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Summary

In this work we analyze the eigenvalues and eigenfunctions of a second-order ordinary di�erential

equation with classical, non-local and transmission conditions. We present a solution method for the

problem as well as the conditions that need to be satis�ed by the eigenvalues. We provide both analytic

and geometric methods to analyze the eigenvalues. In the literature review we give a few examples

of problems with non-local boundary conditions encountered in the natural sciences and engineering,

as well as present classical, non-local, transmission conditions and their problems. The novelty of the

work is in the combination of both transmission and non-local boundary conditions in the problem, as

well as a geometric method to analyze the eigenvalues.

Keywords: Eigenvalue problem, non-local boundary conditions, transmission conditions

Santrauka

�iame darbe tiriame antros eil
es paprastosios diferencialin
es lygties su klasikine, nelokalia ir perna²os

kra²tin
emis s¡lygomis tikrines reik²mes ir tikrines funkcijas. Pristatome sprendimo metod¡; taip pat

s¡lygas, kurias turi tenkinti tikrin
es reik²m
es. Tikrin
ems reik²m
ems i²tirti naudojame analizinius ir ge-

ometrinius metodus. Literat	uros apºvalgoje pateikiame kelis uºdaviniu� su nelokaliomis kra²tin
emis s¡-

lygomis taikymu� gamtos moksluose ir inºinerijoje pavyzdºius, taip pat pristatome klasikines, nelokalias

ir perna²os kra²tines s¡lygas ir ju� uºdavinius. Darbo naujumas susideda i² to, jog nelokaliosios ir per-

na²os kra²tin
es s¡lygos yra nagrin
ejamos drauge tame pa£iame uºdavinyje, bei geometrinio metodo tirti

tikrin
ems reik²m
ems.

Raktiniai ºodºiai: tikriniu� reik²miu� uºdavinys, nelokaliosios kra²tin
es s¡lygos, perkelties s¡lygos
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Notation

� N denotes positive integers {1, 2, 3, ...}.

� N0 denotes positive integers with 0: {0, 1, 2, 3, ...}.

� R̊ denotes the real numbers without zero: R \ {0}.

� u′, u′′ denote the �rst and second derivative of the function u, respectively.

� < l, u > denotes a linear functional l acting on a function u.
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1 Introduction

In this literature review we will �rst present some examples of applications of models with non-local

boundary conditions in the natural sciences. Next, we will remind the reader of the classical boundary

value and Cauchy initial-value problems for ordinary di�erential equations. Then we will consider

non-local boundary conditions and give extra attention to the corresponding Sturm-Liouville problem.

Lastly, we will introduce transmission conditions.

1.1 Examples of Models with Non-Local Boundary Conditions

Here we will introduce a few examples of problems with non-local boundary conditions in the natural

sciences and engineering: an equation for the free surface of a droplet, di�usion on a semi-conductive

material, thermoelasticity in mechanics, control of a thermostat and a circulating bioreactor. Most of

these examples can be found in M. Sapagovas' textbook [10].

1.1.1 The Equation for the Free Surface of a Droplet

The equation for the free surface height u(r) of a symmetric droplet is found by minimizing the

potential energy E1 + E2, where

E1 = πρg

∫ a

0
ru2dr,

E2 = 2πσ

∫ a

0
r
√

1 + (du/dr)2dr

under a �xed known volume

V = 2π

∫ a

0
rudr. (1.1)

Here ρ is the density of the �uid, g is the gravitational constant, σ is the coe�cient of surface

tension, a is the radius of the circle where the droplet touches the surface, r is the polar coordinate,

u(r) is the height of the droplet above the surface.

According to the principle of calculus of variations we can derive the Euler-Lagrange equation for

the free surface [1]:
1

r

d

dr

( r√
1 + (du/dr)2

du

dr

)
−Ku+ λ = 0,

where K = ρg/σ and λ is the Lagrange multiplier (an unknown constant).
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In order to uniquely determine λ and a, as well as the two constants of integration for u(r), we need

to impose a total of four boundary conditions. One such condition is (1.1), which is a non-local integral

boundary condition that ensures the conservation of the total volume of the droplet. The other three

conditions, all of which are classical, are:

u′(0) = 0,

u(a) = 0,

u′(a) = cos γ.

(1.2)

(1.3)

(1.4)

Condition (1.2) ensures that the surface at the very top of the droplet is tangent to the surface below

the droplet. Condition (1.3) means that the radius of the droplet is a, at which point the height of the

droplet becomes 0. Lastly, the condition (1.4) �xes the angle that the droplet makes with the surface

at the droplet's boundary.

1.1.2 Di�usion of a Mixture from a Limited Source

The implantation-di�usion process in a semi-conductive material happens in two repeated steps:

implantation and di�usion. The one-dimensional thermodi�usion process is modeled by the following

nonlinear di�usion equation [2]:
∂n

∂η
=

∂

∂x

(
D0n

σ ∂n

∂x

)
,

together with the following boundary conditions:

n(x, 0) = 0,

n(l, t) = 0,∫ l

0
n(x, t)dx = m.

(1.5)

(1.6)

(1.7)

Here n(x, t) stands for the concentration of an ion species on the surface of a semi-conductor at

the point 0 < x < l and time moment t > 0. m is the total amount of the di�using material and

D0 > 0, σ > 0 are di�usion constants.

The boundary conditions (1.5)�(1.6) are classical and imply that, initially, there are no ions on

the surface, and that the ion concentration is zero at the right end-point x = l of the semi-conductor

throughout the experiment. The non-local integral boundary condition (1.7) ensures the conservation

of mass, that a �xed amount of material di�uses.

1.1.3 Quasistatic Thermoelasticity

W. A. Day [3] considers the problem of quasistatic thermoelasticity. In the article it is proved that

the entropy density u(x, t) satis�es the heat equation

(1 + δ2)
∂η

∂t
=
∂2η

∂x2
(1.8)

4



with non-local boundary conditions

η(0, t) = −δ2
∫ 1

0
η(x, t)dx,

η(1, t) = −δ2
∫ 1

0
η(x, t)dx

and the initial condition

η(x, 0) = η0(x), (1.9)

where

δ = (3λ+ 2µ)α
( Θ0

(λ+ 2µ)c

)1/2

λ, µ are the elastic moduli, α is the thermal expansion coe�cient, Θ0 is the initial temperature, c is

the speci�c heat capacity.

W. A. Day also considered another deformation model of a quasistatic thermoelastic material of

unit length [4]. The entropy satis�es the same equation (1.8) together with non-local integral boundary

conditions:

η(0, t) = −2δ2
∫ 1

0
(2− 3x)η(x, t)dx,

η(1, t) = 2δ2
∫ 1

0
(1− 3x)η(x, t)dx,

and the initial condition (1.9), where

δ2 =
Θ0B

2

cA
,

A is the bending sti�ness of a rod, B measures the interaction between thermal and mechanic e�ects.

1.1.4 Thermostat Problem

Consider the problem of an air-conditioning system where the thermostat and the sensor are placed

at the opposite sides of a room [7]:

∂u

∂t
=
∂2u

∂x2
,

u(x, 0) = ϕ(x),

∂u(0, t)

∂x
= β(u(0, t) + 1),

∂u(1, t)

∂x
= H(u(0, t)).

(1.10)

(1.11)

(1.12)

(1.13)

(1.10) is the partial di�erential equation for the propagation of heat in a room and it requires three

conditions. (1.11) represents the initial condition - the initial distribution of heat in the room. (1.12) is

a classical boundary condition signifying that the rate of change of heat at the location of a sensor, that

is situated at the boundary, is proportional to the heat at the sensor. The last condition, the non-local

boundary condition (1.13), represents the action of the thermostat, which is a function H of the heat

at the sensor that sits at the opposite side of the room with respect to the thermostat. In other words,
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the last condition (1.13) connects the values of heat at opposite sides of a room.

1.1.5 Cyclical Bioreactors

The article [11] considers a model of a cultivation process of bacteria or yeast in a cylindrical

bioreactor. We consider a system of di�usion-convection-reaction equations for the concentration of

mass X(z, t) at height z and time t of a living culture, subject to the concentration of a substrate

S(z, t) that the culture consumes:

∂X

∂t
=

1

B

∂2X

∂z2
− ∂X

∂z
+D

XS

K + S
,

∂S

∂t
=

1

B

∂2S

∂z2
− ∂S

∂z
−D

XS

K + S

(1.14)

(1.15)

with boundary conditions:

∂X(1, t)

∂z
= 0,

∂S(1, t)

∂z
= 0,

X(0, t)− 1

B

∂X(0, t)

∂z
=

1

1 + γ
+

γ

1 + γ
X(1, t)

S(0, t)− 1

B

∂S(0, t)

∂z
=

c

1 + γ
+

γ

1 + γ
S(1, t)

(1.16)

(1.17)

(1.18)

(1.19)

and initial conditions:
X(z, 0) = X0(z),

S(z, 0) = S0(z).

Here B,D are, respectively, the Bodenstein and Damkohler numbers, γ,K, c are constants.

The terms
∂X

∂t
=

1

B

∂2X

∂z2

and
∂S

∂t
=

1

B

∂2S

∂z2

in (1.14)�(1.15) represent the di�usion of the culture and substrate in the bioreactor. The terms

∂X

∂t
= −∂X

∂z

and
∂S

∂t
= −∂S

∂z

in (1.14)�(1.15) represent convection due to water circulation. Whereas

∂X

∂t
= D

XS

K + S
,

∂S

∂t
= −D XS

K + S
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in (1.14)�(1.15) represent the consumption of the substrate, and hence the growth of the culture, where

K controls for the saturation of substrate consumption: the consumption is at half-maximal rate when

S = K.

The conditions (1.16)�(1.17) are classical Neumann boundary conditions at the top of the reactor

for the culture and substrate. The conditions (1.18)�(1.19) are non-local and imply that there is

circulation: a fraction γ
1+γ of the culture and substrate at the top of the bioreactor is reintroduced to

the bottom and another fraction is supplied anew. c is the relative strength of new supply of substrate

compared to culture.

1.2 Classical Problems in Ordinary Di�erential Equations

A di�erential equation is an equation that involves an unknown function along with its derivatives.

Consider the linear second-order ordinary di�erential equation

a(t)
d2u

dt2
+ b(t)

du

dt
+ c(t)u = f(t), for t ∈ (0, 1), (1.20)

where a(t), b(t), c(t), f(t) are some real-valued functions and u(t) is a twice-di�erentiable unknown

function that satis�es the equation above.

We know from the general theory of ordinary di�erential equations (take any introductory textbook

on ordinary di�erential equations, for example [5]) that the solution to (1.20) is a function of one

variable

u(t) = c1u1(t) + c2u2(t) + u0(t),

where u1 ir u2 are two linearly-independent solutions of the homogeneous equation (equation (1.20)

with f(t) = 0), whereas u0 is the particular solution. c1 and c2 are some constants to be determined.

If we want to uniquely determine the solution (i.e., solve for the constants), then we need to specify

further conditions upon the system. In the classical case such conditions can be:

u(0) = µ0,
du(0)

dx
= µ1, (1.21)

that specify the values of the function u(t) and its derivative u′(t) at the initial value t = 0, which

together with (1.20) formulates Cauchy's initial-value problem, or

u(0) = µ0, u(1) = µ1, (1.22)

called Dirichlet boundary conditions that de�ne the values of the function u(t) at the two end-points

of the interval (0, 1) under consideration, which together with (1.20) forms a classical boundary-value

problem.

Another example of classical boundary conditions are Neumann boundary conditions:

u′(0) = µ0, u′(1) = µ1, (1.23)

that enforce the slopes of the curve u(t) at the boundary points.
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Note that these conditions are local in the sense that the values of the function u(t) at which the

conditions are speci�ed are independent of each other.

1.3 Non-Local Boundary Conditions

In practice sometimes classical boundary conditions such as (1.21)�(1.23) are insu�cient; sometimes

the value of the function at one point depends on its value at other points. In such a case we will have

a so-called non-local boundary-value problem. For example [10],

1. Periodic conditions:

u(a) = u(b),

u′(a) = u′(b)

(1.24)

(1.25)

connects the values of a function and its derivative at the two end-points of an interval [a, b] under

consideration.

2. Connected boundary-value conditions:

a0u(a) + a1u
′(a) + b0u(b) + b1u

′(b) = µ0,

c0u(a) + c1u
′(a) + d0u(b) + d1u

′(b) = µ1,

where the periodic conditions (1.24)�(1.25) are a particular case.

3. Non-local integral conditions:

u(a) =

∫ b

a
α(x)u(x)dx+ µ1,

u(b) =

∫ b

a
β(x)u(x)dx+ µ1;

or ∫ b

a
γ1(x)u(x)dx = µ1∫ b

a
γ2(x)u(x)dx = µ2.

4. Non-local Bitsadze-Samarskii conditions:

u(a) = γ0u(ξ0) + µ0, a < ξ0 < b,

u(b) = γ1u(ξ1) + µ1, a < ξ1 < b.

More generally, we can consider second-order ordinary di�erential equations together with the con-

dition < l, u(t) >= 0, where l is a functional, which connects the values of the function u(t) and/or its

derivative in at least two di�erent points of the interval. A good introduction to non-local boundary

problems is provided in the textbook [10].
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1.4 Sturm�Liouville Problem with Non-Local Boundary Conditions

We can also consider the Sturm�Liouville eigenvalue problem for a second-order di�erential operator

together with non-local boundary conditions. For example, consider the problem:

−u′′ = λu, for t ∈ (0, 1),

u(0) = 0,

u(1) = γu(ξ),

(1.26)

(1.27)

(1.28)

ξ ∈ (0, 1), eigenvalue λ ∈ C, γ ∈ R - some constant, (1.28) is a Bisadze�Simarskii type non-local

boundary condition. The problem is to �nd the values λ for which there exists a non-zero solution to

(1.26)�(1.28). Such solutions are known as the eigenfunctions.

There is already a substantial amount of results known for this problem in the literature, for example

[12, 13, 14]. We will provide a few here.

1.4.1 The cases with classical boundary conditions

If γ = 0, then we have a classical Sturm�Liouville problem. In this case, all eigenvalues of (1.26)�

(1.28) are positive and simple [14]:

λ = s2, s = πn, n ∈ N

and the eigenfunctions are

u(t) = sin(st). (1.29)

If γ ̸= 0, but ξ = 0, then we have the classical case as above. Likewise, if γ ̸= 1 and ξ = 1, then we

have the classical case also.

If we formally allow γ = ∞ by turning the non-local Bisadze�Simarskii condition (1.28) into

lim
γ→∞

1

γ
u(1) = u(ξ),

then we get the condition u(ξ) = 0. For ξ > 0 the result is similar to the classical case:

λ = s2, s =
π

ξ
n, n ∈ N

and the eigenfunctions have the same form as in (1.29).

1.4.2 The case with one classical boundary condition

If γ = ∞ and ξ = 0, then the second boundary condition (1.28) becomes the same as the �rst

boundary condition (1.27). Whereas if γ = 1 and ξ = 1, then (1.28) becomes an identity 0 = 0. In

both cases we have the problem with a single classical boundary condition [14]:

−u′′ = λu,

u(0) = 0,

(1.30)

(1.31)
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for t ∈ (0, 1).

If λ = 0, then the solution u(t) = Ct satis�es the problem (1.30)�(1.31) for an arbitrary constant

C ∈ R.
Let us de�ne a bijection λ = s2 such that s ∈ Cs = {z ∈ C : −π/2 < arg(z) ≤ π/2 or z = 0} and

λ ∈ C. If we have an s ∈ Cs, then the corresponding eigenvalue of (1.30)�(1.31) is λ. If s ̸= 0, then

the eigenfunction for (1.30)�(1.31) is

u(t) = C sin(st). (1.32)

We can combine the eigenfunctions for the cases s = 0 and s ̸= 0 into a single eigenfunction:

u(t) = C
sin(st)

s
, s ∈ Cs. (1.33)

This is because the function (1.33) is an analytic function with a removable singularity at the point

s = 0:

lim
s→0

C
sin(st)

s
= Ct. (1.34)

This is clear if we write down the Maclaurin series:

sin(st)

s
=

∞∑
n=0

(−1)n
s2n

(2n+ 1)!
t2n+1. (1.35)

If s ̸= 0, then the s in the denominator of (1.33) can be absorbed by the arbitrary constant C and

we retrieve (1.32). Therefore, without loss of generality, we can work with the function (1.33). Since

eigenfunctions are de�ned up to an arbitrary multiplicative constant C, we can work with C = 1.

1.4.3 The case when λ = 0

Let us return to the problem (1.26)�(1.28) and consider the case when γ ̸= 0 and 0 < ξ < 1. If we

substitute the function (1.33) into the non-local boundary condition (1.28), we get

C
(sin s

s
− γ

sin(sξ)

s

)
= 0.

There exists a non-zero solution (an eigenfunction) if s satis�es

sin s

s
− γ

sin(sξ)

s
= 0. (1.36)

When λ = s = 0, we have the equality γξ = 1 [14]. Therefore, the eigenvalue λ = 0 exists if and only

if γ = 1
ξ . The corresponding eigenfunction is u(t) = t.

1.4.4 The case when λ > 0

For convenience, we will de�ne

s = σ + iω (1.37)
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that satis�es

s2 = λ, (1.38)

such that s ∈ Cs. Then we will have a bijection between Cs and Cλ = C. From the (1.37)�(1.38) above

we get

λ = σ2 − ω2 + 2σωi. (1.39)

It is clear that λ > 0 when σ > 0 and ω = 0. There exists an eigenfunction

u(t) = sin(σt)

whenever σ > 0 satis�es

sinσ − γ sin(σξ) = 0. (1.40)

If sin s = 0 and sin(sξ) = 0, then (1.36) is valid for all γ ∈ R. In this case we have eigenvalues

λ = s2 that do not depend on the parameter γ. We will say that λ is a constant eigenvalue if, for

a given �xed ξ, it does not depend on the value of γ. Suppose that m and n are positive co-prime

integers. A countable in�nity of positive constant eigenvalues exist only for rational ξ = m
n ∈ (0, 1),

and those eigenvalues are λ = s2, s = πk, k ∈ nN = {n, 2n, 3n, ...}. The corresponding eigenfunctions

are (1.32). All other eigenvalues are non-constant [14].

Furthermore, if |γ| ̸∈ [1, 1ξ ], then the real roots of (1.36) are simple. In particular, the positive real

roots σ are simple. Whereas if |γ| = 1
ξ , then for non-simple roots σ of (1.40) both sides are equal to

zero and σ > 0 [6].

In general, the analysis of (1.40) is very di�cult. We will provide an example when ξ = 1
2 . In this

case we have

sinσ = γ sin
(σ
2

)
.

By the double-angle formula,

2 sin
(σ
2

)
cos

(σ
2

)
= γ sin

(σ
2

)
.

When σ is a root of sin
(
σ
2

)
= 0, then λ = σ2 is a constant eigenvalue. The roots corresponding to

constant eigenvalues are

σ = 2πn, n ∈ N.

When the roots σ satisfy

2 cos
(σ
2

)
= γ,

that is, when

σ = 2arccos
(γ
2

)
+ 2πn, n ∈ N,
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provided that |γ| ≤ 2, then we have non-constant eigenvalues.

1.4.5 The case when λ < 0

We will have that λ < 0 if and only if σ = 0 and ω > 0. Then the eigenfunction is

u(t) = sinh(ωt)

and the condition (1.36), for the eigenfunction to exist becomes

sinh(ω)− γ sinh(ωξ) = 0. (1.41)

Figure 1: Plots of the function fξ(ω) for several values of ξ: 1
5 ,

2
5 ,

3
5 ,

4
5 . The plot shows that fξ(ω) is

a positive, monotonically increasing function, where smaller values of ξ correspond to larger values of
limω→0 fξ(ω) =

1
ξ and larger f ′ξ(ω) for all ω > 0.

Let us consider the function fξ(ω) =
sinh(ω)
sinh(ξω) for ω > 0 and �xed 0 < ξ < 1 [10]. We have that

lim
ω→0

fξ(ω) =
1

ξ
,

lim
ω→∞

fξ(ω) = ∞.

(1.42)

(1.43)

From the Figure 1 we can see that fξ(ω) is a monotonically increasing function and it is steeper

for smaller values of ξ. From the monotonicity of the function and (1.41)�(1.43) we can see that the

equation (1.41) has a unique root ω > 0 if and only if γ > 1
ξ .
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1.4.6 Complex eigenvalues

If λ = s2, s = σ + iω is a complex eigenvalue, then the corresponding eigenfunction is

u(t) = sinσ coshω + i cosσ sinhω,

for σ > 0, ω > 0.

We will provide a negative result: if |γ| ≤ 1, then the problem (1.26)�(1.28) does not have complex

eigenvalues [10].

Let us separate the equation

sin s− γ sin(sξ) = 0 (1.44)

into real and imaginary parts by substituting s = σ + iω. Then we get

sinσ coshω − γ sin(σξ) cosh(ωξ) = 0,

sinhω cosσ − γ sinh(ωξ) cos(σξ) = 0.

By expressing sinσ from the �rst equation and cosσ from the second, we can rewrite the equation

sin2 σ + cos2 σ = 1 as: (
γ
cosh(ωξ)

coshω
sin(σξ)

)2
+
(
γ
sinh(ωξ)

sinhω
cos(σξ)

)2
= 1. (1.45)

But since 0 < ξ < 1, then for all ω > 0 we have that

0 <
cosh(ωξ)

coshω
< 1, 0 <

sinh(ωξ)

sinhω
< 1.

If we assume that |γ| ≤ 1, then

(
γ
cosh(ωξ)

coshω

)2
< 1,

(
γ
sinh(ωξ)

sinhω

)2
< 1.

Therefore, the equation (1.45) cannot be satis�ed. Thus, if |γ| ≤ 1 and 0 < ξ < 1, then the problem

(1.26)�(1.28) does not have complex eigenvalues.

A further result is that all complex roots of (1.44) are simple [6].

Considering the results from the previous subsections 1.4.3�1.4.5, we can conclude that if γ ∈ (∞, 1ξ )

and 0 < ξ < 1, then the problem (1.26)�(1.28) can only have real positive eigenvalues [10].

1.5 Di�erential Equations with Transmission Conditions

A further complication of ordinary di�erential equation problems is when we impose a discontinuity

in the solution of the di�erential equation (1.20). This can be achieved by specifying special conditions,

called transmission [9], or sometimes also interface [8], conditions. An example of such transmission

conditions are

u(td + 0) = du(td − 0),

u′(td + 0) = du′(td − 0),

(1.46)

(1.47)
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where d ∈ R̊ and 0 < td < 1. In practice, these conditions enforce a discontinuity at the point t = td.

The size of the discontinuity is proportional to d.

Another, more general, example of transmission conditions is

u(td + 0) = a11u(td − 0) + a12u
′(td − 0),

u′(td + 0) = a21u(td − 0) + a22u
′(td − 0),

where a11, a12, a21, a22 ∈ R, not all zero.
We can also have multiple points of discontinuity at t = td1 , td2 , ..., tdn . Then the transmission

conditions may take the form of

u(td1 + 0) = d1u(td1 − 0),

u′(td1 + 0) = d1u
′(td1 − 0),

u(td2 + 0) = d2u(td2 − 0),

u′(td2 + 0) = d2u
′(td2 − 0),

...

u(tdn + 0) = dnu(tdn − 0),

u′(tdn + 0) = dnu
′(tdn − 0)

for di ∈ R̊.
The solution to

a(t)
d2u

dt2
+ b(t)

du

dt
+ c(t)u = 0, t ∈ (0, 1), (1.48)

along with (1.46)�(1.47), will now be composed of solutions at two intervals, separated by the discon-

tinuity:

u(t) =

u1(t) = C1ψ1(t) + C2ψ2(t), for 0 ≤ t ≤ td − 0,

u2(t) = C3ψ1(t) + C4ψ2(t), for td + 0 ≤ t ≤ 1,
(1.49)

where ψ1(t) and ψ2(t) are two linearly-independent solutions of (1.48).

Notice that the solution (1.49) involves four unknown constants, therefore the two transmission

conditions (1.46)�(1.47) are insu�cient in order to determine the solution uniquely. Hence, we need to

enforce further constraints. These can be classical or they can also be non-local.
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2 The Sturm�Liouville Problem with Transmission and Non-Local

Boundary Conditions

In this section we will consider the eigenvalue problem of a linear second-order di�erential operator

together with non-local boundary and transmission conditions:

−u′′ = λu, t ∈ (0, td) ∪ (td, 1),

u(0) = 0,

u(td + 0) = du(td − 0),

u′(td + 0) = du′(td − 0),

u(1) = γ1u(ξ1) + γ2u(ξ2)

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

where 0 < ξ1 ≤ td ≤ ξ2 < 1, d ∈ R̊ and γ1, γ2 ∈ R, λ ∈ C is the eigenvalue of the problem.

We can interpret the two transmission conditions (2.3)�(2.4) as imposing a discontinuity of the �rst

kind upon the solution at the point t = td. However, here we will take the interpretation that we have

two domains I1 = (0, td) ∪ {td − 0} and I2 = {td + 0} ∪ (td, 1), where the the solution set u(t) will be

composed of two real-valued functions for the two di�erent intervals:

u(t) =

u1(t), for t ∈ I1,

u2(t), for t ∈ I2.
(2.6)

The two solutions are not independent, but are connected through the boundary conditions (2.3)�(2.5).

The condition (2.5) is a non-local Bitsadze-Samarskii type boundary condition, where γ1, γ2 ∈ R
are some constants. ξ1, ξ2 are de�ned such that 0 < ξ1 ≤ td ≤ ξ2 < 1. In other words, ξ1 ∈ I1 and

ξ2 ∈ I2. If γ1 ̸= 0, then the two solutions u1(t), u2(t) are connected not just through the point t = td

via the transmission conditions (2.3)�(2.4), but also through the condition (2.5). Condition (2.1) is

classical.

Obviously, u(t) = 0 is a solution to (2.1)�(2.5) for any λ ∈ C. Therefore, the goal will be to look

for non-zero solutions (i.e., the eigenfunctions) of the problem and retrieve the conditions that σ, ω in

(1.37)�(1.39) must satisfy in order for λ to be an eigenvalue.

Remark 1. Before going further, we will consider the case when d = 0. We will conclude that for

the eigenvalue problem to be well-posed, we must assume that d ̸= 0.
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Consider the problem (2.1)�(2.5) when d = 0. Then (2.1)�(2.5) becomes

−u′′ = λu, for t ∈ I1 ∪ I2,

u(0) = 0,

u(td + 0) = 0,

u′(td + 0) = 0,

u(1) = γ1u(ξ1) + γ2u(ξ2).

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

The conditions (2.9)�(2.10) are simply Cauchy's initial value conditions for the solution in the

interval I2. They imply that that u2(t) = 0, for t ∈ I2. Thus u(1) = u(ξ2) = 0, which turns (2.11) into

γ1u(ξ1) = 0, (2.12)

that is a local condition. The solution to (2.7)�(2.8) is

u1(t) = C
sin(st)

s
, for t ∈ I1, (2.13)

where the remarks about (1.32)�(1.35) apply. If γ1 = 0, then from (2.12) we cannot determine the

constant C or the value of s in (2.13), which makes the problem ill-posed due to non-uniqueness. Then

(2.13) is an eigenfunction for any λ ∈ C.
If γ1 ̸= 0, then (2.12) implies that u(ξ1) = 0, or, equivalently, that

C
sin(sξ1)

s
= 0. (2.14)

We are looking for non-zero solutions, therefore we assume that C ̸= 0. If s = 0, then by (2.14) and

(1.34) we have ξ1 = 0. But we have assumed that 0 < ξ1 ≤ td. Thus, s ̸= 0.

Therefore, by assuming that C ̸= 0 and s ̸= 0, s in the denominator of (2.14) can be absorbed by

the constant C, and we have the condition that

sin(sξ1) = 0.

This has solutions
s =

πn

ξ1
, for n ∈ Z+.

Thus, if d = 0 and γ1 ̸= 0, we have a family of solutions

u1(t) = sin
(πn
ξ1
t
)
, for t ∈ I1, n ∈ Z+,

u2(t) = 0, for t ∈ I2.

In what follows we will assume that d ̸= 0.

Remark 2. Another special case is when d = 1. Since from −u′′ = λu it follows that u′′, u′

are continuous whenever u is continuous, the case d = 1 corresponds to when we have a removable

discontinuity at the point t = td. We can eliminate this discontinuity by de�ning u(td) = u(td − 0) =
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u(td + 0). Then the transmission conditions (2.3)�(2.4) can essentially be ignored and we are left

with a Sturm�Liouville problem with a non-local three-point Bisadze�Samarskii boundary condition

(2.1)�(2.2), (2.5).

Remark 3. If ξ1 = td or ξ2 = td, then we have the limiting cases, where u(ξ1) = u(td − 0) or

u(ξ2) = u(td + 0).

Remark 4. If γ1 = γ2 = 0, then the boundary condition (2.5) becomes local and we have a case

that was already presented in 1.4.2.

Remark 5. The reason we are interested in the equation (2.1) is because it represents the zeroth

order term in asymptotic expansion or perturbation series of more general second-order di�erential

operators.

2.1 Solution Development

In this section we will provide a solution method for the problem (2.1)�(2.5).

The solutions in both intervals will be linear combinations of two linearly independent solutions to

equation (2.1), whenever λ is an eigenvalue. Luckily, we can easily �nd such solutions: ψ1(t) = cos(st)

and ψ2(t) =
sin(st)

s , where s ∈ Cs and s2 = λ. Hence, we will search for the solution u(t) in the form

u(t) =

u1(t) = C1 cos(st) + C2
sin(st)

s , for t ∈ I1,

u2(t) = C3 cos(st) + C4
sin(st)

s , for t ∈ I2.
(2.15)

Note that we have four unknown constants. Correspondingly, we have four conditions (2.2)�(2.5).

We can retrieve the constants by substituting the solution (2.15) into the conditions (2.1)�(2.5). Then

we get a system of equations:

C1 = 0,

C3 cos(std) + C4
sin(std)

s
= d

(
C1 cos(std) + C2

sin(std)

s

)
,

−sC3 sin(std) + C4 cos(std) = d
(
− sC1 sin(std) + C2 cos(std)

)
,

C3 cos s+ C4
sin s

s
= γ1

(
C1 cos(sξ1) + C2

sin(sξ1)

s

)
+ γ2

(
C3 cos(sξ2) + C4

sin(sξ2)

s

)
.

In matrix-vector form this becomes
1 0 0 0

−d cos(std) −d sin(std)
s cos(std)

sin(std)
s

−sd sin(std) −d cos(std) −s sin(std) cos(std)

−γ1 cos(sξ1) −γ1 sin(sξ1)x cos s− γ2 cos(sξ2)
sin s
s − γ2

sin(sξ2)
s



C1

C2

C3

C4

 =


0

0

0

0


We get non-zero solutions if and only if the determinant of the matrix is equal to zero:
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∣∣∣∣∣∣∣∣∣∣
1 0 0 0

−d cos(std) −d sin(std)
s cos(std)

sin(std)
s

−sd sin(std) −d cos(std) −s sin(std) cos(std)

−γ1 cos(sξ1) −γ1 sin(sξ1)x cos s− γ2 cos(sξ2)
sin s
s − γ2

sin(sξ2)
s

∣∣∣∣∣∣∣∣∣∣
= 0.

Expanding the determinant by the �rst row we get∣∣∣∣∣∣∣
−d sin(std)

s cos(std)
sin(std)

s

−d cos(std) −s sin(std) cos(std)

−γ1 sin(sξ1)x cos s− γ2 cos(sξ2)
sin s
s − γ2

sin(sξ2)
s

∣∣∣∣∣∣∣ = 0.

By multiplying through the diagonal entries and summing them up we get

d sin2(std)
(sin s

s
− γ2

sin(sξ2)

s

)
−γ1 cos2(std)

sin(sξ1)

s

−dsin(std) cos(std)
s

(
cos s− γ2 cos(sξ2)

)
−γ1 sin2(std)

sin(sξ1)

s

+d
sin(std) cos(std)

s

(
cos s− γ2 cos(sξ2)

)
+d cos2(std)

(sin s
s

− γ2
sin(sξ2)

s

)
= 0,

which, upon simpli�cation, yields

d
sin s

s
− γ1

sin(sξ1)

s
− γ2d

sin(sξ2)

s
= 0. (2.16)

This is the condition that s ∈ Cs must satisfy in order for λ to be an eigenvalue, and thus for us to

have non-zero solutions to (2.1)�(2.5).

However, we still need to �nd the eigenfunctions. For this, we will o�er an alternative solution

method to the problem (2.1)�(2.5).

Substituting the solution (2.15) into the classical condition (2.2) we �nd that

0 = u(0) = C1 cos(0) + C2 sin(0) = C1,

thus

u1(t) = C2
sin(st)

s
.

Because eigenfunctions are non-zero and only di�er by a constant multiple, then without loss of

generality we will pick C2 = 1. Therefore,

u1(t) =
sin(st)

s
, for t ∈ I1

is the eigenfunction for the �rst interval.
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From the transmission conditions (2.3)�(2.4) we get the relations

C3 cos(std) + C4
sin(std)

s
= d

sin(std)

s
,

−C3s sin(std) + C4 cos(std) = d cos(std).

These allow us to easily conclude that C3 = 0 and C4 = d. Therefore, our eigenfunctions are:

u1(t) =
sin(st)

s
, for t ∈ I1,

u2(t) = d
sin(st)

s
, for t ∈ I2.

(2.17)

(2.18)

Inserting these into the non-local boundary condition (2.5) we get

γ1
sin(sξ1)

s
+ γ2d

sin(sξ2)

s
= d

sin s

s
, (2.19)

which agrees with (2.16).

If s ∈ Cs satis�es the equation above, then λ = s2 is an eigenvalue of the problem. In conclusion,

the problem (2.1)�(2.5) has a non-zero solution (2.6), (2.17)�(2.18) whenever s satis�es (2.19).

2.2 Analysis of Eigenvalues

In this subsection we will analyze the roots of the equation (2.19). These roots will correspond to

the eigenvalues of the problem (2.1)�(2.5).

2.2.1 The case when λ = 0

The case when λ = 0 is very important theoretically, because it determines when the operator L =

− d2

dt2
in (2.1) together with the boundary conditions (2.2)�(2.5) is singular. This, in turn, determines

when we have none or in�nitely many solutions.

λ = 0 corresponds to the case when s = 0. Then the condition (2.19) becomes

γ1ξ1 + dγ2ξ2 = d (2.20)

and the corresponding eigenfunctions are

u1(t) = t, for t ∈ I1,

u2(t) = dt, for t ∈ I2,

Note that the condition (2.20) does not involve td directly, but only indirectly through the relation

0 < ξ1 ≤ td ≤ ξ2 < 1.

We can rewrite (2.20) as
γ1
d
ξ1

+
γ2
1
ξ2

= 1, (2.21)

which is an equation of a line for the variables γ1, γ2, where we assume that d, ξ1, ξ2 are given. Hence,
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λ = 0 will be an eigenvalue if and only if γ1 and γ2 belong to the line (2.21). The line (2.21) has a

γ1-intercept at the point γ1 = d
ξ1

and a γ2-intercept at the point γ2 = 1
ξ2
.

Figure 2: The line (2.21) in blue, where ξ1 = 1
4 , ξ2 = 3

4 , d = 3
4 and td = 1

2 . The red lines represent the
values that the γ1-intercept and γ2-intercept cannot occupy when we �x d = 3

4 , td = 1
2 and vary ξ1, ξ2.

We shall investigate the allowed regions for the line (2.21) when we change ξ1, ξ2 while keeping

d ∈ R̊ and 0 < td < 1 �xed.

From the assumption that 0 < ξ1 ≤ td ≤ ξ2 < 1, we �nd that

−∞ < −|d|
ξ1

≤ −|d|
td
, for d < 0,

|d|
td

≤|d|
ξ1

<∞, for d > 0

1 <
1

ξ2
≤ 1

td
<∞,

(2.22)

(2.23)

(2.24)

which implies that the γ1-intercept belongs to
(
−∞,− |d|

td

]
if d < 0 and γ1-intercept belongs to

[ |d|
td
,∞

)
if d > 0, and the γ2-intercept belongs to (1, 1

td
]. This allows us to determine some theoretical conditions

upon the line (2.21) if we know the values of d and td, as can be seen from Figure 2.

If we �x ξ1, ξ2, td and vary d ∈ R̊, then we can see that the γ1-intercept d
ξ1

can achieve arbitrary

non-zero values, as can be seen from the Figure 3. Thus, for arbitrary non-zero values of d and �xed

ξ1, ξ2, td, the absolute restriction is that γ2-intercept ̸∈ (−∞, 1] ∪ [ 1td ,∞).

If we now consider the case when we �x ξ1, ξ2, d, but vary 0 < td < 1, then we see that

1 <
1

td
<∞,

|d| < |d|
td

<∞, for d > 0,

−∞ < −|d|
td

< −|d|, for d < 0
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Figure 3: The lines (2.21) for varying values of d : −1
4 , 1,

1
2 ,

1
10 , where ξ1 = 1

4 , ξ2 = 3
4 and td = 1

2 are
�xed. The thick red lines on the γ2-axis represent the restrictions for γ1-intercept and γ2-intercept as
we vary d, but keep ξ1, ξ2, td �xed.

from which we conclude that for �xed ξ1, ξ2, d and varying td, the γ1-intercept ∈ (−∞,−|d|) for d < 0

and (d,∞) for d > 0, while γ2-intercept > 1.

When d = 1, we have that (2.20) becomes

γ1ξ1 + γ2ξ2 = 1

and the solution is

u(t) = t, for t ∈ I1 ∪ I2.

We can de�ne u(td) = td and obtain a solution for the entire interval t ∈ (0, 1).

2.2.2 The case when λ > 0

λ > 0 whenever σ > 0 and ω = 0. Then the condition (2.19) becomes

γ1 sin(σξ1) + γ2d sin(σξ2) = d sinσ. (2.25)

This equation is notoriously di�cult to study and therefore it is left for future studies. Here we will

consider only a few special cases.

If γ1 = 0, then (2.25) becomes

γ2 sin(σξ2) = sinσ, (2.26)

which is (1.36) with γ2 := γ and ξ2 := ξ. The results for this situation have already been investigated

and presented in 1.4.4.

If γ2 = 0, then (2.25) becomes
γ1
d

sin(σξ1) = sinσ, (2.27)
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which is (1.36) with γ1
d := γ and ξ1 := ξ.

If ξ1 = ξ2 := ξ, then (1.36) becomes

(γ1
d

+ γ2
)
sin(σξ) = sinσ, (2.28)

which is, again, (1.36) with γ1
d + γ2 := γ. An example when ξ1 = ξ2 =

1
2 was shown in 1.4.4.

A more interesting case is when γ1
d = γ2 := γ. Then we have

γ
(
sin(σξ1) + sin(σξ2)

)
= sinσ.

We can rewrite this as

2γ sin
((ξ1 + ξ2)

2
σ
)
cos

((ξ1 − ξ2)

2
σ
)
= 2 sin

(σ
2

)
cos

(σ
2

)
.

If we further assume that ξ1 + ξ2 = 1, then we will have constant eigenvalues σ = 2πn for n ∈ N.
The non-constant eigenvalues will then satisfy

γ cos
((2ξ1 − 1)

2
σ
)
= cos

(σ
2

)
.

2.2.3 The case when λ < 0

The case of negative eigenvalues has been investigated thoroughly and it is one of the main focus

of this work. From (1.39) λ < 0 corresponds to the case when σ = 0 and ω > 0. The eigenfunctions

will be in the form of
u1(t) = sinh(ω), for t ∈ I1,

u2(t) = d sinh(ω), for t ∈ I2

and the condition (2.19) will be

γ1 sinh(ωξ1) + γ2d sinh(ωξ2) = d sinh(ω). (2.29)

Since sinh(βω) is a monotonically increasing function that intersects 0 at ω = 0, when β > 0, the

function sinh(βω) will be positive for ω > 0. Therefore, after rearranging, we can turn the condition

(2.29) into
γ1

d sinh(ω)
sinh(ξ1ω)

+
γ2

sinh(ω)
sinh(ξ2ω)

= 1, (2.30)

which is an equation of a line in γ1, γ2 for �xed d, ξ1, ξ2, ω. Hence, λ < 0 will be an eigenvalue if

and only if γ1 and γ2 belong to the line (2.30). The γ1-intercept is at the point γ1 = d sinh(ω)
sinh(ξ1ω)

and the

γ2-intercept is at the point γ2 =
sinh(ω)
sinh(ξ2ω)

.

From Figure 1 we can see that sinhω
sinh(ωβ) is an increasing function for 0 < β < 1. Therefore, in analogy
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with (2.22)�(2.24), we can conclude that

|d|
ξ1

< |d| sinh(ω)

sinh(ξ1ω)
<∞,

−∞ < −|d| sinh(ω)

sinh(ξ1ω)
< −|d|

ξ1
,

1 <
1

ξ2
<

sinh(ω)

sinh(ξ2ω)
<∞.

This means that the γ1-intercept > d
ξ1

for d > 0 and < − |d|
ξ1

for d < 0, while the γ2-intercept > 1
ξ2
.

Figure 4: The plot of the lines (2.30) for ω = 2, 3 in yellow and green. The blue line corresponds to
(2.20). We can see that for some values of γ1, γ2, the green and yellow lines cross. This means that
for those values of γ1, γ2, we have that ω = 2 and ω = 3 are the two solutions to (2.30). In this �gure
ξ1 =

1
4 , ξ2 =

3
4 , d = 1

2 , td = 2
5 .

Figure 5: The plot of the lines (2.30) for ω = 2, 3 in yellow and green when ξ1 = ξ2. The blue line
corresponds to (2.20). We see that in this case two lines do not cross. In this �gure ξ1 = td = ξ2 =
1
2 , d = 3

4 .

Figures 4 and 5 show a few lines (2.30) for several values of ω > 0. Looking at the lines in Figure

4 we can notice an interesting observation: for some �xed values of d, ξ1, ξ2, γ1, γ2 there will be two

lines that intersect at the same point. In other words, under certain conditions, there will be two values
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of ω that satisfy (2.30) for �xed d, ξ1, ξ2, γ1, γ2, and therefore, we will have two negative eigenvalues.

On the other hand, in the limiting case when ξ1 = ξ2 that is depicted in Figure 5, we can see that the

lines do not cross.

We shall investigate this more closely. Let us de�ne a parametric curve in the (x, y) ∈ R2 plane

g(ω; ξ1, ξ2) =
(sinh(ξ1ω)

sinh(ω)
,
sinh(ξ2ω)

sinh(ω)

)
, for ω > 0. (2.31)

We will denote the two coordinate functions as

x = g1(ω) =
sinh(ξ1ω)

sinh(ω)
,

y = g2(ω) =
sinh(ξ2ω)

sinh(ω)
.

We can rewrite (2.30) as a line in the (x, y) plane:

l :
γ1
d
x+ γ2y = 1. (2.32)

These de�nitions allow us to incur a separation of variables: the curve g depends only on ξ1, ξ2,

whereas the line l depends on γ1, γ2, d. The equation (2.30) will be satis�ed when the curve g crosses

the line l. By studying g and l we will be able to understand the conditions that must be satis�ed for

there to be two, one or no negative eigenvalues.

Figure 6: The line l (2.32) for various values of γ1, γ2, d. The red line has a negative slope, the green
and purple lines have a positive slope. When γ1 = 0, the line is horizontal and y = 1

γ2
, which is

demonstrated by the blue line. When γ2 = 0, the line is vertical and x = d
γ1
, which is demonstrated by

the yellow line. The x- and y-intercepts can take both positive and negative values. The red point at
the origin corresponds to the only restriction upon the line l: it does not cross the point (x, y) = (0, 0).
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First, we will investigate the line l. The x-intercept = d
γ1

when γ1 ̸= 0, whereas the y-intercept

= 1
γ2

when γ2 ̸= 0. It is clear that the point (x, y) = (0, 0) can never satisfy the line (2.32) because we

would get 0 = 1. Since we assume that γ1, γ2 ̸= ∞, this can never happen. We have also assumed that

γ1, γ2 can never be both zero and that d ̸= 0. If γ1 = 0, but γ2 ̸= 0, then we have a horizontal line

y = 1
γ2
. If γ2 = 0, but γ1 ̸= 0, then we have a vertical line x = d

γ1
. If γ2 ̸= 0, then we can rewrite the

equation (2.32) as

y = mx+ b, (2.33)

where we have de�ned

m = − γ1
dγ2

,

b =
1

γ2
.

(2.34)

(2.35)

As |γ2| → ∞, the y-intercept b→ 0. The slope m depends on the values of γ1, γ2, d and when they

are all positive, the slope is negative. If one variable or all three are negative, then the slope is positive.

In general, the only restriction placed upon the line l is that it cannot cross the point (x, y) = (0, 0),

otherwise it is free. Some examples of lines (2.32) are shown in Figure 6.

Figure 7: The function fξ(ω) =
sinh(ξω)
sinh(ω) for several values of ξ. The function is monotonically decreasing

and fξ1(ω) < fξ2(ω) whenever ξ1 < ξ2.

Next, we will investigate the curve g(ω; ξ1, ξ2). We have investigated the function sinh(ω)
sinh(ξω) in 1.4.5

and the curve g is composed of the reciprocals of that function, as depicted in 7. Thus, we can

immediately see that

lim
ω→0

g(ω; ξ1, ξ2) = (ξ1, ξ2),

lim
ω→∞

g(ω; ξ1, ξ2) = (0, 0).

Since both functions g1, g2 are monotonic, the curve g will monotonically interpolate between the

points (ξ1, ξ2) and (0, 0). Because 0 < ξ1 ≤ ξ2 < 1, the end-point (ξ1, ξ2) can only lie within the triangle

restricted by the lines {x = 0, y = 1, y = x}.
From Figure 7 we can see that

sinh(ξ1ω)

sinh(ω)
≤ sinh(ξ2ω)

sinh(ω)
,

whenever ξ1 ≤ ξ2 and the equality is only achieved when ξ1 = ξ2. Therefore the x-coordinate of the

parametric curve g will always be less than or equal to the y-coordinate. That is, if ξ1 ≤ ξ2, then
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g1(ω) ≤ g2(ω).

We can also compute the slope of the curve g(ω) by calculating

dg2
dg1

=
dg2
dω
dg1
dω

=
ξ2 sinh(ω) cosh(ξ2ω)− sinh(ξ2ω) cosh(ω)

ξ1 sinh(ω) cosh(ξ1ω)− sinh(ξ1ω) cosh(ω)
. (2.36)

If ξ1 = ξ2, then
dg2
dg1

(ω) = 1 for all ω ∈ (0,∞). It is possible to evaluate the limits

lim
ω→0

dg2
dg1

(ω) =
ξ2(1− ξ22)

ξ1(1− ξ21)
,

lim
ω→∞

dg2
dg1

(ω) = ∞, for 0 < ξ1 < ξ2 < 1.

The function dg2
dg1

(ω) is positive for positive ξ1, ξ2 and is monotonically increasing as can be observed

from Figure 8. Therefore, given that g(ω) monotonically interpolates between (ξ1, ξ2) and (0, 0), where

ξ1, ξ2 > 0, the restriction that g1(ω) ≤ g2(ω), and that limω→0
dg2
dg1

(ω) > 0, limω→∞
dg2
dg1

(ω) = ∞ for

0 < ξ1 < ξ2 < 1, we can say that the curve g(ω; ξ1, ξ2) lies in the triangle restricted by the lines

{x = 0, y = ξ2, y = ξ2
ξ1
x}. This suggests that the curve g is concave down whenever 0 < ξ1 < ξ2 < 1.

Figure 8: Equation (2.36) for various values of 0 < ξ1 ≤ ξ2 < 1. We can see that the function equals 1
whenever ξ1 = ξ2 and is a monotonically increasing positive function when 0 < ξ1 < ξ2 < 1. We can
also notice that the function increases faster for greater values of the di�erence ξ2 − ξ1.

We can compute the second derivative to see the concavity of the the curve g:

d2g2
dg21

=

d
dω

(
dg2
dg1

)
dg1
dω

=
(
− ξ21ξ2 sinh (ωξ1) cosh (ωξ2) +

ξ21 sinh (ωξ1) sinh (ωξ2)

tanh (ω)
+ ξ1ξ

2
2 sinh (ωξ2) cosh (ωξ1)

−ξ1 sinh (ωξ2) cosh (sωξ1)−
ξ22 sinh (ωξ1) sinh (ωξ2)

tanh (ω)
+ ξ2 sinh (ωξ1) cosh (ωξ2)

)
·(ξ1 sinh (ω) cosh (ωξ1)− sinh (ωξ1) cosh (ω))

−1
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Numerical exploration shows that d2g2
dg21

(ω) has one root at ω = 0 and is negative otherwise whenever

0 < ξ1 < ξ2 < 1. Therefore, the curve g has negative curvature as it can be seen from Figure 9. In

other words, the curve g is concave down.

Figure 9: The curvature of the curve g as a function of ω > 0. The curvature is negative for all tested
values of 0 < ξ1 < ξ2 < 1 and asymptotically approaches 0 from below. In this �gure ξ1 = 1

4 , ξ2 =
3
4 .

A few examples of curves g are depicted in Figure 10.

Figure 10: Curves (2.31) for various values of 0 < ξ1 ≤ ξ2 < 1. The curves start at their respective
point (ξ1, ξ2) and approach the point (0, 0) as ω → ∞. The curves are con�ned to the triangle de�ned
by the lines {x = 0, y = 1, y = x}, which are depicted in red. The purple curve depicts the case when
ξ1 = ξ2: the curve is a straight line with slope 1. Otherwise, the curves are concave.

Having investigated the line l (2.32) and the curve g (2.31) separately, let us combine two as their

intersection will determine the roots of (2.29).

First we will consider the case when ξ1 = ξ2 = ξ. Then the curve g becomes a straight line segment

y = x between the points (ξ, ξ) and (0, 0). The line l cannot cross the point (0, 0), therefore the line l

and curve g cannot coincide; they can only cross at one point at most.
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If ξ1 = ξ2 = ξ, then we will have an intersection if and only if the system of equations

x− y = 0,
γ1
d
x+ γ2y = 1

has a solution x ∈ (0, ξ) and y ∈ (0, ξ). This corresponds to the condition that

y = x =
d

γ1 + dγ2
∈ (0, ξ).

This is satis�ed whenever
0 <

d

ξ(γ1 + dγ2)
< 1.

This holds even if γ1 = 0 or γ2 = 0. Figure 11 shows examples of this situation.

Figure 11: Lines (2.32) for various values of γ1, γ2, d and a curve (2.31) in yellow, when ξ1 = ξ2 = ξ.
Plotted are the curve's starting point (ξ, ξ) in yellow and the end-point (0, 0) in red. The lines cannot
cross the red point. We will have a root ω > 0 when a line and the curve cross. When γ1 = 0, then we
have a horizontal line. When γ2 = 0, we have a vertical line. Blue, orange, red, purple and brown lines
cross the yellow curve. Red and green lines do not.

Now we will turn to the case when 0 < ξ1 < ξ2 < 1. We will have a solutions if

x =
sinh(ξ1ω)

sinh(ω)
,

y =
sinh(ξ2ω)

sinh(ω)

satis�es
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γ1
d
x+ γ2y = 1

for some ω > 0.

From the concavity of the curve g we can see that we can have two, one or no intersections between

the line l and curve g. Figures 13 and 12 show some examples.

Figure 12: The line (2.32) in blue and curve (2.31) in yellow for ξ1 < ξ2. We can see that for some
values of ξ1, ξ2, γ1, γ2, d, td the line and the curve do not cross. In this �gure ξ1 = 0.7, ξ2 = 0.9, d =
0.5, td = 0.8, γ1 = −13

14 , γ2 =
20
9 .

Figure 13: The line (2.32) in blue and curve (2.31) in yellow for ξ1 < ξ2 can cross at two points. The
yellow point (ξ1, ξ2) represents the start of the curve and the red point (0, 0) represents the end of the
curve. Also depicted is y-intercept point of the line in blue and the blue point is the point that the line
(2.32) taken when x = ξ1. In this �gure ξ1 = 0.7, ξ2 = 0.9, d = 0.5, td = 0.8, γ1 = −2.5, γ2 =

40
9 .

Let us check what needs to be satis�ed for there to be two intersections. As can be seen from Figure

13, a necessary condition for the line to intersect the curve at two points is that the y-intercept of the

line is lower than the maximum height of the curve, that is, 1
γ2
< ξ2 or, equivalently, that 1

ξ2
< γ2.

Another necessary condition is that the slope of the line is positive, that is, − γ1
dγ2

> 0. Since we have
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to have γ2 > 1
ξ2
> 0, we see that d and γ1 have to have opposite signs. Also, as discussed previously,

we have to have ξ1 < ξ2. Finally, by Figure 13, the y-value of the line at the point x = ξ1 has to be

higher than ξ2. Substituting x = ξ1 into (2.32), we see that

1

γ2
− γ1
dγ2

ξ1 < ξ2,

which, after rearranging, becomes

γ1
d
ξ1

+
γ2
1
ξ2

< 1.

This implies that the crossing point is beneath the line (2.21) corresponding to the zero eigenvalue

in the γ1, γ2-space.

In summary, the necessary conditions to have two negative eigenvalues are:

�
γ1
d
ξ1

+ γ2
1
ξ2

< 1,

�
1
γ2
< ξ2,

� ξ1 < ξ2,

� d and γ1 have opposite signs.

All of these results can also be veri�ed by looking at Figures 4 and 5.

However, these are not su�cient conditions, as can be seen from the example in Figure 12. While

all of the necessary conditions are satis�ed, the line l does not cross the curve g. Provided that the

necessary conditions already presented are kept ful�lled, we can see that there will not be any crossing

when the line is above the curve and there will be two crossing points when the line is below the curve.

Therefore, we will investigate when the line is tangent to the curve. The line (2.32) will be tangent to

the curve g if

x =
sinh(ξ1ω)

sinh(ω)
,

y =
sinh(ξ2ω)

sinh(ω)
,

m =

d
ds

(
sinh(ξ2ω)
sinh(ω)

)
d
ds

(
sinh(ξ1ω)
sinh(ω)

) .

(2.37)

(2.38)

(2.39)

The �rst two equations (2.37)�(2.38) evaluate to

sinh(ξ2ω)

sinh(ω)
= m

sinh(ξ1ω)

sinh(ω)
+ b, (2.40)

whereas the equation (2.39) evaluates to

m =
ξ2 cosh(ξ2ω) sinhω − sinh(ξ2ω) coshω

ξ1 cosh(ξ1ω) sinhω − sinh(ξ1ω) coshω
. (2.41)
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Figure 14: For some values of γ1, γ2, d, ξ1, ξ2, the line (2.32) in blue and curve (2.31) in yellow for
ξ1 < ξ2 are tangent and therefore we have a double root. In this �gure ξ1 = 0.7, ξ2 = 0.9, d =
0.5, td = 0.8, γ1 = −13

14 , γ2 =
209
90 .

Here m and b are as in (2.34)�(2.35).

The graphs of (2.41) are depicted in Figure 8. Whenever the equations (2.37)�(2.39) are satis�ed,

we will have a double root of (2.29). This situation is depicted in Figure 14.

In short, given a pair ω0,m0 that satis�es (2.41), we can �nd a value b0 = 1
γ2

that satis�es (2.40).

We will have two di�erent roots if we lower the line below the tangent point. For that we need to lower

the y-intercept of the line, which is 1
γ2
. We can pick γ2 such that

0 <
1

γ2
< b0

and we will have two di�erent roots. Having admissable γ2, we can use (2.34) to �nd the required

values of d, γ1. From (2.34) we can deduce that

γ1
d
< −m0

b0
.

Alternatively, we can select the two roots. Call the two values of ω where we have intersections as

ω1 and ω2. Then de�ne the points

(x1, y1) =
(sinh(ξ1ω1)

sinh(ω1)
,
sinh(ξ2ω1)

sinh(ω1)

)
,

(x2, y2) =
(sinh(ξ1ω2)

sinh(ω2)
,
sinh(ξ2ω2)

sinh(ω2)

)
.
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From

y1 = mx1 + b,

y2 = mx2 + b

we get that

m =
y2 − y1
x2 − x1

,

b = y1 −mx1

where m and b are as in (2.34)�(2.35). Then we have the values for the line l (2.33).

Figure 15: The line (2.32) in blue and curve (2.31) in yellow for ξ1 < ξ2 can cross at one point when the
y-value < ξ2 at the point x = ξ1. In this �gure ξ1 = 0.7, ξ2 = 0.9, d = 0.5, td = 0.8, γ1 = −13

14 , γ2 =
40
9 .

Figure 16: The line (2.32) in blue and curve (2.31) in yellow for ξ1 < ξ2 can cross at one point when the
y-value < 0 at the point x = 0. In this �gure ξ1 = 0.7, ξ2 = 0.9, d = 0.5, td = 0.8, γ1 =

40
7 , γ2 = −40

9 .
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Now let us investigate when we only have one root ω > 0. Figures 15 and 16 depict the two scenarios

where we have a single root. Let us investigate the �rst case in Figure 15. De�ne the points

(x0, y0) = (0, b),

(x1, y1) = (ξ1,mξ1 + b).

From Figure 15 we see that we must have 0 < y0 and y1 < ξ2. From this we can deduce that

0 < γ2,

1 <
γ1
d
ξ1 + γ2ξ2.

For the case depicted in Figure 16, de�ne the points

(x0, y0) = (0, b),

(x1, y1) = (ξ1,mξ1 + b).

Then we will have a single crossing if y0 < 0 and y1 > ξ2. From this we conclude that

0 > γ2,

1 >
γ1
d
ξ1 + γ2ξ2

However, we can combine these two cases into a single condition. Observe that we will have a single

root if and only if the line l crosses the line segment connecting the points (0, 0) and (ξ1, ξ2) as it is

depicted in Figure 17

Figure 17: The line (2.32) in blue and curve (2.31) in yellow for ξ1 < ξ2 can cross at one point if
and only if the line (2.32) crosses the green line segment y = ξ2

ξ1
x for x ∈ (0, ξ1). In this �gure

ξ1 = 0.7, ξ2 = 0.9, d = 0.5, td = 0.8, γ1 =
5
7 , γ2 =

10
9 .
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The equation for the line segment is y = ξ2
ξ1
x. The line (2.32) crosses y = ξ2

ξ1
x when the system of

equations

1 =
γ1
d
x+ γ2y,

y =
ξ2
ξ1
x

has a solution x ∈ (0, ξ1), y ∈ (0, ξ2).

In other words, the solution

x =
dξ1

ξ1γ1 + ξ2dγ2
∈ (0, ξ1),

y =
dξ2

ξ1γ1 + ξ2dγ2
∈ (0, ξ2),

if and only if

0 <
d

ξ1γ1 + ξ2dγ2
< 1. (2.42)

This applies even when γ2 = 0 or γ1 = 0. Indeed, if γ2 = 0 or γ1 = 0, then we cannot have two

roots as horizontal or vertical lines cross the curve g at most once and are never tangent to the curve.

Therefore, only (2.42) condition is relevant for these cases.

Thus, we can say that we will have a single root whenever (2.42) is satis�ed.
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3 Sturm�Liouville Problems with More General Transmission and

Non-Local Boundary Conditions

3.1 Problem 1

Consider a generalizatoin of the problem (2.1)�(2.5):

−u′′ = λu, for t ∈ I1 ∪ I2,

u(0) = 0,

u(tb) = du(ta),

u′(tb) = δu′(ta),

< n1, u > =< l1, u > + < l2, u >,

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

where I1 = (0, ta) and I2 = (tb, 1), d, δ ∈ R not both equal to zero, 0 < ta ≤ tb < 1, γ1, γ2 ∈ R some

constants, n1 is a local boundary condition at the point t = 1:

< n1, u >:= αu(1) + βu′(1), α, β ∈ R. (3.6)

l1 is a non-local boundary condition in the interval I1 and l2 is a non-local boundary condition in the

interval I2.

If we repeat the solution procedure outlined in subsection 2.1, then we can �nd that the eigenfunc-

tions

u1(t) =
sin(st)

s
, for t ∈ I1,

u2(t) =M(s) cos(st) +N(s)
sin(st)

s
, for t ∈ I2,

where

M(s) = cos(stb)
(
d
sin(sta)

s
− δ

sin(stb)

s

)
,

N(s) = d
sin(sta)

sin(stb)
− cos2(stb)

(
d
sin(sta)

s
− δ

sin(stb)

s

)
,

(3.7)

(3.8)

exist if and only if s satis�es the condition

M(s)
〈
n1 − l1, cos(st)

〉
+N(s)

〈
n1 − l2,

sin(st)

s

〉
=

〈
l1,

sin(st)

s

〉
. (3.9)
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As before s2 = λ, where s ∈ Cs. M(s) and N(s) are related by

N(s) = d
sin(sta)

sin(stb)
− cos(stb)M(s).

Note that if < n1, u >= u(1), < l1, u >= γ1u(ξ1) for ξ1 ∈ I1, < l2, u >= γ2u(ξ2) for ξ2 ∈ I2, d = δ

and ta = tb, then M(s) = 0, N(s) = d and (3.9) becomes (2.19).

3.1.1 The case when λ = 0

We will consider when the operator of the problem is singular, that is, when λ = 0. Evaluating

(3.7)�(3.8) at s = 0 we get

M(0) = dta − δtb,

N(0) = d
ta
tb

−M(0),

where we have evaluated the limits

lim
s→0

sin(st)

s
= t,

lim
s→0

sin(sta)

sin(stb)
=
ta
tb
.

At s = 0 (3.9) becomes

M(0)
〈
n1 − l1, 1

〉
+N(0)

〈
n1 − l2, t

〉
=

〈
l1, t

〉
. (3.10)

First, we will consider what happens when M(0) = 0 and/or N(0) = 0.

M(0) = 0 if and only if dta = δtb,

M(0) = 0 implies that N(0) = δ,

N(0) = 0 if and only if dta = −δ
t2b

1− tb
,

N(0) = 0 implies that M(0) = −δ tb
1− tb

.

M(0) = 0 and N(0) = 0 together imply that both d, δ = 0. This is an extreme case that is similar

to the one investigated in (2.7)�(2.11) and is ill-posed. Then the eigenfunctions are

u1(t) = t, for t ∈ I1,

u2(t) = 0, for t ∈ I2,

whenever

〈
l1, t

〉
= 0.

If dta = δtb, then M(0) = 0 and N(0) = δ, which we will assume is not equal to zero. Since

0 < ta ≤ tb < 1, we also have that |d| ≥ |δ| and the signs of d, δ must be the same. The eigenfunctions
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are
u1(t) = t, for t ∈ I1,

u2(t) = δt, for t ∈ I2,

and we have a further condition that

〈
n1 −

1

δ
l1 − l2, t

〉
= 0. (3.11)

If n1 takes the most general form of (3.6), then < n1, t >= α+β. If < n1, t >= 0, that is, α = −β,
then the functionals l1, l2 are linearly dependent and < l2, t >=

1
δ < l1, t >. We will assume that

< n1, t > ̸= 0. Since δ ̸= 0 and < n1, t > ̸= 0, we can rewrite (3.11) as

1

δ

< l1, t >

< n1, t >
+
< l2, t >

< n1, t >
= 1,

which is an equation of a line in the variables < l1, t >, < l2, t > for �xed δ, < n1, t >. If we further

assume that < n1, u >= 1, < l1, u >= γ1u(ξ1), < l2, u >= γ2u(ξ2), then we can retrieve (2.21) with d

replaced by δ.

If dta = −δ t2b
1−tb

, then N(0) = 0 and M(0) = −δ tb
1−tb

or, equivalently, M(0) = d ta
tb
. Since 0 < ta ≤

tb < 1, we can conclude that the signs of d and δ must be opposite and that −|d| ≤ |d| tatb ≤ |d|. This,
in turn, implies that −|d| ≤ |δ| tb

1−tb
≤ |d|. Solving for tb, we get the inequality ta ≤ tb ≤ min{ |d|

|δ|+|d| , 1}.
The corresponding eigenfunctions in this case are

u1(t) = t, for t ∈ I1,

u2(t) =M(0), for t ∈ I2.

A further condition is that

M(0) < l1, 1 > + < l1, t >=M(0) < n1, 1 > . (3.12)

Note that this condition does not involve the functional l2. If < n1, 1 >= 0, that is, if α = 0, then

< l1, 1 >=
1

M(0) < l1, t >. So let us assume that < n1, 1 >= α ̸= 0. If we �x M(0) and < n1, 1 >, then

we can rewrite (3.12) as

< l1, 1 >

< n1, 1 >
+

1

M(0)

< l1, t >

< n1, 1 >
= 1,

which is an equation of a line in < l1, 1 >, < l1, t > for �xed M(0), < n1, 1 >. If we take < n1, u >=

1, < l1, u >= γ1u(ξ1), then we have γ1 =
M(0)

ξ1+M(0) .

If dta ̸= δtb and dta ̸= −δ t2b
1−tb

, thenM(0) ̸= 0 and N(0) ̸= 0, so we have to consider equation (3.10)

in its full generality.

If we assume that < n1, u >= 1, < l1, u >= γ1u(ξ1), < l2, u >= γ2u(ξ2), then our condition is

(
ξ1 + dta − δtb

)
γ1 + ξ2

(
d
ta
tb

− dta + δtb

)
γ2 = 1.
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3.2 Problem 2

Consider another generalization when we have several discontinuities at the points t = td1 , td2 , ..., tdn :

−u′′ = λu,

u(0) = 0,

u(td1 + 0) = d1u(td1 − 0),

u′(td1 + 0) = d1u
′(td1 − 0),

u(td2 + 0) = d2u(td2 − 0),

u′(td2 + 0) = d2u
′(td2 − 0),

...

u(tdn + 0) = dnu(tdn − 0),

u′(tdn + 0) = dnu
′(tdn − 0),

u(1) = γ0u(ξ0) + γ1u(ξ1) + ...+ γnu(ξn)

for t ∈ I0 ∪ I1 ∪ I2 ∪ ... ∪ In, where

I0 = (0, td1), I1 = (td1 , td2), ..., In−1 = (tdn−1 , tdn), In = (tdn , 1).

λ ∈ C is the eigenvalue, di ∈ R̊, where the remark about d = 0 case apply as well.

0 < ξ0 ≤ td1 ≤ ξ1 ≤ td2 ≤ ... ≤ tdn ≤ ξn < 1.

The solution set u(t) will be

u0(t) =
sin(st)

s
, for t ∈ I0,

u1(t) = d1
sin(st)

s
, for t ∈ I1,

u2(t) = d1d2
sin(st)

s
, for t ∈ I2,

...

un(t) = d1d2...dn
sin(st)

s
, for t ∈ In.

For λ = s2, s ∈ Cs to be an eigenvalue, s must satisfy

d1d2...dn
sin s

s
= γ0

sin(ξ0s)

s
+ γ1d1

sin(ξ1s)

s
+ γ2d1d2

sin(ξ2s)

s
+ ...+ γnd1d2...dn

sin(ξns)

s
.

The main conclusion is that this situation is analogous to the one investigated in the main part of

the text, except that this time we must work in a higher-dimensional space.
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4 Conclusions

In this work we have looked at a Sturm�Liouville problem for a simple second-order di�erential

operator with transmission and non-local boundary conditions. An analytic solution method was pre-

sented as well as a geometric way to investigate the eigenvalues. The conditions that need to be satis�ed

to have eigenvalues have been determined. The singular case and the case of negative eigenvalues was

explored in more depth. It was found that under certain conditions we may have up to two negative

eigenvalues, including repeated ones. The analysis of positive and complex eigenvalues proved to be

much more di�cult and it is postponed to future research. Some generalizations have been considered

and preliminary results were presented, although much more research is required for the more general

cases.
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