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Joint Discrete Universality in the Selberg-Steuding Class and
Non-Trivial Zeroes of the Riemann Zeta-Function

Abstract

In this thesis, the approximation property of a certain class of zeta-functions is studied. It is
shown that L-functions from the Selberg-Steuding class S are jointly universal in the Voronin sense
concerning discrete shifts involving the non-trivial zeroes of the Riemann zeta-function ζ(s), or, more
precisely, we approximate simultaneously any collection of non-vanishing analytic functions on compact
subsets by using shifts L(s + iγkhj) with accuracy ε > 0. Here γk are the imaginary parts of the non-
trivial zeroes of the function ζ(s). Also, a modification of this theorem is obtained, i.e., we extend the
result to positive density and show that the limit exists for all but at most countably many ε > 0. These
theorems under the weak Montgomery pair correlation conjecture and certain linear independence for
the fixed hj ’s are shown. The proof involves the application of Mergelyan’s approximation theorem
and a limit theorem in the space of analytic functions.

Key words: approximation, discreteness, joint universality, non-trivial zeroes, Riemann zeta-function,

Selberg-Steuding class, weak convergence, universality.

Selbergo-Štoidingo klasės diskretus jungtinis universalumas ir
netrivialūs Rymano dzeta funkcijos nuliai

Santrauka

Šiame darbe nagrinėjama aproksimavimo tam tikra dzeta funkcijų klase savybė. Įrodoma, kad
L funkcijos iš Selbergo-Štoidingo klasės S yra universalios Voronino prasme, kai postūmių aibė su-
daroma panaudojant Rymano dzeta funkcijos ζ(s) netrivialiuosius nulius. Tiksliau pasakius, darbe
yra nagrinėjamas vienalaikis analizinių, nelygių nuliui funkcijų rinkinių aproksimavimas L(s + iγkhj)
postūmiais ε > 0 tikslumu; čia γk – Rymano dzeta funkcijos ζ(s) netrivialių nulių menamosios dalys.
Taip pat įrodoma šios teoremos modifikacija išplečiant rezultatą teigiamam tankiui, t. y. paro-
dome, kad egzistuoja riba visiems ε > 0, išskyrus daugiausia skaičią jų aibę. Šios teoremos yra
įrodomos pareikalaujant, kad būtų išpildytos dvi sąlygos: teisinga silpnoji Montgomerio porų kore-
liacijos hipotezė ir tam tikra fiksuotų hj tiesine nepriklausomybe. Įrodymui naudojama Mergeliano
aproksimacijos teorema ir ribinė teorema analizinių funkcijų erdvėje.

Raktiniai žodžiai: aproksimavimas, diskretumas, jungtinis universalumas, netrivialūs nuliai, Ry-

mano dzeta funkcija, Selbergo-Štoidingo klasė, silpnasis konvergavimas, universalumas.
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Notation

N the set of positive integer numbers

N0 the set of non-negative integer numbers

Z the set of integer numbers

P the set of prime numbers

Q the set of rational numbers

R the set of real numbers

R+ the set of positive real numbers

C the set of complex numbers

n, m natural numbers

s = σ + it a complex number, i – imaginary unit

R(s) = σ real part of s

I(s) = t imaginary part of s

gcd(a, b) greatest common divisor of a and b

lim inf
T →∞

xT lower density of xT

lim sup
T →∞

xT upper density of xT

1A(x) indicator function of the set A

meas{A} Lebesgue measure of a set A ⊂ R

# {A} cardinality of a set A

A × B Cartetisian product of sets A and B

f(x) ∼ g(x), x → ∞ asymptotic equivalence of functions f(x) and g(x) as

x → ∞, i.e., lim
x→∞

f(x)/g(x) = 1.

f(x) ≪a g(x) or f = O(g(x)) |f(x)| ≤ C(a)g(x)

log a natural logarithm of a

D(a, b) the strip {s ∈ C : a < σ < b} for a < b, a, b ∈ R

K(a, b) the set of compact subsets of the strip D(a, b) with con-

nected complements

Ha,b(K) the set of continuous functions on K and analytic in its

interior

H0
a,b(K) the subclass of non-vanishing functions of Ha,b(K)
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Introduction

P.G.L. Dirichlet is considered the pioneer of analytic number theory. In 1837, he proved

[24] what is now commonly known as Dirichlet’s prime number theorem. It states that arith-

metic progressions of the form an + b, a, b ∈ N, gcd(a, b) = 1, contain infinitely many prime

numbers. To prove the theorem, Dirichlet went “beyond” the bounds of integers and employed

mathematical analysis, limits, and continuity. This gave rise to a branch of mathematics called

analytic number theory, which investigates problems of integers using real and complex num-

bers. More precisely, Dirichlet first defined a complex valued function, now known as the

Dirichlet L-function,

L(s, χ) =
∞∑

m=1

χ(m)
ms

, s = σ + it, σ > 1, (1)

where χ(m) : Z → C is an arithmetic function called the Dirichlet character, and proved that,

for a non-trivial Dirichlet character, it is nonzero at s = 1 (the full proof can be found in [6]).

Since the XIX century, many similar functions to (1), named zeta- or L-functions, have been

defined [21, Chapter 450]. All of these functions can be expressed by the generalized Dirichlet

series
∞∑

n=1
ane−λns (2)

converging on some half-plane of the complex numbers. Here {an} is some sequence of com-

plex numbers, and {λn} is a strictly increasing non-negative sequence of real numbers. The

simplest zeta-function, originally discovered by L. Euler, who only analysed the function with

real argument, is called the Riemann zeta-function

ζ(s) =
∞∑

n=1

1
ns

, σ > 1.

It is named after B. Riemann, who proved many properties of the function with complex

argument in his paper [8] in an attempt to prove the prime number theorem.
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One of the most important areas of study in analytic number theory is the non-trivial zeroes

of the Riemann zeta-function ζ(s). Zeroes of the form s = −2n, n ∈ N, are called the trivial

zeroes of function ζ(s). All other zeroes are called non-trivial, and it is known that they all

lie in the so called critical strip {s ∈ C : 0 < σ < 1}. One importance of the zeroes comes from

the derivation made by Riemann on the explicit expression of the prime counting function π(s)

over the zeroes of ζ(s). Also, Riemann conjectured that all of the non-trivial zeroes lie on the

line σ = 1/2, which is called the critical line. Therefore, the difficulty in finding a proof for the

Riemann hypothesis and its relation with the prime counting function π(x) has attracted much

attention to the analysis of the non-trivial zeroes of ζ(s).

One such analysis of the zeroes is the number of zeroes up to some imaginary part T

in the critical strip {s ∈ C : 0 < σ < 1, 0 < t < T} (denote it by N(T )). Then the Riemann-

von Mangoldt formula is

N(T ) = T

2π
log T

2πe
+ O(log T ). (3)

It was first discovered by Riemann and later proved by H.C.F. von Mangoldt (see [10, Theorem

9.4]). An important consequence follows from this formula, which will be needed later in this

work. If we order the non-trivial zeroes ρk = βk + iγk of ζ(s), such that γk+1 ≥ γk, then it

follows that (see [10, (9.4.4)])

γk ∼ 2πk

log k
, k → ∞. (4)

In 1975, S.M. Voronin first proved [32] that any non-vanishing analytic function can be

approximated uniformly by shifts of the Riemann zeta-function ζ(s+iτ) in the critical strip, this

property is now called the universality property of a zeta- or L-functions. The modern version

of Voronin’s theorem can be formulated in terms of positive lower density. For this purpose,

some preliminary notation is needed. Let D(a, b) = {s ∈ C : a < σ < b}, and meas{A} denotes

the Lebesgue measure of the set A ⊂ R. Also, let K(a, b) be the class of compact subsets

of the strip D(a, b) with connected complements. Let, for K ∈ K(a, b), Ha,b(K) be the class

of continuous functions on K that are analytic in the interior of K, and let H0
a,b(K) be the

subclass of non-vanishing functions of Ha,b(K).

Theorem A. Let K ⊂ D(1/2, 1) is a compact set with connected complement, and f(s) be a

continuous non-vanishing continuous function on K and analytic in the interior of K. Then,
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for every ε > 0, it holds an inequality

lim inf
T →∞

1
T

meas
{

τ ∈ [0, T ] : sup
|s|≤r

|ζ (s + iτ) − f(s)| < ε

}
> 0.

The proof of the theorem can be found in [16, Theorem 1.7] or [2, Theorem 6.5.2]. A key

role in the proof plays the fact that the function ζ(s) can be written as the Euler product, i.e.,

ζ(s) =
∏
p∈P

(
1 − 1

ps

)−1

, σ > 1,

where P is the set of prime numbers. Later B. Bagchi improved [9] Voronin’s result to arbitrary

compact sets in the right-half of the critical strip with connected complement. He also proved

the result in terms of probability theory, which relies heavily on the weak convergence in limit

theorems.

After Voronin and Bagchi the property of universality has been proven for many other

zeta- and L-functions. In Voronin’s original paper [32] he also proved that the universality

property holds for the Dirichlet L-function L(s, χ). Voronin in his doctoral thesis [31] was

also the first to prove the so-called joint universality property for L(s, χ)’s. More precisely,

that for a collection of non-equivalent characters their corresponding Dirichlet L-functions can

simultaneously approximate a collection of non-vanishing analytic functions [16]. Again, Bagchi

proved this result in a different form and the strongest form of this result is as follow.

Theorem B. Let χ1 mod q1, ..., χr mod qr be pairwise non-equivalent Dirichlet characters,

and, for each 1 ≤ j ≤ r, let Kj ∈ K
(

1
2 , 1

)
and fj(s) ∈ H0

1
2 ,1(Kj). Then, for all ε > 0,

lim inf
T →∞

1
T

meas
{

τ ∈ [0, T ] : max
1≤j≤r

max
s∈Kj

|L (s + iτ, χj) − fj(s)| < ε

}
> 0.

Also, it turns out, that one can change “lim inf” into “lim” for all but at most countably

many ε > 0. This was first shown for the Riemann zeta-function ζ(s) by J.-L. Mauclaire

[19], and independently by A. Laurinčikas and L. Meška [3]. More precisely, they proved the

following theorem.

Theorem C. Let K ∈ K
(

1
2 , 1

)
and f(s) ∈ H0

1
2 ,1(K). Then, for all but at most countably many

ε > 0, it holds

lim
T →∞

1
T

meas
{

τ ∈ [0, T ] : sup
s∈K

|ζ (s + iτ) − f(s)| < ε

}
> 0.
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The universality described above is of the continuous kind. In 1980, A. Reich proved [5]

universality for a type of zeta-function generalising ζ(s), called the Dedekind zeta-function.

Discrete universality deals with the shifts restricted to an arithmetic progression {hk} for fixed

real h ∈ R+. Bagchi in his thesis also proved from the results of Reich an analogous discrete

version of the continuous joint universality theorem for the Dirichlet L-function.

Theorem D. Let χ1 mod q1, ..., χr mod qr be pairwise non-equivalent Dirichlet characters,

and, for each 1 ≤ j ≤ r, let Kj ∈ K
(

1
2 , 1

)
and fj(s) ∈ H0

1
2 ,1(Kj). Then, for all h ∈ R+ and all

ε > 0,

lim inf
N→∞

1
N

#
{

1 ≤ k ≤ N : max
1≤j≤r

max
s∈Kj

|L (s + ihk, χj) − fj(s)| < ε

}
> 0.

Similarly, one can change the arithmetic progressions {hk} into more complex sequences,

and it turns out that this is not trivial. The first progress in this direction was made in [1]

for the Riemann zeta-function by A. Dubickas and A. Laurinčikas. They looked at sequences

of the form {kαh} with fixed 0 < α < 1 and h > 0. More precisely, they proved the following

statement.

Theorem E. Let K ∈ K
(

1
2 , 1

)
and f(s) ∈ H0

1
2 ,1(K), and suppose that 0 < α < 1 and h > 0.

Then, for all ε > 0,

lim inf
N→∞

1
N

#
{

1 ≤ k ≤ N : sup
s∈K

|ζ (s + ikαh) − f(s)| < ε

}
> 0.

An important extension of this was later proven by Ł. Pańkowski [20] for the Dirichlet

L-functions with joint shifts of the form L(s + iαjk
aj logbj k, χj), where, for each 1 ≤ j ≤ r,

αj ∈ R, aj ∈ R+, bj ∈ R if aj /∈ Z, and bj ∈ R \ (0, 1] if aj ∈ N, and aj ̸= ak and bj ≠ bk if

k ̸= j.

Not too long after Bagchi’s doctoral thesis, in 1989, A. Selberg defined [7] a general class of

zeta- and L-functions satisfying certain conditions to study the general properties that these

functions share. One of them is the property of universality, which will be discussed later in

the work.

In this thesis, the aim is to prove a certain joint discrete universality theorem for functions

belonging to a certain extension of the Selberg class, called the Selberg-Steuding class, when

the sequence of shifts is taken to be the the imaginary parts of the non-trivial zeroes of the
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Riemann zeta-function. Also, it is shown that this result can be modified as in Theorem C.

The tasks of this thesis are therefore to

P become familiar with properties of the Selberg-Steuding class;

P analyse current literature on the discrete joint universality property for the Selberg-

Steuding class;

P become familiar with the method used in proving discrete universality;

P formulate the new joint discrete universality theorem;

P prove the required auxiliary probabilistic results needed to prove the formulated theorems;

P by application of the main limit theorem, Mergelyan’s theorem, and properties of weak

convergence prove the formulated theorem.

In the first chapter of the thesis, some elements of the theory regarding general classes

of ordinary Dirichlet series are presented. In the second chapter, the required auxiliary and

relevant results from the literature together with the new formulated theorems are given. In

the third chapter, some needed known properties regarding weak convergence of probability

measures is presented from the literature. Also, in the same chapter, auxiliary lemmas and the

main limit theorem are proved. Finally, in the last chapter, the main universality theorems are

proved.
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Chapter 1

The Selberg-Steuding class

As was stated in the introduction, all zeta- and L-functions can be written as a general

Dirichlet series, but there is no known exact definition for what is a zeta-function, as Huxley puts

it “we know one when we see one” [16]. But one can analyse classes of Dirichlet series satisfying

certain conditions. One such general class was defined by Selberg in 1989 [7], which became

a great deal of interest. This chapter is primarily written following J. Steudings monograph

[16]. To talk about general classes of Dirichlet series we first recall a few results on ordinary

Dirichlet series.

If in (2) we take the sequence {λn} to be simply the sequence {log n}, we obtain a complex

function defined by the Dirichlet series, known as the ordinary Dirichlet series,
∞∑

n=1

an

ns
.

We will assume that the function L(s) has a representation as an ordinary Dirichlet series

on some half-plane of the complex numbers C, i.e.,

L(s) =
∞∑

m=1

a(m)
ms

.

Then we say that L(s) belongs to the Selberg class S if it satisfies the following hypotheses:

10 Ramanujan hypothesis. Coefficients of L(s) satisfy a(m) ≪ mε for every ε > 0.

20 Analytic continuation.There exists a non-negative integer α ∈ N0 such that (s − 1)αL(s)

is an entire function of finite order.

30 Functional equation. L(s) satisfies the equation

ΛL(s) = wΛL(1 − s),
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where

ΛL(s) := L(s)Qs
f∏

j=1
Γ(λjs + µj)

with positive real numbers Q and λj, and with complex numbers µj and w, such that

Rµj ≥ 0 and |w| = 1.

40 Euler product. L(s) can be written as the product

L(s) =
∏
p∈P

Lp(s),

where

log Lp(s) =
∞∑

l=1

b(pl)
pls

with coefficients b(pl) such that b(pl) ≪ pθl for some θ < 1/2.

Steuding in his monograph extensively analysed the Selberg class and extended it in order

to satisfy certain conjectured properties about L-functions in S. For example, it is conjectured

that all L-functions in S are automorphic. He defined a class, now called the Steuding class S̃

as the set of functions L(s) satisfying the following conditions.

i0 Ramanujan hypothesis. The same hypothesis as 10.

ii0 Analytic continuation. There exists a real number σL < 1 such that L(s) has an analytic

continuation on the half-plane σ > σL except for at most a pole at s = 1.

iii0 Finite order. There exists a non-negative constant µL, such that, for all fixed σ > σL and

positive ε,

L(σ + it) ≪ε |t|µL+ε

as |t| → ∞.

iv0 Polynomial Euler product. There exists m ∈ N0 and, for every prime p, there exists a

sequence of complex numbers αj(p), 1 ≤ j ≤ m, such that

L(s) =
∏
p∈P

m∏
j=1

(
1 − αj(p)

ps

)−1

.

v0 Prime mean-square. There exists a positive constant κ such that

lim
x→∞

1
π(x)

∑
p≤x

|a(p)|2 = κ.
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Steuding then showed that the axioms ii0 and iii0 can be deduced from S axiom 20. Only the

two axioms iv0 and v0 cannot be deduced from the axioms of S. However, as he mentions, they

are expected to hold since for all known examples of functions in the Selberg class their Euler

product has the form iv0 and the axiom v0 is a sort of prime number theorem for the coefficients

of the polynomial Euler product. He then proved universality for a subclass of Selberg class

S ∩ S̃, i.e., functions satisfying 20, 30, iv0 and v0. Later in [11] a stronger result was obtained

removing the condition iv0. So, the Selberg-Steuding class, denoted here as S , is referred to

the class of Dirichlet series satisfying conditions 10 to 40 and v0.

An important parameter in the analysis of the structure of S is the degree of L(s) ∈ S ,

which is defined as

dL = 2
f∑
j

λj,

where λj and f are as in the 30 condition of S. For example, an equivalent Riemann-von

Mangoldt formula as in (3) can be obtained. If NL(T ) is the number of zeroes up to some

imaginary part T in the critical strip, one can obtain the following estimate

NL(T ) ∼ dL

π
T log T.

For more details, see [16, Theorem 7.7].
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Chapter 2

Statement of main results

In this chapter, some results necessary in the proof of the main theorems, together with

the related known propositions are presented. Also, the main propositions of the thesis are

formulated.

2.1 Auxiliary propositions

As in the introduction, let {γk : k ∈ N} be the sequence of imaginary parts of the non-trivial

zeros of the Riemann zeta-function ζ(s). Assuming the truth of the Riemann hypothesis,

H. Montgomery studied [13] the distribution of consecutive zeroes of the function ζ(s) and

conjectured the asymptotic pair relation

∑
0<γk,γl<T

2πα1/ log T ≤γk−γl≤2πα2/ log T

1 ∼

 α2∫
α1

(
1 − sin πu

πu

2)
du + δ(α1, α2)

 T

2π
log T

as T → ∞, where α1 < α2 are fixed, and δ(α1, α2) = 1 if 0 ∈ [α1, α2], and δ(α1, α2) = 0

otherwise. In [27], a weaker form of the Montgomery conjecture was defined by R. Garunkštis,

A. Laurinčikas and R. Macaitienė, and now it is called the weak Montgomery pair correlation

conjecture. More precisely, for some constant c, it can be shown that the estimate
∑

0<γk,γl<T
|γk−γl|<c/ log T

1 ≪ T log T, T → ∞, (5)

follows from Montgomery’s pair correlation conjecture.

Now we may state the result obtained in [27].
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Theorem F. Assume that (5) is true, and let K ∈ K
(

1
2 , 1

)
and f ∈ H0

1
2 ,1(K). Then, for every

ε > 0 and h > 0,

lim inf
N→∞

1
N

#
{

1 ≤ k ≤ N : sup
s∈K

|ζ (s + iγkh) − f(s)| < ε

}
> 0.

To prove this theorem one important initial step was to show that the sequence {aγk} is

distributed modulo 1. The importance of this arise in the proof of the limit theorem, which we

will see later. Recall that a sequence {xk : k ∈ N} ⊂ R is called distributed modulo 1 if, for

each interval [a, b) ⊂ [0, 1), the equality

lim
n→∞

1
n

n∑
k=1

1[a,b)({xk}) = b − a

holds, where 1[a,b) is the indicator function of the interval [a, b) and {xk} denotes the fractional

part of xk. Intuitively, it means that the fractional parts of the sequence converge to a uniform

distribution on the interval. An important role in the analysis of uniform distribution modulo

1 is the Weyl criterion (see [12]), which allows such questions about the uniform distribution

of fractional parts to be reduced to bounds of exponential sums.

Theorem 1 (Weyl criterion). A sequence {xk : k ∈ N} ⊂ R is uniformly disitributed modulo 1

if and only if, for all non zero integers m,

lim
n→∞

1
n

n∑
k=1

e2πimxk = 0.

We state the lemma obtained in [27], where this criterion was used.

Lemma 1. The sequence {aγk} with a ̸= 0 is uniformly distributed modulo 1.

Another important result, which connects discrete and continuous mean squares of certain

continuous functions is Gallagher’s lemma.

Lemma 2 (Gallagher). Let T0 and T ≥ δ > 0 be real numbers and T be finite subset of the

interval {T0 − δ/2, T0 + T − δ/2}. Define the counting function

Nδ(x) =
∑
t∈T

|t−x|<δ

1

and let S a complex-valued valued continuous function on [T0, T + T0] having a continuous

derivative on (T0, T + T0). Then

∑
t∈T

N−1
δ (t) |S(t)|2 ≤ 1

δ

T0+T∫
T0

|S(x)|2 dx +

 T0+T∫
T0

|S(x)|2 dx

T0+T∫
T0

|S ′(x)|2 dx


1/2

.
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The proof of this lemma can be found in [15, Lemma 1.4].

Also, for the proof of universality property a key role is played by Mergelyan’s theorem on

the approximation of continuous functions by polynomials.

Theorem 2 (Mergelyan). Let K be a compact subset of C with connected complements. Then

any continuous function f(s) on K, which is analytic in its interior, can be uniformly approx-

imated on K by the polynomials of s, i.e., for every ε > 0, there exists a polynomial p(s) such

that

sup
s∈K

|f(s) − p(s)| < ε.

For the proof of the theorem, see [17].

2.2 Main results

Now we state some helpful results regarding the universality in the Selberg-Steuding class S .

Denote σL = max(1/2, 1 − 1/dL) and, for brevity, DL = D(σL, 1)

The first proof of universality for the Selberg-Steuding class S , as is defined in this thesis,

was obtained by H. Nagoshi and Steuding in [11]. There it was shown that invoking the

condition v0 to the Selberg class S was enough to prove universality of continuous kind for the

function L(s) ∈ S.

Theorem G. Let L(s) ∈ S , K ∈ K(σL, 1) and f(s) ∈ H0
σL,1(K). Then, for all ε > 0,

lim inf
T →∞

1
T

meas
{

τ ∈ [0, T ] : sup
s∈K

|L (s + iτ) − f(s)| < ε

}
> 0.

A general continuous kind joint universality theorem was shown by R. Kačinskaitė, Laurin-

čikas and B. Žemaitienė in [26].

Theorem H. Let L(s) ∈ S , and real algebraic numbers a1, . . . , ar are linearly independent

over the field of rational numbers. For j = 1, . . . , r, let Kj ∈ K(σL, 1) and fj(s) ∈ H0
σL,1(Kj).

Then, for every ε > 0,

lim inf
T →∞

1
T

meas
{

τ ∈ [0, T ] : sup
1≤j≤r

sup
s∈Kj

|L (s + iajτ) − fj(s)| < ε

}
> 0.
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In [4], discrete universality for L(s) ∈ S with shifts of the form L (s + ikh) and the same

conditions as in Theorem G was obtained by Laurinčikas and Macaitienė. An important part

in the proof of the discrete case was the multiset

L(P, h, π) = {(log p : p ∈ P) , 2π/h} .

Two separate cases needed to be analysed: when L(P, h, π) is linearly independent over the

rational numbers Q and when they are linearly dependant over Q. In the case of the discrete

joint universality, when many different positive fixed h1, . . . , hr are taken, denote

L(P, h, 2π) = {(hj log p : p ∈ P), j = 1, . . . , r; 2π} ,

where h = (h1, . . . , hr). With this in mind, an analogous joint discrete version of the discrete

universality for L(s) ∈ S was obtained in [29] by Kačinskaitė, Laurinčikas and Žemaitienė.

The main result for which the generalized version in this thesis is obtained was proved by

Kačinskaitė in [25]. There the discrete approximation by the shifts of L-functions from the

Selberg-Steuding class S was studied when the shifting parameter involves the set {γk} with

using of the weak Montgomery conjecture (5).

Theorem I. Suppose that L(s) ∈ S and estimate (5) holds. Let K ∈ K (σL, 1) and f(s) ∈

H0
σL,1(K). Then, for fixed h > 0 and any ε > 0,

lim inf
N→∞

1
N

#
{

1 ≤ k ≤ N : sup
s∈K

|L (s + iγjh) − f(s)| < ε

}
> 0.

As we have noted, for the majority of these universality theorems, it is also shown that

lim inf can be replaced by lim for all but at most countably many ε > 0.

Now we state two main universality theorems of this thesis.

Theorem 3. Suppose that L(s) ∈ S , the estimate (5) holds, and the set L(P, h, 2π) is linearly

independent over the field of rational numbers Q. For j = 1, . . . , r, let Kj ∈ K (σL, 1) and

fj(s) ∈ H0
σL,1(Kj). Then, for every h ∈

(
R+
)r

and every ε > 0,

lim inf
N→∞

1
N

#
{

1 ≤ k ≤ N : sup
1≤j≤r

sup
s∈Kj

|L(s + iγkhj) − fj(s)| < ε

}
> 0.
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Theorem 4. Under the same conditions as in Theorem 3 the limit

lim
N→∞

1
N

#
{

1 ≤ k ≤ N : sup
1≤j≤r

sup
s∈Kj

|L(s + iγkhj) − fj(s)| < ε

}
> 0

exists for all but at most countably many ε > 0.

For the proof of these theorems, a joint discrete limit theorem in the space of analytic

functions is used and will be discussed in the next chapter of the thesis.
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Chapter 3

Limit theorem

In this chapter, the main bulk of the work needed to prove the Theorem 3 is presented since

the proof relies heavily on a limit theorem of weakly convergent probability measures.

3.1 Some elements from the theory of weak convergence

of probability measures

This part of the thesis is primarily written following Laurinčikas’ monograph [2] since we

need some preliminaries from classical probability and measure theories.

Firstly, we say that a sequence of probability measures {Pn : n ∈ N} defined on (S, B (S))

(ussually abbreviated as probability measures Pn on (S, B (S)), omitting that it is a sequence)

converges weakly to a probability measure P on (S, B (S)) as n → ∞ if for all real bounded

continuous functions f on S, ∫
S

fdPn →
∫
S

fdP, n → ∞.

Sometimes weak convergence is denoted as Pn =⇒ P . A useful result in proving weak conver-

gence of measures is due to Billingsley [22, Theorem 2.1].

Theorem 5. Let Pn and P be probability measures on (S, B (S)). Then the three assertions

are equivalent:

i0 Pn =⇒ P ;

ii0 lim
n→∞

Pn(A) = P (A) for all continuity sets of P , i. e., sets A ∈ B (S), such that P (∂A) = 0;
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iii0 lim inf
n→∞

Pn(G) ≥ P (G) for all open sets G.

Another well known result is Tikhonov’s theorem for compact topological spaces (for the

proof, see [18, Theorem 5.13]).

Theorem 6 (Tikhonov). A cartesian product of an arbitrary family of compact topological

spaces is compact with respect to the product topology.

Here the product topology or sometimes called Tikhonov topology is the weakest topology

with respect of which all the projections are continuous, i.e., the intersection of all topolo-

gies, such that the projections are continuous, defined on the Cartesian product of compact

topological spaces.

A very important type of the measure is the Haar measure, which is an invariant Borel

measure on a compact topological group. The question of existence of such a measure is

answered in the following theorem (see [30, Theorem 5.14] for the proof).

Theorem 7. On every compact topological group exists a unique probability Haar measure.

The next theorem is Lévys continuity theorem, allowing the study of limit distributions by

looking at their characteristic functions (for the proof see [23, Theorem 26.3]).

Theorem 8. Let Pn and P be probability measures with characteristic functions respectively

φn(t) and φ(t). Then Pn =⇒ P , if and only if φn(t) → φ(t) for all t.

Theorem 9 ([22, Theorem 5.1]). Let h be a mapping between metric spaces S and S ′, and Pn

and P probability measures defined on (S, B (S)). If Pn =⇒ P and P (Dh) = 0, where Dh is the

set of discontinuities of h, then Pnh−1 =⇒ Ph−1.

Here Ph−1(A) = P (h−1(A)).

Now denote D−→ convergence by distribution. The following result will be used in order to

prove the main limit theorem.

Theorem 10 ([22, Theorem 4.2]). Let, for each N ∈ N, YN , XN,1, XN,2, . . . be a sequence of

random elements on S. Suppose, that, for each n, XN,n
D−→ Xn as N → ∞, and that Xn

D−→ X

as n → ∞. Also, let, for every ε > 0,

lim
n→∞

lim sup
N→∞

P {ϱ (XN,n, Yn) ≥ ε} = 0.

Then Yn
D−→ X as N → ∞.
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3.2 Auxiliary results on limit theorems

In this section, limit lemmas on a torus are proven. Let

Ω =
∏
p∈P

Xp

be the infinite-dimensional torus, where Xp = {s ∈ C : |s| = 1} for all primes p ∈ P.

Since each Xp is a compact set then,by the Tikhonov theorem, Ω with the product topology

and pointwise multiplication is a compact topological Abelian group. Now we construct the

set Ωr = Ω1 × · · · × Ωr, where Ωj = Ω, j = 1, . . . , r. Then, by the Tikhonov theorem again,

we have that Ωr is a compact topological group. Denote by ω = (ω1, . . . , ωr), ωj ∈ Ωj, ωj =

(ωj(p) : p ∈ P), j = 1, . . . , r, where ωj(p) is the projection of ωj ∈ Ωj to the coordinate space

Xp, the elements of Ωr. So by Theorem 7 there is a unique probability Haar measure mHj on

each (Ωj, B (Ωj)), j = 1, . . . , r, which are products of Haar measures on the coordinate spaces

mHj {ω : ω ∈ A} =
∏
p∈P

mHjp {ω : ωj(p) ∈ Ajp} ,

where Ajp is the projection of A ∈ B (Ωj) onto Xp. Therefore, each {ωj(p) : p ∈ P} is a sequence

of independent complex-valued random elements on the probability space (Ωj, B (Ωj) , mHj).

Moreover, by Theorem 7 there is a unique probability Haar measure mH on (Ωr, B (Ωr)), which

is the product of Haar measures mHj:

mH(A) = mH1(A1) · · · · · mHr(Ar), ∀A = A1 × . . . × Ar ∈ B (Ωr) .

Further, let

ωj(m) =
∏

pl∥m

ωl
j(p), m ∈ N,

where pl∥m denotes that pl|m and pl+1 ∤ m. This extends the function ωj(p) to the set of

positive integers.

Recall that the Fourier transform of a certain measure Q on (Ω, B (Ω)) is defined by

g(k) =
∫
Ω

∏∗

p∈P
ω(p)kpdQ,

where the star on the product indicates that only a finite number of kp are non-zeroes and

k = (kp : p ∈ P), and ω(p) denotes the projection of ω ∈ Ω onto Xp as before. We state
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a special case of the Theorem 8 from [2, Theorem 1.3.21]. The proof can be found in [14,

Theorem 1.4.2] as a special case of the continuity theorem for compact Abelian groups.

Theorem 11. Let {Qn} be a sequence of probability measures on (Ω, B (Ω)) and let {gn(k)}

be the sequence of their corresponding Fourier transforms. Then, if for every k vector the

limit lim
n→∞

gn(k) = g(k) exists then there exists a probability measure Q on (Ω, B (Ω)) such that

Qn =⇒ Q and g(k) is its Fourier transform.

Moreover, let H(DL) be the space of analytic functions on DL endowed with the topology

of uniform convergence on compact sets, and denote

Hr(DL) =
r∏

j=1
H(DL).

Now, for a set A ∈ B (Ωr), define the probability measure

QN(A) = 1
N

#
{
1 ≤ k ≤ N :

((
p−iγkh1 : p ∈ P

)
, . . . ,

(
p−iγkhr : p ∈ P

))
∈ A

}
. (6)

We prove a a limit lemma for the measure QN .

Lemma 3. Suppose that the estimate (5) holds and the set L(P, h, 2π) is linearly independent

over Q. Then, QN(A) converges weakly to the Haar measure mH as N → ∞.

Proof. Since Ωr is an Abelian topological group we can define its characters as continuous

homomorphisms χ(ω) : Ωr → C as

χ(ω) =
r∏

j=1

∏∗

p∈P
ω

kjp

j (p)

with integers kjp, where the star indicates that only a finite number of kjp are non-zeroes.

Therefore, the Fourier transform gN(k1, . . . , kr), kj = (kjp : kjp ∈ Z, p ∈ P), j = 1, . . . , r, of

measure QN is following

gN(k1, . . . , kr) =
∫

Ωr

r∏
j=1

∏∗

p∈P
ω

kjp

j (p)dQN(ω)

= 1
N

N∑
k=1

r∏
j=1

∏∗

p∈P
p−ihjkjpγk

= 1
N

N∑
k=1

exp

−iγk

r∑
j=1

hj

∑∗

p∈P
kjp log p

 . (7)
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By Theorem 11, it is sufficient to show that the Fourier transform gN(k1, . . . , kr) letting

N → ∞ gives

lim
N→∞

gN(k1, . . . , kr) =


1, if (k1, . . . , kr) = (0, . . . , 0),

0, otherwise,

(8)

i.e, that the measure QN converges weakly to the Haar measure mH .

From (7) it is obvious that gN(0, . . . , 0) = 1. Now suppose that (k1, . . . , kr) ̸= (0, . . . , 0).

So, there exists j ∈ {1, . . . , r} such that kj ̸= 0. Therefore, there exists a prime number p such

that kjp ̸= 0. Then, since the set L(P, h, 2π) is linearly independent over Q, we have that
r∑

j=1
hj

∑∗

p∈P
kjp log p ̸= 0.

If this is not true, then we would have from (7) that
r∑

j=1
hj

∑∗

p∈P
kjp log p = 2πn

for some n ∈ Z, which contradicts the linear independence of L(P, h, 2π). Therefore, due to

Lemma 1 we have that the sequence 1
2π

γk

r∑
j=1

hj

∑∗

p∈P
kjp log p : k ∈ N


is uniformly distributed modulo 1. From this, together with (7) and the Weyl criterion, we

have that, for (k1, . . . , kr) ̸= (0, . . . , 0),

lim
N→∞

gN(k1, . . . , kr) = 0.

The proof follows since the limit measure is uniquely determined by its Fourier transform,

therefore the right hand side of (8) must be the Haar measure mH on (Ωr, B (Ωr)). ■

Now let θ > 1/2 be a fixed number and put

vn(m; θ) = exp
{

−
(

m

n

)θ
}

, m, n ∈ N.

Define the series

Ln(s) =
∞∑

m=1

a(m)vn(m; θ)
ms

and functions

Ln(s, ωj) =
∞∑

m=1

a(m)ωj(m)vn(m; θ)
ms

, j = 1, . . . , r.
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If L(s) ∈ S , then a(m) ≪ mε for all ε > 0. Since vn(m; θ) decreases exponentially with respect

to m, therefore, Ln(s) and Ln(s, ωj) are absolutely convergent for σ > σa with some σa and

fixed n ∈ N. Let

Ln(s + iγkh) = (Ln(s + iγkh1), . . . , Ln(s + iγkhr)) ,

and

Ln(s, ω) = (Ln(s, ω1), . . . , Ln(s, ωr)) .

Define the probability measure

Pn,N(A) = 1
N

# {1 ≤ k ≤ N : Ln(s + iγkh) ∈ A} , A ∈ B (Hr(DL)) .

Lemma 4. There exists a probability measure Pn on (Hr(DL), B (Hr(DL))) such that Pn,N

converges weakly to Pn as N → ∞.

Proof. Define mappings un(ω) : Ωr → Hr(DL) given by un(ω) = Ln(s, ω). Each series Ln(s, ωj),

j = 1, . . . , r, converges absolutely. This implies that un is a continuous mapping. Therefore

un is measurable in the space (Hr(DL), B (Hr(DL))), i.e., un(ω) are Hr(DL)-valued random

elements. Therefore, every probability measure P on (Ωr, B (Ωr)) induces a unique probability

measure

Pu−1
n (A) = P (u−1

n A), A ∈ B (Hr(DL)) ,

on (Hr(DL), B (Hr(DL))). So, taking the measure (6) we get, that for every A ∈ B (Hr(DL))

Pn,N(A) = 1
N

#
{
1 ≤ k ≤ N :

((
p−iγkhj : p ∈ P

)
, j = 1, . . . , r

)
∈ u−1

n A
}

= QNu−1
n (A).

Therefore, by Lemma 3, the continuity of un and Theorem 9, it follows that Pn,N converges

weakly to Pn = mHu−1
n . ■

Let

L(s, ωj) =
∞∑

m=1

a(m)ωj(m)
ms

, j = 1, . . . , r.

It is known (see Lemma 4.1 in [16]) that, for almost all ωj, the Dirichlet series L(s, ωj) is

uniformly convergent on compact subsets of the strip DL. Therefore, L(s, ωj), j = 1, . . . , r, are

H(DL)-random elements. Also, since the Haar measure mH on (Ωr, B (Ωr)) is the product of the

Haar measures mHj on respectively spaces (Ωj, B (Ωj)), therefore L(s, ω) = (L(s, ω1), . . . , L(s, ωr))
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is an Hr(DL)-random element defined on (Ωr, B (Ωr)). Let PL be the disitribution of L(s, ω),

i.e.,

PL(A) = mH {ω ∈ Ωr : L(s, ω) ∈ A} , A ∈ B (Hr(DL)) .

Lemma 5. The measure Pn = mHu−1
n converges weakly to the measure PL as n → ∞. More-

over, the support of PL is

SL := ({g ∈ H(DL) : g(s) ̸= 0 or g(s) ≡ 0})r . (9)

Proof. The measure Pn coincides with same as in the continuous case (see [26]). Therefore, the

proof is given in Lemma 8 in said paper. While the second part is proven in [26, Lemma 9].

The first proof uses weak convergence in terms of continuity sets by Theorem 5. Firstly, a

certain group is proved to be ergodic, i.e., that the σ-algebra formed by the invariant sets with

respect to mH consists only of sets with measure mH equal 1 or 0. Then a certain random

variable on (Ωr, B (Ωr) , mH) is defined for which ergodicity is implied. Then, by application of

the Birkhoff–Khintchine ergodic theorem (see [2, Theorem 1.6.6]) and Theorem 5, the proof of

first part follows.

The second result we get applying Lemma 5.12 from [16]. ■

Next we prove an approximation lemma on Hr(DL). Firstly, let

L(s + iγkh) = (L(s + iγkh1), . . . , L(s + iγkhr)) .

The topology of uniform convergence on compact sets of DL for Hj(DL) is induced by the

metric

ϱ(f, g) =
∞∑

j=1
2−j

sup
s∈Kj

|f(s) − g(s)|

1 + sup
s∈Kj

|f(s) − g(s)|
, (10)

where f, g ∈ H(DL) and {Kj : j ∈ N} is a sequence of compact subsets of DL. Then, for

g
l
= (gl1, . . . , glr) ∈ Hr(DL), l = 1, 2, define the metric ϱ on Hr(DL),

ϱ(g1, g2) = max
1≤m≤r

ϱ(g1m, g2m).

Lemma 6. Suppose that L(s) ∈ S and the estimate (5) is true. Then, for arbitrary fixed

numbers h1, . . . , hr,

lim
n→∞

lim sup
N→∞

1
N

N∑
k=1

ϱ(L(s + iγkh), Ln(s + iγkh)) = 0.

24



Proof. From the definition of the metric (10) on H(DL) it suffices to show that, for every

compact set K ⊂ DL,

lim
n→∞

lim sup
N→∞

1
N

N∑
k=1

sup
s∈K

|L(s + iγkhj) − Ln(s + iγkhj)| = 0, j = 1, . . . , r. (11)

We fix a compact set K ⊂ DL and positive number h. It is known (see [16, Section 4.4])

that Ln(s) has the following integral representation

Ln(s) = 1
2πi

θ+i∞∫
θ−i∞

L(s + z)ln(z; θ)dz, (12)

where

ln(s; θ) = 1
θ

Γ
(

s

θ

)
ns,

and θ is the same as in the definition of vn(m; θ). There exists δ = δ(K) such that σL + 2δ ≤

σ ≤ 1 − δ for all σ + it ∈ K. Thus, let θ1 = σ − σL − δ > 0 and θ = σL + δ > 1/2. Due to

the poles of the gamma function and axiom 20 of S the integrand in (12) has a simple pole at

z = 0 and a possible simple pole at z = 1 − s. Therefore, by the calculus of residues shifting

the integration path to the left we get

Ln(s) − L(s) = 1
2πi

σ−θ1+i∞∫
σ−θ1−i∞

L(s + z)ln(z; θ)dz + R(s),

where

R(s) = Res
z=1−s

L(s + z)ln(z; θ) = aln(1 − s; θ),

and a = Res
s=1

L(s), and L(s) comes from the residue of the integrand at z = 0. If in axiom 20

α = 0, then R(s) = 0. Hence, for all s = σ + it ∈ K,

Ln(s + iγkh) − L(s + iγkh)

= 1
2πi

∞∫
−∞

L(s + iγkh + σL − σ + δ + iτ)ln(σL − σ + δ + iτ ; θ)dτ + R(s + iγkh)

= 1
2πi

∞∫
−∞

L(σL + δ + iγkh + iτ)ln(σL + δ − s + iτ ; θ)dτ + R(s + iγkh)

≪
∞∫

−∞

|L(σL + δ + iγkh + iτ)| sup
s∈K

|ln(σL + δ − s + iτ ; θ)| dτ + sup
s∈K

|R(s + iγkh)| .
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Therefore,

1
N

N∑
k=1

sup
s∈K

|L(s + iγkhj) − Ln(s + iγkhj)|

≪
∞∫

−∞

(
1
N

N∑
k=1

|L(σL + δ + iγkh + iτ)|
)

sup
s∈K

|ln(σL + δ − s + iτ ; θ)| dτ

+ 1
N

N∑
k=1

sup
s∈K

|R(s + iγkh)| =: IN + ZN . (13)

It is known (see [16, (2.14)]) that, for a fixed σ ∈ (σL, 1),

T∫
−T

|L(σ + it)|2 dt ≪σ,L T. (14)

From the Cauchy integral formula for a point s0 we have

L′(s0) = 1
2πi

∮
C

L(z)
(z − s0)2 dz.

Taking the contour C to be a circle centered at σ + it with radius δ we find

|L′(σ + it)| ≤ 1
2πδ

2π∫
0

∣∣∣L(σ + it + δeiφ)
∣∣∣ dφ.

Taking the maximum of the modulus and by application of the maximum modulus principle

we obtain the estimate

|L′(σ + it)| ≤ 1
δ

|L(σ + it)| .

From here, integrating over [−T, T ] and applying (14), it follows that

T∫
−T

|L′(σ + it)|2 dt ≪σ,L T.

So, we obtain that, for all τ ∈ R and σ ∈ (σL, 1),

T∫
0

|L(σ + iτ + it)|2 dt ≪σ,L T + |τ | and
T∫

0

|L′(σ + iτ + it)|2 dt ≪σ,L T + |τ | . (15)

Now let δ = c/ log c1N
log N

, where c, c1 > 0, and define

Nδ(γk) =
N∑

l=1
|γl−γk|<δ

1.
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Then, from the estimate (4) for the sequence {γk} and Mongomery’s weak conjecture (5), we

obtain the estimate
N∑

k=1
Nδ(γk) =

N∑
k=1

N∑
l=1

|γl−γk|<δ

1 ≪
∑

0<γk,γl≤c1N/ log N

|γk−γl|<c/ log c1N

log N

1 ≪ N. (16)

Next we find
N∑

k=1
|L(σL + δ + iγkh + iτ)| =

N∑
k=1

√
Nδ(γkh)N−1

δ (γkh) |L(σL + δ + iγkh + iτ)| .

Applying Cauchy-Schwarz inequality we obtain

N∑
k=1

√
Nδ(γkh)N−1

δ (γkh) |L(σL + δ + iγkh + iτ)|

≪
(

N∑
k=1

Nδ(γkh)
N∑

k=1
N−1

δ (γkh) |L(σL + δ + iγkh + iτ)|2
)1/2

.

Then, from Gallagher’s lemma and the estimate (16), it follows
(

N∑
k=1

Nδ(γkh)
N∑

k=1
N−1

δ (γkh) |L(σL + δ + iγkh + iτ)|2
)1/2

≪h,L

√
N

log N

c(h)N/ log N∫
γ1

|L(σL + δ + it + iτ)|2 dt

+

 c(h)N/ log N∫
γ1

|L(σL + δ + it + iτ)|2 dt

c(h)N/ log N∫
γ1

|L′(σL + δ + it + iτ)|2 dt


1/2


1/2

.

Finally, from this and the estimates (15), we find

N∑
k=1

|L(σL + δ + iγkh + iτ)| ≪h,δ,L N(1 + |τ |) (17)

Furthermore, it is known that, by application of Stirlings formulas (see [28, Theorem 8.18]), for

the gamma function in some strip σ1 ≤ σ ≤ σ2 of the complex plane, the following estimate

holds

|Γ(σ + it)| ∼
√

2π

|t|
|t|σ e−π|t|/2

(
1 + O(|t|−1)

)
.

From the last, it is not difficult to obtain the estimate

Γ(σ + it) ≪ e−c2|t|, c2 > 0. (18)
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(18) and the definition of ln(s; θ) yield the following estimate for all s ∈ K:

ln(σL + δ − s + iτ ; θ) ≪θ nσL+δ−σ

∣∣∣∣Γ(1
θ

(σL + δ − s + iτ)
)∣∣∣∣

≪θ n−δe− c1
θ

|τ−t| ≪θ,K n−δe−c3|τ |, c3 > 0.

Moreover, the latter estimate and (17) show that

IN ≪δ,L,h,θ,K n−δ

∞∫
−∞

(1 + |τ |) e−c3|τ |dτ ≪δ,L,h,θ,K n−δ. (19)

Applying estimate (18) once more for R(s + iγkh), we get similarly, for all s ∈ K,

R(s + iγkh) ≪θ n1−σe−c4|γkh−t| ≪θ,K n1−σL−2δe−c5γkh, c4, c5 > 0.

Again, due to (4), we obtain that

ZN ≪θ,K,a n1−σL−2δ 1
N

N∑
k=1

e−c5γkh ≪θ,K,a,h n1−σL−2δ

 log N

N
+ 1

N

∑
k≥N

e−c5γkh


≪θ,K,a,h n1−σL−2δ log N

N
.

This, and (19) and (13) lead to the estimate

1
N

N∑
k=1

sup
s∈K

|L(s + iγkhj) − Ln(s + iγkhj)| ≪δ,L,h,θ,K,a n−δ + n1−σL−2δ log N

N
.

Thus, taking N → ∞ and then n → ∞, we obtain (11), and complete the proof of the lemma.

■

Now we shall prove the main joint limit theorem. Firstly, for A ∈ B (Hr(DL)), we set

PN(A) = 1
N

# {1 ≤ k ≤ N : L(s + iγkh) ∈ A} .

Theorem 12. Suppose that L(s) ∈ S , the estimate (5) holds and the set L(P, h, 2π) is linearly

independent over Q. Then PN converges weakly to PL as N → ∞.

Proof. Due to Lemma 5, it is sufficient to show that Pn and PN converges to same limit measure

as n → ∞ and N → ∞, respectively. Denote by D−→ the convergence in distribution.

On certain probability space (Ω, R, ν) with measure ν, define a random variable ξN by the

formula

ν(ξN = hγk) = 1
N

, k = 1, . . . , N.
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Let Xn = Xn(s) and X = X(s) be Hr(DL)-valued random elements with distributions Pn and

PL, respectively. Define the two more Hr(DL)-valued random elements

Xn,N = Xn,N(s) = Ln(s + ihξN) and YN = YN(s) = L(s + ihξN).

The defined random elements Xn,N and YN have distributions Pn,N and PN , respectively. Then,

by Lemmas 4 and 5, we have

Xn,N
D−−−→

N→∞
Xn and Xn

D−−−→
n→∞

X, (20)

respectively. Moreover, applying Lemma 6, we get that, for every ε > 0,

lim
n→∞

lim sup
N→∞

ν
{
ϱ (YN , XN,n) ≥ ε

}
= lim

n→∞
lim sup

N→∞

1
N

#
{
1 ≤ k ≤ N : ϱ (L(s + iγkh), Ln(s + iγkh)) ≥ ε

}
≤ lim

n→∞
lim sup

N→∞

1
εN

N∑
k=1

ϱ (L(s + iγkh), Ln(s + iγkh)) = 0.

From this equality and (20), the hypotheses of Theorem 10 are satisfied. Therefore,

YN
D−−−→

N→∞
X,

which proves the assertion of the theorem. ■
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Chapter 4

Proof of main theorems

In this chapter, the main theorems, Theorems 3 and 4, of the thesis are proved. The proofs

rely on an application of Mergelyan’s theorem and the main limit theorem, Theorem 12.

Proof of Theorem 3. Because fj(s) are continuous non-vanishing functions, analytic in the inte-

rior of Kj, by application of Mergelyan’s theorem, there exists non-vanishing in Kj polynomials

p1(s), . . . , pr(s) such that

sup
1≤j≤r

sup
s∈Kj

|fj(s) − pj(s)| <
ε

4
. (21)

Since the polynomials pj(s)’s have only finitely many zeroes, we may find a compact subset of

DL with connected complement such that Kj ⊂ K̂j and pj(s) ̸= 0 on K̂j. Therefore, log pj(s)

is continuous in K̂j and analytic in its interior.

Applying Mergelyan’s theorem again we find polynomials q1(s), . . . , qr(s) such that

sup
1≤j≤r

sup
s∈Kj

∣∣∣pj(s) − eqj(s)
∣∣∣ <

ε

4
. (22)

From (21) and (22), we obtain

sup
1≤j≤r

sup
s∈Kj

∣∣∣fj(s) − eqj(s)
∣∣∣ <

ε

2
. (23)

The tuple
(
eq1(s), . . . , eqr(s)

)
is an element of the support SL of PL defined in (9). Then, by

Lemma 5, the set

Gε :=
{

(g1, . . . , gr) ∈ Hr(DL) : sup
1≤j≤r

sup
s∈Kj

∣∣∣gj(s) − eqj(s)
∣∣∣ <

ε

2

}
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is an open neighbourhood of the element of the support SL. This, in view of the definition of

a support, means that PL(Gε) > 0.

Now let

Ĝε :=
{

(g1, . . . , gr) ∈ Hr(DL) : sup
1≤j≤r

sup
s∈Kj

|gj(s) − fj(s)| < ε

}
. (24)

Then from (23) we have that Gε ⊂ Ĝε. Therefore, from Theorems 12 and 5 and assertion iii0,

we have

lim inf
N→∞

PN(Ĝε) ≥ PL(Ĝε) > PL(Gε) > 0.

Finally, the rest of the proof of the theorem follows from the definition of the measure PN .

More precisely,

lim inf
N→∞

1
N

#
{
1 ≤ k ≤ N : L(s + iγkh) ∈ Ĝε

}
> 0

or

lim inf
N→∞

1
N

#
{

1 ≤ k ≤ N : sup
1≤j≤r

sup
s∈Kj

|L(s + iγkhj) − fj(s)| < ε

}
> 0.

■

Proof of Theorem 4. The beginning of the proof follows the same steps as in the proof of

Theorem 3. Therefore, we preserve the same the notation here also.

The boundary of the set Ĝε lies in{
(g1, . . . , gr) ∈ Hr(DL) : sup

1≤j≤r
sup
s∈Kj

|gj(s) − fj(s)| = ε

}
.

Observe that the boundaries, for different ε1 ̸= ε2, are disjoint, i.e., ∂Ĝε1 ∩ ∂Ĝε2 = ∅.

Therefore, PL

(
∂Ĝε

)
> 0 for at most countably many ε > 0, i.e., Ĝε is a continuity set of all

but at most countably many ε > 0. Again, from Theorems 12 and 5 and assertion ii0, we have

lim
N→∞

PN(Ĝε) = PL(Ĝε) > PL(Gε) > 0

for all but at most countably many ε > 0. Finally, the proof of the theorem follows from the

definition of the measure PN , same as in the previous given proof. ■
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Conclusions

In this thesis a certain joint discrete approximation for the Selberg-Steuding class S has

been analysed. A short introduction regarding the class S was given, and two universality

results are presented. Then the two main joint discrete universality theorems were formulated.

Afterwards, relevant auxiliary results on limit theorems were proved. Finally, the two main

theorems were proved by application of Mergelyan’s approximation theorem and the main

limit theorem. Therefore, from the thesis, the following conclusions follow.

1. Assuming the Montgomery pair correlation conjecture for the imaginary parts of the non-

trivial zeroes of ζ(s), γk, collections of discrete shifts (L(s + iγkh1), . . . , L(s + iγkhr)) of

functions from the Selberg-Steuding class S have the property of joint discrete univer-

sality, when the set L(P, h, π) is linearly independent over Q.

2. The latter result is also true for all but at most countably ε > 0, when it is modified so

that regular density is taken instead of lower density in the universality inequality.

In the future, this result could be generalised to composite universality, i.e., for compositions

of operators defined on the space of analytic functions. Further it would be of interest to go to

one more general class of zeta-functions, for example, the class of Matsumoto zeta-functions or

the Pánkowski class.
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