
VILNIAUS UNIVERSITETAS

MATEMATIKOS IR INFORMATIKOS FAKULTETAS

INFORMATIKOS KATEDRA

Blokų grandinės pagrindu veikiančios
elektroninio balsavimo sistemos saugumo analizė

Security Analysis of a Blockchain‑Based E‑voting System

Magistro baigiamasis darbas

Atliko: Miglė Babickaitė (parašas)

Darbo vadovas: Dr. Linas Bukauskas (parašas)

Konsultantas: Ch.mo prof. Simon P. Romano (parašas)

Recenzentas: Tomas G. Lipnevičius (parašas)

Vilnius – 2024

Santrauka

Elektroninis nuotolinis balsavimas yra sudėtinga ir intriguojanti kompiuterių saugumo inžinerijos
užduotis. Nuo bet kokios kitos internetinės veiklos ji skiriasi savo įtaka demokratijai. Nepavykus
užtikrinti tokios sistemos saugumo, didelio masto pasekmės gali anuliuoti rinkimus, kurių pakar-
totinis skelbimas yra ne tik brangus, bet ir žalojantis visuomenės pasitikėjimą. Dėl rinkimų rezul-
tatų svarbos, aukštos kvalifikacijos užpuolikai gali atakuoti žemo kompiuterinio raštingumo varto-
tojus. Lietuva elektroninio balsavimo idėją puoselėja nuo 2016 m., tačiau konstitucinių reikalav-
imų neatitiko jokie realūs pasiūlymai. Dėl pastaraisiais metais drastiškai išaugusio nuotolinio
aktyvumo, Lietuvos vyriausioji rinkimų komisija užsakė dar vieną nuotolinio elektroninio balsav-
imo galimybių studiją. Atsižvelgiant į šį kontekstą, šis darbas apibrėžia kritiškiausius elektroninės
balsavimo sistemos taškus ir jos saugumo reikalavimų įgyvendinamumą. Šiam tikslui pasiekti
atliekama Neapolio universitete sukurtos blokų grandinės ir susietais žiediniais parašais pagrįs-
tos elektroninio balsavimo sistemos Chirotonia tikimybinė saugumo analizė. Analizė atliekama
remiantis Bajeso atakų grafomis, kurios automatiškai sugeneruojamos iš turimų žinių.

Raktiniai žodžiai: Elektroninis balsavimas, saugumo tyrimas, blokų grandinė, Bajeso
atakų grafos, ontologija

1

Summary

Electronic remote voting is a challenging and intriguing computer security engineering task. The
crucial impact that compromised elections have on democracy and voters’ trust differs from any
other internet activity. Due to the importance of the election outcome, highly skilled adversaries
might attack users with low computer literacy. Lithuania has been grooming the idea of e-voting
since 2016, however, real proposals did not satisfy the constitutional requirements and have been
rejected. Due to the drastically increased remote activity in recent years, another remote elec-
tronic voting feasibility study was commissioned by the Lithuanian Central Election Commission.
In light of this context, this thesis defines the critical aspects of an electronic voting system and the
feasibility of its security requirements. As a methodology, the security analysis of the blockchain
and linkable ring signature-based electronic voting framework Chirotonia developed at the Uni-
versity of Naples Federico II is performed. The analysis is based on Bayesian attack graphs which
are automatically generated based on the obtained knowledge.

Keywords: Electronic Voting, Security Analysis, Blockchain, Linkable Ring Signa‑
tures, Ontology, Bayesian Attack Graph

2

Contents

1 Introduction . 4
2 Related Work . 6
2.1 Electronic Voting . 6

2.1.1 Electronic vs. Paper-Based Voting . 6
2.1.2 Secure Voting Requirements. 7
2.1.3 Requirement Implementation . 11

2.2 Risk Assessment . 12
3 Methodology . 17
3.1 Ontology Development . 18
3.2 Knowledge Bases. 20
3.3 Common Vulnerability Scoring System . 20
3.4 Bayesian Attack Graphs. 20
3.5 Automatic Graph Generation. 22
3.6 Risk Assessment . 22

4 Ontological Knowledge Acquisition . 23
4.1 Regulation Analysis . 23
4.2 System Analysis: Chirotonia . 24

4.2.1 Assets . 24
4.2.2 Locations . 26
4.2.3 Phases. 27
4.2.4 Election Compromises . 31
4.2.5 Weaknesses . 31
4.2.6 Mitigations . 31

5 Risk Assessment . 33
5.1 Ballot Altering . 33
5.2 Voter Privacy Breach. 34
5.3 Voter Disenfranchisement . 35
5.4 Multiple Ballots . 36
5.5 Non Eligible Voters . 36

6 Discussion . 38
7 Conclusion and Future Work . 39
References . 40

3

1 Introduction

According to the in-depth analysis performed by the Scientific Foresight Unit in the European
Parliament [Eur18], digital development has potential to reduce the democratic deficit in the
European Union. However, even though participants gain added personal value, different types
of e-participative projects suffer from a lack of direct or indirect political impact. For example,
e‑consultations are meant to allow participatory decision-making but often turn out to inform cit-
izens about decisions that have already been made. One of the prominent types of e-democracy
is the e‑voting. EU’s democratic deficit is strongly manifested in continuously decreasing elec-
toral participation. The analysis observes that the convenience aspect is not the only influence
on whether a citizen votes, and the Internet voting is not a quick technological fix to the lost
political interest and satisfaction. The rise of blockchain technology gave a new hope for the
Blockchain-enabled voting [Bou16]. Initially meant to track cryptocurrency transactions, the
open and untamperable blockchain ledger is considered to be able to empower decentralised and
direct democracy.

Following the trends and recommendations in the European Union, the idea of electronic
voting in Lithuania was proposed in 2006. Since then, multiple projects have been drawn up and
rejected by the Parliament but the relevance of the topic has not faded. With a good amount of
Lithuanians living abroad, the possibility of electronic remote voting could theoretically increase
voter turnout substantially. On the other hand, security requirements for electronic voting are
considerably more sensitive than any other electronic operation. Having in mind the geopolitical
situation in the region and past attempts to sabotage national elections [Cla14], guaranteeing
the security of the overall e-voting protocol and its implementation is a complex and dangerous
task. The common example that pro-e-voting lobbyists provide to support their argument is
the supposed success of e-voting in Estonia [CM16]. However, an extensive security analysis
[SFD+14] has quite harshly concluded that the Estonian system is not suitable for anonymous
and secure electronic voting and should be discontinued immediately.

The COVID-19 pandemic expanded our digital presence greatly. In continuation of this
trend, in 2021, yet another online voting feasibility study was commissioned by the Lithuanian
Central Election Commission (CEC) [rkom21]. The ordered analysis must identify the online
voting system goals, assess the assurance of system security and reliability, envision the lifecycle
of the system development and testing, and evaluate organisational procedures. In the context
of national electronic voting, e-democracy starts before the election event. Every phase of the
decision-making must be transparent and regulated. The choice of the adopted e-voting system
must be informed and democratic. Legal regulations must be constantly refined and systems’
legal compliance verified and audited. Early in 2003, Walker et al. [WHR+03] noticed the lack
of common understanding between the policy decision-makers and scientific decision supporters
due to missing definitions of different dimensions of uncertainty. Electronic voting is a vast
process with many possible actors of different capabilities and goals. The gathered knowledge
and sensitively calculated uncertainty are crucial to risk assessment of any system considered for
the carrier of e-democracy.

4

As a starting point for a more extensive feasibility study, this thesis analyses the knowledge-
based electronic voting system verification and decisions that such verification affords. Commu-
nity maintained Common Vulnerability Enumeration (CVE), Common Weakness Enumeration
(CWE) and Common Attack Pattern Enumeration and Classification (CAPEC) bases provide the
knowledge for the system analysis. To connect the provided vast enumeration resources and align
them with the system requirements, an ontology is proposed. Ontologies are a powerful tool for
any task that deals with systemized knowledge. In the ontology-based Cloud threat modeling
performed in the [MVT+19], a developed ontology is mapped onto Design Structure Matrices
(DSM) to visualise interactions between requirements, services and vulnerabilities. Similarly, this
work maps the developed ontology onto Bayesian Attack Graphs (BAG). These graphs provide
visualisations and quantified conclusions about the most vulnerable system components, the most
probable attack paths and required mitigation strategies to control the risks.

To demonstrate the proposed verification methodology, a case security analysis is performed
on a blockchain-based electronic voting system Chirotonia. The analysis demonstrates that the
system implementation fails to deliver the promises made by the blockchain-based architecture.

The contributions of this thesis are as follows.

1. The development of an ontology based framework to identify weak system components and
design choices.

2. The security evaluation of a blockchain-based electronic voting system.

5

2 Related Work

To understand the broader context, two types of related work are analysed: (i) electronic vot-
ing requirements and their implementation are analysed in the Section 2.1; (ii) research on risk
assessment and especially, legally-bound risk assessment, methods is analysed in the Section 2.2.

2.1 Electronic Voting

2.1.1 Electronic vs. Paper‑Based Voting

Electronic remote voting is a challenging and intriguing computer security engineering task.
Even though almost every aspect of our daily lives has been automated, only a few countries vote
electronically. There are legitimate reasons why most of our democratic voting is performed via
paper-based physical protocols.

• Security As authors of [PSN+21] pointed out, online voting systems require different se-
curity properties than online banking or cryptocurrency transactions. Online shopping and
banking systems are more failure-tolerant as banks and insurers absorb the risk. There is no
insurance against the failure of democratic voting. Additionally, a threat profile for online
voting is very different from that of other online systems. In an online voting context, a
highly skilled attacker might attack a technically unsophisticated voter. Moreover, attacks
on electronic voting systems are highly scalable — a remote programmer changing a line
of code could in principle change millions of electronic ballots in milliseconds, whereas
changing millions of paper ballots requires physical access and one-by-one handling.

• Decreased Transparency Electronic voting infrastructure includes many hardware and
software components that are not conceivable to most of the general public. Tallying and
vote counting is performed electronically and is as much trustworthy as every single part of
the supply chain, starting with the installation of the operating system to the vote-handling
servers. As the security analysis of the Estonian e-voting system noted, an attacker who
strikes early enough can introduce malicious code into the counting server by using a chain
of infections that parallels the configuration process [SFD+14]. In that case, malicious
malware can be installed into servers early on, and the security of the voting protocol
loses its relevance immediately (unless it assumes by design that no part of the system is
trustworthy).

• Authentication Complexity Having to verify the user’s identity while also breaking ties
between the identity and the ballot the user cast is a unique challenge to online voting.

Having the risks in mind, scientific e-voting discussions have been developing for over forty
years without the loss of relevance. The theoretical advantages offered by electronic voting entice
researchers and fuel new creative proposals.

6

• Accuracy There is no doubt that ballot processing accuracy and speed could be drastically
improved with electronic voting. Human error can be greatly reduced and system auditing
simplified.

• Accessibility In theory, electronic voting could provide easier voting access to people,
however varied technological sophistication between different social groups must be con-
sidered when designing the system. As the research performed in [PJS21] concludes, the
availability of e-voting does have an influence on turnout, but this influence holds for
specific groups of citizens only.

• Verifiability The third advantage of electronic voting is vote verifiability. State-of-the-art
cryptographic primitives can provide the ability to verify the published election result. In
theory, a voter is able to verify that their vote was processed correctly and that the published
election result corresponds with the set of published votes. Individuals usually cannot ver-
ify, without trusting some authority, that their paper ballot was counted correctly [Wil22].
In 2004, D. Chaum proposed a solution that allows each voter to verify with visual cryp-
tography that their paper ballots are cast appropriately and accurately tallied [Cha04]. After
the voter selects their candidates, a voting machine prints out a specially formatted version
of the ballot on two transparencies. When the layers are stacked, they show the human-
readable vote. However, each transparency is encrypted with a form of visual cryptography
so that it alone does not reveal any information unless decrypted. The introduction of
electronic voting allows for many cryptographic solutions to system verifiability.

2.1.2 Secure Voting Requirements

Requirements for secure voting depend deeply on the political, sociological, ideological, legal
and regulatory framework in which the voting occurs. Even within Europe, the regulations for
e-voting vary widely. While some countries, like Estonia and Switzerland, are eager to vote
electronically and define detailed e-voting regulations, in other countries e-voting is explicitly
forbidden. In Germany, a 2009 ruling ruled voting machines and electronic voting unconstitu-
tional in their current form. Although the German Constitutional Court did not forbid electronic
voting from ever being utilised in elections in the future, it concluded that electronic voting sys-
tems can only meet the constitutional requirements if it is possible for voters or observers without
specialised knowledge to verify the results of the election [Ins09]. In the Netherlands, a court
ruling in 2007 concluded that elections should be conducted with pen and paper due to integrity
issues with voting machines [Ins07].

In 2017, the European Union published recommendations for e-voting standards [Cou17].
On a high level, the recommendations include:

• Universal suffrage All eligible voters can participate in the election process. This means
that every eligible person should be able to register for participation in elections without
discrimination.

7

• Equal suffrage Each vote should be counted equally. Additionally, ballots should not give
a preference to any candidate or party.

• Secret suffrage No actor in the voting process, such as election officials or observers,
should be able to trace the voter’s identity given their ballot. During all phases of the
election process, the secrecy of the vote should be protected, and the voter should not be
able to prove that they voted in a certain way.

• Transparency Any observer, to the extent permitted by law, shall be enabled to observe
and comment on the e-elections, including the compilation of the results.

• Accountability Before an e-voting system is introduced and at appropriate intervals there-
after, and in particular after any significant changes are made to the system, an independent
and competent body shall evaluate the compliance of the e-voting system and of any infor-
mation and communication technology (ICT) component with the technical requirements.
This may take the form of formal certification or other appropriate control.

• Reliability The system should provide a reliable and correct voting result.

In Lithuania, the electronic voting regulations are drafted in the the Internet voting draft law
proposed in 2018 by the Ministry of Justice of the Republic of Lithuania [Min18]. The list below
extracts the electronic voting process requirements. The requirements for governance, internal,
and other administrative processes are not analysed in this work as the performed analysis in its
scope and complexity does not compare to the national election that the law defines.

Last Vote Precedence Article 3 of the draft law requires a voter to be able to cast as many
votes as they want. Only the last vote should be included in the final tally. Essentially, this
requirement endangers voter anonymity as for the system to rewrite a voter’s ballot, the ballots
must be linkable together up until the final tally stage. Ballot linkability can provide an attacker
with information that helps identify the voter. Truly anonymous systems break the link between
the ballot and its owner before the vote submission, assuming that the submission channel is
unconditionally anonymous [HMM+23].

Accessibility Article 6 of the draft law requires voters with minimal computer literacy to
be able to vote. Voters must be able to vote from end Internet devices that meet the technical
properties defined by the system administrator.

Authentication Article 7 of the draft law defines voter authentication requirements. Vot-
ers must be identified and verified using electronic identification methods that meet the high-
security level defined in [iEur14]. The system must prevent the use of other parties’ electronic
identification.

8

Eligibility Article 7 details the eligibility requirements as well. Only the votes of eligible
voters should be included in the final tally. Technologically, this means that eligible voters need
to be authenticated, and registered prior to the voting phase. Voting authorities must have a list
of all registered eligible voters’ (anonymous) identifiers against which the identity information
provided in the ballot is matched.

Verifiability Article 9 of the draft law defines verification requirements. After an election,
it should be possible to verify that the final public voting result corresponds correctly to the
private voting ballots. A voter can verify that:

• cast‑as‑intended (CAI): their choice was correctly denoted on the ballot by the system.

• recorded‑as‑cast (RAC): their ballot was recorded the way they cast it.

• tallied‑as‑recorded (TAR): their ballot counts as received.

The draft law defines a ballot box as a private, technologically and physically secured component.
This contradicts the verifiability requirement as a voter does not have access to the ballot box and
cannot perform the verification procedures. Consequently, the verification can only be performed
internally and the voter can only ask the system to verify the current state for them. This implies
unconditional trust in the central voting system which is difficult to achieve.

Privacy Article 11 of the draft law details the privacy requirements. Only the voter them-
selves should know the contents of their voting ballot. No other party, not even the administrator
of the system, should be able to uncover the voter’s ballot. It is forbidden to collect material that
could reveal the contents of ballots. The draft law defines some technical means to reach this
goal:

• Electronic ballot must be encrypted in the voter’s end device. No plain data can travel via
the Internet.

• Electronic ballot box must hold only the last vote of the voter.

• The privacy of the encrypted ballots must be preserved until the election’s final day. This
implies that ballot privacy is not everlasting, i.e. a voter’s ballot is not private after the
election.

• Electronic double-envelope principle must be applied. The inner envelope holds the en-
crypted electronic ballot and the outer envelope holds the voter’s identity information.
Before the tallying phase, the inner envelope is irreversibly separated from the outer en-
velope and mixed with other inner envelopes. The ballots are decrypted only after all the
envelopes have been mixed.

• No party can modify ballots, or add non-legitimate ballots to the ballot box.

• Before the election, the CEC creates the cryptographic key pair and is responsible for their
storage until the election.

9

Auditability Article 14 of the draft law describes the desired system auditability. The
system must be auditable by the system administrator and auditors. Audits should not violate
ballot privacy. All voting actions and all access to the systemmust be logged in a separate database.

However, the draft law lacks important requirements that are crucial to a truly democratic
election execution.

Coercion‑Resistance Coercion-resistance requires that a voter cannot be influenced by
another party during an election. This includes forced randomness (a voter is forced to vote
randomly), forced abstention (a voter is forced not to vote), coerced vote (a voter is forced to
vote in a predefined way), simulated vote (another party has impersonated a voter). The term
first appeared in [JCJ05]. Usually, coercion-resistance also implies the requirement of receipt‑
freeness which states that a voter cannot prove how they voted after an election. This preserves
the voter’s privacy and enhances the coercion resistance, as there is no way that the voter can
prove to the coercer how they actually voted. The concept first appeared in [BT94].

The draft law does not include the coercion-resistance requirement which is a huge short-
coming in a poor and politically uneducated country like Lithuania. The precedence of the last
vote does not prevent coercion if at any point a voter (and by extension anyone who is supplied
with the cryptographic material owned by the voter) can open their electronically cast ballot for
verification purposes. Only in case the coerced electronic voter additionally casts a physical ballot
can the voter’s legitimate vote be unproven to a coercer. However, as the electronic vote is deleted
immediately in such cases, the coercer would know that the voter changed their vote.

Anonymity Anonymity expands the requirement of privacy to conceal not only the con-
tents of a ballot but also the act (or absence) of voting itself. Anonymity is very important in any
democratic election. A link between a voter and their ballot, even if encrypted, can leak sensitive
information that makes it possible to force a voter not to vote, verify the time when they voted,
etc. A significant group of voters’ security is breached if anonymity cannot be guaranteed. More-
over, voters should remain anonymous to legitimate election authorities as well, since otherwise
gerrymandering 1 is made possible.

Trust Distribution and Transparency The draft law assumes unconditional trust in a
closed central e-voting system. The system is managed by the system administrator and audits are
performed by delegated auditors. The ballot box is private and the vote verification is performed
internally. Voters can only trust the result that the system provides them with. In Article 15, the
law defines two aspects of system transparency:

1. Dedicated observers and auditors can observe the system log to verify the correct flow
of the procedure. This requires high technical knowledge and an understanding of the
inner workings of the system design. Training independent observers becomes noticeably
expensive.

1Gerrymandering is the political manipulation of electoral district boundaries with the intent to create undue
advantage for a party, group, or socioeconomic class within the constituency.

10

2. The access to information about the system’s structure, design, and software is restricted.
Firstly, this increases bug risk, as bugs in open-source software are found much faster.
Moreover, this drastically reduces trust in the system and the amount of democracy it
affords.

2.1.3 Requirement Implementation

Generally, remote e-voting systems include voters, authorities (registrars), tallies, a bulletin board,
and potentially some other system-specific components such as auditors. The main role of au-
thorities is to authenticate voters’ eligibility. This can be done by identifying the voter via some
external mechanism and assigning them an anonymous token which, provided together with the
filled ballot, proves their eligibility. Another way for the voters to show their eligibility is by
signing ballots with a certified secret key. Usually, the same tools that prove voter eligibility
prove vote uniqueness as well (Table 1).

All ballots are cast on the bulletin board. Usually, for the sake of transparency, verifiability
and auditability, the bulletin board is public. Older proposals, such as the first version of Helios,
model the public bulletin board as a trusted web server, however, a decentralised untamperable
append-only public bulletin board is offered by the rise of blockchain technology. Some bulletin
boards are designed over a permissioned blockchain which reduces the complexity and computa-
tional demand of the system but eliminates openness and verifiability. Some protocols like sVote
[HLP+20] and SK95[SK95] substitute the public bulletin board with public proofs of correct pro-
tocol execution. This solution does not provide enough transparency to trust the system from a
voter’s perspective.

To preserve voters’ privacy, all ballots come to the bulletin board encrypted. In order not
to supply voters with vote receipts, voters do not encrypt their ballots themselves. Instead, they
receive already encrypted ballots and non-transferable proofs of encryption contents. Voters
select encrypted preferences and cast the filled-in ballot. In most of the systems, voters also sign
their ballots thus forming a double-envelope structure: the outer envelope contains the voter’s
identification and can be publicly verified (in the case of a public bulletin board), and the inner
envelope contains the encrypted ballot. As discussed above, an alternative to the outer envelope
is an anonymous token/credential included in the submitted input.

In order to mitigate possible coercion, some systems allow voters to submit multiple votes. In
that case, only the last one is counted. Another solution for coercion-resistance allows deceiving
the coercer. Voters can either cast fake ballots (that will be removed before the final tally) or
provide coercers with a fake receipt indistinguishable from an honest one.

After the voting phase is over, in the traditional e-voting approach, tallying authorities verify
voters’ identification, remove duplicate ballot submissions, shuffle ballots (e.g. with mix-nets),
remove fake submissions, remove voters’ identification data (separate the voter’s identity from the
ballot), decrypt and count the anonymised ballots. Alternatively, encrypted ballots can be added
together via homomorphic encryption, and decryption can be performed on the election result
only. Both of these methods preserve everlasting voter anonymity and ballot secrecy. However,

11

some systems, like Chirotonia [RAV+21], make ballots publicly open after the voting phase is over.
This kind of scheme provides the public with a lot of information that might endanger voters’
anonymity and confidentiality.

After the election result is announced, the amount of verifiability available to a voter dif-
fers among all reviewed proposals. Systems like Selene [RRI16] or Estonian [SFD+14], allow
individual vote verifiability via a tracker. However, the final result can be universally verified via
complex zero-knowledge proof verifications which does not increase trust in an average user. The
Estonian system introduced a centralised component to perform complex universal verifiability
on the votes’ behalf. However, it is evident that the central component must be unconditionally
trusted and secured. The correct execution of the protocol can be auditable via analysis of system
logs or blockchain entries. This can only be done by dedicated, trained auditors and cannot be
fully considered as universal verifiability.

It can be observed that electronic voting systems, like all software systems, tend towards
decentralisation which eliminates the risk of attacks on a single point of failure. This is achieved
by distributing authority and tallying roles between multiple agents. Usually a single honest
agent is needed for the integrity of the system to be preserved. Additionally, as electronic voting
becomes a more real possibility, modern research shifted slightly towards user accessibility.

2.2 Risk Assessment

In 2020, Taş et al. reviewed the challenges and opportunities of blockchain-based electronic
voting in the [TT20]. They observe that blockchain technology contributes to ensuring confi-
dentiality, data integrity and fault tolerance. The distributed and decentralised nature of such
network mitigates one of the crucial threats to critical Internet system – the denial of service
attacks. On the other hand, blockchain systems require software infrastructure like any other
e-voting system, which are used to add or view the immutable data on the blockchain. These
intermediate components and the open Internet itself are sensitive to many known and unknown
software, hardware, supply chain, configuration vulnerabilities. As an example, a black-box se-
curity analysis of a blockchain-based e-voting system Voatz [SKW20] discovered that the un-
tamperability promised by the blockchain is subverted by a vulnerable proxy web server which
is capable of modifying voter’s ballots. The voter does not have direct access to the blockchain
and therefore the blockchain-promised transparency is blurred by the web server handing over
and possibly modifying or simply forging verifiable receipts. Another observation made in the
[TT20] and supported in the [PSN+21] is that blockchain architecture introduces additional prob-
lems for voting systems, namely vulnerabilities in smart contracts or 51% attacks. Knowledge
on blockchain-specific attacks is scattered and not enumerated which makes it harder to verify
potential systems.

Knowledge is crucial throughout the decision-making process. The knowledge must be gath-
ered and organised, uncertainties defined and evaluated. Early in 2003, Walker et al. [WHR+03]

12

Ta
bl
e
1.
Pr
op
os
al
s
of
e-
vo
tin
g
re
qu
ire
m
en
ts
’i
m
pl
em
en
ta
tio
n
in
th
e
lit
er
at
ur
e.

E
N
C
—
ba
llo
t
en
cr
yp
tio
n;
Z
K
P
—
ze
ro
-k
no
w
le
dg
e
pr
oo
fs
;
H
M
—
ho
m
om
or
ph
ic
en
cr
yp
tio
n;
SI
G
N
—
sig
na
tu
re
s;
C
O
M
—
co
m
m
itm
en
ts
;
M
PC

—
m
ul
tip
ar
ty
co
m
pu
ta
tio
n;
LO
G
—
lo
gg
in
g;
M
N
—
m
ix
-n
et
s;
TO
K
E
N
—
to
ke
n;
T
R
A
C
K
E
R
—
tr
ac
ke
r;
S-
R
A
N
D
—
ra
nd
om
ne
ss
in

en
cr
yp
tio
n
is
se
cr
et
to
th
e
vo
te
r;
D
E
C
E
IT
—
po
ss
ib
ili
ty
fo
ra
vo
te
rt
o
de
ce
iv
e
a
co
er
ce
r;
A
U
D
—
pu
bl
ic
ly
op
en
au
di
t;
B
C
—
bl
oc
kc
ha
in
;L
V
P
—
la
st
vo
te
pr
ec
ed
en
ce
;P
H
Y
—
ph
ys
ic
al
so
lu
tio
n
(e
.g
.
po
st
al
m
ai
l,
vo
tin
g
bo
ot
h,
et
c.
);
C
E
N
T
—
ce
nt
ra
lt
ru
st
ed
au
th
or
ity
.

R
eq
ui
re
m
en
t

Te
ch
ni
qu
es
us
ed
in
th
e
re
se
ar
ch
ca
se

B
T
94

SK
95

H
el
io
s

JC
J0
5

Se
le
ne

O
V
N

Vo
at
z

E
st
on
ia
n

sV
ot
e

C
hi
ro
to
ni
a

E
lig
ib
ili
ty

TO
K
E
N

-
TO
K
E
N

TO
K
E
N

SI
G
N

SI
G
N

TO
K
E
N

SI
G
N

SI
G
N

SI
G
N

Pr
iv
ac
y

E
N
C
,Z
K
P,
M
PC
,

H
M
,P
H
Y

E
N
C
,Z
K
P

E
N
C
,C
O
M

E
N
C
,Z
K
P

E
N
C
,Z
K
P

M
PC
,E
N
C

E
N
C

E
N
C
,H
M

E
N
C
,Z
K
P

E
N
C
,M
PC

A
cc
es
sib
ili
ty

-
-

C
E
N
T

-
T
R
A
C
K
E
R

-
C
E
N
T

C
E
N
T

-
-

U
ni
qu
en
es
s

TO
K
E
N

-
TO
K
E
N

TO
K
E
N

SI
G
N

SI
G
N

TO
K
E
N

SI
G
N

SI
G
N

SI
G
N

In
di
vi
du
al
Ve
ri
fia
bi
lit
y

-
Z
K
P

LO
G
,A
U
D

-
T
R
A
C
K
E
R

B
C

TO
K
E
N

T
R
A
C
K
E
R

PH
Y

B
C

U
ni
ve
rs
al
Ve
ri
fia
bi
lit
y

-
Z
K
P

LO
G
,A
U
D

-
Z
K
P

B
C

-
C
E
N
T
,Z
K
P

Z
K
P

B
C

A
ud
ita
bi
lit
y

-
-

LO
G
,A
U
D

-
-

B
C

-
LO
G
,Z
K
P

-
B
C

C
oe
rc
io
n-
re
sis
ta
nc
e

PH
Y
,

S-
R
A
N
D
,

H
M

D
E
C
E
IT
,

S-
R
A
N
D

S-
R
A
N
D

D
E
C
E
IT

D
E
C
E
IT

-
LV
P

LV
P

-
-

A
no
ny
m
ity

-
M
N

M
N
,Z
K
P

TO
K
E
N

-
TO
K
E
N

TO
K
E
N

M
N

-
SI
G
N

Tr
an
sp
ar
en
cy

-
-

LO
G
,A
U
D

-
-

B
C

-
-

-
B
C

13

noticed the lack of common understanding of the different dimensions of uncertainty. This ob-
structs the communication and trust between the policy decision-makers and scientific decision
supporters ultimately leading to worse policies. To solve this issue, the researchers provide har-
monised terminology and a systematic uncertainty matrix for the model-based decision support
activities. The uncertainty is defined as any deviation from the unachievable ideal of completely
deterministic knowledge of the relevant system. It is considered to have three dimensions: the lo‑
cation, the level and the nature of uncertainty. A deterministic model can be transformed into
a non-deterministic state in an uncertain environment. Verification of such a non-deterministic
system becomes challenging due to the increased state space.

In an electronic voting context, the uncertainty lies in the adversarial capabilities and their
probabilities. Due to the potential complexity of qualitative security models, minor changes might
significantly impact their quantitative evaluation. Therefore, the verification task is composite:
how to verify the legal compliance of a system in an uncertain election setting? The decision of
whether the particular system is legally compliant is based on the system’s representative model.
As the complexity of the system enhances, model abstractions are introduced. It becomes harder
to predict the individual components making the exhaustive test coverage crucial. Deviations
caused by environmental changes have to be taken into account in the process of verification and
validation to stamp the correctness of the system.

In 2007, a fuzzy logic-based threat modelling technique was proposed in the [SOO07]. Al-
though not widely used for Internet voting systems, the fuzzy logic-based verification paves
the way for uncertainty handling in classical threat modelling. In the proposed technique, the
STRIDEmodel is used to determine the input variables passed to the fuzzy inference engine. The
crisp numeric values indicating the severity of each threat (calculated via DREAD or any other
risk assessment model) and the output threat level variable are fuzzified - using the predefined
membership functions the variable membership values are calculated. Based on predefined fuzzy
rules, the inference engine outputs the calculated defuzzified crisp threat level numeric value.
The technique allows evaluation of the system security based on the level to which a particular
threat is possible in the specific election setting.

Another well-known technique to validate the system under uncertainties is numerical sim-
ulation. The evaluation is done of a single aggregation of uncertainties. Multi-run simulation
analysis is used, which requires several runs to enhance the coverage. However, this results in a
high degree of confidence. One of the techniques is the Monte Carlo analysis [MS02]. In this
case, the statistical properties of an uncertain system are determined. Here the values are chosen
randomly from probabilistic models. This is in the future carried out in the repeated simulation
runs. In [Neu16], Neumann proposes an e-voting scheme evaluation framework based on Monte-
Carlo simulations capable of evaluating the electronic voting schemes in a manner readable by
election officials. The evaluation process takes an Internet voting scheme, qualitative security
models and the election setting (probability distributions of adversarial capabilities) as input and
outputs the scheme’s satisfaction degree. Monte-Carlo simulations randomly samples the adver-
sarial capabilities according to the provided probability distributions. Then the probability that

14

an adversary might cause a certain impact on a specific security requirement in a specific scheme
is calculated and multiplied by the normalised impact which yields a risk value. The satisfaction
degree is the inverse of the largest risk value of all the impact levels calculated for the specific
election setting.

An alternative to simulations for the evaluation of an uncertain environment is formally mod-
elling of all possible states of all possible components of the system. However, as [CR20] conclude,
formal methods are difficult to integrate into the flow of the design, and have inherent scalability
issues due to the state-space explosion. Additionally, formal verification lacks the abstraction
needed to reapply the verification process to multiple systems of different architectures and make
informed decisions and is generally an expensive method.

One way to optimise the resources and effort required to verify and protect the system, is to
assess its risks and prioritize the most critical threats. This includes estimating the risk exposure
of vulnerable network nodes based on the knowledge of the threat likelihood and severity of its
impacts. For such analysis to be adequate, the dependencies between vulnerabilities must be
considered. Attack graphs [SHJ+02] represent prior knowledge about vulnerabilities and network
connectivity. They provide unified, visualised and perceivable way for the decision-makers and
decision-supporters to reason about threats, their risks, and possible countermeasures which is
known as static analysis. Additionally, attack graphs can be used to dynamically profile the at-
tacker’s paths to determine the possible future in an ongoing attack. Both, static and dynamic
analysis have inherent probabilistic characteristics given the uncertainty about the attackers’ ability
to exploit known vulnerabilities. In this sense, Bayesian networks provide an appropriate frame-
work to model attack graphs since they depict causal relationships between random variables in a
compact way.

The use of Bayesian networks for attack graph modelling was first introduced in [LM05] in
2005. The authors used Bayesian networks to calculate the probability that an attacker can reach
a security state given prior knowledge of the state it had reached. In [PDR11], the definition of
Bayesian attack graph is first formulated. The authors propose Bayesian attack graphs as a method
to encode the contribution of different security conditions during system compromise. Organi-
sation’s security risk is proposed to be calculated based on the metrics defined in the Common
Vulnerability Scoring System (CVSS)2. According to the authors, the Bayesian attack graph con-
sists of: (i) a set of attributes, an attribute being a Bernoulli random variable representing the state
of some generic system property; (ii) a set of edges between attributes; (iii) a set of attribute and
decomposition mappings, where decomposition can have a value AND or OR and defines whether
all or any of parent attributes must be in true state for the attribute itself to be true; (iv) a set
of discrete condition probability distribution functions representing probabilities of the attribute
states based on the state of its parents.

In [GHL18], the authors propose a probabilistic model to perform the security risk assessment
procedure. The framework takes a network asset and a vulnerability database as inputs and,
through multiple phases, outputs the computed static security risk. The intermediate phases

2https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

15

include: (i) risk detection - firstly, network assets are identified and, secondly, network hosts are
scanned for vulnerabilities; (ii) risk assessment - network vulnerability, system configuration and
host connectivity are inputs to the MulVAL tool [OGA+05]. The tool establishes a probabilistic
attack graph according to the causal relationships among the multi-stage attacks using Bayesian
networks. Leveraging inference algorithms, static risk assessment can be performed.

The increased threat that unknown vulnerabilities and the information asymmetry between
attackers and defenders pose to the system is discussed in [HLL19]. The authors distinguish
between Known Vulnerability Risk Assessment (KVRA) and Unknown Vulnerability Risk As-
sessment (UVRA). Similarly to the [GHL18] and to the methodology proposed in this work, the
KVRA includes network information acquisition (based on vulnerability databases and scanners),
vulnerability quantification (CVSS or other metrics), automatic attack graph generation and vul-
nerability risk assessment based on the generated graph. The UVRA divides vulnerabilities into
known and zero-day by setting a time point. For example, if the time point is set as 2018/12/31,
vulnerabilities before this point are considered known and vulnerabilities after this point are re-
garded as zero-day vulnerabilities.

16

3 Methodology

The risk assessment methodology used in this work is shown in Fig. 1. Four distinct steps must
be performed:

1. Ontology Development To systematically gather knowledge an ontology must be defined
which determines the required types of knowledge and relationships between known facts.
In the overall risk assessment context, the developed ontology provides rules for the attack
graph generation. These rules can be verified and their semantic reasoning discussed before
any further risk assessment.

2. Ontological Knowledge Acquisition After the ontology is developed, an ontological
knowledge about the target system must be gathered. Various automatic and manual pro-
cedures can be used for this goal: vulnerability scanners, consultations, model checkers,
language models, static and dynamic code analysis etc. In the context of electronic voting,
the knowledge is gathered from the information about the proposed system (source code,
configuration, etc.), the vulnerability knowledge bases and legal regulations.

3. Attack Graph Generation Based on the gathered knowledge, and the developed ontol-
ogy, an attack graph is generated. For efficiency and maximum correctness, this phase
should be automatic. Automatically generated graphs can be manually pruned. However,
the necessity of pruning is a symptom that the developed ontology lacks detail that would
allow automatic filtering of such nodes. After this step the ontology could be refined.

4. Risk Assessment Many algorithms and automatic tools exist to efficiently infer Bayesian
attack graphs and calculate unconditional probabilities of each node (state). Based on the
calculation result the system analyst can identify the most probable attack paths, vulnera-
bilities that require attention and mitigation, the most vulnerable components.

Ontology Development

Ontological Knowledge Acquisition

Regulation AnalysisSystem Analysis

Attack Graph Generation

Risk Assessment

Legal
Regulations

NVD
Knowledge
Base

CWE
Knowledge
Base

CAPEC
Knowledge
Base

CVSS SystemKnowledge Analysis

Identify Attacker
Goals

Identify Components Identify Weaknesses

Identify Attack Patterns Calculate Attack Probabilities

Automatically Generate

Manually PruneCalculate Unconditional Probabilities Identify Vulnerable Components

Identify Mitigations

Related Work Ontology

System
Configuration

Source
Code

Ontological Knowledge

Bayesian Attack Graph

EvaluationRecommendations

Fig 1. The risk assessment methodology.

17

3.1 Ontology Development

When dealing with knowledge, ontologies are irreplaceable. Ontology-driven threat modelling
is a well developed concept. OWASP develop a framework called OdTM3 that enables formal-
ization of security related knowledge in form of domain-specific ontologies in the OWL (Web
Ontology Language) format. The framework allows to describe a system with a data flow diagram,
and use automatic reasoning procedures to build a threat model. An extension of the OWL lan-
guage, called PR-OWL [CLC17], introduces new definitions to model uncertainties. According
to [NM+01], ontology development is an iterative process which starts by defining the domain
and scope. The scope can be defined by sketching a list of questions that the knowledge base
based on the ontology should be able to answer. Additionally, concepts and their hierarchies
must be defined. Ontologies are only true ontologies if concepts are related to other concepts
(the concepts have attributes). Relations specify how objects are related to other objects. Much
of the power of ontologies comes from the ability to describe relations. An important type of
relation in the subsumption relation (is a) that defines classifications of objects. Another com-
mon type of relation is the mereology relation (part of) that represents how objects combine to
form composite objects.

For this work, the ontology is developed so that an analyst can gather necessary information to
assess risk. The current state of the ontology focuses on software vulnerabilities and does not allow
for network protocol vulnerability representation nor for more complex types of communication.

actor

asset

location

vulnerability

weakness

attack pattern

impact

election compromise

exploit

probability

privilege

threat

regulation reference

mitigation

has ais a

implies

implies

impliesimplies

implieshas a

has a

has a

has a

requires

has a

has a

requires

is a

requires

implies

has a

has a

prevents

Fig 2. The developed ontology.

The developed ontology visualised in the Figure 2 defines five types of relationships:

• has a - a relationship between a state and its attribute: an state has an attribute.
3https://owasp.org/www-project-ontology-driven-threat-modeling-framework/

18

• is a - a relationship between a state and its refinement: a state refinement is a state and
inherits the state’s attributes, preconditions and postconditions.

• implies - a relationship between a precondition and the postcondition: a precondition im-
plies a postcondition.

• prevents - an opposite relationship to the implies: a precondition prevents a postcondition.

• requires - a relationship between a postcondition and its precondition: a postcondition
requires a precondition.

The following are the knowledge types required for the analysis performed in this work:

• asset - a digital asset (a piece of data) that an attacker aims to obtain.

• location - a location (component) in the system’s network.

• actor - any internal or external actor that uses or wishes to use (misuse) the system.

• privilege - rights in the system that an actor can have.

• weakness - a system’s condition that, if exploited, may lead to vulnerabilities.

• vulnerability - an exploited weakness that have some undesired impact on the system’s state.

• impact - a consequence that a successful exploitation of vulnerabilities has.

• exploit - an event of making use of weaknesses or vulnerabilities to reach some system state.

• probability - a likelihood of an event.

• attack pattern - a collection of concrete steps that an attacker can take to exploit a weakness
or vulnerability.

• election compromise - a state where the election protocol run is compromised. Not every
system compromise leads to the election compromise due to the possibility of security
controls or fault tolerance.

• threat - a threat to system requirements.

• mitigation - a security control that minimises the probability of an exploit.

• regulation reference - a reference to the concrete legal regulation for requirement traceability.

19

3.2 Knowledge Bases

Most of knowledge-driven risk assessments rely on publicly maintained knowledge bases. This
work retrieves data from the following enumerations:

• Common Vulnerability Enumeration (CVE)4 - a list of publicly disclosed security
flaws.

• Common Weakness Enumeration (CWE)5 - a list of publicly maintained list of com-
mon software and hardware weaknesses. A weakness is a condition in a system which under
certain circumstances could contribute to the introduction of vulnerabilities.

• Common Attack Pattern Enumeration and Classification (CAPEC)6 - a publicly
available catalogue of common attack patterns that helps understanding how adversaries
exploit weaknesses and what impacts the exploits imply. CAPEC patterns are linked to the
CWEs they exploit and, likewise, CWEs list CAPEC entries that they are susceptible to.

3.3 Common Vulnerability Scoring System

To quantify the analysis, some sort of numerical evaluation of the threats must be provided.
Common Vulnerability Scoring System (CVSS)7 is a free and open industry standard for assessing
the severity of vulnerabilities. When in lack of more precise probability calculations, the analyses
usually benefit from CVSS scores to approximate the risk. The CVSS score is a decimal number
on a scale of 0 to 10 and consists of three metric groups: base, temporal and environmental. The
base metrics quantify the intrinsic characteristics of a vulnerability with two subscores - (i) the
exploitability subscore, composed of the access vector (BAV), access complexity (BAC), required
privileges (BPR) and user interaction (BUI); (ii) the impact subscore, expressing the potential
damage on confidentiality (BC), integrity (BI) and availability (BA). Following the example of
the [PDR11], probability of a vulnerability v can be estimated from the exploitability attributes
and the CVSS exploitability formula:

Pr(v) = 0.822 ∗BAV ∗BAC ∗BPR ∗BUI (1)

3.4 Bayesian Attack Graphs

Attack graphs represent prior knowledge about vulnerabilities and network connectivity, enabling
system administrators to reason about threats and their risks in a formal way. They are an ef-
ficient tool to statically analyse and determine the most effective threats and produce a better
countermeasures selection. Two main types of attack graphs are used in the literature: state-based
representations and logical attack graphs. In state-based representations, each node represents the

4https://nvd.nist.gov/
5https://cwe.mitre.org/
6https://capec.mitre.org/
7https://www.first.org/cvss/user-guide

20

state of the whole network after a simple attomic attack, and contains a table with global vari-
ables defining that state. In contrast, logical attack graphs are defined as bipartite graphs which
represent dependencies between exploits and security conditions. In [MSB+17], logical represen-
tations are formally defined as a directed bipartite graph G = (E∪C;Rr ∪Ri, where the vertices
E and C are the sets of exploits and security conditions, respectively, and the edges Rr ⊆ C×E

and Ri ⊆ E × C are require and imply relations.
In [PDR11], attack graphs were extended to support probabilistic modelling and a concept of

Bayesian attack graphs was introduced. Bayesian attack graphs extend classical attack graphs by
assigning every node with a local conditional probability distribution (LCPD). LCPD is a set of
probability values specifying the chances of the node being compromised, given different com-
bination of states of its parents. The existence of this probability is what primarily differentiates
a Bayesian attack graph from a classical attack graph. Even if all preconditions of an attack have
been met, there can still be a nonzero probability that an attacker is not able to carry out all the
exploits successfully. Bayesian graph nodes have a decomposition property which determines
how the conditional probabilities are calculated.

After the construction of a Bayesian attack graph, static risk assessment can be conducted by
calculating the unconditional probabilities of each node. For these calculations, subjective proba-
bilities of the initial state (which usually determines probabilities that attacker with specific capa-
bilities exist) must be provided. There exist multiple algorithms and automatic tools to calculate
unconditional probabilities due to the fact that the exact calculation following the Bayes rule is
an NP-Hard problem that needs optimisation for bigger graphs.

Steps of the Bayesian attack graph static analysis:

1. Build the BAG: nodes represent the different security states (compromises) that an attacker
can reach and different conditions (exploits) contributing to compromises with nonzero
probabilities. For each node Xi there is a directed edge from each node in the set of parent
nodes pai pointing to Xi. Each node Xi can have one of two states: 0, 1.

2. Determine the probability pvi of the successful exploitation of the vi that leads to the state
Xi, (e.g. using the base score metric of the CVSS score discussed in Section 3.3).

3. Build the conditional probability tables based on OR/AND node decomposition rules. As
defined in literature, a logical AND (all preconditions should be met to compromise node
Xi) can be expressed as:

p(Xi|pai) =

0 if ∃Xj ∈ pai|Xj = 0∏
Xj=1 pvj otherwise

(2)

A logical OR (only one of the preconditions in pai need to be satisfied to compromise Xi)
can be expressed as:

21

p(Xi|pai) =

0 if ∀Xj ∈ pai|Xj = 0

1−
∏

Xj=1 (1− pvj) otherwise
(3)

4. Compute the unconditional probabilities of all nodes in the BAG. These probabilities serve
as risk estimates that can be used to detect weak areas in the network and serve as an input
for network hardening or static risk mitigation techniques.

3.5 Automatic Graph Generation

An in-house tool was built around the AgenaRiskmodeller library8 to generate attack graphs. The
AgenaRisk modeller is a design and execution environment for creating and analysing Bayesian
networks. The developed tool derives network nodes, edges and node probability tables (NPT)
based on the rules imposed by the ontology:

• knowledge items of all types except exploits (and attack patterns) define nodes in the net-
work;

• exploits define edges between nodes, and their probabilities are used to calculate the NPTs
of nodes based on the rules described in the Section 3.4;

• attack graph starts from the actor type nodes, and following the implies and prevents rela-
tionships reaches threat type nodes which are terminal;

• mitigation nodes are special in the sense that they set the exploit’s probability to zero for
all postcondition’s that they prevent;

• the graph is pruned so that only the complete paths between actor and threat nodes remain.

3.6 Risk Assessment

After the network is constructed, the AgenaRisk environment allows for several types of analyses.
Observational information can be entered in place of the probabilities in the NPT. By doing this,
what-if scenario analysis can be done to examine the effects specific risk events have on threat
probabilities. Sensitivity studies can be conducted to determine a critical path of influence in a
risk network.

8https://pypi.org/project/pyagena/

22

4 Ontological Knowledge Acquisition

4.1 Regulation Analysis

In this work, the feasibility of an Internet voting system is evaluated in the context of legal Internet
voting regulations in Lithuania. The regulations are informally mapped onto the ontological
concept of a threat. As per the developed ontology, threats are linked to the source regulation
for traceability. Threat knowledge table is provided in the 2.

Legal Internet voting regulations, discussed in Section 2.1.2, are defined in the Internet voting
draft law proposed in 2018 by the Ministry of Justice of the Republic of Lithuania [Min18]. Based
on the regulations and the related security analyses ([SFD+14], [JRS+04]), five major threats are
formulated:

1. Voters’ Disenfranchisement Internet voting provides opportunities for selective disen-
franchisement, either of individuals or of classes of voters based on the likelihood of their
preference. The threat could be fulfilled by a denial of service attack, or a malicious com-
ponent in the voting client detaining the votes. These kinds of attacks require low skill and
can be hard to diagnose. Denial of service attacks can be prevented by elimination of any
single points of failure that could be attacked. Preventing voters from casting a ballot, or
ballot box from recording the ballot would directly disobey the Article §3.3 of the draft
law.

2. Ballot Altering Electronic voting faces the threat of an attacker not only detaining but
also modifying the ballot. As discovered in the Estonian e-voting system security analysis
[SFD+14], a malicious component in the voter’s device can change the vote after the vote
verification phase has ended and the voter has no way of verifying their submission. This
kind of attack could be deployed widely and completely compromise the election. Ballot
forgery would make the system non compliant with the Articles §9.1, §9.2 and §9.3 of the
draft law.

3. Voter Privacy Breach The secrecy of voters’ ballots is a crucial asset in an electronic
voting which can attract attackers of various skills. In a traditional paper-based e-voting
protocol, voters’ privacy is protected by the voting booth which isolates the voter, and
a mixed ballot box which separates the ballot from its owner in an untraceable manner.
Most electronic voting frameworks protect voter privacy with encryption. However, even
without the cryptographic material, side-channel attacks are a powerful threat to private
information. Protection of the voter’s privacy is defined the Article §3.1 of the draft law.

4. Multiple Ballots A well-known voter fraud is when a voter votes more than once. The
feasibility of this threat depends on the voter identification and authorisation correctness
and the duplicate ballot removal implementation in the tally stage. Firstly, an e-voting
protocol must have a way to anonymously identify ballots belonging to the same voter.
Only after the duplicate ballot removal can the system strip this information and shuffle

23

the depersonalised ballots. Adding additional ballots to the ballot box would breach the
Article §3.3 in the draft law.

5. Non Eligible Voters Articles §6.1 and §9.4 regulate that only eligible voters must be able
to participate in the election process. In the paper and electronic voting, eligible voters
are listed out in the electoral roll. Secure storage and eligibility verification procedures are
crucial to the integrity of the ballot box.

Id Name Regulation Reference
threat-1 Ballot Altering §9.1 §9.2 §9.3
threat-2 Voter Privacy Breach §3.1
threat-3 Voter Disenfranchisement §3.3
threat-4 Multiple Ballots §3.3
threat-5 Non Eligibile Voters §6.1 §9.4

Table 2. Knowledge of threats.

4.2 System Analysis: Chirotonia

Chirotonia is an e-voting platform developed and maintained by the Network Security research
group at the University of Naples Federico II [RAV+21]. It offers a framework for small-scale au-
ditable e-voting with low-risk coercion. In addition to being a theoretic sandbox for the research
group, Chirotonia is successfully used in local university elections. The security of the platform
is claimed to be guaranteed by the blockchain as a secure, untamperable, auditable, distributed
ledger, and linkable ring signatures as an anonymous proof of voters’ eligibility and vote unique-
ness. According to the Chirotonia paper [RAV+21], the chain-of-blocks data structure allows any
modification to the system state to be audited in an untamperable manner on the blockchain itself
as part of the state (e.g. a transaction that calls a function in a smart contract is stored including
information on the called function and all the parameters passed as arguments). These features
are claimed to make the platform highly auditable and transparent to anyone. Another important
building block of Chirotonia are linkable ring signatures [LWW04]. They allow the creation of
signatures on behalf of a group of signers while hiding the identity of the actual signer among
the group. The ring signature can be publicly verified to have been produced by a member of
the provided group. Additionally, the linkability feature introduces a public way of determining
whether two signatures have been produced by the same signer while preserving the anonymity
of the signer and the signed message (ballot).

4.2.1 Assets

During the run of the Chirotonia voting protocol, multiple assets are created and transmitted
between system components. The Table 3 lists out the identified assets and assigns a symbol for
traceability in diagrams.

Assets can be viewed as groups: (i) election protocol assets; (ii) cryptographic material re-
quired by chosen cryptographic schemes; (iii) authorisation assets.

24

Id Name Symbol

asset-1 Plain Text Ballot

asset-2 Encrypted Ballot

asset-3 Signing Key

asset-4 Signature Verification Key

asset-5 Decryption Key

asset-6 Session Cookie

asset-7 Electoral Roll

asset-8 Voting Card

asset-9 User’s Password

asset-10 Encrypted Signing Key

asset-11 Ethereum Account Private Key N/A

asset-12 Voter’s Signature

Table 3. Knowledge of assets.

Election Protocol Assets Assets required by the Chirotonia voting protocol are similar to
the ones found in similar systems and the paper-based voting protocols. All voting is done via
ballots, the voter eligibility is traced in the electoral roll, and the registration and voting phases
are separated by the introduction of voting cards that are the outcome of successful registration.

Cryptographic Material Chirotonia encrypts ballots with the RSA-2048 scheme which,
in the current implementation, yields a 2048-bit decryption key asset. Theoretically, this key is
supposed to be generated by distributed actors, but this is not the case in the analysed version of
the system.

After encryption, ballots are signed with a linkable ring signature. The signature scheme is
defined by four probabilistic polynomial-time algorithms (KeyGen, Sign, V erify, Link) such
that:

• KeyGen(1l), the key generation algorithm, takes as an input the security parameter l and
outputs a pair (pk, sk) of public (verification) and secret (signing) keys;

• Sign(1l, skπ, pk1, ..., pkn,m), the signing algorithm, takes as input the security parameter
l, a secret key skπ for some π ∈ {1, ..., n}, a messagem and a list of public keys pk1, ..., pkn,
and outputs a signature δ;

• V erify(1l, pk1, ..., pkn,m, δ), the verification algorithm, takes as input the security param-
eter l, a list of public keys pk1, ..., pkn, a message m, and a signature δ, and outputs a bit
b ∈ {0, 1}: 1 if the signature is recognised as valid w.r.t. the list of public keys, and 0
otherwise;

• Link(δ1, δ2,m1,m2), the linking algorithm, takes as an input two signatures, δ1, δ2 and two
messages m1,m2, and outputs a bit b ∈ {0, 1}: 1 if the two signatures have been produced
with the same secret key, 0 otherwise.

25

The signature scheme yields the signing key and the signature verification keys. Chirotonia
was designed to store the signing key in the voting card which requires encryption. The signing
key is encrypted with the AES-256 scheme for which the key is derived from the user-inputted
password.

Authorisation Assets The main authorisation asset is the session cookie that the client
receives after successful authorisation. Additionally, the underlying administrative Ethereum
account’s have their private keys.

4.2.2 Locations

Chirotonia is composed of multiple voting and administration components that play their role in
the run of the protocol. The Table 4 lists out the components that are cross-referenced with the
assets they have access to.

Id Name Assets
loc-1 Voting Server asset-2, asset-8, asset-4, asset-6
loc-2 Voting Client asset-1, asset-2, asset-4, asset-3, asset-6, asset-8, asset-9, asset-10
loc-3 Ethereum Signer asset-11, asset-2, asset-4
loc-4 Database asset-2, asset-7, asset-4
loc-5 Ethereum Validator asset-2, asset-4
loc-6 Ethereum Node asset-2, asset-4
loc-7 Public Network asset-2, asset-4
loc-8 Smart Contract asset-4, asset-2
loc-9 Administration Server asset-5
loc-10 Voting Device asset-8
loc-11 Ethereum Explorer asset-2, asset-4

Table 4. Knowledge of locations.

1. Voting Clients Voters’ browsers running the ReactJS voting applications. During different
phases have access to the session cookie, plain text ballot, encrypted ballot, plain text and
encrypted signing key, signature verification key, voting card and user’s password.

2. Voting Devices Devices on which the voters vote. The devices store voters’ voting cards.

3. Chirotonia Web Server A Node.js restful web server responsible for registering voters,
checking their eligibility, validating and writing the ballots to the blockchain. During
different phases have access to the encrypted ballots, signature verification keys, voting
cards and session cookies.

4. Blockchain Network A private and permissioned Ethereum network. Consists of:

• Ethereum Node A Hyperledger Besu Ethereum client to which all the transactions
are sent by the web server. During different phases has access to signature verification
keys, encrypted ballots and, after the tally, the plain text ballot.

• Ethereum Validator A Hyperledger Besu Ethereum client. It has access to the data
provided in the transactions: signature verification keys, encrypted ballots and, after
the tally, the plain text ballot.

26

• EthereumExplorerAweb application connected to the EthereumNode. It provides
access to Ethereum transactions and the data in them (signature verification keys,
encrypted ballots, and the plain text ballot). Ethereum Explorer is meant to be used
for auditing and verification purposes, however the blockchain data is hardly human-
readable.

• Ethereum Signer A proxy service responsible for signing blockchain transactions
and forwarding them to the Ethereum client. Stores a private Ethereum account key.
Being a proxy service, it has access to assets transmitted in the transactions: signature
verification keys and encrypted ballots.

5. Chirotonia Smart Contract Self-executingChirotonia protocol on the blockchain. Stores
signature verification keys and the encrypted ballot box.

6. Database NoSQL database which stores the electoral roll, signature verification keys, and
the encrypted ballot box.

7. Identity Provider A trusted identity provider used to authenticate voters. The most
important asset associated with authentication is the session cookie.

8. Public Network A communication channel through which the data from one component
reaches another.

Figure 3 demonstrates communication between Chirotonia components.

Blockhain Network

«Smart Contract»
Chirotonia

Voter

Organiser

Voting Client

Administration Client
Identity Provider

«Web Server»
Chirotonia

«Web Server»
Administration

CouchDB

data

data

smart contracts

HTTPS

HTTPS

Web3

SAML 2.0

HTTP

HTTP

SAML 2.0

Fig 3. Communication between Chirotonia components.

4.2.3 Phases

From the voter’s perspective,Chirotonia runs through the registration, voting and tally phases. The
Chirotonia paper [RAV+21] envisions the phase transitions enforced by the blockchain events. In
the implementation, vote opening/closing blockchain events are manually fired by the organiser.
The blockchain will not accept voter identifiers nor ballots during improper states. Additionally,
the voting server has its own election state tracking in the database which is updated manually by
the organiser before each new phase.

From the organiser’s perspective, additional phases of election setup, vote opening and closing
need to be performed.

27

Organiser

Organiser

«Web Server»
Administration

«Web Server»
Administration

CouchDB

CouchDB «Smart Contract»
Chirotonia

Deploy «Smart Contract»
Chirotonia

Fig 4. The setup phase se-
quence.

Setup The organiser initiates the election session by deploy-
ing the components and the smart contract. A pair of crypto-
graphic keys is generated for each election. Before moving to the
registration phase, the organiser manually saves the electoral roll
and the election session data in the database. The sequence dia-
gram in Figure 4 shows the flow of the setup phase.

Registration Before the voting, voters are asked to authen-
ticate themselves via the identity provider through the use of the
SAML 2.0 protocol. The protocol sequence can be seen in Figure
5. Before accessing any resources, a user is redirected to the iden-

tity provider to authenticate. After successful login, the identity provider generates and sends an
authentication token to the user’s browser. Any subsequent request by the user to the web server
will contain the generated token which can be used to verify the user’s identity.

«Web Browser»
Voting Client

«Web Browser»
Voting Client

«Web Server»
Chirotonia

«Web Server»
Chirotonia

Identity Provider

Identity Provider

request

redirect to idp

HTTP POST w/ Auth Request

verify Auth Request

redirect to login page

credentials

request

Fig 5. SAML 2.0.

«Web Browser»
Voting Client

«Web Browser»
Voting Client

«Web Server»
Chirotonia

«Web Server»
Chirotonia

Session Storage

Session Storage

SAML 2.0 response

verify signature

retrieve user identifier

create session

session

session cookie

Fig 6. Session storage.

In the Chirotonia server implementation, the authentication tokens are handled by the
passport-saml library. After receiving a SAML 2.0 response, it’s signature is verified against the
configured Identity Provider’s public certificate. If the SAML response is valid, the web server
stores the user’s identifier in a session. User sessions are managed by the express-session
library which creates and sends a session cookie to the client’s browser. For each subsequent re-
quest, the browser sends the session cookie back to the server which validates it against a session
store (in-memory, or database). A valid session cookie is the only asset needed to access server
resources. Session configuration in Chirotonia does not set the maximum cookie age.

After the successful authentication, the web server additionally verifies the voter’s eligibility
against the electoral roll. Upon approval from the web server, the voters can register themselves
for an election by generating a voting card which includes the voter’s signing and verification
keys and the signed identifier (e-mail address). The signing key is encrypted with a key derived
from a user-inputted password, and the voting card is sent to the web server. The voter must
download their card to their device, and, optionally, save it in the browser’s local storage. [Pis21].
The sequence diagram in Figure 7 shows the flow of the registration phase.

28

User

«Web Browser»
Client Identity Provider

«Web Server»
Chirotonia CouchDB

User

«Web Browser»
Client

Identity Provider «Web Server»
Chirotonia

CouchDB

Register Auth Request

Login PageLogin Page

alt [voter recognized]

[voter not recognized]

GET /registration

alt [voter eligible]

[voter not eligible]

Voter
Profile

Registration PageRegistration Page

opt [local browser storage]

Save

ErrorError

ErrorError

Fig 7. The registration phase sequence.

Organiser

Organiser

«Web Browser»
Client

«Web Browser»
Client

«Web Server»
Administration

«Web Server»
Administration

«Web Server»
Chirotonia

CouchDB

CouchDB

«Smart Contract»
Chirotonia

«Smart Contract»
Chirotonia

Election State

POST /prepare

Election ID

Restart «Web Server»
Chirotonia

Election ID

Cache

Election ID

✉ New
Election

Election ID

loop [for each registered voter]

✉ Voter
Registered

Election ID

✉ Open
Voting

Fig 8. The opening phase sequence.

User

«Web Browser»
Client

«Web Server»
Chirotonia

«Smart Contract»
Chirotonia CouchDB

User

«Web Browser»
Client

«Web Server»
Chirotonia

«Smart Contract»
Chirotonia

CouchDB

Vote

alt [device storage]

[local browser storage]

GET /voting

Voting Page

Election ID Election ID

Password Input

Verify Signature

alt [signature valid]

[signature invalid]

Transaction Hash

Blockchain
Explorer Link

Blockchain
Explorer Link

ErrorError

Fig 9. The voting phase sequence.

29

Opening After the registration phase is over, the organiser divides registered voters into
signing groups and stores the election data in the Chirotonia smart contract. To open the voting
phase, the organiser manually updates the election state in the database and fires the Open Voting
blockchain event. Linkable ring signature schemes are created and cached in the voting server
for optimised signature verification. The sequence diagram in Figure 8 shows the flow of the
opening phase.

Voting During the voting phase, a voter uploads the voting card to the browser (if it hasn’t
been saved in the local browser storage during the registration phase), selects their preference, and
inserts the password to decrypt the signing key. The browser calculates the linkable ring signature,
encrypts the ballot, and sends them both to the voting server which validates the signature, saves
the ballot to the database and transacts the ballot to the blockchain. The voting server returns to
the voter the blockchain explorer link as a receipt. The sequence diagram in Figure 9 shows the
flow of the voting phase.

User

User

«Web Browser»
Client

«Web Browser»
Client

«Web Server»
Ethereum Explorer

«Web Server»
Ethereum Explorer

Ethereum Node

Ethereum Node

Ethereum Explorer Link

Transaction Hash

JSON RPC Request

Transaction Details

Transaction Details

Transaction Details

Fig 10. The vote verification
phase sequence.

Organiser

Organiser

CouchDB

CouchDB

«Smart Contract»
Chirotonia

«Smart Contract»
Chirotonia

Election State

Election ID

Election State

Election State

Change Election State

✉ Close Voting

Fig 11. The closing phase se-
quence.

Organiser

«Web Browser»
Client

«Web Server»
Administration CouchDB

Organiser

«Web Browser»
Client

«Web Server»
Administration

CouchDB

Tally

GET /results

Election ID

Election Data

Check the Voting End Date

alt [voting has ended]

[voting has not ended]

Election ID

ErrorError

Fig 12. The tally phase sequence.

Verification Voters can verify their ballot transac-
tion details with the blockchain explorer link provided
to them after successful voting. The transaction details
contain the transaction date, sender and the encrypted
ballot. The ballot decryption key is only released af-
ter the voting phase has been closed so there is no way
to verify the decrypted ballot during the voting. The
sequence diagram in Figure 10 shows the flow of the
verification phase.

Closing To end the election session, the organ-
iser closes the voting phase in the database and fires the
Close Voting blockchain event. The sequence diagram
in Figure 11 shows the flow of the closing phase.

Tally The election tally is calculated in the ad-
ministration server by loading all valid ballots from
the database, decrypting them with the decryption key

30

(stored in the server during the setup phase), and grouping valid ballots by the chosen candidate.
Election outcome and the log of all ballot transaction hashes can be exported to a file. Signatures
are not re-validated during the tally calculation. Ballots stored in the smart contract are ignored
during the tally performed by the administration portal. To verify that the published outcome is
correct, one would need to audit the ballot transaction hash log manually or automatically. The
sequence diagram in Figure 12 shows the flow of the tally phase.

4.2.4 Election Compromises

Based on the system analysis possible election compromises are identified. As per the ontology,
compromises happen in locations that have target assets. Impacts on specific assets imply compro-
mises, and compromises imply threats to regulation compliance. Compromises can be composite
and have preconditions. Table 5 lists out prominent election compromises.

Id Name Asset Impact Threat Requires
comp-1 Falsely Submitted Ballot threat-1 comp-2, comp-3, comp-9
comp-2 Stolen Password asset-9 Confidentiality:Read Data
comp-3 Stolen Voting Card asset-8 Confidentiality:Read Data
comp-4 Ballot Forgery asset-2 Integrity:Modify Data threat-1 comp-9
comp-5 Stolen Decryption Key asset-5 Confidentiality:Read Data threat-2
comp-6 Plain Text Ballot Exposure asset-2 Confidentiality:Bypass Protection

Mechanism
threat-2

comp-7 Unavailable Component asset-2 Availability:Resource Consump-
tion

threat-3

comp-8 Ballot Box Write Access asset-2 Access_Control:Gain Privileges threat-3
comp-9 Fake Receipt asset-12 Integrity:Modify Data
comp-10 Voting for an Absentee threat-4 comp-11
comp-11 Stolen Session asset-6 Confidentiality:Read Data threat-1
comp-12 Add Ineligible Authenticated Vot-

ers
asset-7 Integrity:Modify Data threat-5

comp-13 Add Fake Voters threat-5 comp-14, comp-15
comp-14 Modify Electoral Roll asset-7 Integrity:Modify Data
comp-15 Bypass Authentication asset-6 Authorization:Gain Privileges
comp-16 Plain Text Ballot Exposure asset-2 Confidentiality:Gain Privileges threat-2
comp-17 Dropped Ballots asset-2 Integrity:Modify Data threat-3

Table 5. Knowledge of compromises.

4.2.5 Weaknesses

This work assesses the risk of software weaknesses in the Voting Server and the Voting Client.
TheChirotonia source code was scanned with vulnerability scanners to compile the vulnerabilities’
knowledge table 6. The identifiers and additional information was retrieved from the knowledge
bases as described in Section 3.2. Additionally, some weaknesses were addedmanually: the CWE-
494 (Download of Code Without Integrity Check) weakness to assess the risk posed by a weak
supply chain, the CWE-284 (Improper Access Control) to model a scenario where an attacker has
access to the user’s device, and the CWE-300 (Channel Accessible by Non-Endpoint) to assess
network-related threats.

4.2.6 Mitigations

Due to the lack of blockchain-specific weakness enumeration, vulnerabilities for blockchain com-
ponents are not included in this analysis. Blockchain components are assumed to be secure and
blockchain procedures in the protocol are considered as mitigations. However, in the current im-
plementation of Chirotonia, the web server has many responsibilities and very little verification is

31

Id Name Location Requires Patterns Probability Privileges
CWE-441 Unintended Proxy or Intermediary

(’Confused Deputy’)
loc-1 CAPEC-141, CAPEC-142,

CAPEC-219, CAPEC-465
0.39 NONE

CWE-770 Allocation of Resources Without
Limits or Throttling

loc-1 CAPEC-125, CAPEC-130,
CAPEC-147, CAPEC-197,
CAPEC-229, CAPEC-230,
CAPEC-231, CAPEC-469,
CAPEC-482, CAPEC-486,
CAPEC-487, CAPEC-488,
CAPEC-489, CAPEC-490,
CAPEC-491, CAPEC-493,
CAPEC-494, CAPEC-495,
CAPEC-496, CAPEC-528

0.31 NONE

CWE-613 Insufficient Session Expiration loc-1 0.29 NONE
CVE-2022-39300 CVE-2022-39300 loc-1 CAPEC-463 0.22 NONE
CWE-352 Cross-Site Request Forgery

(CSRF)
loc-1 CWE-346, CWE-441,

CWE-642, CWE-613
CAPEC-111, CAPEC-462,
CAPEC-467, CAPEC-62

0.28 NONE

CVE-2022-25896 CVE-2022-25896 loc-1 CAPEC-31, CAPEC-39,
CAPEC-60, CAPEC-61,
CAPEC-59, CAPEC-21,
CAPEC-196

0.22 NONE

CWE-642 External Control of Critical State
Data

loc-1 CAPEC-21, CAPEC-31

CWE-384 Session Fixation loc-1 CWE-346, CWE-472,
CWE-441

CAPEC-196, CAPEC-21,
CAPEC-31, CAPEC-39,
CAPEC-59, CAPEC-60,
CAPEC-61

0.29 NONE

CWE-472 External Control of Assumed-
Immutable Web Parameter

loc-1 CAPEC-146, CAPEC-226,
CAPEC-31, CAPEC-39

0.39 NONE

CWE-346 Origin Validation Error loc-1 CAPEC-111, CAPEC-141,
CAPEC-142, CAPEC-160,
CAPEC-21, CAPEC-384,
CAPEC-385, CAPEC-386,
CAPEC-387, CAPEC-388,
CAPEC-510, CAPEC-59,
CAPEC-60, CAPEC-75,
CAPEC-76, CAPEC-89

0.29 NONE

CVE-2023-44487 CVE-2023-44487 loc-1 CAPEC-197, CAPEC-147,
CAPEC-492

0.39 NONE

CVE-2022-29078 CVE-2022-29078 loc-2 CAPEC-77, CAPEC-35,
CAPEC-242

0.39 NONE

CWE-295 Improper Certificate Validation loc-2 CAPEC-459 0.28 NONE
CWE-79 Improper Neutralization of In-

put During Web Page Generation
(’Cross-site Scripting’)

loc-2 CAPEC-209, CAPEC-588,
CAPEC-591, CAPEC-592,
CAPEC-63, CAPEC-85

0.09 HIGH

CWE-521 Weak Password Requirements loc-2 CAPEC-112, CAPEC-16,
CAPEC-49, CAPEC-55,
CAPEC-70

0.34 NONE

CWE-300 Channel Accessible by Non-
Endpoint

loc-7 CAPEC-466, CAPEC-57,
CAPEC-589, CAPEC-590,
CAPEC-612, CAPEC-613,
CAPEC-615, CAPEC-94

0.21 NONE

CWE-494 Download of Code Without In-
tegrity Check

loc-10 CAPEC-184, CAPEC-185,
CAPEC-186, CAPEC-187,
CAPEC-533

0.27 NONE

CWE-284 Improper Access Control loc-10 CAPEC-19, CAPEC-441,
CAPEC-478, CAPEC-479,
CAPEC-502, CAPEC-503,
CAPEC-536, CAPEC-546,
CAPEC-550, CAPEC-551,
CAPEC-552, CAPEC-556,
CAPEC-558, CAPEC-562,
CAPEC-563, CAPEC-564,
CAPEC-578

0.3 LOW

Table 6. Knowledge of vulnerabilities.

actually performed in the blockchain. The smart contract is invoked twice: after the registration
phase voter identifiers and signature verification keys are sent to the smart contract; and during
the voting phase ballots are verified in the web server and sent to the smart contract. None of
these invocations mitigate any damage done by vulnerable web server or the client. The biggest
shortcoming is that the tally is performed on the ballot box stored in the database, not the smart
contract. However, this could be easily mitigated in the future.

32

5 Risk Assessment

Risk assessment is performed by generating Bayesian attack graphs for each identified threat and
calculating the probabilities of threats given specific risk scenarios with the AgenaRisk tool. Age‑
naRisk uses the Junction Tree algorithm to extract marginalization. Actors considered for the
analysis are provided in the Table 7. The probabilities are assigned based on subjective assump-
tions.

Id Name Privileges Locations Probability
act-1 Remote Attacker NONE 0.7
act-2 Malicious Insider HIGH loc-1, loc-3, loc-5, loc-6 0.25

Table 7. Knowledge of actors.

5.1 Ballot Altering

In comparison with graphs for other threats, the ballot altering threat has the most possible pre-
conditions in the current system implementation, and many different attack paths could be taken.
As per the system analysis, two distinct election compromise scenarios lead to altered ballots: (i)
falsely submitting ballots - includes stealing the voter’s voting card and the password; (ii) forging
the ballot (exploiting integrity vulnerabilities in the system). The Figure 13 shows the ballot
altering probability under a risk scenario when a remote attacker is trying to alter ballots and
no vulnerabilities have been mitigated. We can observe that it is unlikely that the ballot will be
altered exploiting vulnerabilities in the public network: stealing the voter’s session or forging the
ballot in the network is hard.

Fig 13. Calculation of the risk scenario when a remote attacker is trying to alter ballots.

To evaluate the likelihood of the stolen session due to vulnerabilities in the voting server,
we can analyse a different risk scenario shown in the 14. Here the confidentiality of the voting
client and the public network are set to be secured. The probability of a stolen session is still

33

high. This is due to prominent vulnerabilities in the web server, mainly the session fixation and
the composite weaknesses that allow cross-site request forging.

Fig 14. Calculation of the risk scenario when a remote attacker is trying to alter ballots but the
voting client’s and public network’s confidentiality have been secured.

The Figure 15 demonstrates that vulnerabilities in the voting server contribute the most to the
overall likelihood of ballot altering. Prominent vulnerabilities, such as session fixation, allocation
of resources without limits, cross-site request forging must be mitigated.

Fig 15. Calculation of the risk scenario when a remote attacker is trying to alter ballots and all
relevant network and voting client vulnerabilities have been mitigated.

5.2 Voter Privacy Breach

Due to the fact the the decryption key is stored in the administration server which is not analysed
in this work, the voter privacy breach threat could only be executed by exposing the plain text

34

ballot to unauthorised parties. One of the possibilities are the side-channel attacks, however the
current state of attack graph modelling does not represent hardware vulnerabilities. Another,
software-based compromise, is possible attacking the confidentiality of the voting client (and
the device itself). The CVE-2022-29078 vulnerability, detected by vulnerability scanners in
the supply chain of the voting client application, allows executing arbitrary OS commands if
successfully exploited. The vulnerability could be exploited to track the voter’s actions. However,
as observed in the Figure 16 the more likely attack path is gaining the root access to the voting
device itself and employing a number of techniques (e.g. keylogging) to discover the voter’s ballot
choices.

Fig 16. Calculation of the risk scenario when a remote attacker is trying to breach the voter’s
privacy.

5.3 Voter Disenfranchisement

Voter disenfranchisement, or ballot removal, is a likely threat. Three general attack paths can be
observed in the Figure 17: (i) a denial-of-service attack on the voting server, not very likely based
on the software vulnerabilities only; (ii) a man-in-the-middle attack to drop ballots in transit, most
likely to be executed in the voting server due to the amount of vulnerabilities; (iii) unauthorised
access to the ballot to remove the already persisted ballot, shown to be very likely in the current
implementation. The third attack path could be completely mitigated by the proper usage of the
blockchain which is considered to be untamperable. However in the current implementation, the
tally is performed on the ballot box in the database with no verification against the smart contract
storage, thus allowing successful voter disenfranchisement.

35

Fig 17. Calculation of the risk scenario when a remote attacker is trying to remove ballots.

5.4 Multiple Ballots

Based on the system analysis, adding illegitimate ballots in Chirotonia are possible only by voting
for eligible but absent voters. According to the Figure 18, a remote attacker could potentially
steal absent voters’ sessions given that the voter has authenticated via the same identity provider
in the same browser (which is not unlikely in single sign-on authentication mechanisms). The
graph shows that the attack on vulnerable network’s confidentiality is the most probable path to
steal the voter’s session. This could be achieved by the man-in-the-middle attack intercepting the
communication and extracting session information from the requests. For this to be successful,
a legitimate-looking certificate should be provided by the adversary proxy to the voting client.
Due to the variety of computer literacy among the possible voters, the forged certificate could
very likely go unnoticed.

5.5 Non Eligible Voters

Two types of possible non-eligible voters exist: (i) fake voters, which requires adding fake identi-
fiers to the electoral roll and breaking the authentication mechanism; (ii) legitimate authenticated
identities that are not eligible for the current election. Adding legitimate authenticated identities
to the electoral roll is an easier attack path which can be executed in the voting server by, for ex-
ample, a malicious code bypassing the electoral roll verification. This is represented in the Figure
19 as well, showing that the attack on the voting server’s integrity is more likely that bypassing
the authorization in the voting client.

36

Fig 18. Calculation of the risk scenario when a remote attacker is trying to vote for absent voters.

Fig 19. Calculation of the risk scenario when a remote attacker is trying to add ineligible voters.

37

6 Discussion

From the analysis of the generated attack graphs it could be observed that the biggest short-
coming in the Chirotonia is the level of responsibility that the proxy web server carries. Even
though the protocol paper suggests that the web server is a proxy between a voting client and the
blockchain with the sole purpose of anonymization potential (with multiple proxies deployed) the
analysed system implementation puts the web server in the position of enforcing the voting pro-
tocol itself. This exposes the election to many known and unknown vulnerabilities that exist in
the traditional web environment. Moreover, not enough protocol procedures are verified against
the blockchain, the most important of which is the tally procedure. The tally calculation based
on the ballot box maintained by the web server is a crucial weakness in the Chirotonia system.
These observations supplement the results of the Voatz security analysis [SKW20] and arguments
provided in the [PSN+21] which conclude that blockchain usage in the classical web environment
increases probability of busting the ballot before it reaches the untamperable blockchain ledger.

Another weak point in the Chirotonia is the number of assets that the voting device has access
to. End devices are traditionally considered to be the weakest elements in the overall system.
Due to the high probability of end device compromise, and the lack of knowledge that the voter
may hold, the system should be developed with assumption that the end device is compromised.
However, Chirotonia explicitly imposes the safe storage of cryptographic and election assets on
the voter. Moreover, the voting card could easily be sold after the registration phase. The system
does not include any verification that the same device or the same user is participating in the
registration and voting phases. National voting systems could use the keys available in the voter’s
identity cards thus mitigating cryptographic material’s exposure. The addition of the voting card
asset is doubtful. The performed analysis suggests that the fewer assets the election protocol
requires the safer is the environment.

Verification procedure in Chirotonia is purely blockchain-based. This does not increase the
security for several reasons: (i) as mentioned before, the main carrier of the protocol is the web
server, for which user verification is non-existent; (ii) the blockchain transactions provided in
the Ethereum explorer are not human-readable and does not provide any additional knowledge
to the average user. In order to make the election receipt human readable it would have to be
transformed by some intermediate component, most likely, a web server. This introduces the
same issue of malicious web servers forging ballot receipts. Even though the blockchain-driven
electronic voting visions offer public verifiability of the ballot box, in practice this is difficult to
achieve.

Systems like Helios [Adi08] explicitly state that the election protocol execution is correct as
long as the centralised web server is not compromised. It seems that the current implementation of
Chirotonia requires the same assumption. This contradicts the promises made by the introduction
of the blockchain.

38

7 Conclusion and Future Work

This work presents a framework to assess risk of a system implementation based on Bayesian attack
graphs. Using the proposed framework, a blockchain-based electronic voting system is analysed
and the weakest protocol and implementation aspects are identified.

It can be concluded that Bayesian attack graph driven risk assessment can aid election of-
ficials in making decisions about the suitability of electronic voting system architectures and
implementations. Vulnerability scanners are constantly developed to automatically find software
and configuration weaknesses, and the correct ontological organisation of the mined knowledge
provides fast and readable insights in the form of probabilistic graphs. Dynamic analysis of each
system state’s impact on the overall system and terminal node states demonstrates the most cru-
cial vulnerabilities and components. Analysing the concrete implementation vulnerabilities rather
than formalised system models is a crucial step in evaluating its suitability. Software development
contains details that may be missed in abstract modelling. Careful and comprehensive enumera-
tion of knowledge is the principal activity in risk assessment. CVE, CWE and CAPEC databases
proved to be sufficient for initial analysis. However, to analyse the system in more detail, the
knowledge should be tailored to the specific environment, especially the probability calculations.

Tracking the legal compliance of the system is a difficult task. This work informally mapped
legal regulations to the system threats which in turn were mapped to specific controls in the
system. However, for more extensive legal compliance analysis, the threats should be elicited
in a more formal way, potentially employing some language processing or models. The threat
mappings to the system properties could be automated (e.g. with model checking) as well to
reach more detailed analysis.

39

References

[Adi08] Ben Adida. Helios: web-based open-audit voting. In Proceedings of the 17th Con‑
ference on Security Symposium, SS’08, pp. 335–348, San Jose, CA. USENIX Asso-
ciation, 2008.

[Bou16] Philip Nicholas Boucher. What if blockchain technology revolutionised voting?,
2016.

[BT94] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections (extended
abstract). In Proceedings of the Twenty‑Sixth Annual ACM Symposium on Theory
of Computing, STOC ’94, pp. 544–553, Montreal, Quebec, Canada. Association
for Computing Machinery, 1994. ISBN: 0897916638. DOI: 10.1145/195058.
195407. URL: https://doi.org/10.1145/195058.195407.

[Cha04] D. Chaum. Secret-ballot receipts: true voter-verifiable elections. IEEE Security &
Privacy, 2(1):38–47, 2004. DOI: 10.1109/MSECP.2004.1264852.

[Cla14] Mark Clayton. Ukraine election narrowly avoided ’wanton destruction’ from hack-
ers. 2014. URL: https : / / www . csmonitor . com / World / Passcode / 2014 /
0617/Ukraine-election-narrowly-avoided-wanton-destruction-from-
hackers (visited on 2023-04-27).

[CLC17] Rommel N Carvalho, Kathryn B Laskey, and Paulo CG Costa. Pr-owl–a language
for defining probabilistic ontologies. International Journal of Approximate Reasoning,
91:56–79, 2017.

[CM16] Dylan Clarke and Tarvi Martens. E-voting in Estonia. Real‑World Electronic Voting:
Design, Analysis and Deployment:129–141, 2016.

[Cou17] Committee of Ministers Council of Europe. Recommendation CM/Rec(2017)5[1]
of the committee of ministers to member states on standards for e-voting. 2017.
URL: https : / / search . coe . int / cm / Pages / result _ details . aspx ?
ObjectId=0900001680726f6f (visited on 2023-04-27).

[CR20] Amrita Chatterjee and Hassan Reza. Toward modeling and verification of uncer-
tainty in cyber-physical systems. In 2020 IEEE International Conference on Elec‑
tro Information Technology (EIT), pp. 568–576, 2020. DOI: 10.1109/EIT48999.
2020.9208273.

[Eur18] Scientific Foresight Unit European Parliamentary Research Service. Prospects for
e-democracy in europe. 2018. URL: https : / / www . europarl . europa . eu /
thinktank/en/document/EPRS_STU(2018)603213 (visited on 2024-04-12).

[GHL18] Ni Gao, Yiyue He, and Beilei Ling. Exploring attack graphs for security risk as-
sessment: a probabilistic approach. Wuhan University Journal of Natural Sciences,
23(2):171–177, 2018.

40

[HLL19] Wenhao He, Hongjiao Li, and Jinguo Li. Unknown vulnerability risk assessment
based on directed graph models: a survey. IEEE Access, 7:168201–168225, 2019.
DOI: 10.1109/ACCESS.2019.2954092.

[HLP+20] Thomas Haines, Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague. How not
to prove your election outcome. In 2020 IEEE Symposium on Security and Privacy
(SP), pp. 644–660, 2020. DOI: 10.1109/SP40000.2020.00048.

[HMM+23] Thomas Haines, Rafieh Mosaheb, Johannes Müller, and Ivan Pryvalov. Sok: secure
e-voting with everlasting privacy. Proceedings on Privacy Enhancing Technologies,
1:279–293, 2023.

[iEur14] Europos Parlamentas ir Europos Sąjungos Taryba. 2014 m. liepos 23 d. Europos
Parlamento ir Tarybos reglamentas (es) nr. 910/2014 dėl elektroninės atpažinties
ir elektroninių operacijų patikimumo užtikrinimo paslaugų vidaus rinkoje, kuriuo
panaikinama Direktyva 1999/93/eb. 2014. URL: https://eur-lex.europa.eu/
legal-content/LT/TXT/?uri=CELEX%3A32014R0910 (visited on 2023-04-27).

[Ins07] National Democratic Institute. Re-evaluation of the use of electronic voting in the
netherlands. 2007. URL: https://www.ndi.org/e-voting-guide/examples/
re-evaluation-of-e-voting-netherlands (visited on 2023-04-27).

[Ins09] National Democratic Institute. The constitutionality of electronic voting in ger-
many. 2009. URL: https : / / www . ndi . org / e - voting - guide / examples /
constitutionality-of-electronic-voting-germany (visited on 2023-04-
27).

[JCJ05] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion‑resistant electronic elec‑
tions. In Towards Trustworthy Elections: New Directions in Electronic Voting. David
Chaum, Markus Jakobsson, Ronald L. Rivest, Peter Y. A. Ryan, Josh Benaloh,
Miroslaw Kutylowski, and Ben Adida, editors. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005, pp. 37–63. ISBN: 978-3-642-12980-3. DOI: 10.1007/978-3-
642-12980-3_2. URL: https://doi.org/10.1007/978-3-642-12980-3_2.

[JRS+04] David Jefferson, Aviel D Rubin, Barbara Simons, and David Wagner. A security
analysis of the secure electronic registration and voting experiment (SERVE). Recu‑
perado de: http://euro. ecom. cmu. edu/program/courses/tcr17‑803/MinorityPaper.
pdf, 2004.

[LM05] Yu Liu and Hong Man. Network vulnerability assessment using bayesian networks.
In Data mining, intrusion detection, information assurance, and data networks security
2005, vol. 5812, pp. 61–71. SPIE, 2005.

[LWW04] Joseph K. Liu, Victor K.-W. Wei, and Duncan S. Wong. Linkable spontaneous
anonymous group signature for ad hoc groups (extended abstract). IACR Cryptol.
ePrint Arch., 2004:27, 2004.

41

[Min18] Lietuvos Respublikos Teisingumo Ministerija. Lietuvos Respublikos balsavimo in-
ternetu pagrindų įstatymo projektas. 2018. URL: https://e-seimas.lrs.lt/
portal / legalAct / lt / TAP / e5d36ad00d9b11e88a05839ea3846d8e ? jfwid =
ozvxl44vs (visited on 2023-04-27).

[MS02] Klaus Mosegaard and Malcolm Sambridge. Monte carlo analysis of inverse prob-
lems. Inverse problems, 18(3):R29, 2002.

[MSB+17] Luis Muñoz-González, Daniele Sgandurra, Martı́n Barrère, and Emil C Lupu. Exact
inference techniques for the analysis of bayesian attack graphs. IEEE Transactions
on Dependable and Secure Computing, 16(2):231–244, 2017.

[MVT+19] Salman Manzoor, Tsvetoslava Vateva-Gurova, Rubén Trapero, and Neeraj Suri.
Threat modeling the cloud: an ontology based approach. In Information and Op‑
erational Technology Security Systems: First International Workshop, IOSec 2018,
CIPSEC Project, Heraklion, Crete, Greece, September 13, 2018, Revised Selected Pa‑
pers 1, pp. 61–72. Springer, 2019.

[Neu16] Stephan Neumann. Evaluation and improvement of internet voting schemes based on
legally‑founded security requirements. PhD thesis, Technische Universität Darmstadt,
2016.

[NM+01] Natalya F Noy, Deborah L McGuinness, et al. Ontology development 101: a guide
to creating your first ontology, 2001.

[OGA+05] Xinming Ou, Sudhakar Govindavajhala, Andrew W Appel, et al. Mulval: a logic-
based network security analyzer. In USENIX security symposium, vol. 8, pp. 113–
128. Baltimore, MD, 2005.

[PDR11] Nayot Poolsappasit, Rinku Dewri, and Indrajit Ray. Dynamic security risk man-
agement using bayesian attack graphs. IEEE Transactions on Dependable and Secure
Computing, 9(1):61–74, 2011.

[Pis21] Anna Piscitelli. Sharing responsibilities throughDistributed Key Generation in the Chi‑
rotonia e‑voting framework: a blockchain‑based approach. MA thesis, University of
Naples, Federico II, 2021.

[PJS21] Adrien Petitpas, Julien M. Jaquet, and Pascal Sciarini. Does e-voting matter for
turnout, and to whom? Electoral Studies, 71:102245, 2021. ISSN: 0261-3794. DOI:
https : / / doi . org / 10 . 1016 / j . electstud . 2020 . 102245. URL: https :
//www.sciencedirect.com/science/article/pii/S0261379420301244.

[PSN+21] Sunoo Park, Michael Specter, Neha Narula, and Ronald L Rivest. Going from bad
to worse: from Internet voting to blockchain voting. Journal of Cybersecurity, 7(1),
2021-02. ISSN: 2057-2085. DOI: 10.1093/cybsec/tyaa025. eprint: https://
academic.oup.com/cybersecurity/article-pdf/7/1/tyaa025/42533672/
tyaa025.pdf. URL: https://doi.org/10.1093/cybsec/tyaa025. tyaa025.

42

[RAV+21] Antonio Russo, Antonio Fernández Anta, Maria Isabel González Vasco, and Simon
Pietro Romano. Chirotonia: a scalable and secure e-voting framework based on
blockchains and linkable ring signatures, 2021. URL: https://arxiv.org/abs/
2111.02257.

[rkom21] Vyriausioji rinkimų komisija. Sprendimas dėl internetinio balsavimo informacinės
sistemos galimybių studijos. 2021. URL: https://e-seimas.lrs.lt/portal/
legalAct/lt/TAD/0f9a17225e6411ecb2fe9975f8a9e52e (visited on 2023-04-
27).

[RRI16] Peter YA Ryan, Peter B Rønne, and Vincenzo Iovino. Selene: voting with transpar-
ent verifiability and coercion-mitigation. In Financial Cryptography and Data Se‑
curity: FC 2016 International Workshops, BITCOIN, VOTING, and WAHC, Christ
Church, Barbados, February 26, 2016, Revised Selected Papers 20, pp. 176–192.
Springer, 2016.

[SFD+14] Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kitcat, Harri Hursti,
Margaret MacAlpine, and J Alex Halderman. Security analysis of the Estonian in-
ternet voting system. In Proceedings of the 2014 ACM SIGSAC Conference on Com‑
puter and Communications Security, pp. 703–715, 2014.

[SHJ+02] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M
Wing. Automated generation and analysis of attack graphs. In Proceedings 2002
IEEE Symposium on Security and Privacy, pp. 273–284. IEEE, 2002.

[SK95] Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme. In Louis C. Guil-
lou and Jean-Jacques Quisquater, editors, Advances in Cryptology — EUROCRYPT
’95, pp. 393–403, Berlin, Heidelberg. Springer Berlin Heidelberg, 1995. ISBN:
978-3-540-49264-1.

[SKW20] Michael A Specter, James Koppel, and Daniel Weitzner. The ballot is busted before
the blockchain: a security analysis of voatz, the first internet voting application used
in us federal elections. In Proceedings of the 29th USENIX Conference on Security
Symposium, pp. 1535–1552, 2020.

[SOO07] Adesina S Sodiya, S Adebukola Onashoga, and BA Oladunjoye. Threat modeling
using fuzzy logic paradigm. Informing Science: International Journal of an Emerging
Transdiscipline, 4(1):53–61, 2007.

[TT20] Ruhi Taş and Ömer Özgür Tanrıöver. A systematic review of challenges and op-
portunities of blockchain for e-voting. Symmetry, 12(8), 2020. ISSN: 2073-8994.
DOI: 10.3390/sym12081328. URL: https://www.mdpi.com/2073-8994/12/
8/1328.

43

[WHR+03] Warren E Walker, Poul Harremoës, Jan Rotmans, Jeroen P Van Der Sluijs, Mar-
jolein BA Van Asselt, Peter Janssen, and Martin P Krayer von Krauss. Defining
uncertainty: a conceptual basis for uncertainty management in model-based deci-
sion support. Integrated assessment, 4(1):5–17, 2003.

[Wil22] Nathaniel Williams. Remote Voting in the Age of Cryp-
tography. MIT Computational Law Report, 2022-12.
https://law.mit.edu/pub/remotevotingintheageofcryptography.

44

