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Abstract
Computational methods have been established as cornerstones in optical imaging and holography in recent years. Every 
year, the dependence of optical imaging and holography on computational methods is increasing significantly to the extent 
that optical methods and components are being completely and efficiently replaced with computational methods at low cost. 
This roadmap reviews the current scenario in four major areas namely incoherent digital holography, quantitative phase 
imaging, imaging through scattering layers, and super-resolution imaging. In addition to registering the perspectives of the 
modern-day architects of the above research areas, the roadmap also reports some of the latest studies on the topic. Compu-
tational codes and pseudocodes are presented for computational methods in a plug-and-play fashion for readers to not only 
read and understand but also practice the latest algorithms with their data. We believe that this roadmap will be a valuable 
tool for analyzing the current trends in computational methods to predict and prepare the future of computational methods 
in optical imaging and holography.

1 � Introduction (Joseph Rosen 
and Vijayakumar Anand)

Light is a powerful means that enables imprinting and 
recording of the characteristics of objects in real-time 
on a rewritable mold. The different properties of light, 

such as intensity and phase distributions, polarization and 
spectrum allow us to sense the reflectivity and thickness 
distributions and the birefringence and spectral absorption 
characteristics of objects [1]. When light interacts with 
an object, the different characteristics of the object are 
imprinted on those of light, and the goal is to measure the 
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changes in the characteristics of light after the interaction 
with high accuracy, at a low cost, with fewer resources and 
in a short time. In the past, the abovementioned measure-
ments involved only optical techniques and optical and 
recording elements [2–10]. However, the invention of 
charge-coupled devices, computers, and associated com-
putational techniques revolutionized light-based measure-
ment technologies by sharing the responsibilities between 
optics and computation. The phenomenal work of several 
researchers resulted in the gradual introduction of com-
putational methods to imaging and holography [11–15]. 
This optical-computational association gradually reached 
several milestones in imaging technology in the follow-
ing stages. The first imaging approaches were free of 
computational methods and completely relied on optical 
elements and recording media. The introduction of com-
putational methods to imaging and holography shifted the 
full dependency on optics to both partial ones between 
optics and computation. Today, the field of imaging relies 
significantly more on computations than on optical ele-
ments, with some techniques even free of optical elements 
[16–20]. With the development of deep learning methods, 
new possibilities in imaging technology have arisen [20]. 
The entire imaging process in imaging systems that com-
prises many optical elements, if broken down into indi-
vidual steps, reveals several closely knitted computational 
methods and processes with very few optical methods and 
processes.

The above evolution leads to an important question: 
what is the next step in this evolutionary process? This 
question is not direct or easy to answer. To answer this 
question, it is necessary to review the current state-of-
the-art imaging technologies used in all associated sub-
fields, such as computational imaging, quantitative phase 
imaging, quantum imaging, incoherent imaging, imaging 
through scattering layers, deep learning and polariza-
tion imaging. This roadmap is a collection of some of the 
widely used computational techniques that assist, improve, 
and replace optical counterparts in today’s imaging tech-
nologies. Unlike other roadmaps, this roadmap focuses 
on computational methods. The roadmap comprises com-
putational techniques developed by some of the leading 
research groups that include prominent researchers and 
architects of modern-day computational imaging tech-
nologies. In the past, even today, the goal has been to 
measure the characteristics of an object, such as intensity, 
phase, and polarization, using light as a real-time mold, 
but better and faster, with fewer resources and at a low 
cost. Although it is impossible to cover the entire domain 
of imaging technology, this roadmap aims to provide 
insight into some of the latest computational techniques 
used in advanced imaging technologies. Mini summaries 
of the computational optical techniques with associated 

supplementary materials as computational codes are pre-
sented in the subsequent sections.

2 � Incoherent digital holography 
with phase‑shifting interferometry 
(Tatsuki Tahara)

2.1 � Background

Digital holography (DH) [21–25] is a technique used to 
record an interference fringe image of the light wave dif-
fracted from an object, termed hologram, and to reconstruct 
a three-dimensional (3D) image of the object. A laser light 
source is generally adopted to obtain interference fringes 
with high visibility. However, a digital hologram of daily-use 
light is obtained by exploiting incoherent digital hologra-
phy [26–30]. Using incoherent digital holography (IDH), a 
speckleless holographic 3D image of the object is obtained. 
Single-pixel holographic fluorescence microscopy [31], 
lensless 3D imaging [32], the improvement of the point 
spread function (PSF) in the in-plane direction [33], and full-
color 3D imaging with sunlight [34] were experimentally 
demonstrated. In IDH, phase-shifting interferometry (PSI) 
[35] and a common-path in-line configuration are frequently 
adopted to obtain a clear holographic 3D image of the object 
and robustness against external vibrations. I introduce IDH 
techniques using PSI in this section.

2.2 � Methodology

Figure 1 illustrates the schematic of the phase-shifting 
IDH (PS-IDH) and configurations of frequently adopted 
optical systems. An object wave generated with spatially 
incoherent light is diffracted from an object. In IDH, self-
interference phenomenon is applied to generate an inco-
herent hologram from spatially incoherent light. Optical 
elements for generating two object waves whose wavefront 
curvature radii are different are set to obtain a self-inter-
ference hologram as shown in Fig. 1a. A phase modulator 
is set to shift the phase of one of the object waves, and an 
image sensor records multiple phase-shifted incoherent 
digital holograms. The complex amplitude distribution in 
the hologram is retrieved by PSI, and the 3D information 
of the object is reconstructed by calculating diffraction 
integrals to the complex amplitude distribution. In PS-
IDH, optical setups of the Fresnel incoherent correlation 
holography (FINCH) type [26, 28, 36], conoscopic holog-
raphy type [37, 38], two-arm interferometer type [34], 
optical scanning holography type [39–41], and two polar-
ization-sensitive phase-only spatial light modulators (TPP-
SLMs) type [42, 43] have been proposed. In a FINCH-type 
optical setup shown in Fig. 1b, a liquid crystal (LC) SLM 
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works as both a two-wave generator and a phase modula-
tor for obtaining self-interference phase-shifted incoher-
ent holograms. In FINCH, phase-shifted Fresnel phase-
lens patterns are displayed, and phase-shifted incoherent 
holograms are recorded. Polarizers are frequently set to 
improve the visibility of interference fringes. In a con-
oscopic-holography-type optical setup shown in Fig. 1c, 
instead of an SLM, a solid birefringent material such as 
calcite is adopted as a polarimetric two-wave generator. In 
comparison to that of Fig. 1b, the setup suppresses multi-
order diffraction waves when a wide-wavelength-band-
width light wave illuminates the setup although the size of 
the setup is enlarged. As another way, IDH is implemented 
with a classical two-arm interferometer shown in Fig. 1d 
and the wavefront curvature radius of one of the two object 
waves is changed by a concave mirror. Robustness against 
external vibrations is a current research objective. Fig-
ure 1e is a setup adopting optical scanning holography 
[21, 24, 27] and PSI. Phase shifts are introduced using a 
phase shifter such as an SLM [40, 41] before illuminating 
an object and phase-shifted Gabor zone plate pattern is 
illuminated to an object as a structured light. An object is 
moved along the in-plane direction and a photo detector 
records a sequence of temporally changed intensity values 
by introducing phase shifts. The structured light pattern 
relates the depth position of an object and detected inten-
sity values, and information in the in-plane direction is 
obtained through optical scanning. Spatially incoherent 
phase-shifted holograms are numerically generated from 

the intensity values. The number of pixels and recording 
speed are dependent on the optical scanning. As described 
above, PS-IDH systems generally require a polarization 
filter and/or a half mirror. TPP-SLMs-type optical setup 
shown in Fig. 1f does not require these optical elements 
and is constructed to improve the light-use efficiency. Each 
SLM displays the phase distribution containing two spher-
ical waves with different wavefront curvature radii based 
on space-division multiplexing, which is termed spatial 
multiplexing [36]. Phase shifts are introduced to one of 
the two spherical waves to conduct PSI. By introducing 
the same phase distributions and phase shifts for respec-
tive SLMs, self-interference phase-shifted incoherent 
holograms are generated. Phase-shifted incoherent holo-
grams for respective polarization directions are formed 
and multiplexed on the image sensor plane. PS-IDH is 
implemented when the same phase shifts are introduced 
for respective polarization directions. It is noted that 
both 3D and polarization information is simultaneously 
obtained without a polarization filter by introducing differ-
ent phase shifts for respective polarization directions and 
exploiting a holographic multiplexing scheme [42, 43]. 
Single-shot phase shifting (SSPS) [44–46] and the com-
putational coherent superposition (CCS) scheme [47–49] 
are combined with these optical setups when conducting 
single-shot measurement and multidimensional imaging 
with holographic multiplexing, respectively. CCS is a 
multidimension-multiplexed PSI technique, and multiple 
physical quantities such as multiple wavelengths [47–49], 

Fig. 1   Phase-shifting incoherent 
digital holography (PS-IDH). 
a Schematic. b FINCH-type, c 
conoscopic-holography-type, d 
two-arm-interferometer-type, e 
optical-scanning-holography-
type, and f TPP-SLMs-type 
optical setups
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multiple wavelength bands [50], and state of polarization 
[42, 43] are selectively extracted by the signal processing 
based on PSI. The detailed explanations for PS-IDH with 
SSPS and CCS are shown in refs. [29, 30].

2.3 � Results

The TPP-SLMs-type optical setup shown in refs. [42, 43] 
was constructed for experimental demonstrations. PS-IDH 
with TPP-SLMs is the IDH system with neither linear 
polarizers nor half mirrors, and a high light-use efficiency 
is achieved. Experiments on PS-IDH and filter-free polari-
metric incoherent holography, termed polarization-filterless 
polarization-sensitive polarization-multiplexed phase-shift-
ing IDH (P4IDH), which is the combination of PS-IDH and 
CCS, were carried out. Two objects, an origami fan and an 
origami crane, were set at different depths, and a polariza-
tion film was placed in front of the origami fan. The depth 
difference was 140 mm. The transmission axis of the film 
was the vertical direction. In this experiment, I set high-
resolution LCoS-SLMs [51] to display the phase distribution 
of two spatially multiplexed spherical waves whose focal 
lengths are 850 mm and infinity. Four holograms in the 
experiment of PS-IDH and seven holograms in the experi-
ment of P4IDH were obtained with blue LEDs (Thorlabs, 
LED4D201) whose nominal wavelength and full width at 
half maximum were 455 nm and 18 nm, respectively. The 
phase shifts in the horizontal and vertical polarizations of 
the object wave (θ1, θ2) were (0, 0), (π/2, π/2), (π, π), and 
(3π/2, 3π/2) in the experiment of PS-IDH and (3π/2, 0), 
(π, 0), (π/2, 0), (0, 0), (0, π/2), (0, π), and (0, 3π/2) in the 
experiment of P4IDH, respectively. The magnification set 
by four lenses in the constructed N-shaped self-interference 
interferometer [42, 43] was 0.5 and the field of view for 
an image hologram in length was 2.66 cm. Figure 2 shows 
the experimental results. The results indicate that clear 3D 
image information was reconstructed by PS-IDH and both 
3D information and polarization information on the reflec-
tive 3D objects were successfully reconstructed without the 
use of any polarization filter by exploiting P4IDH. Depth 
information is obtained in the numerical refocusing, and 
quantitative depth-sensing capability is shown. The images 
of the normalized Stokes parameter S1/S0 shown in Fig. 2g 
and h describe quantitative imaging capability of polarimet-
ric information.

2.4 � Conclusion and future perspectives

Both IDH and PSI are long-established 3D measurement 
techniques. Single-shot 3D imaging [52–54] and multidi-
mensional imaging such as multiwavelength-multiplexed 

3D imaging [55, 56], high-speed 3D motion-picture 
imaging [57], and filter-free polarimetric holographic 3D 
imaging [42, 43] have been experimentally demonstrated, 
merging SSPS and CCS into PS-IDH. Although single-
shot 3D imaging with IDH has also been demonstrated 
by off-axis configurations [26, 58–60], an in-line con-
figuration is frequently adopted in IDH, considering low 
temporal coherency of daily-use light. Research studies 
toward filter-free multidimensional motion-picture IDH 
and real-time measurements, the improvement of speci-
fications such as light-use efficiency and 3D resolution, 
and developments of promising applications listed in many 
publications [26–30, 42, 43] are listed as future perspec-
tives. The C-codes for generating the multiplexed Fresnel 
phase lens and phase shifting are given in supplementary 
materials S1 and S2 respectively.

Fig. 2   Experimental results of a–c PS-IDH and d–h P4IDH. a One 
of the phase-shifted holograms. Reconstructed images numerically 
focused on b origami fan and c origami crane. d One of the polari-
zation-multiplexed phase-shifted holograms. Reconstructed intensity 
images numerically focused on e origami fan and f origami crane. 
Reconstructed polarimetric images numerically focused on g origami 
fan and h origami crane. Blue and red colors in g and h mean that 
the normalized Stokes parameter S1/S0 is minus and plus according 
to the scale bar, respectively. The exposure times per recording of a 
phase-shifted hologram were 100 ms in PS-IDH and 50 ms in P4IDH. 
i Photographs of the objects to show these sizes
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3 � Transport of amplitude into phase using 
Gerchberg‑Saxton algorithm for design 
of pure phase multifunctional diffractive 
optical elements (Shivasubramanian 
Gopinath, Joseph Rosen and Vijayakumar 
Anand)

3.1 � Background

Multiplexing multiple phase-only diffractive optical func-
tions into a single high-efficiency multifunctional diffractive 
optical element (DOE) is essential for many applications, 
such as holography, imaging, and augmented and mixed 
reality applications [61–66]. When multiple phase func-
tions are combined as 

∑
k exp

�
jΦk

�
 , the resulting function 

is a complex function requiring both phase and amplitude 
modulations to achieve the expected result. However, most 
of the available modulators, either phase-only or ampli-
tude-only, make the realization of multifunctional diffrac-
tive elements challenging. Advanced phase mask design 
methods and computational optical methods are needed to 
implement multifunctional DOEs. One of the widely used 
methods is the random multiplexing (RM) method, where 
multiple binary random matrices are designed such that 
the binary states of any mask are mutually exclusive to one 
another. One unique binary random matrix is assigned to 
every diffractive function and then summed [36]. This RM 
approach allows the combination of more than two diffrac-
tive functions in a single phase-only DOE [67]. However, 

the disadvantages of the RM include scattering noise and 
low light throughput. The polarization multiplexing (PM) 
method encodes different diffractive functions to orthogo-
nal polarizations, and consequently, multiplexing more than 
two functions in a single phase only DOE [68] is impos-
sible. Compared to RM, PM has a higher signal-to-noise 
ratio (SNR) but relatively lower light throughput due to 
the loss of light at polarizers. In this section, we present a 
recently developed computational algorithm called Trans-
port of Amplitude into Phase using the Gerchberg Saxton 
Algorithm (TAP-GSA) for designing multifunctional pure 
phase DOEs [69].

3.2 � Methodology

A schematic of the TAP-GSA is shown in Fig. 3. The TAP-
GSA consists of two steps. In the first step, the functions of 
the DOEs are summed as follows C1 =

∑
k exp

�
jΦk

�
 , where 

C1 is a complex function at the mask plane. The complex 
function C1 is propagated to a plane of interest via Fresnel 
propagation to obtain the complex function C2 = Fr

(
C1

)
 , 

where Fr is the Fresnel transform operator. After the first 
step, the following functions are extracted: Arg(C1) , Arg(C2) 
and ||C2

|| . Next, the GSA begins with a complex amplitude 
C3 = exp

[
j ⋅ Arg(C1)

]
 at the mask plane, and C3 is propagated 

to the sensor plane using the Fresnel transform. At the sensor 
plane, the magnitude of the resulting complex function C4 is 
replaced by ||C2

|| , and its phase is partly replaced by Arg(C2) . 
The ratio of the number of pixels replaced by Arg

(
C2

)
 to the 

Fig. 3   Schematic of TAP-GSA demonstrated here for multiplexing four diffractive lenses with different focal lengths
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total number of pixels is given as the degrees of freedom 
(DoF). The resulting complex function C5 is backpropagated 
to the mask plane by an inverse Fresnel transform, and the 
phase is carried out while the amplitude is replaced by a 
uniform matrix of ones. This process is iterated until a non-
changing phase matrix is obtained in the mask plane.

In FINCH or IDH, it is necessary to create two different 
object beams for every object point. In the first versions of 
FINCH, the generation of two object beams was achieved 
using a randomly multiplexed diffractive lens, where two 
diffractive lenses with two different focal lengths are spa-
tially and randomly multiplexed [36]. Spatial random mul-
tiplexing results in scattering noise, resulting in a low SNR. 
Polarization multiplexing was then developed by polarizing 
the input object beam along 45° of the active axis of a bire-
fringent device, resulting in the generation of two different 
object beams with orthogonal polarizations at the birefrin-
gent device [33]. A second polarizer was mounted before 
the image sensor at 45° with respect to the active axis of the 
birefringent device to cause self-interference. As the SNR 
improved in polarization multiplexing, the light through-
put decreased. TAP-GSA was implemented to design phase 
masks for FINCH [36].

3.3 � Results

The optical configuration of FINCH is shown in Fig. 4. Light 
from an incoherently illuminated object is collected and col-
limated by lens L with a focal length of f1 at a distance of z1. 
The collimated light is modulated by a spatial light modula-
tor (SLM) on which dual diffractive lenses with focal lengths 
f2 = ∞ and f3 = z2/2 are displayed, and the holograms are 
recorded by an image sensor located at a distance of z2 from 
the SLM. The light from every object point is split into two 
waves that self-interfere to obtain the FINCH hologram. Two 
polarizers are used one before and one after the SLM for 
implementing one at a time by the same setup, FINCH with 
spatial multiplexing using RM, TAP-GSA, at one moment, 
and polarization multiplexing methods at the other. For RM 
and TAP-GSA, the multiplexed lenses are displayed with P1 
and P2 oriented along the active axis of the SLM. For the 

PM, P1 and P2 are oriented at 45o with respect to the active 
axis of the SLM, and a single diffractive lens is displayed on 
the SLM. The experiment was carried out with a high-power 
LED (Thorlabs, 940 mW, λ = 660 nm and Δλ = 20 nm), 
SLM (Thorlabs Exulus HD2, 1920 × 1200 pixels, pixel 
size = 8 μm) and image sensor (Zelux CS165MU/M 1.6 MP 
monochrome CMOS camera, 1440 × 1080 pixels with pixel 
size ~ 3.5 µm) with distances z1 = 5 cm and z2 = 17.8 cm. 
The images of the phase masks, FINCH holograms for the 
three-phase shifts θ = 0, 120, and 240 degrees, magnitude 
and phase of the complex hologram, and reconstruction 
results obtained by Fresnel propagation for the RM, TAP-
GSA, and PM are shown in Fig. 5. The average background 
noise of RM, TAP-GSA, and PM are 3.27 × 10–3, 2.32 × 10–3, 
and 0.41 × 10–3, respectively. The exposure times needed to 
achieve the same signal level in the image sensor for RM, 
TAP-GSA, and PM were 440, 384, and 861 ms, respectively. 
Comparing all three approaches, TAP-GSA has better light 
throughput than both RM and PM and has an SNR better 
than that of RM and close to that of PM.

3.4 � Conclusion and future perspectives

The useful computational algorithm TAP-GSA was devel-
oped to combine multiple phase functions into a single 
phase-only function. The algorithm has been demonstrated 
on FINCH to improve both the SNR and the light through-
put. We believe that the developed algorithm will benefit 
many research areas, such as beam shaping, optical trapping, 
holography and augmented reality. The MATLAB code with 
comments is provided in the supplementary materials S3.

4 � PSF engineering for Fresnel incoherent 
correlation holography (Francis 
Gracy Arockiaraj, Saulius Juodkazis 
and Vijayakumar Anand)

4.1 � Background

In the previous sections, FINCH was implemented based 
on the principles of IDH with self-interference, three to 
four camera shots with phase-shifting and reconstruction 
by back propagation of the complex hologram. FINCH is 
a linear, shift-invariant system and therefore FINCH can 
also be implemented based on the principles of coded aper-
ture imaging (CAI). The FINCH hologram for an object is 
formed by the summation of shifted FINCH point responses. 
Therefore, if the point spread hologram (IPSH) library is 
recorded at different depths, then they can be used as recon-
struction functions of FINCH object hologram (IOH) at those 
depths [70–77]. This FINCH as CAI replaced the multiple 
camera recordings by a one-time calibration procedure Fig. 4   Optical configuration of FINCH
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involving the recording of the IPSH library. However, this 
approach of FINCH as CAI has the challenges associated 
with CAI. One of the challenges in the implementation is 
that the lateral resolution in CAI is governed by the size of 
the pinhole used for recording the IPSH instead of the numeri-
cal aperture (NA) [70–79]. It is possible to record the IPSH 
with a pinhole with a smaller diameter that is close to the lat-
eral resolution limit governed by the NA. But with a smaller 
aperture, there is lesser number of photons and increased 
noise. In this section, we present a recently developed PSH 
engineering technique that allows to improve the reconstruc-
tions of FINCH as CAI [80].

4.2 � Methodology

The optical configuration of FINCH as CAI using Lucy-
Richardson-Rosen algorithm (LRRA) is shown in Fig. 6a. 
The light from the object point is split into two beams differ-
ently modulated using phase masks created from the TAP-
GSA displayed on the SLM, and the two beams are then 
interfered to form a self-interference hologram. The IPSH and 
IOH holograms are required to reconstruct object information 
using the LRRA. In the PSH engineering technique, the IPSH 
is recorded using a pinhole that can allow sufficient number 
of photons to record a hologram with minimum detector 
noise in the first step. In the next step, the ideal PSH IIPSH for 
a single point is synthesized from the IPSH recorded for the 
large pinhole and direct image of the pinhole using LRRA. 
The engineered PSH IIPSH is given as IIPSH = IPSH ⊛𝛼,𝛽

p
ID , 

⊛𝛼,𝛽
p

 is the LRRA operator and ID is the direct image of the 
pinhole. The LRRA operator consists of three parameters α, 
β and p which are the powers of the magnitudes of the spec-
trum of matrices and the number of iterations respectively 

as shown in Fig. 6b. The synthesized IIPSH and IOH are used 
for reconstructing the object information in the final step as 
IR = IIPSH ⊛𝛼,𝛽

n
IOH . With IIPSH and recorded IOH, the object 

is reconstructed with an improved resolution and signal to 
noise ratio (SNR).

A simulation study of FINCH as CAI was carried out and 
the results are shown in Fig. 7. The simulation was carried 
out in MATLAB. An image of USAF 1951 (Fig. 7a) was 
used as a test object for the simulation studies. The IPSH for 
a point object with a size equivalent to the lateral resolu-
tion and a point object with 2.5 times larger than the point 

Fig. 5   Phase masks and FINCH holograms of the USAF target for 
θ = 0, 120, and 240 degrees, magnitude and phase of the complex 
hologram and reconstruction result by Fresnel propagation. Rows 1, 

2, and 3 are the results for the RM, TAP-GSA, and polarization multi-
plexing, respectively

Fig. 6   a Optical configuration of FINCH as CAI. b Schematic of 
LRRA​
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object are shown in Fig. 7b and c respectively. The IIPSH 
synthesized from Fig. 7c and the direct image of the pinhole 
using LRRA is shown in Fig. 7d. The object hologram IOH is 
shown in Fig. 7e. The reconstruction results using Fig. 7b–d 
are shown in Fig. 7f–h respectively. As seen from the results, 
PSH engineering approach has more information and better 
SNR than the results obtained using the PSH recorded using 
a large pinhole. 

5 � Results

An optical experiment similar to Sect. 3 was carried out 
but instead of three camera shots, a single camera shot for a 
pinhole with a diameter of 50 µm and a USAF object digit 
‘1’ from Group 5 were recorded. The images of the phase 
mask designed using TAP-GSA with a 98% DoF, recorded 
IPSH and engineered IIPSH are shown in Fig. 8a–c respec-
tively. The reconstruction results using LRRA for IPSH and 
engineered IIPSH for α = 0.4, β = 1 and p = 10 are shown in 
Fig. 8d and e respectively. The direct imaging result of the 
USAF object is shown in Fig. 8f. From the results shown in 
Fig. 8d–f, it can be seen that the result of PSH engineering 
has better SNR and more object information compared to 
the result obtained for a PSH recorded using a large pinhole. 

5.1 � Conclusion and future perspectives

The lateral resolution of all imaging systems is governed 
by the NA of the system. However, in CAI, there is a sec-
ondary resolution limit given by the size of the pinhole 
that is used to record the PSF. This secondary resolution 
is usually lower than the NA defined lateral resolution. 
When FINCH is implemented as CAI, the above limita-
tion ruins one of the most important advantages of FINCH 

Fig. 7   Simulation results of FINCH as CAI. a Test object, b simu-
lated ideal IPSH, c IPSH simulated with a point object 2.5 times that of 
NA defined lateral resolution, d engineered IIPSH, e IOH. Reconstruc-

tion results for f ideal IPSH g IPSH simulated with a point object 2.5 
times that of NA defined lateral resolution and h engineered IIPSH

Fig. 8   Experimental results of FINCH as CAI. a FINCH phase mask 
for DoF 98%, b recorded IPSH for 50 μm, c Engineered IPSH, d recon-
struction result of (b), e reconstruction result of (c), f direct imaging 
result
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which is the super lateral resolution. A PSH engineering 
method has been developed to shift the resolution limit of 
CAI back to the limit defined by the NA. A recently devel-
oped algorithm LRRA was used for this demonstration. 
However, the developed PSH engineering method can also 
work with other reconstruction methods such as non-linear 
reconstruction [81], Weiner deconvolution [82] and other 
advanced non-linear deconvolution methods [83]. While 
the PSH engineering approach improved the reconstruc-
tion results, advanced reconstruction methods are needed 
to minimize the differences in SNR between reconstruc-
tions of ideal PSH and synthesized ideal PSH. The PSH 
engineering method is not limited to FINCH as CAI but 
can be applied to many CAI methods [84]. The MATLAB 
code for implementing the PSH engineering method using 
LRRA is given in the supplementary section S4.

6 � Single molecule localization 
from self‑interference digital holography 
(Shaoheng Li and Peter Kner)

6.1 � Background

Single Molecule Localization Microscopy (SMLM) has 
emerged as a powerful technique for breaking the diffraction 
limit in optical microscopy, enabling the precise localiza-
tion—typically to less than 20 nm—of individual fluores-
cent molecules within biological samples [85]. However, 
the maximum depth of field for 3D-SMLM so far is still lim-
ited to a few microns. Self-interference digital holography 
(SIDH) can reconstruct images over an extended axial range 
[26]. We have proposed combining SIDH with SMLM to 
perform 3D super-resolution imaging with nanometer preci-
sion over a large axial range without mechanical refocusing. 
Previous work from our group has experimentally demon-
strated localization of fluorescent microspheres using SIDH 
from only a few thousand photons [86–88]. SIDH produces 
a complex hologram from which the full 3D image of the 
emitter can be recreated. By determining the center of this 
3D image, the emitter can be localized. Here, we describe 
the algorithm for localizing emitters from the SIDH data.

6.2 � Methodology

Three raw images of one or a few emitters are collected with 
an added phase shifts of 120° introduced between the two 
arms of the interferometer. The PSH is then calculated using 
the standard formula which eliminates the background and 
twin image [36]. The PSF can then be calculated from the 
PSH by convolution with the kernel, exp

(
j��2∕�zr

)
 , where zr 

is the reconstruction distance of the emitter image. By recon-
structing 2D images as zr is varied, a 3D image stack can be 

created. Reconstruction of the in-focus PSF requires knowl-
edge of the emitter axial location. Therefore, to reconstruct 
and localize an arbitrary emitter, a coarse axial search must 
first be done by varying zr . The PSF is located by finding the 
approximate intensity maximum over the z-stack [86]; the 
axial step should be chosen less than the PSF axial width. 
Then, the 3D PSF of the emitter can be reconstructed with a 
finer axial step—100 nm for our experiments. For other 3D 
SMLM techniques, the axial localization is determined by 
PSF shape or by comparing two different PSF images [89, 
90]. Because SIDH provides access to the full 3D PSF, the 
center of emission can be localized in all 3 dimensions using 
the same approach. The 3D centroid can be calculated, or 
maximum likelihood estimation can be used to determine 
the center of a three-dimensional Gaussian approximation to 
the PSF [91]. Here, we localize the center of the PSF by per-
forming two-dimensional curve-fitting. 2D xy and yz slices 
are cut through the maximum intensity pixel and Gauss-
ian fits are performed. The curve-fits yield the center of the 
Gaussian, 

(
xc, yc, zc

)
 , the size of the Gaussian, 

(
�x, �y, �z

)
 , 

and the total signal.

6.3 � Results

Results are shown in Fig. 9. Figure 9a shows a schematic of 
the optical setup. Figure 9b shows the light-sheet illumina-
tion which is used to reduce background. The hologram is 
created by a Mach–Zehnder interferometer consisting of one 
plane mirror and one concave mirror (f = 300 mm, Edmund 
Optics). The plane mirror is mounted on a piezoelectric 
translation stage (Thorlabs NFL5DP20) to create the phase 
shifts necessary for reconstruction. The objective lens is an 
oil immersion lens (Olympus PlanApoN 60x, 1.42 NA), and 
the camera is an EMCCD camera (Andor Ixon-897 Life). 
The focal length of the tube lens is 180 mm. The focal length 
of L2 is set to f2 = 120 mm. The focal lengths of the relay 
lenses L3 and L4 are f3 = 200 mm and f4 = 100 mm, respec-
tively. The distance from the interferometer to the camera is 
set to 100 mm. Figure 9b shows the light-sheet illumination 
path of SIDH, which is used to reduce background noise 
[88]. The excitation laser beams are initially expanded and 
then shaped using a cylindrical lens with a focal length of 
200 mm (not shown). They are then introduced into the illu-
mination objective and subsequently reflected by the glass 
prism. As the excitation lasers enter the imaging chamber, 
the incident angle of the tilted light-sheet is approximately 
5.6°. The light sheet beam waist at the sample is 3.4 µm. A 
more detailed description of the optical system can be found 
in our earlier work [86–88].

Figure 9c shows results of simulations of the localiza-
tion precision over a 10 µm axial range. With no back-
ground, the localization precision is better than 10 nm 
in the lateral plane, and better than 30 nm in the axial 
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direction. In Fig. 9d, the results of imaging a 40 nm micro-
sphere emitting ~ 2120 photons are shown. The PSH is 
shown on the left, and the resulting PSF is shown on the 
right. As can be seen, even with only a couple thousand 
photons, a SNR of 5 can be achieved demonstrating that 
the PSF is bright enough to be localized. In Fig. 9e, the 
results of imaging a 100 nm microsphere emitting ~ 8400 
photons are shown. The microsphere was imaged and 
localized 50 times. A representative PSH is shown on the 
left, and scatter plots of the localizations in lateral and 
axial planes are shown on the right. The standard devia-
tion of the localizations was �x = 22nm , �y = 30nm , and 
�z = 38nm . As can be seen from Fig. 9c, the localization 
precision is sensitive to the level of background, and we 
estimate the background level in Fig. 9e to be 13 photons/
pixel.

6.4 � Conclusion and future perspectives

We have demonstrated a straightforward algorithm for the 
localization of point sources from SIDH images. With low 
background, SMLM-SIDH can achieve better than 10 nm 
precision in all three dimensions over an axial range greater 
than 10 µm. In future work, we will optimize the reconstruc-
tion process by extracting the fluorophore position directly 
from the hologram without explicitly reconstructing the PSF. 
It should also be possible to capture only one hologram and 
then discard the twin-image based on image analysis. Future 
work will also include incorporating aberration correction 
into the reconstruction process. Single fluorophores emit 
several hundred to several thousand photons, and we plan to 
demonstrate localization of single fluorophores. The Python 
codes for SMLM-SIDH are given in supplementary materi-
als S5 and GitHub [92].

Fig. 9   a Detailed schematic of the imaging path of the optimized 
SIDH setup with a Michelson interferometer. b The custom designed 
sample chamber for the tilted light-sheet (LS) illumination pathway. 
c Simulation results of lateral (top) and axial (bottom) localization 
precision of the optimized SIDH setup with the different background 
noise levels across a 10 µm imaging range. d The hologram of a 40 
nm microsphere imaged with light-sheet illumination (left). Lateral 

(top) and axial (bottom) views of the image reconstructed by back-
propagating the hologram. The SNR was calculated as the ratio of 
mean signal to the standard deviation of the background. e The PSH 
of a 100 nm microsphere (left). Scatter plots of the localizations in 
the xy-plane (middle) and yz-plane (right) of images reconstructed by 
back-propagating the hologram
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7 � Deep learning‑based illumination 
and detection correction in light‑sheet 
microscopy (Mani Ratnam Rai, Chen Li 
and Alon Greenbaum)

7.1 � Background

Light-sheet fluorescence microscopy (LSFM) has become 
an essential tool in life sciences due to its fast acquisition 
speed and optical sectioning capability. As such, LFSM 
is widely employed for imaging large volumes of tissue 
cleared samples [93]. LSFM operates by projecting a thin 
light sheet into the tissue, exciting fluorophores, and the 
emitted photons are then collected by a wide-field detec-
tion system positioned perpendicular to the illumination 
axis of the light sheet [93, 94]. The quality of LSFM 
images hinges on the performance of both the illumination 
and detection aspects of the microscopy system. On the 
illumination side: challenges arise from the non-coplanar 
alignment of the illumination beam and the focal plane 
of the detection lens, resulting in uneven focus across 
the field of view (FOV) (Fig. 10a) [95]. In the detection 
side, when imaging deep, the tissue components introduce 
aberrations into the imaging system, particularly when 
imaging complex specimens such as cochlea, bones, or 
whole organisms with transitions from soft to hard tissue 
(Fig. 10b) [94]. Most researchers tend to address either 
the illumination or detection errors independently, often 
neglecting their interconnected nature. In this research, 
we systematically quantified the correction procedures for 

both illumination and detection errors. Then, we devel-
oped two distinct deep learning methods: one for illumina-
tion correction and the other for aberration correction on 
the detection side. The proposed system is thoughtfully 
designed to achieve the highest quality 3D imaging with-
out the need for human intervention. 

7.2 � Methodology

The initial phase of our research involved establishing the 
order for addressing aberrations, namely, whether to cor-
rect illumination or detection errors first [94]. Following 
this, two distinct deep learning models were developed: one 
for rectifying sample induced detection aberrations and the 
other for addressing illumination errors, simply put, mak-
ing sure that the illumination beam was parallel and over-
lapped with the objective detection plane. In the detection 
network, we employed a 13-layer RESNET-based network, 
trained and validated on valuable biomedical samples like 
porcine cochlea and mouse brain [96]. During training, data 
are generated by first correcting aberrations using a clas-
sical grid search approach per imaging location. Once the 
aberrations are corrected, a known aberration is introduced 
into the non-aberrated images using a deformable mirror 
(DM), and two defocused images with known aberrations 
are captured. During the testing phase, the network receives 
two defocused images as input and estimates coma, astig-
matism, and spherical aberrations, and the DM is utilized 
to correct the aberrations based on the predictions of the 
network. To correct illumination errors, a U-net-based net-
work was utilized and integrated into our LSFM setup [95]. 

Fig. 10   a Illumination and b detection errors in LSFM. c Experimental schematic for correcting the illumination and detection errors in a cus-
tom-LSFM, with a deformable mirror, and two galvo mirrors
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This algorithm captured two defocused images as well, and 
the images served as input to the deep learning model. The 
network generated a defocus map. Subsequently, this map is 
employed to estimate and rectify angular and defocus aber-
rations through the utilization of two galvo scanners and a 
linear motorized stage (Fig. 10c).

7.3 � Results

The experimental demonstration of the proposed work was 
performed using a custom-built LSFM system (Fig. 10c). 
Tissue cleared brains were used to experimentally demon-
strate the proposed work. We have found that it is better to 
first correct the illumination errors and only then the detec-
tion aberrations. Figure 11a shows the image before and 
after illumination correction. Before the correction, only the 
top portion of the FOV is in focus whereas after the illumi-
nation correction, the entire FOV is in focus as seen in the 
defocus map. The color bar in Fig. 11a shows the defocus 
level. Figure 11b shows the images before and after correc-
tion of detection aberrations.

7.4 � Conclusion and future perspectives

In this work, we have developed machine learning based 
method to correct illumination and detection errors in 
LSFM. The proposed system can estimate errors from two 
defocused images. The developed technique will be prag-
matic in fully automated error free 3D imaging of large tis-
sue samples without any human intervention. The Python 
codes for Illumination correction and detection correction 
are given in https://​github.​com/​Chenl​i235/​Angle​Corre​ction_​
Unet and https://​github.​com/​maniRr/​Detec​tion-​corre​ction 
and in supplementary materials S6.

8 � Complex amplitude reconstruction 
of objects above and below the objective 
focal plane by IHLLS fluorescence 
microscopy (Christopher Mann, Zack 
Zurawski, Simon Alford, Jonathan Art, 
and Mariana Potcoava)

8.1 � Background

The Incoherent Holographic Lattice-Light Sheet (IHLLS) 
technique, which offers essential volumetric data and is 
characterized by its high sensitivity and spatio-temporal 
resolution, contains a diffraction reconstruction package that 
has been developed into a tool, HOLO_LLS that routinely 
achieves both lateral and depth resolution, at least micron 
level [28, 97, 98]. The software enables data visualization 
and serve a multitude of purposes ranging from calibra-
tion steps to volumetric imaging of live cells, in which the 
structure and intracellular milieu is rapidly changing, where 
phase imaging gives quantitative information on the state 
and size of subcellular structures [98–100]. This work pre-
sents a simple experimental and numerical procedures that 
have been incorporated into a program package to highlight 
the imaging capabilities of IHLLS detection system. This 
capability is demonstrated for 200 nm suspension micro-
spheres and the advantages are discussed by comparing 
holographic reconstructions with images taken by using 
conventional Lattice-Light Sheet (LLS). Our study intro-
duces the two configurations of this optical design: IHLLS 
1L, used for calibration, and IHLLS 2L, used for sample 
imaging. IHLLS 1L, an incoherent version of the LLS, cre-
ates a hologram via a plane wave and a spherical wave using 
the same scanning geometry as the LLS in dithering mode. 
Conversely, IHLLS 2L employs a fixed detection microscope 

Fig. 11   a Illumination cor-
rection in LSFM. b Detection 
correction in LSFM

https://github.com/Chenli235/AngleCorrection_Unet
https://github.com/Chenli235/AngleCorrection_Unet
https://github.com/maniRr/Detection-correction
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objective to create a hologram with two spherical waves, 
serving as the incoherent LLS version. By modulating the 
wavefront of the emission beam with two diffractive lenses 
uploaded on the phase SLM, this system can attain full Field 
of View (FOV) and deeper scanning depth with fewer z-gal-
vanometric mirror displacements.

8.2 � Methodology

The schematic of the IHLLS detection system is shown in 
Fig. 12. The IHLLS system is a home-built extra hardware 
added to an existing lattice light-sheet instrument. The 
IHLLS system is composed of two parts which must both 
operate in order for the system to perform as intended. The 
z-scanning principle in IHLLS 1L, same as in LLS, is that 
both the z-galvanometric mirror (zgalvo) and the detection 
objective (zpiezo), synchronize in motion to scan the sample 
in 3D, Fig. 12a. This case is used for calibration purposes, 
to mimic the conventional LLS but using a diffractive lens 
of focal length f_SLM [36, 101]. In the IHLLS 2L case, two 
diffractive lenses of finite focal lengths, with non-shared 
randomly selected pixels, Fig.  12b, are simultaneously 
uploaded on the SLM and four phase-shifting intensity 
images with different phase factors are recorded and saved 
in the computer sequentially and numerically processed by 
in-house diffraction software. The complex hologram of an 
object point located at ( rs, zs ) = ( xs, ys, zs ), as it was 
described in [36, 101], but using a four-step phase-shifting 
equation has the expression: HPSH(x, y) = I(x, y; � = 0)

− i
(

I(x, y; � = �) − I
(

x, y; � = 3�
2

))

 ,  where I
(

x, y;�k
)

= C
[

2 + Q
(

1
zr

)

exp
(

i�k
)

+ Q
(

− 1
zr

)

exp
(

−i�k
)

]

,   are the 
intensities of the recorded holograms for each phase shift, 
�k , C is a constant, and zr is the reconstruction distance. The 
SLM transparency for the two beams has the expression: 
C1Q

(
−

1

fd1

)
+ C2exp(i�)Q

(
−

1

fd2

)
  , 

Q(b) = exp[i�b�−1(x2 + y2)] is a quadratic phase function, 
C1,2 constants, fd1 , fd2 are the two diffractive lenses focal 
lengths, Fig. 13a and b, designed for a specific emission 
wavelength, and θ is the shift phase factor of the SLM. The 
two diffractive lenses focus on the planes fp1 and fp2 , in the 
front and behind the camera. In IHLLS 2L technique, 
C1,2 = 0.5 and the phase factor has four phase shifts, 

Fig. 12   Schematic of glass-lensless IHLLS detection system. a IHLLS 1L with one diffractive lens; b IHLLS 2L with two diffractive lenses

Fig. 13   Optical configuration of IHLLS [97]; fSLM = 400  mm, 
fd1 = 435 mm, fd2 = 550 mm; here, we chose two focal lengths of size 
closer to the calibration focal length
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θ = 0, π∕2, π, 3π∕2 . When fd1 = ∞ , Fig. 12a, with an uneven 
distribution of the two constants, with only one the phase 
fa c t o r  o f  θ  =  0 ,  t h e  ex p r e s s i o n  b e c o m e s : 
0.1 + 0.9 exp (i�)Q

(
−

1

fSLM

)
 , and this case refers to the tech-

nique called IHLLS 1L. Phase shifted intensity images and 
hologram reconstructions at multiple z-galvo displacement 
positions − 40 μm to 40 μm in steps of ∆z = 10 μm were 
performed on an experimental dataset of 200 nm polystyrene 
beads acquired with the home-made LLS and IHLLS 
systems.

8.3 � Results

In this work, we show how to numerically compute IHLLS 
diffraction patterns with the HOLO_LLS package. The entire 
package is implemented in MATLAB or Python. Here, we 
present the MATLAB version. We split the reconstruction 
process into four steps to produce numerical approximation 
of the full electric field (amplitude and phase) of the object: 
(a) addition of all complex fields built by phase shifting 
holography (PSH) at various z_galvo positions to create a 
bigger field; (b) apply parameter optimization to the complex 
wave hologram, a real-space bandpass filter that suppresses 
the pixel noise while retaining information of a character-
istic size, (c) reconstruct the object data from the hologram 
(backpropagate), and (d) 3D volume representation from 
the obtained object data. The diffraction subroutine uses the 
Angular Spectrum Method as the Fresnel and Fraunhofer 
regimes are limited by the requirement of a different grid 

scale and by certain approximations [102]. As an example of 
the methods explained, we present MATLAB pseudocodes 
for making diffractive lenses and for the 3D volume recon-
struction from phase-shift holographic images. We hope this 
software improves the reproducibility of research, thus ena-
bling consistent comparison of data between research groups 
and the quality of specific numerical reconstructions. The 
recorded intensity distributions, amplitude and phase after 
Fresnel propagation and reconstruction results for different 
scanning positions of z-galvo mirror from 40 µm to −  40 µm 
in steps of 10 µm are shown in Fig. 14.

8.4 � Conclusion and future perspectives

Our approach will enable automated capture of complex data 
volumes over time to achieve spatial and temporal resolu-
tions to track dynamic movements of cellular structure in 
3D over time. It will enable high temporal resolution of the 
spatial relationships between cellular structures and retain 
both amplitude and phase information in the reconstructed 
images. We have theoretically and practically demonstrated 
the feasibility of the approach to provide a working micro-
scope system. Our next steps will automate 3D scanning and 
IHLLS 2L imaging in multiple wavelengths by sweeping 
excitation through hundreds of z-axis planes. We will then 
fully automate reconstruction software. Our overall goals 
are to integrate phase image acquisition in multiple z planes 
and excitation wavelengths into the existing SPIM software 
suite. The MATLAB pseudocodes for the HOLO_LLS are 
provided in the supplementary materials S7.

Fig. 14   a Z-galvo scanning locations. b IHLLS – 2L intensity images at θ = 0. c Amplitude and phase obtained by Angular Spectrum propaga-
tion method. d Holographic reconstruction
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9 � Sparse‑view computed tomography 
for passive two‑dimensional ultrafast 
imaging (Yingming Lai and Jinyang Liang)

9.1 � Background

Sparse-view computed tomography (SV-CT) is an 
advanced computational method to obtain the three-
dimensional (3D) internal spatial structure [i.e., (x, y, z)] 
of an object from a few angle-diverse projections [103]. 
Compared with traditional CT, SV-CT effectively reduces 
acquisition time with minimally compromising imaging 
quality. Since its invention, SV-CT has been prominently 
applied scenarios such as in x-ray medical imaging and 
industrial product testing scenarios to reduce the radia-
tion dose received by patients and samples [104–106]. 
In recent years, SV-CT has begun to be noticed as an 
advanced imaging strategy for efficiently recording spati-
otemporal information [i.e., (x, y, t)] [107, 108]. Despite 
enabling ultrafast imaging speeds, these techniques are 
based on active laser illumination, making them unsuitable 
for self-illumination and color-selective dynamic scenes. 
In this chapter, we present a newly developed compressed 
ultrafast tomographic imaging (CUTI) method by apply-
ing SV-CT to the spatiotemporal domain with passive 
projections.

9.2 � Methodology

CUTI achieves spatiotemporal SV-CT based on streak 
imaging whose typical configuration includes three parts: 
an imaging unit, a temporal shearing unit, and a two-dimen-
sional (2D) detector. As shown in Fig. 15, after being imaged 
by the imaging unit, the dynamic scene I(x, y, t) is deflected 
to different spatial positions on the detector by the temporal 
shearing unit [109]. The multiple-scale sweeping speeds, 
accessible by the shearing unit, enable the passive projec-
tions of the (x, y, t) datacube from different angles in the 
spatiotemporal domain [110]. 

The projection angle is determined by the maximum 
resolving capability of CUTI in both the spatial and tem-
poral dimensions. Particularly, the dynamic information is 
spatiotemporally integrated into each discrete pixel on the 
2D detector after the temporal shearing. Thus, the size of 
discrete pixels (denoted by pc ) and the maximum shearing 
velocity (denoted by vmax ) determine the maximum resolv-
ing capability of CUTI in the t-axis. During the observation 
window of vmax determined by the sweep time (denoted by 
ts ), CUTI’s sequence depth (i.e., the number of frames in 
the recovered movie) is calculated by Lt = ||vmax

||ts∕pc. In 
the i th acquisition, the streak length in the spatial direction 
(e.g., the y-axis) is expressed by Ls = vits∕pc , where vi is the 
shearing velocity in the i th acquisition ( i = 1, 2, 3,… ,N ). 

Fig. 15   Operating principle of 
compressed ultrafast tomo-
graphic imaging (CUTI). TTR, 
TwIST-based tomographic 
reconstruction. Inset in the 
dashed box: illustrations of 
the equivalent spatiotemporal 
projections in data acquisition. 
Adapted with the permission 
from Ref. [110]
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Hence, the spatiotemporal projection angle, denoted by �i , 
is determined by

The sparse projections at different angles of a dynamic 
event I(x, y, t) can be expressed as

where E =
[
E1,E2,… ,EN

]T is the set of streak measure-
ments, � is the operator of spatiotemporal integration, and 
� =

[
�1, �2,… , �N

]T is the set of temporal shearing opera-
tions corresponding to various projection angles.

The image reconstruction of CUTI is based on the 
framework of SV-CT and the two-step iterative shrink-
age/thresholding (TwIST) algorithm [111]. The acquired 
sparse projections are input into a TwIST-based tomo-
graphic reconstructions (TTR) algorithm (detailed in 
the Supplementary information). With an initialization 

(1)�i = tan−1
(
Ls

Lt

)
= tan−1

(
vi

||vmax
||

)

(2)E =
[
��I(x, y, t)

]
,

Î0 = (��)TE , the dynamic scene can be recovered by solv-
ing the optimization problem of

where Î  is the reconstructed datacube of the dynamic scene, 
� is the regularization parameter, and ΦTV(⋅) is the 3D total-
variation regularization function [112].

9.3 � Results

The performance of CUTI was demonstrated using an 
image-converter streak camera to capture an ultrafast ultra-
violet (UV) dynamic event [110]. Figure 16a illustrates 
the generation of two spatially and temporally separated 
266-nm, 100-fs laser pulses via a Michelson interferom-
eter, with a 1.6-ns time delay introduced between them. 
These pulses undergo modulation by a resolution target as 

(3)Î = argmin
I

1

2
‖E − ��I‖2

2
+ 𝜏ΦTV (I),

Fig. 16   Capture two spatially and temporally separated UV pulses by 
implementing CUTI to a standard UV streak camera. a Experimental 
setup. M1 − M2: mirrors. Magenta-boxed inset: the reference image 
was captured without using temporal shearing. b Representative 
frames of the reconstruction scenes. c Selected cross-sections of the 

resolution target in the x- and y-direction at t = 150 ps. (d) As (c), but 
shows the profiles t = 1746 ps. e Temporal trace of the reconstruction. 
FWHM full width at half maximum. Adapted with permission from 
Ref. [110]
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shown in the inset of Fig. 16a. Subsequently, 11 spatiotem-
poral projections were acquired within the angular range 
θi ∈ [− 45°, + 45°] employing a 9° angular step. By setting 
the regularization parameter to τ = 0.0204, the event was 
successfully reconstructed using the TTR algorithm at an 
imaging speed of 0.5 trillion (0.5 × 1012) frames per sec-
ond. Figure 16b represents six representative frames in the 
reconstruction of the two pulses. To quantitatively assess 
the image quality, selected cross-sections were extracted 
at the first pulse (at 150 ps) and the second pulse (at 
1746 ps). These results were compared with the reference 
image captured without temporal shearing (Fig. 16c, d). 
Using a 10% contrast threshold, at t = 150 ps, the spatial 
resolutions were determined as 15.6 and 14.1 lp/mm in 
the x- and y-directions, respectively. At t = 1746 ps, the 
values were 13.2 and 14.1 lp/mm. Figure 16e shows the 
reconstructed temporal trace of this event. 

9.4 � Conclusion

As a new computational ultrafast imaging method, CUTI 
grafts SV-CT to the spatiotemporal domain. The method 
has been demonstrated in a standard image-converter 
streak camera for passively capturing an ultrafast UV 
dynamic event. In the future, CUTI’s image quality can be 
improved by using an image rotation unit for a larger angu-
lar range [113] and adopting advanced SV-CT algorithms 
[114, 115]. CUTI is expected to contribute to the observa-
tion of many significant transient phenomena [116, 117].

10 � Computational reconstruction 
of quantum objects by a modal approach 
(Fazilah Nothlawala, Chané Moodley 
and Andrew Forbes)

10.1 � Background

Optical imaging and holography have traditionally been 
based on exploiting correlations in space, for instance, using 
position or pixels as the basis on which to measure. Subse-
quently, structured illumination with computational recon-
struction [118] has exploited the orthogonality in random and 
Walsh-Hadamard masks, implemented for high-quality 3D 
reconstruction of classical objects [119] as well as complex 
amplitude (amplitude and phase) reconstruction of quantum 
objects [120]. Recently, a modal approach has been suggested 
to enhance the resolution in imaging [121], taking the well-
known ability to modally resolve optical fields for their full 
reconstruction [122] to that of physical and digital objects. 
This has been used to infer step heights with nanometer reso-
lution [123], to resolve quantum objects [124], in quantum 
metrology [125], in phase imaging [126] and suggested as a 
means of searching for exoplanets [127]. Here, we will apply 
it to reconstruct quantum images of complex objects and com-
pare it to conventional quantum computational approaches.

10.2 � Methodology

The idea is very simple: any complete and orthonormal basis 
can be used to reconstruct a function, and this function can 

Fig. 17   a An object can be reconstructed using any complete and 
orthonormal basis. Three different bases are depicted in this figure: 
the pixel basis, random basis and a modal basis, respectively. b Sim-
ple schematic of the experiment where two entangled photons are 

produced from a nonlinear crystal, one directed to the object and the 
other to the mask that displays the basis projections. c Computational 
reconstructions of a cat using four mask options
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represent a physical or digital object. In the present context 
it is the image of the object. This is depicted graphically in 
Fig. 17a evolving from a pixel basis (top), to a random basis 
(middle) and finally to a modal basis (bottom). In the case 
of the latter, the modal function must be chosen with some 
care to minimize the number of terms in the sum.

Because the right hand side can include modal phases, 
any physical property of the left hand side can be inferred, 
including full phase retrieval. We do exactly this for the rec-
ognition of quantum and classical objects using the experi-
mental set-up shown in Fig. 17b. Two entangled photons 
are produced by spontaneous parametric downconversion 
(SPDC) in a nonlinear crystal and relay imaged from the 
crystal plane to the object plane in one arm, and to the image 
plane in the other arm, the latter with a spatial light modula-
tor as a modal analyzer. Thereafter, each photon is collected 
by optical fibre and detected by single photon avalanche pho-
todiodes (APDs). The spatial light modulator in the imaging 
arm is used to display digital match filters for each mode in 
the basis, while the single mode fibre collection performs an 
optical inner product to return the modal weights. The intra-
modal phase is determined by displaying a superposition of 
modal elements, two of which (sine and cosine) allow the 
phase to be known unambiguously. All three measurements 
together (one for amplitude and two for phase) return the 
complex weighting coefficient. The final image is then com-
putationally reconstructed by adding the terms on the right 
hand side with the correct complex weights. The process can 
be augmented by machine learning and artificial intelligence 
tools to speed up the reconstruction (with fewer projections) 
and/or to enhance the final image quality. A simulation of 

the experiment was performed with computational images 
of a “cat” object shown in Fig. 17c for four bases.

10.3 � Results

To illustrate how this approach can be used for quantum 
objects, we use test cases of (I) an amplitude step and check-
erboard pattern object, and (II) a phase step object and 
checkerboard pattern object for both the Walsh-Hadamard 
and HG mode reconstructions, with experimental images 
shown in Fig. 18a and b. The outer area of the dashed 
white circle for each reconstruction represents the region 
where noise was suppressed due to lack of SPDC signal. 
We see the reconstructed images of both the amplitude and 
phase objects show a high fidelity with both reconstruction 
approaches (Walsh-Hadamard and HG modes), however the 
phase objects show a higher object-image fidelity overall. 
Figure 18c and d provide a quantitative comparison between 
the object (simulated reconstructed) and the image through a 
cross-section, showing good agreement between the object 
(simulated reconstruction) and the experimental reconstruc-
tions for both the Hadamard (blue) and Hermite-Gauss (red) 
amplitude and phase steps, albeit with a low level of noise, 
characteristic to quantum experiments, present.

10.4 � Conclusion and future perspectives

While scanning methods employing the pixel, Walsh-Had-
amard and random bases depend directly on the number of 
pixels required within the image, the modal approach proves 
beneficial in that there is no direct correlation between the 

Fig. 18   a Amplitude and b 
phase reconstructions for a 
checkerboard pattern and a 
step object (shown as insets), 
using Hermite-Gauss (HG) and 
Walsh-Hadamard masks. The 
outer area of the dashed white 
circle represents the region 
where noise was suppressed 
due to lack of SPDC signal. 
2D cross-sectional plots of 
the c amplitude and d phase 
step functions with the object 
(simulation), and reconstruc-
tions with the Walsh-Hadamard 
(blue diamonds) and HG (red 
dots) masks
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number of scans required and image resolution. The reso-
lution is set by the optical system itself, while the number 
of modes required to image the object is dependent on the 
complexity of the object. The modal approach requires a 
judicious choice of modal basis as well as the number of 
terms required to image the object. The introduction of 
phase only and amplitude only scanning through a modal 
approach allows for the ability to probe individual proper-
ties of an unknown object. The future prospects for com-
putational methods in optical imaging and holography are 
highly promising, with trends indicating integration of AI 
for enhanced image reconstruction, the advancement of 
3D holography with improved resolution, and the poten-
tial impact of quantum techniques. These developments 
will benefit various fields, including bio-photonics, mate-
rial science, and quantum cryptography. The introduction 
of quantum computing and interdisciplinary collaborations 
will likely act as a catalyst for innovation, expanding the 
applications and accessibility of optical imaging and holog-
raphy across industrial and research domains.

11 � Label‑free sensing of bacteria 
and viruses using holography and deep 
learning (Yuzhu Li, Bijie Bai and Aydogan 
Ozcan)

11.1 � Background

Microorganisms, like bacteria and viruses, play an indis-
pensable role in our ecosystem. While they serve crucial 
functions, such as facilitating the decomposition of organic 
waste and signaling environmental changes, certain micro-
organisms are pathogenic and can lead to diseases like 

anthrax, tuberculosis, influenza, etc. [128]. The replication 
of bacteria and viruses can be detected using culture-based 
methods [129] and viral plaque assays [130], respectively. 
Though these culture-based methods have the unique abil-
ity to identify live and infectious/replicating bacteria and 
viruses, they are notably time-consuming. Specifically, it 
usually requires > 24 h for bacterial colonies to form [129] 
and > 2 days for viral plaques [131] to grow to sizes dis-
cernible to the naked eye. In addition, these methods are 
labor-intensive, and are subject to human counting errors, 
as experts/microbiologists need to manually count the num-
ber of colony-forming units (CFUs) or plaque-forming units 
(PFUs) within the test plates after the corresponding incuba-
tion period to determine the sample concentrations. There-
fore, a more rapid and automated method for detecting the 
replication of bacteria and viruses is urgently needed.

The combination of time-lapse holographic imaging and 
deep learning algorithms provides a promising solution to 
circumvent these limitations. Holographic imaging, regarded 
as a prominent label-free imaging modality, is effective at 
revealing features of transparent biological specimens by 
exploiting the refractive index as an endogenous imag-
ing contrast [17, 132]. Consequently, it can be employed 
to monitor the growth of colonies or viral plaques during 
their incubation process in a label-free manner. This allows 
for the capture of subtle spatio-temporal changes associated 
with colony or viral plaque growth, enabling early detection 
of them when they are imperceptible to human eye. How-
ever, the presence of other potential artifacts (e.g., bubbles, 
dust, and other random features created by the uncontrolled 
motion of the sample surface) can hinder the accurate detec-
tion of true bacterial colonies or viral plaques. To mitigate 
such false positive events, deep learning algorithms become 
critical in automatically differentiating these randomly 

Fig. 19   Workflows used for label-free sensing of bacteria (CFUs) and viruses (PFUs) using time-lapse holographic imaging and deep learning. a 
Workflow for CFU early detection using holography and deep learning. b Workflow for PFU early detection using holography and deep learning
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appearing artifacts from true positive events by leveraging 
the unique spatio-temporal features of CFU or PFU growth. 
In this chapter, we will present how the integration of time-
lapse holographic imaging and deep learning enables the 
early detection of bacterial colonies or viral plaques in an 
automated and label-free manner, achieving significant time 
savings compared to the gold-standard methods [133–135].

11.2 � Methodology

The primary workflow for detecting CFUs and PFUs using 
holography and deep learning includes key steps such as 
time-lapse hologram acquisition of test well plates, digital 
holographic reconstruction, image processing, and deep 
learning-based CFU/PFU identification and automatic 
counting, as illustrated in Fig. 19. The specific methodolo-
gies employed in each step differ for CFU and PFU detec-
tion, as detailed below.

For the CFU detection [133], as shown in Fig. 19a, after 
the sample is prepared by inoculating bacteria on a chromog-
enic agar plate, it is positioned on a customized lens-free [17, 
136] holographic microscopy device for time-lapse imaging 
which utilized a digital in-line holographic microscopy con-
figuration. The sample is illuminated by a coherent laser 
source, and the resulting holograms are scanned across the 
entire sample plate by a complementary metal–oxide–semi-
conductor (CMOS) sensor. These captured time-lapse holo-
grams are digitally stitched and co-registered across various 
timestamps to mitigate the effects of random shifts in the 
mechanical scanning process, and digitally reconstructed 
to retrieve both the amplitude and phase channels of the 
observed sample plate. Subsequently, a differential analy-
sis-based image processing algorithm is employed to select 
colony candidates. These candidates are then fed into a CFU 
detection neural network to identify true colonies from non-
colony candidates (e.g., bubbles, dust and other spatial arti-
facts). Following this, a CFU classification neural network is 
subsequently employed to classify true colonies identified by 
the CFU detection network into their specific species. Note 
that the CMOS image sensor in this workflow can also be 
replaced by a thin-film-transistor (TFT) image sensor with 
a much larger imaging field-of-view (FOV) of ∼ 7–10 cm2 
[134]. In this case, the whole FOV of the sample plate can be 
captured in a single shot using the TFT image sensor and the 
obtained holograms are inherently registered across all the 
timestamps, eliminating the need for mechanical scanning, 
image stitching, and image registration steps that are used 
in the CMOS sensor-based system.

For the PFU detection [135], as shown in Fig. 19b, the 
process of hologram capture and image preprocessing are 
similar to those used in the CFU detection system. However, 

the candidate selection and identification procedures are 
not employed in the PFU detection task. Instead, the recon-
structed time-lapse phase images of the whole test well are 
directly converted into a PFU probability map by applying 
a PFU detection neural network to the whole well image. 
This PFU probability map is further converted to a binary 
detection mask after thresholding by 0.5, revealing the sizes 
and locations of the detected PFUs at a given time point. 
The neural networks employed in these studies utilized a 
DenseNet architecture [137], with 2D convolutional layers 
replaced by Pseudo3D convolutional blocks [138] to better 
accommodate time-lapse image sequences. Nonetheless, the 
network structures suitable for similar work can be changed 
to more advanced architectures to meet the specific require-
ments of different detection targets.

11.3 � Results

Following the workflows described above, the presented 
CFU detection system based on the CMOS image sensor 
showcased its capability to detect ~ 90% of the true colo-
nies within ~ 7.8 h of incubation for Escherichia coli (E. 
coli), ~ 7.0 h for Klebsiella pneumoniae (K. pneumoniae), 
and ~ 9.8 h for Klebsiella aerogenes (K. aerogenes) when 
tested on 336, 339, and 280 colonies for E. coli, K. pneu-
moniae, and K. aerogenes, respectively. Compared to the 
gold-standard Environmental Protection Agency (EPA) 
approved culture-based methods (requiring > 24 h of incu-
bation), this system achieved time savings of > 12 h [133]. 
As for the TFT sensor-based CFU detection system with 
simplified hardware and software design [134], its detec-
tion time was slightly longer compared to the CMOS image 
sensor-based system, attributed to the larger pixel size of the 
TFT sensor (~ 321 μm). When tested on 85 E. coli colonies, 
114 K. pneumoniae, and 66 Citrobacter colonies, this TFT 
sensor-based CFU detection system achieved ~ 90% detec-
tion rate within ~ 8.0 h for E. coli, ~ 7.7 h of incubation for 
K. pneumoniae, and ~ 9.0 h for Citrobacter.

Regarding the automated colony classification task, the 
CMOS sensor-based CFU detection system correctly classi-
fied ~ 80% of all the colonies into their species within ~ 8.0 
h, ~ 7.6 h, and ~ 12.0 h for E. coli, K. pneumoniae, and K. 
aerogenes, respectively. In contrast, the TFT sensor-based 
CFU system was able to classify the detected colonies into 
either E. coli or non-E. coli coliforms (K. pneumoniae and 
Citrobacter) with an accuracy of > 85% within ~ 11.3 h 
for E. coli, ~ 10.3 h for K. pneumoniae, and ~ 13.0 h for 
Citrobacter.

Regarding the PFU detection system, when evaluated 
on vesicular stomatitis virus (VSV) plates (containing a 
total of 335 VSV PFUs and five negative control wells), the 
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presented PFU detection system was able to detect 90.3% 
of VSV PFUs at 17 h, reducing the detection time by > 24 h 
compared to the traditional viral plaque assays that need 
48 h of incubation, followed by chemical staining—which 
was eliminated through the label-free holographic imaging 
of the plaque assay. Moreover, after simple transfer learn-
ing, this method was demonstrated to successfully general-
ize to new types of viruses, i.e., herpes simplex virus type 
1 (HSV-1) and encephalomyocarditis virus (EMCV). When 
blindly tested on 6-well plates (containing 214 HSV-1 PFUs 
and two negative control wells), it achieved a 90.4% HSV-1 
detection rate at 72 h, marking a 48 h reduction compared 
to the traditional 120-h HSV-1 plaque assay. For EMCV, a 
detection rate of 90.8% was obtained at 52 h of incubation 
when tested on 6-well plates (containing 249 EMCV PFUs 
and two negative control wells), achieving 20 h of time-
saving compared to the traditional 72-h EMCV plaque assay. 
Notably, across all detection time points, there were no false 
positives detected for all the test wells.

11.4 � Conclusion and future perspectives

By leveraging deep learning and holography, the CFU and 
PFU detection systems discussed in this chapter achieved 
significant time savings compared to their gold-standard 
methods. The entire detection process was fully automated 
and performed in a label-free manner—without the use of 
any staining chemicals. We believe these automated, label-
free systems are not only advantageous for rapid on-site 
detection but also hold promise in accelerating bacterial and 
virological research, potentially facilitating the development 
of antibiotics, vaccines, and antiviral medications.

12 � Accelerating computer‑generated 
holography with sparse signal models 
(David Blinder, Tobias Birnbaum, Peter 
Schelkens)

12.1 � Background

Computer-generated holography (CGH) comprises many 
techniques to simulate light diffraction for holography 
numerically. CGH has many applications for holographic 
microscopy and tomography [22], display technology [139], 
and especially for computational imaging [140]. CGH is 
computationally costly because of the properties of diffrac-
tion: every point in the imaged or rendered scene will emit 
waves that can affect all hologram pixels. That is why a mul-
titude of algorithms have been developed to accelerate and 
accurately approximate these calculations [141].

One particular set of techniques of interest is sparse CGH 
algorithms. These encode the wavefield in a well-chosen 
transform space where the holographic signals to be com-
puted are sparse; namely, they only require a small number 
of coefficient updates to be accurate. That way, diffraction 
calculations can be done much faster, as only a fraction of 
the total coefficients will be updated. Examples include the 
use of the sparse FFT [142], wavefront recording planes 
that express zone plate signals in planes close to the virtual 
object, resulting in limited spatial support, and coefficient-
shrinking methods such as WASABI relying on wavelets 
[143].

A transform that has been especially effective in repre-
senting holographic signals is the Short-time Fourier trans-
form (STFT). Unlike the standard Fourier transform, the 
STFT determines the frequency components of localized sig-
nal sections as it changes over time (or space). One impor-
tant reason for its effectiveness in holography is that the 
impulse response of the diffraction operator is highly sparse 
in phase space, expressible as a curve in time–frequency 
space [144]. This has shown to be effective for STFT-based 
CGH with coefficient shrinking [144] and the use of phase-
added stereograms [145, 146].

Recently, the Fresnel diffraction operator itself was accel-
erated using Gabor frames, relying on the STFT [147]. This 
resulted in a novel Fresnel diffraction algorithm with linear 
time complexity that needs no zero-padding and can be used 
for any propagation distance.

12.2 � Methodology

The Fresnel diffraction operator expresses light propagation 
from a plane z = z1 to z = z2 by

relating the evolving complex-valued amplitude U over a 
distance d = z2 − z1 , with wavelength � , wavenumber k = 2�

�
 

and imaginary unit i . Because this integral is separable along 
x and y , we can focus on the operation only along x, namely

where K is the Fresnel convolution kernel. This expression 
can be numerically evaluated with many techniques [146], 
but essentially boil down to either spatial convolution or 
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frequency domain convolution using the FFT. We proposed 
a third approach via chirplets:

which is a generalization of Gaussians with complex-valued 
parameters. The set of chirplets G is closed under multiplica-
tion and convolutions; consider two chirplets 
u = exp

(
at2 + bt + c

)
 , û = exp

(
ât2 + b̂t + ĉ

)
 ; we have that, 

∀u, û ∈ G,

and
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Because the Fresnel convolution kernel K can be seen 
as a degenerate chirplet (where α is purely imaginary), any 
Chirplet that gets multiplied or convolved with K will also 
result in a chirplet. Finally, chirplets can be integrated over 
as follows:

Thus, if we express the holographic signal in both source 
and destination planes in terms of chirplets, we can analyti-
cally relate the output chirplet coefficients in the plane z = z2 
as a function of their inputs from the plane z = z1.

A Gabor frame with Gaussian windows can serve as a 
representation of a signal by a collection of chirplets, using 
the STFT [148]. This means we can use a Gabor transform 
to obtain the chirplet coefficients, transform them using the 
aforementioned equations, and retrieve the propagated signal 
by applying the inverse Gabor transform, cf. Fig. 20.

12.3 � Results

Because of the sparsity of chirplets for holograms, each 
input Gabor coefficient will only significantly affect a 
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Fig. 20   Chirplet-based Fresnel transform pipeline. Every row and column can be processed independently thanks to the separability of the 
Fresnel transform. The Gabor coefficients can be processed with the chirplet mapping, and transformed back to obtain the propagated hologram

Fig. 21   Side-by-side comparison of an example hologram propa-
gated with different algorithms, at d = 5 mm. a The input hologram, 
followed by multiple reconstructions, using b the spatial domain 

method, c the proposed Gabor domain method and d the frequency 
domain method. The proposed Gabor technique appears to be visually 
identical to the reference spatial and frequency domain algorithms
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small number of output Gabor coefficients, no matter the 
distance d. Therefore, only a few coefficients need updat-
ing while maintaining high accuracy. Combined with the 
fact that the computational complexity of the Gabor trans-
form is linear as a function of the number of samples, this 
results in an O(n) Fresnel diffraction algorithm.

We calculated a 1024 × 1024-pixel hologram with a 
pixel pitch of 4 μm, distance d = 5 cm, and a wavelength 
λ = 633 nm, cf. Fig. 21. Using a sheared input coefficient 
neighborhood with a radius of 5 of input coefficients per 
output coefficient, we obtain a PSNR of 68.3 dB w.r.t. 
the reference reconstruction. Preliminary experiments on 
a C +  + /CUDA implementation give a speedup of about 
2 to 4 on a 2048 × 2048-pixel hologram compared to FFT-
based Fresnel diffraction [149]. The sparsity factor can be 
chosen to trade off accuracy and speed.

12.4 � Conclusion and future perspectives

We have combined two of Dennis Gabor’s inventions, 
holography, and the Gabor transform, creating a novel 
method for numerical Fresnel diffraction. It is a new, dis-
tinct mathematical way to express discrete Fresnel dif-
fraction with multiple algorithmic benefits. The method 
requires no zero-padding, poses no limits on the distance 
d and inherently supports off-axis propagation and changes 
in pixel pitch or resolution. Its sparsity enables a linear 
complexity algorithm implementation. We plan to inves-
tigate these matters and perform detailed experiments in 
future work. This novel propagation technique may serve 
as a basis for more efficient and flexible propagation oper-
ators for various applications in computational imaging 
with diffraction.

13 � Layer‑based hologram calculations: 
practical implementations (Tomoyoshi 
Shimobaba)

13.1 � Background

Holographic displays have attracted significant attention as 
one of the most promising technologies for three-dimen-
sional (3D) displays. They require optical systems capable 
of rendering holograms with a large spatial bandwidth, in 
addition to algorithms and computational hardware that 
can efficiently compute these holograms at high speeds 
[139]. Computational algorithms designed for hologram 
generation can be broadly categorized into several meth-
ods, including point cloud, polygon, layer, light field, and 
deep learning-based approaches. Each method has its own 
set of advantages and disadvantages, and currently, there 
is no universally perfect method identified. In this context, 
we focus on the layer method.

The layer method computes holograms from a 3D scene 
represented by an RGB image and a depth image (RGB-D 
image). Depth cameras, such as the Kinect, are now read-
ily available for capturing RGB-D images. Alternatively, 
RGB-D images can be obtained from computer graphics 
generated using 3D graphics libraries such as OpenGL. 
A prototype of a holographic near-eye display utilizing 
RGB-D images has been successfully developed and has 
effectively presented 3D images to viewers without caus-
ing discomfort [150]. The layer method decomposes a 
3D scene into multiple 2D images (referred to as layers) 
or point clouds, from which holograms can be computed 
[151]. This chapter provides a detailed exposition of the 
layer method.

Fig. 22   RGB-D image and layer hologram calculation via the layer method: a RGB-D image [149], b layer hologram calculation by diffraction 
calculation, c layer hologram calculation by point cloud method
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13.2 � Methodology

A schematic of the hologram computation using the layer 
method is presented in Fig. 22, wherein an example of RGB 
and depth images is illustrated. Figure 22b details the pro-
cess of computing a layer hologram through diffraction cal-
culations. This RGB-D image serves as the basis for decom-
posing the 3D scene into multiple layers. The light waves 
emitted from each of these layers are individually computed 
and subsequently combined on the hologram, resulting in 
the final hologram [152]. This can be expressed as follows:

where x is the position vector, L is the number of layers, 
Pj is the operator representing the diffraction calculation, 
u(x) is one channel with RGB images, Mj(x) is a function of 
extracting the j-th layer and is set to 1 if a pixel in the depth 
image d(x) matches the depth index j; otherwise, it is set to 
0. It is defined as follows:

Representative diffraction calculations employed for Pj 
involve the utilization of Fresnel diffraction and the angular 
spectrum method. While these calculations can be expedited 
through convolution using fast Fourier transforms (FFTs), 
owing to the cyclic nature of convolution, wraparound noise 
may be introduced into the reproduced image. To mitigate 
this wraparound issue, when the hologram size is N × N pix-
els, the diffraction calculation is extended to 2N × 2N pixels, 
with the extended region being zero-padded. This extension, 
however, leads to increased computation time and greater 
memory usage. To address this challenge, diffraction calcu-
lations using pruned FFT and implicit convolution methods 
have been proposed as means to alleviate this problem [153].

The function ψ(x) represents an arbitrary phase, 
and both random and compensation phases are used in 
layer holograms [154]. The random phase is defined 
as �R(x) = exp(2�in(x)) , where i is the imaginary unit, 
and n(x) is a random number within the range of 0 to 1. 
While the random phase has the drawback of introducing 
speckle noise in the reproduced image, it has the benefit 
of broadening the viewing angle of the reproduced image 
and regulating the depth of field in the reproduction. The 

(10)

h(x) =

L∑
j=1

P j{u(x)Mj(x)�(x)},

(11)

Mj(x) =

{
1(d(x) = j)

0(otherwise)

compensation phase is defined as �C(x) = exp
(
iπzj

)
 , where 

zj represents the distance between the j-th layer and the 
hologram. Phase differences between layers can lead to 
unwanted diffraction waves (referred to as ringing arti-
facts) [155] that are superimposed on the reproduced 
image. The compensation phase serves the purpose of 
reducing the phase difference between each layer to zero, 
thereby diminishing ringing artifacts.

Layer holograms can also be computed through the 
point cloud method, as depicted schematically in Fig. 22c. 
In this approach, a point cloud is generated from the 
RGB-D image, and subsequently, the following calcula-
tions are executed [156, 157]

where ul is the l-th object point, k is the wavenumber, 
and rl is the distance between the object point and a cer-
tain point in the hologram. To expedite the computation, 
a virtual plane, known as the wavefront recording plane 
(WRP), is positioned in close proximity to the point cloud. 
The light waves are subsequently recorded on the WRP, 
denoted as w(x), using Eq. (12) [156, 157]. Once all the 
object point information is recorded on the WRP, the 
hologram can be generated by performing a diffraction 
calculation from the WRP to the hologram. Layer images 
often exhibit sparsity. In such instances, using FFTs in Eq. 
(10) for calculations would be less efficient owing to the 
presence of layers containing many zeros. If each layer is 
sparse, it would be more efficient to calculate the hologram 
by using Eq. (12). The introduction of multiple WRPs is a 
possibility, and optimal values for the number and place-
ment of these WRPs exist [158].

Holograms obtained using Eqs. (10) and (12) are inher-
ently complex-valued. Typical spatial light modulators 
(SLMs) are capable of performing either amplitude or 
phase modulation. Therefore, complex holograms need to 
be converted into a format suitable for SLMs. In the case 
of amplitude modulation SLMs, methods are employed that 
either directly extract the real part of the complex hologram 
to produce an amplitude hologram or utilize techniques such 
as single sideband and half-zone plate processing to achieve 
a complex hologram even when using amplitude modula-
tion SLMs [159, 160]. For phase modulation SLMs, com-
plex holograms are transformed into phase-only holograms 
through methods such as double phase hologram [161, 162], 
error diffusion method [163], binary amplitude encoding 
[164], and bleached hologram [165].

(12)

w(x) =

N∑
l=1

ul exp
(
ikrl

)
,
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13.3 � Results

The results of computing the layer hologram from the 
RGB-D image in Fig. 22a using Eq. (10) are displayed in 
Fig. 23. For these diffraction calculations, the angular spec-
trum method was applied [166]. The following parameters 
were used: a wavelength of 532 nm, a minimum distance of 
50 mm between the hologram and the 3D scene, a pixel pitch 
of 3.74 µm, a thickness of 5 mm for the 3D scene (where a 
zero-pixel value in the depth image corresponds to a distance 
of 50 mm from the hologram, and a pixel value of 255 repre-
sents a distance of 55 mm), and a total of 32 layers.

Figure 23a shows the hologram utilizing the compen-
sation phase for ψ(x) is presented. Further, Fig. 23b and c 
show the reproduced images derived from the hologram. 
Figure 23b displays the reproduced image with a focus 
on the standlight, while Fig. 23c exhibits the reproduced 
image with emphasis on the shelf. Figure 23d illustrates the 
hologram created using the random phase for ψ(x). Cor-
respondingly, Fig. 23e and f reveal the reproduced images 
from the hologram, with a specific focus on the standlight 
and the shelf, respectively. Notably, the reproduced image 
originating from the hologram utilizing the compensation 
phase manifests a deep depth of field, whereas the repro-
duced image obtained from the hologram using the random 
phase exhibits a shallow depth of field. Furthermore, the 
reproduced image of the random phase hologram displays a 
pronounced presence of speckle noise.

13.4 � Conclusion and future perspectives

This section describes the calculation of layer holograms, 
and the Python code with accompanying comments can 
be found in the supplementary material. The layer holo-
grams discussed here are commonly applied in near-eye 
holographic displays [150]. However, this method may not 
be suitable for holographic displays with broad viewing 
angles and expansive fields of view, where the observ-
er's eye position can be freely adjusted [167]. For such 
holographic displays, an alternative approach involves 
calculating layer holograms using multi-view images in 
conjunction with depth images [168]. Many hologram 
computations using deep learning methods also involve 
inferring layer holograms from RGB-D images. The layer 
hologram calculations presented in this chapter, serve a 
valuable purpose in generating training datasets for deep 
learning. Additionally, while layer holograms derived 
through deep learning may face challenges in achieving 
deep-depth reproduction images [169], the computational 
approach introduced in this chapter allows for greater flex-
ibility in setting the depth parameter. Commented Python 
code for implementing layer hologram calculation is given 
in the supplementary materials S9.

Fig. 23   Layer holograms and 
reproduced images. a Hologram 
using compensation phase, 
b reproduced image focused 
on standlight, c reproduced 
image focused on shelf, d 
hologram using random phase, 
e reproduced image focused on 
standlight, f reproduced image 
focused on shelf. The contrast 
and brightness of each repro-
duced image were adjusted for 
ease of viewing
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14 � Learned compressive holography 
(Vladislav Kravets and Adrian Stern)

14.1 � Background

In [170] we introduced Compressive Fresnel Holography 
(CFH)—a technique that uses only a small subset of samples 
of the hologram to capture the object’s three-dimensional 
information. The CFH was built upon the Compressive Sens-
ing (CS) [171–173] theory, which states that objects that are 
sparse or have a sparse representation in some mathematical 
domain can be economically sampled and reconstructed by 
employing an appropriate sampling scheme and reconstruc-
tion algorithm. Using this technique, a compression ratio of 
up to 12.5:1 was demonstrated in [170] for Fresnel coherent 
digital holography. The method was extended for incoherent 
holography in [174, 175] facilitating the sensing effort by an 
order of magnitude. Theoretical guarantees for CFH were 
derived in [176], and comprehensive sampling conditions 
are summarized in Chapter 9 in [173].

The CS theory considers a linear sensing model 
described as � = ��  where � ∈ ℂ

N represents the objects, 
� ∈ ℂ

M the measured samples and � ∈ ℂ
M×N is the sens-

ing matrix. In CS M < N. There are two common types of 
sensing matrices � : Random Modulators (RM) and Partial 
Random Ensemble (PRE). The RM sensing matrix is an M 
by N random matrix with entries commonly drawn from a 
sub-Gaussian distribution (e.g., Gaussian Bernoulli, etc.). 
The best-known representative of PRE is the Random Par-
tial Fourier (RPF) sensing matrix, which is constructed 
by randomly picking out M rows from a Fourier Basis. 
The CFH sensing model relates to this method, suggesting 
randomly sampling only M samples from a full Fresnel 
transformation ensemble, as we demonstrated in [170]. 
We further have shown that it is advantageous to sample 
Fresnel holograms randomly according to a non-uniform 
pattern [170]. Similar non-uniform CS sampling was also 
studied for other CS settings (e.g., [177, 178]) using theo-
retical analysis of the sensing matrix. In this chapter, we 
present a data-driven deep learning method to determine 
the optimal random-like sampling. We apply the recently 
introduced LPTnet [179] to choose the optimal Fresnel 

samples and to reconstruct the object from the CS samples. 
LPTnet was demonstrated in [179] to push the classical CS 
limits by almost two orders of magnitudes when applied 
to regular 2D imaging. Here, we demonstrate its useful-
ness for CFH.

LPTnet is an innovative CS framework that utilizes 
end-to-end Deep Learning (DL) for jointly optimizing 
the sensing process and the CS reconstruction algorithm. 
Unlike traditional CS methods that often rely on random 
sampling techniques, LPTnet intelligently selects optimal 
samples from a predetermined transformation ensemble 
using deep learning. Figure 1 shows a simplified scheme 
of LPTNet. The sensing process is modeled as Hadamard 
(pointwise) multiplications of the fully transformed image 
with a binary mask, that is, � = �F�◦� ,  where �F denotes 
the non-sampled (typically unitary) transform, and c the 
sampling mask. The nonzero values of c serve as indica-
tors of the transformed values to be selected. The zero val-
ues of the mask c effectively null out the fully transformed 
values, leaving only the partial transformed ensemble �� , 
representing the compressed measurments, g. During the 
training phase, optimization is performed on a recon-
struction scheme along with the selection map c. In the 
reconstruction phase, an inverse transform 

(
��

)−1 is first 
applied on the measurements, g. Due to the partial sam-
pling, the obtained image is highly distorted; therefore, a 
sequence of refinement iterations is performed. In each 
iteration (dashed box in Fig. 1), a deep neural network is 
first applied to reconstruct the image. The estimated image 
is then converted to the transformed domain, and the real 
measurements are reinforced while leaving the (implic-
itly) inferred missing coefficients (MR block in Fig. 24). 
Finally, the data is transformed back 

(
�F

)−1 to the image 
domain. A detailed description of LPTNet architecture and 
training process can be found in [179]. 

14.2 � Methodology

The schematic of LPTnet-based compressive Fresnel 
holography is shown in Fig. 25a. The relation between 
the object complex field amplitude, f, and the field at the 
image plane is mathematically described in the far field 
regime [173] by: 

Fig. 24   Schematic description 
of the learned compressive 
Fresnel holography: LPTnet is 
used to determine the hologram 
sampling point and the param-
eters of the reconstruction deep 
neural network
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where F2D is the 2D Fourier transform, � is the 
illumination wavelength, Δz is the sensor pixel size, 
the object sampling interval is Δ0 = �z∕

(
nΔz

)
 , and 

0 ≤ p, q, k, l ≤ n − 1 . Assuming no loss of generality, we 
consider the complex field amplitude image to be of size 
n by n and N = n2 is the total number of samples. Equa-
tion (1) can readily be written in a vector matrix form 
[173], � = �FST � , where �FST describes the full ensemble 
of Fresnel transformation. A partial sample of transforma-
tion, � , is found by applying the LPTNet [179].

Similar to Fig. 24, we can represent the CS Fresnel 
transform as g = c◦�FST (f ) , where ∘ is the Hadamard 
(point-wise) product and c ∈ ℝ

n×n is a learned binary 
sampling map (Fig. 25a) which can be found using the 
LPTNet [179], and �FST  is the full Fresnel transform 
ensemble.

14.3 � Results

We have simulated CFH with W = 30  mm, n = 64, 
λ = 550 nm. The top row in Fig. 25b shows the learned sam-
pling maps, c, for z = 25  mm and for z = 192  mm with 
M = 200 and M = 500 samples each. Notice that each case 

(13)g(pΔz, qΔz) = exp

{
j�

�z

(
p2Δ2

z
+ q2Δ2

z

)}
F2D

[
f (kΔ0, lΔ0) exp

{
j�

�z

(
k2Δ2

0
+ l2Δ2

0

)}]
,

has its own Fresnel transformation ensemble, 
�FST = �FST

(
z,

M

N

)
 , therefore LPTnet finds an appropriate 

sampling map. It can be seen that for short distances, where 
the Fresnel transformation is not much different from that of 
the object, the optimal sampling pattern is uniformly ran-
dom, which is in agreement with the universal CS oracles 
that do not employ learning tools. However, as the field 
propagates, the sampling pattern becomes patterned. Fig-
ure 25b (center and bottom) demonstrates the image recon-
structions of Augustin-Jean Fresnel portrait (Fig. 25b) from 
as few as M = 200 and M = 500 samples for z = 25 mm for 
z = 192 mm.

14.4 � Conclusion and future perspectives

In this study, we introduced Learned Compressive Holog-
raphy—a method that determines the optimal hologram 
sampling pattern according to the particular imaging condi-
tions. For this purpose, we utilized the LPTnet framework, 
which jointly optimizes the sampling pattern and a reconsti-
tution deep neural network via a learning process. We have 
shown that applying the LPTnet framework to compressive 
Fresnel holography can enhance image reconstruction from 

Fig. 25   a Schematic descrip-
tion of the learned compressive 
Fresnel holography: LPTnet is 
used to determine the holo-
gram sampling point and the 
parameters of the reconstruction 
DNN. b Learned hologram sub-
sampling map and reconstruc-
tion with LPTNet. The top row 
displays learned sampling maps 
for 200 samples (4.8% compres-
sion rate) and 500 samples (12% 
compression rate) at z = 25 mm 
and z = 192 mm. The bottom 
row shows the respective holo-
gram reconstructions
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a reduced number of samples. This approach, which aligns 
with CS principles, has proven effective in reconstructing 
detailed images with fewer resources. The use of LPTnet to 
select optimal samples from the Fresnel transform is a nota-
ble improvement over traditional random sampling methods. 
Our results show the potential of this method for efficiently 
handling sparse data. In the future, we will investigate the 
use of CFH for other types of coherent and incoherent holog-
raphy methods.

15 � Computational optical phase imaging: 
from digital holographic interferometry 
to intensity diffraction tomography 
(Shun Zhou, Jiaji Li, Jiasong Sun, Qian 
Chen, and Chao Zuo)

15.1 � Background

One of the prominent challenges encountered in optical 
microscopy relates to contrast enhancement. Traditional 
microscopy relies on the mechanism of intensity-based 
detection, which necessitates the use of staining agents to 
visualize transparent specimens, such as biological cells. On 
the contrary, label-free microscopy has emerged as an ideal 
method for exploring the physiological activities and long-
term dynamic processes of living cells. In 1932, Zernike 
introduced the technique of phase contrast microscope which 
utilizes the principle of aperture modulation and spatial fil-
tering, significantly enhancing the contrast for transparent 
specimens [180]. Nevertheless, while this phase imaging 
method excels in two-dimensional (2D) qualitative visuali-
zation, it has not yet been successfully extended to three-
dimensional (3D) quantitative measurements.

Inspired by Zernike’s concepts, various innovative label-
free microscopic techniques gradually emerged, among 
which quantitative phase imaging (QPI) is considered one 

of the most promising approaches [181]. In particular, 3D 
optical diffraction tomography (ODT) can be realized by 
combining QPI with computed tomography, providing true 
3D refractive index (RI) distribution inside the sample. The 
realization of ODT is of great significance for revealing the 
intrinsic mechanisms of cell biology and pathophysiology. 
Unfortunately, the measurements of the quantitative phase 
cannot get rid of laser and optical interference for over half 
a century. Inherent defects of interferometric detection, such 
as complex interference devices, speckle noise, and coherent 
diffraction limit have not been fundamentally resolved for 
a long time, and these enduring obstacles hinder the wide-
spread applications and long-term future development of 
interferometric holography in the field of biological imaging.

Over the past decade, we have spearheaded research in 
computational optical phase imaging domestically and also 
exerted influence internationally. We are primarily focusing 
on the theory development of generalized phase definition 
under partially coherent light field and phase transfer func-
tion (PTF), and the technique advances of spatial bandwidth 
product (SBP) enhancement and intensity diffraction tomog-
raphy. These efforts contribute to the development of innova-
tive theories and methods for non-interferometric quantita-
tive phase and diffraction tomographic imaging.

15.2 � Methodology and results

15.2.1 � From fully coherent field to partially coherent field

The scalar diffraction theory proposed by Huygen is suffi-
cient to accurately describe the propagation of the light field 
in free space and its complex amplitude distribution on an 
arbitrary plane for the case of a fully coherent illumination 
light field. The corresponding inverse problem can be solved 
iteratively by phase retrieval methods such as GS, hybrid 
input–output algorithm (HIO), or directly by the transport 
of intensity equation (TIE) under the paraxial approximation 

Fig. 26   Generalized TIE 
and generalized phase under 
partially coherent field derived 
from the Wigner distribution 
function in phase space
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[182]. It is worth noting that the intensity forward models 
relied upon by these phase retrieval techniques assume of 
fully coherent illumination. However, the partially coherent 
fields exhibit statistical properties with random fluctuations 
and cannot be fully described by the 2D complex amplitude, 
so there is no clear phase definition. To address the above 
issues, as depicted in Fig. 26, we established the general-
ized TIE and provided a strict definition of the generalized 
phase under partially coherent field based on the Wigner 
distribution function in phase space [183]. The generalized 
phase serves as a scalar potential function, with its gradient 
representing the first-order conditional frequency moment of 
the Wigner distribution function under the partially coher-
ent field, thus extending the well-posedness of TIE from the 
fully coherent wavefield to the wavefield in any coherent 
state. Based on Poynting's theorem in the unbounded space, 
we have strictly proven the existence and uniqueness of the 
solution to the equation under non-homogeneous Neumann 
boundary conditions [184]. This achievement effectively 
addresses a long-standing theoretical problem of obtaining 

an exact solution to TIE [185], which lays a theoretical 
foundation for QPI from interference to non-interference 
and from fully coherent illumination to partially coherent 
illumination.

15.2.2 � From coherent diffraction limit to incoherent 
diffraction limit

Extending QPI technique from fully coherent to partially 
coherent illumination also offers the benefit of enhancing 
imaging resolution thanks to the inherent synthetic aperture. 
Classical Fourier optics theory reveals that the incoherent 
optical transfer function (OTF) is the normalized autocor-
relation of the coherent transfer function (also known as 
pupil function), resulting in a cutoff frequency twice that 
of the coherent diffraction limit. However, this conclusion 
cannot quantitatively describe the phase imaging character-
istics under partially coherent illumination that lies between 
fully coherent and incoherent. More importantly, as coher-
ence decreases, the incoherent imaging system degrades 

Fig. 27   QPI under partially coherent illumination. a Partially coher-
ent phase transfer function. b The imaginary part of weak object 
transfer function for various coherent parameters and defocus dis-

tances. c High-resolution imaging of buccal epithelial cells based 
on transport-of-intensity quantitative phase microscopy with annular 
illumination
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to a linear system of intensity and loses its capability to 
image phase objects. To address these challenges, we have 
developed the PTF theory under partially coherent illumi-
nation by separating the contribution of the specimen and 
system within the image formation process [186] , provid-
ing a more nuanced understanding of how these factors 
interact to produce the final image. The equation and visual 
representations of the PTF, including 2D cross-sectional 
illustration and line profile, are shown in Fig. 27a. These 
illustrations provide a clear visual explanation of imaging 
resolution enhancement through the use of partially coher-
ent illumination. Moreover, the imaginary part of the weak 
object transfer function for various coherent parameters s 
(the ratio of illumination NA to objective NA) and defo-
cus distances are illustrated in Fig. 27b. The PTF theory 
not only reveals the trade-off between cutoff frequency and 
response amplitude under traditional circular illumination 
apertures but also demonstrates that annular illumination 
matching the objective NA effectively expands the support 
domain up to twice the cutoff frequency corresponding to 

the objective NA, while maintaining optimal response [187, 
188] . Based on this, we have proposed a transport-of-inten-
sity QPI method that utilizes NA-matched annular illumi-
nation, effectively extending the imaging resolution from 
the coherent diffraction limit to the incoherent diffraction 
limit. The corresponding experimental setup is depicted 
in Fig. 27c. The effectiveness of our proposed approach is 
exemplified by the imaging of subcellular structures within 
buccal epithelial cells. Figure 27c demonstrates the multi-
mode imaging results, encompassing quantitative phase, 
phase contrast, differential interference contrast (DIC), and 
pseudo-color 3D rendering. These collectively underscore 
the superior imaging capability of our method in revealing 
intricate cellular details that were previously inaccessible 
with traditional imaging techniques.

Fig. 28   Wide-field, high-resolution FPM. a OTF under asymmetric 
coherent illumination. b Resolution-enhanced FPM based on high-
numerical-aperture illuminations. c High-speed, long-time, and adap-

tive-aberration-correction high-throughput phase imaging based on 
annular illumination FPM
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15.2.3 � From defocus phase reconstruction 
to ptychographic bandwidth expansion

To achieve QPI, it is crucial to introduce imaginary com-
ponents into the complex function of the OTF under par-
tially coherent illumination. In TIE, this is accomplished 
by introducing defocus into the imaging system (complex 
pupil function). Another method involves breaking the radial 
symmetry of the imaging system by employing asymmetric 
illumination or asymmetric aperture, such as differential 
phase contrast (DPC) and Fourier ptychographic micros-
copy (FPM) [189]. With this approach, we derived the PTF 
under asymmetric illumination, as depicted in Fig. 28a, 
which reveals the intrinsic relationship between the illumi-
nation/detection numerical aperture ratio and the imaging 
SBP in the FPM. By applying the large illumination NA to a 
low-magnification objective, the imaging system’s SBP can 
be expanded by utilizing the multiple differences between 
the illumination NA and the objective NA [190, 191]. In 
Fig. 28b, we built an FPM system based on a high-NA 

programmable condenser, achieving super-resolution and 
high-throughput imaging with an equivalent NA of 1.6 under 
the large field of view of a 10 × objective using oil-immersed 
condenser illumination. Additionally, our research has 
revealed that FPM is constrained by matched illumination 
condition and proposed a high-speed FPM approach based 
on annular illumination, enabling high-speed, long-time, and 
adaptive-aberration-correction high-throughput phase imag-
ing [192, 193], as illustrated in Fig. 28c.

15.2.4 � From 2D phase imaging to 3D tomographic imaging

Although the approaches of TIE and FPM effectively elimi-
nate the defect of QPI based on interference, the persistence 
of the divide-and-conquer thought of “phase recovery fol-
lowed by diffraction tomography” still constrains the realiza-
tion of 3D tomography. In the past five years, our research 
focus has gradually shifted from phase imaging to diffraction 
tomography, venturing into a new class of non-interferomet-
ric label-free 3D microscopic imaging techniques—intensity 

Fig. 29   Label-free 3D microscopy based on IDT. a Schematic of TIDT and FPDT. b Dynamic 3D RI imaging of HeLa live cells using TIDT. c 
High-resolution, large field of view 3D RI imaging of HeLa cells using FPDT
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diffraction tomography (IDT). IDT incorporates the prin-
ciples of “phase retrieval from intensity” and “RI recon-
struction from phase”, bypassing the intermediate step of 
“phase measurement”. It allows for the direct reconstruction 
of 3D RI distribution exclusively using the intensity infor-
mation generated by illumination angle scanning or axial 
scanning of the sample. As depicted in Fig. 29a, IDT can 
be categorized into two main implementations: transport 
of intensity diffraction tomography (TIDT) based on axial 
scanning [186, 194]  and Fourier ptychographic diffraction 
tomography (FPDT) based on illumination angle scan-
ning [195, 196,]. Specifically, TIDT expands the 2D plane 
intensity transmission of TIE to 3D volume transmission, 
achieving parallelized coverage of the object's 3D scatter-
ing potential spectrum through the use of partially coherent 
illumination. TIDT first records the intensity image stack 
of the sample’s scattered field at different axial positions 
under partially coherent illumination, and then performs 
3D deconvolution based on the 3D phase optical transfer 
function corresponding to the imaging system to obtain the 
3D RI distribution information of the sample. This method 
enables label-free 3D imaging with a lateral resolution of 
206 nm and an axial resolution of 520 nm under a high NA 
oil immersion objective, and the dynamic 3D RI imaging 
results of HeLa live cells are shown in Fig. 29b. On the 
other hand, FPDT expands the 2D plane aperture ptych-
ography of FPM to 3D volume ptychography and estab-
lishes the intensity forward model under both bright- and 
dark-field illumination based on the first-order Born and 
Rytov approximation, respectively. A 3D spectrum updat-
ing model is further built based on the quantitative relation-
ship between the scattering potential of the sample and the 
recorded intensity. FPDT uses a low-NA objective to acquire 
a sequence of intensity images corresponding to different 
illumination angles scanned sequentially with a program-
mable light-emitting-diode array. Then, this method gradu-
ally combines these intensity images into a 3D spectrum of 
the object using a ptychographic reconstruction algorithm. 
After the convergence of the algorithm, an inverse Fourier 
transform is performed to obtain the sample’s 3D RI dis-
tribution. By employing high-NA dark-field illumination, 
FPDT achieves high-throughput label-free 3D diffraction 
tomography with a lateral resolution of 390 nm and an axial 
resolution of 899 nm across a 10 × FOV of 1.77 mm2 and 
a depth of focus of ~ 20 μm. The high-resolution and large 
FOV 3D RI imaging results of HeLa cells are shown in 
Fig. 29c, which contains nearly 4000 Hela cells. 

15.3 � Conclusion and future perspectives

The emergence of computational optical quantitative phase 
imaging and intensity diffraction tomography means rigor-
ous coherence and interferometry are no longer prerequisites 

for QPI and ODT, which marks the great progress of label-
free microscopic imaging techniques based on phase detec-
tion into a novel stage. And these advancements will open 
up new possibilities for label-free 3D microscopy and are 
expected to be widely applied in various biomedicine and 
life sciences. Nonetheless, these techniques still face a series 
of ongoing challenges and problems permitting further 
exploration in the future, including the combination of TIDT 
and FPDT to break through the limit of matched illumina-
tion condition [197], the optimization of the forward model 
for samples with multiple scattering to go beyond the Born 
and Rytov approximations [198], and the suppression of the 
missing-cone problem in Ewald sphere spectrum to expand 
the axial support region [199]. Furthermore, the potential 
combination of IDT and 3D super-resolution fluorescence 
microscopy imaging technique holds promise for opening 
a new window to observe nanoscale details inside living 
cells at the single-cell and subcellular levels. The break-
through brought by computational optical phase imaging 
might provide more valuable insights into applications such 
as single-cell morphology and dynamics analyses, cellular 
interactions, cellular responses, and label-free pathology 
diagnosis. Detailed insights into computational optical quan-
titative phase imaging and intensity diffraction tomography, 
including specific theories and methods, are consolidated in 
[186]. For a deeper comprehension of the MATLAB source 
codes, readers are encouraged to refer to the details provided 
in [186] and visit https://​scila​borat​ory.​com/​code.​html.

16 � Computational hyperspectral 
quantitative phase imaging 
from spectrally multiplexed 
observations (Igor Shevkunov, Vladimir 
Katkovnik, and Karen Egiazarian)

16.1 � Background

We consider a novel setup and a novel computational algo-
rithm for hyperspectral (HS) QPI from total intensity obser-
vations, which are the sums of spectral intensities over a 
wide spectral range. This setup is explicitly based on com-
putational analysis of the observations and does not require 
any spectral devices, which makes HS imaging simple. This 
imaging can be applied to non-invasive and label-free sam-
ple observations, which is especially valuable for biological 
and medical laboratories where dying and labeling might 
harm a specimen [182]. Our HSQPI is an extension of the 
basic ideas of the phase retrieval techniques [200]. Over-
all, the phase retrieval problems are ill-posed and require 
multiple diverse observations for high-quality imaging. This 
kind of diversity can be achieved in different ways: through 
varying registration distances [201], multiple phase encoded 

https://scilaboratory.com/code.html
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apertures [202], or sets of wavelengths [203]. The latter case 
provides hyperspectral modality which in turn provides a 
broadening of the technique with the imaging in a wide spec-
tral range. Typically, spectral observations for phase retrieval 
are registered for each spectral channel separately, channel-
by-channel, which is realized either by sets of narrow-band 
filters [203] or by a tunable light source [204]. Contrary to it, 
we use our recently developed algorithm, named HS Phase 
Retrival (HSPhR) algorithm [205], which provides hyper-
spectral phase retrieval in parallel for all spectral channels 
from the spectrally multiplexed observations. The separation 
of spectral channels is achieved due to modulation encoding 
phase-masks and the developed HSPhR, including the origi-
nal spectral proximity operators and complex-domain alter-
nating direction algorithm of multipliers (ADMM) [206].

In the considered setup of the HS phase retrieval (see 
Fig. 30a), we utilize random phase masks Mt,k ∈ ℂ

N which, 
along with propagation operator At,k , encode the spectral 
property of the object Uo,k ∈ ℂ

N into the total spectral inten-

sity observations Yt =
∑

k∈K

���At,k

�
Mt,k◦Uo,k

����
2

, t = 1,… , T , 

where Yt ∈ ℝ
M , and At,k ∈ ℂ

M×N is an image formation 
operator modeling propagation of 2D object images from the 

object plane to the sensor, ‘ ◦ ’ stands for the element-by-
element (Hadamard) product of two vectors. Uo,k ∈ ℂ

N is the 
object of interest, where N = nm , and n and m are the width 
and height of 2D image; k stays for the spectral variable, t is 
a number of the experiment with the total number of experi-
ments T  . HS phase retrieval is a reconstruction of the com-
plex-valued object Uo,k , k∈ K, from intensity measurements 
Yt . The total intensity Yt is calculated over the spectrum 
range as the sum of the channel spectral intensities. For the 
noisy case, Yt is replaced by Zt = Yt + εt , where εt is the addi-
tive noise.

16.2 � Methodology

The computational solution is acquired in an iterative 
approach, where ADMM Lagrange multipliers, Λk,t , improve 
its convergence and spectral proximity operators, SPOs, pro-
vide noise suppression at the sensor plane, see the algorithm 
structure in Fig. 30b. As in all phase retrieval iterative loops, 
the first guess initialization (Step 1) is required, which we 
assume as 2D random white-noise Gaussian distribution for 
objects’ phase and a random uniform 2D positive distribu-
tion on (0, 1] for amplitude independent for each k. Initial 

Fig. 30   a Schematic optical setup corresponding to our tests and 
data formation model; b HSPhR algorithm. c Reflective SLM-based 
experimental setup. The laser is a supercontinuum light source; L1,L2 
are beam-expanding lenses; BS is a beasplitter; ‘SLM’ is a Spatial 

Light Modulator; L3,L4 are lenses of a 4f-telescopic system, project-
ing the wavefront from SLM to the object plane shown as ‘Object’, 
and CMOS is the registration camera. d Amplitude and phase of the 
object on SLM for 744 nm
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Lagrange multipliers Λk,0 = 0 . The forward propagation is 
produced for all k ∈ K and t  (Step 2). The update of the 
wavefront at the sensor plane (Step 3) is produced by the 
proximal operators. In Step 4, the Lagrange variables are 
updated. The backward propagation of the wavefront from 
the sensor plane to the object plane is combined with an 
update of the spectral object estimate in Step 5. The sparsity-
based regularization by Complex Cube Filter (CCF) [207] is 
relaxed by the weight-parameter 0 < βs < 1, at Step 6. After 
fixed number of iterations the outcome is the HS object esti-
mation, Uo,k.

16.3 � Results

The optical setup implemented in our physical experiments 
is shown in Fig. 30c. This phase object and the modulation 
phase masks Mt,k are realized on a spatial light modulator 
(SLM). The SLM is a GAEA-2 Holoeye, 4160 × 2464 pixels 
with a pixel size of 3.74 μm. The super-continuum laser 
source is limited to a range of 550–1000 nm (YSL photonics 
CS-5). The camera is monochrome Blackfly S, model BFS-
U3-200S6M, FLIR, with a pixel size of 2.4 μm. In Fig. 30c, 
the illumination wavefront expanded by lenses L1 andL2 
propagates to SLM through the beamsplitter (BS), where 
SLM changes the wavefront phase distribution according 
to the object and modulation mask phases. This modulated 
wavefront is projected to the ‘Object’ plane by the 4f tel-
escopic system, composed from achromatic doublet lenses 
L3 and L4 (with a diameter of 12.7 mm and a focal length of 
50 mm). Further, the light beam propagates freely 2 mm to 
the registration camera ‘CMOS.’

The SLM parameters were chosen to limit phase range 
of the object (cameraman image, 64 × 64 pixels) to [0: π] 
rad in the whole spectral range, this phase distribution for 
wavelength of 744 nm is shown in Fig. 30d. Reconstruc-
tion results are demonstrated in Fig. 31, which are done 
for T = 300 observations and K = 100 wavelengths, SNR of 
observations was 34 dB. The reconstructed spectral ampli-
tude intensities correspond quite accurately to the spectral 
distribution of the used laser with the intensity maximum at 
λ = 750 nm. The spectral phase image quality varies from 
low to high accordingly to variations of the spectral laser 
intensity with the best results for the high intensity values.

16.4 � Conclusion and future perspectives

The novel computational algorithm for HSPhR from multi-
plexed total intensity observations has been developed. The 
multiple random phase masks are used for phase encoding 
in the object plane. The algorithm is based on a complex 
domain version of ADMM [206] and the original spectral 
proximity operators derived for noisy intensity observa-
tions. The physical experiments confirm that the algorithm 
is able to retrieve complex-domain spectral components of 
the object from the noisy spectrally multiplexed intensity 
observations. The algorithm does not require constraints 
conventional for the phase retrieval problem, e.g., such as 
aperture or/and phase bindings through thickness and refrac-
tive index. The proposed approach could be useful in vari-
ous applications in biomedical imaging, remote sensing, and 
materials science. The commented MATLAB code is pro-
vided in the supplementary materials S10.

Fig. 31   The reconstructed HS amplitudes (a) and phases (b) of the object. The wavelength number shown in the amplitude images are valid to 
phase images of the same location
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17 � Quantitative phase imaging 
through spatial convolutions (Jeonghun 
Oh and YongKeun Park)

17.1 � Background

QPI is a label-free imaging technique increasingly employed 
in biological research [208–210] and preclinical studies 
[181, 211–213]. It distinguishes itself by leveraging the 
contrast derived from variations in the refractive index (RI) 
and thickness of a specimen [214]. Nevertheless, challenges 
persist in optimizing throughput and enhancing productivity 
within QPI systems. One such challenge involves the trade-
off between spatial resolution and field of view (FOV), dic-
tated by the limited pixel count of detectors. Another issue 
is that the experimental realization of interferometry results 
in bulky, complicated, and unstable systems, which are often 
incompatible with conventional microscopes. Moreover, 
several areas for improvement in QPI have been identified. 
These include mitigating the effects of multiple scattering in 
thick samples [198, 213, 215], minimizing the dependency 
on light source coherence [27, 216–218], and addressing the 
lack of molecular specificity [219–222].

Recently, spatial transform techniques have emerged 
as promising solutions within the QPI domain [223–226]. 
These methods are intricately connected to the cepstrum 
concept in Fourier analysis [227, 228] and have their roots in 
analytical optical research conducted during the 1970s and 
1980s [229–232]. Specifically, non-interferometric QPI is 
gaining attention because it allows the light emanating from 
the sample field to meet the criteria for Hilbert transform-
based techniques by manipulating the Fourier spectrum. In 
this manuscript, we will explore instances where the spatial 
convolutions with emphasis on the Hilbert transform have 
been effectively employed in QPI.

17.2 � Applications of Hilbert transform to QPI

An optical field is described by a complex function f(x) in 
one dimension, which means the function f(z) whose domain 
is restricted to the real axis. From the property of complex 
logarithmic functions, the principal logarithm of f(z) is rep-
resented in the real axis as follows:

where Arg denotes the principal argument. The real and 
imaginary parts are related only to the intensity and phase of 
f(x), respectively. If f(z) has zeros in at most one half-plane, 
the imaginary part of Log[f(x)] can be obtained by the Hil-
bert transform of its real part. One can measure the real part 

(14)Log
[
f (x)

]
= ln |f (x)| + iArg

[
f (x)

]
,

of Log[f(x)] directly, so the Hilbert transform provides the 
quantitative phase information of the complex optical field.

The application of the Hilbert transform in off-axis 
holography seeks to enhance the space-bandwidth product 
(SBP)—a metric defined by the system's spatial resolution 
and imaging FOV [223, 224]. Figure 32a illustrates the 
optical setup of conventional off-axis holography, where a 
slightly tilted reference field interferes with the sample field 
on the detector plane. While maintaining the same arrange-
ment of optical components, the magnification and numeri-
cal aperture (NA) of an objective lens are adjusted to meet 
the conditions necessary for implementing the Hilbert trans-
form. Specifically, the Fourier transform of the reference 
field must reside at the boundary of the Fourier spectrum. 
Additionally, the amplitude of the reference beam should 
exceed that of the sample beam.

Figure 32b illustrates multiple Fourier spectra associated 
with these methods. In traditional off-axis holography, it is 
essential that the cross-correlation term does not overlap 
with the auto-correlation term in the Fourier plane. How-
ever, when employing the Hilbert transform, such overlap 
is not only permissible but also advantageous for enhanc-
ing the SBP (Fig. 32c). To further amplify the SBP, the 
authors introduce cylindrical lenses, which expand the 
Fourier spectrum unidirectionally. In [233], a different tac-
tic is employed to extend the FOV. Here, the sample beam 
is split and directed onto the detector plane from different 
angles, in conjunction with the use of the Hilbert transform 
(Fig. 32d). This method is commonly used in off-axis holog-
raphy [234, 235]. Notably, the achievable SBP remains con-
sistent between the configurations described in [225, 233], 
affording the optical system the flexibility to adopt either 
approach.

Hilbert-transform-based QPI offers considerable advan-
tages, particularly for non-interferometric configurations, 
thereby significantly enhancing the system's usability. In 
[194, 226, 236], the unscattered light, which corresponds to 
the DC component in Fourier space. This approach obviates 
the need for an auxiliary reference arm, thereby expanding 
the possibilities for field retrieval based purely on intensity 
distributions. A thorough mathematical framework to under-
pin this methodology is expounded upon in [237], drawing 
upon complex analysis. The system complies with holomor-
phic properties by appropriately constraining the NA. To 
preclude the formation of complex zeros in the upper half-
plane, meticulous control over both the position and ampli-
tude of the unscattered light is exercised. The fundamental 
principle underlying this approach is depicted in Fig. 32e, 
where a delta function is shown to act as the Fourier trans-
form of the reference field.

In [226], the spatial frequency of the unscattered light 
is manipulated by projecting obliquely oriented, spa-
tially coherent light that matches the system's NA. This 
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Fig. 32   Various approaches in QPI exploiting spatial convolutions. a 
Optical configuration of conventional off-axis holography [224]. L# 
lens; Obj# objective lens; PBS polarizing beam splitter; CCD charge-
coupled device. b Fourier transforms of interferogram under various 
configurations. SBP space-bandwidth product; M magnification. The 
gray and green circles indicate the auto- and cross-correlation terms, 
respectively. c Demonstration of off-axis holography using the Hil-
bert transform. The USAF resolution target and polystyrene bead are 
displayed, showcasing their amplitude and phase images, respectively. 

d Extension of the FOV through spatial multiplexing [233]. CC 
cross-correlation. e Principle of non-interferometric QPI using the 
Hilbert transform [236]. The Fourier transforms of the optical field 
and its intensity are depicted. f Optical setup of non-interferometric 
QPI leveraging the Hilbert transform. This study employed a light-
emitting diode array. g Application of the Hilbert transform to three-
dimensional space for diffraction tomography [194]. Intensity stacks 
are captured for each angle of illumination
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modulation of the spatial frequency was achieved through 
the use of galvanometric mirrors in conjunction with a super-
luminescent light-emitting diode (sLED) with a bandwidth 
of 5 nm. Utilizing an sLED negates the need for stringent 
temporal coherence. Alternatively, a liquid crystal spatial 
light modulator positioned at the Fourier plane could replace 
this configuration to trim the Fourier spectrum [238]. In 
[236], the authors employ an LED array to attain a broader 
bandwidth of 20 nm while simplifying the illumination 
setup (Fig. 32f). Intriguingly, the principles of the Hilbert 
transform are versatile enough to be applied to any intensity 
profile characterized by edge-dominant Fourier spectra. In 
[194], a three-dimensional Fourier support for each angle 
of illumination is reconstructed by applying the Hilbert 
transform to a 3D stack of intensity profiles (Fig. 32g). For 
the purpose of recovering the cap delineated by the Ewald 
sphere, techniques like sample rotation and truncation of 
the half Fourier spectrum are employed to obtain the opti-
cal field corresponding to the given frequency support [225, 
239]. Note that all these methodologies are predicated on the 
one-dimensional Hilbert transform.

17.3 � Discussion and future perspectives

The utilization of spatial convolutions significantly influ-
ences the field of QPI, bringing forth distinct advantages 
such as the enhancement of the SBP in off-axis holography 
and enabling non-interferometric modalities with temporally 
low-coherent light sources. These benefits have been dem-
onstrated across various applications of QPI that employ 
the Hilbert transform. Moreover, the Hilbert transform can 
potentially advance other QPI techniques. For instance, its 
integration with iterative imaging approaches like Fourier 
ptychography can provide a robust initial guess for field 
retrieval, thereby improving the overall imaging process.

While the Hilbert transform brings noteworthy advan-
tages to QPI methodologies, it is not without limitations. 
One such constraint arises from the requirement that the 
amplitude of either the reference beam or the unscattered 
term must be strong, thereby limiting the dynamic range 
of measurements in off-axis holography. This drawback 
becomes even more pronounced in non-interferometric set-
tings, where the types of samples that can be imaged are 
restricted based on the contribution from the scattered term 
[237]. Furthermore, accurate positioning of the DC term 
at the Fourier spectrum's boundary is essential; otherwise, 
reconstruction errors may occur. These errors are notably 
challenging to rectify post-acquisition, unlike in interfero-
metric methods. The application of optical fields acquired 
under Hilbert-transform-based imaging conditions to dif-
fraction tomography can also introduce image artifacts, 
primarily due to the constraints of the Rytov approxima-
tion [226]. Additionally, the necessity for an illumination 

modulation unit along with multiple image acquisitions ren-
ders the direct application of the Hilbert transform approach 
somewhat demanding. To mitigate this, some studies have 
explored the use of multiplexing techniques to reduce acqui-
sition time, including polarization [240] and spectral multi-
plexing [241, 242].

The broader challenges associated with Hilbert transform-
based imaging lie fundamentally in the constraints imposed 
by the presence of complex zeros in the upper half-plane 
[232, 237, 243–245]. The reconstruction of analytical opti-
cal fields hinges not only on these complex zeros but also on 
the application of the Hilbert transform itself. The analytical 
properties of these complex optical fields warrant further 
exploration within the context of QPI. Viewed diachroni-
cally, the question of whether Fienup’s hybrid input–output 
algorithm can accurately reconstruct the complex field from 
acquired intensities is intricately tied to these same analyti-
cal properties [246–248]. Factors such as the shape of the 
Fourier spectrum and the image support have direct impli-
cations for the feasibility of field retrieval [249]. In future 
studies, we intend to delve deeper into the holomorphic char-
acteristics of complex optical fields.

18 � Affine transform‑based twin‑image 
suppression for in‑line lensless digital 
holographic microscopy (Marcin J. 
Marzejon, Mikołaj Rogalski, Maciej 
Trusiak)

18.1 � Background

Conventional microscopy techniques often face challenges 
when imaging transparent objects, as these objects lack suf-
ficient contrast for clear visualization. To address this limi-
tation, a group of techniques known as QPI has emerged 
[181], allowing for the capture of phase information that 
represents optical path differences within the sample. Thus, 
QPI enables high-contrast imaging of transparent samples. 
Among QPI techniques, the in-line Lensless Digital Holo-
graphic Microscopy (LDHM) stands out for its large field-
of-view, simplicity, and cost-effectiveness, as it does not rely 
on bulky and complex setups, making it a promising tool for 
transparent object high-throughput imaging.

The in-line LDHM is an imaging technique based on 
the concept of common-path holography introduced by D. 
Gabor in 1948 [250]. The simplest possible optical setup of 
the system consists of a (point) light source and a sensor, and 
the imaging object is placed somewhere between those two 
elements, as presented in Fig. 33. The illuminating wave-
front passes through the sample, and part of it is diffracted 
on the sample, with the majority of the light passing in a 
ballistic mode. The diffracted and non-diffracted wavefronts 
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interfere at the sensor plane, forming an interference pat-
tern—a Gabor hologram. The sample is numerically recon-
structed via repropagation (refocusing) from the hologram 
to the object plane, using usually the angular spectrum (AS) 
algorithm [251].

In-line LDHM eliminates the need for traditional bulky 
optical imaging systems. Advantages of this technique 
include, among others, the ability to image a large sample 
area label-free and in high resolution, simple construction, 
and generally low cost of the system [252]. Additionally, 
hardware and algorithmic modifications may allow for 
obtaining sub-pixel resolution [253]. The straightforward 
architecture and small number of elements in the system 
enable the setup to be scalable and the dimensions of the 
device to be adjusted depending on the requirements of the 
working environment. Another advantage of LDHM is the 
ability to clearly image biosamples (e.g., single living cells, 
tissue sections, thin-structured samples, diluted biological 
samples, etc.), that meet the Gabor holographic conditions, 
without the use of exogenous contrast (e.g. fluorescent stain-
ing) [252]. LDHM has found many applications—biological 
sample imaging [252, 254–262] medical diagnostics [17, 
263–265], bio-objects 4D tracking [266], metrology and 
quality control [267], among others [19, 268].

The main challenges in the in-line Gabor LDHM are 
the coherent noise (spurious interference patterns caused 
by back reflections, inhomogeneities, speckles, coher-
ent artefacts, etc.) and the twin-image problem (see the 

reconstructed hologram in Fig. 33). The above-mentioned 
factors are responsible for the introduction of phase distor-
tion that propagates during the reconstruction of the tested 
object. The twin-image problem results from the fact that 
the intensity of the optical field is recorded on the detector, 
which includes the field coming from the object (1st order) 
and its coupled field (–1st order), and an incoherent autocor-
relation term (0 order) [253], which overlap in a common-
path configuration. For biological samples, there may be a 
challenge of low photon budget imaging as the exposure of 
cells and tissues should be kept low due to phototoxicity. 
However, our group showed, that it is possible to operate 
in the low photon budget regime down to the illumination 
power of 7 μW and still get good quality images in terms of 
the contrast and the hologram phase and amplitude recon-
struction resolution [269].

So far, several solutions have been proposed to overcome 
the limitations of the in-line LDHM. The coherence noise 
may be effectively reduced, eg., by using a rotating diffuser 
[267] or a partially coherent illumination [257, 271]. The 
first method, proposed by our group, enables the reduction 
of the amplitude and phase noise for a technical test target 
imaging by 51% and 35%, respectively. The tests on bio-
logical samples revealed a reduction of the speckle noise by 
33% [270]. Twin images can be removed by hardware and 
algorithmic alterations in the optical setup. e.g., by record-
ing holograms for multiple wavelengths [252, 272–274], for 
at least two different sample-camera distances (axial shift, 

Fig. 33   Working principle of 
in-line lensless digital holo-
graphic microscopy (LDHM). 
The schematic diagram presents 
the simulated optical field at 
the object and camera planes 
for pure amplitude (upper left 
corner) and a pure phase object 
(lower right corner)
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multi-height approach) [253, 255, 275, 276], by using the 
Talbot grating illumination [277], or deep learning algo-
rithms [278]. Details of the selected strategies for the twin-
image removal will be discussed in the following parts of 
this manuscript.

We propose here an affine transform approach to align 
holograms in multi-height phase retrieval for twin-image 
suppression in LDHM.

18.2 � Twin‑image removal strategies for in‑line 
lensless digital holographic microscopy

The hologram recorded by a sensor is an intensity-only pro-
jection of the complex field containing information about 
both the amplitude and phase of the object. The phase may 
be retrieved by using the iterative GSA [200], having at 
least two input images—intensity (real) defocused projec-
tions of the complex field linked via the Fourier transform 
(in the case of in-line LDHM—two holograms). One of the 

solutions presented by Greenbaum and Ozcan is to acquire 
two holograms at two different sensor planes see (Fig. 34a) 
[253]. Then, the pair of acquired holograms may be used as 
an input for the GSA, and the full information of the object 
at both acquisition planes is retrieved. From our experience, 
5 to 25 iterations of the GSA enables one to retrieve the 
complex wavefront (amplitude and phase) with good quality. 
Then, knowing the distance between the hologram acquisi-
tion plane and the object plane, the complex hologram may 
be backpropagated into the object plane with minimized 
twin-image errors. The solution described in [253] was 
adapted later by Mico et al. [255] for in-line digital holo-
graphic microscopy with lenses.

The multi-height approach [253, 255] is a very conveni-
ent algorithm, easy to implement in the laboratory system 
using an automated translational stage. The only disadvan-
tage of this method is that for different sensor positions, 
the corresponding parts of the holograms are placed at the 
different camera pixels [defocus-like effect; denoted as Δx 

Fig. 34   Twin-image removal in the in-line lensless digital holography 
microscopy by multi-height hologram acquisition. a The idea of the 
method. Δz denotes the hologram (sensor) axial (longitudinal) plane 
shift and Δx denotes the in-plane (transversal) shift of the hologram 
features positions for the two hologram planes. b The phase image of 

the human cheek cell sample (after reconstruction). c Zoom for ROI 
1 and ROI 2 with indicated holograms from various planes, corrected 
hologram in plane 1 (AT stands from Affine Transform), and the 
reconstructed object phase. Note, that after correction, the diffraction 
patterns in holograms 1 and 2 are localized in the same XY position
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in Fig. 34a]. Therefore, when employing the AS method to 
backpropagate both holograms, the corresponding object 
details will be shifted by Δx in both reconstructions (vary-
ing with the defocus distance), making it impossible to 
straightforwardly apply the GSA. To avoid this problem, 
we propose here the hologram pre-processing method as 
follows. First, each of the holograms [Fig. 34c; Hologram 
1 and Hologram 2 plane] is backpropagated to the object 
plane using the AS algorithm. Next, the features of the 
reconstructions are detected using the Speeded-Up Robust 
Features (SURF) algorithm [279] (MATLAB implementa-
tion – detectSURFFeatures). In the following steps, those 
features are extracted (extractFeatures), and the corre-
sponding features in both reconstructions are matched 
(matchFeatures). Based on the shift between the feature 
pairs, the affine transformation of one of the holograms is 
retrieved (estgeotform2d). The hologram pre-processing 
part is finished by applying the retrieved affine transform 
to the second hologram and correcting its translation 
and magnification [see Fig. 34c; Hologram 1 plane after 
AT]. The resulted holograms are the input data for the 
GSA. After the phase retrieval, the image of the object is 
obtained by the backpropagation of complex hologram to 
the object plane [AS algorithm; Fig. 34b and c].

Another twin-image removal strategy was presented 
by Mico et al. [255]. In this paper, the authors used a 
simultaneous multi-wavelength illumination (450  nm, 
532 nm, and 635 nm) and RGB camera sensor. The data 
from a single shot were spectrally resolved using the blue, 
green, and red channels of the acquired image, resulting 
in three holograms (B: 450 nm, G: 532 nm, R: 635 nm) 
from a single frame. Due to the different wavelengths, the 
phase shift between holograms in the B, G and R chan-
nels appears to enable iterative phase retrieval. It is worth 
noting that the multi-wavelength illumination approach 
is somewhat analogous to the multi-height approach in 
terms of data multiplexing (redundancy). In both strat-
egies, one records multiple (at least two) phase-shifted 
holograms—either by the geometrical path difference Δz 
(multi-height approach) or by the change in the illumina-
tion wavelength. The authors of [4] proposed a modified 
version of the GSA that enables phase retrieval from three 
recorded holograms, linked to the multi-height algorithm 
presented in this paper via additional complex field filter-
ing employed before each propagation. Complex field fil-
tering helps to decrease the noise level and avoid numeri-
cal reconstruction errors of the sample’s RI by assuming 
the minimum (maximum) RI value in the sample. The pro-
posed strategy can be modified in terms of the number of 
illumination wavelengths—the required minimum is two. 
The multi-wavelength approach can also be implemented 
with a monochrome sensor or for wavelengths that are not 

spectrally separable with an RGB camera by consecutive 
acquisition of holograms for each wavelength separately.

18.3 � Summary and future perspectives

Recent achievements in the in-line LDHM have marked 
significant progress in the resolution and sensitivity of the 
technique, enabling the visualization of finer cellular and 
subcellular structures with remarkable clarity. Innovations 
in computational algorithms and hardware have also accel-
erated image reconstruction and processing, making the 
technology more efficient. Looking ahead, the prospects for 
in-line LDHM are promising. The technology is poised to 
further revolutionize biomedicine by facilitating the rapid 
diagnosis of diseases, monitoring cellular responses to 
therapies, and contributing to the development of personal-
ized medicine. Its application in point-of-care devices could 
enable cost-effective and portable diagnostic tools, particu-
larly in resource-limited settings. Low photon budget imag-
ing capabilities give hope to shift toward exotic radiation 
regimes. As the field continues to evolve, the integration of 
artificial intelligence and machine learning algorithms could 
enhance the automation of data analysis and interpretation, 
making this microscopy technique an invaluable asset for 
both research and healthcare applications. The MATLAB 
codes for Affine transform-based twin-image suppression for 
in-line Lensless Digital Holographic Microscopy are given 
in supplementary materials S11.

19 � High throughput low coherence 
quantitative phase microscopy (Paweł 
Gocłowski, Azeem Ahmad, Vishesh 
Dubey, Maciej Trusiak, Balpreet S. 
Ahluwalia)

19.1 � Background

Quantitative phase imaging (QPI) is a label-free and non-
invasive method that utilizes the intrinsic spatial refractive 
index variation of the specimen to generate high-contrast 
and quantitative image. Quantitative phase microscopy 
(QPM) has found various applications in bio-medical 
research [280]. Contrary to fluorescence microscopy, QPM 
brings strong benefits, whereas fluorescence labelling is not 
allowed because it alters the natural states of the delicate 
biological specimens such as sperm cells. In addition, fluo-
rescence microscopy suffers from photo-bleaching and intro-
duce photo-toxicity to the specimens due to the use of high 
laser powers. QPM allows to extract quantitative parameters 
of the specimens such as refractive index, cell dry mass, 
surface area, volume and others [281, 282].
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Traditionally, highly coherent light sources such as lasers 
are used in QPM systems to easily obtain the interference 
fringes. Unfortunately, the high coherence of the light source 
leads to the generation of speckle noise and coherent noise 
severely reducing the spatial phase sensitivity of the QPM 
system. These problems led to the growing popularity of low 
coherence QPM (LC-QPM), where incoherent light sources 
like light emitting diodes (LEDs) or halogen lamps are uti-
lized [283–285]. Low coherence, however, brings strict 
optical path difference (OPD) requirements to the optical 
system. The concept figure is shown in Fig. 35. The OPD 
between the object and the reference arms of the interfer-
ometer must be smaller than the temporal coherence of the 

light source (which is only ~ 10 μm for LEDs and ~ 2 μm for 
halogen lamp) to form high contrast fringes. LC-QPM does 
not generate high density fringes over the large field of view 
(FoV) corresponding to large OPD (red line in Fig. 35) due 
to the short temporal coherence length. Therefore, a trade-
off must be made regarding the phase reconstruction when 
using LC-QPM. Temporal Phase Shifting (TPS) [286] can 
recover the accurate phase map of the sample from any type 
of interferogram, but temporal resolution is partially sacri-
ficed because of the multi-frame requirement. Single-shot 
methods such as Fourier Transform (FT) [287] can perform 
phase reconstruction using only single interferogram, but 
it works properly only for high-density fringes for lossless 

30

20

10

Fig. 35   Conceptual diagram comparing low and high coherence 
of the light source. Basic interference is shown between two plane 
waves with an angle between them for a laser, WL—white light and 
FWL—filtered white light (b). Laser illumination allows to generate 

high density interference fringes over entire FoV (a). (c-h) Variation 
of fringe width with angles. With incoherent illumination it is only 
possible to generate sparse fringes over large FoV (e, h) or dense 
fringes over small FoV (c, f)
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phase reconstruction. The use of FT method in LC-QPM 
albeit gives high temporal resolution, it comes with a com-
promised FoV and reduced spatial resolution. In this work, 
we demonstrate that the use of Hilbert Spiral Transform 
(HST) [288] based phase recovery algorithm is an attractive 
route for LC-QPM which works with low-density, curved 
and circular interference fringes, supporting large and scal-
able FoV, enhanced spatial phase sensitivity and temporal 
resolution limited by the camera speed owing to its single-
shot approach.

19.2 � Methodology

The schematic of our hybrid experimental–numerical 
approach is presented in Fig. 36. The optical setup is based 
on Linnik interferometer configuration with objective lenses 
in both the object and the reference arms. Halogen lamp 
is utilized as the light source. White light is subsequently 
filtered with bandpass filter (632 nm peak wavelength and 
10 nm spectral bandwidth), collimated with lens L1, split 
into 2 by a beam splitter BS and focused with lens L2 at the 
back focal planes of the objective lenses. The object and the 
reference beams are reflected at the sample and the reference 
mirror respectively, get recombined at BS2 and finally form 
the interferogram at the camera. 

The bottom part of the Fig. 36 shows our post-processing 
path to fully reconstruct phase map of the sample from the 
raw interferograms. Pre-processing of the fringe pattern is 
necessary to properly perform HST. Firstly, noise is removed 
by Block Matching 3D algorithm (BM3D) [289]. Image is 
subsequently filtered by an improved Period-Guided Bidi-
mensional Empirical Mode Decomposition (iPGBEMD) 
algorithm [290], which detaches the fringe component 
(oscillating around 0 mean value) from the image back-
ground. The wrapped phase is then retrieved from pre-pro-
cessed interferogram by HST and unwrapped with Miguel 
2D algorithm [291]. Total computation time of the whole 
phase reconstruction process is around 5 min for medium-
advanced personal computer.

19.3 � Results

To prove utility of this approach, we have acquired experi-
mental interferograms of Mouse Embryonic Fibroblasts 
(MEFs) and reconstructed the phase maps with three algo-
rithms: HST, FT, and TPS (as the ground truth). The results 
are presented in Fig. 37.

Three objective lenses are used in the object arm 
(10 × /0.25, 20 × /0.45 and 60 × /1.2, i.e., MO2 in Fig. 35) 
while 10 × /0.25 was kept in the reference arm. For 20 × and 

Fig. 36   Top—schematic draw-
ing of the experimental setup. 
MO1–2 microscope objec-
tives; BS2 beam splitter; L1–2 
achromatic doublet lenses; CL1 
coupling lens; BPF bandpass 
filter; M mirror. Bottom—phase 
reconstruction procedure: noise 
filtration by BM3D, background 
removal by iPGBEMD, phase 
retrieval by HST and phase 
unwrapping by Miguel 2D 
algorithm
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60 × , fringes are no longer straight and become either curved 
or circular, because OPD adjustment required to observe 
interference in low coherent light generates wavefront cur-
vature mismatch between the object and the reference arms.

The results demonstrate that HST is a versatile tool capa-
ble of phase reconstruction for wide range of fringe cur-
vatures and densities. Both FT and HST are a single-shot 
method enabling high-temporal resolution, but FT is limited 
to dense and linear interference fringes that are difficult to 
generate in the LC-QPM configuration especially for non-
identical objective lenses in the object and reference arm. 
For linear and curved fringes (Fig. 37d, i), FT reconstructed 
phase maps have poor spatial resolution because of the small 
separation between Fourier peaks in the frequency domain. 
For closed fringes, FT reconstruction generates significant 
reconstruction artefacts (Fig. 37n). Contrary, HST recon-
struction (Fig. 37e, j, o) is more robust towards curved and 
circular fringes and provides high temporal resolution (lim-
ited only by camera speed) than TPS at the cost of slightly 
worse spatial resolution.

19.4 � Conclusions and future perspectives

The combination of LC-QPM system with single-frame 
HST phase reconstruction allows to increase the through-
put of the measurement by achieving very high temporal 
resolution limited only by acquisition speed of the camera 
without sacrificing spatial resolution. Additionally, HST is 
more robust towards various shapes of fringe patterns, i.e., 
curved and circular, that open possibilities of working with 
unbalanced interferometry set-up and thus supporting scal-
able FoV. This approach can benefit bio-imaging of highly 

dynamic specimens where both high-spatial sensitivity and 
high imaging speed are necessary.

20 � Pixel super‑resolution phase retrieval 
for high‑resolution lensless holographic 
microscopy (Yunhui Gao and Liangcai 
Cao)

20.1 � Background

The principle of lens optics lies at the foundation of many 
of today’s imaging technologies. Recently, however, lens-
less imaging has emerged as an alternative yet competitive 
imaging modality at the microscopic scale [16]. Contrary 
to the conventional point-to-point imaging framework, in 
lensless microscopy, a diffraction pattern is directly recorded 
on an image sensor, as shown in Fig. 38a. By leveraging 
advancements in computational imaging theories and image 
processing algorithms, lensless microscopy provides poten-
tial solutions to address the intrinsic limitations associated 
with traditional lens-based imaging methodologies. First, 
a large field-of-view comparable to the sensor area and a 
diffraction-limited spatial resolution can be achieved simul-
taneously, bypassing the limited space-bandwidth product 
of lens optics. Second, based on a coherent imaging model, 
lensless imaging enables holographic reconstruction, i.e., 
retrieving both the absorption and the phase information of 
the sample. Additionally, compared to lens-based benchtop 
devices, lensless microscopy facilitates a highly compact, 
light-weight and cost-effective setup, thereby enabling 
low-cost and portable operations in resource-limited areas. 
Lensless imaging has been successfully demonstrated in 

Fig. 37   Experimental results 
of MEF cells for 10 × /0.25, 
20 × /0.45 and 60 × /1.2 objec-
tive lenses: raw interferograms 
(a, f, k), FT spectra (b, g, l), 
phase reconstructed with TPS 
(c, h, m), phase reconstructed 
with FT (d, i, n) and phase 
reconstructed with HST (e, j, 
o). The imaging objective lens 
MO2 as shown in Fig. 35 is 
changed while MO1 was kept 
constant 10 × /0.25 N.A

10
×

20
×

60
×
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high-throughput pathology [292], cytometry [293], surface 
metrology [294], and polarimetry [295].

Despite their distinct advantages, lensless micros-
copy introduces new technical challenges that need to be 
addressed. Due to the sensor’s intensity-only response and 
large pixel size, phase and subpixel information cannot 
be directly resolved from raw measurements. To achieve 
high-resolution holographic imaging, computational imag-
ing approaches have been incorporated into the context of 
lensless microscopy, which are referred to as pixel super-
resolution phase retrieval techniques. In this chapter, we 
present a brief overview of the pixel super-resolution phase 
retrieval techniques for high-resolution lensless holographic 
microscopy.

20.2 � Methodology

From the perspective of computational imaging, pixel super-
resolution phase retrieval involves two key steps: the physi-
cal encoding of a high-resolution holographic image into 
low-resolution intensity-only measurements, and the numer-
ical decoding of information from the raw data.

The encoding step entails the design of optical systems 
and sampling schemes that can translate the sample’s 
complex field and subpixel information into measurable 
intensity images. It has been found that any complex sam-
pling operator, including the free-space propagation of 
light, can potentially serve as an information encoding 

candidate [296, 297]. Given the ill-posed nature of the 
image reconstruction problem, measurements are typically 
performed by recording multiple diffraction patterns with 
varying physical parameters, a process known as the diver-
sity measurement scheme. Such diversity can be achieved 
by varying parameters such as the sample-to-sensor dis-
tances [253, 298], wavefront modulation patterns [202, 
299], lateral translation positions [300], and illumination 
wavelengths [204, 301, 302], as schematically depicted in 
Fig. 38b. The general forward model can be expressed as

where xϵℂn denotes the high-resolution holographic image 
of the sample, Ak ∈ ℂ

m×n denotes the sampling operator 
with respect to the kth out of K diversity measurements, 
S ∈ ℝ

d×m (with m = �d and � being a positive integer) 
denotes the pixel binning operator of the sensor pixels, and 
y2
k
∈ ℝ

d denotes the recorded intensity image correspond-
ing to the kth measurement. The physical and mathematical 
models of lensless microscopy are shown in Figs. 38c and 
39, respectively. As the number of measurements, increases 
the problem becomes well-posed, indicating that the recov-
ery of the high-resolution holographic image is indeed 
physically feasible.

Given a dataset of low-resolution intensity images, the 
second step involves numerically decoding the high-reso-
lution holographic image through computation. Although 
the reconstruction algorithms can vary based on the 

(15)y2
k
= S||Akx

||2, k = 1,2,… ,K,

Fig. 38   Schematic illustration of lensless holographic microscopy. 
a General experimental setup. b Typical diversity measurement 
schemes, where multiple intensity images are recorded with varying 
imaging distances, modulation patterns, translation positions, and 

illumination wavelengths, etc. c The forward model of the imaging 
process. d The captured low-resolution intensity images are numeri-
cally post-processed to retrieve the high-resolution holographic image
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specific experimental settings and applications, a general 
approach is based on the following inverse problem:

where the high-resolution holographic image is obtained 
by minimizing an objective function. The first term in the 
objective function ensures that the estimated solution is con-
sistent with the forward model of Eq. (15). Considering the 
ill-posedness of the problem, especially under conditions 
of limited measurements, the introduction of an additional 
regularization function R(x) becomes necessary. The regu-
larization function can incorporate prior knowledge such as 
sparsity [303] or implicit features [304, 305]. Formulating 
pixel super-resolution phase retrieval as a standard optimiza-
tion problem of Eq. (16) enables the use of standard numeri-
cal optimization tools such as gradient descent or proximal 
gradient algorithms. To support further application, a MAT-
LAB implementation of the pixel super-resolution phase 
retrieval algorithm is available at Ref. [306].

20.3 � Results

As a proof of concept, high-resolution lensless holographic 
microscopy was experimentally validated in Ref. [299] uti-
lizing phase modulation diversity with a spatial light mod-
ulator (SLM). A collimated and polarized coherent beam 
from a 532 nm laser is modulated by a reflective phase-
only SLM (GAEA-2, HOLOEYE), and illuminates the 
sample at the conjugate plane of a 4f system (focal lengths 
f1 = f2 = 100 mm ). A CMOS image sensor (QHY163M, 
pixel pitch 3.8 µm) is positioned approximately 5.4 mm away 
from the sample, forming a lensless setup. The experimen-
tal setup is schematically shown in Fig. 40a. During data 
acquisition, a total of K = 64 of pre-designed modulation 
patterns are sequentially uploaded to the SLM, and the cor-
responding holograms are synchronously recorded by the 
image sensor. The SLM has been calibrated in advance using 

(16)x̂ = argmin
x

1

2K

K�
k=1

‖
�

S��Akx
��2 − yk‖

2

2
+ R(x)

a self-referenced method, and the modulation patterns are 
designed with smooth random profiles so as to offer modu-
lation diversity while minimizing the crosstalk effect [307, 
308]. The captured raw holograms are subsequently used 
for numerical reconstruction of the pixel super-resolved 
complex sample field according to Eq. (16). Figure 40b dis-
plays the experimentally reconstructed phase profile of a 
quantitative phase target (QPT, Benchmark Technologies), 
with phase values consistent with the ground truth data. Fig-
ure 40c1 and d1 present the enlarged phase images without 
using pixel super-resolution (σ = 1), where the spatial resolu-
tion is limited by the sensor pixel size. In contrast, with the 
help of pixel super-resolution technique, one can overcome 
the sampling limit imposed by the sensor pixels, achiev-
ing a diffraction-limited spatial resolution, as illustrated in 
Fig. 40c2 and d2.

20.4 � Conclusion and future perspectives

Pixel super-resolution phase retrieval is a computational 
imaging technique that combines encoding optics and 
decoding algorithms to realize high-resolution holographic 
microscopy. At current stage, one primary technical limi-
tation is the considerable time consumption during both 
measurement and reconstruction due to the large data vol-
ume. Opportunities for optimization in terms of both opti-
cal designs and numerical algorithms are yet to be fully 
explored, offering potential avenues for enhancing the per-
formance of lensless microscopy [309–311]. Furthermore, 
the interpretation of high-resolution holographic images for 
practical clinical and biomedical applications continues to 
present challenges, which could be potentially addressed 
with the advancements in artificial intelligence [312].

21 � A Regularized auto‑encoder 
for the reconstruction of phase 
and amplitude in digital in‑line 
holography (R.V. Vinu, G. Gopakumar, 
Ziyang Chen, and Jixiong Pu)

21.1 � Background

Holography has been a substantial optical imaging modality 
for several decades with the exciting three-dimensional com-
plex-valued image reconstruction potential from recorded 
two-dimensional intensity distribution of the diffracted 
wavefront [313]. The advancements in modern high-reso-
lution sensors and sophisticated computational techniques 
made the transition of conventional analog holography to the 
digital holography (DH) with productive range of applica-
tions in various optical imaging scenarios such as label-free 
biological imaging, life sciences, biomedicine, etc. [258, 

Fig. 39   Conceptual illustration of the forward model defined by 
Eq. (15)
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314–316]. The DH systems utilize the off-axis or in-line 
schemes for the generation of holograms and utilize com-
putational techniques for the faithful reconstruction of the 
amplitude and phase information of the object. Accurate 
phase recovery is pivotal in the holographic imaging frame-
work, but it remains a challenge in most of the advanced 
imaging applications. All these years witnessed the intro-
duction and effective implementation of several techniques 

based on Fresnel-Kirchoff integral, non-paraxial transfer 
function, compressive sensing, etc. for the reconstruction 
of phase information of the object [317–320]. Many of these 
methods are computationally complex and time consuming 
or require additional frequency domain filtering or phase-
shifting mechanisms. On the other hand, there is a recent 
emergence of machine learning approaches in various phase 
recovery scenarios and the introduction of deep learning 

Fig. 40   Experimental realization of high-resolution lensless holo-
graphic microscopy. a Experimental setup based on modulation 
diversity. b Retrieved phase profile of a quantitative phase target. 

The scale bar is 200 μm. (c1)/(c2) and (d1)/(d2) show the enlarged 
areas of b without/with pixel super-resolution, respectively. Figure a 
is adapted from [303]
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approaches in holography such as phase recovery in holog-
raphy using deep learning in neural networks [321], deep 
learning in coherent imaging systems [322], end-to-end deep 
learning for DH [323], deep digital in-line holography [324], 
deep learning-based polarization holographic microscope 
[325], etc. In this chapter, we present a machine learning 
assisted holographic image reconstruction technique with a 
regularized auto-encoder for the phase and amplitude recon-
struction in a digital in-line holography (DIH) scheme.

21.2 � Methodology

The deep learning architecture implemented for the single-
shot digital in-line holographic reconstruction of the phase 
and amplitude information of the object is shown in Fig. 41. 
In the architecture, the reconstruction of amplitude and 
phase information of a known complex-valued object ‘V’ 
from the recorded in-line hologram is demonstrated. A spa-
tial light modulator (SLM) is utilized to encode the object 
with a unit amplitude distribution and a uniform phase value. 
The intensity distribution of the in-line hologram is recorded 
at a specific distance using a camera, and the respective in-
line hologram is fed to the network as described in Fig. 41. 
The recorded hologram suffers from the twin image problem 
[250, 326], where the real and virtual images of the object 
overlap with each other along with the zeroth order term. A 
novel learning architecture using regularized autoencoder is 
implemented for the twin image removal and the accurate 
reconstruction of phase and amplitude information of the 
object. The recorded in-line hologram is initially processed 
to obtain the complex-field image representation by employ-
ing the back propagation technique with the use of the prop-
a g a t i o n  t r a n s f e r  f u n c t i o n , 

P = exp

[
ikz

√
1 −

(
�fx

)2
−
(
�fy

)2] , where fx and fy are the 

spatial frequencies, �the wavelength, z the propagation dis-
tance, and k = 2�

�
 the wave number.. The proposed dual 

encoder-single decoder-based network is trained such that it 
minimizes the regularized mean squared error between the 
input hologram and the hologram reconstructed from the 
latent representation produced as output of the network. For 
the latent representation, the encoder first converts the com-
plex field image obtained through initial approximation to 
lower dimensional encoded representation which is then 
decoded as close as possible to the input. During this pro-
cess, the network learns to reconstruct images that are robust 
to distortions and scattering of light that can occur when 
light waves travel through a medium with varying refractive 
index. In addition, the network model minimizes the recon-
struction loss by adding a custom total variation (TV) com-
ponent to the MSE of the loss function. A detailed network 
architecture and digital reconstruction procedure is given in 
the Supplementary material S1. Moreover, we have explored 
and quantitatively compared the reconstruction quality of 
the regularized network with a ‘contractive network’ and a 
‘parallel network’. The contractive network consists of a 
contractive component for regularizing the MSE loss instead 
of TV component and a parallel network consisting of dual 
encoder and dual decoder that separately operating on the 
phase and amplitude approximations.

21.3 � Results

The conceptual schematic of the generation and detection 
of an in-line hologram with coherent beam illumination 
on an object and the respective experimental geometry 
are shown in Fig. 42. A spatially filtered and collimated 
beam from a He–Ne laser source (Melles Griot, 25-LHP-
928-230) is used as the light source for the experimental 
system. The complex valued object is introduced into the 

Fig. 41   Schematic of deep 
learning architecture built 
around the dual autoencoder 
generative network model
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experimental scheme using an SLM. The intensity dis-
tribution of the in-line hologram was recorded with an 
image sensor at 295 mm from the object plane. In the DIH 
reconstruction process, the twin image artifact elimination 
from the recorded in-line hologram was carried out using 
the regularized autoencoder generative model. In addition, 
the approach tested various network architectures such as 
contractive variation network, parallel dual encoder dual 
decoder network, etc., and a quantitative performance 
analysis comparison is implemented in the respective 
reconstruction results of phase and amplitude information 
of the object. The complex-valued object, recorded in-line 
hologram, and reconstruction results with contractive net-
work, parallel network, and the regularized auto-encoder 
network are shown in Fig. 43. In comparison to other net-
work architectures, the regularized autoencoder architec-
ture was found to be highly efficient and productive in the 
simultaneous accurate reconstruction of phase and ampli-
tude from s single intensity distribution. The peak signal 
to noise ratio (PSNR) and the structural similarity index 

(SSIM) of different network architectures are shown in 
the last two rows of Fig. 43, which indicates the superior 
reconstruction quality of regularized auto-encoder network 
over other architectures.

21.4 � Conclusion and future perspectives

A novel regularized autoencoder architecture capable of 
single-shot reconstruction of phase and amplitude from an 
intensity distribution of in-line hologram has been devel-
oped. The applicability of the deep learning architecture 
in DIH is demonstrated with a quantitative comparison to 
various network architectures. The versatility of the archi-
tecture in comparison to existing methods is expected to 
lighten up divergent application domains in biomedical 
imaging, quantitative phase microscopy, digital holo-
graphic microscopy, etc. The pseudocode describing the 
network architecture is provided in the supplementary 
materials S12.

Fig. 42   a Conceptual schematic 
of the in-line hologram genera-
tion and detection; b experi-
mental schematic of the record-
ing of an in-line hologram of a 
reflecting type of object; O(r) 
object scattered field, R(r) 
non-scattered reference field, SF 
spatial filter assembly, L lens, 
BS beam splitter, SLM spatial 
light modulator, CCD charge 
coupled device camera

Fig. 43   Experimental results: 
a object “V” displayed using 
SLM, b intensity distribution of 
recorded in-line hologram, c–h 
amplitude phase reconstruction 
results with various network 
architectures. The PSNR and 
SSIM comparison of various 
network architectures are given 
in the last two rows
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22 � Imaging in complex media: 
from wavefront shaping 
to computational imaging (Sylvain 
Gigan, Hilton Barbosa De Aguiar)

22.1 � Background

Complex Media are turbid inhomogeneous systems, where 
light propagation is severely affected by the refractive 
index fluctuations, resulting not just in aberrations, but 
also in scattering. They range from the atmosphere (for 
instance turbulent atmosphere to clouds) to the ocean, but 
also to materials like papers, paint, and most crucially 
biological tissues, which are highly heterogeneous. When 
trying to image at depth or through such systems, imaging 
with ballistic photons rapidly become extremely challeng-
ing, due to their exponential attenuation with depth [327]. 
Conversely, scattered light is transported through the inho-
mogeneous medium much deeper, being only subject to 
a “mild” linear attenuation with depth, in the absence of 
absorption. The key questions are how to tackle and miti-
gate the effect of scattering, and how to exploit scattered 
light for imaging. While diffuse incoherent optical tech-
niques have been investigated for deep imaging [328] they 
only offer a poor resolution. However, the scattering pro-
cess is essentially a coherent process leading to a speckle 
pattern, i.e. a complex interference pattern with diffraction 
limited features. After the seminal work of Vellekoop and 
Mosk in 2007 [329], a wealth of approaches have been put 
forward to image at depth with optical resolution exploit-
ing scattered light. While most of the approaches have 
been initially exploiting physical approaches to disentan-
gle scattered light, mostly exploiting wavefront shaping 
and spatial light modulators to re-focus light in tissues, the 
last years have seen a surge in computational approaches, 
where physical control of light has been increasingly com-
plemented or even outright replaced by computational 
approaches. In this short chapter, we want to review some 
of the main algorithms that have been applied, with some 
highlights on the work of our team.

22.2 � Signal processing

Let us first summarize the issues of imaging with scattered 
light that makes computational approaches appealing. The 
first one is obviously the scrambling of the information by 
the tissues, akin to a multiplication by a random matrix 
[330]. On the one hand, this means that recovering infor-
mation is essentially an inverse problem [331], tapping 
into the vast literature on the topic, from regularization 
issues to the introduction of priors on the object to image, 

or on the scattering medium itself. A major aspect has 
been the use of compressed sensing approaches, particu-
larly well adapted to the random nature of the transmission 
matrices [332] or to the sparse nature of some complex 
media such as multimode fibers [333]. Conversely, single-
pixel approaches have also been quite successful for imag-
ing in complex media [334, 335] (Fig. 44).

The second important ingredient is the fact that we meas-
ure intensities, while most imaging techniques require access 
to the phase. While certain imaging techniques are coher-
ent and thus are amenable to direct (holographic) access 
to the field [336–338] most popular techniques are either 
incoherent-based (for instance fluorescence, and spontane-
ous Raman) or do not provide easy access to the phase of the 
light. In this case, the general framework of phase-retrieval 
algorithms has provided important advances [339–341], in 
particular exploiting the speckle correlations such as the 
memory effect [342–344]. We have also recently proposed 
advanced demixing techniques based on phase-retrieval to 
perform phase-conjugation from a set of incoherent fluo-
rescent sources [345], or to retrieve the transmission matrix 
from multiplexed single-pixel measurements in two-photon 
fluorescence [335].

The last class of useful algorithms are matrix factoriza-
tion and matrix completion algorithms. In particular, non-
negative matrix factorization algorithms have proved effec-
tive in demixing and disentangling incoherent objects in 
scattering media, provided they either naturally fluctuate, as 
in functional imaging [346, 347], or provided we can excite 
them in a dynamic way [348, 349]. A recent advance in 
matrix factorization algorithms is matrix completion which, 
provided that some sparsity constraint is met, could be used 
for imaging as recently shown in the context of spontaneous 
Raman [350] (Fig. 44).

22.3 � Machine learning and artificial intelligence

While conventional signal processing algorithms have 
proved very effective at deep imaging in complex media, 
the recent rise in AI and deep learning has obviously 
impacted strongly the field. A first class aimed at replac-
ing and extending conventional algorithms, in particular to 
solve generalized phase-retrieval problems [351, 352]. Fur-
thermore, deep neural networks have also rapidly been used 
to rapidly retrieve the transmission matrix of various com-
plex media invasively [353–355]. However, a particularly 
important ingredient to efficiently apply these algorithms 
in imaging in general, and in imaging in complex media in 
particular, is to enable non-invasive imaging/characteriza-
tion of the transmission matrix. One way to achieve that is to 
include physical priors in the neural network, in other words 
to exploits physics-aware or physics-informed approaches 
[356], as illustration in Fig. 45 from [357].
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22.4 � Conclusion and future perspectives

It is clear that stemming from the seminal work of Velle-
koop and Mosk [329], focusing light and scanning a focus 
cannot be the sole way for deep imaging. A current ongo-
ing solution is to exploit advanced computational meth-
ods, and we reviewed some of the recent advances, with a 
focus on the work of our group. Looking forward, it seems 
probable that signal processing algorithms will tend to 
be replaced by (or integrated in) a more general machine 
learning framework, that provide similar and superior per-
formances and a greater adaptability to various imaging 
modalities. There are also many exciting recent develop-
ments in machine learning for vision and imaging pro-
cessing, such as diffusion model, neural fields [358], or 
attention-based mechanisms, that will certainly sustain the 
progresses in deep imaging in complex media.

23 � Encoding radial correlations 
in multimode fibers with wavefront 
shaping (Sarp Feykun Şener, Mert Ercan 
and Hasan Yılmaz)

23.1 � Background

The spatial memory effect is a speckle correlation piv-
otal in computational imaging through scattering materi-
als such as biological tissue, fog, a layer of white paint, 
etc. [342, 343, 360, 361]. In general, the spatial memory 
effect refers to the property when a spatial transform 
is applied to a wavefront incident onto a medium, the 
output speckle transforms to a highly correlated speckle 
with respect to the initial one [361–364]. Specifically, 
the angular memory effect enables non-invasive imag-
ing capabilities, particularly when traditional imaging 

Fig. 44   A single-pixel approach to recover the transmission matrix. A 
Simplified schematic view of a general fluorescence microscope with 
a single-pixel detector. Random wavefront generated by a SLM aNm 
impinges on a scattering medium with a transmission matrix T and 
excites 2-photon fluorescence (2PF) of an extended object o. The flu-
orescence signal y is collected by a single-pixel detector (e.g. photo-
multiplier tube (PMT)). A matrix A is made from the known wave-
fronts aNm. A gradient-descent-based algorithm is used to solve the 
forward problem minti ||y−∑|Ati|4||2, where ti are filtered columns of 

T by the positions of o. B Selected experimental realization. (Upper 
panel) 2PF signal detected vs. number of random wavefronts. Rep-
resentative wavefronts used are shown in the insets. (Bottom panels) 
Inspected foci for two selected column after retrieval of z z, a sum of 
all images for each focus demonstrating unique single focus for each 
column retrieved, and comparison with brightfield image confirming 
the number of sources [335]. The MATLAB codes for speckle analy-
sis and control are given in [359]
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methods fail due to medium opacity [342, 343, 360, 361]. 
Initially, a GS-type phase retrieval algorithm is employed 
to computationally reconstruct the image of an object hid-
den behind an opaque layer, which is based on the data 
obtained from a total fluorescence measurement in reflec-
tion [342]. This method is later refined to capture the 
same data from a single shot image captured by a camera 
in reflection [343].

However, the utility of the memory effect in imaging is 
not free from limitations. The finite memory-effect range 
constrains the field of view of the reconstructed images, 
and the field of view decreases as the thickness of the 
opaque layer increases. To overcome this limitation, an 
operator-based method was developed, which allows to 
realize high correlations beyond the conventional angular 
memory effect range at arbitrary angles through a diffu-
sive medium [365]. While the translational memory effect 
is observed in square fibers [366, 367], conventional fib-
ers do not have translational but rotational memory effect 
due to the rotational symmetry in their structure [368], 
and the memory in the radial direction is limited [369]. 
In this chapter, we introduce the operator-based technique 
into multimode fibers to encode radial memory effect at 
arbitrary radial translations. This technique utilizes the 
transmission matrix (t), a mathematical tool that intercon-
nects the input field and the output field through a linear 
complex medium.

23.2 � Methodology

The mode decomposition method is used to simulate 
the wave propagation through the system and calculate 
the transmission matrix (t) of the multimode fiber. Fiber 
modes are initially calculated with the use of a pre-existing 
code [370]. As the first step, a correlation coefficient is 
defined by using the bra-ket notation in which ket ( ��⟩ ) 
represents vectors and bra ( ⟨�� ) denotes the corresponding 
complex conjugate and the inner product ⟨���⟩ provides 
a measure of their overlap. The aim is to customize the 
spatial memory effect to examine the correlation at the 
output. Therefore, we consider the inner product between 
the transmitted field pattern t�� ⟩ , and the one with arbi-
trary radial translations  ri and ro for input and output, 
X†

�
ro
�
tX
�
ri
���⟩ [363]:

where X operates on the transmission matrix by translating 
the incoming and outgoing field profiles by ri and ro , respec-
tively. Maximum C

(
ri, ro

)
can be achieved for arbitrary radial 

translations ri and ro by shaping the initial wavefront �� ⟩ . For 
this purpose, a translational memory operator whose eigen-
vectors give the maximum correlation is defined by using 

(17)C
�
ri, ro

�
=

⟨��t†X†
�
ro
�
tX
�
ri
���⟩

�
⟨��t†t��⟩⟨��X†

�
ri
�
t†tX

�
ri
���⟩

Fig. 45   Machine learning and neural network approach to imaging 
in scattering media, a non-invasive deep imaging setup, where exci-
tation light is linearly transported through a scattering medium to 
an object, and where the emitted incoherent light traverses back the 
scattering layers to be detected, can be mapped to a two-layer neural 

network, where the “hidden” object can be found as the hidden layer, 
in between two linear matrices, which can be learned from training 
the NN on a set of input (wavefronts) and output (camera images) 
(adapted from [357])
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the calculated transmission matrix, which can be expressed 
as [365]:

By multiplying t with X
(
ri
)
 from the right, the fields on 

the input facet of the fiber effectively translate while mul-
tiplying t  with X†

(
ro
)
 from the left translates the outputs 

so that X†
(
ro
)
tX
(
ri
)
 becomes the translated version of the 

original transmission matrix. The expression utilizes Moore-
Penrose matrix inversion as the transmission matrix is not 
necessarily a square matrix. Eigenstates of this operator 
Q̂��Vn ⟩ = �N�VN⟩ will now correspond to the fields that carry 
the effect we encoded in them, namely radial translational 
memory effect. When the input wavefront is translated in the 
customized direction, the output wavefront is translated in 
the desired direction in Fig. 46. In our case, we define our 

(18)Q̂
(
ri, ro

)
=
(
t†t
)−1

t†X†
(
ro
)
tX
(
ri
)

memory operator by selecting equal values for input and 
output translations. 

23.3 � Results

Figure 46 shows the correlation coefficient as a function of 
normalized radial distance for the outputs of a random input 
field and an input eigenstate of the operator Q̂. In Fig. 47a, 
normalized radial translations of both input and output fields 
for the operator Q̂ are defined at r/a = 0.03. When the input 
undergoes a translation, we observe a gradual decrease in 
correlation at the output field, nearly double compared to 
what is observed with a random input. Moving to Fig. 47b, 
we apply the same operator definition to a normalized radial 
translation of r/a = 0.17. Here, we observe a decrease in 
correlation and the disappearance of our speckle pattern 
when the input is initially translated. However, with the 

Fig. 46   a Radial memory 
effect is not observed when a 
random wavefront is incident 
on a multimode fiber. b Radial 
memory effect is observed when 
the input wavefront is shaped as 
an eigenvector of the memory 
operator

Fig. 47   Correlation coefficient 
as a function of normalized 
radial distance r/a (a is the 
fiber radius) for the outputs of a 
random input field and an input 
eigenstate of the operator Q̂ , 
for two different examples: 
Operator is defined at (a) r/a 
= 0.03 (b) r/a = 0.17 for both 
input and output. Coordinate 
system is chosen such that the 
radial translations project along 
-y direction
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continued translation of the input until reaching the defined 
ri the original output field pattern is restored, leading to a 
high correlation. The output intensity patterns before and 
after translation show this contrast: translating the random 
input results in decorrelation at the output speckle, whereas 
the translating the input eigenvector to the target translation 
results in a translation of the output speckle without a sig-
nificant decorrelation.

23.4 � Conclusion and future perspectives

In conclusion, we numerically encoded the translational 
memory effect into a multimode fiber which is typically 
observed in rectangular multimode fibers [366, 367] or for-
ward scattering media [364]. We observe a non-monotonic 
correlation function as we increase the target translation. 
By combining the radial memory effect with the rotational 
memory effect [368], one can realize memory effect-based 
fiber-optic imaging. However, measuring the transmission 
matrix from the distant end is often infeasible in practical 
applications such as multimode fiber endoscopy. Recently, it 
is shown that the transmission matrix can be measured from 
the proximal end [371]. Our future work aims to define the 
memory effect operator by using the transmission matrix 
calculated from the proximal end, leveraging the optical 
reciprocal nature of multimode fibers. The MMF simula-
tion tools are provided in [370]. The MATLAB code for 
encoding_ME, calculating the memory operator whose 
eigenvectors give high correlations at encoded translation 

value by using the transmission matrix of a fiber is given in 
the supplementary materials S13.

24 � Computational diffuse imaging using 
artificial intelligence (Ganesh M. 
Balasubramaniam, Gokul Manavalan, 
and Shlomi Arnon)

24.1 � Background

Computational diffuse optical imaging is an advanced 
modality that uses visible or near-infra-red (NIR) light to 
image turbid media [372, 373]. The distinctive advantage 
of diffuse optical imaging lies in its non-invasive and non-
ionizing nature, allowing real-time, three-dimensional visu-
alization of tissue structure and function. In accordance with 
the image reconstruction approach employed, the methodol-
ogy can be categorized into two distinct modalities: diffuse 
optical imaging (DOI), which facilitates two-dimensional 
imaging, and (DOT), which enables three-dimensional 
volumetric reconstructions of the medium [374]. The gen-
eral schematic of DOI and DOT is shown in Fig. 48. This 
technology has found extensive applications across diverse 
domains, including neuroscience [375], oncology [376], 
and cardiovascular research [377], facilitating the study of 
parameters such as blood flow, tissue oxygenation, and com-
position [378].

Fig. 48   General schematic of 
diffuse optical imaging
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Nonetheless, computational diffuse imaging has its 
limitations. It is constrained by limited tissue penetration 
depth, leading to reduced spatial resolution in deeper tissue 
regions. Furthermore, the scattering and absorption of light 
can introduce inherent inaccuracies in image reconstruction, 
challenging the precision of data obtained, particularly in 
highly inhomogeneous tissues [379, 380]. Notwithstanding 
these challenges, diffuse optical imaging continues to hold 
substantial promise and is the focus of ongoing research to 
overcome its limitations and expand its potential in medical 
and biological sciences.

One of the many solutions to address the challenges faced 
by diffuse imaging involves integrating various artificial 
intelligence (AI) techniques, an umbrella term used to rep-
resent various deep learning and machine learning methods, 
into the image reconstruction processes. AI encompasses 
a broad range of computational techniques that enable 
machines to perform tasks typically requiring human intel-
ligence. ML refers to algorithms that allow systems to learn 
from and make predictions or decisions based on data, and 
DL, a subset of ML, involves neural networks with many 
layers that can model complex patterns in data [381, 382]. 
The fusion of diffuse imaging and AI signifies a promising 
avenue for streamlining and enhancing the imaging process, 
thereby amplifying the applicability and potential of compu-
tational diffuse imaging across various scientific and medical 
domains. The next section discusses the current status of 
such imaging methodologies.

24.2 � Current state‑of‑the‑art

Contemporary scholarly literature consistently demonstrates 
that utilizing AI for computational diffuse imaging yields 
significant advantages. These advantages encompass expe-
dited computation, simplified algorithmic implementation, 
and heightened accuracy in reconstructing three-dimensional 
volumetric data. The algorithms employed in computational 
diffuse imaging fall into two main categories: deep learning 
algorithms, such as convolutional neural networks (CNNs), 
and machine learning algorithms, such as gradient boosting 
trees. CNNs excel in autonomously learning features from 
data, rendering them highly valuable for image analysis and 
reconstruction tasks in computational diffuse imaging. These 
networks excel at identifying intricate patterns within large 
datasets, enhancing the accuracy and efficiency of image 
reconstruction [381, 382]. Regression-based neural net-
works employ regression techniques to predict continuous 
values, such as image pixel intensities, effectively address-
ing the inverse problem inherent in image reconstruction 
processes [382]. Moreover, machine learning (ML) algo-
rithms, including methods such as Extreme Gradient Boost-
ing, demonstrate significant potential in efficiently handling 
small datasets. These ML methods offer faster computational 

performance and do not require extensive computational 
resources, such as GPUs, making them highly suitable for 
various applications in diffuse imaging [377, 382]. By lev-
eraging these AI techniques, significant improvements in 
image reconstruction accuracy and computational efficiency 
can be achieved, thereby advancing the field of computa-
tional diffuse imaging.

In 2020, Jaejun Yoo and colleagues leveraged a con-
volutional neural network to perform the inversion of the 
Lippman-Schwinger integral for diffuse optical tomogra-
phy image reconstruction [383]. Their approach achieved a 
mean squared error (MSE) of 0.0049 ± 0.0012 and a Pearson 
coefficient (R) of 0.5657. More recently, Balasubramaniam 
et al. introduced a feed-forward networks neural network 
based on regression techniques to address the inverse prob-
lem in DOT [384]. The outcomes of their image reconstruc-
tion approach underscore the viability and efficiency of the 
regression-based neural network as a credible alternative 
to established numerical methods. In another study, Murad 
et al. conducted experimental investigations to concurrently 
reconstruct tissue-mimicking samples' absorption and scat-
tering coefficients using a one-dimensional convolutional 
neural network (1D-CNN) [385]. Notably, incorporating 
basic batch normalization (BN) layers led to substantial 
accuracy enhancements and reduced computation time for 
DOT image reconstruction.

Furthermore, Mozumder et al. adopted a model-based 
deep learning (DL) approach to enhance the estimation 
of absorption and scattering coefficients in diffuse media 
[386]. This research demonstrated that the proposed DL 
method also yields significant reductions in computation 
time. Yongyi Zhao et al. introduced a novel learned itera-
tive shrinkage thresholding algorithm for addressing the 
inverse problem in DOT. Empirical experiments on authen-
tic datasets demonstrated that the Unrolled-DOT approach 
surpassed the performance of existing learning-based algo-
rithms. Significantly, it achieved a remarkable reduction in 
both runtime, exceeding tenfold, and mean-squared error 
compared to conventional physics-based solvers [387]. Fur-
thermore, it is noteworthy that a wealth of insightful reviews 
and instructive tutorials are available, offering valuable per-
spectives on using deep learning for reconstructing DOT 
images [374, 380, 388, 389].

Machine learning (ML) algorithms present another 
potential avenue: they excel with limited data, function 
efficiently without GPU support, and typically offer faster 
computational performance than DL methods. Zou et al. 
introduced an ML model incorporating physical constraints 
for DOT image reconstruction, showcasing substantial 
performance, particularly in high-contrast samples [390]. 
Recently, a fusion of Extreme Gradient Boosting and 
Genetic Programming was developed to identify anomalies 
in simulated heterogeneous breast tissues. The reconstructed 
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breasts exhibited a noteworthy average cosine similarity 
exceeding 0.97 ± 0.07 and an average root mean square error 
approximating 0.1270 ± 0.0031 when compared against the 
ground truth [391]. Additionally, Manojlović et al. devised 
a machine learning algorithm capable of precise estimation 
of the optical properties of the skin, facilitating real-time 
diffuse imaging of the hand [392].

The significant findings detailed in this section under-
score AI's potential role in enhancing computational diffuse 
imaging and broadening its applicability.

24.3 � Summary and future perspectives

In summary, we explored how recent advances in AI are 
being utilized to address the challenges in computational dif-
fuse imaging, particularly in DOT. Several studies were men-
tioned, showcasing the promising results of AI algorithms 
in improving diffuse image reconstruction and estimation of 
optical properties. However, using AI for computational dif-
fuse image reconstruction has drawbacks, including the need 
for substantial labeled data, computational complexity, risks 
of overfitting, limited interpretability, tuning challenges, 
difficulties in generalization, and integration complexities 
[380]. Addressing these issues is vital to fully realize the 
potential of AI in DOT for clinical and research applica-
tions. Continued advancements in AI algorithms, includ-
ing deep learning, along with the utilization of advanced 
technology, such as sensitive and extensive detector arrays, 
large-scale laser or LED arrays, and computationally robust 
server systems, will likely improve the accuracy and spatial 
resolution of image reconstructions, enabling more detailed 
and informative images.

Another promising avenue for further research is inte-
grating multi-wavelength light sources and structured illu-
mination techniques for diffuse imaging [395–397]. Such 
advancements hold the potential to significantly enhance 
the quality of imaging, enabling more robust applications 
in real-world settings. A detailed explanation and code to 
create a simulated dataset for AI-based DOT is shown in 
supplementary materials S14 [391, 393, 394].

25 � Computational imaging 
with randomness (Ryoichi Horisaki)

25.1 � Background

Computational imaging is a powerful framework to inno-
vate optical imaging systems by orchestrating optics and 
information science [398]. Compared with the conven-
tional approach, where optical and computational processes 
are designed independently, computational imaging has 
improved performance and minimized optical hardware in 

imaging systems. Recent advancements in information sci-
ence, such as deep learning, have enforced the impact of 
this field. I will present our recent research topics related to 
computational imaging with randomness.

25.2 � Imaging through scattering media

Visualization of inside or behind scattering media is impor-
tant in various imaging applications, such as biomedical 
microscopy, astronomical observatories, security cameras, 
and vehicle sensors. Recently, imaging through strongly 
scattering media, where ballistic photons do not exist, has 
been studied actively [379]. Noninvasive methods, which do 
not need to locate a sensor or a light source for calibration or 
reference, are especially attractive for practical applications.

Speckle-correlation imaging is a representative noninva-
sive method for imaging through scattering media [343]. 
Speckle-correlation imaging assumes the shift invariance 
of scattering impulse responses, called the memory effect. 
The object behind the scattering media is reconstructed 
from the captured speckle image by taking the autocorrela-
tion and phase retrieval. One issue of speckle-correlation 
imaging is a limited field of view because the range of the 
memory effect is small, and the autocorrelation of the cap-
tured speckle is decayed. To solve this, we develop a gradi-
ent descent algorithm to simultaneously estimate the phase θ 
of the frequency spectrum and the decay coefficient σ of the 
speckle correlation for its extrapolation, as shown in Fig. 49 
[399, 400].

The abovementioned speckle-correlation imaging tech-
niques suppose two-dimensional objects. We extend speckle-
correlation imaging to depth imaging and spectral imag-
ing [401, 402, 403] . In these extensions, we utilize the axial 
memory effect and the spectral memory effect, respectively. 

Fig. 49   Extrapolated speckle-correlation imaging
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These methods are promising for multidimensional imaging 
applications because of their minimal optical hardware and 
calibration-free process.

25.3 � Blind deconvolution

Blind deconvolution is a deconvolution technique without 
prior information on the impulse scattering media [404]. 
This problem is similar to that of speckle-correlation imag-
ing. However, blind deconvolution does not have to sup-
pose random and well-developed impulse responses, which 
is assumed in speckle-correlation imaging. Therefore, blind 
deconvolution is applicable to weakly scattering media.

An issue of blind deconvolution is unstableness in simul-
taneous estimations of the object and the impulse response. 
To solve this issue, we utilize a coded aperture to reduce 
unknown variables on the pupil plane, where light-blocked 
pixel values by the coded aperture on the pupil are imposed 
to be zeros and are not estimated in the reconstruction pro-
cess [405, 406].

25.4 � Optical phase conjugation

Optical phase conjugation is a technique for controlling light 
behind scattering media [407]. Light passing through scat-
tering media from a light source is time-reversely input to 
the scattering media, and the light source is optically repro-
duced behind scattering media. Conventional approaches 
for phase conjugation employ coherent light sources and 
wavefront sensors. However, these requirements increase the 
complexity of the optical setup.

We introduce incoherent light to optical phase conjuga-
tion to solve the above issue [408]. One problem of incoher-
ent optical phase conjugation is a strong background light 
on the optically reproduced pattern due to the realness and 
nonnegativity of incoherent light. We develop a method for 
background suppression by using pixel shuffling to estimate 
the background light, which is computationally subtracted 
from the optically reproduced pattern.

25.5 � Computer‑generated holography

Computer-generated holography is a technique to calculate 
an interference pattern, which is called a hologram, to gen-
erate a target optical field [409]. It is important for optical 
stimulation and tweezer for life science, laser processing 
for precision engineering, and three-dimensional display for 
virtual/augmented reality.

In general, coherent light is used for computer-generated 
holography. However, it raises issues on speckle noise, 
hardware cost, and eye harmfulness. We realize computer-
generated holography with incoherent light [410]. This 
method calculates a hologram with a propagation model of 

incoherent light with random wavefronts. Three-dimensional 
color image reproduction is demonstrated with a chip-on-
board white light-emitting diode.

25.6 � Conclusion and future perspectives

Advancements in information science enable us to utilize 
randomness for imaging techniques. These minimize the 
optical hardware and enhance imaging performance. Recent 
progress in optics, such as metalens, will extend the design 
space for further innovating computational imaging systems 
[411].

26 � Computational imaging 
with post‑processing of the randomness 
(Manisha, Tanushree Karmakar, Aditya 
Chandra Mandal and Rakesh Kumar 
Singh)

26.1 � Background

Imaging through randomness is a challenging, yet practical 
problem, due to the scrambling of the light during propa-
gation through a random scattering media [413–416]. The 
presence of scatterer places limits on the ability to image 
through dust, fog or atmospheric turbulence, etc. When 
coherent light passes through a random media, it generates 
a coherent noise, also known as speckle [412]. Despite the 
difficulties that speckle patterns introduce, significant efforts 
have been made to either reduce the speckles by cancellation 
or harness them to extract significant information embedded 
into the speckle grains. Several hardware-based techniques 
have been employed to cancel the randomness and some 
of these techniques are adaptive optics [417], transmission 
matrix [330], phase conjugation [418], etc. However, such 
hardware dominated methods have strict practical con-
straints for optimal performance of the techniques. On the 
other hand, an alternate route is to post-process the experi-
mentally recorded speckle pattern [343, 419–425]. Such 
computational methods are free from the need to estimate 
and correct the wave front error and hence reduce the con-
straints on the experimental realization.

The post-processing of the random intensity patterns can 
be used to evaluate the statistical properties for the computa-
tional imaging. With the strategy to exploit the randomness, 
here we introduce two different works on the post-processing 
of the random intensity patterns for the imaging and recov-
ering complex field information from the randomness. First 
is on the recovery of the complex Fourier spectrum from 
the second order intensity correlation and use this informa-
tion for imaging [421]. The Fourier spectrum of an object 
obscured by the random scattering medium can be retrieved 
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up to the diffraction limit. Second is to use the randomness 
for illumination and recording the hologram in the autocor-
relation of the intensity rather than in the intensity and then 
apply the numerical reconstruction [425]. The higher order 
correlation provides higher spatial resolution with statisti-
cally independent light sources [425–428]. These two tech-
niques provide an alternative approach to use randomness 
and apply post-processing of the random intensity patterns 
for quantitative imaging behind a scattering medium.

26.2 � Methodology

Two different strategies for computational imaging with 
the post-processing of the coherent random pattern are 
highlighted in Fig. 50. Both methods involve the two-step 

process. First process is recording of the coherent random 
pattern by a digital detector such as complimentary metal-
oxide semiconductor (CMOS) or a charged coupled device 
(CCD) as shown in Fig. 50. For instance, Fig. 51a represents 
a case where an object is obscured by the random scattering 
medium and detector captures random intensity patterns. An 
instantaneous random intensity pattern, at a position vec-
tor u and time t, is represented as I(u, t) = |E(r, t)⊗ h|2 , 
where E(r, t) is coherent and randomly scattered object 
field at the scattering point r , h(u − r) denotes the propa-
gation kernel and ⊗ represents the two-dimensional con-
volution. The coherent field at the scattering plane is con-
sidered as E(r, t) = O(r)ei�(r,t) , where O(r) is non-stochastic 
object information and �(r, t) is a random phase intro-
duced by the scatterer. The intensity at the detector plane, 

Fig. 50   Implementation of correlations to image through a static, and b dynamic diffuser

Fig. 51   A flow chart highlighting imaging of the complex valued object from post-processing of the random intensities a cross-correlation of 
intensities using spatial averaging, b auto-correlation of intensities and temporal averaging
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i.e. I(u, t) is used to digitally evaluate the intensity cross-
covariance function as C(Δu) = ⟨ΔI(u)ΔI(u + Δu)⟩ , where 
ΔI(u) = I(u)− < I(u) > and ⟨⟩ represents the ensemble aver-
aging. For the Gaussian random field, the intensity cross-
covariance relates to the Fourier spectrum of the object as 
C(Δu) = |FT{O(r)}|2 , where FT  represents the two-dimen-
sional Fourier transform. Thus, digital evaluation of the 
cross-covariance provides only modulus of the Fourier spec-
trum of the object and phase information is lost. For recov-
ery of the phase information and imaging behind the scatter-
ing medium, we introduce an interferometric approach and 
intensity pattern at the detector plane is now expressed as 
I(u) = ||E(u) + ER(u)

||2 , where E(u) is coherent random field 
from the object arm and ER(u) is an independent coherent 
random field derived from an independent random scatterer 
as shown in Fig. 50a. Thus, the intensity cross-covariance 
is now updated as C(Δu) = |FT{O(r)} + FT{R(r)}|2 , 
where R(r) is a reference point source. This interferometric 
approach permits to recover the desired Fourier spectrum 
of the object from the intensity cross-covariance and object 
hidden behind the scattering media is recovered from the 
complex Fourier spectrum [417].

On the other hand, Fig. 50b represents a new scheme to 
record the hologram in terms of the auto-correlation of the 
intensity rather than the intensity. A single realization of 
the field immediately after the scatterer is represented as 
E(r, t) = O(r)ei�(r,t) . The random intensity at the camera 
plane is represented as I(u, t) = |E(r, t)⊗ h(u − r)|2 . Now 
we introduce single point intensity cross-covariance as 
C(u, u) = ⟨ΔI(u, t)ΔI(u, t)⟩ . For an incoherent light source, 
this single point intensity cross-covariance transforms to 
C(u, u) =∣ I(r)⊗ h2 ∣2 . For a uniform source I(r) = 1, the 
intensity correlation transforms to C(u, u) ∝ h4 . Therefore, 
the correlation of intensity fluctuations is proportional to 
fourth power of the point spread function (PSF) of an imag-
ing system. This results in an improved image quality in 
comparison to hologram recorded in the intensity [426]. 
We use this feature in the holography where hologram is 
recorded in terms of correlation of intensity fluctuations 
obtained by post-processing of the random patterns, and 
then apply digital reconstruction method to reconstruct the 
complex valued object hidden behind the scatterer [426].

26.3 � Results

Second process involves digital processing of the recorded 
random intensity patterns. The intensity cross-correla-
tion is evaluated from the random intensity patterns as 
described in Fig. 51 in a flow chart. Ensemble averaging 
can be replaced either by temporal or spatial averaging 
depending on the experimental conditions. The cross-
covariance function C

(
m, n;m + m�, n + n�

)
 is evaluated as 

∑M

k=1

ΔIk(m,n)ΔIk(m+m�,n+n�)
M

 , where (m, n)represents the pixel 
number of the intensity pattern, and M is number of differ-
ent realizations of random patterns. The cross-covariance 
function highlights formation of fringes due to interfer-
ence of coherence waves [429]. Subsequently, the Fourier 
fringe analysis is applied to reconstruct the object from the 
cross-covariance function. A flow chart highlights com-
putations steps involved in recovery of the non-stochastic 
object from the randomness. On the other hand, single 
point correlation of the intensity fluctuations is estimated 
as C(m, n;m, n) =

∑M

k=1

ΔIk(m,n)ΔIk(m,n)

M
 . As an example, we 

use single point correlation of the intensity fluctuations to 
digitally record an inline hologram and then numerically 
reconstruct this hologram for reconstruction of the complex 
valued object. Post-processing of random intensity patterns 
for auto-correlation is represented in a flow chart of Fig. 51 
and numerical codes for both methods are available on the 
GitHub (details are present in the data availability section). 
The twin image issue in the reconstruction of the in-line 
hologram is resolved by an unsupervised learning based 
method using an auto-encoder scheme.

26.4 � Conclusion and future perspectives

Computational imaging based on the cross-correlation and 
auto-correlation of the intensities are discussed. A flow chart 
representation is presented to describe computational steps 
involved in the post-processing of the random intensity pat-
terns for utilizing the randomness in the development of 
new un-conventional imaging methods. These techniques 
are expected to find applications in imaging through ran-
domness and in the digital holography. Codes of random 
illuminations for recording hologram and then applying 
numerical reconstruction and twin image removal are avail-
able in https://​github.​com/​Optic​sInfo​rmati​onLab/​Random-​
Illum​inati​on-​Holog​raphy​DL and the codes of recovery of 
the wavefront from spatially fluctuating fields using the two 
point intensity correlation, i.e., fourth order correlation are 
available in https://​github.​com/​Optic​sInfo​rmati​onLab/​Inten​
sityC​orrel​tion and supplementary section.

27 � Iterative approach for aperture 
engineering at sharp focusing 
to structuring vector light (S. N. Khonina, 
S.G. Volotovskiy, and A.P. Porfirev)

27.1 � Background

Aperture engineering at sharp focusing conditions allows to 
solve different problems: improvement of resolution in imag-
ing [430–432], optical trapping and manipulation [433, 434], 

https://github.com/OpticsInformationLab/Random-Illumination-HolographyDL
https://github.com/OpticsInformationLab/Random-Illumination-HolographyDL
https://github.com/OpticsInformationLab/IntensityCorreltion
https://github.com/OpticsInformationLab/IntensityCorreltion
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laser material processing and structuring [435, 436]. To date, 
many algorithms have been developed for solving the inverse 
diffraction problem in frame of paraxial scalar theory, how-
ever, the peculiarities of sharp focusing conditions require 
not only to use non-paraxial propagation operators, but also 
to take into account the vector nature of electromagnetic 
radiation. These features complicate calculation algorithms, 
especially in the case of an iterative approach. This section 
discusses an iterative algorithm to calculate the vectorial 
input field which is necessary to achieve a wanted field dis-
tribution in the focus of a high numerical aperture system 
using Richards–Wolf integrals.

In this section, we present an iterative approach to solve 
the inverse diffraction problem under sharp focusing condi-
tions using Richards–Wolf integrals [437]. We compute an 
apodization function in the entrance plane to provide vec-
tor light focusing with a defined transverse and polarization 
structure.

27.2 � Methodology

Suggested iterative algorithm consists of four main steps. On 
the first iteration vector field in the entrance of the focusing 
system is defined (maybe randomly) for each component 
g
(1)

j
(�,�) o f  the  e lec t r ic  par t  of  l ight  f ie ld 

g(1)(�,�) = g(1)
x
(�,�)ex + g(1)

y
(�,�)ey + g(1)

z
(�,�)ez . Vector 

f i e ld  in  t he  foca l  p lane  a t  p - t h  i t e ra t ion 
E(p)(�,�) =

(
E
(p)
x (�,�),E

(p)
y (�,�),E

(p)
z (�,�)

)
 can be found 

using Richards–Wolf integrals [433]. On the next step, we 
apply specified constraints and replace obtained focal com-
ponents with desired ones: Ê

(p)
(�,�) = Ω1

[
E(p)(�,�)

]
 , where 

Ω1[⋅] is a set of conditions that have an impact of amplitude 
and phase distribution, and also the polarization distribution. 
Particularly, we can apply a condition to reduce or maximize 

certain components, and also to concentrate intensity in a 
given area. After that we perform an inverse integral trans-
formation to calculate input distribution at p-th iteration 
�̂(p)(𝜃,𝜙) . At the next step we apply desired constraints to 
the  vector  d is t r ibut ion  in  the  input  p lane: 
g(p+1)(�,�) = Ω2

[
ĝ
(p)
(�,�)

]
 and a new iteration can be start. 

The iterative process stops after achieving specified goals 
with a certain error or execution of specified number of 
iterations.

27.3 � Results

Results of iterative calculation of the input field that pro-
vides compact (with FWHM = 0.5 λ) energy concentration 
in the z-component of the focal field at sharp focusing (with 
numerical aperture NA = 0.99) are shown in Fig. 52a. In 
this case, conditions in the entrance plane Ω2[⋅] include only 
transverse components, and conditions in the focal area 
Ω1[⋅] include maximization of the longitudinal component 
and concentration of intensity in a circle with diameter of 
λ. The initial distribution we select as phase vortex func-
tions of first order with uniform amplitude distribution: 
g(1)
x,y
(�,�) = exp(i�) . As can be seen, as a result of the itera-

tive process, the input field was calculated, the transverse 
components of which correspond to the radial polarization 
[bottom line, left side of Fig. 52a]. Figure 52b demonstrates 
the possibility of using the developed method to calculate 
fields that provide vector focusing into various shapes (ring, 
triangle, square).

27.4 � Conclusion and future perspectives

An iterative approach for aperture engineering and solv-
ing the inverse diffraction problem under sharp focusing 

Fig. 52   Calculation results: a 
Iterative procedure of the design 
of an element concentrating 
energy in a circle with radius 
0.5 λ, b examples of the total 
intensity distributions shaped 
with designed elements



	 J. Rosen et al.  166   Page 60 of 82

conditions was proposed. Designed complex distributions 
in the entrance of the focusing system allows one to shape 
desired intensity distribution in the focal area. In this case 
it is possible to control the z-component (longitudinal) of 
the shaped light field. As was recently shown, the ability to 
control the z-component of the field provides higher preci-
sion in laser processing of thin films of a number of photo-
sensitive materials in order to fabricate the desired nano- and 
micro-reliefs [438].

28 � Four‑polarisation imaging 
for determination of orientation 
beyond the spatial resolution (Soon 
Hock Ng, Meguya Ryu, Blake Allan, 
Vijayakumar Anand, Donatas Narbutis, 
Daniel Ierodiaconou, Junko Morikawa, 
Saulius Juodkazis)

28.1 � Background

E. Abbe in 1882 defined the resolution of periodic and regu-
lar features as the minimum distance apart at which given 
elements delineated separately d =

�

2n sin �
≡ �

2NA
 [439, 440], 

where n is the refractive index at the focal region, α is the 
half-angle of the focusing cone. In many applications such 
as Light Detection and Ranging (LIDAR), aerial and satel-
lite imaging with low-NA optics and at long wavelengths, 
the resolution improvement is sought after and could extend 
functionalities (e.g., to add imaging capability at radio fre-
quencies in altimeters: C-band 5.3 GHz 5.66 cm or Ku-band 
13.575 GHz 2.21 cm). Here, we discuss two distinct cases 
of low resolution where polarisation is invoked to determine 
orientation in the image (hence in the object): (1) imaging 
from a drone (10–120 m height) at visible spectral range 
and (2) imaging at THz and far-IR spectral ranges, where 
polarisation optical toolbox has to be improved. Formulae 
and numerical estimates are given here in detailed steps to 
explicitly show how conclusions are arrived at. We discuss 
future roadmap applications for polarisation resolved imag-
ing in reflection/scattering in the case of natural light (hence, 
polarised) illumination. The capability to resolve orientation 
anisotropies beyond the spatial resolution is a promising new 
beginning on this roadmap.

28.2 � Methodology and results

Resolution of the optical imaging and micro-lithography 
d ∼ λ/NA is improved at shorter wavelength λ and higher 
numerical aperture NA. However, at long wavelengths 
across the IR (μm), THz (sub-mm), and radio waves 
(mm-cm) spectral ranges resolution is inherently low and 
it is even more deteriorated when low-NA optics are used 

for imaging, e.g., in remote sensing, Light Detection and 
Ranging—LIDAR, imaging from drones, and satellites. 
We show that the orientation features of an object can 
be revealed in the image using polarisation based analy-
sis. When four polarisation images are acquired simul-
taneously, real-time monitoring of an optical anisotropy 
(in absorption reflection or scattering) and its temporal 
evolution becomes accessible. Polarisation analysis of 
acquired images considering polarisation of natural light 
adds complexities which could be solved using numerical 
deep learning and artificial intelligence (AI) approaches.

It has been proven that the orientation of a linear or 
circular grating (a binary on–off transmission) with 
period 0.2 μm can be determined in transmission images 
at IR chemical fingerprinting spectral range at wave-
length 3.3 μm and resolution of d ∼ 5 μm  [441] using 
the four polarisation (4-pol.) method [442, 443], which 
is also applicable to optical non-propagating near-field at 
THz and far-IR spectral region [444]. Both, λ and NA did 
not provide the required spatial resolution d, which was 
25 × lower (large d) than that required for optical resolu-
tion of the features, gratings made of 100-nm-wide gold 
lines on sapphire with a duty cycle of 0.5. This functional-
ity is applied to the biomedical field to determine struc-
tural anisotropy of tissue and tumors in biopsies [445]. 
Importantly, the separation of absorption anisotropy due 
to dipole orientation can be decoupled from birefringence 
which has a twice faster angular dependence [446] when 
measured in transmission. Polarisation analysis at four 
polarisations separated by π/4angle is widely used in 
machine vision and robotics for edge detection by extract-
ing Stokes S1,2 parameters [447].

In transmission, the 4-pol. method works at the visible 
spectral range (small λ ∼ 0.5 μm) but low-NA ≡ 1/(2F#) ≈ 
0.01 for the image analysis shown in Fig. 53. Here, the 
lens diameter was D = 8 mm and the f-number is defined 
as F# = D/F where F is the focal length of the objective 
lens. The Abbe resolution was only d = λ/(2NA) ≈ 25 μm. 
Anisotropy of absorbance in polymer polarisers is clearly 
determined using 4-pol. analysis while the intensity image 
(usual camera) does not show dichroism, or different 
absorbance for different polarisations (in this case for the 
linear polarisation).The orientation azimuth θshift calcu-
lated from the transmittance best fit T(θ) = Amp × cos (2θ 
−  2 θ s h i f t )  +  o f f s e t  f o r  e a c h  p i x e l  o r 
as�shift =

1

2
arctan

2
(I�∕4 − I3�∕4∕I0 − I�∕2) were shown to be 

equivalent [440]; here arctan2 is the 2-argument arctan-
gent, which return angle in the full 2π range. Recently, it 
was demonstrated that use of 4-pol. camera with four 
polarisers at π/4 different orientations integrated on the 
individual pixels of CMOS chip it is possible to implement 
4-pol. method at visible spectral range and low-NA for 
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detection of structural anisotropy of objects in reflected 
and scattered light [448]. The imaging was made using 
4-pol. camera attached to a drone. The f-number of objec-
tive lens was F# = 1.4, which defines the numerical aper-
ture NA ≡ 1/(2F#) = n sin α (n = 1 in the air). The light 

collection angle α = 23.24° defines the field-of-view 
(FOV) in the image for the given height H of the drone 
(camera) as tan� =

FOV

2
∕H . For the maximum allowed H 

= 120 m for a flight of a civil drone, we obtain FOV = 2H 
tan α = 92 m (Fig. 54). An autonomous camera-based jig 

Fig. 53   a Four-polarisations (4-pol.) camera (CS505MUP1 Thorlabs) 
images of a room scene at wire-grid linear polarisers orientation θ 
angles of 0, π/4, π/2, and 3π/4 (marked by arrows in top-left corners). 
Polarisers are on-chip integrated and the pixel size is 3.45 μm. The 
arrow markers on the dark linear polarisers (LPVISE2X2, Thorlabs) 
show a cross-Nikol condition since they polarise light perpendicular 

to the on-chip polarisers. b Intensity I =
(
I0 + I�∕4 + I�∕2 + I3�∕4

)
∕2 ; 

camera has 12-bit resolution. c The azimuth θshift calculated from the 
transmittance best fit T(θ) = Amp × cos (2θ − 2θshift) + offset for each 
pixel or as �shift =

1

2
arctan2

(
I�∕4 − I3�∕4∕I0 − I�∕2

)
 are equivalent 

[428]

Fig. 54   a Location of the drone flight near Port Fairy, Victoria at ∼ 
700 m distance from the shore towards a buoy which monitors the 
wave height. b Drone hovering above beach; experiments on 27 
April 2021 (afternoon). Inset shows 3D printed orientation grat-
ings with a period of 1 mm. c Four-polarisations (4-pol.) camera 
(CS505MUP1 Thorlabs). Polarisers are on-chip integrated and the 
pixel size is 3.45 μm. Payload weight of the functional jig is < 0.5 
kg, time of flight maximum 0.5 h, and flight distance 0.7–1 km off-
shore depending on visibility. Black panels at the bottom of the 

image show the logged information of the time, latitude LAT, lon-
gitude LON, heading HDG, altitude ALT, pitch, and roll angles. d 
Intensity or Stokes parameter S0 = I = (I0 + I�∕4 + I�∕2 + I3�∕4)∕2 ; 
camera has 12-bit resolution. e The azimuth θshift calculated from 
the best fit T(θ) = Amp × cos (2θ − 2θshift) + offset for each pixel 
or as �shift =

1

2
arctan

2
(I�∕4 − I3�∕4∕I0 − I�∕2) are equivalent [428], 

S1,2 are Stokes parameters. f The degree of linear polarisation 

DOLP =

√
S2
2
+ S

2

1
∕S0
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was assembled with a computer and data storage for data 
logging (Quobasystems Pty.). Recording is triggered 
remotely at 433 MHz channel while flight control of the 
drone is at the 2.4 GHz band. The magnification of a lens 
is defined as the ratio between the sensor size h and the 
FOV: m = h/FOV was determined from the fixed drone 
height H = 444 cm with the camera 2448 × 2048 pixels of 
3.45  μm size as m  = 0.84456/339 = 2.491 × 10 −3 
(1/m = 401.4 times); sensor width × height = 8.4456 × 7.0
656 mm2 or optical format of “2/3” with 11  mm 
diagonal.

The absolute minimum resolvable spot size viewable on 
the object, the object space resolution ζO = ζI/m, is defined 
by the image space resolution ζI. For the pixel size ζI = 
3.45 μm, object space resolution was ζO = 1.385 mm while 
the period of the 3D printed gratings was smaller at 1 mm 
(0.5 duty cycle). Hence, the gratings were not resolved by 
F# = 1.4 camera from the 4.44 m drone flight. However, 
4-pol. analysis allowed us to determine the azimuth of grat-
ings’ orientation [440]. We also showed that the azimuth 
determined by the software of the camera is fully consistent 
with image analysis of separate frames taken at different four 
polarisations. Figure 55a shows imaging of gratings with the 
4-pol. camera from ∼ 5 m height at different presentations 
of total intensity or Stokes S0, orientation azimuth θshift and 
DOLP, respectively. Images of the water edge region reveal 
different reflectivity of sand at varying water saturation 
(Fig. 55b). For long wavelengths, at THz sub-1 mm spectral 
range, it is possible to realise 4-pol. method in the attenu-
ated total reflection (ATR) mode [449]. Non-propagating 
optical near-field can be used for absorbance mapping at 
different polarisations in the identical way as with far-field 
[443]. Realisation of such computer tomography (CT) based 

approach at long-IR THz spectral window is currently non-
existent and is one of good candidates for the roadmap appli-
cations in polarisation analysis.

28.3 � Conclusion and future perspectives

Four-polarisation camera makes it possible to acquire instan-
taneous images for tracing time evolution of anisotropy in 
absorption, reflection or scattering in real time, e.g., a still 
image of a breaking wave discussed above. Such anisotropy 
can be distinguished even below spatial resolution given by 
the Abbe’s criterion. Since natural light is partially polar-
ised Pol ∼ sin2�∕1 + cos2� (γ is the angle between the Sun, 
point of observation and camera), the imaging depends on 
the position of the object, its reflectivity (material, orienta-
tion, surface tilt etc.), light source (Sun light) and camera 
positions. The long wavelength and low-NA imaging can be 
improved using 4-pol. analysis with on-chip integrated lin-
ear polarisers. Among many applications, the measurement 
of wave height is one of the practical targets using 4-pol. 
method. With a fixed time stamp of azimuth image using 
drone and direct measurement of the wave height using 
dedicated sea buoy (see Fig. 53a) correlations can be estab-
lished. Next roadmap applications should consider use of 
an artificial intelligence (AI) trained approach for the deter-
mination of the color (azimuth) distributions, which could 
reveal spatially non-resolved patterns of surface waves due 
to wind in addition to the waves of tens-of-meters. Satellites 
such as altimeters can expand their functionality by polari-
sation analysis of reflected signals at several polarisations. 
It is essential that images/signals of all four polarisations 
are acquired simultaneously. Mars Reconnaissance Orbiter 
HiRISE imagery around the Perseverance rover [450] shows 

Fig. 55   Intensity, azimuth and 
DOLP for image of 3D printed 
1-mm-period gratings placed on 
beach sand  and water edge on 
the sand  drone hovering above 
beach at ∼ 5 m; experiments 
on 27 April 2021. Insets show 
close up views of gratings. 
Four-polarisations (4-pol.) cam-
era (CS505MUP1 Thorlabs). 
3D printed gratings were on 
a white board and transparent 
free-standing (black) made from 
a black-color feed-fiber
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patterns of surface relief with distinct anisotropy, which 
could be explored beyond the diffraction limit using the 
4-pol method.

29 � Super‑resolution imaging using 
structured light (Gangi Reddy Salla, Ravi 
Kumar, Sakshi, Inbarasan Muniraj, Shashi 
Prabhakar and R. P. Singh)

29.1 � Background

Structured light has been very popular in recent years due 
to its potential applications in microscopy and imaging, 
as it beats the diffraction limit [451–456]. Structured light 
can be controlled periodically, for instance as dots, stripes, 
optical random patterns, or speckles [457]. We also have 
various structured light fields that form optical lattices 
at systematic or arbitrary levels, which can be generated 
using computational holography [361, 452]. In micros-
copy, the sample is imaged using the fluorescence, which 
has limited resolution due to the diffraction limit [447]. 
With the help of structured light, one can increase the res-
olution beyond the diffraction limit, by at least two folds. 
The “confocal microscopy” technique has been effectively 
utilized to find the single nitrogen-vacancy centers in dia-
monds for producing the perfect single photon source with 
non-classical optical properties. Imaging beyond the dif-
fraction limit is known as super-resolution microscopy and 
has gained a lot of interest for imaging nanomaterial or 
biological samples [454, 463]. They also have applications 
in imaging live cell samples, neuroscience and investigat-
ing viral structures along with their interactions with the 
host.

29.2 � Methodology

The first microscopic set up using structured light was intro-
duced by Tony Wilson at Oxford University and used for 
generating thin optical sections in a conventional widefield 
microscope [456]. Later, the same was utilized for improving 
the resolution of the imaging set-up and overcoming the dif-
fraction limit. This technique also provides a clearer image 
compared to convolutional and confocal microscopy. It has 
been proved that the speckles can increase the resolution 
and field of view, which reduces the experimental configura-
tion. In general, the following steps are mainly involved in 
super-resolution microscopy using structured light: first, we 
need to illuminate the sample with structured light using a 
high numerical aperture objective lens and then collect the 
fluorescence light using 2-D detector array such as CCD 
camera. Secondly, we obtain multiple images by varying 

the structured light patterns or phases associated with them. 
Finally, we apply the de-convolution techniques and recon-
struction algorithms for constructing the object information 
beyond the diffraction limit [452].

The schematic for super-resolution microscopy and one 
type of structured light pattern (speckle) have been shown 
in Fig. 56. As can be seen, one needs to use a collimating 
lens and beam expander along with a polarizer, and then 
place a hologram such as a sinusoidal grating pattern for 
creating the structured light. The structured light can also 
be generated by inducing the random phase to the coher-
ent light beam, which can be done in the lab simply by 
passing the light beam through a rough surface such as a 
ground glass plate [457–459]. To note, the proposed set-up 
is alignment-free along with their robustness against the 
aberrations, and one can reconstruct the image without 
having the prior information of structured pattern [361]. 
The object of interest can be illuminated by low-intensity 
laser light that generates a speckle pattern reflected from 
a wall. The optical memory effect can translate the gener-
ated speckle pattern on the object.

29.3 � Conclusion and future perspectives

Although super-resolution microscopy with structured light 
has made significant advancements, it still faces challenges, 
such as the need for specialized equipment and complex 
post-processing. Future developments in this field may 
involve enhancing imaging speed, improving the ease of use, 
and expanding its applicability to a broader range of sam-
ples. We also need to search for new structured light patterns 
to improve the resolution further and integrate them for live 

Fig. 56   Schematic of the experimental set up used for super-resolu-
tion microscopy using structured light, and a sample of structured 
light is shown in the inset
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imaging of the biological cell samples. It is also observed 
that the random structured light can be simply generated 
using the random phase function. The properties such as 
size and distribution of these random patterns can be easily 
controlled by changing the phase of the coherent light beam, 
i.e., utilizing special light beams such a Laguerre-Gaussian, 
Bessel-Gaussian and perfect vortex beams [457–459]. More-
over, the effect of diffraction of the random optical pattern 
by using diffracting and non-diffracting speckles can also be 
explored to design better microscopic imaging technologies. 
The commented MATLAB code for simulating and propa-
gating the random patterns generated using various types 
of spatial modes of light is provided in the supplementary 
information. MATLAB code for simulating optical random 
patterns is given in supplementary materials S16.

30 � Polarization encrypted diffractive optical 
elements for point spread function 
engineering (Vipin Tiwari and Nandan S. 
Bisht)

30.1 � Background

PSF engineering is a robust computational technique, that 
is widely used in the computational imaging domain to 
obtain optimized image reconstruction. PSF engineering is 
typically implemented by placing a tailored phase mask at 
the pupil plane of an imaging lens to control the emerging 
beam dynamics of an imaging system. For instance, imag-
ing systems with extended Depth of Field, and low SNR are 
highly desirable in various interesting applications such as 
optical microscopy [460], beam shaping [461], computa-
tional imaging [138] for better image acquisition. One of 
the most common methods to obtain enhanced depth of field 
is to reduce the aperture size at the pupil plane, but it lim-
its the total light throughput of the imaging system. Other 
interesting developments in PSF engineering include the 
use of cubic phase masks (CPMs) [462] and, logarithmic 
aspheric method [463]. However, such methods require tedi-
ous post-processing deblurring computational algorithms. 
In recent years, some notable studies on PSF engineering 
have been reported using advanced phase masks, such as 
Radial Quartic Phase Masks [464], and scattering diffusers 
[465]. Besides, extended depth of field is achieved in holog-
raphy using deep learning methods with additional features, 
such as autofocusing and phase recovery [466]. It should be 
noted that the aforementioned techniques are mostly based 
on either amplitude or phase-coded masks. However, polari-
zation is another interesting feature of light, which can be 
exploited to design novel coded masks in PSF engineering, 
which leads to the development of polarization-coded Aper-
tures (PCAs).

PCA imaging has opened new trends in PSF engineer-
ing as it enables to obtaining enhanced depth of field of 
diffraction-limited lens with minimal power attenuation 
by encoding orthogonal polarization states at different 
portions of conventional binary DOEs [467]. However, 
experimental fabrication of PCA is a challenging task. 
Fortunately, modern electro-Opto-mechanical devices, 
such as SLMs and photo Elastic Modulators (PEMs) are 
commercially available and can be utilized to design such 
PCAs computationally by exploiting their modulation 
characteristics [468]. Recently, SLM based PCA imaging 
has been experimentally demonstrated using its polariza-
tion modulation characteristics for extended depth of field 
and axial intensity [469].

30.2 � Methodology

Polarization-encrypted DOEs can be designed by the 
Orthogonal Polarization Multiplexing (OPM) method. For 
instance, a PCA can be designed at the pupil plane of an 
imaging lens by encoding orthogonal polarization states 
at the central (x-polarized) and ring portion (y-polarized) 
of a conventional annular aperture (Fig. 57). Polariza-
tion multiplexing is beneficial as there is no interference 
between orthogonal polarization states at two regions of 
the annular aperture. Such PCA equipped imaging system 
results in an extended depth of field for diffraction-lim-
ited imaging lens at the detector plane [467]. On the other 
hand, resultant PSF can be obtained by simply adding 

Fig. 57   Schematic of PCA equipped imaging of diffraction-limited 
imaging lens. Inset shows a design of Polarization encrypted annular 
(ring) aperture by the OPM method
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PSFs due to both regions of PCA (central and ring) at the 
detector plane, which makes use of complete aperture and 
thus preserves the total light throughput as well. 

30.3 � Results

A comparative PSF study is carried out for conventional 
DOEs [ring, Binary Fresnel Zone Plate (BFZP), Binary 
Axicon (BAx)] and corresponding polarization encrypted 
DOEs [PCA, Polarization Coded Binary Fresnel Zone Plate 
(PCBFZP), Polarization coded Axicon (PCAx)] respectively 
and results are illustrated in Fig. 58. PSF plots (Fig. 58m–o) 
indicate a significant hike in central peak intensity for polar-
ization-encrypted DOEs as compared to conventional DOEs. 

30.4 � Conclusion and future perspectives

The inclusion of polarization-encrypted masks in conven-
tional coded apertures (amplitude and phase) can play a piv-
otal role in computational imaging. Existing demonstrations 
support PCAs as potential candidate for obtaining improved 
imaging characteristics of an optical system. Moreover, 
PCAs exhibit the capability to utilize the maximum light 
throughput that can be useful in optical techniques under 
low illumination. Despite the exceptional light-gathering 

properties, experimental demonstration of PCA is a chal-
lenging task in itself. Fabrication techniques such as thin 
film fabrication and electro-lithography can be utilized for 
in-hand fabrication of such polarization-encrypted DOEs. 
The MATLAB codes for designing PCA is given in sup-
plementary materials S17.

31 � Summary and conclusion (Joseph Rosen 
and Vijayakumar Anand)

In this roadmap, computational methods in four sub-fields of 
optical imaging and holography, namely, incoherent digital 
holography, quantitative phase imaging, imaging through 
scattering layers, and super-resolution imaging are reviewed. 
A total of 83 authors from the research groups of 28 promi-
nent researchers in this field contributed to this roadmap. 
The above review confirms the changing trend from the need 
for manufacturing advanced optical components and devel-
oping optical methods to the development of computational 
methods. Most of the computational techniques reviewed 
here have overcome the limitations of manufacturing optical 
elements and optical methods or improving the performance 
of existing optical imaging and holography systems to the 
least extent. We believe that in addition to showing many 

Fig. 58   PSF engineering for polarization encrypted DOEs. a–c Con-
ventional binary DOEs (ring, FZP, Axicon respectively) d–f cor-
responding PSFs respectively. g–i Polarization coded DOEs (ring, 

FZP, axicon respectively). j–l Corresponding PSFs respectively. m–o 
Intensity plots for conventional DOEs (blue line) and polarization 
encrypted DOEs (red line) respectively
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commonalities in computational methods between different 
sub-fields, this roadmap shows the possibility of collabora-
tion between fields and sets the pace for the next stages of 
development for optical imaging and holography.

Table 1   List of acronyms Serial number Acronym Abbreviation

1 Digital holography DH
2 Three dimension 3D
3 Incoherent digital holography IDH
4 Point spread function PSF
5 Phase shifting interferometry PSI
6 Phase shifting incoherent digital holography PS-IDH
7 Fresnel incoherent correlation holography FINCH
8 Single-shot phase shifting SSPS
8 Two polarization-sensitive phase-only spatial light modulator TPP-SLM
9 Computational coherent superposition CCS
10 Polarization-filterless polarization-sensitive polarization-multiplexed 

phase-shifting incoherent digital holography
P4IDH

11 Light emitting diode LED
12 Diffractive optical element DOE
13 Random multiplexing RM
14 Polarization multiplexing PM
15 Signal-to-noise ratio SNR
16 Transport of amplitude into phase using the Gerchberg Saxton algorithm TAP-GSA
17 Degrees of freedom DoF
18 Coded aperture imaging CAI
19 Numerical aperture NA
20 Lucy-Richardson-Rosen algorithm LRRA​
21 United states air force USAF
22 Single molecule localization microscopy SMLM
23 Self-interference digital holography SIDH
24 Electron multiplying charge-coupled device EMCCD
25 Light-sheet LS
26 Light-sheet fluorescence microscopy LSFM
27 Field of view FOV
28 Deformable mirror DM
29 Incoherent holographic lattice-light sheet IHLLS
30 Lattice-light sheet LLS
31 Phase shifting holography PSH
32 Matrix laboratory MATLAB
33 Sparse-view computed tomography SV-CT
34 Compressed ultrafast tomographic imaging CUTI
35 Two dimension 2D
36 Two-step iterative shrinkage/thresholding TwIST
37 TwIST-based tomographic reconstructions TTR​
38 Ultra violet UV
39 Spontaneous parametric down conversion SPDC
40 Avalanche photo diode APD
41 Hermite-Gauss HG
42 Colony-forming unit CFU
43 Plaque-forming unit PFU

Appendix

See Table 1 here.
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Table 1   (continued) Serial number Acronym Abbreviation

44 Complementary metal–oxide–semiconductor CMOS
45 Thin-flim-transistor TFT
46 Environmental protection agency EPA
47 Vesicular stomatitis virus VSV
48 Herpes simplex virus type 1 HSV-1
49 Encephalo myo carditis virus EMCV

50 Computer-generated holography CGH
51 Short-time Fourier transform STFT
52 Red green blue-depth image RGB-D
53 Fast Fourier transforms FFT
54 Wavefront recording plane WRP
55 Compressive Fresnel holography CFH
56 Compressive sensing CS
57 Random modulators RM
58 Partial random ensemble PRE
59 Random partial Fourier RPF
60 Deep learning DL
61 Quantitative phase imaging QPI
62 Optical diffraction tomography ODT
63 Refractive index RI
64 Phase transfer function PTF
65 Spatial bandwidth product SBP
66 Hybrid input-output algorithm HIO
67 Transport of intensity equation TIE
68 Optical transfer function OTF
69 Differential phase contrast DPC
70 Fourier ptychographic microscopy FPM
71 Intensity diffraction tomography IDT
72 Transport of intensity diffraction tomography TIDT
73 Fourier ptychographic diffraction tomography FPDT
74 HyperSpectral HS
75 HyperSpectral quantitative phase imaging HSQPI
76 Complex cube filter CCF
77 Beam splitter BS
78 Complementary metal–oxide–semiconductor CMOS
79 HyperSpectral phase retrieval HSPhR
80 Space-bandwidth product SBP
81 superluminescent light-emitting diode sLED
82 Lensless digital holographic microscopy LDHM
83 Angular spectrum AS
84 Speeded-up robust features SURF
85 Quantitative phase microscopy QPM
86 Low coherence quantitative phase microscopy LC-QPM
87 Optical path difference OPD
88 Temporal phase shifting TPS
89 Fourier transform FT
90 Hilbert spiral transform HST
91 Block matching 3D algorithm BM3D
92 Improved period-guided bidimensional empirical mode decomposition iPGBEMD
93 Mouse embryonic fibroblasts MEF
94 Digital in-line holography DIH



	 J. Rosen et al.  166   Page 68 of 82

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00340-​024-​08280-3.

Author contributions  All authors contributed equally to the manu-
script. The roadmap has been compiled by Joseph Rosen and Vijaya-
kumar Anand.

Funding  Open access funding provided by Ben-Gurion University. 
Israel Innovation Authority (79555, MAGNET) (JR, Sec. 3); Euro-
pean Union’s Horizon 2020 research and innovation programme grant 
agreement No. 857627 (CIPHR) (VA, Sec. 3 and Sec. 4); H2020 FET-
OPEN DYNAMIC (grant no. 863203) (SG, Sec. 21); The Chan Zuck-
erberg Initiative (2020-225346) (SG, Sec. 21); S.G. is a member of 
the institute Universitaire de France (SG, Sec. 21); INTPART (project 
# 309802) (BSA, Sec. 18), Research Council of Norway (BSA, Sec. 
18), (Qualification Project # 345423) (BSA, Sec. 18) and Narodowe 
Centrum Nauki (2020/37/B/ST7/03629) (BSA, Sec. 18); NIH RO1 
NS111749 (SA, Sec. 7) and the NIH R21 DC017292 (JA, Sec. 7); 

European Union’s Horizon 2020 research and innovation program 
(Future and Emerging Technologies) under Grant Agreement No. 
828978 (Project CancerScan) and by the Israel Science Foundation 
(ISF) (grant No. 897/21) (SA, Sec. 23); Japan Society for the Promotion 
of Science (International research fellow P22752) (DB, Sec. 11); Fonds 
Wetenschappelijk Onderzoek (12ZQ223N, G089424N, G0A3O24N) 
(DB, Sec. 11); National Natural Science Foundation of China (NSFC) 
under grant number 61827825 (LC, Sec. 19); National Natural Science 
Foundation of China (62105151, 62175109, U21B2033, 62227818) 
(CZ, Sec. 14), Leading Technology of Jiangsu Basic Research Plan 
(BK20192003) (CZ, Sec. 14), Youth Foundation of Jiangsu Province 
(BK20210338) (CZ, Sec. 14), Biomedical Competition Foundation of 
Jiangsu Province (BE2022847) (CZ, Sec. 14), Key National Industrial 
Technology Cooperation Foundation of Jiangsu Province (BZ2022039) 
(CZ, Sec. 14), Fundamental Research Funds for the Central Univer-
sities (30920032101, 30923010206) (CZ, Sec. 14), Fundamental 
Scientific Research Business Fee Funds for the Central Universities 
(2023102001) (CZ, Sec. 14), and Open Research Fund of Jiangsu Key 

Table 1   (continued) Serial number Acronym Abbreviation

95 Peak signal to noise ratio PSNR
96 Structural similarity index SSIM
97 Charge coupled device CCD
98 2-photon fluorescence 2PF
99 Photo multiplier tube PMT
100 Near-infra-red NIR

101 Diffuse optical imaging DOI
102 Diffuse optical tomography DOT
103 Artificial intelligence AI
104 One-dimensional convolutional neural network 1D-CNN
105 Mean squared error MSE
106 Batch normalization BN
107 Deep learning DL
108 Machine learning ML
109 Full width half maximum FWHM
110 Light detection and ranging LIDAR
111 Four-polarisation 4-pol.
112 Degree of linear polarisation DOLP
113 Latitude Lat
114 Longitude LON
115 Heading HDG
116 Altitude ALT
117 Attenuated total reflection ATR​
118 Computer tomography CT
119 Cubic phase mask CPM
120 Polarization-coded aperture PCA
121 Photo elastic modulators PEM
122 Orthogonal polarization multiplexing OPM
123 Fresnel zone plate FZP
124 Binary Fresnel zone plate BFZP
125 Binary axicon BAx
126 Polarization coded binary fresnel zone plate PCBFZP
127 Polarization coded axicon PCAx

https://doi.org/10.1007/s00340-024-08280-3


Roadmap on computational methods in optical imaging and holography [invited]﻿	 Page 69 of 82    166 

Laboratory of Spectral Imaging & Intelligent Sense (JSGP202105, 
JSGP202201) (CZ, Sec. 14); National Natural Science Foundation of 
China (grant No. 12150410318, Grant No. 62375092) (JP, Sec. 20), 
key project of natural Science Foundation of Fujian Province (grant 
no. 2023J020220) (JP, Sec. 20); The Academy of Finland (project no. 
336357, PROFI 6 - TAU Imaging Research Platform) (KE, Sec. 15); 
TÜBITAK grant no. 122F311 (YH, Sec.22); Life Sciences Research 
Foundation (AG, Sec. 6); National Institutes of Health (R21NS129093 
and R21DC020005) (AG, Sec. 6); Goodnight Early Career Innovators 
Award (AG, Sec. 6); Science and Engineering Research Board (SERB)-
CORE/2019/000026 and Department of Biotechnology (DBT)-BT/
PR35557/MED/32/707/2019 (RKS, Sec. 25); I-DAPT Hub Founda-
tion (I-DAPT/IIT(BHU)/2023-24/Project Sanction/46) (RKS, Sec. 25); 
Russian Science Foundation grant No. 22-79-10007 (SNK. Sec. 26); 
National Institute of General Medical Sciences (R21GM134462) (PK, 
Sec. 5); Start-up research grant (SRG/2019/000857) from DST-SERB, 
India (RK, Sec. 28); Natural Sciences and Engineering Research Coun-
cil of Canada (RGPIN-2017-05959, RGPAS-2017-507845, I2IPJ-
555593-20) (JL, Sec. 8); Canada Research Chairs Program (CRC-2022-
00119) (JL, Sec. 8); Canada Foundation for Innovation and Ministère 
de l’Économie et de l’Innovation du Québec (37146) (JL, Sec. 8); 
Canadian Cancer Society (707056) (JL, Sec. 8); New Frontiers in 
Research Fund (NFRFE-2020-00267) (JL, Sec. 8); Fonds de Recherche 
du Québec–Nature et Technologies (203345–Centre d’Optique, Photo-
nique, et Lasers, PBEEE-2023-2024-V1-334852) (JL, Sec. 8); National 
Science Center, Poland (SONATA 2020/39/D/ST7/03236) (MT, Sec. 
17). The research was carried out on devices co-funded by the Warsaw 
University of Technology within the Excellence Initiative: Research 
University (IDUB) programme (MT, Sec. 17). M.R. is supported by 
the Foundation for Polish Science (FNP start programme); KAIST UP 
Program, BK21+ Program, Tomocube, National Research Foundation 
of Korea (2015R1A3A2066550, 2022M3H4A1A02074314) (YP, Sec. 
16), and Institute of Information & communications Technology Plan-
ning & Evaluation (IITP; 2021-0-00745) grant funded by the Korea 
government (MSIT) (YP, Sec. 16); JSPS KAKENHI Grant Number 
22H03607 (TS, Sec. 12), and IAAR Research Support Program, Chiba 
University, Japan (TS, Sec. 12).

Data availability  The data can be obtained from the authors upon rea-
sonable request.

Declarations 

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 E. Hecht, Optics (Pearson Education India, Bangalore, 2012)
	 2.	 R. Kingslake, A History of the Photographic Lens (Academic 

press, Cambridge, 1989)

	 3.	 T. Matsuyama, Y. Ohmura, D.M. Williamson, The lithographic 
lens: its history and evolution. In Optical Microlithography XIX 
(Vol. 6154, pp. 24–37). SPIE, (2006)

	 4.	 J.B. Young, H.A. Graham, E.W. Peterson, Wire grid infrared 
polarizer. Appl. Opt. 4(8), 1023–1026 (1965)

	 5.	 R.A. Bergh, H.C. Lefevre, H.J. Shaw, Single-mode fiber-optic 
polarizer. Opt. Lett. 5(11), 479–481 (1980)

	 6.	 P. Hariharan, Optical Interferometry (Elsevier, Amsterdam, 
2003)

	 7.	 D. Gabor, Holography, 1948–1971. Science 177(4046), 299–313 
(1972)

	 8.	 D. Gabor, Holography, past, present and future. In Developments 
in Holography II (Vol. 25, pp. 129–136). SPIE. (1971)

	 9.	 J.F. Hamilton, The silver halide photographic process. Adv. Phys. 
37(4), 359–441 (1988)

	 10.	 E.R. Fossum, Digital camera system on a chip. IEEE Micro 
18(03), 8–15 (1998)

	 11.	 J.W. Goodman, Digital image formation from electronically 
detected holograms. In Computerized Imaging Techniques (Vol. 
10, pp. 176–181). SPIE. (1967)

	 12.	 B.R. Brown, A.W. Lohmann, Computer-generated binary holo-
grams. IBM J. Res. Dev. 13(2), 160–168 (1969)

	 13.	 A.W. Lohmann, How to make computer holograms. In Develop-
ments in Holography II (Vol. 25, pp. 43–50). SPIE (1971)

	 14.	 T.S. Huang, Digital holography. Proc. IEEE 59(9), 1335–1346 
(1971)

	 15.	 A. Kronrod, Reconstruction of holograms with a computer. 
Soviet Phys.-Tech. Phys. 17, 333–334 (1972)

	 16.	 A. Ozcan, E. McLeod, Lensless imaging and sensing. Annu. Rev. 
Biomed. Eng. 18, 77–102 (2016)

	 17.	 Y. Wu, A. Ozcan, Lensless digital holographic microscopy and 
its applications in biomedicine and environmental monitoring. 
Methods 136, 4–16 (2018)

	 18.	 M. Roy, D. Seo, S. Oh, J.W. Yang, S. Seo, A review of recent 
progress in lens-free imaging and sensing. Biosens. Bioelectron. 
88, 130–143 (2017)

	 19.	 V. Boominathan, J.T. Robinson, L. Waller, A. Veeraraghavan, 
Recent advances in lensless imaging. Optica 9(1), 1–16 (2022)

	 20.	 G. Barbastathis, A. Ozcan, G. Situ, On the use of deep learning 
for computational imaging. Optica 6(8), 921–943 (2019)

	 21.	 T.C. Poon (ed.), Digital Holography and Three-Dimensional Dis-
play: Principles and Applications (Springer Science & Business 
Media, Boston, 2006)

	 22.	 M.K. Kim, Digital Holographic Microscopy (Springer, New 
York, 2011), pp.149–190

	 23.	 P. Picart, J.C. Li, Digital Holography (John Wiley & Sons, 2013)
	 24.	 T.C. Poon, J.P. Liu, Introduction to Modern Digital Holography: 

with MATLAB (Cambridge University Press, Cambridge, 2014)
	 25.	 T. Shimobaba, T. Ito, Hardware Acceleration of Computational 

Holography (Springer, Cham, 2023)
	 26.	 J. Rosen, A. Vijayakumar, M. Kumar, M.R. Rai, R. Kelner, Y. 

Kashter, A. Bulbul, S. Mukherjee, Recent advances in self-inter-
ference incoherent digital holography. Adv. Opt. Photonics 11(1), 
1–66 (2019)

	 27.	 J.P. Liu, T. Tahara, Y. Hayasaki, T.C. Poon, Incoherent digital 
holography: a review. Appl. Sci. 8(1), 143 (2018)

	 28.	 J. Rosen, S. Alford, V. Anand, J. Art, P. Bouchal, Z. Bouchal, 
M.U. Erdenebat, L. Huang, A. Ishii, S. Juodkazis, N. Kim, et al. 
Roadmap on recent progress in FINCH technology. J. Imaging 
7(10), 197 (2021)

	 29.	 T. Tahara, Review of incoherent digital holography: applications 
to multidimensional incoherent digital holographic microscopy 
and palm-sized digital holographic recorder—holosensor. Front. 
Photonics 2, 829139 (2022)

	 30.	 T. Tahara, Y. Zhang, J. Rosen, V. Anand, L. Cao, J. Wu, T. 
Koujin, A. Matsuda, A. Ishii, Y. Kozawa, R. Okamoto, et al. 

http://creativecommons.org/licenses/by/4.0/


	 J. Rosen et al.  166   Page 70 of 82

Roadmap of incoherent digital holography. Appl. Phys. B 
128(11), 193 (2022)

	 31.	 B.W. Schilling, T.C. Poon, G. Indebetouw, B. Storrie, K. Shi-
noda, Y. Suzuki, M.H. Wu, Three-dimensional holographic fluo-
rescence microscopy. Opt. Lett. 22(19), 1506–1508 (1997)

	 32.	 B. Katz, J. Rosen, Super-resolution in incoherent optical imag-
ing using synthetic aperture with Fresnel elements. Opt. Express 
18(2), 962–972 (2010)

	 33.	 J. Rosen, N. Siegel, G. Brooker, Theoretical and experimental 
demonstration of resolution beyond the Rayleigh limit by FINCH 
fluorescence microscopic imaging. Opt. Express 19(27), 26249–
26268 (2011)

	 34.	 M.K. Kim, Full color natural light holographic camera. Opt. 
Express 21(8), 9636–9642 (2013)

	 35.	 J.H. Bruning, D.R. Herriott, J.E. Gallagher, D.P. Rosenfeld, A.D. 
White, D.J. Brangaccio, Digital wavefront measuring interferom-
eter for testing optical surfaces and lenses. Appl. Opt. 13(11), 
2693–2703 (1974)

	 36.	 J. Rosen, G. Brooker, Digital spatially incoherent Fresnel holog-
raphy. Opt. Lett. 32(8), 912–914 (2007)

	 37.	 L.M. Mugnier, G.Y. Sirat, On-axis conoscopic holography with-
out a conjugate image. Opt. Lett. 17(4), 294–296 (1992)

	 38.	 K. Choi, J.W. Lee, J. Shin, K. Hong, J. Park, H.R. Kim, Real-
time noise-free inline self-interference incoherent digital 
holography with temporal geometric phase multiplexing. Pho-
tonics Res. 11(6), 906–916 (2023)

	 39.	 J. Rosen, G. Indebetouw, G. Brooker, Homodyne scanning 
holography. Opt. Express 14(10), 4280–4285 (2006)

	 40.	 N. Yoneda, Y. Saita, T. Nomura, Motionless optical scanning 
holography. Opt. Lett. 45(12), 3184–3187 (2020)

	 41.	 N. Yoneda, Y. Saita, T. Nomura, Three-dimensional fluores-
cence imaging through dynamic scattering media by motion-
less optical scanning holography. Appl. Phys. Lett. 119(16), 
161101 (2021)

	 42.	 T. Tahara, Polarization-filterless polarization-sensitive polar-
ization-multiplexed phase-shifting incoherent digital hologra-
phy (P4IDH). Opt. Lett. 48(15), 3881–3884 (2023)

	 43.	 T. Tahara, Incoherent digital holography with two polarization-
sensitive phase-only spatial light modulators and reduced num-
ber of exposures. Appl. Opt. 63(7), B24–B31 (2024)

	 44.	 B. Zhu, K.I. Ueda, Real-time wavefront measurement based on 
diffraction grating holography. Opt. Commun. 225(1–3), 1–6 
(2003)

	 45.	 J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, J. 
Wyant, Pixelated phase-mask dynamic interferometers. Proc. 
SPIE 5531, 304 (2004)

	 46.	 Y. Awatsuji, M. Sasada, T. Kubota, Parallel quasiphase-shifting 
digital holography. Appl. Phys. Lett. 85, 1069 (2004)

	 47.	 T. Tahara, R. Mori, S. Kikunaga, Y. Arai, Y. Takaki, Dual-
wavelength phase-shifting digital holography selectively 
extracting wavelength information from wavelength-multi-
plexed holograms. Opt. Lett. 40(12), 2810–2813 (2015)

	 48.	 T. Tahara, R. Mori, Y. Arai, Y. Takaki, Four-step phase-shifting 
digital holography simultaneously sensing dual-wavelength 
information using a monochromatic image sensor. J. Opt. 
17(12), 125707 (2015)

	 49.	 T. Tahara, R. Otani, K. Omae, T. Gotohda, Y. Arai, Y. Takaki, 
Multiwavelength digital holography with wavelength-multi-
plexed holograms and arbitrary symmetric phase shifts. Opt. 
Express 25(10), 11157–11172 (2017)

	 50.	 T. Tahara, Multidimension-multiplexed full-phase-encoding 
holography. Opt. Express 30(12), 21582–21598 (2022)

	 51.	 Y. Isomae, N. Sugawara, N. Iwasaki, T. Honda, K. Amari, 
Phase-only spatial light modulator having high reflectance, 
high-definition pixels and high photo-durability. In Digital 

Optical Technologies 2021 (Vol. 11788, pp. 191–196). SPIE. 
(2021)

	 52.	 T. Tahara, T. Kanno, Y. Arai, T. Ozawa, Single-shot phase-shift-
ing incoherent digital holography. J. Opt. 19(6), 065705 (2017)

	 53.	 T. Nobukawa, T. Muroi, Y. Katano, N. Kinoshita, N. Ishii, Opt. 
Lett. 43, 1698 (2018)

	 54.	 K. Choi, K.I. Joo, T.H. Lee, H.R. Kim, J. Yim, H. Do, S.W. Min, 
Compact self-interference incoherent digital holographic camera 
system with real-time operation. Opt. Express 27(4), 4818–4833 
(2019)

	 55.	 T. Tahara, T. Ito, Y. Ichihashi, R. Oi, Multiwavelength three-
dimensional microscopy with spatially incoherent light, based 
on computational coherent superposition. Opt. Lett. 45(9), 2482–
2485 (2020)

	 56.	 T. Tahara, A. Ishii, T. Ito, Y. Ichihashi, R. Oi, Single-shot wave-
length-multiplexed digital holography for 3D fluorescent micros-
copy and other imaging modalities. Appl. Phys. Lett. 117(3), 
031102 (2020)

	 57.	 T. Tahara, T. Shimobaba, High-speed phase-shifting incoherent 
digital holography. Appl. Phys. B 129(6), 96 (2023)

	 58.	 R. Kelner, J. Rosen, Spatially incoherent single channel digital 
Fourier holography. Opt. Lett. 37(17), 3723–3725 (2012)

	 59.	 J. Hong, M.K. Kim, Single-shot self-interference incoherent digi-
tal holography using off-axis configuration. Opt. Lett. 38(23), 
5196–5199 (2013)

	 60.	 X. Quan, O. Matoba, Y. Awatsuji, Single-shot incoherent digi-
tal holography using a dual-focusing lens with diffraction grat-
ings. Opt. Lett. 42(3), 383–386 (2017)

	 61.	 O. Barlev, M.A. Golub, Multifunctional binary diffractive 
optical elements for structured light projectors. Opt. Express 
26(16), 21092–21107 (2018)

	 62.	 M. Polin, K. Ladavac, S.H. Lee, Y. Roichman, D.G. Grier, 
Optimized holographic optical traps. Opt. Express 13(15), 
5831–5845 (2005)

	 63.	 Y. Shi, C. Wan, C. Dai, Z. Wang, S. Wan, G. Zheng, S. Zhang, 
Z. Li, Augmented reality enabled by on-chip meta-holography 
multiplexing. Laser Photonics Rev. 16(6), 2100638 (2022)

	 64.	 H. Wang, R. Piestun, Azimuthal multiplexing 3D diffractive 
optics. Sci. Rep. 10(1), 6438 (2020)

	 65.	 W. Yu, T. Konishi, T. Hamamoto, H. Toyota, T. Yotsuya, Y. 
Ichioka, Polarization-multiplexed diffractive optical elements 
fabricated by subwavelength structures. Appl. Opt. 41(1), 
96–100 (2002)

	 66.	 A. Vijayakumar, C. Rosales-Guzmán, M.R. Rai, J. Rosen, O.V. 
Minin, I.V. Minin, A. Forbes, Generation of structured light by 
multilevel orbital angular momentum holograms. Opt. Express 
27(5), 6459–6470 (2019)

	 67.	 X.B. Hu, S.Y. Ma, C. Rosales-Guzmán, High-speed generation 
of singular beams through random spatial multiplexing. J. Opt. 
23(4), 044002 (2021)

	 68.	 G. Brooker, N. Siegel, V. Wang, J. Rosen, Optimal resolution 
in Fresnel incoherent correlation holographic fluorescence 
microscopy. Opt. Express 19(6), 5047–5062 (2011)

	 69.	 S. Gopinath, A. Bleahu, T. Kahro, A.S.J. Francis Rajeswary, 
R. Kumar, K. Kukli, A. Tamm, J. Rosen, V. Anand, Enhanced 
design of multiplexed coded masks for Fresnel incoherent cor-
relation holography. Sci. Rep. 13(1), 7390 (2023)

	 70.	 A. Vijayakumar, T. Katkus, S. Lundgaard, D.P. Linklater, E.P. 
Ivanova, S.H. Ng, S. Juodkazis, Fresnel incoherent correlation 
holography with single camera shot. Opto-Electron. Adv. 3(8), 
200004 (2020)

	 71.	 A. Vijayakumar, Y. Kashter, R. Kelner, J. Rosen, Coded aper-
ture correlation holography system with improved perfor-
mance. Appl. Opt. 56(13), F67–F77 (2017)



Roadmap on computational methods in optical imaging and holography [invited]﻿	 Page 71 of 82    166 

	 72.	 A. Vijayakumar, Y. Kashter, R. Kelner, J. Rosen, Coded aper-
ture correlation holography–a new type of incoherent digital 
holograms. Opt. Express 24(11), 12430–12441 (2016)

	 73.	 A. Vijayakumar, J. Rosen, Interferenceless coded aperture cor-
relation holography–a new technique for recording incoherent 
digital holograms without two-wave interference. Opt. Express 
25(12), 13883–13896 (2017)

	 74.	 M.J. Cieślak, K.A. Gamage, R. Glover, Coded-aperture imag-
ing systems: past, present and future development–a review. 
Radiat. Meas. 92, 59–71 (2016)

	 75.	 E.E. Fenimore, T.M. Cannon, Coded aperture imaging with 
uniformly redundant arrays. Appl. Opt. 17(3), 337–347 (1978)

	 76.	 S.R. Gottesman, E.E. Fenimore, New family of binary arrays 
for coded aperture imaging. Appl. Opt. 28(20), 4344–4352 
(1989)

	 77.	 T.M. Cannon, E.E. Fenimore, Coded aperture imaging: many 
holes make light work. Opt. Eng. 19(3), 283–289 (1980)

	 78.	 V. Anand, T. Katkus, S.H. Ng, S. Juodkazis, Review of Fresnel 
incoherent correlation holography with linear and non-linear cor-
relations. Chin. Opt. Lett.. Opt. Lett. 19(2), 020501 (2021)

	 79.	 V. Anand, T. Katkus, S. Juodkazis, Randomly multiplexed 
diffractive lens and axicon for spatial and spectral imaging. 
Micromachines 11(4), 437 (2020)

	 80.	 F.G. Arockiaraj, A.P.I. Xavier, S. Gopinath, A.S.J.F. Rajeswary, 
S. Juodkazis, V. Anand, Optimizing the temporal and spatial 
resolutions and light throughput of fresnel incoherent correla-
tion holography in the framework of coded aperture imaging. 
J. Opt. 26, http://​arxiv.​org/​abs/​iopsc​ience.​iop.​org/​artic​le/​10.​
1088/​2040-​8986/​ad2620/​pdf (2024)

	 81.	 M.R. Rai, A. Vijayakumar, J. Rosen, Non-linear adaptive 
three-dimensional imaging with interferenceless coded aper-
ture correlation holography (I-COACH). Opt. Express 26(14), 
18143–18154 (2018)

	 82.	 A.P. Dhawan, R.M. Rangayyan, R. Gordon, Image restoration 
by Wiener deconvolution in limited-view computed tomogra-
phy. Appl. Opt. 24(23), 4013–4020 (1985)

	 83.	 J. Rosen, V. Anand, Incoherent nonlinear deconvolution using 
an iterative algorithm for recovering limited-support images 
from blurred digital photographs. Opt. Express 32(1), 1034–
1046 (2024)

	 84.	 M. Zhang, Y. Wan, T. Man, W. Zhang, H. Zhou, Non-iterative 
reconstruction of interferenceless coded aperture correlation 
holography enabled high quality three-dimensional imaging. 
Opt. Lasers Eng. 173, 107929 (2024)

	 85.	 Y.M. Sigal, R. Zhou, X. Zhuang, Visualizing and discovering 
cellular structures with super-resolution microscopy. Science 
361(6405), 880–887 (2018)

	 86.	 A. Marar, P. Kner, Three-dimensional nanoscale localization 
of point-like objects using self-interference digital holography. 
Opt. Lett. 45(2), 591–594 (2020)

	 87.	 A. Marar, P. Kner, Fundamental precision bounds for three-
dimensional optical localization microscopy using self-inter-
ference digital holography. Biomed. Opt. Express 12(1), 20–40 
(2021)

	 88.	 S. Li, P.A. Kner, Optimizing self-interference digital holog-
raphy for single-molecule localization. Opt. Express 31(18), 
29352–29367 (2023)

	 89.	 B. Huang, W. Wang, M. Bates, X. Zhuang, Three-dimensional 
super-resolution imaging by stochastic optical reconstruction 
microscopy. Science 319(5864), 810–813 (2008)

	 90.	 M.F. Juette, T.J. Gould, M.D. Lessard, M.J. Mlodzianoski, 
B.S. Nagpure, B.T. Bennett, S.T. Hess, J. Bewersdorf, Three-
dimensional sub–100 nm resolution fluorescence microscopy 
of thick samples. Nat. Methods 5(6), 527–529 (2008)

	 91.	 C.S. Smith, N. Joseph, B. Rieger, K.A. Lidke, Fast, single-
molecule localization that achieves theoretically minimum 
uncertainty. Nat. Methods 7(5), 373–375 (2010)

	 92.	 S. Li, P. Kner, SIDH-STD, https://​github.​com/​Knerl​ab/​SIDH_​
STD. Accessed on 31 Jan (2024)

	 93.	 A. Moatti, Y. Cai, C. Li, T. Sattler, L. Edwards, J. Piedra-
hita, F.S. Ligler, A. Greenbaum, Three-dimensional imaging 
of intact porcine cochlea using tissue clearing and custom-
built light-sheet microscopy. Biomed. Opt. Express 11(11), 
6181–6196 (2020)

	 94.	 M.R. Rai, C. Li, A. Greenbaum, Quantitative analysis of illu-
mination and detection corrections in adaptive light sheet fluo-
rescence microscopy. Biomed. Opt. Express 13(5), 2960–2974 
(2022)

	 95.	 C. Li, M.R. Rai, H.T. Ghashghaei, A. Greenbaum, Illumination 
angle correction during image acquisition in light-sheet fluores-
cence microscopy using deep learning. Biomed. Opt. Express 
13(2), 888–901 (2022)

	 96.	 M.R. Rai, C. Li, H.T. Ghashghaei, A. Greenbaum, Deep learn-
ing-based adaptive optics for light sheet fluorescence microscopy. 
Biomed. Opt. Express 14(6), 2905–2919 (2023)

	 97.	 M. Potcoava, C. Mann, J. Art, S. Alford, Spatio-temporal perfor-
mance in an incoherent holography lattice light-sheet microscope 
(IHLLS). Opt. Express 29(15), 23888–23901 (2021)

	 98.	 S. Alford, C. Mann, J. Art, M. Potcoava, Incoherent color holog-
raphy lattice light-sheet for subcellular imaging of dynamic 
structures. Front. Photonics 4, 1096294 (2023)

	 99.	 M. Potcoava, D. Contini, Z. Zurawski, S. Huynh, C. Mann, J. 
Art, S. Alford, Live cell light sheet imaging with low-and high-
spatial-coherence detection approaches reveals spatiotemporal 
aspects of neuronal signaling. J. Imaging 9(6), 121 (2023)

	100.	 M. Potcoava, J. Art, S. Alford, C. Mann, Deformation measure-
ments of neuronal excitability using incoherent holography lat-
tice light-sheet microscopy (IHLLS). In Photonics (Vol. 8, No. 
9, p. 383). MDPI. (2021)

	101.	 B. Katz, J. Rosen, R. Kelner, G. Brooker, Enhanced resolution 
and throughput of Fresnel incoherent correlation holography 
(FINCH) using dual diffractive lenses on a spatial light modula-
tor (SLM). Opt. Express 20(8), 9109–9121 (2012)

	102.	 C.J. Mann, L. Yu, C.M. Lo, M.K. Kim, High-resolution quan-
titative phase-contrast microscopy by digital holography. Opt. 
Express 13(22), 8693–8698 (2005)

	103.	 Z. Hu, D. Liang, D. Xia, H. Zheng, Compressive sampling in 
computed tomography: method and application. Nucl. Instrum. 
Methods Phys. Res., Sect. A 748, 26–32 (2014)

	104.	 G.H. Chen, J. Tang, S. Leng, Prior image constrained compressed 
sensing (PICCS): a method to accurately reconstruct dynamic 
CT images from highly undersampled projection data sets. Med. 
Phys. 35(2), 660–663 (2008)

	105.	 H. Yu, G. Wang, Compressed sensing based interior tomography. 
Phys. Med. Biol. 54(9), 2791 (2009)

	106.	 V. Bussy, C. Vienne, V. Kaftandjian, Fast algorithms based on 
empirical interpolation methods for selecting best projections in 
Sparse-view X-ray computed tomography using a priori informa-
tion. NDT E Int. 134, 102768 (2023)

	107.	 N.H. Matlis, A. Axley, W.P. Leemans, Single-shot ultrafast tomo-
graphic imaging by spectral multiplexing. Nat. Commun. 3(1), 
1111 (2012)

	108.	 Z. Li, R. Zgadzaj, X. Wang, Y.Y. Chang, M.C. Downer, Single-
shot tomographic movies of evolving light-velocity objects. Nat. 
Commun. 5(1), 3085 (2014)

	109.	 Y. Tsuchiya, Y. Shinoda, Recent developments of streak cameras. 
Ultrashort Pulse Spectrosc. Appl. 533, 110–116 (1985)

	110.	 Y. Lai, R. Shang, C.Y. Côté, X. Liu, A. Laramée, F. Légaré, G.P. 
Luke, J. Liang, Compressed ultrafast tomographic imaging by 

http://arxiv.org/abs/iopscience.iop.org/article/10.1088/2040-8986/ad2620/pdf
http://arxiv.org/abs/iopscience.iop.org/article/10.1088/2040-8986/ad2620/pdf
https://github.com/Knerlab/SIDH_STD
https://github.com/Knerlab/SIDH_STD


	 J. Rosen et al.  166   Page 72 of 82

passive spatiotemporal projections. Opt. Lett. 46(7), 1788–1791 
(2021)

	111.	 J.M. Bioucas-Dias, M.A. Figueiredo, A new TwIST: Two-step 
iterative shrinkage/thresholding algorithms for image restoration. 
IEEE Trans. Image Process. 16(12), 2992–3004 (2007)

	112.	 A. Chambolle, P.L. Lions, Image recovery via total variation 
minimization and related problems. Numer. Math. 76, 167–188 
(1997)

	113.	 J. Liang, P. Wang, L. Zhu, L.V. Wang, Single-shot stereo-polari-
metric compressed ultrafast photography for light-speed obser-
vation of high-dimensional optical transients with picosecond 
resolution. Nat. Commun. 11(1), 5252 (2020)

	114.	 A. Kofler, M. Haltmeier, C. Kolbitsch, M. Kachelrieß, M. Dewey, 
A U-Nets cascade for sparse view computed tomography. In 
Machine Learning for Medical Image Reconstruction: First Inter-
national Workshop, MLMIR 2018, Held in Conjunction with 
MICCAI 2018, Granada, Spain, September 16, 2018, Proceed-
ings 1 (pp. 91–99). Springer International Publishing, (2018)

	115.	 M. Marquez, Y. Lai, X. Liu, C. Jiang, S. Zhang, H. Arguello, J. 
Liang, Deep-learning supervised snapshot compressive imag-
ing enabled by an end-to-end adaptive neural network. IEEE J. 
Select. Topics Signal Process. 16(4), 688–699 (2022)

	116.	 J. Liang, L. Gao, P. Hai, C. Li, L.V. Wang, Encrypted three-
dimensional dynamic imaging using snapshot time-of-flight 
compressed ultrafast photography. Sci. Rep. 5(1), 15504 (2015)

	117.	 V. Ntziachristos, C.H. Tung, C. Bremer, R. Weissleder, Fluores-
cence molecular tomography resolves protease activity in vivo. 
Nat. Med. 8(7), 757–761 (2002)

	118.	 J.H. Shapiro, Computational ghost imaging. Phys. Rev. A 78(6), 
061802 (2008)

	119.	 N.D. Hardy, J.H. Shapiro, Computational ghost imaging versus 
imaging laser radar for three-dimensional imaging. Phys. Rev. A 
87(2), 023820 (2013)

	120.	 B. Sephton, I. Nape, C. Moodley, J. Francis, A. Forbes, Reveal-
ing the embedded phase in single-pixel quantum ghost imaging. 
Optica 10(2), 286–291 (2023)

	121.	 M. Paúr, B. Stoklasa, Z. Hradil, L.L. Sánchez-Soto, J. Rehacek, 
Achieving the ultimate optical resolution. Optica 3(10), 1144–
1147 (2016)

	122.	 J. Pinnell, I. Nape, B. Sephton, M.A. Cox, V. Rodríguez-Fajardo, 
A. Forbes, Modal analysis of structured light with spatial light 
modulators: a practical tutorial. JOSA A 37(11), C146–C160 
(2020)

	123.	 V. Rodríguez-Fajardo, A. Forbes, Measurement of nanometric 
heights by modal decomposition. Phys. Rev. Appl. 18(6), 064068 
(2022)

	124.	 F. Grenapin, D. Paneru, A. D’Errico, V. Grillo, G. Leuchs, E. 
Karimi, Superresolution enhancement in biphoton spatial-mode 
demultiplexing. Phys. Rev. Appl. 20(2), 024077 (2023)

	125.	 E. Polino, M. Valeri, N. Spagnolo, F. Sciarrino, Photonic quan-
tum metrology. AVS Quantum Sci. 2(2), 024703 (2020)

	126.	 W.K. Tham, H. Ferretti, A.M. Steinberg, Beating Rayleigh’s 
curse by imaging using phase information. Phys. Rev. Lett. 
118(7), 070801 (2017)

	127.	 Z. Huang, C. Schwab, C. Lupo, Ultimate limits of exoplanet 
spectroscopy: a quantum approach. Phys. Rev. A 107(2), 022409 
(2023)

	128.	 P. Rani, S. Kotwal, J. Manhas, V. Sharma, S. Sharma, Machine 
learning and deep learning based computational approaches in 
automatic microorganisms image recognition: methodologies, 
challenges, and developments. Arch. Comput. Methods Eng. 
29(3), 1801–1837 (2022)

	129.	 US EPA, EPA microbiological alternate test procedure (ATP) 
protocol for drinking water, ambient water, wastewater and 
sewage sludge monitoring methods. Environmental Protection 
Agency (2010)

	130.	 W.S. Ryu, Molecular Virology of Human Pathogenic Viruses 
(Academic Press, Cambridge, 2016)

	131.	 A. Baer, K. Kehn-Hall, Viral concentration determination 
through plaque assays: using traditional and novel overlay sys-
tems. JoVE (J. Vis. Exp.) 93, e52065 (2014)

	132.	 B. Javidi, A. Carnicer, A. Anand, G. Barbastathis, W. Chen, P. 
Ferraro, J.W. Goodman, R. Horisaki, K. Khare, M. Kujawinska, 
R.A. Leitgeb, et al. Roadmap on digital holography. Opt. Express 
29(22), 35078–35118 (2021)

	133.	 H. Wang, H. Ceylan Koydemir, Y. Qiu, B. Bai, Y. Zhang, Y. Jin, 
S. Tok, E.C. Yilmaz, E. Gumustekin, Y. Rivenson, A. Ozcan, 
Early detection and classification of live bacteria using time-
lapse coherent imaging and deep learning. Light: Sci. Appl. 9(1), 
118 (2020)

	134.	 Y. Li, T. Liu, H.C. Koydemir, H. Wang, K. O’Riordan, B. Bai, 
Y. Haga, J. Kobashi, H. Tanaka, T. Tamaru, K. Yamaguchi, Deep 
learning-enabled detection and classification of bacterial colonies 
using a thin-film transistor (TFT) image sensor. ACS Photonics 
9(7), 2455–2466 (2022)

	135.	 T. Liu, Y. Li, H.C. Koydemir, Y. Zhang, E. Yang, M. Eryilmaz, 
H. Wang, J. Li, B. Bai, G. Ma, A. Ozcan, Rapid and stain-free 
quantification of viral plaque via lens-free holography and deep 
learning. Nat. Biomed. Eng. 7(8), 1040–1052 (2023)

	136.	 Z. Göröcs, A. Ozcan, On-chip biomedical imaging. IEEE Rev. 
Biomed. Eng. 6, 29–46 (2012)

	137.	 G. Huang, Z. Liu, G. Pleiss, L. Van Der Maaten, K.Q. Wein-
berger, Convolutional networks with dense connectivity. IEEE 
Trans. Pattern Anal. Mach. Intell. 44(12), 8704–8716 (2019)

	138.	 Z. Qiu, T. Yao, T. Mei, Learning spatio-temporal represen-
tation with pseudo-3d residual networks. In proceedings of 
the IEEE International Conference on Computer Vision, pp. 
5533–5541, (2017)

	139.	 P.A. Blanche, Holography, and the future of 3D display. Light: 
Adv. Manuf. 2(4), 446–459 (2021)

	140.	 K. Khare, M. Butola, S. Rajora, Fourier Optics and Computa-
tional Imaging (Wiley, Chichester, 2015)

	141.	 D. Blinder, T. Birnbaum, T. Ito, T. Shimobaba, The state-
of-the-art in computer generated holography for 3D display. 
Light: Adv. Manuf. 3(3), 572–600 (2022)

	142.	 H.G. Kim, H. Jeong, Y.M. Ro, Acceleration of the calculation 
speed of computer-generated holograms using the sparsity of 
the holographic fringe pattern for a 3D object. Opt. Express 
24(22), 25317–25328 (2016)

	143.	 T. Shimobaba, T. Ito, Fast generation of computer-generated 
holograms using wavelet shrinkage. Opt. Express 25(1), 77–87 
(2017)

	144.	 D. Blinder, P. Schelkens, Accelerated computer generated 
holography using sparse bases in the STFT domain. Opt. 
Express 26(2), 1461–1473 (2018)

	145.	 H. Kang, T. Yamaguchi, H. Yoshikawa, Accurate phase-added 
stereogram to improve the coherent stereogram. Appl. Opt. 
47(19), D44–D54 (2008)

	146.	 D. Blinder, P. Schelkens, Phase added sub-stereograms for 
accelerating computer generated holography. Opt. Express 
28(11), 16924–16934 (2020)

	147.	 D. Blinder, T. Birnbaum, P. Schelkens, Fresnel Diffraction 
with Linear Time Complexity Using Gabor Frames, in Digital 
Holography and Three-Dimensional Imaging. (Optica Publish-
ing Group, Washington, 2023)

	148.	 D. Blinder, T. Birnbaum, P. Schelkens, Efficient numerical 
Fresnel diffraction with Gabor frames. Optica Open. Preprint. 
(2024). https://​doi.​org/​10.​1364/​optic​aopen.​25562​376.​v1

	149.	 T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, 
N. Takada, A. Shiraki, N. Masuda, T. Ito, Computational wave 
optics library for C++: CWO++ library. Comput. Phys. Com-
mun. 183(5), 1124–1138 (2012)

https://doi.org/10.1364/opticaopen.25562376.v1


Roadmap on computational methods in optical imaging and holography [invited]﻿	 Page 73 of 82    166 

	150.	 C. Chang, K. Bang, G. Wetzstein, B. Lee, L. Gao, Toward the 
next-generation VR/AR optics: a review of holographic near-
eye displays from a human-centric perspective. Optica 7(11), 
1563–1578 (2020)

	151.	 N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, 
M. Oikawa, T. Kakue, N. Masuda, T. Ito, Band-limited double-
step Fresnel diffraction and its application to computer-gener-
ated holograms. Opt. Express 21(7), 9192–9197 (2013)

	152.	 K. Honauer, O. Johannsen, D. Kondermann, B. Goldluecke, A 
dataset and evaluation methodology for depth estimation on 
4D light fields. In Computer Vision–ACCV 2016: 13th Asian 
Conference on Computer Vision, Taipei, Taiwan, November 
20–24, 2016, Revised Selected Papers, Part III 13 (pp. 19–34). 
Springer International Publishing (2017)

	153.	 T. Shimobaba, T. Takahashi, Y. Yamamoto, T. Nishitsuji, A. 
Shiraki, N. Hoshikawa, T. Kakue, T. Ito, Efficient diffraction 
calculations using implicit convolution. OSA Contin. 1(2), 
642–650 (2018)

	154.	 C. Chen, B. Lee, N.N. Li, M. Chae, D. Wang, Q.H. Wang, B. 
Lee, Multi-depth hologram generation using stochastic gradi-
ent descent algorithm with complex loss function. Opt. Express 
29(10), 15089–15103 (2021)

	155.	 T. Shimobaba, I. Hoshi, H. Shiomi, F. Wang, T. Hara, T. 
Kakue, T. Ito, Mitigating ringing artifacts in diffraction calcu-
lations using average subtractions. Appl. Opt. 60(22), 6393–
6399 (2021)

	156.	 N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, 
T. Kakue, T. Ito, Fast calculation of computer-generated holo-
gram for RGB and depth images using wavefront recording plane 
method. Photonics Lett. Poland 6(3), 90–92 (2014)

	157.	 L. Shi, B. Li, C. Kim, P. Kellnhofer, W. Matusik, Towards real-
time photorealistic 3D holography with deep neural networks. 
Nature 591(7849), 234–239 (2021)

	158.	 N. Hasegawa, T. Shimobaba, T. Kakue, T. Ito, Acceleration of 
hologram generation by optimizing the arrangement of wave-
front recording planes. Appl. Opt. 56(1), A97–A103 (2017)

	159.	 Y. Takaki, K. Fujii, Viewing-zone scanning holographic dis-
play using a MEMS spatial light modulator. Opt. Express 
22(20), 24713–24721 (2014)

	160.	 X. Wang, H. Zhang, L. Cao, G. Jin, Generalized single-side-
band three-dimensional computer-generated holography. Opt. 
Express 27(3), 2612–2620 (2019)

	161.	 C.K. Hsueh, A.A. Sawchuk, Computer-generated double-phase 
holograms. Appl. Opt. 17(24), 3874–3883 (1978)

	162.	 X. Sui, Z. He, G. Jin, D. Chu, L. Cao, Band-limited double-
phase method for enhancing image sharpness in complex 
modulated computer-generated holograms. Opt. Express 29(2), 
2597–2612 (2021)

	163.	 P.W.M. Tsang, T.C. Poon, Novel method for converting digi-
tal Fresnel hologram to phase-only hologram based on bidi-
rectional error diffusion. Opt. Express 21(20), 23680–23686 
(2013)

	164.	 T. Shimobaba, F. Wang, J. Starobrat, A. Kowalczyk, J. Suszek, 
T. Ito, Comparison of double-phase hologram and binary 
amplitude encoding: holographic projection and vortex beam 
generation. Appl. Opt. 62(28), 7471–7479 (2023)

	165.	 X. Li, J. Liu, J. Jia, Y. Pan, Y. Wang, 3D dynamic holographic 
display by modulating complex amplitude experimentally. Opt. 
Express 21(18), 20577–20587 (2013)

	166.	 K. Matsushima, T. Shimobaba, Band-limited angular spectrum 
method for numerical simulation of free-space propagation in 
far and near fields. Opt. Express 17(22), 19662–19673 (2009)

	167.	 S. Tay, P.A. Blanche, R. Voorakaranam, A.V. Tunç, W. Lin, 
S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, 
An updatable holographic three-dimensional display. Nature 
451(7179), 694–698 (2008)

	168.	 H. Zhang, Y. Zhao, L. Cao, G. Jin, Fully computed holographic 
stereogram based algorithm for computer-generated holograms 
with accurate depth cues. Opt. Express 23(4), 3901–3913 
(2015)

	169.	 T. Shimobaba, D. Blinder, T. Birnbaum, I. Hoshi, H. Shiomi, P. 
Schelkens, T. Ito, Deep-learning computational holography: a 
review. Front. Photonics 3, 8 (2022)

	170.	 Y. Rivenson, A. Stern, B. Javidi, Compressive Fresnel hologra-
phy. J. Disp. Technol. 6(10), 506–509 (2010)

	171.	 D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 
52(4), 1289–1306 (2006)

	172.	 E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: 
Exact signal reconstruction from highly incomplete frequency 
information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

	173.	 A. Stern (ed.), Optical Compressive Imaging (CRC Press, Boca 
Raton, 2016)

	174.	 Y. Rivenson, A. Stern, J. Rosen, Compressive multiple view pro-
jection incoherent holography. Opt. Express 19(7), 6109–6118 
(2011)

	175.	 Y. Kashter, Y. Rivenson, A. Stern, J. Rosen, Sparse synthetic 
aperture with Fresnel elements (S-SAFE) using digital incoher-
ent holograms. Opt. Express 23(16), 20941–20960 (2015)

	176.	 Y. Rivenson, A. Stern, Conditions for practicing compressive 
Fresnel holography. Opt. Lett. 36(17), 3365–3367 (2011)

	177.	 Z. Wang, G.R. Arce, Variable density compressed image sam-
pling. IEEE Trans. Image Process. 19(1), 264–270 (2009)

	178.	 A. Stern, V. Kravets, Y. Rivenson, B. Javidi, Compressive sensing 
with variable density sampling for 3D imaging. In Three-Dimen-
sional Imaging, Visualization, and Display 2019 (Vol. 10997, p. 
1099702). SPIE. (2019)

	179.	 V. Kravets, A. Stern, Learned partial transform ensembles for 
exceptional optical compressive sensing. Opt. Lasers Eng. 171, 
107818 (2023)

	180.	 F. Zernike, How I discovered phase contrast. Science 
121(3141), 345–349 (1955)

	181.	 Y. Park, C. Depeursinge, G. Popescu, Quantitative phase imag-
ing in biomedicine. Nat. Photonics 12(10), 578–589 (2018)

	182.	 M.R. Teague, Deterministic phase retrieval: a Green’s function 
solution. JOSA 73(11), 1434–1441 (1983)

	183.	 C. Zuo, Q. Chen, L. Tian, L. Waller, A. Asundi, Transport of 
intensity phase retrieval and computational imaging for par-
tially coherent fields: the phase space perspective. Opt. Lasers 
Eng. 71, 20–32 (2015)

	184.	 C. Zuo, Q. Chen, H. Li, W. Qu, A. Asundi, Boundary-artifact-
free phase retrieval with the transport of intensity equation 
II: applications to microlens characterization. Opt. Express 
22(15), 18310–18324 (2014)

	185.	 J. Zhang, Q. Chen, J. Sun, L. Tian, C. Zuo, On a universal solu-
tion to the transport-of-intensity equation. Opt. Lett. 45(13), 
3649–3652 (2020)

	186.	 C. Zuo, J. Li, J. Sun, Y. Fan, J. Zhang, L. Lu, R. Zhang, B. 
Wang, L. Huang, Q. Chen, Transport of intensity equation: a 
tutorial. Opt. Lasers Eng. 135, 106187 (2020)

	187.	 C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, Q. Chen, High-
resolution transport-of-intensity quantitative phase microscopy 
with annular illumination. Sci. Rep. 7(1), 7654 (2017)

	188.	 J. Li, Q. Chen, J. Sun, J. Zhang, X. Pan, C. Zuo, Optimal illu-
mination pattern for transport-of-intensity quantitative phase 
microscopy. Opt. Express 26(21), 27599–27614 (2018)

	189.	 G. Zheng, C. Shen, S. Jiang, P. Song, C. Yang, Concept, imple-
mentations and applications of Fourier ptychography. Nature 
Reviews Physics 3(3), 207–223 (2021)

	190.	 J. Sun, C. Zuo, L. Zhang, Q. Chen, Resolution-enhanced 
Fourier ptychographic microscopy based on high-numerical-
aperture illuminations. Sci. Rep. 7(1), 1187 (2017)



	 J. Rosen et al.  166   Page 74 of 82

	191.	 L. Lu, J. Li, Y. Shu, J. Sun, J. Zhou, E.Y. Lam, Q. Chen, C. 
Zuo, Hybrid brightfield and darkfield transport of intensity 
approach for high-throughput quantitative phase microscopy. 
Adv. Photonics 4(5), 056002 (2022)

	192.	 J. Sun, C. Zuo, J. Zhang, Y. Fan, Q. Chen, High-speed Fourier 
ptychographic microscopy based on programmable annular 
illuminations. Sci. Rep. 8(1), 7669 (2018)

	193.	 Y. Shu, J. Sun, J. Lyu, Y. Fan, N. Zhou, R. Ye, G. Zheng, 
Q. Chen, C. Zuo, Adaptive optical quantitative phase imaging 
based on annular illumination Fourier ptychographic micros-
copy. PhotoniX 3(1), 24 (2022)

	194.	 J. Li, N. Zhou, J. Sun, S. Zhou, Z. Bai, L. Lu, Q. Chen, C. 
Zuo, Transport of intensity diffraction tomography with non-
interferometric synthetic aperture for three-dimensional label-
free microscopy. Light: Sci. Appl. 11(1), 154 (2022)

	195.	 R. Horstmeyer, J. Chung, X. Ou, G. Zheng, C. Yang, Dif-
fraction tomography with Fourier ptychography. Optica 3(8), 
827–835 (2016)

	196.	 C. Zuo, J. Sun, J. Li, A. Asundi, Q. Chen, Wide-field high-
resolution 3D microscopy with Fourier ptychographic diffrac-
tion tomography. Opt. Lasers Eng. 128, 106003 (2020)

	197.	 S. Zhou, J. Li, J. Sun, N. Zhou, H. Ullah, Z. Bai, Q. Chen, 
C. Zuo, Transport-of-intensity Fourier ptychographic diffrac-
tion tomography: defying the matched illumination condition. 
Optica 9(12), 1362–1373 (2022)

	198.	 M. Chen, D. Ren, H.Y. Liu, S. Chowdhury, L. Waller, Multi-
layer Born multiple-scattering model for 3D phase microscopy. 
Optica 7(5), 394–403 (2020)

	199.	 N. Zhou, J. Sun, R. Zhang, R. Ye, J. Li, Z. Bai, S. Zhou, Q. 
Chen, C. Zuo, Quasi-isotropic high-resolution Fourier ptycho-
graphic diffraction tomography with opposite illuminations. 
ACS Photonics 10(8), 2461–2466 (2023)

	200.	 R.W. Gerchberg, A practical algorithm for the determination 
of plane from image and diffraction pictures. Optik 35(2), 
237–246 (1972)

	201.	 N.V. Petrov, V.G. Bespalov, A.A. Gorodetsky, Phase retrieval 
method for multiple wavelength speckle patterns. In Speckle 
2010: Optical Metrology (Vol. 7387, pp. 538–544). SPIE. 
(2010)

	202.	 V. Katkovnik, I. Shevkunov, N.V. Petrov, K. Egiazarian, Com-
putational super-resolution phase retrieval from multiple phase-
coded diffraction patterns: simulation study and experiments. 
Optica 4(7), 786–794 (2017)

	203.	 P. Bao, F. Zhang, G. Pedrini, W. Osten, Phase retrieval using 
multiple illumination wavelengths. Opt. Lett. 33(4), 309–311 
(2008)

	204.	 W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, A. Ozcan, Pixel super-
resolution using wavelength scanning. Light: Sci. Appl. 5(4), 
e16060–e16060 (2016)

	205.	 V. Katkovnik, I. Shevkunov, K. Egiazarian, ADMM and spectral 
proximity operators in hyperspectral broadband phase retrieval 
for quantitative phase imaging. Signal Process. 210, 109095 
(2023)

	206.	 L. Li, X. Wang, G. Wang, Alternating direction method of mul-
tipliers for separable convex optimization of real functions in 
complex variables. Math. Probl. Eng. 2015, 104531 (2015)

	207.	 I. Shevkunov, V. Katkovnik, D. Claus, G. Pedrini, N.V. Petrov, 
K. Egiazarian, Hyperspectral phase imaging based on denoising 
in complex-valued eigensubspace. Opt. Lasers Eng. 127, 105973 
(2020)

	208.	 B. Kemper, G. Von Bally, Digital holographic microscopy for 
live cell applications and technical inspection. Appl. Opt. 47(4), 
A52–A61 (2008)

	209.	 L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, B. Kem-
per, Quantitative phase imaging for cell culture quality control. 
Cytom. A 91(5), 470–481 (2017)

	210.	 S.Y. Choi, J. Oh, J. Jung, Y. Park, S.Y. Lee, Three-dimensional 
label-free visualization and quantification of polyhydroxyal-
kanoates in individual bacterial cell in its native state. Proc. Natl. 
Acad. Sci. 118(31), e2103956118 (2021)

	211.	 H. Majeed, S. Sridharan, M. Mir, L. Ma, E. Min, W. Jung, G. 
Popescu, Quantitative phase imaging for medical diagnosis. J. 
Biophotonics 10(2), 177–205 (2017)

	212.	 J. Oh, J.S. Ryu, M. Lee, J. Jung, S. Han, H.J. Chung, Y. Park, 
Three-dimensional label-free observation of individual bacteria 
upon antibiotic treatment using optical diffraction tomography. 
Biomed. Opt. Express 11(3), 1257–1267 (2020)

	213.	 V. Ayyappan, A. Chang, C. Zhang, S.K. Paidi, R. Bordett, T. 
Liang, I. Barman, R. Pandey, Identification and staging of B-cell 
acute lymphoblastic leukemia using quantitative phase imaging 
and machine learning. ACS Sens. 5(10), 3281–3289 (2020)

	214.	 J.K. Kim, J.K. Kim, C.G. Pack (eds.), Advanced Imaging and 
Bio Techniques for Convergence Science (Springer, Singapore, 
2021), pp.211–238

	215.	 M. Lee, H. Hugonnet, Y. Park, Inverse problem solver for mul-
tiple light scattering using modified Born series. Optica 9(2), 
177–182 (2022)

	216.	 T. Kim, R. Zhou, M. Mir, S.D. Babacan, P.S. Carney, L.L. God-
dard, G. Popescu, White-light diffraction tomography of unla-
belled live cells. Nat. Photonics 8(3), 256–263 (2014)

	217.	 C. Park, K. Lee, Y. Baek, Y. Park, Low-coherence optical diffrac-
tion tomography using a ferroelectric liquid crystal spatial light 
modulator. Opt. Express 28(26), 39649–39659 (2020)

	218.	 H. Hugonnet, M. Lee, Y. Park, Optimizing illumination in three-
dimensional deconvolution microscopy for accurate refractive 
index tomography. Opt. Express 29(5), 6293–6301 (2021)

	219.	 Y. Jo, H. Cho, W.S. Park, G. Kim, D. Ryu, Y.S. Kim, M. Lee, S. 
Park, M.J. Lee, H. Joo, H. Jo, Label-free multiplexed microto-
mography of endogenous subcellular dynamics using general-
izable deep learning. Nat. Cell Biol. 23(12), 1329–1337 (2021)

	220.	 J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, Y. 
Park, Biomedical applications of holographic microspectros-
copy. Appl. Opt. 53(27), G111–G122 (2014)

	221.	 Y. Rivenson, T. Liu, Z. Wei, Y. Zhang, K. de Haan, A. Ozcan, 
PhaseStain: the digital staining of label-free quantitative phase 
microscopy images using deep learning. Light: Sci. Appl. 8(1), 
23 (2019)

	222.	 M. Tamamitsu, K. Toda, R. Horisaki, T. Ideguchi, Quantitative 
phase imaging with molecular vibrational sensitivity. Opt. Lett. 
44(15), 3729–3732 (2019)

	223.	 N. Pavillon, C.S. Seelamantula, J. Kühn, M. Unser, C. Depeurs-
inge, Suppression of the zero-order term in off-axis digital 
holography through nonlinear filtering. Appl. Opt. 48(34), 
H186–H195 (2009)

	224.	 Y. Baek, K. Lee, S. Shin, Y. Park, Kramers-Kronig holographic 
imaging for high-space-bandwidth product. Optica 6(1), 45–51 
(2019)

	225.	 A. Montes-Perez, C. Meneses-Fabian, G. Rodriguez-Zurita, 
Isotropic edge-enhancement by the Hilbert-transform in optical 
tomography of phase objects. Opt. Express 19(6), 5350–5356 
(2011)

	226.	 Y. Baek, Y. Park, Intensity-based holographic imaging via 
space-domain Kramers-Kronig relations. Nat. Photonics 15(5), 
354–360 (2021)

	227.	 C.S. Seelamantula, N. Pavillon, C. Depeursinge, M. Unser, 
Exact complex-wave reconstruction in digital holography. 
JOSA A 28(6), 983–992 (2011)

	228.	 V.P Titar, O.V. Shpachenko, Cepstrum analysis in holographic 
information systems. In 5th International Workshop on Laser 
and Fiber-Optical Networks Modeling, 2003. Proceedings of 
LFNM 2003. (pp. 137–139). IEEE. (2003)



Roadmap on computational methods in optical imaging and holography [invited]﻿	 Page 75 of 82    166 

	229.	 D.L. Misell, R.E. Burge, A.H. Greenaway, Alternative to 
holography for determining phase from image intensity meas-
urements in optics. Nature 247(5440), 401–402 (1974)

	230.	 D.L. Misell, A.H. Greenaway, An application of the Hilbert 
transform in electron microscopy: II. Non-iterative solution in 
bright-field microscopy and the dark-field problem. J. Phys. D 
Appl. Phys. 7(12), 1660 (1974)

	231.	 R.E. Burge, M.A. Fiddy, A.H. Greenaway, G. Ross, The phase 
problem. Proc. R. Soc. Lond. A Math. Phys. Sci. 350(1661), 
191–212 (1976)

	232.	 N. Nakajima, T. Asakura, Two-dimensional phase retrieval 
using the logarithmic Hilbert transform and the estimation 
technique of zero information. J. Phys. D Appl. Phys. 19(3), 
319 (1986)

	233.	 Z. Huang, L. Cao, High bandwidth-utilization digital holo-
graphic multiplexing: an approach using Kramers-Kronig rela-
tions. Adv. Photonics Res. 3(2), 2100273 (2022)

	234.	 N.T. Shaked, V. Micó, M. Trusiak, A. Kuś, S.K. Mirsky, Off-
axis digital holographic multiplexing for rapid wavefront 
acquisition and processing. Adv. Optics Photonics 12(3), 
556–611 (2020)

	235.	 M. Rubin, G. Dardikman, S.K. Mirsky, N.A. Turko, N.T. Shaked, 
Six-pack off-axis holography. Opt. Lett. 42(22), 4611–4614 
(2017)

	236.	 Y. Li, C. Shen, J. Tan, X. Wen, M. Sun, G. Huang, S. Liu, Z. 
Liu, Fast quantitative phase imaging based on Kramers-Kronig 
relations in space domain. Opt. Express 29(25), 41067–41080 
(2021)

	237.	 J. Oh, H. Hugonnet, Y. Park, Quantitative phase imaging via the 
holomorphic property of complex optical fields. Phys. Rev. Res. 
5(2), L022014 (2023)

	238.	 C. Shen, M. Liang, A. Pan, C. Yang, Non-iterative complex 
wave-field reconstruction based on Kramers-Kronig relations. 
Photonics Res. 9(6), 1003–1012 (2021)

	239.	 K. Lee, J. Lim, Y. Park, Full-field quantitative X-ray phase 
nanotomography via space-domain Kramers-Kronig relations. 
Optica 10(3), 407–414 (2023)

	240.	 X. Chen, S. Yao, X. Yan, H. Ding, J. Ma, C. Yuan, Single-
shot resolution-enhancement quantitative phase imaging based 
on Kramers-Kronig relations. Opt. Lett. 48(13), 3563–3566 
(2023)

	241.	 C. Lee, Y. Baek, H. Hugonnet, Y. Park, Single-shot wide-field 
topography measurement using spectrally multiplexed reflection 
intensity holography via space-domain Kramers-Kronig rela-
tions. Opt. Lett. 47(5), 1025–1028 (2022)

	242.	 Y. Li, G. Huang, S. Ma, Y. Wang, S. Liu, Z. Liu, Single-frame 
two-color illumination computational imaging based on Kram-
ers-Kronig relations. Appl. Phys. Lett. 123(14), 141107 (2023)

	243.	 J.W. Wood, T.J. Hall, M.A. Fiddy, A comparison study of some 
computational methods for locating the zeros of entire functions. 
Opt. Acta: Int. J. Opt. 30(4), 511–527 (1983)

	244.	 J.W. Wood, M.A. Fiddy, R.E. Burge, Phase retrieval using two 
intensity measurements in the complex plane. Opt. Lett. 6(11), 
514–516 (1981)

	245.	 G. Ross, M.A. Fiddy, M. Nieto-Vesperinas, I. Manolitsakis, The 
propagation and encoding of information in the scattered field 
by complex zeros. Opt. Acta: Int. J. Opt. 26(2), 229–238 (1979)

	246.	 J.R. Fienup, Phase retrieval using boundary conditions. JOSA A 
3(2), 284–288 (1986)

	247.	 B.J. Brames, Efficient method of support reduction. Opt. Com-
mun. 64(4), 333–337 (1987)

	248.	 B.J. Brames, Testing for support irreducibility. JOSA A 4(1), 
135–147 (1987)

	249.	 J. Oh, H. Hugonnet, Y. Park, Non-interferometric stand-alone 
single-shot holographic camera using reciprocal diffractive imag-
ing. Nat. Commun. 14(1), 4870 (2023)

	250.	 D. Gabor, A new microscopi prinnciple. Nature 161, 777–778 
(1948)

	251.	 T. Kreis, Digital Recording and Numerical Reconstruction of 
Wave Fields. Handbook of Holographic Interferometry, pp. 
81–183 (2005)

	252.	 V. Micó, M. Rogalski, J.Á. Picazo-Bueno, M. Trusiak, Single-
shot wavelength-multiplexed phase microscopy under Gabor 
regime in a regular microscope embodiment. Sci. Rep. 13(1), 
4257 (2023)

	253.	 A. Greenbaum, A. Ozcan, Maskless imaging of dense samples 
using pixel super-resolution based multi-height lensfree on-chip 
microscopy. Opt. Express 20(3), 3129–3143 (2012)

	254.	 S.O. Isikman, W. Bishara, H. Zhu, A. Ozcan, Optofluidic tomog-
raphy on a chip. Appl. Phys. Lett. 98(16), 161109 (2011)

	255.	 V. Micó, K. Trindade, J.Á. Picazo-Bueno, Phase imaging micros-
copy under the Gabor regime in a minimally modified regular 
bright-field microscope. Opt. Express 29(26), 42738–42750 
(2021)

	256.	 R. Corman, W. Boutu, A. Campalans, P. Radicella, J. Duarte, M. 
Kholodtsova, L. Bally-Cuif, N. Dray, F. Harms, G. Dovillaire, S. 
Bucourt, Lensless microscopy platform for single cell and tissue 
visualization. Biomed. Opt. Express 11(5), 2806–2817 (2020)

	257.	 F. Momey, A. Berdeu, T. Bordy, J.M. Dinten, F.K. Marcel, N. 
Picollet-D’Hahan, X. Gidrol, C. Allier, Lensfree diffractive 
tomography for the imaging of 3D cell cultures. Biomed. Opt. 
Express 7(3), 949–962 (2016)

	258.	 W. Xu, M.H. Jericho, I.A. Meinertzhagen, H.J. Kreuzer, Digital 
in-line holography for biological applications. Proc. Natl. Acad. 
Sci. 98(20), 11301–11305 (2001)

	259.	 S.K. Jericho, P. Klages, J. Nadeau, E.M. Dumas, M.H. Jericho, 
H.J. Kreuzer, In-line digital holographic microscopy for ter-
restrial and exobiological research. Planet. Space Sci. 58(4), 
701–705 (2010)

	260.	 J.P. Ryle, S. McDonnell, B. Glennon, J.T. Sheridan, Calibra-
tion of a digital in-line holographic microscopy system: depth 
of focus and bioprocess analysis. Appl. Opt. 52(7), C78–C87 
(2013)

	261.	 I. Pushkarsky, Y. Liu, W. Weaver, T.W. Su, O. Mudanyali, A. 
Ozcan, D. Di Carlo, Automated single-cell motility analysis on 
a chip using lensfree microscopy. Sci. Rep. 4(1), 4717 (2014)

	262.	 S. Amann, M.V. Witzleben, S. Breuer, 3D-printable portable 
open-source platform for low-cost lens-less holographic cellular 
imaging. Sci. Rep. 9(1), 11260 (2019)

	263.	 Y. Zhang, S.Y.C. Lee, Y. Zhang, D. Furst, J. Fitzgerald, A. Ozcan, 
Wide-field imaging of birefringent synovial fluid crystals using 
lens-free polarized microscopy for gout diagnosis. Sci. Rep. 6(1), 
28793 (2016)

	264.	 T.W. Su, L. Xue, A. Ozcan, High-throughput lensfree 3D track-
ing of human sperms reveals rare statistics of helical trajectories. 
Proc. Natl. Acad. Sci. 109(40), 16018–16022 (2012)

	265.	 H. Zhu, S.O. Isikman, O. Mudanyali, A. Greenbaum, A. Ozcan, 
Optical imaging techniques for point-of-care diagnostics. Lab 
Chip 13(1), 51–67 (2013)

	266.	 M. Rogalski, J.A. Picazo-Bueno, J. Winnik, P. Zdańkowski, V. 
Micó, M. Trusiak, Accurate automatic object 4D tracking in 
digital in-line holographic microscopy based on computation-
ally rendered dark fields. Sci. Rep. 12(1), 12909 (2022)

	267.	 V.R. Singh, A. Andrei, C. Gorecki, L. Nieradko, A. Asundi, 
Characterization of MEMS cantilevers using lensless digital 
holographic microscope. In Optical Micro-and Nanometrology 
in Microsystems Technology II (Vol. 6995, pp. 117–124). SPIE. 
(2008)

	268.	 Y.C. Wu, A. Shiledar, Y.C. Li, J. Wong, S. Feng, X. Chen, C. 
Chen, K. Jin, S. Janamian, Z. Yang, Z.S. Ballard, Air quality 



	 J. Rosen et al.  166   Page 76 of 82

monitoring using mobile microscopy and machine learning. 
Light: Sci. Appl. 6(9), e17046 (2017)

	269.	 B. Mirecki, M. Rogalski, P. Arcab, P. Rogujski, L. Stanaszek, 
M. Józwik, M. Trusiak, Low-intensity illumination for lensless 
digital holographic microscopy with minimized sample interac-
tion. Biomed. Opt. Express 13(11), 5667–5682 (2022)

	270.	 P. Arcab, B. Mirecki, M. Stefaniuk, M. Pawłowska, M. Tru-
siak, Experimental optimization of lensless digital holographic 
microscopy with rotating diffuser-based coherent noise reduc-
tion. Opt. Express 30(24), 42810–42828 (2022)

	271.	 Y. Chen, X. Wu, L. Lu, J. Wei, Y. Wu, Q. Chen, C. Zuo, Single-
shot lensfree on-chip quantitative phase microscopy with par-
tially coherent LED illumination. Opt. Lett. 47(23), 6061–6064 
(2022)

	272.	 C. Zuo, J. Sun, J. Zhang, Y. Hu, Q. Chen, Lensless phase micros-
copy and diffraction tomography with multi-angle and multi-
wavelength illuminations using a LED matrix. Opt. Express 
23(11), 14314–14328 (2015)

	273.	 M. Sanz, J.Á. Picazo-Bueno, L. Granero, J. Garcia, V. Micó, Four 
channels multi-illumination single-holographic-exposure lensless 
Fresnel (MISHELF) microscopy. Opt. Lasers Eng. 110, 341–347 
(2018)

	274.	 L. Herve, O. Cioni, P. Blandin, F. Navarro, M. Menneteau, T. 
Bordy, S. Morales, C. Allier, Multispectral total-variation recon-
struction applied to lens-free microscopy. Biomed. Opt. Express 
9(11), 5828–5836 (2018)

	275.	 A. Greenbaum, U. Sikora, A. Ozcan, Field-portable wide-field 
microscopy of dense samples using multi-height pixel super-
resolution based lensfree imaging. Lab Chip 12(7), 1242–1245 
(2012)

	276.	 Y. Rivenson, Y. Wu, H. Wang, Y. Zhang, A. Feizi, A. Ozcan, 
Sparsity-based multi-height phase recovery in holographic 
microscopy. Sci. Rep. 6(1), 37862 (2016)

	277.	 S. Feng, M. Wang, J. Wu, Lensless in-line holographic micro-
scope with Talbot grating illumination. Opt. Lett. 41(14), 
3157–3160 (2016)

	278.	 M. Rogalski, P. Arcab, L. Stanaszek, V. Micó, C. Zuo, M. 
Trusiak, Physics-driven universal twin-image removal network 
for digital in-line holographic microscopy. Opt. Express 32(1), 
742–761 (2024)

	279.	 H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, Speeded-up robust 
features (SURF). Comput. Vis. Image Underst. 110(3), 346–
359 (2008)

	280.	 G. Popescu, Quantitative Phase Imaging of Cells and Tissues 
(McGraw-Hill Education, New York, 2011)

	281.	 A. Butola, D. Popova, D.K. Prasad, A. Ahmad, A. Habib, 
J.C. Tinguely, P. Basnet, G. Acharya, P. Senthilkumaran, D.S. 
Mehta, B.S. Ahluwalia, High spatially sensitive quantitative 
phase imaging assisted with deep neural network for classifica-
tion of human spermatozoa under stressed condition. Sci. Rep. 
10(1), 13118 (2020)

	282.	 V. Dubey, D. Popova, A. Ahmad, G. Acharya, P. Basnet, D.S. 
Mehta, B.S. Ahluwalia, Partially spatially coherent digital 
holographic microscopy and machine learning for quantitative 
analysis of human spermatozoa under oxidative stress condi-
tion. Sci. Rep. 9(1), 3564 (2019)

	283.	 Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, 
M.U. Gillette, G. Popescu, Spatial light interference micros-
copy (SLIM). Opt. Express 19(2), 1016–1026 (2011)

	284.	 V. Dubey, A. Ahmad, A. Butola, D. Qaiser, A. Srivastava, 
D.S. Mehta, Low coherence quantitative phase microscopy 
with machine learning model and Raman spectroscopy for the 
study of breast cancer cells and their classification. Appl. Opt. 
58(5), A112–A119 (2019)

	285.	 A. Ahmad, A. Habib, V. Dubey, B.S. Ahluwalia, Unbalanced 
low coherence interference microscopy. Opt. Lasers Eng. 151, 
106932 (2022)

	286.	 A. Ahmad, V. Dubey, A. Butola, J.C. Tinguely, B.S. Ahluwalia, 
D.S. Mehta, Sub-nanometer height sensitivity by phase shifting 
interference microscopy under environmental fluctuations. Opt. 
Express 28(7), 9340–9358 (2020)

	287.	 M. Takeda, H. Ina, S. Kobayashi, Fourier-transform method 
of fringe-pattern analysis for computer-based topography and 
interferometry. JosA 72(1), 156–160 (1982)

	288.	 K.G. Larkin, D.J. Bone, M.A. Oldfield, Natural demodulation 
of two-dimensional fringe patterns. I. General background of 
the spiral phase quadrature transform. JOSA A 18(8), 1862–
1870 (2001)

	289.	 K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denois-
ing by sparse 3-D transform-domain collaborative filtering. 
IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

	290.	 P. Gocłowski, M. Cywińska, A. Ahmad, B. Ahluwalia, M. Tru-
siak, Single-shot fringe pattern phase retrieval using improved 
period-guided bidimensional empirical mode decomposition 
and Hilbert transform. Opt. Express 29(20), 31632–31649 
(2021)

	291.	 M.A. Herráez, D.R. Burton, M.J. Lalor, M.A. Gdeisat, Fast 
two-dimensional phase-unwrapping algorithm based on sort-
ing by reliability following a noncontinuous path. Appl. Opt. 
41(35), 7437–7444 (2002)

	292.	 S. Jiang, C. Guo, P. Song, T. Wang, R. Wang, T. Zhang, Q. Wu, 
R. Pandey, G. Zheng, High-throughput digital pathology via a 
handheld, multiplexed, and AI-powered ptychographic whole 
slide scanner. Lab Chip 22(14), 2657–2670 (2022)

	293.	 Y. Zhang, M. Ouyang, A. Ray, T. Liu, J. Kong, B. Bai, D. Kim, 
A. Guziak, Y. Luo, A. Feizi, K. Tsai, Computational cytometer 
based on magnetically modulated coherent imaging and deep 
learning. Light: Sci. Appl. 8(1), 91 (2019)

	294.	 Y. Gao, L. Cao, Iterative projection meets sparsity regularization: 
towards practical single-shot quantitative phase imaging with 
in-line holography. Light: Adv. Manuf. 4(1), 37–53 (2023)

	295.	 L. Yang, R. Wang, Q. Zhao, P. Song, S. Jiang, T. Wang, C. Guo, 
R. Pandey, X. Shao, G. Zheng, Lensless polarimetric coded 
ptychography for high-resolution, high-throughput gigapixel 
birefringence imaging on a chip. Photonics Res. 11(12), 2242–
2255 (2023)

	296.	 W. Luo, Y. Zhang, Z. Göröcs, A. Feizi, A. Ozcan, Propagation 
phasor approach for holographic image reconstruction. Sci. Rep. 
6(1), 22738 (2016)

	297.	 Y. Gao, L. Cao, Generalized optimization framework for pixel 
super-resolution imaging in digital holography. Opt. Express 
29(18), 28805–28823 (2021)

	298.	 J. Zhang, J. Sun, Q. Chen, J. Li, C. Zuo, Adaptive pixel-super-
resolved lensfree in-line digital holography for wide-field on-chip 
microscopy. Sci. Rep. 7(1), 11777 (2017)

	299.	 Y. Gao, L. Cao, High-fidelity pixel-super-resolved complex 
field reconstruction via adaptive smoothing. Opt. Lett. 45(24), 
6807–6810 (2020)

	300.	 S. Jiang, C. Guo, P. Song, N. Zhou, Z. Bian, J. Zhu, R. Wang, P. 
Dong, Z. Zhang, J. Liao, J. Yao, Resolution-enhanced parallel 
coded ptychography for high-throughput optical imaging. ACS 
Photonics 8(11), 3261–3271 (2021)

	301.	 X. Wu, J. Sun, J. Zhang, L. Lu, R. Chen, Q. Chen, C. Zuo, 
Wavelength-scanning lensfree on-chip microscopy for wide-field 
pixel-super-resolved quantitative phase imaging. Opt. Lett. 46(9), 
2023–2026 (2021)

	302.	 Y. Gao, L. Cao, Projected refractive index framework for multi-
wavelength phase retrieval. Opt. Lett. 47(22), 5965–5968 (2022)



Roadmap on computational methods in optical imaging and holography [invited]﻿	 Page 77 of 82    166 

	303.	 Y. Gao, F. Yang, L. Cao, Pixel super-resolution phase retrieval 
for lensless on-chip microscopy via accelerated Wirtinger flow. 
Cells 11(13), 1999 (2022)

	304.	 X. Chang, L. Bian, Y. Gao, L. Cao, J. Suo, J. Zhang, Plug-and-
play pixel super-resolution phase retrieval for digital holography. 
Opt. Lett. 47(11), 2658–2661 (2022)

	305.	 H. Xu, D. Li, X. Chang, Y. Gao, X. Luo, J. Yan, L. Cao, D. Xu, L. 
Bian, Deep nonlocal low-rank regularization for complex-domain 
pixel super-resolution. Opt. Lett. 48(20), 5277–5280 (2023)

	306.	 Y. Gao, L. Cao, Algorithms for pixel super-resolution phase 
retrieval, GitHub (2024), https://​github.​com/​THUHo​loLab/​pixel-​
super-​resol​ution-​phase-​retri​eval. Accessed 10 June 2024

	307.	 Y. Gao, R. Li, L. Cao, Self-referenced multiple-beam interfero-
metric method for robust phase calibration of spatial light modu-
lator. Opt. Express 27(23), 34463–34471 (2019)

	308.	 R. Li, Y. Gao, L. Cao, In situ calibration for a phase-only spatial 
light modulator based on digital holography. Opt. Eng. 59(5), 
053101–053101 (2020)

	309.	 Y. Gao, L. Cao, Motion-resolved, reference-free holographic 
imaging via spatiotemporally regularized inversion. Optica 11(1), 
32–41 (2024)

	310.	 L. Huang, H. Chen, T. Liu, A. Ozcan, Self-supervised learning of 
hologram reconstruction using physics consistency. Nat. Mach. 
Intell. 5(8), 895–907 (2023)

	311.	 J. Li, Y. Li, T. Gan, C.Y. Shen, M. Jarrahi, A. Ozcan, All-optical 
complex field imaging using diffractive processors. Light: Sci. 
Appl. 13(1), 120 (2024)

	312.	 J. Park, B. Bai, D. Ryu, T. Liu, C. Lee, Y. Luo, M.J. Lee, L. 
Huang, J. Shin, Y. Zhang, D. Ryu, Artificial intelligence-enabled 
quantitative phase imaging methods for life sciences. Nat. Meth-
ods 20, 1645–1660 (2023)

	313.	 P. Hariharan, Optical Holography: Principles, Techniques and 
Applications (Cambridge University Press, 1996)

	314.	 M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, 
F. Merola, P. Ferraro, Digital holography, a metrological tool for 
quantitative analysis: trends and future applications. Opt. Lasers 
Eng. 104, 32–47 (2018)

	315.	 R.V. Vinu, Z. Chen, R.K. Singh, J. Pu, Ghost diffraction holo-
graphic microscopy. Optica 7(12), 1697–1704 (2020)

	316.	 T. Tahara, X. Quan, R. Otani, Y. Takaki, O. Matoba, Digital 
holography and its multidimensional imaging applications: a 
review. Microscopy 67(2), 55–67 (2018)

	317.	 T. Latychevskaia, Iterative phase retrieval for digital holography: 
tutorial. JOSA A 36(12), D31–D40 (2019)

	318.	 T. Leportier, M.C. Park, Holographic reconstruction by compres-
sive sensing. J. Opt. 19(6), 065704 (2017)

	319.	 R. Saluja, G.R.K.S. Subrahmanyam, D. Mishra, R.V. Vinu, R.K. 
Singh, Compressive correlation holography. Appl. Opt. 56(24), 
6949–6955 (2017)

	320.	 J.W. Goodman, Introduction to Fourier Optics (Roberts and 
Company publishers, Greenwood Village, 2005)

	321.	 Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, A. Ozcan, Phase 
recovery and holographic image reconstruction using deep learn-
ing in neural networks. Light: Sci. Appl. 7(2), 17141–17151 
(2018)

	322.	 Y. Rivenson, Y. Wu, A. Ozcan, Deep learning in holography and 
coherent imaging. Light: Sci. Appl. 8(1), 85 (2019)

	323.	 Z. Ren, Z. Xu, E.Y. Lam, End-to-end deep learning framework 
for digital holographic reconstruction. Adv. Photonics 1(1), 
016004–016004 (2019)

	324.	 H. Li, X. Chen, Z. Chi, C. Mann, A. Razi, Deep DIH: single-shot 
digital in-line holography reconstruction by deep learning. IEEE 
Access 8, 202648–202659 (2020)

	325.	 T. Liu, K. de Haan, B. Bai, Y. Rivenson, Y. Luo, H. Wang, 
D. Karalli, H. Fu, Y. Zhang, J. FitzGerald, A. Ozcan, Deep 

learning-based holographic polarization microscopy. ACS Pho-
tonics 7(11), 3023–3034 (2020)

	326.	 T. Latychevskaia, H.W. Fink, Solution to the twin image problem 
in holography. Phys. Rev. Lett. 98(23), 233901 (2007)

	327.	 V. Ntziachristos, Going deeper than microscopy: the optical 
imaging frontier in biology. Nat. Methods 7(8), 603–614 (2010)

	328.	 D.A. Boas, D.H. Brooks, E.L. Miller, C.A. DiMarzio, M. Kilmer, 
R.J. Gaudette, Q. Zhang, Imaging the body with diffuse optical 
tomography. IEEE Signal Process. Mag. 18(6), 57–75 (2001)

	329.	 I.M. Vellekoop, A.P. Mosk, Focusing coherent light through 
opaque strongly scattering media. Opt. Lett. 32(16), 2309–2311 
(2007)

	330.	 S.M. Popoff, G. Lerosey, R. Carminati, M. Fink, A.C. Boccara, S. 
Gigan, Measuring the transmission matrix in optics: an approach 
to the study and control of light propagation in disordered media. 
Phys. Rev. Lett. 104(10), 100601 (2010)

	331.	 S. Popoff, G. Lerosey, M. Fink, A.C. Boccara, S. Gigan, Image 
transmission through an opaque material. Nat. Commun. 1(1), 
81 (2010)

	332.	 A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. 
Lerosey, S. Gigan, L. Daudet, I. Carron, Imaging with nature: 
compressive imaging using a multiply scattering medium. Sci. 
Rep. 4(1), 5552 (2014)

	333.	 S. Li, C. Saunders, D.J. Lum, J. Murray-Bruce, V.K. Goyal, T. 
Čižmár, D.B. Phillips, Compressively sampling the optical trans-
mission matrix of a multimode fibre. Light: sci. Appl. 10(1), 88 
(2021)

	334.	 E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. 
Andrés, J. Lancis, Image transmission through dynamic scatter-
ing media by single-pixel photodetection. Opt. Express 22(14), 
16945–16955 (2014)

	335.	 S. Zhao, B. Rauer, L. Valzania, J. Dong, R. Liu, F. Li, S. Gigan, 
H.B. de Aguiar. Single-pixel transmission matrix recovery via 
2-photon fluorescence (2023), arXiv preprint arXiv:​2305.​03806. 
Accessed on 31 Jan (2024)

	336.	 S. Kang, S. Jeong, W. Choi, H. Ko, T.D. Yang, J.H. Joo, J.S. Lee, 
Y.S. Lim, Q.H. Park, W. Choi, Imaging deep within a scattering 
medium using collective accumulation of single-scattered waves. 
Nat. Photonics 9(4), 253–258 (2015)

	337.	 A. Badon, D. Li, G. Lerosey, A.C. Boccara, M. Fink, A. Aubry, 
Smart optical coherence tomography for ultra-deep imaging 
through highly scattering media. Sci. Adv. 2(11), e1600370 
(2016)

	338.	 O. Katz, F. Ramaz, S. Gigan, M. Fink, Controlling light in com-
plex media beyond the acoustic diffraction-limit using the acou-
sto-optic transmission matrix. Nat. Commun. 10(1), 717 (2019)

	339.	 A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. 
Krzakala, S. Gigan, L. Daudet, Reference-less measurement of 
the transmission matrix of a highly scattering material using a 
DMD and phase retrieval techniques. Opt. Express 23(9), 11898–
11911 (2015)

	340.	 B. Rajaei, E.W. Tramel, S. Gigan, F. Krzakala, L. Daudet, Inten-
sity-only optical compressive imaging using a multiply scattering 
material and a double phase retrieval approach. In 2016 IEEE 
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP) (pp. 4054–4058). IEEE. (2016)

	341.	 J. Dong, F. Krzakala, S. Gigan, Spectral method for multiplexed 
phase retrieval and application in optical imaging in complex 
media. In: ICASSP 2019–2019 IEEE International Conference 
on Acoustics, Speech and Signal Processing (ICASSP) (pp. 
4963–4967). IEEE. (2019)

	342.	 J. Bertolotti, E.G. Van Putten, C. Blum, A. Lagendijk, W.L. Vos, 
A.P. Mosk, Non-invasive imaging through opaque scattering lay-
ers. Nature 491(7423), 232–234 (2012)

https://github.com/THUHoloLab/pixel-super-resolution-phase-retrieval
https://github.com/THUHoloLab/pixel-super-resolution-phase-retrieval
http://arxiv.org/abs/2305.03806


	 J. Rosen et al.  166   Page 78 of 82

	343.	 O. Katz, P. Heidmann, M. Fink, S. Gigan, Non-invasive single-
shot imaging through scattering layers and around corners via 
speckle correlations. Nat. Photonics 8(10), 784–790 (2014)

	344.	 T. Wu, O. Katz, X. Shao, S. Gigan, Single-shot diffraction-lim-
ited imaging through scattering layers via bispectrum analysis. 
Opt. Lett. 41(21), 5003–5006 (2016)

	345.	 Y. Baek, H.B. de Aguiar, S. Gigan, Phase conjugation with 
spatially incoherent light in complex media. Nat. Photonics 17, 
1114–1119 (2023)

	346.	 C. Moretti, S. Gigan, Readout of fluorescence functional signals 
through highly scattering tissue. Nat. Photonics 14(6), 361–364 
(2020)

	347.	 F. Soldevila, C. Moretti, T. Nöbauer, H. Sarafraz, A. Vaziri, S. 
Gigan, Functional imaging through scattering medium via fluo-
rescence speckle demixing and localization. Opt. Express 31(13), 
21107–21117 (2023)

	348.	 A. Boniface, J. Dong, S. Gigan, Non-invasive focusing and imag-
ing in scattering media with a fluorescence-based transmission 
matrix. Nat. Commun. 11(1), 6154 (2020)

	349.	 L. Zhu, F. Soldevila, C. Moretti, A. d’Arco, A. Boniface, X. Shao, 
H.B. de Aguiar, S. Gigan, Large field-of-view non-invasive imag-
ing through scattering layers using fluctuating random illumina-
tion. Nat. Commun. 13(1), 1447 (2022)

	350.	 F. Soldevila, J. Dong, E. Tajahuerce, S. Gigan, H.B. de Aguiar, 
Fast compressive Raman bio-imaging via matrix completion. 
Optica 6(3), 341–346 (2019)

	351.	 Y. Li, Y. Xue, L. Tian, Deep speckle correlation: a deep learn-
ing approach toward scalable imaging through scattering media. 
Optica 5(10), 1181–1190 (2018)

	352.	 J. Dong, L. Valzania, A. Maillard, T.A. Pham, S. Gigan, M. 
Unser, Phase retrieval: from computational imaging to machine 
learning: a tutorial. IEEE Signal Process. Mag. 40(1), 45–57 
(2023)

	353.	 B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, C. Moser, 
Multimode optical fiber transmission with a deep learning net-
work. Light: Sci. Appl. 7(1), 69 (2018)

	354.	 P. Caramazza, O. Moran, R. Murray-Smith, D. Faccio, Trans-
mission of natural scene images through a multimode fibre. 
Nat. Commun. 10(1), 2029 (2019)

	355.	 A. Turpin, I. Vishniakou, J.D. Seelig, Light scattering con-
trol in transmission and reflection with neural networks. Opt. 
Express 26(23), 30911–30929 (2018)

	356.	 U.S. Kamilov, I.N. Papadopoulos, M.H. Shoreh, A. Goy, C. 
Vonesch, M. Unser, D. Psaltis, Learning approach to optical 
tomography. Optica 2(6), 517–522 (2015)

	357.	 A. d’Arco, F. Xia, A. Boniface, J. Dong, S. Gigan, Physics-
based neural network for non-invasive control of coherent light 
in scattering media. Opt. Express 30(17), 30845–30856 (2022)

	358.	 R. Liu, Y. Sun, J. Zhu, L. Tian, U.S. Kamilov, Recovery of 
continuous 3D refractive index maps from discrete intensity-
only measurements using neural fields. Nat. Mach. Intell. 4(9), 
781–791 (2022)

	359.	 https://​github.​com/​comed​iaLKB
	360.	 X. Yang, Y. Pu, D. Psaltis, Imaging blood cells through scatter-

ing biological tissue using speckle scanning microscopy. Opt. 
Express 22(3), 3405–3413 (2014)

	361.	 H. Yilmaz, E.G. van Putten, J. Bertolotti, A. Lagendijk, W.L. 
Vos, A.P. Mosk, Speckle correlation resolution enhancement of 
wide-field fluorescence imaging. Optica 2(5), 424–429 (2015)

	362.	 I. Freund, M. Rosenbluh, S. Feng, Memory effects in propa-
gation of optical waves through disordered media. Phys. Rev. 
Lett. 61(20), 2328 (1988)

	363.	 R. Berkovits, S. Feng, Correlations in coherent multiple scat-
tering. Phys. Rep. 238(3), 135–172 (1994)

	364.	 B. Judkewitz, R. Horstmeyer, I.M. Vellekoop, I.N. Papado-
poulos, C. Yang, Translation correlations in anisotropically 
scattering media. Nat. Phys. 11(8), 684–689 (2015)

	365.	 H. Yılmaz, M. Kühmayer, C.W. Hsu, S. Rotter, H. Cao, Cus-
tomizing the angular memory effect for scattering media. Phys. 
Rev. X 11(3), 031010 (2021)

	366.	 A.M. Caravaca-Aguirre, A. Carron, S. Mezil, I. Wang, E. 
Bossy, Optical memory effect in square multimode fibers. Opt. 
Lett. 46(19), 4924–4927 (2021)

	367.	 D. Bouchet, A.M. Caravaca-Aguirre, G. Godefroy, P. Moreau, 
I. Wang, E. Bossy, Speckle-correlation imaging through a 
kaleidoscopic multimode fiber. Proc. Natl. Acad. Sci. 120(26), 
e2221407120 (2023)

	368.	 L.V. Amitonova, A.P. Mosk, P.W. Pinkse, Rotational memory 
effect of a multimode fiber. Opt. Express 23(16), 20569–20575 
(2015)

	369.	 S. Li, S.A. Horsley, T. Tyc, T. Čižmár, D.B. Phillips, Memory 
effect assisted imaging through multimode optical fibres. Nat. 
Commun. 12(1), 3751 (2021)

	370.	 S. Y. Lee, MMF-simulation, https://​github.​com/​szuyul/​MMF-​
simul​ation

	371.	 S.Y. Lee, V.J. Parot, B.E Bouma, M. Villiger, Reciprocity-
induced symmetry in the round-trip transmission through com-
plex systems. APL Photonics 5(106104), 1–10 (2020)

	372.	 H. Cao, A.P. Mosk, S. Rotter, Shaping the propagation of light 
in complex media. Nat. Phys. 18(9), 994–1007 (2022)

	373.	 D.B. Lindell, G. Wetzstein, Three-dimensional imaging 
through scattering media based on confocal diffuse tomogra-
phy. Nat. Commun. 11(1), 4517 (2020)

	374.	 S. Okawa, Y. Hoshi, A review of image reconstruction algo-
rithms for diffuse optical tomography. Appl. Sci. 13(8), 5016 
(2023)

	375.	 H. Ayaz, W.B. Baker, G. Blaney, D.A. Boas, H. Bortfeld, K. 
Brady, J. Brake, S. Brigadoi, E.M. Buckley, S.A. Carp, R.J. 
Cooper et al., Optical imaging and spectroscopy for the study 
of the human brain: status report. Neurophotonics 9(S2), 
S24001 (2022)

	376.	 M.B. Applegate, R.E. Istfan, S. Spink, A. Tank, D. Roblyer, 
Recent advances in high speed diffuse optical imaging in bio-
medicine. APL Photonics 5(4), 040802 (2020)

	377.	 C. Liu, A.K. Maity, A.W. Dubrawski, A. Sabharwal, S.G. Nar-
asimhan, High resolution diffuse optical tomography using short 
range indirect subsurface imaging. In: 2020 IEEE International 
Conference on Computational Photography (ICCP) (pp. 1–12). 
IEEE. (2020)

	378.	 P. Taroni, Diffuse optical imaging and spectroscopy of the breast: 
a brief outline of history and perspectives. Photochem. Photobiol. 
Sci. 11(2), 241–250 (2012)

	379.	 J. Bertolotti, O. Katz, Imaging in complex media. Nat. Phys. 
18(9), 1008–1017 (2022)

	380.	 G.M. Balasubramaniam, B. Wiesel, N. Biton, R. Kumar, J. Kup-
ferman, S. Arnon, Tutorial on the use of deep learning in diffuse 
optical tomography. Electronics 11(3), 305 (2022)

	381.	 B. Farsi, M. Amayri, N. Bouguila, U. Eicker, On short-term load 
forecasting using machine learning techniques and a novel paral-
lel deep LSTM-CNN approach. IEEE Access 9, 31191–31212 
(2021)

	382.	 S. Ghimire, T. Nguyen-Huy, R.C. Deo, D. Casillas-Perez, S. 
Salcedo-Sanz, Efficient daily solar radiation prediction with 
deep learning 4-phase convolutional neural network, dual stage 
stacked regression and support vector machine CNN-REGST 
hybrid model. Sustain. Mater. Technol. 32, e00429 (2022)

	383.	 J. Yoo, S. Sabir, D. Heo, K.H. Kim, A. Wahab, Y. Choi, S.I. 
Lee, E.Y. Chae, H.H. Kim, Y.M. Bae, Y.W. Choi, Deep learning 

https://github.com/comediaLKB
https://github.com/szuyul/MMF-simulation
https://github.com/szuyul/MMF-simulation


Roadmap on computational methods in optical imaging and holography [invited]﻿	 Page 79 of 82    166 

diffuse optical tomography. IEEE Trans. Med. Imaging 39(4), 
877–887 (2019)

	384.	 G.M. Balasubramaniam, S. Arnon, Regression-based neural 
network for improving image reconstruction in diffuse optical 
tomography. Biomed. Opt. Express 13(4), 2006–2017 (2022)

	385.	 N. Murad, M.C. Pan, Y.F. Hsu, Reconstruction and localiza-
tion of tumors in breast optical imaging via convolution neural 
network based on batch normalization layers. IEEE Access 10, 
57850–57864 (2022)

	386.	 M. Mozumder, A. Hauptmann, I. Nissilä, S.R. Arridge, T. Tar-
vainen, A model-based iterative learning approach for diffuse 
optical tomography. IEEE Trans. Med. Imaging 41(5), 1289–
1299 (2021)

	387.	 Y. Zhao, A. Raghuram, F. Wang, S.H. Kim, A. Hielscher, J.T. 
Robinson, A. Veeraraghavan, Unrolled-DOT: an interpretable 
deep network for diffuse optical tomography. J. Biomed. Opt. 
28(3), 036002–036002 (2023)

	388.	 X.J. Tan, W.L. Cheor, L.L. Lim, K.S. Ab Rahman, I.H. Bakrin, 
Artificial intelligence (AI) in breast imaging: a scientometric 
umbrella review. Diagnostics 12(12), 3111 (2022)

	389.	 J.T. Smith, M. Ochoa, D. Faulkner, G. Haskins, X. Intes, Deep 
learning in macroscopic diffuse optical imaging. J. Biomed. Opt. 
27(2), 020901–020901 (2022)

	390.	 Y. Zou, Y. Zeng, S. Li, Q. Zhu, Machine learning model with 
physical constraints for diffuse optical tomography. Biomed. Opt. 
Express 12(9), 5720–5735 (2021)

	391.	 A. Hauptman, G.M. Balasubramaniam, S. Arnon, Machine learn-
ing diffuse optical tomography using extreme gradient boosting 
and genetic programming. Bioengineering 10(3), 382 (2023)

	392.	 T. Manojlović, T. Tomanič, I. Štajduhar, M. Milanič, Rapid 
extraction of skin physiological parameters from hyperspectral 
images using machine learning. Appl. Intell. 53(13), 16519–
16539 (2023)

	393.	 G.M. Balasubramaniam, G. Manavalan, A. Hauptman, S. Arnon, 
Infant head subsurface imaging using high-density diffuse opti-
cal tomography and machine learning. In European Conference 
on Biomedical Optics (p. 126280U). Optica Publishing Group. 
(2023)

	394.	 G.M. Balasubramaniam, G. Manavalan, A.S. Kadosh, S. Arnon, 
Breast tumor detection using regularized deep-learning diffuse 
optical tomography. In Diffuse Optical Spectroscopy and Imag-
ing IX (Vol. 12628, pp. 208–210). SPIE. (2023)

	395.	 G.M. Balasubramaniam, N. Biton, S. Arnon, Imaging through 
diffuse media using multi-mode vortex beams and deep learning. 
Sci. Rep. 12(1), 1561 (2022)

	396.	 J. Hu, Z. Guo, Y. Fu, J.A. Gan, P.F. Chen, G. Chen, C. Min, X. 
Yuan, F. Feng, How convolutional-neural-network detects optical 
vortex scattering fields. Opt. Lasers Eng. 160, 107246 (2023)

	397.	 Y. Wang, S. Li, Y. Wang, Q. Yan, X. Wang, Y. Shen, Z. Li, F. 
Kang, X. Cao, S. Zhu, Compact fiber-free parallel-plane multi-
wavelength diffuse optical tomography system for breast imag-
ing. Opt. Express 30(5), 6469–6486 (2022)

	398.	 J.N. Mait, G.W. Euliss, R.A. Athale, Computational imaging. 
Adv. Opt. Photonics 10(2), 409–483 (2018)

	399.	 Y. Endo, J. Tanida, M. Naruse, R. Horisaki, Extrapolated 
speckle-correlation imaging. Intell. Comput. (2022). https://​doi.​
org/​10.​34133/​2022/​97870​98

	400.	 R. Mashiko, J. Tanida, M. Naruse, R. Horisaki, Extrapolated 
speckle-correlation imaging with an untrained deep neural net-
work. Appl. Opt. 62(31), 8327–8333 (2023)

	401.	 Y. Okamoto, R. Horisaki, J. Tanida, Noninvasive three-dimen-
sional imaging through scattering media by three-dimensional 
speckle correlation. Opt. Lett. 44(10), 2526–2529 (2019)

	402.	 R. Horisaki, Y. Okamoto, J. Tanida, Single-shot noninvasive 
three-dimensional imaging through scattering media. Opt. Lett. 
44(16), 4032–4035 (2019)

	403.	 K. Ehira, R. Horisaki, Y. Nishizaki, M. Naruse, J. Tanida, Spec-
tral speckle-correlation imaging. Appl. Opt. 60(8), 2388–2392 
(2021)

	404.	 D. Kundur, D. Hatzinakos, Blind image deconvolution. IEEE 
Signal Process. Mag. 13(3), 43–64 (1996)

	405.	 H. Muneta, R. Horisaki, Y. Nishizaki, M. Naruse, J. Tanida, 
Single-shot blind deconvolution with coded aperture. Appl. Opt. 
61(22), 6408–6413 (2022)

	406.	 H. Muneta, R. Horisaki, Y. Nishizaki, M. Naruse, J. Tanida, 
Single-shot blind deconvolution in coherent diffraction imaging 
with coded aperture. Opt. Rev. 30(5), 509–515 (2023)

	407.	 Z. Yaqoob, D. Psaltis, M.S. Feld, C. Yang, Optical phase con-
jugation for turbidity suppression in biological samples. Nat. 
Photonics 2(2), 110–115 (2008)

	408.	 R. Horisaki, K. Ehira, Y. Nishizaki, M. Naruse, J. Tanida, Inco-
herent optical phase conjugation. Appl. Opt. 61(18), 5532–5537 
(2022)

	409.	 J.H. Park, B. Lee, Holographic techniques for augmented reality 
and virtual reality near-eye displays. Light: Adv. Manuf. 3(1), 
137–150 (2022)

	410.	 R. Suda, M. Naruse, R. Horisaki, Incoherent computer-generated 
holography. Opt. Lett. 47(15), 3844–3847 (2022)

	411.	 W.T. Chen, A.Y. Zhu, F. Capasso, Flat optics with dispersion-
engineered metasurfaces. Nat. Rev. Mater. 5(8), 604–620 (2020)

	412.	 J.W. Goodman, Speckle Phenomena in Optics: Theory and Appli-
cations (Roberts and Company Publishers, Greenwood Village, 
2007)

	413.	 M.I. Akhlaghi, A. Dogariu, Tracking hidden objects using sto-
chastic probing. Optica 4(4), 447–453 (2017)

	414.	 T. Sarkar, S. Chandra, R.K. Singh, Phase recovery with intensity 
and polarization correlation. Prog. Opt. 68, 101–190 (2023)

	415.	 S. Chandra, T. Sarkar, R. Kumar, B. Das, R.K. Singh, Hanbury 
Brown-Twiss approach for imaging through a dynamic scattering 
medium. Opt. Lett. 48(13), 3391–3394 (2023)

	416.	 A.S. Somkuwar, B. Das, R.V. Vinu, Y. Park, R.K. Singh, Holo-
graphic imaging through a scattering layer using speckle inter-
ferometry. JOSA A 34(8), 1392–1399 (2017)

	417.	 R.K. Tyson, B.W. Frazier, Principles of adaptive optics (CRC 
Press, 2022)

	418.	 K. Lee, J. Lee, J.H. Park, J.H. Park, Y. Park, One-wave opti-
cal phase conjugation mirror by actively coupling arbitrary light 
fields into a single-mode reflector. Phys. Rev. Lett. 115(15), 
153902 (2015)

	419.	 D.N. Naik, R.K. Singh, T. Ezawa, Y. Miyamoto, M. Takeda, 
Photon correlation holography. Opt. Express 19(2), 1408–1421 
(2011)

	420.	 M. Takeda, W. Wang, D.N. Naik, R.K. Singh, Spatial statistical 
optics and spatial correlation holography: a review. Opt. Rev. 21, 
849–861 (2014)

	421.	 R. Kumar Singh, M.A. Sharma, Recovery of complex valued 
objects from two-point intensity correlation measurement. Appl. 
Phys. Lett. 104(11), 111108 (2014)

	422.	 R.K. Singh, Hybrid correlation holography with a single pixel 
detector. Opt. Lett. 42(13), 2515–2518 (2017)

	423.	 A.C. Mandal, T. Sarkar, Z. Zalevsky, R.K. Singh, Structured 
transmittance illumination coherence holography. Sci. Rep. 
12(1), 4564 (2022)

	424.	 M. Rathor, R.K. Singh, Single shot and speckle free reconstruc-
tion of orthogonal polarization modes with a tuneable beam dis-
placer. J. Opt. 25(2), 025701 (2022)

https://doi.org/10.34133/2022/9787098
https://doi.org/10.34133/2022/9787098


	 J. Rosen et al.  166   Page 80 of 82

	425.	 Manisha, A.C. Mandal, M. Rathor, Z. Zalevsky, R.K. Singh, 
Randomness assisted in-line holography with deep learning. Sci. 
Rep. 13(1), 10986 (2023)

	426.	 Y. Liu, L. Chen, W. Liu, X. Liang, W. Wan, Resolution-enhanced 
imaging through scattering media by high-order correlation. 
Appl. Opt. 58(9), 2350–2357 (2019)

	427.	 J.E. Oh, Y.W. Cho, G. Scarcelli, Y.H. Kim, Sub-Rayleigh imag-
ing via speckle illumination. Opt. Lett. 38(5), 682–684 (2013)

	428.	 F. Li, C. Altuzarra, T. Li, M.O. Scully, G.S. Agarwal, Beyond 
sub-Rayleigh imaging via high order correlation of speckle illu-
mination. J. Opt. 21(11), 115604 (2019)

	429.	 R.K. Singh, S. Vyas, Y. Miyamoto, Lensless Fourier transform 
holography for coherence waves. J. Opt. 19(11), 115705 (2017)

	430.	 R. Heintzmann, T. Huser, Super-resolution structured illumina-
tion microscopy. Chem. Rev. 117(23), 13890–13908 (2017)

	431.	 W. Wang, B. Zhang, B. Wu, X. Li, J. Ma, P. Sun, S. Zheng, 
J. Tan, Image scanning microscopy with a long depth of focus 
generated by an annular radially polarized beam. Opt. Express 
28(26), 39288–39298 (2020)

	432.	 M. Liu, Y. Lei, L. Yu, X. Fang, Y. Ma, L. Liu, J. Zheng, P. Gao, 
Super-resolution optical microscopy using cylindrical vector 
beams. Nanophotonics 11(15), 3395–3420 (2022)

	433.	 E. Otte, C. Denz, Optical trapping gets structure: Structured light 
for advanced optical manipulation. Appl. Phys. Rev. 7(4), 041308 
(2020)

	434.	 A. Kritzinger, A. Forbes, P.B. Forbes, Optical trapping and fluo-
rescence control with vectorial structured light. Sci. Rep. 12(1), 
17690 (2022)

	435.	 D. Flamm, D.G. Grossmann, M. Sailer, M. Kaiser, F. Zimmer-
mann, K. Chen, M. Jenne, J. Kleiner, J. Hellstern, C. Tillkorn, 
D.H. Sutter, Structured light for ultrafast laser micro-and nano-
processing. Opt. Eng. 60(2), 025105 (2021)

	436.	 A. Porfirev, S. Khonina, A. Kuchmizhak, Light–matter interac-
tion empowered by orbital angular momentum: control of matter 
at the micro-and nanoscale. Prog. Quantum Electron. 88, 100459 
(2023)

	437.	 B. Richards, E. Wolf, Electromagnetic diffraction in optical 
systems, II. Structure of the image field in an aplanatic system. 
Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 253(1274), 358–379 
(1959)

	438.	 A. Porfirev, S. Khonina, N. Ivliev, A. Meshalkin, E. Achimova, 
A. Forbes, Writing and reading with the longitudinal component 
of light using carbazole-containing azopolymer thin films. Sci. 
Rep. 12(1), 3477 (2022)

	439.	 A. Yen, Rayleigh or Abbe? Origin and naming of the resolu-
tion formula of microlithography. J. Micro/Nanolithogr. MEMS 
MOEMS 19(4), 040501–040501 (2020)

	440.	 S.H. Ng, B. Allan, D. Ierodiaconou, V. Anand, A. Babanin, S. 
Juodkazis, Drone polariscopy—towards remote sensing applica-
tions. Eng. Proc. 11(1), 46 (2021)

	441.	 R. Honda, M. Ryu, M. Moritake, A. Balčytis, V. Mizeikis, J. 
Vongsvivut, M.J. Tobin, D. Appadoo, J.L. Li, S.H. Ng, S. Juod-
kazis, Infrared polariscopy imaging of linear polymeric patterns 
with a focal plane array. Nanomaterials 9(5), 732 (2019)

	442.	 Y. Hikima, J. Morikawa, T. Hashimoto, FT-IR image processing 
algorithms for in-plane orientation function and azimuth angle of 
uniaxially drawn polyethylene composite film. Macromolecules 
44(10), 3950–3957 (2011)

	443.	 M. Ryu, R. Honda, A. Balčytis, J. Vongsvivut, M.J. Tobin, S. 
Juodkazis, J. Morikawa, Hyperspectral mapping of anisotropy. 
Nanoscale Horiz. 4(6), 1443–1449 (2019)

	444.	 R. Meguya, S.H. Ng, M. Han, V. Anand, T. Katkus, J. Vongs-
vivut, D. Appadoo, Y. Nishijima, S. Juodkazis, J. Morikawa, 
Polariscopy with optical near-fields. Nanoscale Horiz. 7(9), 
1047–1053 (2022)

	445.	 C. Gassner, J. Vongsvivut, S.H. Ng, M. Ryu, M.J. Tobin, S. Juod-
kazis, J. Morikawa, B.R. Wood, Linearly polarized infrared spec-
troscopy for the analysis of biological materials. Appl. Spectrosc. 
77(9), 977–1008 (2023)

	446.	 R. Honda, M. Ryu, A. Balčytis, J. Vongsvivut, M.J. Tobin, S. 
Juodkazis, J. Morikawa, Paracetamol micro-structure analysis 
by optical mapping. Appl. Surf. Sci. 473, 127–132 (2019)

	447.	 G.A. Atkinson, J.D. Ernst, High-sensitivity analysis of polari-
zation by surface reflection. Mach. Vis. Appl. 29, 1171–1189 
(2018)

	448.	 S. Kamegaki, D. Smith, M. Ryu, S.H. Ng, H.H. Huang, P. Maa-
soumi, J. Vongsvivut, D. Moraru, T. Katkus, S. Juodkazis, J. 
Morikawa, Four-polarisation camera for anisotropy mapping at 
three orientations: micro-grain of olivine. Coatings 13(9), 1640 
(2023)

	449.	 M. Ryu, S.H. Ng, V. Anand, S. Lundgaard, J. Hu, T. Katkus, D. 
Appadoo, Z. Vilagosh, A.W. Wood, S. Juodkazis, J. Morikawa, 
Attenuated total reflection at THz wavelengths: prospective use 
of total internal reflection and polariscopy. Appl. Sci. 11(16), 
7632 (2021)

	450.	 Y. Tao, S.H. Walter, J.P. Muller, Y. Luo, S. Xiong, A high-res-
olution digital terrain model mosaic of the mars 2020 persever-
ance rover landing site at Jezero Crater. Earth Space Sci. 10(10), 
e2023EA003045 (2023)

	451.	 M. Pascucci, S. Ganesan, A. Tripathi, O. Katz, V. Emiliani, 
M. Guillon, Compressive three-dimensional super-resolution 
microscopy with speckle-saturated fluorescence excitation. Nat. 
Commun. 10(1), 1327 (2019)

	452.	 M.G. Gustafsson, Surpassing the lateral resolution limit by a fac-
tor of two using structured illumination microscopy. J. Microsc. 
198(2), 82–87 (2000)

	453.	 N. Chakrova, R. Heintzmann, B. Rieger, S. Stallinga, Study-
ing different illumination patterns for resolution improvement 
in fluorescence microscopy. Opt. Express 23(24), 31367–31383 
(2015)

	454.	 E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nico-
letti, M. Allain, A. Sentenac, Structured illumination microscopy 
using unknown speckle patterns. Nat. Photonics 6(5), 312–315 
(2012)

	455.	 L.H. Yeh, L. Tian, L. Waller, Structured illumination micros-
copy with unknown patterns and a statistical prior. Biomed. Opt. 
Express 8(2), 695–711 (2017)

	456.	 M.A.A. Neil, R. Juškaitis, T. Wilson, Real time 3D fluorescence 
microscopy by two beam interference illumination. Opt. Com-
mun. 153(1–3), 1–4 (1998)

	457.	 S.G. Reddy, S. Prabhakar, A. Kumar, J. Banerji, R.P. Singh, 
Higher order optical vortices and formation of speckles. Opt. 
Lett. 39(15), 4364–4367 (2014)

	458.	 P. Vanitha, N. Lal, A. Rani, B.K. Das, G.R. Salla, R.P. Singh, 
Correlations in scattered perfect optical vortices. J. Opt. 23(9), 
095601 (2021)

	459.	 S.G. Reddy, P. Chithrabhanu, P. Vaity, A. Aadhi, S. Prabhakar, 
R.P. Singh, Non-diffracting speckles of a perfect vortex beam. J. 
Opt. 18(5), 055602 (2016)

	460.	 C.J.R. Sheppard, D.K. Hamilton, I.J. Cox, Optical microscopy 
with extended depth of field. Proc. R. Soc. Lond. A Math. Phys. 
Sci. 387(1792), 171–186 (1983)

	461.	 B. Hao, J. Leger, Polarization beam shaping. Appl. Opt. 46(33), 
8211–8217 (2007)

	462.	 L. Zhu, F. Li, Z. Huang, T. Zhao, An apodized cubic phase mask 
used in a wavefront coding system to extend the depth of field. 
Chin. Phys. B 31(5), 054217 (2022)

	463.	 W. Chi, N. George, Computational imaging with the logarithmic 
asphere: theory. JOSA A 20(12), 2260–2273 (2003)



Roadmap on computational methods in optical imaging and holography [invited]﻿	 Page 81 of 82    166 

	464.	 N. Dubey, R. Kumar, J. Rosen, Multi-wavelength imaging with 
extended depth of field using coded apertures and radial quartic 
phase functions. Opt. Lasers Eng. 169, 107729 (2023)

	465.	 M. Liao, D. Lu, G. Pedrini, W. Osten, G. Situ, W. He, X. Peng, 
Extending the depth-of-field of imaging systems with a scattering 
diffuser. Sci. Rep. 9(1), 7165 (2019)

	466.	 Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, A. 
Ozcan, Extended depth-of-field in holographic imaging using 
deep-learning-based autofocusing and phase recovery. Optica 
5(6), 704–710 (2018)

	467.	 W. Chi, K. Chu, N. George, Polarization coded aperture. Opt. 
Express 14(15), 6634–6642 (2006)

	468.	 V. Tiwari, N.S. Bisht, Combined Jones-Stokes polarimetry and 
its decomposition into associated anisotropic characteristics of 
spatial light modulator. Photonics 9(3), 195 (2022)

	469.	 V. Tiwari, Extended depth of field of a diffraction limited imag-
ing system using a spatial light modulator based intensity com-
pensated polarization coded aperture. Opt. Contin. 2(1), 1–8 
(2023)

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Joseph Rosen1,2 · Simon Alford5 · Blake Allan6 · Vijayakumar Anand2,7 · Shlomi Arnon1 · Francis Gracy Arockiaraj1,2 · 
Jonathan Art5 · Bijie Bai8 · Ganesh M. Balasubramaniam1 · Tobias Birnbaum9,10 · Nandan S. Bisht11 · 
David Blinder9,12,13 · Liangcai Cao14 · Qian Chen15 · Ziyang Chen16 · Vishesh Dubey4 · Karen Egiazarian17 · 
Mert Ercan18,19 · Andrew Forbes20 · G. Gopakumar21 · Yunhui Gao14 · Sylvain Gigan3 · Paweł Gocłowski4 · 
Shivasubramanian Gopinath2 · Alon Greenbaum22,23,24 · Ryoichi Horisaki25 · Daniel Ierodiaconou6 · 
Saulius Juodkazis7,26 · Tanushree Karmakar27 · Vladimir Katkovnik17 · Svetlana N. Khonina28,29 · Peter Kner30 · 
Vladislav Kravets1 · Ravi Kumar31 · Yingming Lai32 · Chen Li22,23 · Jiaji Li15,33,34 · Shaoheng Li30 · Yuzhu Li8 · 
Jinyang Liang32 · Gokul Manavalan1 · Aditya Chandra Mandal27 · Manisha Manisha27 · Christopher Mann35,36 · 
Marcin J. Marzejon37 · Chané Moodley20 · Junko Morikawa26 · Inbarasan Muniraj38 · Donatas Narbutis39 · 
Soon Hock Ng7 · Fazilah Nothlawala20 · Jeonghun Oh40,41 · Aydogan Ozcan8   · YongKeun Park40,41,42 · 
Alexey P. Porfirev28 · Mariana Potcoava5 · Shashi Prabhakar43 · Jixiong Pu16 · Mani Ratnam Rai22,23 · 
Mikołaj Rogalski37 · Meguya Ryu44 · Sakshi Choudhary45 · Gangi Reddy Salla31 · Peter Schelkens9,12 · 
Sarp Feykun Şener18,19 · Igor Shevkunov17 · Tomoyoshi Shimobaba13 · Rakesh K. Singh27 · Ravindra P. Singh43 · 
Adrian Stern1 · Jiasong Sun15,33,34 · Shun Zhou15,33,34 · Chao Zuo15,33,34 · Zack Zurawski5 · Tatsuki Tahara46 · 
Vipin Tiwari2 · Maciej Trusiak37 · R. V. Vinu16 · Sergey G. Volotovskiy28 · Hasan Yılmaz18 · Hilton Barbosa De Aguiar3 · 
Balpreet S. Ahluwalia4 · Azeem Ahmad4

 *	 Joseph Rosen 
	 rosenj@bgu.ac.il

1	 School of Electrical and Computer Engineering, Ben-Gurion 
University of the Negev, 8410501 Beer‑Sheva, Israel

2	 Institute of Physics, University of Tartu, W. Ostwaldi 1, 
50411 Tartu, Estonia

3	 Laboratoire Kastler Brossel, Centre National de la Recherche 
Scientifique (CNRS) UMR 8552, Sorbonne Universite ́, 
Ecole Normale Supe ́rieure-Paris Sciences et Lettres (PSL) 
Research University, Collège de France, 24 rue Lhomond, 
75005 Paris, France

4	 Department of Physics and Technology, UiT The Arctic 
University of Norway, 9037 Tromsø, Norway

5	 Department of Anatomy and Cell Biology, University 
of Illinois at Chicago, 808 South Wood Street, Chicago, 
IL 60612, USA

6	 Faculty of Science Engineering and Built Environment, 
Deakin University, Princes Highway, Warrnambool, 
VIC 3280, Australia

7	 Optical Sciences Center and ARC Training Centre in Surface 
Engineering for Advanced Materials (SEAM), School 
of Science, Computing and Engineering Technologies, 

Optical Sciences Center, Swinburne University 
of Technology, Hawthorn, Melbourne, VIC 3122, Australia

8	 Electrical and Computer Engineering Department, 
Bioengineering Department, California NanoSystems 
Institute, University of California, Los Angeles (UCLA), 
Los Angeles, CA, USA

9	 Department of Electronics and Informatics (ETRO), Vrije 
Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, 
Belgium

10	 Swave BV, Gaston Geenslaan 2, 3001 Leuven, Belgium
11	 Applied Optics and Spectroscopy Laboratory, Department 

of Physics, Soban Singh Jeena University Campus Almora, 
Almora, Uttarakhand 263601, India

12	 IMEC, Kapeldreef 75, 3001 Leuven, Belgium
13	 Graduate School of Engineering, Chiba University, 1‑33 

Yayoi‑cho, Inage‑ku, Chiba, Chiba, Japan
14	 Department of Precision Instruments, Tsinghua University, 

Beijing 100084, China
15	 Jiangsu Key Laboratory of Spectral Imaging and Intelligent 

Sense, Nanjing 210094, Jiangsu, China
16	 Fujian Provincial Key Laboratory of Light Propagation 

and Transformation, College of Information Science 

http://orcid.org/0000-0002-0717-683X


	 J. Rosen et al.  166   Page 82 of 82

and Engineering, Huaqiao University, Xiamen 361021, 
Fujian, China

17	 Computational Imaging Group, Faculty of Information 
Technology and Communication Sciences, Tampere 
University, 33100 Tampere, Finland

18	 Institute of Materials Science and Nanotechnology, National 
Nanotechnology Research Center (UNAM), Bilkent 
University, 06800 Ankara, Turkey

19	 Department of Physics, Bilkent University, 06800 Ankara, 
Turkey

20	 School of Physics, University of the Witwatersrand, 
Johannesburg, South Africa

21	 Department of Computer Science and Engineering, Amrita 
School of Computing, Amrita Vishwa Vidyapeetham, 
Amritapuri, Vallikavu, Kerala, India

22	 Department of Biomedical Engineering, North Carolina State 
University and University of North Carolina at Chapel Hill, 
Raleigh, NC 27695, USA

23	 Comparative Medicine Institute, North Carolina State 
University, Raleigh, NC 27695, USA

24	 Bioinformatics Research Center, North Carolina State 
University, Raleigh, NC 27695, USA

25	 Graduate School of Information Science and Technology, 
The University of Tokyo, 7‑3‑1 Hongo, Bunkyo‑ku, 
Tokyo 113‑8656, Japan

26	 World Research Hub Initiative (WRHI), Tokyo Institute 
of Technology, 2‑12‑1, Ookayama, Tokyo 152‑8550, Japan

27	 Laboratory of Information Photonics and Optical Metrology, 
Department of Physics, Indian Institute of Technology 
(Banaras Hindu University), Varanasi, Uttar Pradesh 221005, 
India

28	 IPSI RAS-Branch of the FSRC “Crystallography 
and Photonics” RAS, 443001 Samara, Russia

29	 Samara National Research University, 443086 Samara, 
Russia

30	 School of Electrical and Computer Engineering, University 
of Georgia, Athens, GA 30602, USA

31	 Department of Physics, SRM University – AP, Amaravati, 
Andhra Pradesh 522502, India

32	 Laboratory of Applied Computational Imaging, Centre 
Énergie Matériaux Télécommunications, Institut National de 
la Recherche Scientifique, Université du Québec, Varennes, 
QC J3X1Pd7, Canada

33	 Smart Computational Imaging Laboratory (SCILab), School 
of Electronic and Optical Engineering, Nanjing University 
of Science and Technology, Nanjing 210094, Jiangsu, China

34	 Smart Computational Imaging Research Institute (SCIRI), 
Nanjing 210019, Jiangsu, China

35	 Department of Applied Physics and Materials Science, 
Northern Arizona University, Flagstaff, AZ 86011, USA

36	 Center for Materials Interfaces in Research and Development, 
Northern Arizona University, Flagstaff, AZ 86011, USA

37	 Institute of Micromechanics and Photonics, Warsaw 
University of Technology, 8 Sw. A. Boboli St., 
02‑525 Warsaw, Poland

38	 LiFE Lab, Department of Electronics and Communication 
Engineering, Alliance School of Applied Engineering, 
Alliance University, Bangalore, Karnataka 562106, India

39	 Institute of Theoretical Physics and Astronomy, Faculty 
of Physics, Vilnius University, Sauletekio 9, 10222 Vilnius, 
Lithuania

40	 Department of Physics, Korea Advanced Institute of Science 
and Technology (KAIST), Daejeon 34141, South Korea

41	 KAIST Institute for Health Science and Technology, KAIST, 
Daejeon 34141, South Korea

42	 Tomocube Inc., Daejeon 34051, South Korea
43	 Quantum Science and Technology Laboratory, Physical 

Research Laboratory, Navrangpura, Ahmedabad 380009, 
India

44	 Research Institute for Material and Chemical Measurement, 
National Metrology Institute of Japan (AIST), 1‑1‑1 
Umezono, Tsukuba 305‑8563, Japan

45	 Department Chemical Engineering, Ben-Gurion University 
of the Negev, 8410501 Beer‑Shiva, Israel

46	 Applied Electromagnetic Research Center, Radio 
Research Institute, National Institute of Information 
and Communications Technology (NICT), 4‑2‑1 
Nukuikitamachi, Koganei, Tokyo 184‑8795, Japan


	Roadmap on computational methods in optical imaging and holography [invited]
	Abstract
	1 Introduction (Joseph Rosen and Vijayakumar Anand)
	2 Incoherent digital holography with phase-shifting interferometry (Tatsuki Tahara)
	2.1 Background
	2.2 Methodology
	2.3 Results
	2.4 Conclusion and future perspectives

	3 Transport of amplitude into phase using Gerchberg-Saxton algorithm for design of pure phase multifunctional diffractive optical elements (Shivasubramanian Gopinath, Joseph Rosen and Vijayakumar Anand)
	3.1 Background
	3.2 Methodology
	3.3 Results
	3.4 Conclusion and future perspectives

	4 PSF engineering for Fresnel incoherent correlation holography (Francis Gracy Arockiaraj, Saulius Juodkazis and Vijayakumar Anand)
	4.1 Background
	4.2 Methodology

	5 Results
	5.1 Conclusion and future perspectives

	6 Single molecule localization from self-interference digital holography (Shaoheng Li and Peter Kner)
	6.1 Background
	6.2 Methodology
	6.3 Results
	6.4 Conclusion and future perspectives

	7 Deep learning-based illumination and detection correction in light-sheet microscopy (Mani Ratnam Rai, Chen Li and Alon Greenbaum)
	7.1 Background
	7.2 Methodology
	7.3 Results
	7.4 Conclusion and future perspectives

	8 Complex amplitude reconstruction of objects above and below the objective focal plane by IHLLS fluorescence microscopy (Christopher Mann, Zack Zurawski, Simon Alford, Jonathan Art, and Mariana Potcoava)
	8.1 Background
	8.2 Methodology
	8.3 Results
	8.4 Conclusion and future perspectives

	9 Sparse-view computed tomography for passive two-dimensional ultrafast imaging (Yingming Lai and Jinyang Liang)
	9.1 Background
	9.2 Methodology
	9.3 Results
	9.4 Conclusion

	10 Computational reconstruction of quantum objects by a modal approach (Fazilah Nothlawala, Chané Moodley and Andrew Forbes)
	10.1 Background
	10.2 Methodology
	10.3 Results
	10.4 Conclusion and future perspectives

	11 Label-free sensing of bacteria and viruses using holography and deep learning (Yuzhu Li, Bijie Bai and Aydogan Ozcan)
	11.1 Background
	11.2 Methodology
	11.3 Results
	11.4 Conclusion and future perspectives

	12 Accelerating computer-generated holography with sparse signal models (David Blinder, Tobias Birnbaum, Peter Schelkens)
	12.1 Background
	12.2 Methodology
	12.3 Results
	12.4 Conclusion and future perspectives

	13 Layer-based hologram calculations: practical implementations (Tomoyoshi Shimobaba)
	13.1 Background
	13.2 Methodology
	13.3 Results
	13.4 Conclusion and future perspectives

	14 Learned compressive holography (Vladislav Kravets and Adrian Stern)
	14.1 Background
	14.2 Methodology
	14.3 Results
	14.4 Conclusion and future perspectives

	15 Computational optical phase imaging: from digital holographic interferometry to intensity diffraction tomography (Shun Zhou, Jiaji Li, Jiasong Sun, Qian Chen, and Chao Zuo)
	15.1 Background
	15.2 Methodology and results
	15.2.1 From fully coherent field to partially coherent field
	15.2.2 From coherent diffraction limit to incoherent diffraction limit
	15.2.3 From defocus phase reconstruction to ptychographic bandwidth expansion
	15.2.4 From 2D phase imaging to 3D tomographic imaging

	15.3 Conclusion and future perspectives

	16 Computational hyperspectral quantitative phase imaging from spectrally multiplexed observations (Igor Shevkunov, Vladimir Katkovnik, and Karen Egiazarian)
	16.1 Background
	16.2 Methodology
	16.3 Results
	16.4 Conclusion and future perspectives

	17 Quantitative phase imaging through spatial convolutions (Jeonghun Oh and YongKeun Park)
	17.1 Background
	17.2 Applications of Hilbert transform to QPI
	17.3 Discussion and future perspectives

	18 Affine transform-based twin-image suppression for in-line lensless digital holographic microscopy (Marcin J. Marzejon, Mikołaj Rogalski, Maciej Trusiak)
	18.1 Background
	18.2 Twin-image removal strategies for in-line lensless digital holographic microscopy
	18.3 Summary and future perspectives

	19 High throughput low coherence quantitative phase microscopy (Paweł Gocłowski, Azeem Ahmad, Vishesh Dubey, Maciej Trusiak, Balpreet S. Ahluwalia)
	19.1 Background
	19.2 Methodology
	19.3 Results
	19.4 Conclusions and future perspectives

	20 Pixel super-resolution phase retrieval for high-resolution lensless holographic microscopy (Yunhui Gao and Liangcai Cao)
	20.1 Background
	20.2 Methodology
	20.3 Results
	20.4 Conclusion and future perspectives

	21 A Regularized auto-encoder for the reconstruction of phase and amplitude in digital in-line holography (R.V. Vinu, G. Gopakumar, Ziyang Chen, and Jixiong Pu)
	21.1 Background
	21.2 Methodology
	21.3 Results
	21.4 Conclusion and future perspectives

	22 Imaging in complex media: from wavefront shaping to computational imaging (Sylvain Gigan, Hilton Barbosa De Aguiar)
	22.1 Background
	22.2 Signal processing
	22.3 Machine learning and artificial intelligence
	22.4 Conclusion and future perspectives

	23 Encoding radial correlations in multimode fibers with wavefront shaping (Sarp Feykun Şener, Mert Ercan and Hasan Yılmaz)
	23.1 Background
	23.2 Methodology
	23.3 Results
	23.4 Conclusion and future perspectives

	24 Computational diffuse imaging using artificial intelligence (Ganesh M. Balasubramaniam, Gokul Manavalan, and Shlomi Arnon)
	24.1 Background
	24.2 Current state-of-the-art
	24.3 Summary and future perspectives

	25 Computational imaging with randomness (Ryoichi Horisaki)
	25.1 Background
	25.2 Imaging through scattering media
	25.3 Blind deconvolution
	25.4 Optical phase conjugation
	25.5 Computer-generated holography
	25.6 Conclusion and future perspectives

	26 Computational imaging with post-processing of the randomness (Manisha, Tanushree Karmakar, Aditya Chandra Mandal and Rakesh Kumar Singh)
	26.1 Background
	26.2 Methodology
	26.3 Results
	26.4 Conclusion and future perspectives

	27 Iterative approach for aperture engineering at sharp focusing to structuring vector light (S. N. Khonina, S.G. Volotovskiy, and A.P. Porfirev)
	27.1 Background
	27.2 Methodology
	27.3 Results
	27.4 Conclusion and future perspectives

	28 Four-polarisation imaging for determination of orientation beyond the spatial resolution (Soon Hock Ng, Meguya Ryu, Blake Allan, Vijayakumar Anand, Donatas Narbutis, Daniel Ierodiaconou, Junko Morikawa, Saulius Juodkazis)
	28.1 Background
	28.2 Methodology and results
	28.3 Conclusion and future perspectives

	29 Super-resolution imaging using structured light (Gangi Reddy Salla, Ravi Kumar, Sakshi, Inbarasan Muniraj, Shashi Prabhakar and R. P. Singh)
	29.1 Background
	29.2 Methodology
	29.3 Conclusion and future perspectives

	30 Polarization encrypted diffractive optical elements for point spread function engineering (Vipin Tiwari and Nandan S. Bisht)
	30.1 Background
	30.2 Methodology
	30.3 Results
	30.4 Conclusion and future perspectives

	31 Summary and conclusion (Joseph Rosen and Vijayakumar Anand)
	Appendix
	References


