
VILNIUS UNIVERSITY
FACULTY OF MATHEMATICS AND INFORMATICS

INSTITUTE OF INFORMATICS
DEPARTMENT OF COMPUTER SCIENCE

Extracting TLA+ specifications out of a program for
a BEAM virtual machine

TLA+ specifikacijų išskyrimas iš programinio kodo BEAM
virtualiai mašinai

Master thesis

Author: Andrius Maliuginas (signature)

Supervisor: Dr. Karolis Petrauskas (signature)

Reviewer: Dr. Julius Andrikonis (signature)

Vilnius – 2024

Contents

Introduction . 3
Context and relevance . 3
Aim, objectives and expected results . 4

Aim . 4
Objectives. 4
Expected results . 5

1. Elixir . 6
1.1. Data representation. 6
1.2. Pattern matching . 7
1.3. Abstract Syntax Tree (AST) . 8
1.4. Process model & communication . 9
1.5. Erlang/Elixir design patterns . 10

1.5.1. Generic server pattern. 11
2. TLA+ . 12

2.1. Temporal Logic of Actions . 12
2.2. TLA+ specification structure. 13

3. Related works in the area . 14
3.1. Sequential Elixir code translation into PlusCal . 14
3.2. Translating Erlang to µCRL . 15
3.3. McErlang . 17
3.4. C to TLA+and Java to TLA+ . 19
3.5. TLA+ to Elixir . 19
3.6. Other approaches . 20

3.6.1. Haskell to Coq and to Isabelle/HOL . 20
3.6.2. Verdi . 20
3.6.3. Bandera . 21

4. Extracting specification of interprocess communication . 22
4.1. Solution overview . 22
4.2. Process and communication model . 25

4.2.1. Process state structure . 26
4.2.2. System state structure . 27
4.2.3. Message structure and queue . 28

4.3. Data matching in function definitions . 28
4.4. Sequential code specification model . 29

4.4.1. Function module structure . 30
4.4.2. Function context . 31

4.5. Helper TLA+ modules . 31
4.5.1. Process module. 31
4.5.2. System module . 32
4.5.3. Messaging module . 32
4.5.4. GenServer module . 33

4.6. Generating specification for whole system. 33
4.6.1. General structure . 34
4.6.2. Message receiving actions . 34
4.6.3. Other actions . 36

4.7. Generator program . 39
4.8. Capabilities and limitations . 41

5. Verification . 42

1

Results and conclusions . 43
References . 44

2

Introduction

Context and relevance
A distributed system is a set of independent nodes connected by a network that cooperate to

solve a problem that cannot be solved individually [KS11]. In the context of computing, nodes typ-
ically are processes which are communicating through message passing (possibly through network)
or some shared memory. Designing algorithms for such systems can be difficult and error prone
[LMT+02]. This complexity arises from the nature of distributed systems – when there are several
independent processes, each of them can fail independently and it may be hard to tell which of the
processes fails first – executions in each process are happening concurrently, each of them can be at
a different point of the program. Lack of single global time due to clock drift in different machines
also complicates algorithm design.

Formal specification of such algorithms is supposed to help to overcome these challenges. It is
a way to describe algorithms formally using mathematical formulas. Having specification allows
to check algorithms for correctness and to find edge cases and non-obvious mistakes, which is
especially useful for distributed algorithms due to their inherent complexity [Lam99].

However, it is not enough to have a specification for an algorithm, it also needs to be imple-
mented to be useful. Ideally, the implementation would be a more detailed version of the formal
specification. It is possible to rely on manual source code analysis to ensure that implementation
conforms to the specification but this approach is slow and error prone. Another way to ensure the
same is to generate source code from the formal specification. This requires having enough details
about the system in it but those are very rarely included and require a lot of expertise from whoever
writes the specification.

In this thesis we attempt to develop a way to show that a some implementation of the algorithm
really does implement its formal specification by finding a way to map program source code into
formal specification. In particular, we choose Elixir programming language for the source code and
TLA+ language for specifications.

Elixir is a programming language for BEAM virtual machine. Programs for BEAM virtual
machine are often distributed: they consist of one or more processes which may run on one or more
machines. It is possible to have a program with one process on one machine but it is structurally
similar to the distributed version of the same program. Each process is fully sequential and no data
is shared between them. Communication is done only through message passing. Processes are
also able to spawn other processes and form hierarchical trees but for the purpose of this thesis we
treat the distributed system as a simple collection of processes where any process could potentialy
communicate with any other [dcon].

For inter-process communication Elixir provides two built-in functions: send and receive.
send sends the the given Elixir term to one given process. receive construct blocks the execution.
In practice, however, GenServer module is preferred as it provides a more convenient way to do the
same with less boilerplate code. We base our research on these GenServer module function calls
and response handlers on the assumption that this module is used often enough for this to be useful.

3

The messages sent between the processes are regular Elixir terms. Typically, to distinguish be-
tween different kinds of messages, tagged tuples (tuples where first element is an atom) or structures
are used.

To develop the mapping into TLA+ it is planned to make use of Elixir abstract syntax tree.
Abstract syntax tree (AST) is a tree-like representation of the source code produced by parser. It
allows software to access all source code elements (such as variables, functions, operators, etc.). In
this thesis we use the AST extracted from source code, as opposed to AST extracted from compiled
bytecode, because it has the advantage that it preserves annotations (and even comments, if needed)
which helps to map code to abstract specification.

TLA+ is a systems specification language. It uses formulas of temporal logic of actions
[LMT+02] to specify the behaviour of the system. Resulting specifications properties can be
checked using TLC – a model checker provided together with TLA+ or proven with the help of
TLAPS (TLA+ Proof System). It is useful for specifying distributed systems since their compo-
nents operate independently from one another [LMT+02].

Aim, objectives and expected results
Aim

The aim of master thesis is to develop a way to generate TLA+ specification from Elixir source
code for a distributed system.

Objectives

1. Define a way to map Elixir code to TLA+ specifications and prove its correctness. We assume
that sequential code (the code which constitutes function bodies) has already been mapped
and we have preconditions and postconditions of each function defined. Instead, we focus
on connecting the sequential parts of the system and modelling communication between the
nodes in a distributed system.

2. If necessary, define constraints on the program source code for generating TLA+ specifica-
tion. These could be certain restrictions on code structure or language features which should
not be used1. Ideally, there would be no such restrictions as this would make the mapping
more widely applicable.

3. Define requirements for the source code so that it would be possible to prove refinement from
original specification into generated specification. These requirements could be different
from the ones which apply only to generate the specification. They can be similar as to those,
which are defined for specification generation.

4. Develop software to generate TLA+ specification from Elixir source code. Given the source
code it should be able to connect the specifications of functions into complete algorithm.

1See [AE] for restrictions on Ada language features to provide static verification

4

Expected results

1. Mapping from Elixir to TLA+ and its correctness proof.

2. Source code constraints for generating TLA+ specification.

3. Requirements for the source code for proving refinement of a more abstract specification.

4. Software to generate TLA+ specifications.

Correctness of mapping will be shown by modelchecking.

5

1. Elixir
Elixir [Jur19] is a functional programming language for BEAM virtual machine. It is a second

language for this virtual machine, first being Erlang. Erlang and BEAM were developed by Erics-
son to serve their needs as telecommunications company – little to no downtime, distributedness,
resiliency and others. As distributed systems became more widespread and in demand, Erlang fea-
tures looked increasingly attractive. Elixir was developed as an alternative to Erlang. It is fully
compatible with Erlang – it compiles to a common format, can run Erlang functions and most of
Elixir constructs map directly into Erlang’s. However, since Elixir is a more modern language,
it comes with a more modern syntax, syntactic sugar and additional features which reduce code
duplication [Tho18].

In the following sections we overview the syntax and features of Elixir which are important
when generating specification from the source code of distributed system.

1.1. Data representation
Distributed systems communicate by message passing. While transforming source code to

specification, it would be advantageous to know what kind of data is exchanged between the parts of
distributed system. In Elixir messages sent between the processes can be of any data type, therefore
here present a short overview of data types and their representations in the source code.

Numbers. Numbers in Elixir come in two kinds: integers and floating point numbers. Be-
sides the fact that integers can be arbitrarily large, numbers behave the same as in other program-
ming languages. Example representations: 53, 1.2, 15_000_000.

Atoms. Atoms are named constants. They are used when the exact value of the constant is
not important, just the meaning of it, similar to enumerations in C++ or Java. Boolean values true
and false are atoms, as well as a special value nil (the equivalent of null in other languages).
Example representation: :some_atom.

Tuples. Tuples are a fixed length ordered group of elements. Members of a tuple can be of
any other type. Example representation: { true, 123 }.

Binaries and strings. Elixir lacks a dedicated string type. Instead binaries – sequences of
bytes, are used to store them. Erlang strings are called character lists, and are lists of integers which
are character codes. Character lists are typically used when interacting with Erlang code. Example
representations: <<1, 2, 3, 4>>, "This is a string", [65, 66, 67], 'ABC'.

Lists. Lists are dynamically sized ordered collections of elements. They are defined recur-
sively as head element in from of the rest of the list. Example representations: [1, true, { 11,
"123" }], [head | tail].

6

Maps. Maps are key-value unordered collections. Maps with atom keys are treated slightly
differently, they have their own value access and update operators: some_map.atom_key to get the
value and %{ some_map | atom_key: "new value" } to update. Example representation: %{
one_key => one_value, other_key: other_value }.

Structs. Structs by their functionality are identical to maps, with additional feature that atom
key set is limited to those present in the definition. Example representation: %State{ field: 0,
other_field: "no" }.

Functions and anonymous functions. Since Elixir is a functional language, functions are
also a type of value. There are two kinds of functions – named and anonymous. Named functions are
defined in modules and invoked by their name. They can have guards – statements which constrain
the allowed values for the parameters. Often, there are multiple definitions of the same function,
differentiated by different parameter patterns. In such cases, first definition which matches passed
parameters is invoked. If there is no matching definition, then error is raised.

Anonymous functions are defined wherever there is a need to use them (usually inside other
functions) and are bound to a variable or passed as a parameter to another function. Anonymous
functions, unlike named functions, are invoked by adding a dot between parameter list and the name
of the variable they are bound to: result = parameter_fn.(1).

Example representations:

Named, with a guard:
def identity_fun(x) when is_number(x), do: x

Anonymous:
fn x -> x end

Although values in Elixir have types, variables are dynamic – they are of the their value is.
Unlike in Erlang, it is possible to change what value is bound to the variable, that does not modify
the original value since all values are immutable.

1.2. Pattern matching
Elixir makes heavy use of pattern matching. Since all data is immutable, there is no assignment

operator and therefore = is actually a match operator. It allows not only to bind the value to the
variable (e.g. x = 12) or compare two values but also to expect a certain structure in the value
returned by the function and extract values from inside that structure. For example, File.read/1
function to returns { :ok, contents } in case of success and { :error, reason } in case
of failure. That is commonly matched as { :ok, contents } = File.read("file.txt") to
only get the contents of the file and have MatchError error raised in case error occurs.

Pattern matching can also be used for function parameters. The rules for matching values to
parameters are the same as when using the match operator (=). The result of using pattern matching
in this way is that the function definitions are partial and cover only a subset of the domain. If

7

invocation parameters do not match the patterns in the function definition, another definition is
looked for. If no definitions match the passed parameters then the error is raised. It is possible to
have a catch-all definion at the end to avoid the error but it is not required.

1.3. Abstract Syntax Tree (AST)
Abstract Syntax Tree (AST) is a hierarchical representation of the parsed programming lan-

guage source code usually (and most usefully) expressed using data structures of the same or some
other programming language. Elixir provides native way to access the AST of its code which also
includes the annotations and optionally comments [Tho18].

Figure 1 shows a simple list visitation function together with its AST. Underscores replace the
metadata elements in tuples (which contain the line number of the source code where that particular
syntax element is located). This was done for brevity.

Source code:

defp visit(lst) when is_list(lst) do
for el <- lst do

somefn(el + 12, :atom)
end

end

AST:

1 {:defp , _, [
2 {:when , _, [
3 {:visit , _, [{:lst, _, nil}]},
4 {:is_list , _, [{:lst, _, nil}]}
5]},
6 [do:
7 {:for, _, [
8 {:<-, _, [{:el, _, nil}, {:lst, _, nil}]},
9 [do:

10 {:somefn , _, [
11 {:+, _, [{:el, _, nil}, 12]},
12 :atom
13]}
14]
15]}
16]
17]}

Figure 1. Elixir AST of a simple list visit function.

In the Elixir AST a lot of different statements are represented as a 3-member tuple: { :f_name,
_, [params] }. This structure is used not only for function calls (e.g. marked in red in figure 1
somefn(el + 12, :atom) becomes a tuple on lines 10-13) but also such constructs as defpwhich
is a keyword for defining module private functions and when (marked in green) which defines a

8

parameter guard. Operators are also translated into this structure (e.g. <- operator, marked in
blue).

Notably, do … end blocks do not follow the same 3-member tuple structure. They are trans-
formed instead into a list based structure [do: body] where body is either a single statement (as
is the case in the example) or a block of statements.

Integers and atoms are represented as themselves, as can be seen on lines 11 and 12 respectively.
The same is true for floating point numbers.

1.4. Process model & communication

BEAM VM

Process Process

Scheduler

Process

Scheduler

Process

SchedulerScheduler

Figure 2. BEAM virtual machine process model [Jur19].

Elixir programs run on BEAM virtual machine (BEAM VM). It is based on actor model
[Tho18] meaning that programs consist of one or more independent actors which are communicat-
ing with one another. In Elixir these actors are called processes.

Figure 2 shows process organisation within a running BEAM VM. One running BEAM VM
is a single OS process and is called a node. For each CPU available on the physical machine it has
a separate process scheduler which runs on a separate OS thread. Schedulers, in turn, manage the
processes assigned to them which execute the application code. New processes are created using
spawn function. Each process is uniquelly identified by its Pid.

Communication. Processes are isolated from each other and do not have any shared memory.
They communicate by putting messages into their message queues. Calling send function puts the
message into the message queue of the required process and executing receive statement takes
the first message in the queue or, if the queue is empty, waits for some message to arrive. receive
pattern matches on the message contents so if there are messages in the queue but they do not match
any given patterns, receive continues waiting. All messages are sent asynchronously, if there is a
need to respond, sender process id should be sent in the message so that receiving process would
know where to send the response once it receives the request.

9

Addressing. In order to send messages, it is necessary to know which process to address
them to. In Elixir process Pid acts as a global address, the problem remains then where to get the
address of other processes. Parent process knows child process Pid since it is returned by spawn
function, and can get its own Pid by calling self. But using only Pids becomes very confusing
as number of processes grows. Then it is much more convenient to make use of process registries
which associate names with the Pids. Several registries are available – there is a node local process
registry, which tracks the names of the processes within current node, there is :global registry,
which tracks processes of all connected nodes and finally programmer could implement a custom
process registry.

Linking and monitoring. BEAM processes are sequential – there is no concurrency within
a process. If there is a need to perform some calculations concurrently, a new process should
be launched. By default death of one process does not affect other processes but this can be
changed by linking the spawning (parent) and spawned (child) processes together by using function
spawn_link. By default, if any linked processes crashes it also brings down linked process. That
can be changed by calling Process.flag(:trap_exit, true) which makes the ends of linked
process executions appear as messages in the process message queue. These messages can be read
using receive and contain the reason of the linked process exit, allowing to distinguish between
the normal exits and crashes. Structure of such message is {:EXIT, pid, reason}. Here pid is
Pid of the process which has stopped execution and reason could be any Elixir term. In case of
normal termination reason is :normal.

It is possible to setup a one-directional link between the processes where only one process is
notified if other exits. Such links are called monitors. When monitored process exits, a message of
the following structure is received: {:DOWN, monitor_ref, :process, from_pid, reason}.
Here monitor_ref is a reference of the monitor, from_pid is Pid of the process which has finished
executing and reason is the reason of exit, the same as in regular links.

Behaviour on different nodes. It is possible to connect to BEAM VM instance, possibly
running on a different physical machine. Although syntax of the the communication between the
processes and their linking and monitoring are the same, guarantees provided by the runtime are
different. In a single node message deliveries are instant, in the same order they were sent in. In dis-
tributed environment order only guaranteed between the pairs of processes and only assuming that
receiving process stays available [FS07]. The same rules apply to the process exit and monitoring
messages.

1.5. Erlang/Elixir design patterns
There are a couple of design patterns used in Elixir code which are very common in BEAM

programming language code. They provide a ready made solutions to a common problems, present
in many different systems.

10

1.5.1. Generic server pattern

When developing any kind of system it is often needed to have a server which keeps state,
continuously waits for requests and once received handles them in a way that may modify the state.
A very simplified generic server implementation is shown in figure 3. It is a function which receives
a request, calls request handler and calls itself again with the possibly modified state as a parameter.
It would be tedious and error prone to implement this pattern in every program which needs it but
thankfully Elixir provides a standard implementation in GenServer module.

defp loop(callback_module, current_state) do
receive do

{request, caller} ->
{response, new_state} =

callback_module.handle_call(
request,
current_state

)

send(caller, {:response, response})

loop(callback_module, new_state)
_ -> ...

end
end

Figure 3. Simple generic server implementation [Jur19].

GenServermodule provides two main functions for sending messages to other processes: call
and cast. Both functions send request to specified process, the difference being that call is a
synchronous request while cast is asynchronous, i.e. call waits and returns the response while
cast returns immediately. There are also convenience functions multi_call and abcast which
are meant to send requests to multiple processes.

GenServer module requires programmer to define handlers for calls and casts. These are
handle_call and handle_cast functions respectively.

GenServer module also allows to define callback functions handle_continue and
handle_info. handle_continue is used to update process state in several steps (in case of e.g.
long request processing), as it is invoked if some handle_* function produces respective return
value. In turn, it itself can produce similar return value, allowing for unlimited amount of process
state updates while processing the request. handle_info processes all other messages not handled
by other handle_* functions.

11

2. TLA+

TLA+ [LMT+02] is a distributed systems specification language. As the name implies, it is
based on TLA – Temporal Logic of Actions [Lam94]. In the following sections we shortly describe
the underlying formal logic and specification structure.

2.1. Temporal Logic of Actions
Temporal Logic of Actions (TLA) is a quantified modal logic extended with a concept of an

action. All statements of the regular quantified predicate logic (i.e. ”simple logic”) are also valid
statements in TLA.

TLA models an algorithm as a set of states with possible transitions between them. The states
are defined by the particular assignment to the variables of the algorithm. These values can be of
any type, but typically they are numbers (12, -3), strings (”abc”) or sets of values.

Transition between the states is defined as an action – a predicate on a pair of states p and n
which is true when there exists a transition from p to n. Since an action is a predicate, it describes
a particular operation on the variables, not a particular transition between two particular states.
As a result, the states p and n are not specified, instead prime (′) operator is used to distinguish
which variable values belong to n. For example, if during the transition from some previous state
p to some following state n algorithm variable v increases its value then the action describing this
transition will look like this: v′ = v + 1. v′ here stands for the value of the variable v in the next
state n and v for the value in the previous state p.

When it possible for a system to move from one state to the other the action describing this
transition is called enabled. From any particular state it can be possibe to transtion to several other
states. In that case all actions are called enabled.

Temporal nature of TLA is useful to describe the properties of the whole execution (i.e. a
sequence of states) of the algorithm. Temporal formulas are constructed using operators□ (always),
� (eventually) and ⇝ (leads to). Only always operator (□) is required since others are defined
through it: �F ≜ ¬□¬F and F ⇝ G ≜ □(F → �G).

An action when no variable changes is called a stuttering step. Such steps are permitted in TLA,
they allow to specify algorithms on different levels of abstraction. However, presence of stutter-
ing steps also allows for executions where nothing ever changes. To exclude these, two fairness
properties are defined – weak and strong.

Weak fairness of action A is defined as:

WFf (A) ≜ (□�¬Enabled〈A〉f) ∨ (□�〈A〉f)

Here, 〈A〉f means a stepAwhich changes variables in tuple f . Enabled is a predicate which is
true if action is enabled. This formula is interpreted as ”A is infinitely often disabled, or infinitely
many A steps occur” by Lamport in [LMT+02].

12

Strong fairness of action A is defined as:

SFf (A) ≜ (□�〈A〉f) ∨ (�□¬Enabled〈A〉f)

Here the meanings of symbols are the same as above. Lamport provides the following in-
terpretation if this formula: ”A is eventually disabled forever, or infinitely many A steps occur”
[LMT+02].

2.2. TLA+ specification structure
TLA+ specification begins by declaring constants and variables. Constants often act as param-

eters or as abstract sets of objects, while variables keep system state. Constants need to be provided
for modelchecking.

Adding some type information to the variables is common when specifying a distributed system
since messages sent between parts of the system also need to be specified and typically they do have
some structure, system processes do not usually send arbitrary values to each other. This makes it
advantageous to add at least some type information to the variables of the specification, which is
typically done with an invariant:

TypeOk ≜ v1 ∈ Set1 ∧ v2 ∈ Set2 ∧ . . .

Here v1, v2 are variables and Set1, Set2 are sets the values of v1 and v2 should belong to.
Overall, typical TLA+ specification is expressed by the formula

Spec ≜ Init ∧□[Next]vars ∧WFvars(Next)

Here Init is a formula specifying the initial state. Next is a formula specifying all possible
actions in the system, without regard whether they are enabled or not. Often in non-trivial speci-
fications Next is a disjunction of other formulas which describe more specific actions. WF is an
operator specifying weak fairness. It can be replaced with SF for strong fairness if usecase requires.
vars is a tuple of all the variables.

13

3. Related works in the area
In this section we present other works related with specification generation from source code.

First we present those that are more immediately relevant, such as translating to and from Elixir
(or Erlang) and TLA+, while the last section contains an overview of the works less useful for our
purposes here but nonetheless making important contributions to the field.

3.1. Sequential Elixir code translation into PlusCal
This thesis is based on previous work by D. Bražėnas [Bra23]. In his master thesis D. Bražėnas

describes a method of translating a subset of sequential Elixir code into PlusCal specification [Lam]
from which then TLA+ specification is generated, using standard TLA+ tools.

Author defines rules how to translate different parts of sequential code. We will not reproduce
all the rules here, only will overview those which are useful for our work.

We borrow from [Bra23] rules for translating Elixir data values. These rules are displayed in
figure 4. Rules ATOM and STRING translate Elixir atoms and strings respectively into PlusCal
strings. Similarly, tuples and lists are both translated into sequences, as rules TUPLE-1 and TUPLE-
2 show. Booleans and nil are translated as themselves.

` is_atom(a)

` ”a”
(ATOM)

` is_binary(a)
` ”a”

(STRING)

` is_number(a)
` a

(NUM)

` nil
NULL

(NIL)

` is_boolean(a) ∧ a == true
` TRUE

(BOOL-TRUE)

` is_boolean(a) ∧ a == false
` FALSE

(BOOL-FALSE)

!is_single_line ` {: {}, _, a}
`<< a >>

(TUPLE-1)

!is_single_line ` is_list(a)
`<< a >>

(TUPLE-2)

Figure 4. Data translation rules used in this thesis as defined by [Bra23].

Function return value is modelled as assigning a value to specific variable in specification. We
take similar approach when defining our sequential code translation.

Method described in [Bra23] translates a single function body. Translation of pattern matching
on passed function arguments is not defined. Translation for function calls is also limited. Although
a rule for anonymous funcition call is provided, it is applicable only in specific context – when re-
turned value is to be used immediately, not assigned to a variable, e.g. as an if statement condition.
Generic function call translation is not defined, which allows to avoid dealing with parameter pat-
tern matching. It is assumed that called functions (also anonymous ones) would be defined as a
PlusCal operator, procedure or macro, which would allow to use them as such in the specification.

Program written for the [Bra23] is capable of producing a TLA+ specification given Elixir
source code file with functions, for which specification generation is desired, marked with annota-
tion. The same program also runs PlusCal translation into TLA+ and starts modelchecking.

14

3.2. Translating Erlang to µCRL
T. Arts, C. B. Earle and J. J. Sánchez Penas have developed a tool to generate µCRL [GR01]

specification from Erlang code. Authors present the tool created for this purpose – etomcrl
[AEP04].

etomcrl generates µCRL which is a process algebra. It means that systems are specified as
collections of processes which do defined atomic actions. Actions can be composed. (x · y is
a sequential composition, meaning that action x happens before y while x + y is a alternative
composition, meaning that only one of x or y is executed. Composition is possible for more than
one action. In this paper sum(param: Type, act) construct is widely used and is translated into
an alternative compostion of action actwith the parameter param for each of the members of Type:∑

param∈Type

act(param)

General approach taken by etomcrl is to represent the program as a collection of processes
which communicate with each other by reading and writing messages to and from common buffer.
Decision was taken to treat sending and receiving process identifiers as parts of the message in-
stead of having separate channels for each pair of processes. Distributed processes are considered
identical to concurrent ones, despite different communication semantics.

etomcrl relies heavily on design patterns used in Erlang programs. One such pattern is the
generic server. To make use of it authors specify the call, cast and reply actions and use them
from other actions when message needs to be sent. Functions handling receipt of messages use
reply action to send the response.

Erlang functions can have several definitions which are selected by pattern matching the input
parameters. This is not possible to do directly in µCRL so instead first Erlang code is transformed
into a nested if statement and variables from the patterns are replaced into expressions involving
destructor functions (such as list head function hd). See figure 5 for an example of such translation.
Afterwards such function is translated as any other function would.

Initial code:

loop(X,[]) ->
s(done), loop(X,X);

loop(X,[Head|Tail]) ->
s(Head), loop(X,Tail).

Translated code:

loop(X,Arg1) ->
if

nil == Arg1 ->
s(done), loop(X,X);

is_list(Arg1) ->
s(hd(Arg1)),
loop(X,tl(Arg1))

end.

Figure 5. etomcrl Erlang to Erlang translation of multiple function defi-
nitions [AEP04].

For message handling functions it is not enough to just translate them. They need to be some-
how invoked on message receipt. In order to achieve that authors put the message handling actions

15

into the top level of message handling process. See figure 6 for the translation example.

Initial code:

handle_call({request ,a},Client ,{A,B}) ->
{reply ,A,{false,B}};

handle_call({request ,b},Client ,{A,B}) ->
{reply ,B,{A,false}};

handle_call({release ,R},Client ,State) ->
{reply ,ack,update(R,State)}.

Generated specification fragment:

server(Self:Term ,State:Term) =
sum(Client: Term ,

handle_call(Self ,tuple(request ,a),Client).
reply(Client ,element(1,State),Self).
server(Self ,tuple(false ,element(2,State))))

+
sum(Client: Term ,

handle_call(Self ,tuple(request ,b),Client).
reply(Client ,element(2,State),Self).
server(Self ,tuple(element(1,State),false)))

+
sum(R: Term ,

sum(Client: Term ,
handle_call(Self ,tuple(release ,R),Client).
reply(Client ,ack,Self).
server(Self ,update(R,State))))

Figure 6. etomcrl Erlang to µCRL translation of message handling func-
tions [AEP04].

Higher order functions present significant problem for µCRL as it is a first order language.
Since usually higher order functions used were the well known ones, like map authors were able to
define a source to source transformations for the special cases encountered which created first order
equivalents for them.

Erlang modules are also handled through source to source translation. Function calls are trans-
lated into fully qualified calls (module:function) and translated as regular actions in µCRL. Cer-
tain standard library modules are translated only once and are reused everywhere they are invoked.

Another pattern used is supervision tree. etomcrl is able to scan and recognize the tree struc-
ture and get the worker processes but does not handle process creation outside of supervision tree.
Since µCRL tooling at the time of writing did not support creation of new processes all processes
are considered created at the start of execution. Also, only successful executions are considered,
fault tolerance is not translated at all – it is an object of further research.

16

3.3. McErlang
McErlang [FS07] implements a model checker for Erlang programs. Instead of trying to pro-

duce a specification in some dedicated specification language, authors decide to check Erlang source
code itself.

Running modelchecker needs three things to be provided by the user: a program to be checked,
specification of the program properties, and several settings for the modelchecker. Modelchecker
settings are, for example, what kind of property would be checked – safety, liveness or testing,
or which abstraction module to use. Abstraction module defines how should program states be
abstracted, e.g. by reducing integer variable into boolean with the meaning that its true when
integer would be positive.

Using the Erlang semantics described in [CS05; Fre01] authors substitute the standard BEAM
scheduler with their own to have access to program state and to be able to check all possible exe-
cutions. New scheduler does not replace the BEAM scheduler but since all program processes run
inside single Erlang process during modelchecking it is replaced from the point of view of the pro-
gram being checked. Care is taken to preserve scheduler fairness, to minimize differences between
real executions and those simulated during modelchecking. This is done by the McErlang compiler,
which takes initial program and produces modified Erlang source code ready for modelchecking.
Compiler also replaces the interprocess communication constructs (send and receive) by the ones
written for modelchecking.

McErlang models the Erlang program runtime as a set of nodes (corresponding to physical
machines) and a message queue containing all messages currently being transferred called ether.
Each node is defined by the following tuple:

〈name, processes, registered,monitors, node_monitors, links〉

Here name corresponds to the node name, processes is a list of processes running on that node,
registered is a name server which maps node name to its Pid, monitors, node_monitors and links
are used for process linking.

Each of the processes in turn is represented by the follow tuple:

〈status, expr, pid, queue, dict, f lags〉

Here status shows whether process is running, ready to run, waiting for the message, etc. expr
is the function which should be executed next, pid is the Pid of the process, queue is a queue of
messages sent to the process which can be read by the process, dict is a dictionary of the process
(”the equivalent of imperative variables in Erlang” [FS07]) and flags – flags indicating process
settings, e.g. whether child process death should also kill this process.

Messages between the nodes are tuples of sending process Pid, receiving process Pid and the
sent message itself.

While it is straightforward to adapt send for this setting (by just putting the message into
the ether), receive proves more challenging. Two types of receive are identified: tail recur-

17

sive and non-tail recursive. In case of tail recursive receive the function containing the receive
construct is transformed to return { recv, {?MODULE,f_0,[state]} } value. See the exam-
ple of this transformation in figure 7. Here f_0 is a function which contains whatever was in-
side the receive construct. It is invoked by McErlang runtime once message is delivered to
the process. Non-tail recursive receive is handled with the use of stack. As in tail recursive
case function is made to immediately return, except the return value in this case is different:
{letexp,{expr,{module,f,parameters}}}. Example of this translation is shown in figure 8.

Initial code:

server(State) ->
receive

{new_state , NewState , Pid} ->
Pid!{reply ,State},
server(NewState)

end.

Translated code:

server(State) ->
{recv , {?MODULE , f_0, [State]}}.

f_0({new_state , NewState , Pid}, [State]) ->
{true,
fun ({new_state , NewState , Pid}, [State]) ->

evOS:send(Pid,{reply ,State}), server(NewState)
end};

f_0(_, _) -> false.

Figure 7. McErlang translation of tail-recursive receives [FS07].

Initial code:

server(State) ->
{ok, NewState} = doRequest(State),
server(NewState).

Translated code:

server(State) ->
{letexp , {doRequest(State), {?MODULE , f_1, []}}}.

f_1({ok,NewState}, []) ->
server(NewState).

Figure 8. McErlang translation of non tail-recursive receives [FS07].

18

3.4. C to TLA+and Java to TLA+

Authors of [MLH+14] present a tool for generating a TLA+ specification of a concurrent C
program called C2TLA+. It only handles a subset of C language produced by CIL [NMR+02] but
the output is a TLA+ specification which can be checked with TLC.

[MLH+14] models the program as a collection of processes each identified by the unique id and
running on a separate thread, i.e. concurrently. Communication between processess is assumed to
be through shared memory.

Similarly, authors of [LN11] describe a tool for generating TLA+ specification from a Java
bytecode. The same program model is used: a program is a collection of threads each with own
call stack and shared heap and code spaces.

Verifying a distributed system with these tools is not possible as there is no notion of message
passing between the processes, each agent in such system would be treated in isolation. Although
in general it is possible to model message passing as shared memory communication, a lot of com-
plexity associated with network communication would be lost (for example, there is no latency
in shared memory). Also, adding message passing into generated specification would have to be
manual.

3.5. TLA+ to Elixir
Authors of [MVK22] are solving an opposite problem than this work, namely they are trying

to generate Elixir code from TLA+ specification. This approach is widespread and well known
[COR+01; GKM+08] but it was not yet done for TLA+. In addition to source code unit tests are
generated.

The article treats TLA+ specification as a collection of transitions between program states where
if certain formula is true for a pair of states (current state and next state) then that transition is valid
and can happen. Sometimes several states may follow the current one – this is one of the ways
non-determinism is expressed in TLA+.

TLA+ specification is assumed to be at the highest level just this: Spec = Init ∧□[Next]vars

where Init is initial state of the variables and Next a disjunction of all possible transitions between
the states.

Variables from the specification are stored in a global Elixir variable conveniently called
variables. Generated program itself consists of a main() function which repeatedly calls next()
which corresponds to the Next formula in the specification. next() function returns a set of pos-
sible next states based on the current state. If there is only one state, then it becomes the next one,
otherwise next state is chosen using the Oracle – an unspecified function which given the a set of
possible states returns the next one. In this way, the Oracle encapsulates the non-determinism of
the specification in one place. Actual implementation of the Oracle is expected to be provided by
the programmer.

In TLA+ the system is modelled as a unit so there is no notion of different processes. However,
when distributed systems are specified, different actions are meant to be happening in different

19

processes. To generate such code properly, configuration is required to signify which actions in
the specification are meant to be done by one process and which ones by the other. Also, all in-
terprocess communication is done by an Oracle. Each node tries to obtain a lock from this Oracle
to read the whole state on startup and later to communicate changes to its state. This Oracle can
be separate from private process Oracle which only handles non-determinism which does not need
any additional information.

3.6. Other approaches
This section contains works which are less useful than those overviewed above but which

nonetheless make an important contribution to the field.

3.6.1. Haskell to Coq and to Isabelle/HOL

There has been an effort to improve verification of programs written in Haskell programming
language which has resulted in hs-to-coq [SBR+18] and haskabelle [Haf10] tools.

hs-to-coq generates Coq [Tea22] specification for total Haskell (no partial function defini-
tions allowed) programs. It relies heavily on syntactic and semantic similarities of Haskell and
Coq, which allows for a very straightforward translation of many Haskell features (e.g. algebraic
data types, function applications, basic pattern matching). hs-to-coq first parses the source code
obtaining the abstract syntax tree, then renames the identifiers which need to be renamed and then
generates Coq code. Notably, hs-to-coq does not desugar the code during parsing to keep gener-
ated Coq as similar to original Haskell as possible.

haskabelle also relies on the similarity between Isabelle language and Haskell. There is
no restriction that Haskell source code should be total but in cases when the tool is not capable
of translating some part of the code, manual user input is required to fill in the gaps. Also, places
where such gaps are allowed to be generated need to be marked with a special comment in the source
code, otherwise translation fails. Syntax adaptations can be defined to circumvent the failures but
it is not clear how they are specified and applied.

Both tools only consider a single program, distributed programs and communication between
them are not considered at all.

3.6.2. Verdi

Verdi [WWP+15] is another example of code to specification approach. It is a framework for
implementing and verifying distributed systems. It allows specifying and implementing the system
in Coq [Tea22], choosing certain fault model the system is supposed to handle and prove that it does
that, and obtaining OCaml [MMH13] code which can be executed on the servers directly. Verdi
proofs are composable, i.e. application logic and fault tolerance can be proven correct separately
and later it can be shown that together they remain correct. This has a side effect that a programmer
can implement the system in a simpler setting (e.g. with reliable network and no node failures) and
later switch to a more complex one. To facilitate this transition verified system transformers, which

20

modify the model and the proof that it still conforms to the initial specification, are also a part of
the framework.

System transformers are of two basic types – network transformers and crash transformers.
Each of them produces system which is able to handle different network and node conditions, e.g.
duplicated messages and node failures. In the final program they are implemented as wrappers over
functions produced by initial specification.

3.6.3. Bandera

Bandera [CDH+00] is tool for modelchecking Java programs. It is capable of generating any
kind of specification language as long as translation module between its internal representation
(called BIR) and desired specification language is provided. As published, it was capable of pro-
ducing only Promela models.

Bandera works by first transforming Java code to a first intermediate language called Jimple,
upon which slicing (removal of statements which do not change the functionality, such as logging
statements) and abstraction are performed. Jimple keeps tight correspondence to original Java
code – given the Jimple node it is possible to retrieve Java abstract syntax tree node of the original
program. Slicing and abstraction steps serve to decrease the state space during modelchecking.
Slicing removes the statements which have no effect on functionality as well as statements and
components which do not affect the property which is being checked.

Once simplified, Jimple code is transformed into the BIR – another intermediate language,
which also maintains high correspondence with its input. BIR models the program as a set of asyn-
chronous processes running guarded commands. System is not considered distributed and there
are no interprocess communication constructs. BIR constructs serve as a basis for translation into
another specification languages with their own tooling, which then do the actual model checking.

21

4. Extracting specification of interprocess communication
In this section we present the solution to the problem defined at the beginning. First we show

an overview of the solution, basic principle how it is supposed to work. The rest of this sections
provides the details of the parts of the solution.

4.1. Solution overview
This section presents a general overview of how Elixir module should be transformed into

TLA+. We take an example module (fig. 9) and show what its parts are translated into. Also,
an example modelchecking run is given to show the idea of what behaviour is specified by the
generated specification.

1 defmodule ExampleServer do
2 use GenServer
3
4 # Module API
5 def send(n) do
6 GenServer.call(:other, {:server, n})
7 end
8
9 # Callbacks

10 @impl GenServer
11 def init({}) do
12 {:ok, 0}
13 end
14
15 @impl GenServer
16 def handle_cast({:client, num}, _state) do
17 {:resp, n} = send(num + 1)
18 {:noreply, n}
19 end
20
21 @impl GenServer
22 def handle_call({:server, num}, _state) do
23 {:reply, {:resp num}, num}
24 end
25 end

Figure 9. Example Elixir module which uses GenServer.

We base specification generation on GenServer module usage. In practice it means starting
generation from those modules which use GenServer functions and implement the callbacks. Typ-
ically such modules have a clear structure – its functions are split into two groups: module API and
callbacks.

Module API group functions, as the name suggests, provide the API for the module and often
wrap the GenServer function calls. According to their purpose they are called with different argu-

22

ments from different places in the rest of the system. Bodies of the functions are translated as a
series of expressions (called ”lines” in generated specification), each of which changes the process
state. The same method should be used to translate any sequential code.

Elixir

1 def send(n) do
2 GenServer.call(
3 __MODULE__,
4 {:server, n}
5)
6 end

TLA+

line1(proc) ≜
LET

n ≜ P !arg(proc, 1)

IN
P !bind(proc, ”n”, n)

line2(proc) ≜
LET

to ≜ CHOOSE p ∈ Processes : p 6= proc.self

n ≜ P !val(proc, ”n”)
IN

GenServer!call(proc, to, 〈”SERVER”, n〉)

line3(proc) ≜
P !return(proc, P !return_value(proc))

Figure 10. Simplified example of a function module for send function from
figure 9.

Figure 10 displays a simplified example of sequential code translation. There are three TLA+

operators defined. line1 operator assigns arguments with which the function was called to the
parameter names. It is generated from the function definition signature (line 1). line2 operator
corresponds to GenServer module function call on lines 2 to 5 and has the same meaning. The last
operator does not appear in Elixir code as it implements the Elixir language feature that the result of
the last statement in the function definition is what is returned when function is called. We provide
a more detailed description of generated function modules in section 4.4.1, however it generally is
out of scope of this thesis.

Callback functions are not supposed to be called directly by the rest of the system code, they
are to be called only by the GenServer module, mostly to handle incoming messages. Each of
the function definitions is generated into two specification parts: function module and a message
receiving action. Function module is produced exactly the same as for any other sequential code.
Message receiving action is fully separate action in the generated specification which for any process
which is ready to receive the message, selects the message from the global message queue and
”calls” the handler function on that process with the received message and stored process state
passed as parameters. Actual handler behaviour is delegated to the handler function module. More
detailed description and a translation example is provided in section 4.6.2.

23

Message sending is modelled simply as putting it into the the global message queue. GenServer
module functions which send messages to multiple processes (abcast and multi_call) are mod-
elled as sending multiple messages, one for each known process. More precise addressing is not
implemented at the moment. All produced messages are sent at the same time – messages to send
are included in the result of the function module expression and are put into global message queue
right after they are produced.

Synchronous communication in addition to sending the message also requires waiting for the
response. This is done by putting the process into a blocked status. While process is blocked no
messages can be processed until response is received. A pair of actions, one to collect the responses
from all processes, and another to form and deliver the received responses, model this aspect of the
communication. See section 4.6.3 for definitions and detailed descriptions of these actions.

In the translated specification we distinguish between and refer to four kinds of states – process
state, application state, system state and specification state. When any of these states is refered to
in the text below, it is done with the following meanings in mind.

Process state. It is the state of a single process, containing all the things needed to execute sequen-
tial code on that process. It contains information about which expression of which function
a process should execute next, its call stack, return value of last called function, etc. More
detailed description of the structure of this state is given in section 4.2.1.

Application state. This state is the state which manipulated by any Elixir program which is using
GenServer module. When message is received, this state is passed into message handling
function and later is returned from there, possibly modified. This state is fully defined by the
user and is a part of system state.

System state. This state stores the values required to ensure correct message delivery to processes.
It corresponds to the internal Elixir GenServer module functions state and contains such
things as which message process is currently processing, messages process is waiting a reply
to, known application state, etc. More detailed description of this state is given in section
4.2.2.

Specification state. This state does not appear in the system implementation, instead it refers to
the state any TLA+ specification goes through during modelcheking. When talking about
generated specification, this state means a combination of all other states.

Modelchecking the specification generated from the code given in figure 9 with two processes
(p1 and p2) and with the initial message queue containing a single client message m1 ≜ [from 7→
c1, to 7→ p1,msg 7→ 〈”CLIENT”, 1〉] from client c1 would result in the following sequence of steps
the specified system goes through:

1. init function is executed on at least p1, which sets up initial application state. For p2 this can
happen later, but before first message is received by p2.

2. Message receiving action for handle_cast is enabled for process p1 and calls handle_cast
function on the receiving process. Received message is removed from the message queue.

24

3. Several specification states are produced by the handle_cast function operators which only
change p1 process state until GenServer.call function is called from the inside of send function
TLA+ module (fig. 10).

4. GenServer.call puts the supplied message into the message queue and blocks p1. As a result
of this expression, message queue contains a single message m2 ≜ [from 7→ p1, to 7→
p2,msg 7→ 〈”SERVER”, 2〉] and process p1 is in status blocked waiting for reply to that
message.

5. Message receiving action for handle_call becomes enabled for process p2 as there is a mes-
sage matching the required condition (m.msg[1] = ”SERVER”) so handle_call is called on
p2.

6. Several specification states are produced by handle_call function TLA+ module operators
which execute the behaviour of the function and set its return value which contains the re-
sponse to the caller and changed process state.

7. Response to p1 is taken from return value and put to the message queue. p2 system and
application states are also updated accordingly with the handler return value. p2 returns to
waiting status and is ready to receive further requests.

8. Actions for blocked processes to receive the responses become enabled for p1, first wait-
ing_responses, then deliver_responses and message from message queue is put as a return
value from GenServer.call function.

9. p1 finishes processing the original request, returns from the message handler function. All
states are updated, and process becomes ready to accept other messages.

These steps do not correspond one-to-one with specification states, they only demonstrate a
general sequence.

4.2. Process and communication model
It was chosen to model distributed Elixir system as a set of processes which send messages

into and read from a global message queue. Each process is independent from others. Global
message queue is not ordered, messages in it can be delivered in any order. This allows to have a
non-deterministic message delivery.

No distinction is made between Elixir processes and nodes – in Elixir interprocess communi-
cation looks exactly the same regardless of whether processes are on the same node or on different.
There are differences in message delivery guarantees but these are out of scope of this work.

A set of existing processes is assumed to be known in advance and should be provided by the
user. In TLA+ this is done by specifying the value for constant, e.g. Processes. Process lifecycle,
creating and destroying processes is out of scope of this work.

Process at any given moment can be in one of the five possible statuses: initialized, waiting,
processing, finished or blocked. Status initialized is a one-time status for each process, which

25

occurs directly after init function finishes executing. In this status application state returned by
init function is saved to later pass it into the message handler function. In status waiting the
process is not doing anything, and is just waiting for some message to arrive. Status finished is a
intermediate state between processing and waiting used to process the handler return value, update
process state and immediately moves the process to status waiting. Replies to synchronous calls
are sent out in this status as well. Status processing is unique among other process statuses since it
does not have a single explicit marker in the process state. A process is considered to be in status
processing when it is executing any sequential code and is not in any other status. Status blocked is
used to mark the process which is waiting for replies to the messages it sent. Transitions between
these statuses are shown in figure 11.

message
delivered

Waiting

responses
received

Blocked

prepared to
receive other

messages

responses
arrive

Finished
message
handler
finished

call or
multi_call

init function
finished

Processing

Initialized

init
function

Figure 11. Process statuses and possible transitions between them.

4.2.1. Process state structure

Process state structure is heavily influenced by TLA+ specification which is generated from
PlusCal specification as this is the format which was used in [Bra23]. Process state is modelled as
a TLA+ record with the following fields:

• self. Process identifier. It is provided to simplify message creation. It is set in the initial state
of generated specification and does not change.

• pc. Program counter. Specifies what process is currently doing. It is also a record of two
fields: fn and line. Usually, fn contains the name of the function module and line signifies the

26

expression in that module which will be executed next. There are four special values of the
fn field, one for each non-processing state. When process is in those states, line is not used.

• stack. Represents the stack of running process. Allows to have calls to other functions the
same in TLA+ as in Elixir, which simplifies translation. During function call, current pc and
context are saved here and restored upon return. Passed arguments are also stored here. See
operator descriptions in section 4.5.1 for more detailed description of what is put onto the
stack.

• context. Keeps known variables and their values in some scope. Is saved on the stack when
calling other functions and a new one is created in its place. Allows to have variable scoping
in TLA+ function modules and independent function module generation since each module
does not need to know about other function’s variables. This component is described in more
detail in section 4.4.2.

• return_value. Keeps value returned by the last called function. Allows returning a value
from one function to the other. This field is also used to generate the reply when synchronous
request is being handled.

• sent_msgs. Process message output buffer. Messages sent by the process are put here and
moved to global message queue after expression is executed.

4.2.2. System state structure

System state variable structure is meant to store the state relating to communication between the
processes. It mostly represents the information kept by internal Elixir GenServer module function
variables. Overall system state is represented by a function which maps each process to a record
with the following fields:

• state. Application state, as it is returned by the init function and message handler functions.
Represents user defined program state, which is passed into message handler function when
message is received.

• processing_message. Stores the whole message which is currently being processed. Set
when message is received and is used to identify which message a reply will be for.

• wait_replies_to. A set of messages process is waiting replies to. Messages are added into
this set when synchronous call is issued to know which messages have not yet received a
reply.

• arrived. A set of messages which are replies to the previously sent synchronous requests.
Replies are stored here until all awaited replies are received and they can be delivered to the
caller. This is required to ensure multi_call function works as expected.

27

4.2.3. Message structure and queue

Global message queue is modelled as a simple set of records with the following fields:

• id. Unique message identifier. It is used to determine which message some response is
responding to. Currently implemented as a always increasing natural number.

• from. Sending process identifier. Used during response generation to determine which pro-
cess needs to be sent the response.

• to. Receiving process identifier. Used in handler actions, to determine on which process
handler function needs to be called.

• msg. Actual message sent. Set by the user or by the sending function module. Is passed into
handler function module as a parameter.

• reply_to. An identifier of the message this message is replying to. If a message is not a
response, then it is set to 0.

Introduction of unique message identifiers was done to make timeout during synchronous re-
quests more viable. To prevent the delivery of the response which was sent earlier than the request
the simplest solution was chosen – always increasing number as a message identifier. Although
timeouts are outside of the scope of this work, since their modelling would require modelling pro-
cess lifecycle, it was deemed that having a possibility to expand in this direction was better than
not having one.

4.3. Data matching in function definitions
Data patterns in Elixir function definitions are transformed into matching conditions dur-

ing specification generation. Data structures during this translation are modelled as described in
[Bra23].

This approach currently cannot differentiate lists and tuples as both are transformed into TLA+

sequences (rules TUPLE-1 and TUPLE-2). Given the following two function headers:

def handle_call({:some_msg, {1, 2}, some_var}, state)

def handle_call({:some_msg, [1, 2], some_var}, state)

Listing 1: Similar function parameter patterns, one using a tuple, other
using a list.

the following identical match conditions would be generated:

msg[1] = ”SOME_MSG” ∧msg[2][1] = 1 ∧msg[2][2] = 2 (1)

Usage of TLC on generated specification is hindered by runtime error when comparing values
of different type. For example, these two definitions would not be possible to modelcheck:

28

def handle_call({1, some_var}, state)

def handle_call({"some str", some_var}, state)

Listing 2: Unmodelcheckable combination of function headers.

TLC needs compared values to be of the same type so if modelchecking for generated specification
were attempted, TLC would fail with runtime error when trying to compare 1 to ”some str”2.

To avoid this issue message patterns have to be of the similar structure, to make use of TLC’s
minimal boolean expression evaluation. This means that message prefixes should be of the same
type and sufficiently disambiguate between the messages, for example:

def handle_call({:some_msg_1, {1, 2}, some_var}, state)

def handle_call({:some_msg_2, [1, 2], some_var}, state)

Listing 3: Handler function headers with different atoms as message pre-
fixes.

4.4. Sequential code specification model
Sequential code generation is out of scope of this work but is nonetheless necessary to have

a complete picture of how interprocess communication is modelled since it defines the exact be-
haviour of the system and produces the messages to other processes. Specification generation for
sequential code is deliberately incomplete, just the basic principles are presented. For a detailed
exploration on how to model sequential code see [Bra23].

In general, sequential code is loosely based on how PlusCal specification is translated into TLA+

since Elixir code is translated into PlusCal by [Bra23]. Although modifications were made to make
the translations modular and allow usage in specification for the whole system, the possibility to
modelcheck each function in isolation is preserved.

Similarly as in [Bra23], we take sequential code in units of functions – each Elixir function
definition becomes a TLA+ module. This introduces a degree of composability into the generated
specification, making it a bit easier to understand as well as giving the possibility to run mod-
elchecking on function modules separately from the system as a whole.

In Elixir it is allowed to have several definitions for a function which are differentiated at runtime
by pattern matching the parameters with the given arguments. This functionality is not available
at this moment, each such definition is considered a separate function and differentiation between
them should be done where they are called.

In the rest of this section we present the parts of the function TLA+ module and their purpose.
2We have found a way to get around this although that was too late to used for this thesis. See section 5 for a short

description of it.

29

4.4.1. Function module structure

Function module represents a single Elixir function definition. Only Processes and NIL are
defined as constants in function modules, meaning that function module needs to be provided ex-
isting processes and a value used instead of Elixir nil by the user. Elixir function behaviour is
expressed by several operators for each expression in function definition and several operators and
formulas which are common for all function modules. These common operators and formulas con-
stitute a function module interface and further on will be referred to as such. Common function
module interface allows to treat each function module equally in the higher level TLA+ modules,
thus simplifying generation.

Several TLA+ operators and formulas comprise the function module interface:

• lines. A set of integers, one for each expression in a function. For example, if function
consists of 5 expressions, then lines ≜ 1 . . 5. It is used to check if certain expression can
be executed.

• name. A string constant, holds function name. Its purpose is to be used by the overall system
specification module to check which function a process is currently running.

• line_enabled(proc, l). Evaluates to TRUE if given process is at the point where it has to
execute the given expression. Usually delegates to Process!line_enabled with name and lines
as parameters and thus serves only as a simplification for the higher level module.

• line_action(proc, line). Executes given function expression on the given process. The re-
sult is next process state. Depending on given expression number, delegates to particular
expression operator defined in the same module.

Functionality of the function is specified in a series of expression operators. Each expression
is a discrete process step and corresponds to a logical Elixir process step during execution. For
example, given the following Elixir code line,

x = first_fun(second_fun(100, third_fun()), "constant str")

Listing 4: Example Elixir code line

it should be translated into the following expression operators:

line1(proc) ≜ P !call(proc, ”third_fun”, 〈〉) (2)

line2(proc) ≜ P !bind(proc, ”__tmp1”, P !return_value(proc)) (3)

line3(proc) ≜ P !call(proc, ”second_fun”, 〈100, P !val(proc, ”__tmp1”)〉) (4)

line4(proc) ≜ P !bind(proc, ”__tmp2”, P !return_value(proc)) (5)

line5(proc) ≜ P !call(proc, ”first_fun”, 〈P !val(proc, ”__tmp2”), ”constant str”〉) (6)

This example demonstrates that a single Elixir expression can yield several expressions in gen-
erated TLA+ function specification, e.g. variable assignments, and nested function calls cannot be
accomodated otherwise.

30

Operators from P module, like P !call, are defined in a separate helper module Process. See
section 4.5.1 for a more detailed description of this module and its operators. This module is
included into each function module with INSTANCE TLA+ command.

It is important to note that the last expression of each function must be a return statement:
P !return(proc, ”any value”). Without this it is not possible to return to the calling function.

4.4.2. Function context

Function context is defined as a way to set and access function variables by their name, to
provide a way for each function to have a separate variable scope and to simplify context switching
during calls and returns from and to other functions.

Function context is a set of records with fields name and value which associate a variable name
with its value. There are two operators defined for function contexts in Context TLA+ module –
get_val and set_val for getting and setting the value to some variable name. Context module is used
internally by Process module (which is described in section 4.5.1) and its operators are not used
during specification generation, they are exposed through the Process module operators.

4.5. Helper TLA+ modules
To simplify specification generation and to reduce duplication of common funcitonality, several

helper TLA+ modules were defined. In this section we describe their responsibilities and operators.
These modules are meant to be included into other modules using INSTANCE TLA+ command

as follows:

LOCAL P ≜
INSTANCE Process WITH Processes← Processes,NIL← NIL

(7)

INSTANCE command substitutes the module constants with what is given on right side of ← and
makes resulting operators available through local module name, in this example its P .

Such separation provides a layer of abstraction in specifications and makes them less verbose
and simpler to generate. Also, such reuse would be helpful if there were some properties proven
for provided operators – those properties could be used to prove properties of all modules which
use the included modules.

Most of module operators defined in helper modules are deterministic – their result depends
solely on their arguments. Those operators which are not deterministic are explicitly indicated as
such.

4.5.1. Process module

Process TLA+ module provides operators to manipulate process state. Mostly this means
changing program counter (pc) and program stack. This is accomplished by defining several deter-
ministic operators, which take process structure as parameter and produce next process state. These
operators could be divided into two main groups.

31

First group of operators is related with function calls and contains call, return and to_finished
operators. call and return operators implement generic function call, one issues it, while other
allows to return back from it. to_finished operator makes use of the call operator to execute a call
to a non-existent function, which puts the process into status finished. See solution overview in
section 4.1 for a detailed description of process statuses.

The other group of processes is concerned with retieval and modification of data available in
the function. There are two kinds of such data – values passed as function arguments and local
variables. The former kind of data can only be read and for that purpose operator arg is defined,
which allows to retrieve a value of the argument, given its index (as it often is in TLA+ – index is
1-based). The latter kind is served by two operators – bind and val. These operators allow binding
a value to and retrieving value bound to a given name, thus enabling variable assignments and
references.

Finally there is one operator which does not belong in either of the groups – inc_pc. Its purpose
is to increment the passed pc. It produces a new pc by just incrementing the line number in the old
one. This operator is often used by other operators and helper modules.

4.5.2. System module

System TLA+ module is responsible for overall system state management. It provides operators
to update system state, keep track of what message is being processed and replies received. As
such, it performs the internal functionality of Elixir GenServer module, and tracks state needed for
it.

There are 5 operators defined by this module, which can be divided into two groups accord-
ing to the context of their use. First group enables proper reply delivery for GenServer mod-
ule call and multi_call function calls and it consists of three operators: set_wait_replies_to, re-
ceived_response_for and clear_arrived. First one stores the sent messages for which replies need
to be received before returning them from GenServer module function call. received_response_for
performs second part of this process – it removes the message from wait list and adds its reply to the
list of arrived replies. The last one, clear_arrived simply clears the arrived replies list and is used
as a last step of the process, to avoid repeated deliveries of subsequent GenServer call invocations.

The second group of operators consists of two unrelated operators – init and set_app_state.
The former initializes empty system state, thus hiding the details while the latter one allows to save
the application state between the message handler function calls.

4.5.3. Messaging module

Messaging TLA+ module provides operators for message queue management. This module
differs from other helper modules by having a variable nextMsgId which needs to be substituted
during module instantiation. Currently it is expected that nextMsgId is a non-decreasing natural
number since it allows to have unique message identifiers. Variable updates are also expected to be
done where the module is used, not in the module itself. Messaging module defines five operators:
full_msgs, bulk_send, reply, drop and is_a_reply_to. The rest of this section describes them.

32

full_msgs is a construction operator. Given a set of records with fields from, to and msg it returns
a complete set of messages which are ready to put into message queue. It is used in all message
sending operators. full_msgs is the only not fully deterministic operator since it uses a module
variable nextMsgId to assign message identifiers and requires variable to be modified externally.

bulk_send and reply operators are used to send messages. They construct the full messages
using full_msgs and add them to the message queue. bulk_send adds several messages to the mes-
sage queue and is meant to handle Elixir functions which send several messages at once, such as
abcast and multi_call. reply, on the other hand sends a single message, which is a response to the
previously sent message. It assigns the reply_to field in message structure.

drop operator simply removes given message from the queue. It is defined only for better code
organisation.

Operator is_a_reply_to is a boolean operator which given two messages returns true if the first
one is a reply to the second one. It is used to detect replies in the message queue and deliver them
to the waiting process.

4.5.4. GenServer module

GenServer TLA+ module is meant to provide TLA+ definitions to Elixir GenServer module
functions. Currently it contains simplified definitions for call and cast functions, as well as their
equivalents for multiple receivers – multi_call and abcast. Although limited, these functions are
enough to model two main communication patterns – synchronous and asynchronous.

cast(proc, to, msg) is the simpler one of the two. Since cast is asynchronous, it does not need
to make sending process to wait for response from the receiving process. This allows us to just add
the message to process message output buffer.

call(proc, to, msg) sends the message synchronously. It works the same way as cast except it
also blocks the calling process so that it starts waiting for the reply. Although call is not a function
module, reply is made available as a return value, which simplifies sequential code generation.

multi_call and abcast work the same as their single receiver counterparts, except messages are
sent to all known processes. It should be possible to have a more precise addressing but currently
no such functionality is implemented.

All these operators create messages of the form [from 7→ f, to 7→ t,msg 7→ m]. This is not
a complete message form but its enough information for Messaging module operators to create the
full messages.

4.6. Generating specification for whole system
In this section we present how the pieces described above are combined to generate a complete

specification for a distributed system. First we will present the general structure of the specification
and what things are expected to be modelled as and then we will describe in more detail the parts
of the specification which are related to the interprocess communication.

33

In all examples operators of helper modules Process, Messaging and System are used. They
are instantiated as shown in section 4.5 with local names P , M and S respectively.

4.6.1. General structure

Generated specification requires several sets to be defined by the user. Processes and Clients
are the sets of available processes and clients. Processes are those which participate in the specified
system, while clients are external participants which are sending messages to the system. Constant
InitialMessages is a set of messages to be put into message queue in the initial specification state.
These messages must be TLA+ records of the same structure as produced by GenServer module
operators: [from 7→ f, to 7→,msg 7→ m]. Here f and t must come from either Processes or
Clients whilem is fully user defined and is an actual message as it will be received by the t. Constant
InitParams must be a function which maps system processes to the arguments of init function.
Finally, PreInitialAppState constant defines initial application state to be used before init function
produces actual initial state for the process.

The state of generated system specification is stored in three variables: procState, which keeps
the process state of each process, sysState, which keeps the system state of each process and mes-
sageQueue which is a global set of all messages currently in transit. procState is initialized in a
way where each process is about to execute the init function. messageQueue is initialized to the
InitialMessages constant which allows user to control the exact scope of modelchecking.

After constants and variables are defined, local helper modules and function modules are in-
stantiated under their own namespaces using INSTANCE TLA+ operator, as shown in section 4.5.

Module instantiations are followed by generated handler actions, one for each GenServer han-
dler function. These actions are described in more detail below, in section 4.6.2.

After the handlers actions common to all specifications are defined: after_init, function_lines
handler_finished, waiting_responses and deliver_responses. after_init is an action which processes
init function result an saves the initial application state. function_lines is a catch-all action for
executing any line of any function in any process. handler_finished prepares a process which has
just finished executing a message handler function to accept another message. waiting_responses
and deliver_responses are responsible for response delivery to waiting processes. These actions are
described in more detail below (section 4.6.3).

Finally, the Init, Next and Spec formulas are added. Init defines initial state of the specification
– on each process init function was called and its execution is to begin. Next describes a specifi-
cation step and is defined as a disjuction of all actions – both message receiving and predefined by
this template. Lastly, Spec describes the specified system as a whole and is of the customary form
Spec ≜ Init ∧□[Next]vars ∧WFvars(Next).

4.6.2. Message receiving actions

Message receiving actions are generated from GenServer handler function signatures. We
use only handle_cast and handle_call for this purpose. We exclude handle_continue and
handle_info since we assume that those wishing to check whether a certain implementation has

34

certain properties will be interested in a specific algorithm implemented in that system and to im-
plement algorithms handle_cast and handle_call functions are more natural choice.

The purpose of message receiving actions is to take a message from messageQueue and pass
it together with application state into correct handler function as arguments. They also remove
the message from messageQueue. Figure 12 shows an example handler action which would be
generated from the given signature.

Since multiple function definitions differentiated by pattern matching arguments are modelled
as separate function modules with pattern matching to be done outside of function itself (as de-
scribed in section 4.4), message receiving actions are also responsible for it. In case where it is
needed to match on the incoming message, pattern matching conditions are generated into the mes-
sage receiving action (line a in the figure 12). See section 4.3 for detailed description of how data
matching conditions are generated.

Before executing a call to the handler function (line b), process state is manipulated in such a
way that return from handler function would bring the process into status finished. This is done
using Process module operator to_finished (see section 4.5.1). Process status finished is handled
by a single action handler_finished which is described in the next section (4.6.3).

Received message is also saved in the system state (line c) to use it later to generate the reply
in action handler_finished (see section 4.6.3 for the description).

Elixir

def handle_cast({:client, num}, state)

TLA+

handler_1 ≜
∃m ∈ messageQueue, t ∈ Processes

∧m.to = t

∧m.msg[1] = ”CLIENT” (a)
∧ P !waiting(procState[t])

∧ procState′ = upd_proc_state(t,
P !call((b)

P !to_finished(procState[t]),
handle_cast!name,

〈m.msg, sysState[t].state〉))
∧messageQueue′ = M !drop(messageQueue,m)

∧ sysState′ = upd_sys_state(t,
S!set_processing_message(sysState[t],m)) (c)

∧ UNCHANGED nextMsgId

Figure 12. Message receiving action example.

35

4.6.3. Other actions

This section describes TLA+ actions which are common to all specifications. They can be split
into two groups: sequential code internals and message delivery internals. There is also after_init
action, which handles the result of sequential code execution while being a specialisation of a mes-
sage delivery action.

Actions in sequential code internals group are less numerous and are mainly responsible for
enabling sequential code execution. There is one action (function_lines) and one operator (fn_line)
in this group. fn_line is defined primarily to shorten the function_lines action and to reduce dupli-
cation.

Purpose of function_lines action is to execute a function expression on some process which is
allowed to do that (i.e. is in status processing) and update the process state afterwards. An example
of such action is provided in equation 8. It shows function_lines action as it would be generated for
the example module in figure 9. Overall, this action is a large disjunction, with as many clauses as
there are function modules – one clause per function module. Each of the clauses is a let statement,
setting two values – line_enabled (line 8a), which is true if some line of some function can be
executed on some process, and line_action (line 8b), which is a result of executing that line on that
process. These values are passed into fn_line operator (line 8c) which we describe below.

function_lines ≜
∃p ∈ Processes :

∨ ∃l ∈ send!lines :

LET
line_enabled ≜ send!line_enabled(procState[p], l) (8a)
line_result ≜ init!line_action(procState[p], l) (8b)

IN
fn_line(p, line_enabled, line_result) (8c)

∨ ∃l ∈ handle_cast!lines :
LET

line_enabled ≜ handle_cast!line_enabled(procState[p], l)
line_result ≜ handle_cast!line_action(procState[p], l)

IN
fn_line(p, line_enabled, line_result)

∨ . . . (other function modules) . . .

Equation 8: Shortened function_lines action as it would be generated for
the Elixir module in section 4.1.

fn_line operator describes what is done after executing the function module expression. It is
given in the equation 9. It has two parameters passed into it – line_enabled and line_result, corre-
sponding to the results of Process module operators line_enabled and line_action. Concrete values

36

from exact function module are passed into this operator in the function_lines action. The body of
fn_line a single LET statement with two values set – becomes_blocked and complete_messages. be-
comes_blocked is true if process should go into status blocked and complete_messages are messages
which were sent by some process as a result of last function module expression with supporting in-
formation (mainly message identifier) set. Operator checks if given line expression can be executed
(line 9a), assigns all specification variables – updates process state (line 9b), puts all sent messages
into the global queue (lines 9c and 9d) and updates the application state if needed (line 9e). P ,
M and S are local instances of Process, Messaging and System modules respectively. See sec-
tions 4.5.1 for Process module, 4.5.3 for Messaging module and 4.5.2 for System module operator
descriptions.

fn_line(process, line_enabled, line_result) ≜
LET

becomes_blocked ≜ P !blocked(line_result)
complete_messages ≜M !full_msgs(line_result.sent_msgs)

IN
∧ line_enabled (9a)
∧ procState′ = upd_proc_state(process, line_result) (9b)
∧messageQueue′ = M !bulk_send(messageQueue, complete_messages) (9c)
∧ nextMsgId′ = nextMsgId + Cardinality(complete_messages) (9d)
∧ IF becomes_blocked THEN

sysState′ = upd_sys_state(process, (9e)
S!set_wait_replies_to(

sysState[process],

complete_messages))

ELSE
UNCHANGED sysState

Equation 9: fn_line operator.

Message delivery group of actions consists of four independent actions: handler_finished, wait-
ing_responses and deliver_responses. The first one prepares the process to handle the next message
after it has finished with the previously started handler function module. Equation 10 displays how
this action is defined. The other two are required to ensure proper message response delivery to pro-
cesses which did blocking requests (using GenServer!call operator) and are displayed in equations
12 and 13.

handler_finished action is only enabled for processes which are in status finished (line 10a)
and its purpose is to send the reply (if any) and update the application state. Since Elixir handler
functions can return {:reply, reply, new_state} or {:noreply, new_state} we need to
check the first member of the sequence returned by the handler function TLA+ module (line 10b).
Case when no reply is needed is simpler – we just update the application state (line 10e). When

37

handler_finished ≜
∃p ∈ Processes :

∧ P !finished(procState[p]) (10a)
∧ procState′ = upd_proc_state(p, P !return(procState[p], nil))

∧ LET
return_type ≜ procState[p].return_value[1]

IN
CASE return_type = ”REPLY”→ (10b)

∧messageQueue′ = M !reply((10c)
messageQueue,

procState[p].return_value[2],
sysState[p].processing_message)

∧ sysState′ = upd_sys_state(p, (10d)
S!set_app_state(

sysState[p],

procState[p].return_value[3]))
∧ nextMsgId′ = nextMsgId + 1

□ return_type = ”NOREPLY”→ (10e)
∧ sysState′ = upd_sys_state(p,

S!set_app_state(
sysState[p],

procState[p].return_value[2]))
∧ UNCHANGED 〈messageQueue, nextMsgId〉

□ OTHER→ UNCHANGED 〈sysState,messageQueue, nextMsgId〉

Equation 10: handler_finished action.

reply is returned, it needs to be put into the global message queue. This is done by constructing
the full reply message with the indication which message we are replying to and putting it into the
message queue (line 10c). We also update the application state (line 10d).

after_init is a specialisation of the handler_finished action where instead of message handling
function, init function return value is being processed. This action is displayed in equation 11. The
purpose of this action is in the line 11a – save return value of init function as application state.

waiting_responses action is meant to collect the responses from all processes which the mes-
sage was sent to. Since it is needed to wait for all responses before returning from multi_call it is
necessary to have an action which accepts a single response and saves it somewhere to be returned
later when all other responses are received. As it is currently defined in equation 12, responses
are matched with messages waiting for response by reply_to field in the response (line 12a), which
contains the identifier of one of the messages sent to other processes. Once the message is matched
it is saved to the application state and is removed from the set of messages we are waiting a response

38

after_init ≜
∃p ∈ Processes :

∧ P !initialized(procState[p])

∧ procState′ = upd_proc_state(p, P !return(procState[p],NIL))
∧ LET

init_ok ≜ procState[p].return_value[1]
init_value ≜ procState[p].return_value[2]

IN
IF init_ok = ”OK” THEN

sysState′ = upd_sys_state(p,
S!set_app_state(sysState[p], init_value)) (11a)

ELSE
sysState′ = upd_sys_state(p,

S!set_app_state(sysState[p], {}))
∧ UNCHANGED 〈messageQueue, nextMsgId〉

Equation 11: after-init action.

to (line 12b).
Such waiting_responses definition also allows to define a message timeout action. An addi-

tional action would be required with the same conditions as waiting_responses but different values
assigned to the primed variables. It would terminate the waiting for the responses prematurely, thus
simulating a timeout. We do not define timeout action since it would require modelling the whole
process lifecycle which is outside the scope of this work.

Once all responses are received making them available to the function module is pretty straight-
forward. This is accomplished by the deliver_responses action shown in equation 13. All responses
received and saved with waiting_responses action are mapped into tuples 〈sender,message〉 and
returned back to the sending function operator (line 13a). This process allows function modules to
pretend that GenServer!call and GenServer!multi_call behave like function calls simplifying the
sequential code generation.

4.7. Generator program
A program prototype was written to extract specification from Elixir source code. Given the

file which uses the Elixir GenServer module it is able to generate the overall TLA+ specification. In
this section we describe the structure and capabilities of this program, as well as explain its usage.

Developed prototype consist of two parts – Elixir AST parser and TLA+ generator. AST parser
is built using Elixir built-in AST extraction functions and recursively descends down the AST until
required parts are found. In particular, we look for GenServer module usage and, if that is present,
message handling function definitions. After handler function definitions are extracted, they are

39

waiting_responses ≜
∃p ∈ Processes,m ∈ messageQueue :

∧ P !blocked(procState[p])

∧ sysState[p].wait_replies_to 6=
∧m.to = p

∧ ∃w ∈ sysState[p].wait_replies_to :
∧m.reply_to = w.id (12a)
∧ sysState′ = upd_sys_state(p, (12b)

S!received_response_for(sysState[p], w,m))

∧messageQueue′ = M !drop(messageQueue,m)

∧ UNCHANGED 〈procState, nextMsgId〉

Equation 12: waiting_responses action.

deliver_responses ≜
∃p ∈ Processes :

∧ P !blocked(procState[p])

∧ sysState[p].wait_replies_to = {}
∧ procState′ = upd_proc_state(p,

P !return(

procState[p],

{〈resp.from, resp.msg〉 : resp ∈ sysState[p].arrived})) (13a)
∧ sysState′ = upd_sys_state(p, S!clear_arrived(sysState[p])) (13b)
∧ UNCHANGED 〈messageQueue, nextMsgId〉

Equation 13: deliver_responses action.

passed into TLA+ generator. It maps the extracted handlers into respective TLA+ snippets and puts
them into predefined specification template. Resulting TLA+ specification is printed to the standard
output and can be redirected to the file using OS shell utilities.

Due to the scope of this thesis we do not generate any specification for sequential code. Program
also does not analyze the whole Elixir project to find the modules which use GenServer module as
indicating the file manually is sufficient for demonstration purposes.

Program is made available as a Mix (Elixir build tool) task and can be run using mix gen_spec
<filename> command, where <filename> is a path to the file for which specification should be
generated. This command has to be issued from the gen_spec folder in our repository for Mix task
to be found. Program requires at least Elixir version 1.14.

40

4.8. Capabilities and limitations
In this section we present an informal evaluation of developed solution, examine its strengths

and weaknesses.
The solution described in this thesis has several important strengths:

1. Described solution is modular. Created helper TLA+ modules encapsulate their respective
areas well, if needed they can be improved upon separately from the rest of the specification.
The same is true for the function modules concept, each function module is fully independent
from others.

2. It is possible to modelcheck and prove properties for each function module in separately. If
definitions of other used functions and a variable to assign process structure are added, it is
possible to run modelchecking on any function in isolation.

3. State explosion is limited by the fully deterministic process execution. As long as no commu-
nication between processes is done during message processing, the number of states single
process goes through will be the same for any message. This allows user to manage the state
explosion by changing the initial message set and a set of processes.

Current solution also has several weaknesses:

1. State explosion limiting is not adequate for complex systems. Current sequential code spec-
ification generates quite a lot of intermediate states between the states which are important
for communication. When running TLC, different orderings of those states will be checked,
although that has no effect overall. It would be interesting to see if its possible to decrease
the number of those states, however sequential code generation is outside the scope of this
work.

2. There is no way to create or delete processes and adding it would require big changes to the
current method. Process lifecycle management is of scope for this thesis.

41

5. Verification
We show correctness of our extraction method by showing that generated specification refines

previously written abstract one. For this purpose we use our implementation of Bracha reliable
broadcast [Bra87] toghether with its abstract specification3. We succeed in showing that the abstract
specification holds as a property of generated specification, thus showing the refinement [LMT+02].

We generate a detailed specification from a single file. Due to the scope of this thesis, we
only generate the message receiving part of the algorithm, the rest is sequential code, for which
specification had to be written manually. Nonetheless, sequential part of the specification fully
follows our method of sequential code translation to minimize changes in the generated part.

Abstract specification from generated one differs in one fundamental way – messages are not
removed from the queue in the abstract one while they are removed from it in generated one, since
this is closer to actual implementation. To get around this, we add additional action for modelcheck-
ing – UpdAllSentMsgs (see equation 14). It replicates messages added to the message queue into a
new variable, which is then used for refinement mapping. This allows us to adapt to fundamental
differences between generated and abstract specifications without changing generated specification.

UpdAllSentMsgs ≜ allSentMsgs′ = allSentMsgs

∪ {m ∈ messageQueue′ : m.msg[1] ∈ {”PROPOSE”, ”ECHO”, ”READY”}}

Equation 14: Append-only message queue update action.

Modelchecking was run with two processes in the system on a machine with 6-core AMD
Ryzen 5 PRO 5650U processor and 16 GiB RAM. TLC was passed option -workers 8 to make
use of multiple cores available. Run took 3.3 seconds, 61419 specification states were found, 30880
of which were distinct. The same process with 3 processes did not finish after more than 10 hours
with more than 190 million distinct states generated.

3Both are available in source code repository https://github.com/mr-frying-pan/
gen-tla-spec. Implementation in bracha/lib/bracha.ex, abstract specification in gen_spec/tla/
BrachaRBC.tla. Abstract specification was taken from https://github.com/iotaledger/wasp/blob/
6efe78da8ad661701a154d3e0ec534d0c9244a3b/packages/gpa/rbc/bracha/BrachaRBC.tla

42

https://github.com/mr-frying-pan/gen-tla-spec
https://github.com/mr-frying-pan/gen-tla-spec
https://github.com/iotaledger/wasp/blob/6efe78da8ad661701a154d3e0ec534d0c9244a3b/packages/gpa/rbc/bracha/BrachaRBC.tla
https://github.com/iotaledger/wasp/blob/6efe78da8ad661701a154d3e0ec534d0c9244a3b/packages/gpa/rbc/bracha/BrachaRBC.tla

Results and conclusions
In the course of this thesis a method to extract TLA+ specification from Elixir source code was

developed, thus achieving the aim of this research. We also verify it by modelchecking a generated
specification for a non-trivial algorithm and showing that it refines the abstract specification.

In this work we have produced the following results:

1. A method of TLA+ specification extraction from Elixir source code. We have shown that it
is possible to show that an implementation of non-trivial algorithm conforms to its specifica-
tion. Developed method imposes two constraints on the source code for which specification
can be generated:

• GenServer Elixir module usage. We base our translation on the functions provided and
required by this module.

• Message structure similarity. As described in section 4.3, messages must have similar
structure.

2. A program was developed, which given a file which contains Elixir module definition pro-
duces TLA+ specification for that system.

3. An example specification was generated and a refinement of an abstract specification of the
same algorithm was shown.

4. An abstract datatype was defined4, where a value of any concrete type is a TLA+ function with
a single element in its domain and a value of that function is the value translated according
to the rules defined in [Bra23]. This translation allows to avoid the TLA+ and TLC limitation
on comparing values of different types and thus to define an equivalent of Elixir match?
function.

Produced results can be found in thesis repository: https://github.com/mr-frying-pan/
gen-tla-spec

From this work we make the following conclusions:

1. It is possible to define a translation from Elixir source code into TLA+ for a distributed system
such that it is possible to generate automatically and refinement can be shown for generated
specification. This allows to verify that system implementation conforms to the initial spec-
ification.

2. Developed translation method is modular. Each helper module is independent from each
other and from the rest of the specification. This means they can be improved in isolation
and properties can be proven for their operators. The same is true for each function module.

Method of translation of Elixir source code to TLA+ has been published in the Proceedings of
the Conference ”Lithuanian MSc Research in Informatics and ICT”. It was also presented at the
same conference.

4See gen_spec/tla/Type.tla in source code repository

43

https://github.com/mr-frying-pan/gen-tla-spec
https://github.com/mr-frying-pan/gen-tla-spec

References
[AE] AdaCore and Capgemini Engineering. Spark reference manual. https://docs.

adacore.com/spark2014-docs/html/lrm/the-standard-library.html.
Accessed: 2023-01-10.

[AEP04] Thomas Arts, Clara Benac Earle, and Juan José Sánchez Penas. Translating Erlang to
µCRL. In Proceedings. Fourth International Conference on Application of Concur-
rency to System Design, 2004. ACSD 2004. Pp. 135–144. IEEE, 2004.

[Bra23] Deividas Bražėnas. Extracting TLA+ Specifications out of Elixir Programs. MA the-
sis, Vilnius University, 2023.

[Bra87] Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and
Computation, 75(2):130–143, 1987.

[CDH+00] James C Corbett, Matthew B Dwyer, John Hatcliff, Shawn Laubach, Corina S Păsăre-
anu, and Hongjun Zheng. Bandera: extracting finite-state models from Java source
code. In Proceedings of the 22nd international conference on Software engineering,
pp. 439–448, 2000.

[COR+01] Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and Dave Stringer-Calvert.
Evaluating, testing, and animating PVS specifications. Tech. rep., Technical report,
Computer Science Laboratory, SRI International, Menlo Park, CA, 2001.

[CS05] Koen Claessen and Hans Svensson. A semantics for distributed Erlang. In Proceed-
ings of the 2005 ACM SIGPLAN Workshop on Erlang, pp. 78–87, 2005.

[dcon] Elixir documentation contributors. Elixir documentation. https://hexdocs.pm/
elixir/1.14.3/Kernel.SpecialForms.html, Accessed: 2023 January.

[Fre01] Lars-Åke Fredlund. A framework for reasoning about Erlang code. PhD thesis,
Mikroelektronik och informationsteknik, 2001.

[FS07] Lars-Åke Fredlund and Hans Svensson. McErlang: a model checker for a distributed
functional programming language. In Proceedings of the 12th ACM SIGPLAN inter-
national conference on Functional programming, pp. 125–136, 2007.

[GKM+08] David A Greve, Matt Kaufmann, Panagiotis Manolios, J Strother Moore, Sandip Ray,
José Luis Ruiz-Reina, Rob Sumners, Daron Vroon, and Matthew Wilding. Efficient
execution in an automated reasoning environment. Journal of Functional Program-
ming, 18(1):15–46, 2008.

[GR01] Jan Friso Groote and Michel A Reniers. Algebraic process verification. In Handbook
of process algebra, pp. 1151–1208. Elsevier, 2001.

[Haf10] Florian Haftmann. From higher-order logic to haskell: there and back again. In Pro-
ceedings of the 2010 ACM SIGPLAN workshop on Partial evaluation and program
manipulation, pp. 155–158, 2010.

[Jur19] S. Juric. Elixir in Action. Manning, 2019. ISBN: 9781617295027.
44

https://docs.adacore.com/spark2014-docs/html/lrm/the-standard-library.html
https://docs.adacore.com/spark2014-docs/html/lrm/the-standard-library.html
https://hexdocs.pm/elixir/1.14.3/Kernel.SpecialForms.html
https://hexdocs.pm/elixir/1.14.3/Kernel.SpecialForms.html

[KS11] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed computing principles, algo-
rithms and systems. Cambridge University Press, 2011.

[Lam] Leslie Lamport. PlusCal tutorial. URL: https://lamport.azurewebsites.net/
tla/tutorial/intro.html. Accessed: 2024-05-20.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems (TOPLAS), 16(3):872–923, 1994.

[Lam99] Leslie Lamport. Specifying concurrent systems with TLA+. Calculational System
Design:183–247, 1999.

[LMT+02] Leslie Lamport, John Matthews, Mark Tuttle, and Yuan Yu. Specifying and verifying
systems with TLA+. In Proceedings of the 10th workshop on ACM SIGOPS European
workshop, pp. 45–48, 2002.

[LN11] Hannes Lau and Uwe Nestmann. Java goes TLA+. In 2011 Fifth International Con-
ference on Theoretical Aspects of Software Engineering, pp. 117–124. IEEE, 2011.

[MLH+14] Amira Methni, Matthieu Lemerre, Belgacem Ben Hedia, Kamel Barkaoui, and Serge
Haddad. An approach for verifying concurrent C programs. In 8th Junior Researcher
Workshop on Real-Time Computing, pp. 33–36, 2014.

[MMH13] Yaron Minsky, Anil Madhavapeddy, and Jason Hickey. Real World OCaml: Func-
tional programming for the masses. O’Reilly Media, Inc., 2013.

[MVK22] Gabriela Moreira, Cristiano Vasconcellos, and Janine Kniess. Fully-tested code gen-
eration from TLA+ specifications. In Proceedings of the 7th Brazilian Symposium on
Systematic and Automated Software Testing, pp. 19–28, 2022.

[NMR+02] George C Necula, Scott McPeak, Shree P Rahul, and Westley Weimer. CIL: interme-
diate language and tools for analysis and transformation of C programs. In Compiler
Construction: 11th International Conference, CC 2002 Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble,
France, April 8–12, 2002 Proceedings, pp. 213–228. Springer, 2002.

[SBR+18] Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah, and Stephanie
Weirich. Total Haskell is reasonable Coq. In Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs, pp. 14–27, 2018.

[Tea22] The Coq Development Team. The Coq proof assistant, version 8.16, 2022-09. DOI:
10.5281/zenodo.7313584. URL: https://doi.org/10.5281/zenodo.7313584.

[Tho18] D. Thomas. Programming Elixir ≥ 1.6: Functional |> Concurrent |> Pragmatic |>
Fun. Pragmatic Bookshelf, 2018. ISBN: 9781680506136.

[WWP+15] James R Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael
D Ernst, and Thomas Anderson. Verdi: a framework for implementing and formally
verifying distributed systems. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 357–368, 2015.

45

https://lamport.azurewebsites.net/tla/tutorial/intro.html
https://lamport.azurewebsites.net/tla/tutorial/intro.html
https://doi.org/10.5281/zenodo.7313584
https://doi.org/10.5281/zenodo.7313584

	Introduction
	Context and relevance
	Aim, objectives and expected results
	Aim
	Objectives
	Expected results

	Elixir
	Data representation
	Pattern matching
	Abstract Syntax Tree (AST)
	Process model & communication
	Erlang/Elixir design patterns
	Generic server pattern

	TLA+
	Temporal Logic of Actions
	TLA+ specification structure

	Related works in the area
	Sequential Elixir code translation into PlusCal
	Translating Erlang to μCRL
	McErlang
	C to TLA+and Java to TLA+
	TLA+ to Elixir
	Other approaches
	Haskell to Coq and to Isabelle/HOL
	Verdi
	Bandera

	Extracting specification of interprocess communication
	Solution overview
	Process and communication model
	Process state structure
	System state structure
	Message structure and queue

	Data matching in function definitions
	Sequential code specification model
	Function module structure
	Function context

	Helper TLA+ modules
	Process module
	System module
	Messaging module
	GenServer module

	Generating specification for whole system
	General structure
	Message receiving actions
	Other actions

	Generator program
	Capabilities and limitations

	Verification
	Results and conclusions
	References

