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Summary of Doctoral Disertation
Scientific questions
For each n ∈ N, we consider the following changed-segment autoregressive model:

yk = 1k∈I∗cρyk−1 + 1k∈I∗ρ
∗yk−1 + εk, k = 1, 2, . . . , n,

where (εk) are independent identically distributed random variables with mean zero
and finite variance, and the subset of observation indexes

I∗ = I∗(n) = {k∗ + 1, . . . , k∗ + `∗}

represents a changed segment, I∗c = {1, 2, . . . , n}\I∗. The model describes an epidemic
deviation of an AR(1) process from the ordinary state, and k∗ is called the starting,
whereas `∗ is called the duration of the epidemic state. In our model, neither k∗ nor
`∗ is known. We focus not only on the stationary case (|ρ| < 1, |ρ∗| < 1), but also
include switches from a stationary state to a nonstationary one (|ρ| < 1, |ρ∗| = 1)
and vice versa (|ρ| = 1, |ρ∗| < 1). How to identify from given data whether there is
a changed segment or not; if yes, where is the starting and what are the duration of
the epidemic state and the size of this possible change? Doctoral dissertation gives
answers namely to these questions.

In order to construct criteria for testing changed segment, we consider polygonal
line processes constructed from estimates ε̂k of the model residuals and partial esti-
mators ρ̂k of the model parameter. Typical paths of these processes are presented in
Fig. 1.

Figure 1. Partial-sum process of normalized residuals ε̂k (left) and the process
ρ̂k − ρ (right) (k∗/n = 0.5, `∗ = 0.2, ρ = 0.9, ρ∗ = 1).

If a changed segment is present, the path of polygonal line process changes. This
feature enables us to construct changed-segment testing criteria. Using the invariance
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principle with respect to Hölderian topology established by Račkauskas and Suquet
[38], we get the asymptotic behavior of polygonal line processes under no change.
These results provide us with a wider class of functionals that can be used as test
statistics for testing stability of AR(1) models. Applying the continuous mapping
theorem to polygonal line processes, we construct tests for a changed segment. Under
the null hypothesis of no change, the test statistic converges to some asymptotic
process and, under the alternative, tends to infinity. When estimating the changed
segment, it is important to get consistent estimates of the changed segment and
model parameters ρ, ρ∗. In this work, the consistency of least squares estimators is
proved, and convergence rates are given.

Relevancy
Various autoregressive processes are widely used in econometric models. In order to
get forecasts as accurate as possible, we need to test the structural change and, if it
is present, to estimate parameters of the change. Other relevant question is related
with the stationarity of an autoregressive model. In this work, we consider testing
and estimating questions for one type of possible structural changes, the changed
segment. Different scenarios of stationarity–nonstationarity are included.

Aims and problems
The main objective of the thesis is to investigate the first-order changed-segment
autoregressive model with unknown starting and duration of the epidemic state,
including different scenarios of stationarity. This work deals with following problems:

* convergence of polygonal line processes in Hölder spaces;

* criteria related to polygonal line processes for testing the changed segment;

* consistency of the changed segment and model parameters and of their conver-
gence rates.

Novelty
We give changed segment tests for autoregressive first-order model. They are based
on the convergence of polygonal line processes in Hölder spaces, which is proved in
this work. We establish the consistency of least squares estimators of the changed
segment and model parameters, and provide their convergence rates.

Main statements
The asymptotic behavior of residual partial sums and partial estimator processes
of model parameter ρ are given in Theorems 1 and 4, respectively. These results
enable us to construct criteria for testing the changed segment in an autoregressive
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process. Test statistics are defined by (13) and (11). Propositions 7 and 5 describe the
convergence of test statistics under the null hypothesis of no change. The behavior of
one test statistic under the alternative is given in Proposition 6. The consistency of
the least square changed segment estimators is proved, and their convergence rates
are given in Theorems 8, 9, and 10.

Methods
We use the invariance principle in Hölder spaces, continues mapping theorem, small
ball probabilities. We also apply methods of general probability theory and mathe-
matical statistics.

Main results
In the literature on structural changes, numerous studies have been performed in
different directions: testing the presence of structural changes, estimation of change
points location and their number, forecasting from models under structural breaks,
etc. Models also differ and are linear or nonlinear, with known or unknown change
points, with single, epidemic, or multiple changes. We refer to Csörgő and Horváth
[13], Chen and Gupta [11], Basseville and Nikiforov [9], Banerjee and Urga [8], Perron
[32], and Sánchez [39] for a corresponding bibliography.

Times series stability is very important question in econometrics. Estimators
based on unstable models can be shifted, and forecasts loose accuracy. So tests
for structural stability are needed. We refer to the papers by Wichern et al. [42],
Bagshaw and Johnson [2], Pickard [35], Krämer et al. [25], Tang and MacNeil [41],
Davies et al. [15] Kim et al. [24], Lee and Park [30], Lee [29], Gombay and Serban
[18], Gombay [17], among others.

In doctoral dissertation, we use CUSUM (cumulative-sum) method for testing
structural change. This method is used commonly for testing change in mean, va-
riance, and other parameters of regression-type models. Usually, functional limit
theorems for model residual-based processes are first proved. Then appropriate func-
tionals of these processes are used as test statistics. The weak limits of partial sums
of regression residuals were established by MacNeil and Jandhyala [22], Tang and
MacNeil [41], whereas Kulperger [26] and Bai [3] studied AR and ARMA models,
respectively. Horvath [19] and Bai [3] proposed some applications to change-point
problems. Some authors have established weak limits for more general processes ba-
sed on residuals. For example, Jandhyala and MacNeil [21] studied iterated partial
sum sequences of regression residuals, Yu [43] and Kulperger and Yu [27] construc-
ted high-moment partial-sum processes based on residuals of ARMA and GARCH
models, respectively. All mentioned studies of structural changes focus on stationary
processes. Nonstationary AR models where investigated by Shin [40]. He proved
that residual partial-sum processes of the AR(1) model yk = ρyk−1+ek, k = 1, 2, . . . , n,

with independent identically distributed finite variance errors (ek) weakly converge
in the Skorokhod space D[0, 1]. The limiting process is a standard Brownian motion
when |ρ| < 1, whereas it is a randomly shifted Brownian motion when |ρ| = 1. We
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extend these results establishing the convergence in Hölder spaces of the polygonal
line processes constructed from partial sums of residuals of AR(1) model.

The literature on estimating the location of changes and models parameters is
sparser. Bai [4] proposed least square estimate for change point in the mean of a
linear process of general type under weak regularity assumptions. These estimates do
not require specifying the distribution of the error process (like maximum likelihood
methods) and are computationally efficient. Therefore, this method became most
frequently used. Linear regression models with multiple breaks were studied by Bai
and Perron [6], [7], Perron and Qu [34], Kejriwal and Perron [23], and Bai et al. [5].
Lavielle and Moulines [28] proposed a multiple change-point estimation procedure
that can be applied to a large class of dependent processes. Qu and Perron [33]
cover the more general case of multiple structural changes in a system of equations
allowing arbitrary restrictions on the parameters.

Literature on change location estimation for a specific case of epidemic-type chan-
ge addresses mainly to independent observations (see Fu and Curnow [16], Hušková
[20], and Račkauskas and Suquet [36], [37]).

Jouini and Boutahar [10] call attention to relatively sparse number of works
focussing on the changes in nonstationary time series. Chong [12] proposed single
change-point location estimator for AR(1) model including the cases with change
from a nonstationary state to a stationary one and vice versa. In this paper we
extended his results concerning AR(1) model with single break to AR(1) model with
an epidemic change. In this work, we prove the consistency of the changed segment
estimators for different scenarios and provide the convergence rates.

Some asymptotic results for polygonal line processes

We consider the following AR(1) model:

yk = ρyk−1 + εk, (1)

k = 1, 2, . . . , n, where ε1, . . . , εn are independent identically distributed random va-
riables with mean zero and finite variance σ2 = Eε21. Throughout we assume that
σ2 = 1 and set y0 = 0 for simplicity. The residuals (ε̂k, k = 1, . . . , n) are defined by

ε̂k = yk − ρ̂ yk−1 = (ρ− ρ̂ ) yk−1 + εk, (2)

k = 1, 2, . . . , n, where ρ̂ is the least squares estimator of ρ given by

ρ̂ =

∑n
k=1 ykyk−1∑n
k=1 y

2
k−1

. (3)

Throughout we set
∑

k∈∅ ≡ 0. Shin [40] showed that residual partial-sum processes

Ŵn(t) =

[nt]∑
k=1

ε̂k, t ∈ [0, 1],

normalized by n−1/2σ−1, as n→∞, have a weak limit in the Skorokhod space D[0, 1].
If |ρ| 6= 1, the processes (σ−1n−1/2Ŵn) converge in distribution to a standard Brownian
motion on [0, 1]. If |ρ| = 1, then the limit is a randomly shifted Brownian motion.
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We investigate the polygonal line process

V̂n(t) =

[nt]∑
k=1

ε̂k + (nt− [nt])ε̂[nt]+1, t ∈ [0, 1], (4)

n = 1, 2, . . . , in a framework of the separable Hölder spaces

Ho
α[0, 1] := {f ∈ C[0, 1] : lim

δ→0
ωα(f, δ) = 0}, (0 < α < 1)

endowed with the norm
‖f‖α := |f(0)|+ ωα(f, 1),

where
ωα(f, δ) := sup

s,t∈[0,1]
0<t−s<δ

|f(t)− f(s)|
|t− s|α

.

As usual, C[0, 1] denotes the space of continuous functions endowed with the uniform
norm ||f || = sup0≤t≤1 |f(t)|, f ∈ C[0, 1].

Clearly, the processes V̂n, n ≥ 1, belong to Ho
α[0, 1] for each 0 < α < 1. However,

its limiting process has a version in Ho
α[0, 1] for 0 < α < 1/2 only.

Let W = (W (t), t ∈ [0, 1]) be a standard Wiener process.

Theorem 1 Let 0 < α < 1/2 and assume that

lim
t→∞

tP (|ε1| ≥ t1/2−α) = 0. (5)

Then, in the Hölder space Ho
α[0, 1], we have:

(a) if |ρ| 6= 1, then
n−1/2V̂n

D−−−→
n→∞

W ;

(b) if ρ = 1, then
n−1/2V̂n

D−−−→
n→∞

W − A−1BD;

(c) if ρ = −1, then
n−1/2V̂n

D−−−→
n→∞

W + Ã−1B̃D̃;

where
A = 2

∫ 1

0

W 2(r)dr, B = W 2(1)− 1, D(t) =

∫ t

0

W (r)dr, t ∈ [0, 1],

and the random vector (Ã, B̃, (D̃(t), t ∈ [0, 1])) has the same distribution as
(A,B, (D(t), t ∈ [0, 1])) and is independent of W .

Remark 2 Via the continuous mapping theorem, Theorem 1 implies that, for each
continuous function F : Ho

α[0, 1]→ R:
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(i) if |ρ| 6= 1, then
F (n−1/2V̂n)

D−−−→
n→∞

F (W );

(ii) if ρ = 1, then
F (n−1/2V̂n)

D−−−→
n→∞

F (W − A−1BD);

(iii) if ρ = −1, then
F (n−1/2V̂n)

D−−−→
n→∞

F (W + Ã−1B̃D̃).

Now the statistics Tn = F (n−1/2V̂n) can be used to test stability of AR(1) model
(1) by choosing a continuous function F : Ho

α[0, 1]→ R.

Let ρ̂k denote the least square estimator of the parameter ρ based on the first k
observations y1, . . . , yk :

ρ̂k =

∑k
j=1 yjyj−1∑k
j=1 y

2
j−1

, k = 2, 3, . . . , n.

For t ∈ [0, 1] and n ≥ 1, define the polygonal line process

rn(t) =

{
ρ̂k + (nt− k)(ρ̂k+1 − ρ̂k) for k/n ≤ t < (k + 1)/n, k = 2, . . . , n,

0, for 0 ≤ t < 2/n.

The classical asymptotic normality results for ρ̂n (see, e.g., Mann and Wald [31]
and Anderson [1]) yields

√
n(1− ρ2)−1/2(ρ̂[nt] − ρ)

D−−−→
n→∞

t−1/2N (0, 1).

Hence, for small t ∈ (0, 1), the least square estimator ρ̂[nt] performs very inaccurately.
Therefore, in order to establish the functional behavior of the process rn, we restrict
it to the interval [δ, 1] with δ ∈ (0, 1).

Theorem 3 For each δ ∈ (0, 1),

√
n(1− ρ2)−1/2(rn − ρ)

D−−−→
n→∞

{
W (t)

t
, δ ≤ t ≤ 1

}
(6)

in the space C[δ, 1]. If for 0 < α < 1/2, the condition

E|ε1|p(α) <∞, where p(α) =
1

0.5− α
, (7)

is satisfied, then the convergence (6) holds also in the space Ho
α[δ, 1].

For practical purposes, the convergence (6) is not interesting since ρ is unknown.
The following result uses another standardization.
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Theorem 4 For each δ ∈ (0, 1),( n∑
k=1

y2k−1

)1/2
(rn − ρ)

D−−−→
n→∞

{
W (t)

t
, δ ≤ t ≤ 1

}
(8)

in the space C[δ, 1]. If for an 0 < α < 1/2, the condition

E|ε1|p(α) <∞, where p(α) =
1

0.5− α
, (9)

is satisfied, then the convergence (8) holds also in the space Ho
α[δ, 1].

Testing changed segment

In this section, we consider a problem of changed segment in an autoregressive model.
Assume that

yk = ρ∗yk−11I∗(k) + ρyk−11I∗c(k) + εk, k = 1, . . . , n, (10)

where I∗ = {k∗ + 1, . . . , k∗ + `∗} and I∗c = {1, . . . , n} \ I∗, |ρ| < 1 (εk, k = 0, 1, 2, . . . )

are independent identically distributed random variables with mean zero and finite
variance σ2 = Eε21. The model (10) describes an epidemic deviation of an AR(1)

process from the ordinary state, and k∗ is called the starting, whereas `∗ is called the
duration of the epidemic state. Usually, neither k∗ nor `∗ is known. The aim is to
test the null hypothesis

H0 : `∗ = 0

that there is no epidemic deviation from ordinary state against the alternative

HA : `∗ > 0

that, on the contrary, such deviation exists. To this aim, we consider the following
statistic for some fixed δ ∈ (0, 1):

Tn := T
(δ)
n :=

( n∑
i=1

y2i−1

)1/2
max

1≤`≤(1−δ)n
`−α max

δn≤k≤n
|ρ̂k+` − ρ̂k|. (11)

Proposition 5 Under H0, assume that E|ε1|p(α) <∞, p(α) = 1
0.5−α . Then

nαT
(δ)
n

D−−−→
n→∞

max
0<h<1−δ

h−α max
δ≤t≤1

∣∣∣W (t+ h)

t+ h
− W (t)

t

∣∣∣. (12)

Proposition 6 Under alternative HA, assume that k∗ ≥ δn for some δ ∈ (0, 1) and
that `∗ →∞ and `∗/n→ 0 as n→∞. Then

nαT
(δ)
n →∞,

provided that (
`∗

n

)1−α√
n|ρ− ρ∗| → ∞ as n→∞.
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For power analysis, some experiments were made, and their results were presented
by size-power curves (see [14]). On the x-axis, we have set the values of the empirical
p-value distribution function under the null hypothesis, whereas on the y-axis, we
have set the values of the empirical p-value distribution function under the alternative
(empirical power function).

The results show that the test statistic gains more power as the number of ob-
servations n, the duration of the epidemic state `∗, and δ increases (the prehistory of
epidemic change should be of the length proportional to the number of observations).
The power decreases when start position increases. From here we get that the test is
more powerful when we have a longer post-history after the epidemic change. Ana-
lysis of the influence of parameters ρ∗ and ρ to the test power shows that the test
is more powerful in detecting changes of the parameter ρ when the absolute values
of this parameter are quite large or autoregressive process changes from a stationary
state to a nonstationary one.

Let us define the statistic based on partial residual sums Ŝ0 = 0, Ŝk = ε̂1+ · · ·+ ε̂k,
k = 1, . . . , n, of model (10):

T (n;α) = max
1<l<n

1

lα
max

06k6n−l

∣∣∣∣Ŝ(k + l)− Ŝ(k)− l

n
Ŝ(n)

∣∣∣∣ , (13)

where 0 < α < 1/2.

Proposition 7 Under H0, assume that limt→∞ t
1/(0.5−α)P (|ε0| > t) = 0. Then

n−1/2+ασ−1T (n;α)
D−−−→

n→∞
max
0<h<1

h−α max
0<t<1−h

|W (t+ h)−W (t)− hW (1)| . (14)

Under alternative HA, n−1/2+ασ−1T (n;α)→∞.
Empirical test power analysis has shown similar results as those for the test based

on the partial-estimator process of parameter ρ. Only changed segment starting
position has no significant influence on the test power, and as the parameter α goes
closer to 1/2, the test power increases. Criteria based on partial-estimator process of
parameter ρ is more powerful, except the cases where the changed-segment prehistory
is short.

Changed-segment estimators: consistency and convergence rates

For each n ∈ N, we consider the following changed-segment autoregressive model:

y
(n)
i = ρny

(n)
i−11I∗c(i) + ρ∗ny

(n)
i−11I∗(i) + ε

(n)
i , (15)

i ∈ Nn := {1, 2, . . . , n}, where the subset of observations indexes

I∗ = I∗(n) = {k∗n + 1, . . . , k∗n + `∗n} ∈ In

represents a changed segment, I∗c = Nn\I∗, and

In := {{k + 1, . . . , k + `}, ` = 1, . . . , n, k = 0, . . . , n− `} .
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The model (15) describes an epidemic deviation of an AR(1) process from the or-
dinary state, and k∗n is called the starting, whereas `∗n is called the duration of the
epidemic state. In our model (15), neither k∗n nor `∗n is known. Our aim is to estimate
them from given observations.

Let the following assumptions be satisfied.

(A1) For each n, the random variables ε(n)1 , . . . , ε
(n)
n are independent identically dist-

ributed with mean zero and finite variance σ2 = E(ε
(n)
1 )2;

(A2) y
(n)
0 = 0;

(A3) There exist θ0, θ1 ∈ (0, 1) such that `∗n ∈ [θ0n, θ1n].

The strongest assumption (A3) means that a changed segment is of length propor-
tional to the number of observations. The case where `∗n = o(n) requires different
approach than suggested in this paper.

In what follows. we skip an extra index n in the notation just for simplification
purposes. We define

ρ̂(A) =

∑
i∈A yiyi−1∑
i∈A y

2
i−1

,

RSSn(A) =
∑
i∈Ac

(yi − ρ̂(Ac)yi−1)2 +
∑
i∈A

(yi − ρ̂(A)yi−1)2,

where A ∈ In and Ac = Nn \ A. The changed segment in the model (15) is then
estimated by

(k̂∗, k̂∗ + ˆ̀∗) = Î∗ = argminI∈InRSSn(I). (16)

Set, for 0 ≤ β < θ0/3,

Iβ = (k̂∗ + βn, k̂∗ + ˆ̀∗ − βn), Jβ = [1, k̂∗ − βn] ∪ [k̂∗ + ˆ̀∗ + βn, n].

When the consistency of the estimator Î∗ is established, the choice of β will ensure
that, with high probability, both intervals Iβ and Jβ are nonempty. We shall consider
the estimators of ρ and ρ∗ defined by

ρ̂∗ = ρ̂(Iβ), ρ̂ = ρ̂(Jβ). (17)

In the case where the autoregressive process changes from one stationary state
to another, we have the following result.

Theorem 8 For the model (15), assume that |ρ| < 1, |ρ∗| < 1, and that conditions
(A1)–(A3) are fulfilled. Then

(i) for the estimators of (k∗, `∗) given by (16),

|k̂∗ − k∗|+ | ˆ̀∗ − `∗| = OP

( √
n

|ρ− ρ∗|

)
;

13



(ii) for the estimators of ρ and ρ∗ given by (17) with β = 0,

|ρ∗ − ρ̂∗| = OP

(
n−1/2

)
, |ρ− ρ̂| = OP

(
n−1/2

)
,

provided that √n|ρ− ρ∗| → ∞ as n→∞.

If the changed segment represents a random walk, we have the following results.

Theorem 9 For the model (15), assume that |ρ| < 1 and ρ∗ = 1. Assume also that
conditions (A1)–(A3) are fulfilled. Then

(i) for the estimators of (k∗, `∗) given by (16),

|k̂∗ − k∗|+ | ˆ̀∗ − `∗| = oP (n);

(ii) for the estimators of ρ and ρ∗ given by (17) with any 0 < β < θ0/3,

|1− ρ̂∗| = OP (n
−1), |ρ− ρ̂| = OP (n

−1/2)

as n→∞.

Finally, in the case where a stationary autoregressive segment is inserted into a
random walk, the result is similar to the previous one.

Theorem 10 For the model (15), assume that ρ = 1 and |ρ∗| < 1. Assume also that
conditions (A1)–(A3) are fulfilled. Then

(i) for the estimators of (k∗, `∗) given by (16),

|k̂∗ − k∗|+ | ˆ̀∗ − `∗| = oP (n);

(ii) for the estimators of ρ̂ and ρ̂∗ given by (17) with any 0 < β < θ0/3,

|1− ρ̂| = OP (n
−1), |ρ∗ − ρ̂∗| = OP (n

−1/2)

as n→∞.
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Conclusions
In the doctoral dissertation, we consider problems of testing and estimating changed
segment with unknown starting position and duration of epidemic state in the auto-
regressive first-order model. The proposed tests are based on partial sums of model
residuals and model-parameter partial-estimator polygonal line processes. We derive
asymptotic results for these processes in Hölder spaces. The behavior of test statis-
tics under the null hypothesis of no change and alternative is provided. Empirical
power analysis has shown that tests are more powerful when absolute values of model
parameter are quite large or autoregressive process changes from a stationary state to
a nonstationary one. We prove the consistency of the least square changed-segment
estimators and provide their convergence rates.
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Reziumė
Disertacijoje nagrinėjamas pirmos eilės autoregresinio modelio pasikeitusio segmento
testavimo ir vertinimo uždavinys. Aprašomo modelio epideminio pasikeitimo pradžia
ir ilgis nėra žinomi. Nagrinėjami galimi pasikeitimai ne tik iš stacionarios būklės į
stacionarią, bet ir iš stacionarios į nestacionarią bei atvirkščiai.

Įvade skaitytojas supažindinamas su nagrinėjamais uždaviniais, trumpai aprašo-
mi jų sprendimo būdai, pateikiami disertacijos tikslai bei ginamieji teiginiai. Pir-
majame skyriuje supažindinama su moksline literatūra, kurioje nagrinėjami artimi
šiam darbui uždaviniai. Antrasis disertacijos skyrius skirtas laužčių procesų ribi-
nėms teoremoms Hiolderio erdvėse. Nagrinėjami modelio paklaidų įvertinių dalinių
sumų ir modelio parametro ρ dalinių įvertinių laužčių procesai. Trečiajame skyriuje
pasiūlyti kriterijai pasikeitusio segmento testavimui. Statistikų ribinis elgesys esant
teisingai nulinei (modelio be struktūrinio pasikeitimo) hipotezei gaunamas taikant
ankstesniajame skyriuje įrodytas ribines teoremas. Parodoma, kad esant teisingai
alternatyvai testo statistikos išsigimsta. Iš empirinio galios tyrimo rezultatų matyti,
kad pasiūlytų testų galia didžiausia aptinkant pasikeitimus iš stacionarios būklės į
nestacionarią arba esant artimoms vienetui parametro ρ reikšmėms. Ketvirtajame
disertacijos skyriuje įrodoma, kad pasikeitusio segmento pradžios ir ilgio įvertiniai bei
autoregresinio modelio su pasikeitusiu segmentu parametrų įvertiniai yra suderintieji
bei pateikiamas jų konvergavimo greitis. Darbas baigiamas išvadomis ir literatūros
sąrašu.
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