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Summary
Change detection is one of many topics in the remote sensing domain. Advancements in this topic
aid various use cases spanning from infrastructure planning or urbanization tracking to environmen-
tal problem-solving and monitoring. Generally, remote sensing has gained a lot of attraction from
researchers. Various models that have scored impressive results in the computer vision domain have
also shown noteworthy accomplishments in the remote sensing area. However, popularity distri-
bution seems to decay when coming to more concrete applications such as global warming change
detection. Both, global and national attraction is a little scarce and one of the main problems could
be challenges that come in the remote sensing domain: optical aberrations, data quality, seasonal
changes interference and knowledge transfer difficulties. With all things in mind, this study has
proposed medium analysis which aims to filter out noisy data and modified an existing neural net-
work. The model was build to employ knowledge sharing by incorporating Prithvi’s model feature
maps into the detection pipeline. Its performance was slightly better across all 3 test cases: original
OSCD dataset, MBSC dataset and manually gathered imagery of Lithuania. The objectives of this
work include analysing relevant literature and datasets, investigating and proposing methods for
working with multi-spectral images, developing new neural network by using existing algorithms
and evaluating proposed solutions, providing recommendations. The hypothesis being tested is that
it is possible to successfully track changes using existing satellite imagery resources.

Keywords: remote sensing, change detection, neural networks, machine learning, image
segmentation, water bodies, global warming

3



Santrauka
Pokyčių nustatymas yra viena iš nuotolinio stebėjimo srities temų. Šios srities pažanga
padeda spręsti įvairias problemas — nuo infrastruktūros planavimo, urbanizacijos stebėjimo iki
aplinkosaugos problemų sprendimo ir stebėsenos. Per paskutinius metus nuotolinis stebėjimas
sulaukė didelio tyrėjų dėmesio. Įvairūs modeliai, kurie pasiekė įspūdingų rezultatų kompiuter-
inės regos srityje, taip pat pasirodė esantys verti dėmesio nuotolinio stebėjimo srityje. Vis dėlto,
matomas populiarumo sumažėjimas, kai pereinama prie konkretesnių taikymų, pavyzdžiui, glob-
alinio atšilimo pokyčių nustatymo. Tiek pasauliniu, tiek nacionaliniu mastu susidomėjimas nėra
didelis ir viena iš pagrindinių priežasčių galėtų būti nuotolinio stebėjimo srityje kylantys iššūkiai:
optinės palydovinių nuotraukų aberacijos, duomenų kokybė, sezoniniai pokyčiai ir žinių perdavimo
sunkumai. Atsižvelgiant į šiandieninę situaciją ir galimus iššūkius, šiuo tyrimu pasiūlyta medianos
analizė, kuria siekiama išfiltruoti triukšmingus duomenis, patobulintas egzistuojantis neuroninis
tinklas, kad būtų galima įgyvendinti dalijimasį žiniomis, į algoritmo veikimą įtraukiant ”Prithvi”
modelio požymių žemėlapius. Šis modelis parodė nežymiai geresnius rezultatus 3-juose testinėse
aplinkose: naudojant originalų OSCD duomenų rinkinį, MBSC duomenų rinkinį ir rankiniu būdu
surinktus Lietuvos vaizdus. Uždaviniai: išanalizuoti susijusią literatūrą ir duomenų rinkinius, ištirti
ir pasiūlyti darbo su daugiaspektriais vaizdais metodus, sukurti naują neuroninio tinklo architek-
tūrą, patobulinant esamą ir įvertinti pasiūlytus sprendimus, pateikti rekomendacijas. Tikrinama
hipotezė, kad pokyčius galima sėkmingai sekti naudojant esamus palydovinių vaizdų išteklius.

Raktiniai žodžiai: nuotolinis stebėjimas, pokyčių nustatymas, neuroniniai tinklai, nuo-
traukų segmentacija, vandens telkiniai, globalinis atšilimas
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Introduction
Change detection is a process of identifying object variations by observing them at different times.
Algorithms utilise various datasets in order to measure temporal effects on areas of interest. One
of the domains where this is widely used in remote sensing analysis is change detection. Essen-
tially, remote sensing change detection is applied by gathering data from Earth-orbiting satellites
and identifying relief/structure permutations that have happened throughout a specific time track.
This topic specifically has gained huge support recently and it has been applied in many fields,
such as 1. Deforestation tracking [SPS+19]. 2. Waste identification [ZYD+22] [MDA18]. 3. Urban
development tracking [MS21].

Widespread success has caused the development of new innovative methods. It is vital to note
that change detection analysis started with traditional and classical methods. Such methods like
algebraic analysis difference [KLZ+18] or regression [RL98] were implemented to identify signif-
icant changes in imagery. However, these methods are extremely sensitive to non-standard images
and detect changes based on threshold values, which turned out to be ineffective in ever-changing
conditions. To overcome these obstacles, neural networks were presented. Neural networks built
for change detection could be split into two groups that differ by the data that they use. Some deep
neural networks use traditional 3-channel images while others employ multi-spectral imagery which
generally contains far more information. There are also methods that are capable of analysing both
types of images.

Remote sensing change detection based on 3-channel imagery has widely adopted U-Net
[RFB15] based networks [PZG19a]. Bent, split-connected architecture was especially effective
in tandem with Siamese networks [DLB18a]. The combination managed to score state-of-the-art
results.

On the flip side, the second group of change detection algorithms have also scored promising
results. These networks utilise not only traditional images, but also bands that are not visible to the
naked eye. OSCD [DLB+18] is one of several datasets that was tested with models that are pioneer-
ing remote sensing change detection domain. For example, some models used already mentioned
siamese neural network architecture [DLB18a] while others have presented far more innovative
ideas. ChangeStar [ZMZ+21] deep-neural network is one of them. It changed the way domain
training is implemented and used single temporal rather than bi-temporal images. This allowed the
algorithm to encompass much more semantic information which is extremely viable when identify-
ing relief permutations. Transformer-based networks were also consolidated in the remote sensing
domain. ChangeFormer [BP22] used transformer blocks in the encoder which shared weights with
the other network in the Siamese unit and showed notable advancement. Thus, one can see that
change detection in remote sensing is actively developed.

Besides having tremendous support in change detection, there are still several challenges in
multi-band analysis that need to be overcome. Firstly, data quality and distribution. Remote sensing
imagery applications usually require high-quality and high-resolution (HR) images for processing
(an example of satellite imagery can be found in Figure 1).

Elements from the top-down view are very small, so in order to identify changes in the image,
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Figure 1. Left: Image taken from an earth-orbiting satellite. Right: Same image with semantically
segmented roads, buildings and vegetation. (photo taken from [NH18])

data has to be as good as possible [YLX+15]. Yet older satellites were not as advanced and since
bi-temporal images make use of same place photography taken at different times, it is unsurprising
that older images are more prone to lower quality and vulnerable to optical system aberration,
atmospheric disturbance or noise. While on the subject, relief displacement is one of the notable
problems in remote sensing no matter how new an Earth-orbiting satellite is [GHP+19]. Another
worth mentioning interference is seasonal changes. Areas that experience all 4 seasons look very
different throughout the year. The change detector’s task is to ignore those changes and identify
only significant relief or infrastructure modifications (example of extracted water body changes
Figure 2).

However, even if a model is capable of extracting the correct change map from the image, there
are some non-trivial obstacles. Transferring knowledge to other domains like building detection
remains a problem. There were successful attempts to share extracted features by creating sophisti-
cated model frameworks [LXG+22] but it appears to come with the efficiency and resourcefulness
cost. This complex problem has to be overcome by utilising separate datasets that are populated
with very different quality and band count images.

In order to maximize the algorithm’s performance, one must choose the main problem of re-
search. Global warming is a great fundamental challenge for remote sensing change detection.
Satellite imagery has various types of bands that visualise water, vegetation and man-made struc-
tures distinctively. This complements the rather huge 60 meters recording area of satellite cameras2.
Global warming has been addressed by remote sensing researchers. The topic has adopted neural
network solutions [SWZ+21] although overall interest seems a little scarce. However, what appeals
the most is water bodies change detection which seems to have gotten even less attraction among

1https://www.esri.com/arcgis-blog/products/arcgis-pro/imagery/change-detection-using-landsat-time-series
2Sentinel-2 satellite is capable of obtaining imagery at high spatial resolution (10 m to 60 m) over land and coastal

waters. [22]
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Figure 2. Image of an Amazon river from a blog page.1It’s an output from the change raster. The
pixel values indicate the period of time when the land cover was submerged in water. Red represents
earlier years and yellow represents more recent years.

researchers. At the moment of writing there have only been several research papers that analysed
coastal changes in collaboration with the general land site detection domain [EH11; KCR+17].

The lack of popularity of global warming change detection is also evident at the national level,
as there has been limited research published on this topic specifically in the Lithuanian landscape.
The closest finding was a study which conducted an analysis of different binary classification
and regression algorithms for ice detection [SUG22]. To supplement existing Lithuanian studies
[FKG+22; SUG22] this study will attempt to monitor climate change while using remote sensing
images.

The aim of this thesis is to develop methods to monitor spacial changes under a given time track.
The main context of this study contains the analysis of water-bodies satellite imagery of Lithuania.

To achieve the aim, several research objectives should be achieved:

1. Perform analysis of scientific papers about spatial-temporal urbanization and climate change
detection by identifying SOTA models, data harvest methods and relevant datasets.

2. Investigate and propose methods that would allow working with multi-spectral images (e.g.
segmentation).

3. Propose unique neural network that would help to identify relief changes

4. Evaluate proposed methods and solutions in spacial changes monitoring under given time
track process, provide recommendations for practitioners.

Reaching these goals, the following hypothesis will be confirmed or disproved: Given existing
satellite imagery resources, it is possible to successfully track spatial-temporal changes.
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1. Related work
Data and amount of it is crucial in this domain. There are several available sources for remote
sensing data gathering. Government institutions have created various missions that successfully
collect huge amounts of satellite imagery data and make it available to the general public. This could
be helpful while developing remote sensing change detection methods. Once created, something
needs to identify how good those methods perform. This would include task formulation as tasks
guides machine learning models towards higher performance.

Essentially, this section should provide some insights on required topics that would aid in the
dataset analysis process. Section 1.1 presents valuable satellite imagery sources that are used as a
resource for multi-spectral data harvesting. Section 1.2 walks through existing datasets. They play
an essential role in dataset creation as it is an exact example of what it should look like. Section 1.3
go over two selected datasets that share similar geographic properties and are especially valuable as
it helps to understand what are the upcoming challenges. To continue with challenges, Section 1.4
will dive deeper into an array of general problems that creators of such resources endure. Section 1.5
covers several loss functions to get a brief outline of what possible tasks could be adopted during
dataset evaluation in order to get maximum results. Lastly, Section 1.6 will cover a couple of
visualisation examples to better understand how certain properties of the GIS information can be
analysed and presented.

1.1. Used resources
Creating a dataset takes research on already existing resources. This applies to imagery resources
as well as already built datasets review. A few satellites will be presented here. Most of them will
help in this research and will also be mentioned in existing datasets analysis:

• Sentinel 1 - is Copernicus initiative mission of two satellites orbiting around the globe. The
Sentinel-1 mission includes C-band imaging with resolution up to 400 km. Most used satel-
lite imagery is gathered from its Synthetic Aperture Radar (SAR). This imagery stands out
because of its unique ability to be unaffected by clouds or bad weather. Satellites orbit in near-
polar, sun-synchronous setting and gather imagery all around the world. With both satellites
operating, the repeat cycle of the same point in the globe is 6 days.3

• Sentinel 2 - is a continuation mission of its predecessor. Another two satellites placed in
the same sun-synchronous orbit. However, sentinel 2 satellites are phased 180 degrees from
each other. This minimizes revisit frequency of equator to 5 days. Image quality is also much
better, satellites can produce wide-swath, high-resolution (up to 60 m. spatial resolution),
multi-spectral imagery and capture data across the world.4

• Moderate Resolution Imaging Spectroradiometer (MODIS) - a system which joins two
satellites: Terra and Aqua. Both satellites are also orbiting in near-pole way but each in

3Link to information about Sentinel 1
4Link to information about Sentinel 2
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opposite direction: Terra orbit north to south , while Aqua flies south to north. Terra MODIS
and Aqua MODIS are viewing the entire Earth’s surface every 1 to 2 days and has a viewing
swath width of 2,330 km. Captured data spatial resolution reaches up to 1,000m.5

• Landsat - satellite imagery collection program which have been active since 1972. Mission
offers researchers a high-quality multispectral data (up to 100 m. spatial resolution) taken
from all across the world. Satellites from the most recent missions (Landsat 9 at the time of
writing) completes about 14 full orbits each day and crosses the entire Earth in 16 days. 6

Researchers have used these resources to build accurate data for further analysis [SHQ+19b;
SHZ18]. Some of them even includes labels for indicating changes in relief or land use. Further
section will cover these solutions.

1.2. Existing datasets
Datasets are the primary source of knowledge when training the model. Their unique characteristics
allow scientists to select the best-suiting one. It also forces researchers to carefully weigh each
dataset from a wide variety of properties.

The dataset creation process also benefits from the research of relevant examples. To gather
insight on dataset creation progress we need to formulate criteria. These measures will allow em-
phasizing datasets that have had similar challenges and in general are related in terms of geographic
information, and data gathering processes. The following criteria will be taken into account when
choosing datasets to analyse:

• Dataset popularity - while not the most important aspect, dataset must be used. Dataset
usage is a great indicator of a good resource. Datasets’ popularity will be determined by the
citation count.

• Accessibility - even though this criterion could look like an obvious indicator of a proper
dataset, there are some datasets that could have been an example but were not chosen because
of broken mirror links [LJ20]. It is vital to have access to the dataset in order to make use of
it, run example scripts and understand implementation details.

• Relatedness - when choosing references, the most relatable resources will be the ones that
use the same resources. This thesis will prioritise data gathering from Sentinel satellites.
Similar dataset that incorporates these resources will be covered in this section.

Change detection datasets that are mentioned in the following section can be analysed in the
table Table 1. Note that several properties do not depict dataset fully. For example revisit frequency
of a dataset might be a little smaller (less frequent) due to various interferences. Some pictures could
have been deleted because of cloudy weather or bad quality.

5Link to information about MODIS
6Link to information about Landsat missions
7Multispectral images with varying resolutions
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Table 1. Overview of analysed datasets. N/A indicates that no information was found about that
property regarding the dataset, LC - Land usage mapping, LULC - Land usage and land cover
mapping, C - Classification task, SS - Semantic segmentation, TS - Time series analysis, OD -
Obejct detection. Data was taken in 2023-05-01. Accuracy was taken from the best performing
model found.

Freely
available

Popularity
(citation
count)

Data
format

Nr. of
images

Use
cases

Task Reference

SEN1-2 Yes 153 RGB (in
Geo-
TIFF)

564,768 LC SS, C [SHZ18]

SEN12-
MS

Yes 173 GeoTIFF 541,986 LC SS, C [SHQ+19b]

OSCD Yes 247 GeoTIFF 247 LC C [DLB+18]
Hi-UCD No 29 N/A 1293 LC C [TZZ+22]
HRSCD Yes 291 GeoTIFF 291 LC C, SS [CLB+19]
Dynamic
Earth Net

Yes 13 GeoTIFF 54,750 LULC SS, TS [TKW+22]

FloodNet Yes 71 GeoTIFF 3200 Post
disaster
images

OD, SS [RCS+21]

LoveDA Yes 60 RGB 5987 LC SS [WZM+21]

1.3. Selected datasets
Creating a dataset is a challenging task. Data must be standardized because satellite imagery packs
a diverse palette of information [AA19]. Different types of hardware in satellites can visualize im-
agery and are prone to interference differently. Not to mention, researchers have to decide whether
to use visible imagery or work with multi-spectral data.

This section will present two example datasets and challenges that scientists have encountered.
Both of them pack data from the same Copernicus/Sentinel satellites. In essence, understanding the
characteristics of the imagery and having comprehensive information about the dataset’s creation
will be particularly relevant and valuable since this thesis will also utilize these satellites as a crucial
source of data.

SEN1-2 and SEN12MS datasets are created by the same authors [SHQ+19b; SHZ18]. The
latter is an improvement of the former. As mentioned, they both are comprised of Sentinel satellite
imagery. The main differences between these two datasets:

1. Limited polarization - SEN1-2 is comprised of vertically polarized imagery. This lowers
dataset complexity at the cost of possible information.

2. Limited image bands - Sentinel 2 is capable of capturing multi-spectral data which can be
useful in situations when plain RGB bands fail to represent relief correctly. SEN12MS dataset
already packs this piece of information while SEN1-2 does not.
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3. Geo-location data - SEN1-2 does not come with any geographical location information.

This section will describe both datasets and will emphasize the differences between them in
terms of dataset structure even further. The general challenges of remote sensing dataset creation
will be covered here as well.

SEN1-2 is the first iteration dataset which had imagery from both versions of Copernicus Sen-
tinel satellites: Sentinel 1 and Sentinel 2. Authors have extracted Synthetic-aperture radar (SAR)
images from the first satellite and RGB channels from Sentinel 2. These restrictions were said to
make dataset creation easier with the cost of information loss from the discarded portion of avail-
able bands. SEN1-2 used Google Earth Engine (GEE) as the source of images. The environment
let authors easily access freely available satellite imagery. An image processing pipeline was cre-
ated in order to make images clouds and shadows free. The pipeline consists of random ranges of
interest (ROI) sampling, image mosaicking, exporting to GeoTiffs and multiple manual inspections
after additional transformations.

Both datasets are split into 4 seasons. This method allows controlling imagery pre-processing
for temporal groups that differ extensively. However, due to extreme cloudiness grouping did not
fully resolve the issue and the whole process yield was significantly reduced even more after manual
inspection.

During the processing step, the authors noted a few challenges. First of all, due to the im-
plementation details of GEE image mosaicking, some images had large blank areas. The process
failed to successfully find a replacement for cloudy areas thus these regions became unoccupied in
the final image. Secondly, Sentinel-2 granule clouds information sometimes appeared inaccurate.
The data acquired by the satellite is assigned to the whole granule rather than to a separate pixel.
Essentially, this means that cloud distribution property in filtered area might not affect interested
part of the relief at all or affect the chosen ROI event though the property’s value is pretty low. This
uncertainty resulted in much data being discarded after the manual verification.

Authors have also discovered quite an unusual challenge when comparing other datasets. They
found out that some images had severely distorted colouration. It was decided to remove these
images. Since they did not collect other than RGB bands information, there was nothing to com-
pensate for such distortion. With these limitations the first dataset has been released with a promise
to work on an improved version.

A year after SEN12MS [SHQ+19b], the second dataset was published. Authors have collected
SAR and multi-spectral information from Sentinel 1 and 2 respectively. This time they also used
MODIS (Moderate Resolution Imaging Spectroradiometer) satellite for landcover insights. Cloudi-
ness was not an issue with the former and Sentinel 1 instruments since they solely relied on SAR
(Synthetic Aperture Radar) data. However, Sentinel 2 imagery suffered from cloudy images and
required further data transformation. To remove cloudy regions from data, authors used methods
described in [SHQ+19a]. This paper will be used later when talking about the methodology of
cloud removal. For now, it is valuable to note that pre-processing consisted of three parts: data
query, quality score computation and image merging. The first part was responsible for data load-
ing from selected ROIs and time periods. After data extraction authors needed to assign additional
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information to pixel data which would later be beneficial in cloud removal. Last but not the least,
the merging module used previously added data in mosaicking to merge the least cloudy images.

This pipeline helped resolving cloudiness issue. Nevertheless, there are still more challenges
that other authors have bumped into.

1.4. Challenges
Dataset creation is a complex exercise which involves various aspects. A couple of them will be
presented here:

First of all, a dataset must have exceptional image quality. As mentioned before, this directly
influences algorithms’ performance. Authors have reported such inconveniences regarding poor
data quality. Images from the satellite were just enough to segment significant building changes.
However, since data segmentation was performed manually, it was tough to recognize smaller relief
transformations resulting in lower confidence in segmented data quality [DLB+18]. In addition to
small changes, [TZZ+22] reported that certain small objects like cars highly contributed to already
great interference problem. Thus, when creating a dataset smaller changes in satellite imagery
should be taken with care to reduce penalty for dataset quality.

Secondly, data frequency and inconsistency between multiple sources have also put a spoke in
wheels [DLB+18]. For example, Urban Atlas8 information and maps from BD ORTHO appeared
to be contradicting. This essentially lowered dataset quality. A problem was encountered when
creating [CLB+19] dataset. The dataset uses European Environment Agency’s (EEA) Copernicus
Land Monitoring Service - Urban Atlas project resources that provide land use labels. However,
EEA only guarantees 80-85% of label accuracy. On top of that, not all objects were present at the
time of capturing which means that there were some images that did not depict the real use of the
land. In addition to that, older satellite images were captured less frequently which makes creating
a dataset a challenge [DLB+18; TZZ+22]. For example, when OpenStreetMap was used as a change
reference, there were times when a change in a map was not present in the satellite image at the
same time of capturing. Despite these inconveniences, there are also datasets that especially stand
out for their pixel-wise annotation and frequency of captured data [TKW+22]. Examples like this
should be noted, shared knowledge could help get great accuracy results.

Moving back to challenges, multiple papers also complained about data class imbalance when
doing change detection in semantic segmentation setting [CLB+19; RCS+21; SHQ+19b; TKW+22;
TZZ+22; WZM+21]. Some have claimed that 9 dataset labels are simply not enough to represent
all areas in multi-class challenges [TZZ+22]. Others noted that the vast majority of change map
content is considered as „no change“ which should be taken into account when modelling the task.
Also, land use labels experienced class disproportion. For [CLB+19] most of the area labelled was
from agricultural area.

Nevertheless, if a dataset is for supervised learning, it all boils down to labels. Manual label
creation is a tedious job. Inaccurate labels as well as inexact borders are one of the problems that

8https://land.copernicus.eu/local/urban-atlas
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supervised datasets encounter [CLB+19]. Not to mention the time it takes to carefully label so much
data is already very expensive.

Lastly, there were also some other challenges that authors had to deal with. Challenges like
shadows and clouds [KKS+21; SHQ+19a], increased saturation [TZZ+22] and distorted colours
[SHQ+19b] are all problems that should be taken care. All things considered, the details pointed
out in this section can be a great disclaimer of what to expect before satellite imagery analysis.

1.5. Loss functions for satellite imagery analysis
Satellite imagery change detection is a complex task which involves multiple stages of data process-
ing. [AA19] Authors of referenced paper have referred to these stages as steps in a change detection
framework. The presented pipeline consisted of data acquisition, pre-processing, running through
a change detection algorithm and finally segmentation (Figure 3 for visual reference).

Figure 3. A framework of change detection method from [AA19]

This diagram visualizes the high-level design of the change detection segmentation process.
Some tasks are a composite of multiple. For example, change detection and segmentation tasks
have theoretical sub-tasks formulated that are used in machine learning as a tool to indicate the
most important feature the model should learn. They also could be used to measure the model’s
performance.

These tasks are carefully designed to emphasize different features of provided input, such as
edges, colours or shapes. There are a plethora of possible loss functions that can be used in model
training. This section will focus on several use cases and loss functions that are used to accomplish
acceptable results in corresponding applications.

The classification task is the first one that will be covered in this section. It is a fundamental task
in machine learning where the goal is to predict a categorical label for a given input. The input could
be an image, text, audio, or any other form of data, and the output could be a binary (two classes) or
multi-class (more than two classes) label. The classification process involves training a model on a
labelled dataset, where the model learns to identify features like patterns or colours that are relevant
for making accurate predictions. Probably the most popular loss function used in machine learning
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for various classification tasks - Cross entropy loss. This loss measures the difference between the
predicted probability distribution of a model and the true probability distribution of the data. In the
case of binary classification, this loss function can be expressed as:

LBCE(y, p) =

− log(p), y = 1

− log(1− p), otherwise
(1)

Here Equation 1 y ∈ {0, 1} - the ground truth label, p ∈ (0,1) - estimated label value. Bi-
nary cross-entropy loss (LBCE) can be used to express change map [BIS+23; PZG19b; RAD+20],
because binary maps indicate whether that pixel has changed (binary 1) or not (binary 0) which
is what BCE function compares. There is also a categorical cross-entropy loss which is used for
multi-class classification problems where the output variable is categorical. It calculates the cross-
entropy loss for each class and then takes the sum of these losses to obtain a single overall loss value
(see below, Equation 2):

−
M∑
c=1

yo,c log(po,c) (2)

here yo,c and po,c are true output and a prediction of a class label c (c ∈ M ) for observation o (o ∈ N ,
N - all samples).

Another cross-entropy variation that is used in classification tasks such as remote sensing
change detection is weighted cross-entropy loss. This variant takes each class’s importance into
account when evaluating predicted labels. Each class has assigned a weight based on their impor-
tance or frequency. It is commonly used when dealing with imbalanced datasets where one class
may be significantly underrepresented compared to others [BIS+23; PZG19b; ZS20]. For example,
change maps are imbalanced by nature. There are much more pixels labelled as „No change“ than
„Changed“. The weighted cross-entropy loss gives more weight to the minority class to ensure that
the model pays equal attention to all classes during training.

Cross-entropy variations have different use cases where they can be used. The extendability
and versatility aspects of such loss function make it very appealing for various tasks including
remote sensing change detection. However, these are not the only losses that are used against class
imbalance (Separable loss [XWJ+21], focal loss [LGG+20]).

Another loss function used for a classification task that takes class imbalance into consideration
is focal loss (LFL) [LGG+20]. The key idea behind focal loss is to down-weight the loss assigned
to well-classified examples and give more attention to misclassified examples. This aspect is im-
plemented as a modulating factor (1−p)γ in the following formula (Equation 3):

LFL = −y(1− p)γ log(p) + (1− y)pγ log(1− p) (3)

where γ is the focusing parameter (γ ≥ 0) defined as a hyper-parameter to tune during the training
or a constant to control the effect of the loss. It increases the importance of wrongly classified
examples. This helps the model to focus more on hard examples, which are usually the minority
class, and improve its ability to correctly classify them.
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To conclude, classification involves predicting a categorical label for an entire input data or a
region of interest in it. It is vital for a model to correctly pay attention to critical data features in
order to decide what is in the data.

Nevertheless, there is a task which is concerned with identifying where each object is in the
data space. This application is called - Semantic segmentation. Semantic segmentation involves
assigning a class label to each pixel in an image. Its goal is to enable machines to understand the
meaning of images at a pixel level and to identify the boundaries between different objects in the
scene. Such a complex task has a unique set of losses as well as shares several from the classification
domain.

For example, focal loss which was already mentioned is also used in segmentation tasks. It
could be paired with a dice loss [CPY+22; SLV+17] to successfully segment changed areas in the
satellite data. Even though most of the SOT models are pretty good at pinpointing major changes,
it is still a challenge to identify changes in small roads or other minor variations. A model simply
lacks the ability to detect minimal fluctuations in the earth’s surface. As contrary as it could sound,
according to the authors of RDP-Net [CPY+22] the underlying cause for this fact is that most of
the loss functions are more focused on the class imbalance problems rather than boundary regions.
Dice loss (LDL) is commonly used in segmentation problems. It measures the overlap between the
predicted output and the actual output. This function especially helps to identify the boundaries of
objects. Here is a formula for the dice loss (Equation 4):

LDL = 1− 2yp+ ϵ

y + p+ ϵ
(4)

where ϵ - is a small constant value that prevents division by zero on sets that do not overlap.
These 2 loss functions are especially useful for segmentation tasks in general computer vision ma-
chine learning [IKW+18; SYL+23; YLX+15] as well as specific remote sensing [RAD+20; STL+20;
WSH+22] domains.

One more loss function used for boundary detection is edge loss. [CPY+22] has designed a new
type of loss function which was supposed to fix poor change detection performance when detecting
small objects or bigger object’s boundaries. The mathematical presentation of this loss function
can be observed below (Equation 5):

wedge (c) = α

∣∣∣∣∣ 1n ∑
k∈N

L(k)− L(c)

∣∣∣∣∣
LEL (p) = −wedge log (p)

(5)

Herewedge (c) is a weight of a point c. Each neighbouring label valueLk of a point k in the range
N is subtracted from the real label value Lc of a regional centre point c. The sum of all subtractions
is divided by the n points. Essentially, having binary label values makes this loss function act like
an average point label of its neighbourhood multiplied by defined coefficient α, α > 0.

Generally, this weight function wrapped in the cross-entropy context can be used as an ideal
loss function for region boundary differentiation. The loss function can also be presented visually
(Figure 4).
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Figure 4. Ground truth image (left) and a map of wedge (right). White pixels represents the changed
area. Images taken from [CPY+22]

Authors [CPY+22] have combined (Equation 6) all three mentioned loss functions (focal, dice,
edge losses) to train their model and achieved state-of-the-art performance in [LVV+18] dataset:

L = LEL + LFL + LDL (6)

Both of these losses can be as helper tools to correctly segment small object boundaries. Another
loss function that is used to train models and almost in every segmentation performance table as a
score of precision is Jaccard loss [BSB+22]. Jaccard Loss [DVD+21] is a popular loss function used
in machine learning for semantic segmentation tasks. It is also known as the intersection-over-union
loss or IOU loss. Both Jaccard and dice losses are derived from corresponding similarity indexes.
The jaccard index measures the similarity between two sets of data by comparing their overlapping
area to their total area. Its corresponding loss function could be used to train the model to predict
a segmentation map that is as close as possible to the ground truth segmentation map. The Jaccard
Loss is calculated as follows:

LJAC(y, p) = 1− (y · p) + ϵ

(y + p− y · p) + ϵ
(7)

In addition to focal loss, gradient profile loss is specifically designed to help segment images
[BSB+22]. The main selling point of gradient profile loss (GP) is its ability to take spatial context
into account. Unlike Jaccard loss, GP loss would not treat two rotated change maps with the same
similarity to the original image (Figure 5)

A formulation of task can be examined below (Equation 8):

S(y, p) =
∑
c

(
1

H
tr (yc · pτc ) +

1

W
tr (yτc · pc)

)
LGP(y, p) = −S(∇y,∇p)

(8)

Here yc is the ground truth and pc - predicted value of channel c of image with dimensions
H × W . tr(.) represents trace of a matrix and (.)τ represents transpose of a matrix. The loss
function is computed by running image gradients ∇y and ∇p through a function S(y, p).

GP loss has shown surprisingly promising results in the context of deep learning with SAR
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Figure 5. Visualization showing how important spatial information is when the number of pixels
remains the same. Left image - source A; center image - target Bl right image - target C

images [BSB+22] and scored SOT scores in oceanography-related datasets [ZMH+22].
Lastly, there is also worth noting less adopted loss functions that are used in the remote sensing

domain. Contrastive loss [NH20] is often used in the context of image retrieval, where the goal is
to retrieve similar images from a large database given a query image. In this context, contrastive
loss is used to train a neural network to learn a feature representation of the images that captures
similarities and differences between them. The contrastive loss function encourages similar images
to be mapped close to each other in the feature space, while dissimilar images are mapped further
apart. This is achieved by minimizing the distance between the features of similar images and
maximizing the distance between the features of dissimilar images. By using contrastive loss to
train a neural network, it is possible to learn a feature representation that is well-suited for image
retrieval in remote sensing applications, allowing to quickly and accurately retrieve images that are
similar to a given query image.

In conclusion, this section delved into the realm of loss functions that could be used for satellite
imagery analysis. By exploring various loss functions designed for both classification and segmen-
tation tasks, one could have gained valuable insights into their respective strengths and limitations.
The selection of an appropriate loss function plays a crucial role in optimizing model performance
and enhancing the accuracy of change map classification. Essentially, this work will be valuable in
proposed methodologies evaluation.

1.6. Visualisation techniques for different types of analysis
Selected loss functions depict tasks that a model should train for. As mentioned before, a loss could
be specifically used in road infrastructure changes detection. However, these changes should also be
visualised in a clear and intuitive way. This is the underlying reason why this section will glimpse
on various visualisation types.

The following paragraphs will cover change detection map visualisations for the following
tasks:

1. Binary change detection (climate or building)
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Figure 6. (a), (b) - bi-temporal images of Rio de Janeiro; (c) - Ground truth, manually labelled
binary change map between first two images. Source: [LVV+18]

2. Land cover land use (LULC) visualisations for several use cases

3. Intensity of certain properties (changes of pH scale in water bodies)

When the most important part of analysis is change, researchers usually use binary change
detection maps. As covered in Section 1.5 these maps are comprised of pixels that can have only
one of two values: 0 - indicating no change and 1 - change detected. Binary maps may visualize
infrastructure change Figure 6.

Here we can see Rio de Janeiro city in different time spans. The difference between these
images is depicted in the third image. Third image acts as a label that supervised model is trying
to correctly replicate on other data. When just the change is not enough, there are other, more
information packing methods - semantic segmentation.

Semantic segmentation in remote sensing refers to the identification and delineation of specific
objects or areas of interest in satellite images. This technique plays a crucial role in numerous
applications, including urban planning [TZZ+22], environmental monitoring [KKS+21] and disaster
management [WSH+22]. The following image could help visualizing the output image model must
correctly generate Figure 7.

Different colours denote different land use type. Models could potentially indicate not only the
type itself but changes to each class as well. There is a third use case of a map where the feature
indicates the existence of a certain object’s property in the image.

This is a perfect example of a scenario where one is trying to determine whether a water body is
blooming. This is solved by managing chlorophyll concentration [GP]. The image below demon-
strates how specific properties of the object become more pronounced as certain data bands are
increased.

Overall, it is possible to visualise data in different methods. Some methods indicate a change
by lighting up the pixel in the area where the change is and showing pitch black for pixels that have
not changed. Other methods classify areas into blobs that mean different classes of land use. Lastly,
by increasing the intensity of certain bands, it is possible to identify objects’ properties. This helps
in environmental issues, urban infrastructure or disaster analysis.
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Figure 7. Image (top) and target (bottom) pairs of Land cover land use dataset [KKS+21].

Figure 8. A pair of images taken from [GP]. Sample image of a water body on the left and chloro-
phyll concentration visualisation made with the help of other bands on the right.
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2. Data gathering methods
To extract data that could be used as a dataset, it was decided to conduct several analyses that
would give an insight into data extraction process implementation. This section will describe these
in detail. Firstly, there will be introduced a way to extract valuable information from images that are
affected by common obstacles. After that extracted data will be tested to decide whether it is usable
in any training setting and how well it performs with a selected state-of-art model in a change
detection setting without any pretraining. This will also suggest whether the results of inferred
change maps are useable in manual labelling procedure.

2.1. Satellite imagery quality evaluation
As already mentioned, in previous sections the creation of a dataset requires deep analysis of the
gathered data. Satellite imagery tends to be contaminated by various obstacles like clouds and
reflections. These occlusions worsen the quality or even make it unusable. Data quality is a crucial
point when creating a new dataset, so it needs to be examined before use. For example, Figure 9
shows a couple of lake Voveriai photos. These photos are an example of what an image could look
like. However, it is rather unusual to think that an image in Figure 9c could provide any useful
information. In this section, a data extraction method will be presented. Extracted images will vary
in quality but with the help of further analysis, it will be hopefully clear whether occlusion-affected
images weigh any valuable information from other bands.

(a) Summer (b) Autumn

(c) Winter

Figure 9. Lake Voveriai in different times of the year. These images were exported raw to show
exactly what problems are active in geospatial data harvesting. Images do not depict the whole
season they’re assigned to.

Even though cloudiness is a general problem in satellite imagery analysis, it is especially active
in regions that have all 4 seasons like Lithuania - the country in which data is gathered. To gather
as much usable information as possible 5 lakes in Lithuania were selected for deeper analysis Fig-
ure 10.

These 5 water bodies were selected to encompass 5 possibly different weather areas. Even
though, Lithuania is a rather small country, Baltic Sea influence might correlate with some weather
conditions.
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Figure 10. Lithuanian water bodies picked for analysis. 5 water bodies encompassing 5 varying in
weather areas: pond Padvariai - north-west side, lake Arimaičiai - north side, Kaunas reservoir -
centre side, lake Asveja - west side, lake Dusia - south side.

Although there is no quick and easy way to delete a cloud from an image and it would be more
beneficial to remove those images entirely, this scenario raises other problems. Data in one region is
limited and removing part of it is extremely costly. The five water bodies analysis could potentially
answer whether cloudy images bring any possibly useful information in other bands. They may not
seem useful with a naked eye (Reg-Gree-Blue or RGB band images) but it is still information that
models can use to determine surfaces. It is also worth noting that different bands react to different
reliefs which could aid in water distinction.

This experiment continued by selecting two points on the map: one from the area in the lake
and another one outside of it (see Appendix Nr. 1). Geospatial data from these pixels were collected
and plotted in pixel intensity graphs. Two pixels’ intensities from each of the lakes were visualised
to see the distribution of it throughout the years. Even though the pixel does not represent the whole
picture, it can still suggest the alteration frequency and magnitude of each band at that point during
different times.

Since there are too many images, this analysis will only emphasize a few valuable mentions
with appropriate examples. These examples will use B12, a short-wave infrared band only. For
example, analysing the closest and furthest water body from the Baltic Sea Appendix Nr. 2 shows
that there is no meaningful difference whether the object has a wetter climate or dryer. This means
every decision from this point, can be applied to every selected water body.

What is also worth mentioning is that since there is a slight difference between intensities in the
lake and outside the lake, band data should be pre-processed individually by setting proportional
properties. Also, the difference between in and outside lake data could be because of the natural
band sensitivities towards different relief types. For example B12 band is used in combination with
other bands to emphasise vegetation which would explain the increase of intensity in outside water
body analysis.

Another point worth noting is that the most monotonic intensities were taken during the warm
seasons. Sadly, this finding might indicate the harsh truth that off-season data have too much noise
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to be valuable.
Considering all factors, the results raise the question: how to use this information effectively?

Mostly all of the band’s data has times when pixel intensities outlied the average. These values
might be an indication of an unstable signal or weather obstacles. However, the data between
such periods is perfectly fine. To separate the wheat from the chaff, a running median SMM was
introduced as a threshold. The formula below was used:

M =

X’n+1
2

if n is odd
X’n

2
+X’n

2 +1

2
if n is even

, where {X’1 ≤ X’2 ≤ . . . ≤ X’n}

SMMi = M({Xi−k+1, Xi−k+2, . . . , Xi})

Every value Xn where n is the nth sequence value X1, X2, . . . , XN and n ∈ N that is above the
median at a specific time window k = 20 is deleted. This way unusable data can be filtered while
retaining more off-season data. The distribution of such data and moving medians can be observed
in Figure 11 and Appendix Nr. 3

Figure 11. Running median distribution of pond Padvariai (pixel inside the lake), 2019-2013

However, individual plots do not contain much meaningful information. It was decided to
accumulate different band findings by counting how many of them were outside the error bounds.
The error bounds were defined by taking the moving median as the middle line and 20% from each
side of the median as the upper and lower bounds. Each band had its error range and outliers were
counted. For example, an image in the collection that has 8 bands that are outside the error range
was assigned 8 to the count property. This way a histogram was created (refer to Figure 12) that
allows guessing which images bring more information.
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Figure 12. Outlier bands count distribution throughout the whole image collection (2019-2023).
Red line - average, green - median

The calculated median was used as a threshold value that helps to determine whether the image
is good for consumption. Finally, these calculations were automated to make the process easily
integrated when used in other location analyses.

2.2. Data extraction and applicability
Once data harvesting methods are acquired, data extraction is the next step. It is vital to test how
well previously described methodologies work with real data. With the help of further experiments,
it will be possible to weigh several hypotheses:

1. Data quality - whether downloaded images can be used with existing methods or models.

2. Automatic labelling possibilities - even though manual labelling is said to be the standard
way to get ground truth images, automatic labelling would aid this process by providing at
least the base of labels. It could also possibly label images whose RGB bands are affected by
clouds.

To test these hypotheses, 3 different areas were selected:

1. Visoriai/Bajorai - quickly emerging Vilnius district is suitable for urban change detection.

2. Construction site/ruins of the National stadium in Vilnius - recently resumed site construc-
tions are a perfect opportunity to detect changes.

3. The annual floods of river Šyša - the river is commonly known to flood during the winter.
This is a perfect opportunity to identify changes in the water body.

Sentinel hub9 was used for image exploration. Sentinel Hub is a satellite data processing engine,
that facilitates convenient access to Sentinel and Landsat Earth observations. All 4 areas were
explored throughout the time interval 2019-2023. For easier insights, only the cloudless images

9https://www.sentinel-hub.com/
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were taken. It was easier to determine whether these methodologies work at all. Only then they
could be tested with lower-quality data. Selected images can be observed in Appendix Nr. 4.

All images were downloaded as GeoTiff files in EPSG:3857 projection, each having 13 bands.
They were run through the Fully Convolutional Early Fusion (FC-EF) [DLB18b] model to acquire
change maps. The original authors’ code change map generation was too strict for such testing. In
the original code, the model returns two-channel (change and not changed) tensor with logits in it.
The code creates a one-channel matrix in which each pixel is assigned a value of either 0 or 1. This
value indicates whether the highest value across two channels occurred in channel 0 or channel 1,
respectively. In most cases, the examples returned empty change maps. To address such instances,
the output channel was passed through a sigmoid function. Since the output became probability for
a pixel to be marked as „changed“, it was easy to apply thresholds to make change maps that vary
in sensitivity.

Running data through the model yielded quite interesting results. Change maps can be seen in
Figure 13.

Figure 13. Spatial temporal image pairs with predicted change maps of Bajorai district (1), National
stadium construction site (2) and river Šyša (3).

All results considered, it appears that the model has different sensitivity towards change de-
tection in different areas. For example, the Bajorai district change prediction threshold is 0.499,
national stadium - 0.488, and river Šyša - 0.475. While these thresholds do not vary too much, their
change percentage distribution makes it impossible to determine one size fit for all procedures.
Mostly all of the 3 change maps do not have a higher prediction than 0.5 for a changed pixel but
according Figure 14 Bajorai district and National stadium construction distribution is tighter than
Šyša river’s).
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Figure 14. Probability distribution of 3 images

Worth noting that this histogram is only to visualise pixel value distribution. Lower probability
does not infer the quality of prediction. However, if the distribution is wider like for Šyša river,
threshold setting requires manual interference. This scenario is not ideal when making a huge
dataset and does not make work easier.

To sum up, the results of analysed images suggest that dataset creation will require more manual
work than one would want. To conclude properly, conclusions will be split into two parts, each
explaining how well each hypothesis stood against the results.

Regarding data quality evaluations, images that cannot be analysed from their RGB values due
to bad weather could only be used for unsupervised or semi-supervised training. While this analysis
did not conduct any performance testing to find out whether such approach works, the written code
can conveniently select such images that hypothetically could enhance the model’s performance.
Regarding supervised training, it will not benefit from such data addition mainly because those
images lack labels and labelling solutions that were tested do not yield anything robust. Proper
change maps require additional tinkering with configuration which is very tedious if not impossible
in images that do not have visible RGB bands.

Speaking of automatic labelling, the second hypothesis could be half-proved. While the meth-
ods do not make the whole process automatic, output change maps could be a foundation for manual
work. If integrated with any labelling tool, such platform could be highly efficient.

2.3. Mosaicking - worth mentioning data gathering method
During times when satellite images are of very poor quality, using them one by one is not practical.
However, having multiple of such images most of the time means that it is possible to get a single
image from all of them. It is done by using the best values across all images for each pixel. This
process is called mosaicking. Google Earth Engine provides functionality to convert image collec-
tion into a single image. However, with the help of a little custom logic, it is possible to get even
better results. A couple of examples are depicted in Figure 15.

This method can also be used in data extraction. While it is true that mosaicking reduces the
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(a) Bajorai district, 2023-11-01 - 2024-01-
01 60% CPF, 40% CPT

(b) National stadium, 2023-11-01 - 2024-
01-02, 80% CPF, 40 % CPT

(c) Šyša river, 2023-10-01 - 2024-01-01,
30% CPF, 40% CPT

Figure 15. Mosaicked image examples. CPF - cloud probability filter, CPT - cloud probability
threshold. White spots are areas that have got excluded by the cloud probability threshold.

amount of data, a better quality image that is gathered from a reasonable time interval might have
a bigger impact while training models. Carefully created mosaicked images will have both: a good
quality in all bands and spatial-temporal changes - a model objective.
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3. Using feature maps as model’s input
Previous sections reasoned about different ways to get new data that could be used in remote sensing
model development. Another possible way to increase model performance is to use another model’s
output and adapt its knowledge. The main hypothesis of this idea states that existing model’s output
contains concentrated features about the same data. Naturally it raises the question whether such
interpretation of the same input could be used in tandem with original data to increase problem
solving performance.

At the time of writing, FC-Siam-Diff was considered as the SOT model in OSCD dataset bench-
mark. The model achieves 57.92% F1 score and 51.84% precision 10. Even the second-place model
is from the same Fully convolutional model family. This thesis aims to enhance the SOT model’s
performance by adding additional information for the training process. Recently, there was a model
introduced by IBM and NASA - Prithvi [JCF+23]. The new vision transformer based foundational
model was built using first-of-its-kind segmentation training framework for multispectral satellite
imagery. More than 1TB of imagery was used in order to achieve promising results in spatial-
temporal footage segmentation.

This new foundational model was used to extract useful information from existing OSCD im-
ages. This strategy works only if the following hypothesis stands correct: latent information from
images has valuable information that can be compared and their difference evaluated. An analysis
was conducted to prove this. Latent features were compared using multiple comparison metrics:

1. L1 similarity, also known as Manhattan distance, calculates the absolute difference between

corresponding elements of two vectors (X1 and X2):
n∑

i=1

|X1i −X2i |.

2. L2 similarity, also called Euclidean distance, computes the square root of the sum
of squared differences between corresponding elements of two vectors (X1 and X2):√√√√ n∑

i=1

(X1i −X2i)
2.

3. L-Inf similarity calculates the maximum absolute difference between corresponding ele-
ments of two vectors (X1 and X2): max

i
|X1i −X2i |.

4. Cosine similarity measures the cosine of the angle between two vectors (X1 and X2), indi-

cating their similarity regardless of their magnitude:
∑n

i=1 X1i ·X2i√∑n
i=1(X1i)

2 ·
√∑n

i=1(X2i)
2
.

5. SSIM (Structural Similarity Index Measure) assesses the similarity between two im-
ages (X and Y ) by considering luminance, contrast, and structure: SSIM(X,Y ) =

(2µXµY + c1)(2σXY + c2)

(µ2
X + µ2

Y + c1)(σ2
X + σ2

Y + c2)
, where µX and µY are the means of X and Y , σ2

X and σ2
Y

are the variances of X and Y , σXY is the covariance of X and Y , and c1 and c2 are constants
to stabilize the division.

10Leaderboards can be found here
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6. Multi-scale SSIM (MS-SSIM) extends SSIM to multiple scales for improved performance:

MS-SSIM(X,Y ) =
1

L

L∑
i=1

SSIM(Xi, Yi), where Xi and Yi are the decomposed images at

scale i, and L is the total number of scales.

A random 900 samples were picked to have a reasonable sample size and each image pair was
run through the model. The outputs were then compared with all metrics and written to file. Images
below (Figure 16) show normalised data points.

Figure 16. Changed/Unchanged pixels ration - X axis, similarity score - Y axis. Red line - scatter
plot trend line.

The X axis shows the ratio between changed and unchanged pixels and the Y axis shows sim-
ilarity. If the metric correctly depicts the similarity between feature maps, data pattern should fol-
low a descending trend. This would indicate that the more change there is (bigger ration between
changed/unchangend pixels), the smaller similarity score this pair scores.

As seen in the figure, scores from all three metrics follow the same trend and can be used to
prove feature maps similarity. Aside these three, other metrics were also calculated. To find other
methods that correctly interpret given feature maps, Cosine similarity, Structural similarity index
and Multi-scale structural similarity index measures were tested. The result can be found below
(Figure 17)
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Figure 17. Changed/Unchanged pixels ration - X axis, similarity score - Y axis. Red line - scatter
plot trend line.

However, the latter three metrics did not convey any useful information about feature map
similarity.

Even though some metrics did not visualise correct correlation between feature map pair close-
ness and actual changes, first three metrics can be confidently used to prove the hypothesis. In
conclusion, feature maps can be used to extract useful information about relation between two im-
ages. This data from foundational model Prithvi can be used as additional input for FC-Siam Diff
model.
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4. Model development
This work presents a new model with customised architecture and a new input. The input consists
of tensor of shape B × 38400. These feature maps are taken from the middle of Prithvi model
(Figure 18)

Figure 18. Prithvi model architecture encoder part that was integrated into the custom model ar-
chitecture

Essentially, this output from the model is latent representation of the image. In the original
pipeline this representation was used in decoder to recostruct masked images. This means that
model was trained to make exclusively informational latent representations to make decoder work
possible. The similarity information between bi-temporal images was reasoned in Section 3 and
this section will present further details regarding model development.

4.1. Model structure changes
As seen in previous section (Section 3), feature maps are proven to contain change information. The
next step is to integrate this new kind of input into the existing pipeline. An existing model FC-
Siam-Diff (Figure 19) was used as a base model. Aside from existing base inputs a new 2 feature
maps were injected into the model.
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Figure 19. Fully Convolutional Siamese - Difference (FC-Siam-diff) model. This was taken as a
base architecture of an improved model.

Outputs of Prithvi model are already in encoded form so it is safe to include them right into
the second stage of the model - the decoder part. However, the decoder had to adapt to accept more
data (Figure 20).

Figure 20. Part of the updated model architecture to allow to accept additional inputs.

To match existing dimensions inputs were padded with zeros to the shape of B×128×28×28.
Features then were reshaped into the correct shape of the inputs from the first stage. Then both of
them were concatenated with output from encoder. Resulted tensor was run through the first layer
of decoder. The only difference was to accept tensor of size 512 and reduce it to 256. The last layer
followed the same strategy as in the original architecture - gradually reduce the shape of the data.

The original FC-Siam-Diff model was customised to accept additional 2 inputs - Prithvi model’s
output features maps of the same bi-temporal images. This could potentially increase model’s
performance. Next sections will analyse customised model’s performance.
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5. Performance evaluation
A developed model has to be tested against various data to identify the quality of development.
Later subsections will present 3 test cases:

1. Testing against original dataset (OSCD) (Section 5.1).

2. Testing against new external dataset (MSBC) (Section 5.2).

3. Testing against custom Lithuanian data (Section 5.3).

5.1. OSCD dataset testing
Firstly, the model was tested with the original dataset test subset. OSCD dataset has predefined test
case consisting of 7 cities: Montpellier, Norcia, Saclay, Valencia, Dubai, Milano and Chongqing.
These multispectral images were cropped to appropriate size that the new custom model accepts
(224 × 224) and run through the model in evaluation mode. The following results were outputted
(Table 2):

Accuracy F1 score IoU Precision Recall

Custom model 0.95 0.31 0.19 0.53 0.31

Table 2. Model’s performance on OSCD test data

As can be seen from the table, results are not high. Model performance does not reach FC-Siam-
Diff model F1 score of 57.92 (or 0.5792 if on the same scale). However, custom model’s precision
surpassed original predecessor’s 51.84 (0.5184) score. This model also showed interesting ROC
data (Figure 21).

Figure 21. Model’s ROC on test data

The Receiver Operating Characteristic (ROC) curve rises sharply towards the top left corner of
the plot. This and high Area Under the Curve (AUC) score indicates low false positives rate and high
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Figure 22. Sample model output against OSCD dataset

true positives count. However, low F1 and Intersection over Union (IoU) scores suggest the contrary.
AUC metric may be misleading due to a likely class imbalance or the model’s overemphasis on the
majority class. This is a perfect example, how crucial it is to choose correct evaluation tools to be
able to make correct conclusions.

To correctly conclude model performance evaluation against OSCD dataset a couple of exam-
ples are provided in the Figure 22. As one can observe, the first example could be considered as
the best from all of 3. Model correctly acknowledges most notable boxes as changes, although fail-
ing to segment regions fully. Other examples are worse. The second example shows how model
creates non-existing changes. The third one suggests that model also struggles to identify narrow
lines (roads).

The performance testing has shown model’s flaws and spots where model could be improved.
Nonetheless, this performance is not extraordinary or not expected taking into account a slightly
worse than original model’s metrics. In fact, original model is also failing to identify many different
regions and performing worse in those 3 provided examples. Thus, custom model performance
results might be considered as better.

5.2. External dataset testing
To test the model correctly, another evaluation was conducted. An external MSBC (Multisource
Built-up change) [LZZ+22] multispectral imagery dataset was picked to test image on the same
domain but different location. This dataset consists of Sentinel-1 and Sentinel-2 images of Guigang
City, China. Images from the former satellite have two bands (VV and VH), from latter - 7 bands
(B2, B3, B4, B8, B8A, B11, B12). Time interval spans 2 years and reaches spatial resolution of 2
m. Sample from original paper is provided below in Figure 23.
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Figure 23. MSBC dataset. (a) Ground truth. (b) Images in time1. (c) Images in time2. (d) SAR in
time1. (e) SAR in time2. (f) Multispectral data in time1. (g) Multispectral data in time2.

Even though, images from MSBC dataset are multispectral, the number of bands is not suffi-
cient. Both, original and custom models take input of 13 channels. MSBC dataset lacks infrared
(B5, B6, B7), aerosols (B1), water vapor (B9) and SWIR bands (B11, B12). Substitution for miss-
ing bands does not exist however, it is possible to assign zeros to the missing bands. This approach
does not interfere with inference and provide correct results.

To test the dataset, a new Pytorch Dataset module was developed and run through both FC-
Siam-Diff and Custom models. Results can be seen in Table 3

FC-Siam-Diff Custom

Accuracy 0.93 0.94
F1 score 0.35 0.37

IoU 0.22 0.24
Precision 0.43 0.43

Recall 0.35 0.41

Table 3. Model performance with MSBC dataset

The Custom model outperforms FC-Siam-Diff in most metrics, demonstrating a higher accu-
racy. It also shows an improved F1 score (0.37 vs. 0.35), better IoU (0.24 vs 0.22) and recall (0.41
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vs 0.35). Precision remains the same for both models at 0.43.
Overall, the Custom model provides a minute but notable enhancement in performance over

FC-Siam-Diff. This dataset is one of a few performance metrics where custom model shows positive
improvement indications.

5.3. Manual testing
To test the model even further, another test was conducted. Model was tested with Lithuanian
satellite imagery.

50 random points from Lithuania were selected (Figure 24).

Figure 24. Random selected points from Lithuania

Firstly, Google Earth Engine was used to select the all images below 10% cloudiness. To ensure
the best quality of downloaded images, the collection was filtered to only collect images from 2020
to 2023 and only from May till October. All downloaded points were 1km2 squares in 224 × 224

dimensions. To ensure correct projection, EPSG:3857 system was used.
These bi-temporal images were used to understand what changes a model sees throughout the

time. An individualised threshold then filtered change map from predictions below a certain prob-
ability. Filtered values were then averaged to get so-called „confidence“ score. This score allowed
to sort change maps and get images with the highest predictions. Top 20 of these were selected and
then manually reviewed for proper performance examples.

A few best examples will be presented here to reason about model’s performance. All examples
are named as Points A to D (Figure 32, Figure 33, Figure 34, Figure 35, condensed view - Figure 25).
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Figure 25. Example points. These locations are referred as points from A to D, top to bottom
respectively

Looking at the first four examples (Figure 32, Figure 33, Figure 34, Figure 35), one can see
that images contain agricultural areas. Both models fail to see every change. However, it is clearly
visible that FC-Siam-Diff model fails to indicate any meaningful change. No matter how high the
threshold is set, FC-Siam-Diff model shows most of the image as ”slight” change: the whole image
is gray and does not have regions where probability is high enough to be filtered out by the threshold.

Another point worth mentioning, first image has clouds in the image 1. What is interesting, the
custom model sees this as interference and does not visualise it as change. This does not apply to
all images that have clouds. Both models are vulnerable to bigger cloud concentration in the image.

Speaking of the last triplet (Figure 35) example, both models indicate a clear change. A big
spot in the bottom of the image region has changed and became an agricultural area. However,
FC-Siam-Diff does not fill that region and highlights the edges only.

This and 3 other examples show that there are images where the custom model outperforms FC-
Siam-Diff. It by no means allows for making generalised conclusions or proving that the custom
model is superior across the entire Lithuanian region. Results from manual performance testing
indicates potential improvements of land-use, land-cover change detection.
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Results and conclusions
The thesis concludes with the results:

1. Developed median analysis methodology and tested against spatial-temporal data from 3 dif-
ferent areas. Results has shown that the new data quality is only for training in unsupervised
or semi-supervised settings.

2. Proposed idea to use the output from Prithvi model as another model’s input. This could
compensate domain’s data deficit.

3. Developed a neural network model that accepts 4 inputs: 2 bi-temporal images and 2 feature
maps

4. Tested proposed model against OSCD test set with accuracy - 0.95, F1 - 0.31 and precision
- 0.53.

5. Tested proposed model against separate MSBC dataset with accuracy - 0.94, F1 - 0.37 and
precision - 0.43.

6. Tested proposed model against randomly gathered Lithuanian regions. Results have shown
a more precise change regions when comparing with base model.

Results allowed to reach certain conclusions:

1. Analysed data could be transformed into additional unsupervised or semi-supervised dataset.
This also applies to images with lower visual bands quality.

2. Even though supervised learning would not benefit from the new data without manual label-
ing, knowledge transfer was proven to be another viable alternative.

3. Improved model architecture allowed the proposed model to consume the most notable con-
centrated input information and potentially help to identify changes.

4. The proposed methods demonstrated better performance on OSCD dataset and could be use-
ful in remote sensing change detection tasks instead of the base model.

5. Model’s testing against MSBC dataset has shown improvements even on totaly unreleated
dataset. This shows that model did not overfit and is capable to predict unseen data equally
well.

6. Testing against manually downloaded satellite imagery has demonstrated increased perfor-
mance of proposed model. These results by no means allow making generalised conclusions
or proving that the custom model is superior across the entire Lithuanian region. However,
the proposed methodology could be reasoned to be related with the increase in selected im-
agery land-cover, land-use domains.
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Appendix Nr. 1
5 selected lakes with points

(a) Pond Padvariai (b) Lake Arimaičiai

(c) Kaunas Reservoir (d) Lake Dusia

(e) Lake Asveja

Figure 26. 5 selected water bodies with points that are selected for analysis
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Appendix Nr. 2
The closes and the furthest water body form Baltic sea

(a) 2023 outside lake Asveja

(b) 2023 outside pond Padvariai
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(a) 2023 inside lake Asveja

(b) 2023 inside pond Padvariai
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Appendix Nr. 3
Running median distribution with data (2019-2013)

Figure 29. Outside pond Padvariai
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Appendix Nr. 4
Chosen images of 4 regions

(a) Bajorai district. Left image - 2019-04-02, right image - 2022-08-12

(b) National stadium constructions. Left image - 2019-03-23, right image - 2022-03-20

Figure 30. Images A (left column) and images B (right column) that are to be used in analysis.
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(a) Minija river floods. Left image - 2023-09-09, right image - 2023-12-03

(b) Šyša river floods. Left image - 2023-01-12, right image - 2023-08-12

Figure 31. Images A (left column) and images B (right column) that were used in analysis.
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Appendix Nr. 5
Manual evaluation points A and E

(a) FC-Siam-Diff

(b) Custom

Figure 32. Point A detected changes by each model
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(a) FC-Siam-Diff

(b) Custom

Figure 33. Point B detected changes by each model

(a) FC-Siam-Diff

(b) Custom

Figure 34. Point C detected changes by each model
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(a) FC-Siam-Diff

(b) Custom

Figure 35. Point D detected changes by each model

54


	Introduction
	Related work
	Used resources
	Existing datasets
	Selected datasets
	Challenges
	Loss functions for satellite imagery analysis
	Visualisation techniques for different types of analysis

	Data gathering methods
	Satellite imagery quality evaluation
	Data extraction and applicability
	Mosaicking - worth mentioning data gathering method

	Using feature maps as model's input
	Model development
	Model structure changes

	Performance evaluation
	OSCD dataset testing
	External dataset testing
	Manual testing

	Results and conclusions
	References

