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Integrated stratigraphy of the Llandovery-Wenlock Boundary 
in the Łopianka–2 outcrop of the Sudeten Mountains, 
southwest Poland
SIGITAS RADZEVIČIUS, PAWEŁ RACZYŃSKI, ANDRIUS GARBARAS, ANNA CICHON-PUPIENIS 
AND TOMAS ŽELVYS

Stable carbon isotopic composition of organic matter (δ13Corg) analyses were car-
ried out along the 7-m-thick section of Lower Graptolitic Shales at the Llandovery/
Wenlock boundary, outcropping on Łopianka Mountain (the Łopianka-2 outcrop) 
in the Bardo Mountains of the Central Sudetes, Southwest Poland (eastern part of 
the European Variscides Belt). This study presents the first attempt to establish inte-
grated biostratigraphical and chemostratigraphical records for Silurian strata in the 
Bardo Mountains. Graptolite assemblages indicate the presence of centrifugus and 
murchisoni biozones at the Telychian-Sheinwoodian boundary and mid-Wenlock in 
the investigated interval, thus continuous graptolitic succession. The succession of 
graptolite biozones in the upper Wenlock section could not be determined due to 
the collapsed strata. The isotopic signature of δ13Corg showed a positive excursion 
which is referred to as the Ireviken or early Sheinwoodian Carbon Isotope Excursion 
(ESCIE). The δ13Corg values of the Ireviken interval begin to rise higher than the first 
occurrence of Cyrt. bohemicus and does not coincide with the base of the murchisoni 
Biozone. Due to the fact that coupled carbon isotope chemostratigraphy and graptolite 
biostratigraphy for Silurian strata is a new approach in this region, this may serve as 
a standard for the Llandovery/Wenlock boundary in the area of the Saxothuringian 
Zone of the Central European Variscides. □ Graptolite, Carbon isotopes, Silurian, 
Telychian – Sheinwoodian boundary, Łopianka Mountain, Bardo Mountains
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Stable carbon isotopes (δ13C) are often used as a 
chemostratigraphical tool, and are mostly used 
alongside biostratigraphical data. The first studies 
of δ13C variability in Silurian rocks started in the 
end of the last century (e. g. Corfield et al. 1992; 
Samtleben et al. 1996; Wenzel & Joachimski 1996; 
Kaljo et al. 1997). The increasing availability of δ13C 
data made it possible to create a generalized varia-
bility of δ13C for the Silurian in recent decades, with 
widely recognized positive δ13C excursions being in 
the early and late Aeronian, early Telychian (Valgu), 
Telychian-Sheinwoodian boundary (Ireviken), late 
Homerian (Mulde), early Ludfordian (Linde), late 
Ludfordian (Lau) and Silurian-Devonian boundary 
interval (Klonk) (e.g. Cramer et al. 2011; Melchin 

et al. 2020). These Silurian positive δ13C excursions 
are mostly obtained by δ13C measurements from 
bulk carbonates. 

The stable carbon isotope data from organic 
(δ13Corg) material are rare from Silurian rocks (e.g. 
Vandenbroucke 2013; Sullivan et al. 2018; Cichon-
Pupienis et al. 2021; Hartke et al. 2021). This is 
probably related to the specific method of prepara-
tion of samples for δ13Corg analysis and content (con-
centration) of organic matter in rocks. On the other 
hand, some diachroneity can be presented in δ13Ccarb  
and δ13Corg records. Positive carbon excursions based 
on δ13Corg data may start earlier than those based 
on δ13Ccarb (e.g. Biebesheimer et al. 2021). This cre-
ates inaccuracies in the design of high-resolution 
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integrated stratigraphy. However, positive carbon 
isotopes excursions of the Telychian shales were 
determined based on δ13Corg data from sparsely stud-
ied material from the Kallholn in Sweden (Walasek 
et al. 2018) and the Sommerodde in Denmark 
(Hammarlund et al. 2019; Loydell et al. 2023). These 
excursions are well integrated with graptolite bio-
stratigraphy data, making δ13Corg data important as 
it provides additional knowledge for high resolution 
stratigraphy.

The purpose of this paper is to present new data on 
the distribution and changing of Silurian graptolites 
combined with stable carbon isotope record from 
organic material (δ13Corg), from the Bardo Moutains 
(Sudetes), in an attempt to integrate new biostrati-
graphical data with δ13Corg material. Integrated stra-
tigraphy data allows us to determine the age of the 
Łopianka – 2 outcrop geological section. This is the 
first such study conducted in the Bardo mountains 
region and could be used as a standard or support-
ing Silurian geological section there. On the other 
hand, the Silurian geological section of the Łopianka 
– 2 outcrop could be a candidate for use among 
Standard Auxilliary Boundary Stratotypes (Head 
et  al. 2023) for the Llandovery/Wenlock boundary 
in globally or a reference section for Saxothuringian 
Zone of Sudetes. 

Geological background
The European Variscides Belt spreads from south-
ern Portugal in the West to Central Poland in the 
East (Mazur et al. 2006). There are several zones 
distinguished in the Central European Variscides 
Belt. The Sudeten Mountains are in the East part of 
the European Variscides Belt. The Bardo Mountains 
(in Polish: Góry Bardzkie) are located in the Central 
Sudetes (Żelaźniewicz & Aleksandrowski 2008) and 
are assigned to the Saxothuringian Zone (Porębska & 
Sawłowicz 1997) of the Central European Variscides 
(Fig. 1A). Saxothuringia is a part of the Armorican 

Fig. 1. A, simplified structural map of central Europe (Bełka et al. 2002) with the Bardo Mountains location. Abbreviations: HCM – The 
Holy Cross Mountains; MGCH – Mid German Crystalline High; OZ – Odra Zone; TBT – Tepla-Barrandian Terrane; USM – Upper Silesian 
Massif. B, LiDAR map of the fragment of the Bardo Mountains with the Zdanów outcrop and Łopianka mountain location. C, location of the 
Łopianka–2 outcrop (B,C from www.geoportal.gov.pl). D, general view of Silurian rocks in the Łopianka–2 outcrop.

Terrane Assemblage (Franke 2000) or a vestige of 
the Saxo-Thuringian Ocean (Franke et al. 2017). 
However, the Armorican Terrane Assemblage, with 
narrow oceans between terranes, has been located in 
the South part of the Rheic Ocean near Gondwana 
during the Silurian (Franke et al. 2017).

There are several Silurian outcrops in the Bardo 
Mountains which are well documented by Wyżga 
(1987). The most complete Silurian geologi-
cal section is in the Żdanów outcrop (in German 
Herzogswalde) (Fig.  1B). It comprises lydites, sili-
ceous and clayey shales with phosphate concretions, 
and tuff interbeds, ranging in age from the early 
Llandovery Parakidograptus acuminatus Biozone to 
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the latest Pridoli Istrograptus transgrediens Biozone 
(Malinowska 1955a, Porębska & Koszowska 2001; 
Radzevičius et al. 2020). The total thickness of 
Silurian strata is about 50 m in Żdanów section. It 
is subdivided into Lower Graptolitic Shales, Green 
Shales, and the Upper Graptolitic Shales (Porębska 
1980), or only the Graptolite Shales (Nowak, 2019). 
These deposits indicate a pelagic environment and 
developed on the floor of the Saxo-Thuringian Ocean 
(Franke et al., 2017) or the Bardo Ocean (Racki et al. 
2022).

The Silurian deposits form Łopianka mountain (in 
German Pinkeberg) have been studied for a century 
(Dahlgrün & Finckh 1924). There are two outcrops 
on Łopianka mountain (Wyżga 1987) called ‘the first’ 
and ‘the second’. Both outcrops are characterized by 
the Lower Graptolitic Shales. The Silurian sequence is 
more complete in Łopianka–1 and commences with 
Ordovician sandstone that is overlapping Telychian 
and lower Wenlock shales. According to Wyżga 
(1987), Wenlock shales uncover in the Łopianka–2 
section. There are few studies on geochemistry 
(Malinowska 1955b; Bauersachs et al. 2009) or sed-
imentation (Wyżga 1987; Kremer 2011) from the 
Łopianka outcrops. A few graptolite studies recorded 
Spirograptus turriculatus, Streptograptus crispus, 
Monoclimacis griestoniensis, Oktavites spiralis and 
Cyrtograptus murchisoni biozones in the Łopianka–1 
outcrop (Malinowska 1955a, Wyżga 1987) and lund-
greni – praedeubeli biozones in the Łopianka–2 out-
crop (Porębska 1998). Thus, the Silurian deposits are 
known from Łopianka but detailed bio– and che-
mostratigraphical investigations have not yet been 
completed. 

Material and methods
New material for geochemical, and palaeontological 
investigations comes from the Łopianka – 2 outcrop 
(N: 50°31’14.40’ E: 16°40’17.76’) which is located on 
Łopianka mountain (Fig. 1C) in the Central part of 
the Sudetes (SW Poland). Pelagic black, grey, greyish 
and greenish argillitic shales about 7 m thick (Fig. 2) 
of the Lower Graptolitic Shales (Wyżga 1987) are 
exposed there (Fig. 3). Bed layering is almost verti-
cal. Samples for palaeontological, and δ13Corg analyses 
were collected approximately every 0.1 m, about 0.5 
kg each. It was not possible to collect samples from 
the lundgreni – praedeubeli interval, as this part of the 
outcrop is now collapsed and overgrown. 

Standard methods were used for the δ13Corg anal-
ysis (Radzevičius et al 2019). Approximately 1 g of 

each sample was grinded to powder, powder was 
dissolved using HCl (5 N) for 24 hours to remove 
carbonate material, and powder residue was washed 
with distilled water and dried. δ15N and δ13Corg mea-
surements were taken via EA-IRMS, Flash EA1112– 
Thermo V Advantage technique (Garbaras et al. 2008) 
at the Center for Physical Sciences and Technology in 
Vilnius (Lithuania). 

Results

Biostratigraphy
Graptolites are not abundant or poorly preserved in 
the studied samples (Fig. 2) and a sequence of grapto-
lites biozones was therefore not possible to determine. 
However, some rare graptolites have provided very 
important biostratigraphical information. 

The lowest samples yielded high diversity grapto-
lite assemblages. Seven species, Retiolites geinitzianus 
Barrande (Fig. 4 B,I), Barrandeograptus cf. pulchellus 
(Tullberg) (Fig. 4 C1,2), Monograptus pseudocultellus 
Bouček (Fig. 4 F,G), Monograptus priodon (Bronn) 
(Fig. 4 J), Pristiograptus praedubius (Bouček), P. 
largus (Perner) (Fig. 4 H), and Monoclimacis vom-
erina (Nicholson) (Fig. 4 A), are recognized there. 
The stratigraphically long-ranging R. geinitzianus, 
M. priodon, Mc. vomerina, and P. praedubius are 
known from the uppermost Telychian to lowermost 
Sheinwoodian in peri-Gondwana (e.g. Loydell et al. 
2009), Bohemia (e.g. Štorch 2023) and Baltica (e.g. 
Paškevičius 1997) and link the upper Llandovery to 
the lower Wenlock (spiralis – murchisoni biozones). 
The easily recognizable species M. pseudocultellus is 
known from the insectus Biozone (Suyarkova 2012) 
and the murchisoni Biozone (Loydell et al 2017) in 
Baltica as well as in the insectus – murchisoni inter-
val in Bohemia (Štorch 1994). There is relatively high 
diversity of graptolites in the lowest sampling level but 
no graptolite species which are informative for high 
resolution biostratigraphy. 

The lowest occurrences of Cyrtograptus cf. cen-
trifugus Bouček (Fig. 4D) at 0.3 m could mark the 
centrifugus Biozone in Łopianka-2 outcrop (Fig. 2). 
However, Cyrt. cf. centrifugus (Fig. 4D) and Cyrt. bohe-
micus Bouček (Fig. 5L) are found together at 0.35 m 
level and mark the murchisoni Biozone of the lower-
most Wenlock. Cyrtograptus centrifugus can range in 
the lower part of the murchisoni Biozone with Cyrt. 
murchisoni (Carruthers) (Loydell et al. 2003) and Cyrt.  
bohemicus (Štorch 2023). The Llandovery-Wenlock 
boundary is therefore approximately at the level 
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Fig. 2. Stratigraphical framework, sampling levels, distribution of graptolites and carbon isotope (δ13Corg) stratigraphy of the Łopianka–2 
outcrop and correlation with Regional stages (after Paškevičius et al. 1994) of the Baltic Silurian Basin. Abbreviations: Ad. – Adavere; Ln. – 
Llandovery; R. St. – Regional Stage; Tel. – Telychian. Legend: 1 – black shales; 2 – lydites; 3 – greyish shales; 4 – greenish shales; 5 – samples 
without graptolites; 6 – samples with graptolites.
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Fig. 3. Thin sections of various shales from the Łopianka–2 outcrop. A, the contact zone between green and black shale (A1), laminated 
black shale (A2), depth 5.9 m. B, finely laminated black shale (B1), rich in organic matter with quartz veins (B2), depth 6.9 m. C, indistinctly 
laminated green shale (C1) with radiolarians or spherical structure filled with quartz (C2), depth 2.3 m. Scale bar: A1, B1, C1 – 1 cm; A2, B2, 
C2 – 0.5 mm.

with these both Cyrtograptus species in Łopianka–2 
outcrop.

The next level with age-diagnostic graptolites for 
biostratigraphy lies at 3.7 m (Fig. 2). Here Cyrt. cf. 
rigidus Tullberg (Fig. 5B) indicates the rigidus bio-
zone. The graptolite assemblage Cyrt. multiramis 
Törnquist (Fig. 5H) (Štorch 2023) and Pristiograptus 

magnus (Fig. 5E) (Loydell et al 2010; Urbanek et al. 
2012) species indicate the uppermost Sheinwoodian 
(perneri Biozone) or lowermost Homerian (lundgreni 
Biozone) in the Łopianka-2 outcrop. Long range reti-
olitid species Paraplectograptus eiseli (Manck) are 
found in this interval (Fig. 5C). This species range from 
the riccartonensis Biozone up to the lundgreni Biozone 



Sigitas Radzevičius et al. 6

Fig. 4. Graptolites from Łopianka–2 outcrop. A, Monoclimacis vomerina (Nicholson), no. LOP-2-189, (level 0 m). B, I, Retiolites geinitzianus 
Barrande. B, no. LOP-2-186, (level 0 m). I, no. LOP-2-175 (level 0.1). C1,2, Barrandeograptus cf. pulchellus (Tullberg), no. LOP-2-194a, 
(level 0 m). D, E, Cyrtograptus cf. centrifugus Bouček, no. LOP-2-167, (level 0.3 m). E, no. LOP-2-196 (level 0.35 m). F, G, Monograptus 
pseudocultellus Bouček, (level 0 m). F, no. LOP-2-190, G – no. LOP-2-191. H, Pristiograptus largus (Perner), no. LOP-2-194, (level 0 m). J, 
Monograptus priodon (Bron), no. LOP-2-168, (level 0.3 m). K, L, Cyrtograptus bohemicus Bouček. K, no. LOP-2-203 (level 0.35 m). L, no. 
LOP-2-200, (level 0.35 m). Scale bar 1 mm.

(Maletz 2024). Stratigraphically non-diagnostic taxa 
range in the topmost part of the investigated interval 
and demonstrate an upper Sheinwoodian or lower 
Homerian age (lundgreni Biozone) (Fig. 2). There 
is also a graptolite identified as Cyrt. cf. lundgreni 
Tullberg (Fig. 5I) at the 6.8 m level which may refer to 
the lundgreni Biozone (lower Homerian).

Organic matter carbon isotopes 
According to the δ13Corg data, the investigated interval of  
the łopianka–2 outcrop could be subdivided into three 

intervals. The first or lower interval comprising 8 sam-
ples (0–0.7 m) is marked by δ13Corg values that vary with 
small fluctuations from −29.24 to −29.95 ‰ (Fig.  2). 
The δ13Corg values gradually increase to −27.96 ‰ and 
vary by around −28 ‰ in the 0.9–2.5 m interval; it is 
this interval which has the highest δ13Corg values. The 
δ13Corg again falls to −31.15 ‰ at 2.6 m of the measured 
section and, with some fluctuations, varies between 
−32–−31 ‰ in the 2.6–6.9 m interval. This is the stud-
ied interval with the lowest δ13Corg values, punctuated by 
one small positive δ13Corg excursion at a depth of 3.5 m. 
There, the δ13Corg rises to −29.86 ‰ (Fig. 2). Accordingly, 
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Fig. 5. Graptolites from Łopianka–2 outcrop. A, Sokolovograptus textor (Bouček & Münch), no. LOP-2-29, (level 2.2 m). B, Cyrtograptus 
cf. rigidus Tullberg, no. LOP-2-145, (level 3.7 m). C, Paraplectograptus eiseli (Manck), no. LOP-2-77, (level 5.6 m). D, F, G, Pristiograptus 
pseudodubius (Bouček). D, no. LOP-2-157, (level 4.3 m). F, LOP-2-68, (level 5.4 m). G, no. LOP-2-156, (level 4.3 m). E, Pristiograptus magnus 
Urbanek, Radzevičius, Teller, Kozłowska, no. LOP-2-115, (level 5.2 m). H, Cyrtograptus multiramis Törnquist, no. LOP-2-64, (level 5.5 m). 
I, Cyrtograptus cf. lundgreni Tullberg, no. LOP-2-51, (level 6.8 m). J, Paraplectograptus praemacilentus (Bouček & Münch), no. LOP-2-134, 
(level 4.4 m). Scale bar 1 mm.

δ13Corg values vary between −32.11 and −27.62 ‰ in the  
studied interval (approximately 4.5 ‰).

Discussion
Integrated evidence from graptolites and stable 
carbon isotopes indicate the presence of the early 
Sheinwoodian or Ireviken δ13Corg excursion in the 
Łopianka–2 outcrop. Three distinct chemostrati-
graphical zones can be established in the section 
(Fig.  2). The rising zone (R-Zone) of the Ireviken 
positive δ13Corg isotope excursion is rather thin, starts 
0.3 m above the first occurrence of Cyrt. bohemicus 
and does not coincide with the base of the murchisoni 
Biozone. The discrepancy of the beginning of δ13Corg 

excursion and the base of the murchisoni Biozone 
is also documented in Gotland (Hartke et al 2021) 
and in the Banwy River section, Wales (Loydell and 
Frýda 2007). However, the lowermost interval, below 
R-Zone can be correlated with the upper part of 
Adavere Regional Stage in the East Baltic (Fig. 2). The 
subsequent zone of stable isotope values (S-Zone) is 
defined as a long-lasting steady interval (about 1.3 m) 
of high δ13Corg values (Fig. 2) with only rare grapto-
lite occurrences. The long stratigraphical ranges of the 
graptolites identified in the Łopianka–2 section do 
not allow for distinguishing biozones and, in particu-
lar, biozonal boundaries. The falling zone (F-Zone) is 
defined by a rapid decrease of δ13Corg values. The thick-
ness of the F-Zone is about 0.4 m. There are no grap-
tolite occurrences in the F-Zone interval. All intervals 
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of the positive δ13Corg excursion could be correlated  
with the Jaani Regional Stage (Fig.2) of Lithuania 
(Želvys et al 2022). Above the F-Zone δ13Corg values 
are relatively stable and are lower than those in the 
interval of the isotope excursion (Fig. 2). This interval 
could be correlated with the Jaagarahu Regional Stage 
in the East Baltic.

Conclusions
The integrated stratigraphical analysis of the 
Łopianka–2 outcrop section revealed that the stud-
ied interval corresponds to the uppermost Telychian 
and Sheinwoodian. Graptolites are rare but, according 
to δ13Corg data, the Ireviken positive excursion is well 
recorded in the studied section. In the Łopianka – 2 
outcrop the Ireviken positive δ13Corg isotope excursion 
starts 0.3 m above the first occurrence of Cyrt. bohe-
micus and does not coincide with the base of the mur-
chisoni biozone. The last but peculiar characteristics 
of the δ13Corg record is that it displays higher values 
before the Ireviken positive carbon isotope excursion 
then after it.
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