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Abstract

In this paper, statistical and machine learning methods are employed to detect faults in the solar
power generation process. The primary objective is to analyze unlabeled data and identify strings
affected by shading. The behavior of 143 strings that generate solar electrical power is investigated,
comparing them based on their similarities. Initially, the data is evaluated using mean, standard
deviation, and correlation coefficients to detect any abnormalities. Following this, K-means clustering
is applied to the data from the days with the highest power generation and compared with the results
with those from average generation days. Next, the time series data is transformed into functional data
and smoothed using Fourier basis functions. This functional data is then used to detect outliers and
perform functional K-means clustering.
Keywords: solar power, outlier detection, fault detection, K-means clustering, Functional
data analysis
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Santrauka

Šiame darbe naudojami statistiniai ir mašininio mokymosi metodai gedimams saulės energijos gamy-
bos proceso aptikti. Pagrindinis tikslas yra išanalizuoti neklasifikuotus duomenis ir nustatyti stygas,
paveiktas šešėlių. Ištirtas 143 saulės elektros energiją generuojančių stygų elgesys, lyginant jas pagal
panašumus. Iš pradžių duomenys įvertinami naudojant vidurkį, standartinį nuokrypį ir koreliacijos ko-
eficientus, siekiant nustatyti esamus nukrypimus. Tuomet, K-means klasterizavimas taikomas dienoms,
kai pastebėta didžiausia elektros galios generacija, ir palyginamas su dienomis, kai elektros galios gen-
eracija buvo vidutinė. Tada laiko eilučių duomenys paverčiami funkciniais duomenimis ir jiems pri-
taikoma Fourier transformacija. Apdirbti funkciniai duomenys naudojami išskirčių identifikavimui ir
funkciniam K-means klasterizavimui.
Raktiniai žodžiai: saulės energija, išskirčių identifikavimas, gedimų indentifikavimas, K-
means klasterizavimas, Funkcinių duomenų analizė
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Notation

• DT - Decision tree

• DC - Direct current

• EWMA - Exponentially weighted moving average

• FDA - Functional data analysis

• PV - Photovoltaic

• LG - Line to ground

• LL - Line to line

• MSE - Mean square error

• OC - Open circuit

• SD - Standard deviation

• t-SNE - T-Distributed Stochastic Neighbor Embedding

• W - Watt
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1 Introduction

Nowadays, solar energy is becoming increasingly popular, primarily for environmental and economic
reasons. People are seeking ways to meet their energy needs with minimal environmental impact. Ad-
ditionally, given the current economic situation, individuals are looking to reduce their electricity bills,
while some view solar plants as a viable investment. According to the Official Statistics Portal of
Lithuania [13], solar power plants generated 79.4% more electrical energy in 2022 compared to 2021.
The International Renewable Energy Agency reported that solar energy consumption in Lithuania ac-
counted for 12% of the total renewable energy consumption in 2021. Despite the rapid growth in the
solar energy sector and extensive research, fault detection remains one of the most challenging aspects of
solar power generation. This challenge is primarily due to limited data, noise caused by environmental
variations, and incipient faults that are difficult to identify due to very minor energy losses. Further-
more, components such as inverters, which are responsible for converting current to usable electricity,
are designed to shut down in the event of a failure, and these occurrences often go unregistered. Solar
power is a clean energy source that plays a crucial role in environmental decarbonization, however,
undetected faults can lead to inefficiencies that impact financial results and pose safety hazards, in-
cluding the risk of electrical fires. Therefore, the purpose of this thesis is to address the fault detection
challenge by employing statistical and machine learning methods.

Solar power plants are continuously exposed to many factors that significantly degrade their per-
formance and efficiency. In order to successfully achieve our goal, we have to understand what kind of
faults are possible in solar power plants. Scientists categorize faults of solar power systems in different
ways, either by their duration or by their nature:

• By Duration [17]

1. Temporary faults - short-term issues that can resolve on their own or through simple inter-
ventions. They often do not cause lasting damage to the system.

2. Permanent Faults - long-lasting or persistent issues that require significant repair or replace-
ment of components. They can cause substantial damage if not addressed promptly.

• By Nature [5]

1. Physical faults - involve physical damage to the solar panels or other components, such as
cracks or soiling (accumulation of dirt and debris).

2. Electrical faults - involve issues in the electrical circuitry, such as short circuits, open circuits,
or inverter malfunctions.

3. Environmental faults - caused by external environmental factors, such as shading from nearby
objects, extreme weather conditions, or temperature variations.

However, this research solely addresses the detection of environmental faults, particularly shading,
which affects electrical power generation.

While numerous papers have been published focusing on various types of fault detection in the field
of solar energy, many of them rely on simulated or experimental data where electrical or environmental
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faults are artificially created. Some studies utilize real-life datasets with pre-labeled faults. Thus, we
believe that further research in this area is relevant. To the best of our knowledge, the combination
of time series clustering and functional data clustering has not been extensively explored on a case-
by-case basis for fault detection. This paper demonstrates that, despite the longer computation time,
analyzing case-specific scenarios provides an advantage in identifying more abnormalities. This is
because examining longer intervals of data can obscure important features, for instance, the same
string may compensate for poor generation results from the previous day, which were impacted by
adverse weather conditions.

Our research indicates that statistical measurements, such as standard deviation or correlation,
can suggest the possibility of shading affecting strings by examining the relationship between strings
connected to the same panel. However, these assumptions should be supported by other methods.
Therefore, we incorporated K-means clustering and FDA algorithms, which effectively identified strings
which performance was negatively impacted by shading compared to others. To validate our findings,
we referred to a report prepared by experts accompanying the dataset, which indicated that inverters
9, 8, 11, and 12 exhibited lower generation results due to shading. Nonetheless, we hypothesize that
multiple high-performing strings connected to an inverter could compensate for the losses experienced
by shaded strings connected to the same inverter. Consequently, we focused on implementing the
selected methods on strings rather than inverters.

The rest of the work is organized as follows. Section 2 presents the literature review, encompassing
the types of faults detected, the data utilized, and offering a brief summary of statistical and machine
learning methodologies employed in the detection of solar energy faults. Furthermore, we examine
the application of functional data clustering methods in addressing various issues identified in the
literature. Section 3 consists of the theoretical aspects of the methods used in this research, while
Section 4 introduces the dataset utilized in the experimental part, which is detailed further in Section
4. Results and conclusions are presented in Sections 5 and 6, respectively.

8



2 Literature review

Before starting a new research it is very important and helpful to get to know the fellow researches’
work. Analyzing what has been done in the field helps to understand the challenges of similar work,
distinguish the methods that are the most common and accurate from the ones that are less suitable
to the topic of interest. For that reason, the first part of this paper presents the reviews of scientific
papers that contributes to improving and understanding solar power plants operations.

2.1 Fault detection

In order to make solar power plants more efficient, we need to acknowledge the weakest parts of
it. Two the most common reasons of decrease in solar power output are weather conditions and faulty
elements. This paper’s focus is a fault detection of solar array.

In their work [28], Y. Zhao et al. explored Decision Tree (DT) based models. With this method,
scientists successfully achieved high accuracy at detection and classification of pre-defined faults. While
authors celebrated the simplicity and accuracy of DT models, they also acknowledged the limitations of
this method. High cost of training and poor performance on a data that is significantly different from
training set encourages to seek for better approach. Later Y. Zhao et al. [30] introduced three different
outlier detection rules in order to identify 5 faults of solar power plant at different contamination levels.
While 3-Sigma rule failed at all cases, Hampel identifier had the best accuracy at higher contamination
level due to method’s outlier-sensitivity being the lowest. However, Boxplot rule performed better at
half as small contamination level as Hampel identifier. A group of researches proposed combining one-
diode model with an exponentially weighted moving average (ODM-EWMA) to detect changes that
identify as faults in photovoltaic (PV) systems [6]. This method was applied to five cases - normal
operating conditions, study of open-circuit (OC) PV strings, study of a short circuit (SC) in a string
of PV modules, study of shading fault and study of multiple faults. The differences between predicted
and measured values of maximum current, voltage and power generated values were loaded to EWMA
chart, which is used to detect faults. Overall, authors concluded that proposed method successfully
detects and identifies faults. In 2021, fault detection using statistical tool based on William Gosset’s
(Student’s) T-Test [10] was introduced. Experiment started from inducing faults in actual PV plant
by switching the relays at certain times to short-circuit in PV module and raising translucent sheet in
front of the panels to cause partial shading or soiling. After that, theoretical PV plant was simulated
using irradiance and temperature measured in actual PV plant. The direct current (DC) capacity of
individual strings within the actual solar power plant were assessed against the mean DC capacity of
strings in the simulated PV plant using an introduced statistical tool, Z_Score (the difference of string
powers of actual PV plant and the mean of string powers of simulated PV plant divided by standard
deviation of simulated PV plant). Based on the predefined thresholds, faults were classified either as
PV modules failure, partial shading or soiling loss, or PV string failure.

Another method for fault identification involves employing machine learning techniques. To ad-
dress challenges such as non-linearity, the expense of training data, and the need for case-by-case
analysis, a separate study [29] introduced a graph-based semi-supervised learning approach (GBSSL).
This method was proposed for detecting accidental short-circuiting between two points in the array with
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different potentials, as well as identifying accidental disconnections in normal current-carrying conduc-
tors. Choosing semi-supervised learning method, requires significantly smaller amount of labeled data,
which results in decrease of resources. Researches managed to reach 100% accuracy in detection and
classification of fault in photovoltaic arrays. [9] paper’s goal was to investigate fault detection problem
on the DC side with the help of multi-resolution signal decomposition (MSD) and a fuzzy inference
system (FIS) focusing on line to line (LL) and line to ground (LG) shortcomings. For training purposes,
researches used simulated events, in total 3888 faults and 220 cases of normal activity were generated.
Later the performance of proposed method was verified on experimental PV array with only LL faults.
Both, simulation and actual cases studies reached satisfactory accuracy. In their second paper on fault
detection [20] S. Rao et al. continued exploring customized neural network algorithms. Researchers’
goal was to improve the reliability and efficiency of utility scale solar arrays. Using K-means algorithm
on voltage, current and temperature, let to identify such faults as ground, arc, degradation, complete
or partial shading, variation in temperature, standard test conditions with irradiance at 1000 W/m2

and a module temperature of 25°C. The main part of the research was implementing multilayer feed-
forward neural network also called multilayer perceptron (MLP). By using this fault detection and
identification method on experimentally generated data, authors managed to detect and label 8 types
of faults with overall accuracy of 99.7%. Acknowledgment that incipient faults are extremely hard to
detect due to insignificant losses of generated electricity led to research [31] where long-term differences
between actual and predicted values are analyzed in order to detect faults. The paper’s main idea is
to use collaborative filtering (CF) method to accurately predict current values based on the similarity
with historical values. With the help of Euclidean distance, the similarity within data was calculated,
the next step was to apply CF technique to predict string’s current values. The fault relevancy was
evaluated by calculating the residuals between actual and predicted values, as well as, analyzing the
span of the residual. Once the relevance is established, auto-threshold model [32] is applied for fault
detection.Experimental part proved the efficiencies of proposed model and highlighted Euclidean dis-
tance superiority against Cosine and Pearson based models. 5000 I-V curves (PV generator current vs.
voltage) simulated under uniform conditions and 5000 I-V curves simulated under different mismatched
conditions were used in [16] paper. Multilayer Perceptron algorithm (MLP) was applied to the training
set. In order to find the best possible model, training stage was completed multiple times with different
number of neurons in the hidden layers. Despite a few classification errors, MLP showed promising
results. However, second evaluation of the model was performed using 2000 experimental I-V curves
and based on this part of the research, the network with 15 neurons surpassed any other variation of
MLP. A research [18] for hourly fault detection based on actual PV systems located in Australia and
China could be summarized in three steps - data was pre-processed by correcting measured data using
linear fitting lines between global radiation and power under standard test condition (this step elimi-
nated abnormal data), then combination of K-means Cluster and Multiclass-gradient boosting decision
three-logistic regression (Multiclass-GBDT-LR) was introduced in order to recognise hourly weather
status patterns. The last step was applying two layers fitting model for hourly faults monitoring. For
the first layer K-Nearest Neighbors (KNN), Gradient Boosting (GBR), MLP and Random Forest (RF)
methods were used as a base learners, while Linear Regression was used in the second layer. Overall, an
unsupervised hourly weather status patter recognition and blending fitting model showed its significant
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advantages by promptly detecting faults. Comparison of three machine - learning models is presented
in the work of Qais Ibrahim Ahmed et al. [1]. To identify irregularities of the solar power plant
in India, authors implemented physical model, Support Vector Machine (SVM) regression model and
SVM classification model. Grey wolf optimizer (GWO) was used for tuning the hyper parameters for
all three cases. By comparing sensitivity and specificity rates, researchers showed that combination of
GWO and SVM classification model outperformed other two models by classifying inverter states into
normal and fault categories. Sufyan Ali Memon et al. [14] introduced a paper where simulated labeled
data was fed to Convolutional Neural Networks (CNN) in order to identify whether PV array works
under normal conditions, faces degradation, LL fault, OC (open circuit) fault or is partially shaded.
The CNN performance was evaluated using learning curves, accuracy curves and confusion matrix. It
was concluded that using CNN model on simulated data achieved overall accuracy of 95.20%. To solve
anomaly detection exercise, Eleonora Arena et al. [2] introduced Monte Carlo based pre-processing
technique. This method’s benefit is that it intrinsically deals with outlier substitution and takes into
account the temporal locality of subsequent samples. Following pre-processing, the authors proceeded
to train an anomaly detection model utilizing Principal Component Analysis. The proposed method
was tested under standard and abnormality conditions. It accurately predicted equipment failure nearly
two weeks in advance, while also showcasing resilience against false alarms during normal conditions.
Summary of discussed fault detection in solar power plants methods is presented in the table 5.

2.2 Functional clustering

Functional data analysis has a wide range of applications. F. Ieva et al. [8] used multivariate
functional clustering method for an analysis of electrocardiograph (ECG). Data set consists of 198
subjects, from which 97 subjects are diagnosed with either right bundle branch block (RBBB) or left
bundle branch block (LBBB). To smooth the ECG data, Daubechies wavelet-based smoothing method
was chosen. Authors highlighted that each curve has its own biological time so the same feature can
appear at different times among patients. To solve this problem monotone interpolation method was
used. By using such registration technique, morphological information is separated from duration
of the different segments of the ECG. The goal of the research was to distinguish cases by different
pathologies considering only the shape of the curves. For that purpose authors used k-means clustering.
The main distance used int his work was natural distance in the Hilbert space (d1). For evaluation
and comparison reasons, authors also used natural seminorm (d̃1) and norm (d2) in the Hilbert space.
By using silhouette plots, it was identified, that optimal number of clusters is 3. Results of cross-
validation identified that using d1 and d2 distances, provide slightly better results than using d̃1. Paper
by J. Jacques and C. Preda [11] also considered the problem of clustering multivariate functional data.
As a solution, authors introduced principal component analysis for multivariate functional data and
then assumed a cluster-specific Gaussian distribution for the principal component scores (further called
Funclust). This research was supported by three evaluation strategies: Funclust method was compared
to other clustering methods applied to univariate functional data, Funclust method was compared to
simulated multivariate functional data, as a third strategy climatology data set was introduced which
was used to present geographical interpretations of the clustering results using Funclust and K-means
methods. For this thesis, the third case is the most relevant. Canadian temperature and precipitation
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curves were smoothed using Fourier basis with 65 knots. Funclust method was compared with already
mentioned kmeans-d1 and kmeans-d2 algorithms ([8]). By comparing these methods, authors concluded
that kmeans-d1 and kmeans-d2 seems less pertinent than Funclust since two out of four identified
clusters includes Atlantic and Pacific countries. To conclude the results, expectation-maximization
algorithm was proposed. Both real data and simulated cases illustrated the efficiency of proposed
method. Another paper that implemented functional data clustering was written by A.Z. Zambom et al.
[27]. Authors proposed new variation of functional data K-means clustering method based on a measure
of similarity of curves that is composed of a combination of the t test statistic and an ANOVA-type test
statistic for parallelism. Experimental part was implemented using 2 cases of simulated data and 4 cases
of real life data. Results of the experiment was compared with multiple different variations of functional
data clustering introduced by different authors, such as already mentioned Funclust method introduced
by [8]. Real data used for experimental part is very well known amongst those, who are interested in
functional data analysis methods. Canadian weather, Growth, Yeast Gene, and Fat spectrum data.
Experiments on both, simulated and real data, showed that proposed strategy performed competitively,
in some cases achieving the smallest rate of error. [15] paper introduced a novel approach (Deep-FDA)
that combines functional data analysis (FDA) and neural networks. Performance of the proposed
method was evaluated by comparing two scenarios - model-driven simulation where random samples
were generated reproducing the model and real three months worth of traffic network data. Simulated
data was divided to balanced and imbalanced clusters cases, which were then divided into different
sample sizes and fed to functional K-means clustering, principal component analysis (PCA), functional
principal component analysis (FPCA) and Autoencoders (AE) methods. Results of the experiment were
evaluated using precision, recall, L1 and L2 distances. It was concluded that results of AE are very
similar to PCA and FPCA, however PCA and FPCA outperformed AE when applied to small sample
size. The same methods were tested on a real data set to detect imperceptible patterns. Data frame was
divided into 1 month, 2 months and 3 months samples and 4 network segments based on the services
network provides. In this case all four methods gave very similar results, however based on Functional
Silhouette Coefficient (SC) and Functional Davies-Bouldin Index (DBI), K-means clustering performed
better than projection based algorithms in most cases, while FPCA demonstrated its superiority against
PCA by better differentiating two clusters that are very close to each other. Overall, the proposed
combination of FDA and AE showed that it can be valuable tool in capacity planning and alarming.
To detect anomaly in functional data, J. R. Sosa Donoso et al. [24] adapted Local Correlation Integral
(LOCI) method. The implementation of this method was validated using hourly average humidity
data obtained in Ecuador. This data set corresponds to 2190 days of information, where each day
is considered as a function of 24 measurements. Performance of functional data LOCI (FD-LOCI)
algorithm using L2 metric was compared to FD-LOCI with elastic depth, Functional Boxplot, Elastic
Depth and fdqcs.depth methods. It was evaluated that all methods performed similarly, yet based on
an ability to detect anomalies, both FD-LOCI variations performed the best.

Shading effects to solar energy generation was analyzed in [3]. For comparison purposes, data with
and without shading was simulated assuming that PV plant is located Rwanda, Africa. Location is
important, because real weather observations were imported to generation process to get as accurate
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simulation as possible. P-V (power - voltage curves) and I-V curves were investigated at different rates
of irradiance and different numbers of shaded modules. Authors concluded that shadow affects the
performance of PV systems and the rate at which the PV system is affected depends on the shaded
area, position, and how much radiation reaches that shaded area. In conclusion, the reviewed literature
highlights the critical importance of robust fault detection methods in ensuring the efficient and reliable
operation of solar power generation systems. Despite advancements in fault detection methodologies,
the impact of shading on system efficiency continues to pose significant hurdles. Moving forward, our
study aims to contribute to this field by proposing a novel methodology that integrates machine learning
techniques with functional data analysis to enhance fault detection accuracy in the presence of shading
anomalies.
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3 Methodology

This research is based on statistical and machine learning methods as illustrated in figure 1. Data
set is explored through descriptive statistics, such as Mean, Standard Deviation (SD), and Correlation.
These measurements help identify patterns, relationships between variables, and anomalies. Based on
this initial evaluation, K-means clustering and outlier detection are used to identify strings affected by
shading. To further support current research, time series data is converted to a functional dataset and
apply Functional Data Analysis (FDA) methods. This section outlines the methods used and provides
key definitions and formulas.

Figure 1: Research methodology workflow

3.1 Descriptive statistics

Descriptive statistics consists of multiple different measurements, that provides essential information
about a dataset, such as central tendencies, variability, and distributional properties. Statistical metrics,
used in experimental part are presented below.

• Mean

x̃ =
1

n

(
n∑

i=1

xi)

)
, (1)

where n - number of items in the sample, x1, x2, ..., xn - sample

• Standard deviation (SD)

sx =

√√√√ 1

N

N∑
i=1

(xi − x̃)2, (2)

where N - size of the sample.
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• Correlation coefficient

rxy =

n∑
i=1

(xi − x̃)(yi − ỹ)

(n− 1)sxsy
(3)

• Boxplot
Boxplots [23] are a simple yet effective way to summarize data using five key values: the minimum
(extreme lower), the maximum (extreme upper), the first quartile (Q1), the median (second
quartile, Q2), and the third quartile (Q3). This technique allows us to calculate the range (Max
− Min) and the interquartile range (IQR, Q3 − Q1). The IQR helps us set boundaries for
distinguishing normal data from outliers.

3.2 K-means clustering

K-means clustering is an unsupervised machine learning algorithm, which groups data points based
on the distance [22]. Algorithm assigns data point to a cluster based on its similarity to other data
point (similarity within a cluster should be maximal, while similarity between separate clusters should
be minimal). Number of clusters has to be predefined. Algorithm works in tree steps - sets initial center
point, assigns data points that are closest to respective center point based on chosen distance metric,
specifies center point according to formed clusters. A successful K-means implementation depends on
chosen distance metrics, which goal is to obtain an appropriate similarity function. In this case we use
Euclidean distance, which is defined below.

d(X,Y ) =

√√√√ m∑
i=1

(x1 − y1)2 (4)

3.2.1 Elbow method

There are two common ways to identify optimal number of clusters - Elbow method [4] and Silhou-
ette score [21]. Elbow method is a visual technique. It plots a graph shaped like an elbow. The graph
represents the variance explained by different numbers of clusters. Variance within each cluster (eq. 5)
is plot against various k values. We consider k to be an optimal number of clusters at the point were
graph bends like an elbow.

WCSS =
k∑

i=1

∑
x∈Ci

||x− µi||2, (5)

where Ci is the set of points in cluster i, and µi is the centroid of cluster i.

3.2.2 Silhouette score

Similar to Elbow method, the purpose of Silhouette score is So evaluate how well clusters are
arranged. The range of silhouette score is between 1 and -1. Score equal or close to 1 means that
clusters are clearly arranged, 0 means that differences between clusters are insignificant, and 1 means
that clusters are not properly arranged. Silhouette score is calculated by eq. 6.

15



s(i) =
b(i)− a(i)

max(a(i), b(i))
, where (6)

a(i) is average dissimilarity of object i to all other objects of cluster A to which object i has been
assigned and b(i) is average dissimilarity of object i to all objects of B (cluster B is the second-best
choice for object i).

3.3 T-Distributed Stochastic Neighbor Embedding

T-Distributed Stochastic Neighbor Embedding (t-SNE) [26] is intended for high-dimensional data
visualization. As a part of unsupervised machine learning algorithms, it does not require labeled data.
This method is a variation of Stochastic Neighbor Embedding [7], it gives each data point a location
in two or three-dimensional map by reducing the tendency to pound data points together in the center
of the map. t-SNE works in following steps:

1. It calculates conditional probabilities reflecting similarities between data points using distance
metrics. We use Euclidean distance to do this exercise.

pj|i =
exp

(
− ||xi−xj ||2

2σ2
i

)
∑
k ̸=i

exp
(
− ||xi−xk||2

2σ2
i

) , where

||xi − xj ||2 is Euclidean distance and σ2i is the variance of the Gaussian kernel centered at xi.
Since we are interested only in modeling pairwise similarities, we set pi|j = 0.

2. Data points are randomly placed in smaller dimension, where conditional probabilities are calcu-
lated:

qj|i =
exp(−||yi − yj ||2)∑

k ̸=i

exp(−||yi − yk||2)

If the map points yi and yj correctly model the similarity between the high dimensional data
points xi and xj , the conditional probabilities pj|i and qj|i will be equal.

3. By minimizing the sum of Kullback-Leibler divergences (eq. 7) over all data points using a
gradient descent method (eq. 8), SNE aims to minimize the mismatch between pj|i and qj|i.

C =
∑
i

KL(Pi||Qi) =
∑
i

∑
j

pj|ilog
pj|i

qj|i
, where (7)

Pi is conditional probability distribution over all other data points given point xi, Qi is the
conditional probability distribution over all other map points given point yi.

δC

δyi
= 2

∑
j

(pj|i − qj|i + pi|j − qi|j)(yi − yj). (8)
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3.4 Functional Data Analysis

This section introduces the concepts of Functional Data Analysis [19], [12] utilized in this thesis.
The main idea of this statistical method is to analyze data that is the form of functions, curves or

images. FDA focuses on data that are best represented as continuous functions such time and space.
Functional data sample is defined in eq. 9.It means that N curves are observed on an interval [T1, T2]
and Ji is a number of data points for curve i.

xn(tj,n) ∈ R, tj,n ∈ [T1, T2], n = 1, 2, ..., N, j = 1, ..., Jn. (9)

The fundamental idea of FDA is that we study smooth curves for which the values xn(t) exist at
any point t, but are observed only at selected points tj,n (10

{xn(t) : t ∈ [T1, T2], n = 1, 2, ..., N}. (10)

3.4.1 Fourier Smoothing

Usually, the first step in working with functional data is its expression through basis expansion (eq.
11). Smoothing reconstructs function xj(t) to remove excessive noise, improve statistical inference or
estimation.

Xn(t) ≈
M∑

m=1

cnmBm(t), 1 ≤ n ≤ N, (11)

where Bm are chosen basis function.
Due to data structure, Fourier basis functions (eq. 12) are used in this research. Fourier basis is

periodic, which is suitable for seasonal data, it fits best cases where beginning and end of an interval
has approximately the same values.

x(t) ≈ λ0 + λ1sin(wt) + λ2cost(wt) + ...+ λ2M−1sin(Mwt) + λ2Mcos(Mwt) (12)

composed by K = 2M + 1 basis functions:

ψ0(t) = 1, ψ2r−1(t) = sin(rwt), ψ2r(t) = cos(rwt), r = 1, 2, ...,M.

Parameter w determines the period 2π/w which is equal to the length of the interval τ (w = 2π/T ifτ =

[0, T ]).

3.4.2 Cross-validation

To determine optimal K for Fourier smoothing we use Cross-validation. This technique is used to
evaluate the performance of the model on unseen data. General idea is that we split our data set into
multiple folds, that are used in training and testing the model. We iterate through this process each
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time calculating Mean Squared Error (MSE) (eq. 13) using specific K in order to evaluate how well K
fits our data. The lower MSE is, the more suitable K is to our basis function.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (13)

3.4.3 Functional Boxplot

In the classical Boxplot, the box itself represents the middle of 50% of the data, while in FDA, data
ordering progresses from the center outwards. The 50% central region is defined by the band which is
delimited by the α(0 < α < 1) proportion of the deepest curves from the sample is used to estimate the
α central region. This region’s border is marked by the envelope representing the box in a traditional
Boxplot. Similar to the IQR, this 50% central region offers insight into the spread of the central 50%
of the curves. It’s robust for interpretation as it remains unaffected by outliers or extreme values,
providing a less biased visualization of the curves’ spread. The observation within the box signifies the
median, a robust statistic for measuring centrality. The "whiskers" of the Boxplot are the vertical lines
extending from the box, denoting the maximum envelope of the dataset excluding outliers.

3.4.4 Outlier detection

Outliers in functional data set can be two types:

1. curves with gross errors, such as mistakes in typing, measurements or recording;

2. curves that are somehow abnormal, do not follow the same patter as the rest of the curves.

The first type of outlier typically needs to be addressed through elimination or correction to maintain
data integrity. However, the second type of outlier can offer valuable insights into the dataset, aiding
in the identification of abnormalities such as faults, diseases, or other deviations from the norm. A
curve can be an outlier if it is significantly far away from the expected function or is in different shape
than the rest of the curves during the same period of time. To identify outliers in functional data
we use functional depths. If there is a curve representing an outlier, it will have a significantly low
depth. Depth measures how deep (central) is a datum point in respect to the rest of the population.
In univariate data, the median would be the deepest point. There are multiple methods to calculate
band depth, how to calculate the halfspace and the simplicial depths of xi is provided in the eq. 14.

HDn(xi) = min{Fn(xi), 1− Fn(xi)}

SDn(xi) = 2Fn(xi)(1− Fn(xi)),
(14)

where Fn is the empirical cumulative distribution function of the sample xi, ..., xn:

Fn(x) =
1

n

n∑
k=1

1{xk ≤ x}, x ∈ R.
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3.4.5 Functional K-means clustering

Functional K-means clustering [25] extends the traditional K-means clustering algorithm to handle
functional data. Unlike traditional K-means clustering, which deals with scalar data points, functional
K-means clustering works with data that are functions over a continuum, such as time or space. To
perform clustering, a suitable distance measure between functions is required. Here, we use L2 norm
(eq. 15), commonly referred to as the Euclidean norm. Similarly to K-means algorithm described in
section 3.2, functional K-means randomly selects initial centroids or use methods such as hierarchical
clustering for initialization. Next step is to assign each function to the nearest centroid based on
chosen distance measurement. Once all functions are assigned, centroids are recalculated by averaging
the functions in each cluster.

||f − g||2 =
(∫ b

a
(f(t)− g(t))2dt

) 1
2

, (15)

where f(t) and g(t) are defined on the interval [a, b].
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4 Experimental results

4.1 Data

The data set used in this research consist of 15 minutes resolution observations of 143 strings, each
string is connected to one of 12 inverters, which are then connected to one of 3 blocks. Structure
of this solar panel is detailed in Table 1. This photovoltaic system is installed in the eastern part
of Lithuania. Observations cover period from 2022-03-01 until 2023-10-04 with an exception of a few
days where solar power plant was turned off due to maintenance work - this issue is further explained
in the pre-processing section. Original data set contains observations of inclined irradiance, string
current measured in ampere (A) and string voltage measured in volts (V), however this work is based
on electrical power observations, which is a product of current and voltage. It is know that all parts of
this PV plant have the same technical parameters, thus assumption is that each string generates the
same amount of energy under the same conditions. From data visualizations (figures 62, 63 and 64), it
is clear, that we are dealing with seasonal time series data with significant decrease in electrical power
generation during winter months.

Block Inverter String

No.1

INV-1 1-1 string to 1-13 string
INV-2 2-1 string to 2-13 string
INV-3 3-1 string to 3-13 string
INV-9 9-1 string to 9-13 string
INV-10 10-1 string to 10-13 string

No.2

INV-4 4-1 string to 4-12 string
INV-5 5-1 string to 5-12 string
INV-8 8-1 string to 8-12 string
INV-11 11-1 string to 11-12 string

No.3
INV-6 6-1 string to 6-10 string
INV-7 7-1 string to 7-10 string
INV-12 12-1 string to 12-10 string

Table 1: Structure of Solar Power Plant and annotations

4.1.1 Data pre-processing

It is clear from unprocessed data’s illustrations (figures 62, 63 and 64) that chosen data set contains
some missing values. We know that solar power plant was turned off for maintenance from 2022-05-24
until 2022-06-02. It was decided to remove all observations until 2020-06-02. Missing values were also
noticed on 2022-09-15 between 2 p.m. and 3 p.m. and on 2023-06-29 between 12 p.m. and 3 p.m,
however reason behind this is unknown. To estimate these missing points spline interpolation method
was used. Final step in determining data frame for further analysis was removing night time hours.
Since sun is essential in solar power generation, removing night hours significantly reduces size of the
data set without compromising data quality. Removing observations measured between 8 p.m. and 6
a.m. reduced the size of data set almost in half. To get better understanding of each string, zoomed in
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view on period starting from 2023-06-12 and ending on 2023-06-18 are also included (figures 2, 3 and 4.
From these illustrations, we can see that some strings generate lower amount of electrical power than
other strings connected to the same inverter.
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Figure 2: Block no.1 electrical power and irradiance after pre-processing

4.1.2 Descriptive statistics

To better understand data patterns we look deeper into descriptive statistics. Table 2 represents ten
days each with the highest mean, the lowest mean, the highest standard deviation (SD) and the lowest
SD. While it may seem intuitive that days with the highest mean of electrical power correspond to
days when the most solar energy was generated, this assumption may not always be true. To test this,
we calculated how much electrical power was generated daily. Computations proved that days with
the highest mean are the same as days with highest generation results. It is interesting that out of 10
days where electrical power generation was the highest, 9 days are from 2023 either May or beginning
of June. Based on Lithuanian Hydrometeorological Service data, average duration of solar radiance in
May 2023 was 346.8 hours and in June 2023 it was 312 hours while in May 2022 it was 237.7 and in
June 2022 it was 280 hours. By looking into days with the lowest mean we can see that more days are
from 2022 than from 2023. It was reported that average duration of solar radiance in November 2022
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Figure 3: Block no.2 electrical power after pre-processing

was 18.2 hours, in December 2022 it was 19 hours while in January 2023 it was 14 hours. January 2023
stands out because a new record was set of 5.1 hours of average duration of solar radiance in Vilnius.

Another important measurement is SD. It provides valuable insights into the dispersion of our
data. From the table 2 we can see that data points are spread out over a wider range from the
mean in months with high solar radiance, while in months with low solar radiance data values are
significantly closer to the mean. This implies that electrical power generation fluctuates widely over
time. This inconsistency is mostly because of different seasons, but also could be impacted by weather
conditions, clouds coverage, shading or other environmental factors. High dispersion may also suggest
inefficiencies or performance issues in solar energy systems. It could indicate flaws in system design,
maintenance issues, or limitations in technology that affect the consistency and reliability of power
generation. Further steps of this research will show the impact of faults such as shading to electrical
power generation.

To illustrate descriptive statistic of our data set we use Box plots (figures 5 and 6). We can see
that for all strings, median is quite small, it is around 2500 W, while the upper extreme is more than
17500 W. This suggests that our data set is positively skewed, indicating that observations of strings
generating very high amount of electrical power are less frequent. Interquartile Range (IQR) looks
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Figure 4: Block no.3 electrical power after pre-processing

Day Highest
mean

Day Lowest
mean

Day Highest
SD

Day Lowest
SD

2023-06-06 12461.2 2022-11-21 142.4 2022-06-22 1798.96 2023-01-03 41.67
2023-06-05 12449.3 2023-01-09 139.5 2022-06-24 1738.95 2022-12-30 41.58
2023-05-31 12330.0 2022-12-06 138.0 2022-06-23 1704.32 2023-01-02 41.29
2023-06-09 12324.4 2023-01-11 127.8 2022-06-25 1592.2 2022-12-30 40.51
2023-05-28 12146.5 2022-12-20 127.0 2022-06-26 1582.12 2023-01-02 39.54
2023-05-07 12117.8 2022-12-11 124.5 2022-06-27 1492.47 2022-12-31 39.32
2022-06-22 12076.1 2022-11-23 109.0 2022-07-21 1109.79 2023-01-10 39.09
2023-05-06 12033.7 2022-11-27 108.9 2022-07-20 1083.95 2023-01-17 38.31
2023-05-08 11935.4 2022-12-07 82.3 2022-07-22 1041.19 2023-01-13 38.04
2023-06-07 11899.7 2022-12-09 78.8 2022-08-11 1041.04 2023-01-01 34.74

Table 2: Descriptive statistics

very consistently, 50 % of the time generated electrical power is between 0 W and 10000 W. Despite
the similarities of the strings, there are also very significant differences. We can see that performance
of some strings connected to the same inverter can be inferior, for instance, string no.1 generates less
power than 15000 W, while other 8 strings connected to the same inverter no.7 generates more than
17500 W. Nevertheless, string no.2 connected to inverter no.12 stands out the most. With median
around 1200 W, IQR between 0 W and 4000 W, it also has outliers. From this we can assume, that
string 12-2 is affected by outside factors.

As already mentioned, we have inverters with the same technical parameters that are installed in the
same location, hence we expect that they would generate almost the same amount of power under the
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Figure 5: Box plot of strings connected to
inverter no.7
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Figure 6: Box plot of strings connected to
inverter no.12

same irradiance. To examine that relationship we use correlation heatmaps. While majority of strings
(figure 7 demonstrate strong relationship with correlation equal or close to 1, string no.2 connected to
inverter no.12 (figure 8) demonstrates deviation from perfect correlation. This exception suggests that
string 12-2 has a weaker relationship with other strings and its generation might be impacted by other
conditions such as shading.
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inverter no.7
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Figure 8: Correlation of strings connected to
inverter no.12

Descriptive statistics provided some important insights about our data. We investigated mean,
median, SD, IQR and correlation. It proved that some strings can generate significantly smaller amount
of power despite identical technical parameters and the same irradiance. This suggests that there is
a possibility of faults which impact generation process. To investigate this further we use different
clustering methods.
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4.2 K-means clustering

Clustering part of the experiment is done on case to case basis. We take 10 days on which electrical
power generation was the highest and apply K-means algorithm. To find the optimal k for K-means
algorithm both elbow and silhouette methods are used. Assuming identical technical characteristics
for each string and consistent irradiance levels, we anticipate uniform electrical power output across all
strings. To validate this assumption, we calculate the covariance, anticipating it to approach 1. Minor
deviations are expected, as factors such as uneven terrain or varying tilt angles may slightly influence
this measurement. In this part strings are not divided to inverters or blocks. Case to case analysis
presented in the descending order according to table 2.

• 2023-06-06

Based on elbow test (figure 9), it is not very clear whether we should choose 3 or 4 as optimal k
for K-means clustering, however silhouette method (figure 10) suggest 4 as an optimal k. From
the K-means results (figure 11) we can see that majority of strings are distributed evenly through
classes 0 and 1, but there are way less strings that were assigned to class 2 and only 1 string was
assigned to class 3. It appears that 12-2 string was classified to 3 group. From the descriptive
statistics we know, that this string stands out in comparison to others. Following 6 strings were
assigned to class 2 - 11-1 string, 11-2 string, 12-1 string, 12-3 string, 12-5 string and 12-9 string.
By comparing how much electrical power each string generated during the day (from 6 a.m. until 8
p.m.), we see that 12-2 string generated the least amount of power (362677 W), while string 11-11
generated the most electrical power (758248 W). Strings classified to group 2 generated electrical
power from 593395 W to 682983 W. By scrutinizing the correlation outcomes across all pairs
of strings, we pinpoint 319 pairs exhibiting correlations below 0.7. Specifically, the correlation
between string 12-2 and strings 7-1, 7-2, 9-11, and 10-10 falls below 0.3. This observation suggests
that despite uniform irradiance conditions, these string pairs demonstrate diverse behaviors.
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Figure 9: Elbow analysis for optimal k
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Figure 10: Silhouette analysis for optimal k

• 2023-06-05

Results of the day before (figure 12) look very similar to the first case. With the help of elbow and
silhouette methods we determine that optimal number of clusters is 4. Again, we see that majority
of strings are divided between clusters 0 and 1 and distribution of remaining clusters is the same
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Figure 11: 2023.06.06 K-means clustering results

as in the first case. However, there are slight changes in generation of electrical power - string
12-2 remains the one that generates the smallest amount of power during the day (333558 W),
string 1-8 generated the most power (768848 W), strings classified to group 2 generated between
576057 W and 684957 W. We see that while string 12-2 generated less electrical power than the
day before, best performing string generated more power than the day before. On this particular
day, we observe 332 pairs of strings with correlations below 0.7. Among these, there are 24 unique
strings that correlate with string 12-2, each with a correlation smaller than 0.2.
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Figure 12: 2023.06.05 K-means clustering
results
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Figure 13: 2023.05.31 K-means clustering
results
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• 2023-05-31

On this day we have a little bit different distribution of clusters (figure 13). Majority of strings
are grouped to either 1 or 3 cluster. 8 strings were assigned to cluster class 0 and 12-2 string
is classified to 2 class alone. Group 0 consist of these strings - 1-11, 1-13, 11-1, 11-2, 12-1, 12-3,
12-5 and 12-9 strings. Electrical power generation of 12-2 string was higher (376491 W) than
on 5 and 6 of June. Power generation of strings assigned to cluster 0 is between 551329 W and
670178 W. String 11-11 generated the most electrical power (753891 W) on this day, but slightly
lower amount than on 5 and 6 of June. We have identified a total of 181 pairs with correlation
coefficients smaller than 0.7. The lowest correlation coefficient was observed between String 12-2
and 17 other strings linked to inverters 2, 6, 7, 9, or 10, resulting in correlation coefficients ranging
from 0.4 to 0.3.

• 2023-06-09

In this case, silhouette results contradict the results of elbow method for optimal k (figures 14
and 15), thus we compromise and take the middle value, in this case we choose k equal to 3. From
figure 11 we can see that majority of strings are either in clusters 0 or 1, remaining three strings
belong to cluster 2, it includes 11-1, 12-2 and 12-3 strings. Electrical power generation results
of the day are as follows: string 12-2 generated 346751 W, string 12-3 generated 572583 W and
string 11-1 generated 581024 W, the rest of the strings generated between 626049 W and 753132
W. The biggest amount of energy was generated by 1-8 string. On this day, we identify 331
pairs of strings with correlation coefficient lower than 0.7. String 12-2 continues to demonstrate
notably low correlation, with 12 pairs showing coefficients lower than 0.3.
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Figure 14: Elbow analysis for optimal k
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Figure 15: Silhouette analysis for optimal k

• 2023-05-28

This case (figure 17) is very similar to 2023.05.31. Chosen k is equal to 4, string 12-2 is once
again classified as cluster 2, majority of strings are assigned to clusters 1 and 3, cluster 0 consist of
11-1, 11-2, 12-1, 12-3, 12-5 and 12-9 strings. String 12-2 generated the smallest amount of power
(373757 W) during the day, while string 11-11 generated the highest amount of power (738361
W). Strings assigned to cluster 0 generated electrical power between 585535 W and 664404 W.
Moreover, we observe 193 pairs of strings with correlations coefficient below 0.7. Among these,
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Figure 16: 2023.06.09 K-means clustering results

there are 30 unique strings that correlate with string 12-2, each registering a correlation smaller
than 0.4, but not exceeding than 0.3.
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Figure 17: 2023.05.28 K-means clustering
results
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Figure 18: 2023.05.07 K-means clustering
results

• 2023-05-07

Similarly to 2023.05.28 case, we choose k = 3 (figure 18). With such k, we get that majority of
strings belong either to cluster 0 or 1. Four strings were recognized as part of cluster 2: 11-1,
12-2, 12-3 and 12-5 strings. As per previous cases, string 12-2 generated the least electrical
power (422143 W), while string 4-7 generated the most power (741253 W). Strings 11-1 and 12-
3 generated 588876 W and 611332 W respectively, the rest of the strings generated more than
169214 W. We have identified a total of 164 pairs with correlation coefficients smaller than 0.7.
The lowest correlation coefficient was observed between String 12-2 and 11 other strings linked
to inverters 1, 2, 3, 9, or 10, resulting in correlation coefficients ranging from 0.4 to 0.3.
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• 2022-06-22

The only case from the year 2022 that is among 10 the highest generating days. For this case,
elbow and silhouette methods’ results are not completely consistent (figures 19 and 20), however
we choose k = 2. From figure 21, we see that majority of strings are assigned to cluster 0, while
11 strings are assigned to cluster 1. All 11 string from cluster 1 are connected to inverter no.8,
only string 8-12 is assigned to class 0. Strings from cluster 1 generated from 367863 W to 394143
W. It is worth to mention that string 8-12 generated 545155 W of electrical power, string 12-2
generated 369514 W despite being classified to cluster 0. String 11-11 outperformed other strings
by generating 782379 W of electrical power during the day. In this case, there are 164 pairs of
strings with correlation coefficient lower than 0.7. 11 strings are in pair with string 12-2 with
correlation between 0.4 and 0.3.
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Figure 19: Elbow analysis for optimal k
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Figure 20: Silhouette analysis for optimal k

15 10 5 0 5 10 15
comp_1

10

5

0

5

10

15

co
m

p_
2

K-means clustering results with k=2 on 2022-06-22

0 1

Figure 21: 2022-06-22 K-means clustering results

• 2023-05-06

For this day we get that optimal k = 3. From figure 22, we see that majority of strings are
divided between cluster classes 0 and 1. Strings 11-1, 12-2, 12-3 and 12-5 are assigned to
cluster 2. Looking into daily electrical power generation, we see that string 12-2 generated the
smallest amount of power (422407 W), string 11-11 generated the most power (745542 W), strings
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11-1, 12-3 and 12-5, generated 567111 W, 613764 W and 652273 W respectively. The rest of the
strings generated between 608156 W and 741911 W. In this case, we have identified 164 pairs of
strings with correlation coefficients below 0.7, where 24 strings are paired with string 12-2, each
displaying correlation coefficients lower than 0.2.
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Figure 22: 2023.05.06 K-means clustering
results
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Figure 23: 2023.05.08 K-means clustering
results

• 2023-05-08

From results of elbow and silhouette methods, we determine k = 4. From the figure 23 we see, that
majority of strings are divided between classes 1 and 3. 11 strings (8-8, 8-10, 8-11, 8-12, 11-1, 11-
2, 11-3, 12-1, 12-3, 12-5 and 12-9) are classified to cluster 0. Once again the only string assigned
to cluster 2 is string 12-2 with daily electrical power generation of 412719 W. On this day, string
4-7 generated the highest amount of power (721553 W). By scrutinizing the correlation outcomes
across all pairs of strings, we pinpoint 141 pairs exhibiting correlations below 0.7. Specifically,
the correlation between string 12-2 and string 9-11 falls below 0.4 but not exceeding 0.3.

• 2023-06-07

To cluster this case, it was decided to use k = 2. K-means clustering results (figure 24) show that
majority of clusters are assigned to class 0 and strings 11-1, 12-2, 12-3 and 12-5 are assigned
to class 1. Daily generated amount by string 12-2 is 337730 W, while string 11-11 generated the
most electrical power (724301 W.) String 11-1, 12-3 and 12-5 produced 564765 W, 576164 W
and 629315 W respectively. For the current day, we have found 312 pairs of strings exhibiting
correlation coefficients below 0.7. We observe that correlation of strings 9-11 and 12-2 is between
0.4 and 0.3, while correlation of strings 6-10 and 12-2 is lower than 0.3.

The analysis of K-means clustering reveals several patterns. It becomes evident that string 12-
2 frequently experiences interruptions due to external factors, such as shading, leading to reduced
electrical power generation. Moreover, we observe significant variations in power generation among
strings connected to the same inverter, despite identical irradiance levels. However, it is essential to
note that the preceding section highlights a limited number of instances, most of which occurred within
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Figure 24: 2023.06.07 K-means clustering
results
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Figure 25: 2022.08.09 K-means clustering
results

a one-month period. For a more comprehensive evaluation of K-means clustering ability to identify
outliers, we must examine data from other days, months, or even seasons. Therefore, we pinpoint five
days exhibiting an average level of daily electrical power generation and we delve into the results of
K-means clustering applied to these selected days.

• 2022-08-09

After analyzing the results obtained from the elbow and silhouette methods, we determined that
the optimal number of clusters is k = 4. Figure 25 illustrates that the majority of strings are
divided between classes 0 and 1. Strings 2-9 and 12-2 are classified as cluster 3, while 14 strings
(5-1 string, 8-1 string, strings 1, 2, 3, 4 and 6 connected to inverter no. 11, strings 1,3,4,5,6,8,9
connected to inverter no. 12) are assigned to cluster 2. Notably, strings 2-9 and 12-2 exhibited the
lowest power generation, producing 238474 W and 160381 W, respectively. On this day, string
11-11 performed the best by generating 296063 W of power.

• 2022-09-25

In figure 26, we observe 4 clusters, where strings are equally distributed between classes 0 and
1, slightly smaller amount of strings are assigned to class 2. Remaining strings allocated to
class 3 are strings 8-11 and 8-12. These two strings generated the smallest amount of power
(207936 W and 166856 W respectively). 2-8 string generated the most electrical power (295515
W) throughout the day.

• 2023-06-17

Following evaluation with silhouette and elbow methods, we opt for k = 3 clusters. The distribu-
tion of strings is relatively even across clusters 0 and 1, with only string 12-2 assigned to cluster
2 (figure 27). Daily electrical power generation ranges from 130168 W to 286511 W. Notably,
the lowest amount of power was generated by string 2, connected to inverter no. 12, while the
highest was produced by string 11, connected to inverter no. 11.
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Figure 26: 2022.09.25 K-means clustering
results
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Figure 27: 2023.06.17 K-means clustering
results

• 2023-07-06

Another case with optimal k = 3 (figure 24), identified relatively equal number of strings assigned
to classes 0 and 1, 21 strings (strings 3 to 10 connected to inverter no. 6, strings 3 to 5 and 7
to 10 connected to inverter no. 7, strings 5 and 8 connected to inverter no.9 and strings 4, 6, 8,
9 connected to inverter no.12) assigned to cluster 2 and 12-2 string classified to class 3. Lower
limit equal to 177969 W of electrical power was generated by string 12-2, while upper limit of
290639 W was generated by string 1-12.
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Figure 28: 2023.07.06 K-means clustering
results
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Figure 29: 2023.10.06 K-means clustering
results

• 2023-10-06

Last but not least, we apply K-means clustering method with k = 2 on observation collected on
October 6, 2023. From figure 29, we observe that majority of strings were assigned to class 0,
while strings 8-11 and 8-12 were classified to the second cluster. String 8-12 generated the least
electrical power during the day (135967 W), while the most power (283874 W) produced string
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2-8.

Day String X String Y Correlation coefficient between strings X and Y
2022-08-09 String 8-12 String 12-2 0.76
2022-09-25 String 8-12 String 12-2 0.78
2023-06-17 String 8-12 String 12-2 0.89
2023-07-06 String 6-10 String 12-2 0.93
2023-10-06 String 8-12 String 12-2 0.22

Table 3: Lowest correlation coefficients

The K-means clustering results for five days characterized by the lowest mean electrical power gen-
eration are summarized in Table 4. During low irradiance periods, it is harder to notice abnormality in
power generation. Low irradiance, coupled with shading or soiling, results in minimal or even nonex-
istent energy generation. From the table 4, we see that even neighboring strings that are connected
to the same inverter, can produce very different amounts of electrical power. Overall, K-means clus-
tering proves to be a valuable tool to investigate how each string behaves under the same irradiance,
significantly lower generation indicates disturbance in the process. Faults such as soiling or shading are
temporary yet cause a significant decrease in electrical power generation. Despite the uncomplicated
implementation of K-means algorithm, it requires huge time resource in order to investigate case-by-
case data, thus we continue to search for more efficient unsupervised methods in order to detect shading
and soiling faults.

Day k K-means results Daily generation
interval in W

String that
generated the
most power

String that
generated the
least power

2022-11-21 2 The strings were
evenly distributed
between 2 clusters

[919.2; 14323] 4-7 string 1-11 string

2022-12-09 2 The strings were
evenly distributed
between 2 clusters

[0; 11683.3] 3-12 string 3-4 string

2022-12-20 2 The strings were
evenly distributed
between 2 clusters

[820.5; 13343.9] 11-11 string 9-4 string

2023-01-09 2 The strings were
evenly distributed
between 2 clusters

[0; 15346.3] 1-12 string 1-11 string

2023-01-11 2 The strings were
evenly distributed
between 2 clusters

[0;14161.7] 10-12 string 1-4 string and
1-11 string

Table 4: Summary of K-means clustering results of cases with lowest electrical power generation
mean
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4.3 Functional data analysis

In this section, we continue to monitor the behaviour of strings on days with high and average
irradiance. We transform time series to functional data in order to detect faults on a daily basis. Data
is smoothed with k − basis = 11, the number of clusters applied is the same as applied for traditional
K-means clustering. We provide illustrations for outliers detection and functional K-means clustering.

• 2023-06-06

Outliers detection identifies (fig. 32), that strings 1 and 2 connected to inverter no. 11 and strings
1, 2, 3, 5 and 9 connected to inverter no. 12 act as an outliers. However, these strings are not
assigned to the same cluster, Strings 1,2,3 and 5 connected to inverter no. 12 are assigned to the
smallest cluster and are represented by the purple lines in figure 33.
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Figure 30: 2023.06.06 outliers detection
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Figure 31: 2023.06.06 Functional K-means
clustering

• 2023-06-05

Similar to the previous day, outlier detection reveals that strings 6-10, 1, and 2 connected to
inverter no. 11, along with strings 2, 3, and 5 connected to inverter no. 12, are identified as
outliers (figure 32). However, these strings are distributed across different clusters. Specifically,
strings 11-1, 12-2, 12-3, and 12-5 belong to the smallest cluster, which is depicted by the purple
lines in figure 33.

• 2023-05-31

From the figure 34, we observe that strings 11 and 13 connected to inverter no.1, string 1 an 2
connected to inverter no.2 and strings 1, 2, 3, 5 and 9 connected to inverter no. 12 act as an
outliers. However, these strings are distributed across different clusters. Specifically, strings 1-1,
1-13, 11-1, 11-2, 12-1, 12-2, 12-3, and 12-5 belong to the smallest cluster, which is depicted by
the purple lines in figure 35.

• 2023-06-09

Figure 36 illustrates that strings 11-1, 11-2, 12-1, 12-2, 12-3, 12-5 and 12-9 are outliers. Only,
strings 11-1, 12-1, 12-2, 12-3 and 12-5 are assigned to the smallest cluster, which is depicted by
the purple lines in figure 37.
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Figure 32: 2023.06.05 outliers detection
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Figure 33: 2023.06.05 Functional K-means
clustering
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Figure 34: 2023.05.31 outliers detection
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Figure 35: 2023.05.31 Functional K-means
clustering
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Figure 36: 2023.06.09 outliers detection
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Figure 37: 2023.06.09 Functional K-means
clustering

• 2023-05-28

On this day, we observe that strings 11-1, 11-2, 12-1, 12-2, 12-3, 12-5 and 12-9 are identified
as outliers (figure 38). But, strings 11-1, 12-1, 12-2, 12-3 and 12-5 are assigned to the smallest
cluster, which is illustrated by the blue lines in figure 39.
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Figure 38: 2023.05.28 outliers detection
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Figure 39: 2023.05.28 Functional K-means
clustering

• 2023-05-07

On this day, we observe that strings 11-1, 11-2, 12-2, 12-3, 12-5 and 12-9 are identified as outliers
(figure 40). However, strings 11-1, 12-2, 12-3, and 12-5 are assigned to the smallest cluster,
illustrated by the purple lines in figure 41.
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Figure 40: 2023.05.07 outliers detection
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Figure 41: 2023.05.07 Functional K-means
clustering

• 2022-06-22

Despite being the only day from 2022 amongst highest generating days, we can still see some
similarities to 2023. As an outliers, all strings connected to inverter no. 8 except string 12 are
recognised (figure 42). Also strings 11-1, 12-2 and 12-3 are an outliers. Functional K-means
clustering assigned all strings connected to inverter no. 8 except string 12 (figure 43).

• 2023-05-06

On this day, we observe only three strings identified as outliers - strings 11-1, 12-2 and 12-3 (figure
44). However, clustering results show that in the smallest cluster, represented by purples lines,
string 12-5 was assigned together with strings classified as outliers (figure 45).
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Figure 42: 2022.06.22 outliers detection
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Figure 43: 2022.06.22 Functional K-means
clustering
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Figure 44: 2023.05.06 outliers detection
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Figure 45: 2023.05.06 Functional K-means
clustering

• 2023-05-08

On this day, we observe four strings identified as outliers - strings 11-1, 11-2, 12-2, 12-3 and 12-4
(figure 48). However, clustering results show that in the smallest cluster, represented by purples
lines, strings 11-1, 12-2, 12-3 and 12-5 are grouped (figure 49).
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Figure 46: 2023.05.08 outliers detection
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Figure 47: 2023.05.08 Functional K-means
clustering
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• 2023-05-08

On this day, we observe four strings identified as outliers - strings 11-1, 11-2, 12-2, 12-3 and 12-4
(figure 48). However, clustering results show that in the smallest cluster, represented by purples
lines, strings 11-1, 12-2, 12-3 and 12-5 are grouped (figure 49).
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Figure 48: 2023.05.08 outliers detection
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Figure 49: 2023.05.08 Functional K-means
clustering

• 2023-06-07

From the figure 50, we observe that strings 11-1, 11-2, 12-1, 12-2, 12-3, 12-5 and 12-9 are recognised
as outliers. However, clustering results show that in the smallest cluster, represented by purples
lines, string 12-9 is not included (figure 51).
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Figure 50: 2023.06.07 outliers detection
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Figure 51: 2023.06.07 Functional K-means
clustering
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• 2022-08-09

Moving on to the days with average irradiance, we see that new strings are identified as outliers.
From the figure 52, we observe that strings 2-9, 8-12 and 12-2 are outliers, while figure 53 reveals
that strings 2-9 and 12-2 are the closes and thus grouped to one cluster represented by the purple
lines.
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Figure 52: 2022.08.09 outliers detection
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Figure 53: 2022.08.09 Functional K-means
clustering

• 2022-09-25

From the figure 54, we observe that strings 8-11, 8-12 and 12-2 are outliers, while figure 55 reveals
that strings 8-11 and 8-12 are the closes and thus grouped to one cluster represented by the purple
lines.
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Figure 54: 2022.09.25 outliers detection
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Figure 55: 2022.09.25 Functional K-means
clustering

• 2023-06-17

Figure 56 depicts that strings 8-12 and 12-2 are outliers, while figure 57 reveals that string 12-2
is the only one assigned to the separated cluster (represented by the purple line).
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Figure 56: 2023.06.17 outliers detection
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Figure 57: 2023.06.17 Functional K-means
clustering

• 2023-07-06

Outlier detection (figure 58) of this day gave the same results as the day above, strings 8-12 and
12-2 are outliers. However, functional clustering results are different (58). We observe that strings
6-1, 6-2, 7-1, 7-2, 8-12, 9-7, 9-11, 10-10 and 12-2 (represented by the purple line) are assigned to
the smallest cluster .
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Figure 58: 2023.07.06 outliers detection
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Figure 59: 2023.07.06 Functional K-means
clustering

• 2023-10-06

Figure 60 illustrates that strings 8-11, 8-12, 9-12, 11-1, 12-2 and 12-3 are outliers. However,
functional clustering method reveals that outliers are grouped in two separate clusters together
with non-outliers, based on their distances (figure 37).
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Figure 60: 2023.10.06 outliers detection
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Figure 61: 2023.10.06 Functional K-means
clustering

41



5 Results

In this section, we discuss the results of our research. We selected 10 days with the highest mean
daily electrical power and 5 days with average daily generation. From the descriptive statistics, we
observed initial signs of abnormalities. A high SD (table 2) indicates that the electrical power generated
by each string is spread over a wider range, suggesting more variability in the data. Conversely, a low
standard deviation on days with lower generated power suggests that values are close to the mean,
indicating the data points are relatively consistent.

Examining the correlation coefficients, we found that the correlation between strings is usually very
close to 1. This suggests that each string generates approximately the same amount of energy under the
same irradiance and technical conditions. However, we noticed that string 12-2 has a lower correlation
coefficient (figure 8). This indicates that this string might be affected by external conditions, such as
shading, which impacts its production.

In the next step, we visualized the strings using a boxplot. While the boxplots of most strings are
consistent with a median around 2500 W, string 12-2 (figure 6) stands out with a median around 1200
W, an (IQR) between 0 W and 4000 W, and it also has outliers.

Following our findings from descriptive statistics, we proceed with clustering the strings on a case-by-
case basis using the K-means algorithm. By forming cluster groups, we identify strings that are similar
in terms of electrical power generation. Consistent with our initial analysis, string 12-2 is assigned to
a smaller, separate cluster in all cases. Occasionally, on days when electrical power generation is the
highest, string 12-2 is joined by strings 11-1, 12-3, and 12-5.

We also observe that the correlation between pairs of strings decreases drastically on these high-
generation days, with correlation values closer to 0 than 1. Comparing these strings to others, we note
significantly lower generation outputs and higher variance.

When irradiance decreases, the results of the K-means clustering changes accordingly. On these
days, strings 2-9, 8-11, 8-12, and 12-2 are assigned to separate, smaller clusters, indicating higher
variance from the mean. Although a decrease in correlation is also noticeable on these lower irradiance
days, it is not as significant as on high-performing days.

In the final stage of the experiment, we apply FDA methods to support our previous findings. We
transform the time series data into functional data series and smooth it using the Fourier basis method.
We then use outlier detection and functional K-means clustering to identify strings affected by shading.
Outlier detection reveals that on high irradiance days, outliers are observed in inverters 1, 2, 6, 11, and
12, while on average irradiance days, outliers are found within inverters 2, 8, 9, 11, and 12. However,
these outliers are not necessarily grouped into the same cluster. Overall, the results from functional
data analysis methods align with traditional K-means clustering, identifying strings 11-1, 12-2, 12-3,
and 12-5 as the strings most frequently shaded. It’s important to highlight that changes in shaded
inverters over time are normal. This occurs due to the changing position of the sun, which affects the
size and placement of shade. As the sun moves throughout the day and across seasons, the shading
patterns on solar panels can vary, leading to fluctuations in the shading of inverters.
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6 Conclusion

This paper aimed to address the challenge of fault detection in solar power generation by employing
statistical and machine learning methods. Through an extensive analysis of 143 strings generating
solar electrical power, we investigated abnormalities and identified strings affected by shading, a crucial
environmental fault impacting power generation.

Our research utilized a combination of descriptive statistics, K-means clustering, and Functional
Data Analysis methods. Descriptive statistics, including mean, standard deviation, and correlation
coefficients, provided initial insights into the data, revealing abnormal patterns and indicating potential
shading effects. K-means clustering further confirmed these findings, highlighting strings consistently
impacted by shading, such as string 12-2.

Furthermore, our study incorporated FDA methods, transforming time series data into functional
data series and applying Fourier basis smoothing to detect outliers and perform functional K-means
clustering. These methods aligned with traditional K-means clustering, reinforcing the identification
of shaded strings, particularly strings 11-1, 12-2, 12-3, and 12-5.

Our results underscore the significance of environmental faults, such as shading, in solar power gen-
eration systems. By detecting and addressing these faults, we can enhance the efficiency and reliability
of solar energy production, contributing to environmental sustainability and economic viability.

It is important to note that changes in shaded inverters over time are normal, driven by the dynamic
movement of the sun. As the sun’s position changes throughout the day and across seasons, shading
patterns on solar panels fluctuate, impacting power generation.

In summary, our study provides valuable insights into fault detection methodologies for solar power
generation systems. By leveraging statistical and machine learning techniques, we can better understand
and mitigate environmental faults, ultimately advancing the adoption and effectiveness of solar energy
as a clean and renewable energy source.

In addition, our study highlights the computational demands associated with case-by-case basis
calculations, particularly in the context of analyzing daily observations. Given the considerable time
resources required for such analyses, a potential avenue for future research involves exploring advanced
Functional Data Analysis (FDA) methods to identify shaded strings without the need for splitting
data into daily observations. By leveraging more sophisticated FDA techniques, such as functional
principal component analysis (FPCA) or functional regression, researchers can streamline the analysis
process and gain insights into shading patterns across longer time intervals. This approach not only
reduces computational burden but also allows for a more comprehensive understanding of shading
effects on solar power generation. Implementing further FDA methods offers the opportunity to uncover
nuanced relationships between environmental factors, such as shading, and their impact on solar energy
production. By harnessing the full potential of functional data analysis, future studies can enhance
the efficiency and accuracy of fault detection in solar power systems, ultimately contributing to the
advancement of renewable energy technologies.
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Appendix A

References Year Data Fault types Horizon Model Results
[28] 2012 A small-scale

grid-connected
PV system
located in
Boston, USA

LL between
string 1 and neg-
ative bus bar
(LL), LL with
fault impedance
Rf = 20 ohms
(LL-20), OC on
string 2 (OC),
partial shading.
Faults were in-
tentionally gen-
erated through
experimentation

2 days DT
based
detec-
tion and
classifi-
cation

Accuracy (%):
fault detection
93.56%, classifica-
tion 85.43%. Class-
label accuracy (%):
LL 99.99%, normal
99.48%, OC 89.78%,
shade 21.3%, LL-20
0%

[30] 2013 A small-scale
grid-connected
PV system

LL between the
middle of one
string and neg-
ative bus bar
(LL), LL with
fault impedance
Rf = 20 ohms
(LL-20), OC on
a string (OC),
degradation fault
on a PV mod-
ule (DF), partial
shading. Faults
were intention-
ally generated
through experi-
mentation

Not
avail-
able

Outlier
detec-
tion
rules:
3-Sigma,
Hampel
identi-
fier and
Boxplot.

3-Sigma rule - vul-
nerable to outliers,
failed to detect the
faults in all cases;
Hampel identifier -
failed to detect DF,
but has the best tol-
erance to outliers;
Boxplot rule - out-
performed other two
rules by detecting
all types of faults,
has low outlier sen-
sitivity

Table 5: Summary of fault detection methods
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References Year Data Fault types Horizon Model Results
[6] 2017 Grid-

connected PV
system located
in Algeria

Short circuits
(SC), open cir-
cuits and partial
shading

1 second
resolu-
tion

ODM -
EWMA

Normal operat-
ing conditions -
data points are
within 95% confi-
dence limits in the
EWMA charts; OC
conditions - con-
cluded that pro-
posed method is effi-
cient; SC conditions
- concluded that
proposed method
works; Shading -
EWMA chart is
able to detect the
faults, but it cannot
classify it; multi-
ple faults - EWMA
chart accurately de-
tected and classified
multiple faults

[10] 2021 Actual data
- PV power
plant installed
in Pakistan,
simulated data
- linked to
actual data
to produce
similar power
as the actual
data

PV modules
failure, partial
shading or soil-
ing loss, single
or multiple PV
string failure

Actual
data is
in 15
minutes
resolu-
tion

Z_Score Proposed method is
able to detect faults,
however it does not
distinguish faults
that has vary similar
impact of power re-
duction

[29] 2014 A small-scale
grid-connected
PV system

LL and OC Not pro-
vided

GBSSL Faults that do not
overlap were de-
tected and classified
with 100 % accuracy

Table 5: Summary of fault detection methods (continued)
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References Year Data Fault types Horizon Model Results
[9] 2016 Simulated PV

system and
small-scale
grid-connected
PV array

LL and LG (only
for simulated
data)

Not pro-
vided

MSD
and FIS

Simulation results
reach 100% accu-
racy with mismatch
of 30-60%, 97.69%
accuracy with mis-
match of 20% and
65.05% accuracy
with 10% of mis-
match for LL faults
and 100% accuracy
with mismatch of
10-40%, 97.22% ac-
curacy with mis-
match of 50% and
92.13% accuracy
with 60% mismatch
for LG faults. Ex-
perimental results
reach 96.1% accu-
racy with mismatch
of 50% and 84.9%
accuracy with 25%
mismatch

[20] 2019 Experimental
data devel-
oped through
Smart Moni-
toring Devices

standard test
conditions (STC),
short circuit
(SC), varying
temperature, par-
tial shading, com-
plete shading,
soiling, ground
fault (Gnd), arc
fault (Arc)

Not pro-
vided

MLP Overall 99.7% accu-
racy. Varying tem-
perature - 99.9%,
complete shading
- 98.7%, soiling -
98.8%, STC - 100%,
SC - 100%, Gnd -
100%, Arc - 100%
accuracy

[31] 2020 Real data of
sites A (flat
terrain) and
B(mountainous
area) located
in China.

Not provided Not pro-
vided

CF Detection accuracy
of site A is 96.3%, of
site B - 97.1%

[2] 2021 Data set of
photovoltaic
production
factory located
in Catania,
Italy

N/A N/A Monte
Carlo
(MC)
simula-
tion for
the pre-
processing,
PCA for
anomaly
detec-
tion

In the pre-
processing stage,
MC method sur-
passed Interquartile
Range method. MC
combined with PCA
showed accurate re-
sults and resilience
to false alarms.

Table 5: Summary of fault detection methods (continued)48



References Year Data Fault types Horizon Model Results
[16] 2022 10000 I-V

curves simu-
lated under
uniform or
mismatched
conditions and
experimental
curves from a
real PV gener-
ator

Not provided Not pro-
vided

MLP The best results
were achieved with
15 neurons - MSE
6.2e−9. 1 neuron
- MSE 8.2e−10,
10 neurons - MSE
2.0e−10

[18] 2022 DKASC PV
system in Aus-
tralia (sys-
tem A) and a
PV system in
China (system
B).

DHSFc1- sunny
weather with-
out clouds, ex-
traterrestrial
radiation and
low volatility;
DHSFc2 - light
cloud weather
with swift clouds
movements,
high volatility;
DHSFc3 - cloudy
weather with
more clouds and
low volatility

1 hour
resolu-
tion

Classification
meth-
ods:
Multiclass-
GBDT-
LR
(MGL),
DT, Xg-
boost,
RF and
stacking,
detec-
tion
method:
blending
fitting
models

System A: in classi-
fication task MGL
surpassed DT, Xg-
boost, RF and
stacking with ac-
curacy of 98.85%,
recall 98.81%, F1
98.83%, detection
accuracy 97.71%;
System B: in classi-
fication task MGL
surpassed DT, Xg-
boost, RF and
stacking with ac-
curacy of 98.19%,
recall 98.15%, F1
98.18%, detection
accuracy 99.29%

[14] 2022 Simulated
data set

LL, degradation,
OC, shadowing

N/A CNN Training accuracy
97.64%, testing ac-
curacy 95.20 %

[1] 2023 Solar power
plants located
in India

External and in-
ternal factors

34 days
at 15
min in-
tervals

Physical
model,
SVM re-
gression
model
(SVM-
GW-R),
SVM
classifi-
cation
model
(SVM-
GW-C)

Sensitivity: SVM-
GW-C 85.71%,
SVM-GW-R
68.42%, physical
model 52.63 %;
Specificity: SVM-
GW-C 99.21%,
SVM-GW-R
94.57%, physical
model 93.02%

Table 5: Summary of fault detection methods (continued)
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Appendix B
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Figure 62: Block no.1 electrical power and irradiance
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Figure 63: Block no.2 electrical power
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Figure 64: Block no.3 electrical power
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Appendix C

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

from sklearn.cluster import KMeans

from sklearn.metrics import silhouette_score

from sklearn.preprocessing import StandardScaler

from sklearn.manifold import TSNE

from sklearn import manifold

import scipy.cluster.hierarchy as sch

import skfda

from skfda.ml.clustering import FuzzyCMeans, KMeans

from skfda.exploratory.visualization import Boxplot

from skfda.exploratory.visualization.clustering import (

ClusterMembershipLinesPlot,

ClusterMembershipPlot,

ClusterPlot,

)

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

irradiance = pd.read_excel(r"C:\Users\hp\OneDrive\Desktop\Master thesis\Code\Data\irradiance.xlsx")

data[’Timestamp’] = pd.to_datetime(data[’Timestamp’])

irradiance[’Timestamp’] = pd.to_datetime(irradiance[’Timestamp’])

data.set_index(’Timestamp’, inplace=True) #sets time as an index

irradiance.set_index(’Timestamp’, inplace=True) #sets time as an index

data = data.reset_index() #resets index

#Renaming columns

data = data.rename(columns=new_column_names)

#double checking that every column’s name was changed

columns_data = pd.DataFrame(data.columns, columns=[’Column_Names’])

#--------------------------------------------------------------------------------------------

#Getting the energy data set

#Creating a new DataFrame with the same index as df
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energy1_df = pd.DataFrame(index=data.index)

energy2_df = pd.DataFrame(index=data.index)

energy3_df = pd.DataFrame(index=data.index)

energy4_df = pd.DataFrame(index=data.index)

energy5_df = pd.DataFrame(index=data.index)

energy6_df = pd.DataFrame(index=data.index)

energy7_df = pd.DataFrame(index=data.index)

energy8_df = pd.DataFrame(index=data.index)

energy9_df = pd.DataFrame(index=data.index)

energy10_df = pd.DataFrame(index=data.index)

energy11_df = pd.DataFrame(index=data.index)

energy12_df = pd.DataFrame(index=data.index)

#Multiply respective columns

for i in range(1, len(data.columns) // 2 + 1):

column1 = f’1-{i} String current’

column2 = f’1-{i} String voltage’

new_column_name = f’1-{i} string energy’

energy1_df[new_column_name] = data[column1] * data[column2]

for i in range(1, len(data.columns) // 2 + 1):

column1 = f’2-{i} String current’

column2 = f’2-{i} String voltage’

new_column_name = f’2-{i} string energy’

energy2_df[new_column_name] = data[column1] * data[column2]

for i in range(1, len(data.columns) // 2 + 1):

column1 = f’3-{i} String current’

column2 = f’3-{i} String voltage’

new_column_name = f’3-{i} string energy’

energy3_df[new_column_name] = data[column1] * data[column2]

for i in range(1, len(data.columns) // 2 + 1):

column1 = f’4-{i} String current’

column2 = f’4-{i} String voltage’

new_column_name = f’4-{i} string energy’

energy4_df[new_column_name] = data[column1] * data[column2]

for i in range(1, len(data.columns) // 2 + 1):

column1 = f’5-{i} String current’
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column2 = f’5-{i} String voltage’

new_column_name = f’5-{i} string energy’

energy5_df[new_column_name] = data[column1] * data[column2]

for i in range(1, len(data.columns) // 2 + 1):

column1 = f’6-{i} String current’

column2 = f’6-{i} String voltage’

new_column_name = f’6-{i} string energy’

energy6_df[new_column_name] = data[column1] * data[column2]

for i in range(1, len(data.columns) // 2 + 1):

column1 = f’7-{i} String current’

column2 = f’7-{i} String voltage’

new_column_name = f’7-{i} string energy’

energy7_df[new_column_name] = data[column1] * data[column2]

for i in range(1, len(data.columns) // 2 + 1):

column1 = f’8-{i} String current’

column2 = f’8-{i} String voltage’

new_column_name = f’8-{i} string energy’

energy8_df[new_column_name] = data[column1] * data[column2]

for i in range(1, len(data.columns) // 2 + 1):

column1 = f’9-{i} String current’

column2 = f’9-{i} String voltage’

new_column_name = f’9-{i} string energy’

energy9_df[new_column_name] = data[column1] * data[column2]

for i in range(1, len(data.columns) // 2 + 1):

column1 = f’10-{i} String current’

column2 = f’10-{i} String voltage’

new_column_name = f’10-{i} string energy’

energy10_df[new_column_name] = data[column1] * data[column2]

for i in range(1, len(data.columns) // 2 + 1):

column1 = f’11-{i} String current’

column2 = f’11-{i} String voltage’

new_column_name = f’11-{i} string energy’

energy11_df[new_column_name] = data[column1] * data[column2]

for i in range(1, len(data.columns) // 2 + 1):
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column1 = f’12-{i} String current’

column2 = f’12-{i} String voltage’

new_column_name = f’12-{i} string energy’

energy12_df[new_column_name] = data[column1] * data[column2]

#Joining new dataset

df = [energy1_df, energy2_df, energy3_df, energy4_df, energy5_df, energy6_df,

energy7_df, energy8_df, energy9_df, energy10_df, energy11_df, energy12_df,

irradiance]

energy = pd.concat(df, join=’outer’, axis=1)

#Visualizing unprocessed data

energy = energy.reset_index() #resets index

fig, axes = plt.subplots(3, 2, figsize=(16, 12), layout="constrained")

columns_inv1 = [’1-1 string energy’, ’1-2 string energy’, ’1-3 string energy’,

’1-4 string energy’, ’1-5 string energy’, ’1-6 string energy’,

’1-7 string energy’, ’1-8 string energy’, ’1-9 string energy’,

’1-10 string energy’, ’1-11 string energy’, ’1-12 string energy’,

’1-13 string energy’]

energy.plot(x=’Timestamp’, y=columns_inv1, kind=’line’, ax=axes[0, 0])

axes[0, 0].set_ylabel(’Electrical power W’)

axes[0, 0].set_title(’INV-1 electrical power’)

axes[0, 0].legend(loc=’upper center’, bbox_to_anchor=(0.5, -0.2), shadow=True, ncol=4)

axes[0, 0].set_xticklabels(axes[0, 0].get_xticklabels(), rotation=0, ha=’right’)

columns_inv2 = [’2-1 string energy’,’2-2 string energy’, ’2-3 string energy’,

’2-4 string energy’, ’2-5 string energy’, ’2-6 string energy’,

’2-7 string energy’, ’2-8 string energy’, ’2-9 string energy’,

’2-10 string energy’, ’2-11 string energy’, ’2-12 string energy’,

’2-13 string energy’]

energy.plot(x=’Timestamp’, y=columns_inv2, kind=’line’, ax=axes[0, 1])

axes[0, 1].set_ylabel(’Electrical power W’)

axes[0, 1].set_title(’INV-2 electrical power’)

axes[0, 1].legend(loc=’upper center’, bbox_to_anchor=(0.5, -0.2), shadow=True, ncol=4)

axes[0, 1].set_xticklabels(axes[0, 1].get_xticklabels(), rotation=0, ha=’right’)

columns_inv3 = [’3-1 string energy’,’3-2 string energy’, ’3-3 string energy’,

’3-4 string energy’, ’3-5 string energy’, ’3-6 string energy’,
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’3-7 string energy’, ’3-8 string energy’, ’3-9 string energy’,

’3-10 string energy’, ’3-11 string energy’, ’3-12 string energy’,

’3-13 string energy’]

energy.plot(x=’Timestamp’, y=columns_inv3, kind=’line’, ax=axes[1, 0])

axes[1, 0].set_ylabel(’Electrical power W’)

axes[1, 0].set_title(’INV-3 electrical power’)

axes[1, 0].legend(loc=’upper center’, bbox_to_anchor=(0.5, -0.2), shadow=True, ncol=4)

axes[1, 0].set_xticklabels(axes[1, 0].get_xticklabels(), rotation=0, ha=’right’)

columns_inv9 = [’9-1 string energy’,’9-2 string energy’, ’9-3 string energy’,

’9-4 string energy’, ’9-5 string energy’, ’9-6 string energy’,

’9-7 string energy’, ’9-8 string energy’, ’9-9 string energy’,

’9-10 string energy’, ’9-11 string energy’, ’9-12 string energy’,

’9-13 string energy’]

energy.plot(x=’Timestamp’, y=columns_inv9, kind=’line’, ax=axes[1, 1])

axes[1, 1].set_ylabel(’Electrical power W’)

axes[1, 1].set_title(’INV-9 electrical power’)

axes[1, 1].legend(loc=’upper center’, bbox_to_anchor=(0.5, -0.2), shadow=True, ncol=4)

axes[1, 1].set_xticklabels(axes[1, 1].get_xticklabels(), rotation=0, ha=’right’)

columns_inv10 = [’10-1 string energy’,’10-2 string energy’, ’10-3 string energy’,

’10-4 string energy’, ’10-5 string energy’, ’10-6 string energy’,

’10-7 string energy’, ’10-8 string energy’, ’10-9 string energy’,

’10-10 string energy’, ’10-11 string energy’, ’10-12 string energy’,

’10-13 string energy’]

energy.plot(x=’Timestamp’, y=columns_inv10, kind=’line’, ax=axes[2, 0])

axes[2, 0].set_ylabel(’Electrical power W’)

axes[2, 0].set_title(’INV-10 electrical power’)

axes[2, 0].legend(loc=’upper center’, bbox_to_anchor=(0.5, -0.2), shadow=True, ncol=4)

axes[2, 0].set_xticklabels(axes[2, 0].get_xticklabels(), rotation=0, ha=’right’)

energy.plot(x=’Timestamp’, y=’Irradiance’, kind=’line’, ax=axes[2, 1])

axes[2, 1].set_ylabel(’Irradiance W/m^2’)

axes[2, 1].set_title(’Irradiance’)

axes[2, 1].legend(loc=’upper center’, bbox_to_anchor=(0.5, -0.2), shadow=True, ncol=4)

axes[2, 1].set_xticklabels(axes[2, 1].get_xticklabels(), rotation=0, ha=’right’)

fig.savefig(’Block1.pdf’, format=’pdf’, dpi=1200, bbox_inches=’tight’)

plt.show()
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#Data pre-processing

#Searching for missing values

missing_values = energy.isnull()

indices = missing_values.where(missing_values == True).stack().index

# Filter the DataFrame to keep only observations after the certain time point

certain_time_point = pd.Timestamp(’2022-06-02 00:00:00’)

energy = energy[energy[’Timestamp’] >= certain_time_point]

energy = energy.set_index(’Timestamp’)

# Filter data between 6 am and 8 pm

energy = energy[(energy.index.hour >= 6) & (energy.index.hour < 20)]

#Filling in missing values

energy = energy.interpolate(option=’spline’)

# Replacing negative values with the absolute value

energy = energy.applymap(lambda x: abs(x))

energy = energy.reset_index()

#------------------------------------------------------------------------------

fig, axes = plt.subplots(2, 2, figsize=(15.6, 11.7), layout="constrained")

columns_inv4 = [’4-1 string energy’,’4-2 string energy’, ’4-3 string energy’,

’4-4 string energy’, ’4-5 string energy’, ’4-6 string energy’,

’4-7 string energy’, ’4-8 string energy’, ’4-9 string energy’,

’4-10 string energy’, ’4-11 string energy’, ’4-12 string energy’]

energy.plot(x=’Timestamp’, y=columns_inv4, kind=’line’, ax=axes[0,0])

axes[0,0].set_ylabel(’Electrical power W’)

axes[0,0].set_title(’INV-4 electrical power’)

axes[0,0].legend(loc=’upper center’, bbox_to_anchor=(0.5, -0.1), shadow=True, ncol=4)

columns_inv5 = [’5-1 string energy’,’5-2 string energy’, ’5-3 string energy’,

’5-4 string energy’, ’5-5 string energy’, ’5-6 string energy’,

’5-7 string energy’, ’5-8 string energy’, ’5-9 string energy’,

’5-10 string energy’, ’5-11 string energy’, ’5-12 string energy’]

energy.plot(x=’Timestamp’, y=columns_inv5, kind=’line’, ax=axes[0,1])

axes[0,1].set_ylabel(’Electrical power W’)

axes[0,1].set_title(’INV-5 electrical power’)

axes[0,1].legend(loc=’upper center’, bbox_to_anchor=(0.5, -0.1), shadow=True, ncol=4)
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columns_inv8 = [’8-1 string energy’,’8-2 string energy’, ’8-3 string energy’,

’8-4 string energy’, ’8-5 string energy’, ’8-6 string energy’,

’8-7 string energy’, ’8-8 string energy’, ’8-9 string energy’,

’8-10 string energy’, ’8-11 string energy’, ’8-12 string energy’]

energy.plot(x=’Timestamp’, y=columns_inv8, kind=’line’, ax=axes[1,0])

axes[1,0].set_ylabel(’Electrical power W’)

axes[1,0].set_title(’INV-8 electrical power’)

axes[1,0].legend(loc=’upper center’, bbox_to_anchor=(0.5, -0.1), shadow=True, ncol=4)

columns_inv11 = [’11-1 string energy’,’11-2 string energy’, ’11-3 string energy’,

’11-4 string energy’, ’11-5 string energy’, ’11-6 string energy’,

’11-7 string energy’, ’11-8 string energy’, ’11-9 string energy’,

’11-10 string energy’, ’11-11 string energy’, ’11-12 string energy’]

energy.plot(x=’Timestamp’, y=columns_inv11, kind=’line’, ax=axes[1,1])

axes[1,1].set_ylabel(’Electrical power W’)

axes[1,1].set_title(’INV-11 electrical power’)

axes[1,1].legend(loc=’upper center’, bbox_to_anchor=(0.5, -0.1), shadow=True, ncol=4)

for ax in axes.flat:

ax.tick_params(axis=’x’, rotation=0)

#Zoomed in view

axes[0,0].set_xlim(pd.Timestamp(’2023-05-31’), pd.Timestamp(’2023-06-06’))

axes[0,1].set_xlim(pd.Timestamp(’2023-05-31’), pd.Timestamp(’2023-06-06’))

axes[1,0].set_xlim(pd.Timestamp(’2023-05-31’), pd.Timestamp(’2023-06-06’))

axes[1,1].set_xlim(pd.Timestamp(’2023-05-31’), pd.Timestamp(’2023-06-06’))

fig.savefig(’Block2 - after pre-processing zoomed.pdf’, format=’pdf’, dpi=1200, bbox_inches=’tight’)

#fig.savefig(’Block2 after pre-processing.pdf’, format=’pdf’, dpi=1200, bbox_inches=’tight’)

plt.show()

#------------------------------------------------------------------------------

#Descriptive statistics of pre-processed data to identify days with the highest generated energy

energy = energy.set_index(’Timestamp’)

energy.drop(columns=[’Irradiance’], inplace=True)

daily_energy = energy.resample(’D’).mean()

daily_describtion = daily_energy.T.describe()
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daily_describtion_T = daily_describtion.T

# Finding days with the highest total power generation

daily_energy[’Total_power’] = daily_energy.sum(axis=1)

dates_with_highest_power = daily_energy[’Total_power’].nlargest(10).index

total_observations = daily_energy.sum(axis=1)

total_observations = total_observations.reset_index()

sorted_total_observations = total_observations.sort_values(by=0, ascending=False)

sorted_total_observations = sorted_total_observations.set_index(’Timestamp’)

total_observations = sorted_total_observations.reset_index()

#------------------------------------------------------------------------------

#Dividing data set based on the inverters

INV_1 = pd.DataFrame(index=energy.index)

INV_2 = pd.DataFrame(index=energy.index)

INV_3 = pd.DataFrame(index=energy.index)

INV_4 = pd.DataFrame(index=energy.index)

INV_5 = pd.DataFrame(index=energy.index)

INV_6 = pd.DataFrame(index=energy.index)

INV_7 = pd.DataFrame(index=energy.index)

INV_8 = pd.DataFrame(index=energy.index)

INV_9 = pd.DataFrame(index=energy.index)

INV_10 = pd.DataFrame(index=energy.index)

INV_11 = pd.DataFrame(index=energy.index)

INV_12 = pd.DataFrame(index=energy.index)

INV_1 = energy[[’1-1 string energy’, ’1-2 string energy’, ’1-3 string energy’, ’1-4 string energy’,

’1-5 string energy’, ’1-6 string energy’, ’1-7 string energy’, ’1-8 string energy’,

’1-9 string energy’, ’1-10 string energy’, ’1-11 string energy’, ’1-12 string energy’,

’1-13 string energy’]].copy()

INV_2 = energy[[’2-1 string energy’,’2-2 string energy’, ’2-3 string energy’, ’2-4 string energy’,

’2-5 string energy’, ’2-6 string energy’, ’2-7 string energy’, ’2-8 string energy’,

’2-9 string energy’, ’2-10 string energy’, ’2-11 string energy’, ’2-12 string energy’,

’2-13 string energy’]].copy()

INV_3 = energy[[’3-1 string energy’,’3-2 string energy’, ’3-3 string energy’, ’3-4 string energy’,

’3-5 string energy’, ’3-6 string energy’, ’3-7 string energy’, ’3-8 string energy’,

’3-9 string energy’, ’3-10 string energy’, ’3-11 string energy’, ’3-12 string energy’,

’3-13 string energy’]].copy()

60



INV_4 = energy[[’4-1 string energy’,’4-2 string energy’, ’4-3 string energy’, ’4-4 string energy’,

’4-5 string energy’, ’4-6 string energy’, ’4-7 string energy’, ’4-8 string energy’,

’4-9 string energy’, ’4-10 string energy’, ’4-11 string energy’, ’4-12 string energy’]].copy()

INV_5 = energy[[’5-1 string energy’,’5-2 string energy’, ’5-3 string energy’, ’5-4 string energy’,

’5-5 string energy’, ’5-6 string energy’, ’5-7 string energy’, ’5-8 string energy’,

’5-9 string energy’, ’5-10 string energy’, ’5-11 string energy’, ’5-12 string energy’]].copy()

INV_6 = energy[[’6-1 string energy’,’6-2 string energy’, ’6-3 string energy’, ’6-4 string energy’,

’6-5 string energy’, ’6-6 string energy’, ’6-7 string energy’, ’6-8 string energy’,

’6-9 string energy’, ’6-10 string energy’]].copy()

INV_7 = energy[[’7-1 string energy’,’7-2 string energy’, ’7-3 string energy’, ’7-4 string energy’,

’7-5 string energy’, ’7-6 string energy’, ’7-7 string energy’, ’7-8 string energy’,

’7-9 string energy’, ’7-10 string energy’]].copy()

INV_8 = energy[[’8-1 string energy’,’8-2 string energy’, ’8-3 string energy’, ’8-4 string energy’,

’8-5 string energy’, ’8-6 string energy’, ’8-7 string energy’, ’8-8 string energy’,

’8-9 string energy’, ’8-10 string energy’, ’8-11 string energy’, ’8-12 string energy’]].copy()

INV_9 = energy[[’9-1 string energy’,’9-2 string energy’, ’9-3 string energy’, ’9-4 string energy’,

’9-5 string energy’, ’9-6 string energy’, ’9-7 string energy’, ’9-8 string energy’,

’9-9 string energy’, ’9-10 string energy’, ’9-11 string energy’, ’9-12 string energy’,

’9-13 string energy’]].copy()

INV_10 = energy[[’10-1 string energy’,’10-2 string energy’, ’10-3 string energy’, ’10-4 string energy’,

’10-5 string energy’, ’10-6 string energy’, ’10-7 string energy’, ’10-8 string energy’,

’10-9 string energy’, ’10-10 string energy’, ’10-11 string energy’, ’10-12 string energy’,

’10-13 string energy’]].copy()

INV_11 = energy[[’11-1 string energy’,’11-2 string energy’, ’11-3 string energy’, ’11-4 string energy’,

’11-5 string energy’, ’11-6 string energy’, ’11-7 string energy’, ’11-8 string energy’,

’11-9 string energy’, ’11-10 string energy’, ’11-11 string energy’,

’11-12 string energy’]].copy()

INV_12 = energy[[’12-1 string energy’, ’12-2 string energy’, ’12-3 string energy’, ’12-4 string energy’,

’12-5 string energy’, ’12-6 string energy’, ’12-7 string energy’, ’12-8 string energy’,

’12-9 string energy’, ’12-10 string energy’]].copy()

#Correlation

plt.figure(figsize=(6.4,4.8), layout="constrained")

sns.set_theme(style="white")

corr_INV_1 = INV_1.corr()

heatmap = sns.heatmap(corr_INV_1, annot=True, cmap="Blues", fmt=’.1g’)

heatmap.set_title(’Correlation Heatmap of INV_1’)

plt.savefig(’heatmap_INV1.pdf’, format=’pdf’, dpi=1200)

plt.show()
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plt.figure(figsize=(6.4,4.8), layout="constrained")

sns.set_theme(style="white")

corr_INV_2 = INV_2.corr()

heatmap = sns.heatmap(corr_INV_2, annot=True, cmap="Blues", fmt=’.1g’)

heatmap.set_title(’Correlation Heatmap of INV_2’)

plt.savefig(’heatmap_INV2.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")

sns.set_theme(style="white")

corr_INV_3 = INV_3.corr()

heatmap = sns.heatmap(corr_INV_3, annot=True, cmap="Blues", fmt=’.1g’)

heatmap.set_title(’Correlation Heatmap of INV_3’)

plt.savefig(’heatmap_INV3.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")

sns.set_theme(style="white")

corr_INV_4 = INV_4.corr()

heatmap = sns.heatmap(corr_INV_4, annot=True, cmap="Blues", fmt=’.1g’)

heatmap.set_title(’Correlation Heatmap of INV_4’)

plt.savefig(’heatmap_INV4.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")

sns.set_theme(style="white")

corr_INV_5 = INV_5.corr()

heatmap = sns.heatmap(corr_INV_5, annot=True, cmap="Blues", fmt=’.1g’)

heatmap.set_title(’Correlation Heatmap of INV_5’)

plt.savefig(’heatmap_INV5.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")

sns.set_theme(style="white")

corr_INV_6 = INV_6.corr()

heatmap = sns.heatmap(corr_INV_6, annot=True, cmap="Blues", fmt=’.1g’)

heatmap.set_title(’Correlation Heatmap of INV_6’)

plt.savefig(’heatmap_INV6.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")
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sns.set_theme(style="white")

corr_INV_7 = INV_7.corr()

heatmap = sns.heatmap(corr_INV_7, annot=True, cmap="Blues", fmt=’.1g’)

heatmap.set_title(’Correlation Heatmap of INV_7’)

plt.savefig(’heatmap_INV7.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")

sns.set_theme(style="white")

corr_INV_8 = INV_8.corr()

heatmap = sns.heatmap(corr_INV_8, annot=True, cmap="Blues", fmt=’.1g’)

heatmap.set_title(’Correlation Heatmap of INV_8’)

plt.savefig(’heatmap_INV8.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")

sns.set_theme(style="white")

corr_INV_9 = INV_9.corr()

heatmap = sns.heatmap(corr_INV_9, annot=True, cmap="Blues", fmt=’.1g’)

heatmap.set_title(’Correlation Heatmap of INV_9’)

plt.savefig(’heatmap_INV9.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")

sns.set_theme(style="white")

corr_INV_10 = INV_10.corr()

heatmap = sns.heatmap(corr_INV_10, annot=True, cmap="Blues", fmt=’.1g’)

heatmap.set_title(’Correlation Heatmap of INV_10’)

plt.savefig(’heatmap_INV10.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")

sns.set_theme(style="white")

corr_INV_11 = INV_11.corr()

heatmap = sns.heatmap(corr_INV_11, annot=True, cmap="Blues", fmt=’.1g’)

heatmap.set_title(’Correlation Heatmap of INV_11’)

plt.savefig(’heatmap_INV11.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")

sns.set_theme(style="white")
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corr_INV_12 = INV_12.corr()

heatmap = sns.heatmap(corr_INV_12, annot=True, cmap="Blues", fmt=’.1g’)

heatmap.set_title(’Correlation Heatmap of INV_12’)

plt.savefig(’heatmap_INV12.pdf’, format=’pdf’, dpi=1200)

plt.show()

#------------------------------------------------------------------------------------

#Boxplots

plt.figure(figsize=(6.4,4.8), layout="constrained")

INV_1.boxplot()

plt.title(’Box Plots of INV_1’)

plt.ylabel(’Electrical power W’)

plt.xticks(rotation=45)

plt.savefig(’boxplot_INV1.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")

INV_2.boxplot()

plt.title(’Box Plots of INV_2’)

plt.ylabel(’Electrical power W’)

plt.xticks(rotation=45)

plt.savefig(’boxplot_INV2.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")

INV_3.boxplot()

plt.title(’Box Plots of INV_3’)

plt.ylabel(’Electrical power W’)

plt.xticks(rotation=45)

plt.savefig(’boxplot_INV3.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")

INV_4.boxplot()

plt.title(’Box Plots of INV_4’)

plt.ylabel(’Electrical power W’)

plt.xticks(rotation=45)

plt.savefig(’boxplot_INV4.pdf’, format=’pdf’, dpi=1200)

plt.show()
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plt.figure(figsize=(6.4,4.8), layout="constrained")

INV_5.boxplot()

plt.title(’Box Plots of INV_5’)

plt.ylabel(’Electrical power W’)

plt.xticks(rotation=45)

plt.savefig(’boxplot_INV5.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")

INV_6.boxplot()

plt.title(’Box Plots of INV_6’)

plt.ylabel(’Electrical power W’)

plt.xticks(rotation=45)

plt.savefig(’boxplot_INV6.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")

INV_7.boxplot()

plt.title(’Box Plots of INV_7’)

plt.ylabel(’Electrical power W’)

plt.xticks(rotation=45)

plt.savefig(’boxplot_INV7.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")

INV_8.boxplot()

plt.title(’Box Plots of INV_8’)

plt.ylabel(’Electrical power W’)

plt.xticks(rotation=45)

plt.savefig(’boxplot_INV8.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")

INV_9.boxplot()

plt.title(’Box Plots of INV_9’)

plt.ylabel(’Electrical power W’)

plt.xticks(rotation=45)

plt.savefig(’boxplot_INV9.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")
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INV_10.boxplot()

plt.title(’Box Plots of INV_10’)

plt.ylabel(’Electrical power W’)

plt.xticks(rotation=45)

plt.savefig(’boxplot_INV10.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")

INV_11.boxplot()

plt.title(’Box Plots of INV_11’)

plt.ylabel(’Electrical power W’)

plt.xticks(rotation=45)

plt.savefig(’boxplot_INV11.pdf’, format=’pdf’, dpi=1200)

plt.show()

plt.figure(figsize=(6.4,4.8), layout="constrained")

INV_12.boxplot()

plt.title(’Box Plots of INV_12’)

plt.ylabel(’Electrical power W’)

plt.xticks(rotation=45)

plt.savefig(’boxplot_INV12.pdf’, format=’pdf’, dpi=1200)

plt.show()

#------------------------------------------------------------------------------

#CLUSTERING

energy.set_index(’Timestamp’, inplace=True) #sets time as an index

energy = energy.reset_index() #resets index

###############################################################################

#6 June, 2023

start_date = ’2023-06-06 6:00:00’

end_date = ’2023-06-06 20:00:00’

day_060623 = energy.loc[start_date:end_date]

#Transforming dataframes to np array and transposing it

day_060623_np = day_060623.to_numpy()

day_060623_np = np.transpose(day_060623_np)

#Choosing number of clusters
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#Sillhouette method

range_n_clusters = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

silhouette_avg = []

for num_clusters in range_n_clusters:

# initialise kmeans

kmeans = KMeans(n_clusters=num_clusters)

kmeans.fit(day_060623_np)

cluster_labels = kmeans.labels_

# silhouette score

silhouette_avg.append(silhouette_score(day_060623_np, cluster_labels))

plt.plot(range_n_clusters, silhouette_avg, ’bx-’)

plt.xlabel(’Values of k’)

plt.ylabel(’Silhouette score’)

plt.title(’Silhouette analysis for optimal k on 2023.06.06’)

plt.savefig(’20230606_silhoutte.pdf’, format=’pdf’, dpi=1200)

plt.show()

#Elbow method

Sum_of_squared_distances = []

K = range(1,13)

for num_clusters in K :

kmeans = KMeans(n_clusters=num_clusters)

kmeans.fit(day_060623_np)

Sum_of_squared_distances.append(kmeans.inertia_)

plt.plot(K, Sum_of_squared_distances, ’bx-’)

plt.xlabel(’Values of k’)

plt.ylabel(’Sum of squared distances/Inertia’)

plt.title(’Elbow method for optimal k on 2023.06.06’)

plt.savefig(’20230606_elbow.pdf’, format=’pdf’, dpi=1200)

plt.show()

#Based on the analysis, we choose number of clusters

num_clusters = 4
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# Create and fit the KMeans model

kmeans = KMeans(n_clusters=num_clusters, random_state=42)

cluster_labels_060623 = kmeans.fit_predict(day_060623_np)

# Add cluster labels as a new column in your DataFrame

day_060623 = day_060623.T

day_060623[’Cluster’] = cluster_labels_060623

#Visualizing clusters

day_060623_y = day_060623[’Cluster’]

day_060623_y = day_060623_y.reset_index() #resets index

day_060623_y = day_060623_y.drop([’index’], axis=1)

C_day_060623 = day_060623.copy()

day_060623 = day_060623.drop([’Cluster’], axis=1)

day_060623_sc = StandardScaler().fit_transform(day_060623)

day_060623_sc = pd.DataFrame(day_060623_sc)

day_060623_sc.head()

tsne = manifold.TSNE(n_components = 2, verbose=0, perplexity=10, n_iter=300, random_state = 42)

day_060623_p10 = tsne.fit_transform(day_060623_sc)

day_060623_p10 = pd.DataFrame(day_060623_p10)

day_060623_p10.rename(columns = {0:’comp_1’, 1:’comp_2’}, inplace = True)

day_060623_p10[’label’] = day_060623_y

tsne = manifold.TSNE(n_components = 2, verbose=0, perplexity=30, n_iter=300, random_state = 42)

day_060623_p30 = tsne.fit_transform(day_060623_sc)

day_060623_p30 = pd.DataFrame(day_060623_p30)

day_060623_p30.rename(columns = {0:’comp_1’, 1:’comp_2’}, inplace = True)

day_060623_p30[’label’] = day_060623_y

tsne = manifold.TSNE(n_components = 2, verbose=0, perplexity=40, n_iter=300, random_state = 42)

day_060623_p40 = tsne.fit_transform(day_060623_sc)

day_060623_p40 = pd.DataFrame(day_060623_p40)

day_060623_p40.rename(columns = {0:’comp_1’, 1:’comp_2’}, inplace = True)

day_060623_p40[’label’] = day_060623_y

tsne = manifold.TSNE(n_components = 2, verbose=0, perplexity=50, n_iter=300, random_state = 42)

day_060623_p50 = tsne.fit_transform(day_060623_sc)

day_060623_p50 = pd.DataFrame(day_060623_p50)

day_060623_p50.rename(columns = {0:’comp_1’, 1:’comp_2’}, inplace = True)
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day_060623_p50[’label’] = day_060623_y

tsne = manifold.TSNE(n_components = 2, verbose=0, perplexity=70, n_iter=300, random_state = 42)

day_060623_p70 = tsne.fit_transform(day_060623_sc)

day_060623_p70 = pd.DataFrame(day_060623_p70)

day_060623_p70.rename(columns = {0:’comp_1’, 1:’comp_2’}, inplace = True)

day_060623_p70[’label’] = day_060623_y

tsne = manifold.TSNE(n_components = 2, verbose=0, perplexity=100, n_iter=300, random_state = 42)

day_060623_p100 = tsne.fit_transform(day_060623_sc)

day_060623_p100 = pd.DataFrame(day_060623_p100)

day_060623_p100.rename(columns = {0:’comp_1’, 1:’comp_2’}, inplace = True)

day_060623_p100[’label’] = day_060623_y

fig, axes = plt.subplots(2, 3, figsize = (16,12))

fig.suptitle(’Dataset projections with different perplexities 2023.06.06’, size=24)

sns.set_style("darkgrid") # darkgrid, whitegrid, dark, white, ticks

sns.scatterplot(ax=axes[0,0],

data = day_060623_p10,

hue = day_060623_p10[’label’].tolist(),

palette = sns.color_palette("Paired"),

x = "comp_1", y = "comp_2")

axes[0,0].set_title(’Perplexity = 10’, size=16)

axes[0,0].get_legend().remove()

sns.scatterplot(ax=axes[0,1],

data = day_060623_p30,

hue = day_060623_p30[’label’].tolist(),

palette = sns.color_palette("Paired"),

x = "comp_1", y = "comp_2")

axes[0,1].set_title(’Perplexity = 30’, size=16)

axes[0,1].get_legend().remove()

sns.scatterplot(ax=axes[0,2],

data = day_060623_p40,

hue = day_060623_p40[’label’].tolist(),

palette = sns.color_palette("Paired"),

x = "comp_1", y = "comp_2")

axes[0,2].set_title(’Perplexity = 40’, size=16)
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axes[0,2].get_legend().remove()

sns.scatterplot(ax=axes[1,0],

data = day_060623_p50,

hue = day_060623_p50[’label’].tolist(),

palette = sns.color_palette("Paired"),

x = "comp_1", y = "comp_2")

axes[1,0].set_title(’Perplexity = 50’, size=16)

axes[1,0].get_legend().remove()

sns.scatterplot(ax=axes[1,1],

data = day_060623_p70,

hue = day_060623_p70[’label’].tolist(),

palette = sns.color_palette("Paired"),

x = "comp_1", y = "comp_2")

axes[1,1].set_title(’Perplexity = 70’, size=16)

axes[1,1].get_legend().remove()

sns.scatterplot(ax=axes[1,2],

data = day_060623_p100,

hue = day_060623_p100[’label’].tolist(),

palette = sns.color_palette("Paired"),

x = "comp_1", y = "comp_2")

axes[1,2].set_title(’Perplexity = 100’, size=16)

axes[1,2].get_legend().remove()

lines, labels = axes[0,0].get_legend_handles_labels()

fig.legend(lines, labels, loc = ’lower center’, ncol=10)

plt.show()

sns.scatterplot(data = day_060623_p70, hue = day_060623_p70[’label’].tolist(),

palette = sns.color_palette("bright"), x = "comp_1", y = "comp_2")

plt.title(’K-means clustering results with k=4 on 2023-06-06’)

plt.legend(loc=’upper center’, bbox_to_anchor=(0.5, -0.2), ncol=4)

plt.savefig(’20230606_TSNE.pdf’, format=’pdf’, dpi=1200, bbox_inches=’tight’)

plt.show()

#------------------------------------------------------------------------------
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#Summing up how much electrical power was generated during the day

total_observations_060623 = day_060623.sum(axis=1)

#Descriptive statistics

describtion_060623 = day_060623.T.describe()

describtion_060623_T = describtion_060623.T

#Splitting data into data frames based on class:

# Group the DataFrame by the ’classes’ column

grouped = C_day_060623.groupby(’Cluster’)

# Create separate DataFrames for each class

Cluster0_060623 = pd.DataFrame()

Cluster1_060623 = pd.DataFrame()

Cluster2_060623 = pd.DataFrame()

Cluster3_060623 = pd.DataFrame()

# Iterate over the groups and assign each DataFrame to the appropriate variable

for class_name, group_data in grouped:

if class_name == 0:

Cluster0_060623 = group_data.copy() # Create a copy of the group data

elif class_name == 1:

Cluster1_060623 = group_data.copy() # Create a copy of the group data

elif class_name == 2:

Cluster2_060623 = group_data.copy() # Create a copy of the group data

elif class_name == 3:

Cluster3_060623 = group_data.copy() # Create a copy of the group data

Cluster0_060623 = Cluster0_060623.drop(’Cluster’, axis=’columns’)

Cluster1_060623 = Cluster1_060623.drop(’Cluster’, axis=’columns’)

Cluster2_060623 = Cluster2_060623.drop(’Cluster’, axis=’columns’)

Cluster3_060623 = Cluster3_060623.drop(’Cluster’, axis=’columns’)

Cluster0_060623 = Cluster0_060623.T

Cluster1_060623 = Cluster1_060623.T

Cluster2_060623 = Cluster2_060623.T

Cluster3_060623 = Cluster3_060623.T

describtion_060623_C0 = Cluster0_060623.describe()

describtion_060623_C0_T = describtion_060623_C0.T
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describtion_060623_C1 = Cluster1_060623.describe()

describtion_060623_C1_T = describtion_060623_C1.T

describtion_060623_C2 = Cluster2_060623.describe()

describtion_060623_C2_T = describtion_060623_C2.T

describtion_060623_C3 = Cluster3_060623.describe()

describtion_060623_C3_T = describtion_060623_C3.T

#Correlation

day_060623.drop(columns=[’Timestamp’], inplace=True)

day_060623 = day_060623.T

plt.figure(figsize=(20,15))

sns.set_theme(style="white")

corr_060623 = day_060623.corr()

heatmap = sns.heatmap(corr_060623, annot=True, cmap="Blues", fmt=’.1g’)

#Let’s group strings based on correlation result:

pairs_smaller_than_09 = []

pairs_smaller_than_08 = []

pairs_smaller_than_07 = []

pairs_smaller_than_06 = []

pairs_smaller_than_05 = []

pairs_smaller_than_04 = []

pairs_smaller_than_03 = []

pairs_smaller_than_02 = []

for i in range(len(corr_060623.columns)):

for j in range(i + 1, len(corr_060623.columns)):

if corr_060623.iloc[i, j] > 0.8 and corr_060623.iloc[i, j] < 0.9:

pairs_smaller_than_09.append((corr_060623.columns[i], corr_060623.columns[j]))

for i in range(len(corr_060623.columns)):

for j in range(i + 1, len(corr_060623.columns)):

if corr_060623.iloc[i, j] <= 0.8 and corr_060623.iloc[i, j] > 0.7:

pairs_smaller_than_08.append((corr_060623.columns[i], corr_060623.columns[j]))
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for i in range(len(corr_060623.columns)):

for j in range(i + 1, len(corr_060623.columns)):

if corr_060623.iloc[i, j] <= 0.7 and corr_060623.iloc[i, j] > 0.6:

pairs_smaller_than_07.append((corr_060623.columns[i], corr_060623.columns[j]))

for i in range(len(corr_060623.columns)):

for j in range(i + 1, len(corr_060623.columns)):

if corr_060623.iloc[i, j] <= 0.6 and corr_060623.iloc[i, j] > 0.5:

pairs_smaller_than_06.append((corr_060623.columns[i], corr_060623.columns[j]))

for i in range(len(corr_060623.columns)):

for j in range(i + 1, len(corr_060623.columns)):

if corr_060623.iloc[i, j] <= 0.5 and corr_060623.iloc[i, j] > 0.4:

pairs_smaller_than_05.append((corr_060623.columns[i], corr_060623.columns[j]))

for i in range(len(corr_060623.columns)):

for j in range(i + 1, len(corr_060623.columns)):

if corr_060623.iloc[i, j] <= 0.4 and corr_060623.iloc[i, j] > 0.3:

pairs_smaller_than_04.append((corr_060623.columns[i], corr_060623.columns[j]))

for i in range(len(corr_060623.columns)):

for j in range(i + 1, len(corr_060623.columns)):

if corr_060623.iloc[i, j] <= 0.3 and corr_060623.iloc[i, j] > 0.2:

pairs_smaller_than_03.append((corr_060623.columns[i], corr_060623.columns[j]))

for i in range(len(corr_060623.columns)):

for j in range(i + 1, len(corr_060623.columns)):

if corr_060623.iloc[i, j] < 0.2:

pairs_smaller_than_02.append((corr_060623.columns[i], corr_060623.columns[j]))

#--------------------------------------------------------------------------------------------

#%% FDA

#STEP 1 - getting functional data

day_070523 = day_070523.reset_index()

data_matrix_070523 = day_070523.drop(columns=[’Timestamp’]).values

data_matrix_070523 = data_matrix_070523.T

grid_points_070523 = day_070523.index.values
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#Creating FDataGrid object with specified grid_points

fd_070523 = skfda.FDataGrid(data_matrix=data_matrix_070523, grid_points=grid_points_070523)

labels_070523 = day_070523.columns.tolist()

fd_070523.plot()

plt.legend(labels_070523, loc=’upper center’, bbox_to_anchor=(0.5, -0.1), ncol=10)

plt.title(’Functional Data 2023.05.07’)

plt.show()

#BoxPlot

colormap = plt.cm.get_cmap(’seismic’)

fdBoxplot = Boxplot(fd_070523_smooth)

fdBoxplot.show_full_outliers = True

fdBoxplot.plot()

color = 0.3

outliercol = 0.7

fd_070523_smooth.plot(group=fdBoxplot.outliers.astype(int),

group_colors=colormap([color, outliercol]),

group_names=["nonoutliers", "outliers"])

plt.show()

#STEP 2 - Fourier smoothing

basis = skfda.representation.basis.FourierBasis((0, 6000), n_basis=24)

smoother = skfda.preprocessing.smoothing.BasisSmoother(basis)

fd_070523_smooth = smoother.fit_transform(fd_070523)

fd_070523_smooth.plot()

plt.legend(labels_070523, loc=’upper center’, bbox_to_anchor=(0.5, -0.1), ncol=10)

plt.title(’Smoothed Functional Data 2023.05.07’)

plt.show()

#Searching for optimal nbasis value

n_basis_values = range(5, 25)
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# Spliting data into training and testing sets

fd_train, fd_test = train_test_split(fd_070523, test_size=0.2, random_state=42)

grid_points = fd_train.grid_points[0]

mse_values = []

# Loop over different values of n_basis

for n_basis in n_basis_values:

basis = skfda.representation.basis.Fourier(n_basis=n_basis)

fd_train_basis = fd_train.to_basis(basis)

fd_train_smooth = fd_train_basis.evaluate(grid_points)

fd_test_basis = fd_test.to_basis(basis)

fd_test_smooth = fd_test_basis.evaluate(grid_points)

mse = mean_squared_error(fd_test_smooth.flatten(), fd_test.data_matrix.flatten())

mse_values.append(mse)

optimal_n_basis = n_basis_values[np.argmin(mse_values)]

print("Optimal n_basis:", optimal_n_basis)

#Plotting MSE values for different n_basis values

plt.plot(n_basis_values, mse_values, marker=’o’)

plt.xlabel(’Number of Basis Functions (n_basis)’)

plt.ylabel(’Mean Squared Error (MSE)’)

plt.title(’MSE vs. n_basis’)

plt.grid(True)

plt.show()

#STEP 4 - outlier detection, boxplot

colormap = plt.cm.get_cmap(’seismic’)

fdBoxplot = Boxplot(fd_070523_smooth)

fdBoxplot.show_full_outliers = True

fdBoxplot.plot()

plt.show()

color = 0.3

outliercol = 0.7

fd_070523_smooth.plot(group=fdBoxplot.outliers.astype(int),

group_colors=colormap([color, outliercol]),
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group_names=["nonoutliers", "outliers"])

plt.show()

#STEP 3 - clustering

#%% 6 June, 2023

#STEP 1 - getting functional data

day_060623 = day_060623.reset_index()

data_matrix_060623 = day_060623.drop(columns=[’Timestamp’]).values

data_matrix_060623 = data_matrix_060623.T

grid_points_060623 = day_060623.index.values

#Creating FDataGrid object with specified grid_points

fd_060623 = skfda.FDataGrid(data_matrix=data_matrix_060623, grid_points=grid_points_060623)

day_060623 = day_060623.drop(columns=[’Timestamp’])

labels_060623 = day_060623.columns.tolist()

fd_060623.plot()

#plt.legend(labels_060623, loc=’upper center’, bbox_to_anchor=(0.5, -0.1), ncol=10)

plt.title(’Functional Data 2023.06.06’)

plt.savefig(’FDA20230606.pdf’, format=’pdf’, dpi=1200, bbox_inches=’tight’)

plt.show()

#STEP 2 - Fourier smoothing

basis = skfda.representation.basis.FourierBasis((0, 56), n_basis=11)

smoother = skfda.preprocessing.smoothing.BasisSmoother(basis)

fd_060623_smooth = smoother.fit_transform(fd_060623)

fd_060623_smooth.plot()

#plt.legend(labels_060623, loc=’upper center’, bbox_to_anchor=(0.5, -0.1), ncol=10)

plt.title(’Smoothed Functional Data 2023.06.06’)

plt.savefig(’FDA20230606_smooth.pdf’, format=’pdf’, dpi=1200, bbox_inches=’tight’)

plt.show()

#Searching for optimal nbasis value
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n_basis_values = range(0,50)

# Spliting data into training and testing sets

fd_train, fd_test = train_test_split(fd_060623, test_size=0.2, random_state=42)

grid_points = fd_train.grid_points[0]

mse_values = []

# Loop over different values of n_basis

for n_basis in n_basis_values:

basis = skfda.representation.basis.Fourier(n_basis=n_basis)

fd_train_basis = fd_train.to_basis(basis)

fd_train_smooth = fd_train_basis.evaluate(grid_points)

fd_test_basis = fd_test.to_basis(basis)

fd_test_smooth = fd_test_basis.evaluate(grid_points)

mse = mean_squared_error(fd_test_smooth.flatten(), fd_test.data_matrix.flatten())

mse_values.append(mse)

optimal_n_basis = n_basis_values[np.argmin(mse_values)]

print("Optimal n_basis:", optimal_n_basis)

#Plotting MSE values for different n_basis values

plt.plot(n_basis_values, mse_values, marker=’o’)

plt.xlabel(’Number of Basis Functions (n_basis)’)

plt.ylabel(’Mean Squared Error (MSE)’)

plt.title(’MSE vs. n_basis’)

plt.grid(True)

plt.show()

#STEP 4 - outlier detection, boxplot

colormap = plt.cm.get_cmap(’seismic’)

fdBoxplot = Boxplot(fd_060623_smooth)

fdBoxplot.show_full_outliers = True

fdBoxplot.plot()

plt.title(’fdBoxplot 2023.06.06’)

plt.savefig(’fdBoxplot_2023.06.06.pdf’, format=’pdf’, dpi=1200, bbox_inches=’tight’)

plt.show()
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color = 0.3

outliercol = 0.7

fd_060623_smooth.plot(group=fdBoxplot.outliers.astype(int),

group_colors=colormap([color, outliercol]),

group_names=["nonoutliers", "outliers"])

#plt.legend(labels_060623, loc=’upper center’, bbox_to_anchor=(0.5, -0.1), ncol=10)

plt.title(’Outliers 2023.06.06’)

plt.savefig(’outliers_2023.06.06.pdf’, format=’pdf’, dpi=1200, bbox_inches=’tight’)

plt.show()

#STEP 3 - clustering

kmeans = KMeans(n_clusters=4, random_state=42)

kmeans.fit(fd_060623_smooth)

print(kmeans.predict(fd_060623_smooth))

ClusterPlot(kmeans, fd_060623_smooth).plot()

#plt.legend(labels_060623, loc=’upper center’, bbox_to_anchor=(0.5, -0.1), ncol=10)

plt.title(’Functional K-means 2023.06.06’)

plt.savefig(’fdK-means_2023.06.06.pdf’, format=’pdf’, dpi=1200, bbox_inches=’tight’)

plt.show()
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