − 3a2,k(pk + pk−1) + p3

k

)
z2

+ 4
(
a4,k − a3,k(pk + pk−1 + pk−2) + a2,k(p2

k + p2
k−1 + pkpk−1 −

1
2
a2,k − a2,k−1)

)
z3

+ 5
(
a5,k − a4,k(pk−3 + pk−2 + pk−1 + pk) + a3,k(pkpk−1 + pkpk−2 + pk−1pk−2 + p2

k

+ p2
k−1 + p2

k−2 − a2,k − a2,k−1 − a2,k−2) + a2,k(a2,kpk + a2,kpk−1 + a2,k−1pk

+ 2a2,k−1pk−1 + a2,k−1pk−2 − a3,k−1)
)
z4

+ 6
(
a6,k − a5,k(pk−4 + pk−3 + pk−2 + pk−1 + pk)− a4,k(a2,k−3 + a2,k−2 + a2,k−1 + a2,k)

+ a3,k(a2,k−1pk + a2,k−2pk + 2a2,kpk + 2a2,kpk−1 + a2,kpk−2 + 2a2,k−1pk−1

+ 2a2,k−2pk−2 + 2a2,k−1pk−2 + a2,k−2pk−3 + a2,k−2pk−1 −
1
2
a3,k − a3,k−1 − a3,k−2)

+ a2,k(a2,ka2,k−1 + a2,k−1a2,k−2 + a2
2,k−1 + a3,k−1pk + 2a3,k−1pk−1 + a3,k−1pk−2

+ a3,k−1pk−3 − a4,k−1 +
1
3
a2

2,k)
)
z5

+ 7
(
a7,k − a5,k(a2,k + a2,k−1 + a2,k−2 + a2,k−3 + a2,k−4)− a4,k(a3,k + a3,k−1 + a3,k−2

+ a3,k−3) + a3,k(2a2,k−1a2,k−2 + a2,k−2a2,k−3 + a2
2,k−1 + a2

2,k−2 − a4,k−1 − a4,k−2)
+ a2,k(a2,ka3,k−1 + 2a2,k−1a3,k−1 + a2,k−2a3,k−1 + a2,k−3a3,k−1 + a2,k−1a3,k−2 − a5,k−1)
+ a2,ka3,k(a2,k + 2a2,k−1 + a2,k−2)

)
z6
]

+ Cθ(p4
k + p4

k−1 + p4
k−2 + p4

k−3 + p4
k−4 + p4

k−5 + p4
k−6 + p4

k−7)|z|3.
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Using (3.81) and (3.82) and Lemma 3.8.6 we get the stated of Lemma. �

Lemma 3.8.7 Let condition (3.72) be satis�ed. Let A3 =
∑n
k=3 a3,k −

∑n
k=2 a2,k(pk + pk−1) + 1

3λ3

and A2(t) =
(∑n

k=2 a2,k − 1
2λ2

)
, then

‖e0.9λU+tA2U
2
‖ 6 C (3.91)

and

‖e0.9λU+A2U
2+tA3U

3
‖ 6 C. (3.92)

Proof. The estimates are provided similarly, so we give the details of (3.92). In view of Lemma
3.1.4 and (3.72), we see that

‖e0.9λU+A2U
2+A3tU

3
‖ =

∥∥∥e0.9λU
∞∑
r=0

(A2U
2 +A3tU

3)r

r!

∥∥∥
=

∥∥∥e0.9λU +
∞∑
r=1

e0.9λU (A2U
2 +A3tU

3)r

r!

∥∥∥
6 1 +

∞∑
r=1

1
r!

∥∥∥e0.9λUr(A2U
2 +A3tU

3)
∥∥∥r

6 1 +
∞∑
r=1

1
r!

∥∥∥e0.9λUrU2
∥∥∥(|A2|+ 2|A3|)r

6 1 +
∞∑
r=1

1
r!

(|A2|+ 2|A3|)r
(

3r
0.9eλ

)r
6 1 +

∞∑
r=1

er

rr
√

2πr

(
3(|A2|+ 2|A3|)

0.9λ

)r
rr

er
. (3.93)

We used the facts ‖ exp 0, 9λU‖ = 1 and ‖U‖ 6 2. Applying condition (3.72), we obtain

(
3(|A2|+ 2|A3|)

0.9λ

)
< 1. (3.94)

The proof is completed. �

3.9 Proof of Theorems 2.4.1�2.4.5

Proof of Theorem 2.4.3. Applying Lemma's 3.8.2, 3.8.5 and 3.1.1 we obtain

‖L(S̃)−M3‖∞ 6 C
∫ π

−π
|EeitS̃ − M̂3(t)|dt

6 C

∫ π

−π
exp{−Cλt2}| ln EeitS̃ − ln M̂3(t)|dt

6 C

∫ π

0

e−Cλt
2
[R4|t|4 +R5|t|5 +R6|t|6 +R7|t|7]dt.
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Let λ > 1 and β = max(1,
√
λ). Applying Lemma's 3.8.2, 3.1.1, 3.8.5 and 3.8.6 we obtain

‖L(S̃)−M3‖2 6 C
∫ π

−π

(
β|EeitS̃ − M̂3(t)|2

+
1
β

∣∣∣∣(e−itλ|EeitS̃ − M̂3(t)|
)′∣∣∣∣2dt

)
6 C

∫ π

0

(
e−Cλt

2
β
[
R2

4|t|8 +R2
5|t|10 +R2

6|t|12 +R2
7|t|14

]
+ e−Cλt

2 1
β

[
R2

4|t|6 +R2
5|t|8 +R2

6|t|10 +R2
7|t|12

])
dt.

Let λ > 1 and β = max(1,
√
λ). Applying Lemma's 3.8.2, 3.1.1 and Lemma's 3.8.5, 3.8.6 where

exiting expressions are divided by x, also using simple 1.1 equality we obtain

‖L(S̃)−M3‖2W 6 C
∫ π

−π

(
β|EeitS̃ − M̂3(t)|2

+
1
β

∣∣∣∣(e−itλ|EeitS̃ − M̂3(t)|
)′∣∣∣∣2dt

)
6 C

∫ π

0

(
e−Cλt

2
β
[
R2

4|t|6 +R2
5|t|8 +R2

6|t|10 +R2
7|t|12

]
+ e−Cλt

2 1
β

[
R2

4|t|4 +R2
5|t|6 +R2

6|t|8 +R2
7|t|10

])
dt.

where

R4 =
n∑
k=1

(
p4
k + |a2,k|(p2

k + |a2,k|) + |a3,k|pk + |a4,k|
)
,

R5 =
n∑
k=1

(
pka

2
2,k + |a2,ka3,k|+ |a3,k|p2

k + |a4,k|pk + |a5,k|
)
,

R6 =
n∑
k=1

(
|a2,ka3,k|pk + a2

3,k + |a2,ka4,k|+ |a2,k|3 + |a5,k|pk + |a6,k|
)
,

R7 =
n∑
k=1

(
a2

2,k|a3,k|+ |a3,ka4,k|+ |a2,ka5,k|+ |a7,k|
)
.

�

Proof of Theorem 2.4.1 and Theorem 2.4.2. The proof of Theorem 2.4.1 and Theorem 2.4.2
are similar to the proof of Theorem 2.4.3, the only di�erence is that one should use shorter asymp-
totic expansion. �

Proof of Theorems 2.4.4 and 2.4.5. All estimates are proved similarly, therefore we give the
details of the proof of (2.47) only. We have

‖L(S̃)−M2(I +M21U
3)‖ 6 ‖L(S̃)−M3‖+ ‖M3 −M2(I +M21U

3)‖.
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Applying Lemma 3.8.7 and the properties of the total variation norm (see Introduction), we get

‖M3 −M2(I +M21U
3)‖ = ‖eλU+M11U

2(
eM21U

3
− I −M21U

3
)
‖

= ‖M2
21U

6

∫ 1

0

eλU+M11U
2+tM21U

3
(1− t)dt‖

6 ‖M2
21U

6e0,1λx‖
∫ 1

0

‖eλU+M11U
2+tM21U

3
‖(1− t)dt

6 C‖M2
21U

6e0,1λU‖.

The proof is completed by applying Lemma 3.1.4. �
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