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Abstract
In today’s cyber environment, threats such as data breaches, cyberattacks, and unauthor-
ized access threaten national security, critical infrastructure, and financial stability. This 
research addresses the challenging task of protecting critical infrastructure from insider 
threats because of the high level of trust and access these individuals typically receive. 
Insiders may obtain a system administrator’s password through close observation or by 
deploying software to gather the information. To solve this issue, an innovative artificial 
intelligence-based methodology is proposed to identify a user by their password’s key-
stroke dynamics. This paper also introduces a new Gabor Filter Matrix Transformation 
method to transform numerical values into images by revealing the behavioral pattern of 
password typing. A siamese neural network (SNN) with the branches of convolutional neu-
ral networks is utilized for image comparison, aiming to detect unauthorized attempts to 
access critical infrastructure systems. The network analyzes the unique features of a user’s 
password timestamps transformed into images and compares them with previously sub-
mitted user passwords. The obtained results indicate that transforming the numerical val-
ues of keystroke dynamics into images and training an SNN leads to a lower equal error 
rate (EER) and higher user authentication accuracy than those previously reported in other 
studies. The methodology is validated on publicly available keystroke dynamics collec-
tions, the CMU and GREYC-NISLAB datasets, which collectively comprise over 30,000 
password samples. It achieves the lowest EER value of 0.04545 compared to state-of-the-
art methods for transforming non-image data into images. The paper concludes with a dis-
cussion of findings and potential future directions.

Keywords Critical infrastructure · Deep learning · Keystroke dynamics · Cybersecurity · 
Behavioral biometrics · Siamese neural network

1 Introduction

Today’s cyber environment offers cybercriminals and intruders multiple opportuni-
ties to attack a country’s networks and critical infrastructure, demand money for ransom 
data, facilitate large-scale fraud schemes, and threaten national security. It is important 
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for critical infrastructure and businesses to protect their respective facilities from digital 
threats. The consequences of these threats can be serious, resulting in significant financial 
losses, reputational damage, and loss of customer confidence. As cyberattacks and cyber-
fraud continue to impact our daily lives, the FBI’s internet crime complaint center (IC3) 
plays an essential role in dealing with cyberthreats. The IC3 serves as a public resource 
for submitting reports of cyberattacks and incidents, allowing them to collect data, iden-
tify trends, and address threats at hand. In 2022, IC3 received 800,944 complaints, a 5% 
decrease from 2021. However, the potential total loss increased from $6.9 billion in 2021 
to more than $10.2 billion in 2022 (Federal Bureau of Investigation 2023).

Stolen credentials account for 80% of the financial losses attributed to cybercrime (Veri-
zon 2022). Phishing is a form of cyberattack that uses fraudulent emails, text messages, and 
phone calls, masquerading as messages from a trusted institution, to steal personal, finan-
cial, or credential information from an unwary recipient (Basit et al. 2021; Jain and Gupta 
2022). Recently, critical infrastructure such as electricity grids have been facing a par-
ticularly serious cybersecurity challenge due to persistent advanced threats using illegally 
obtained employee passwords  (Rajkumar et  al. 2023). Protecting critical infrastructure 
against malicious insider threats is a challenging task, as these individuals are usually given 
a high level of trust and access (Al-Mhiqani et al. 2022). These attacks are highly sophis-
ticated and insidious forms of cyberattacks carried out by well-funded and resilient threat 
actors. Insider threat attacks manifest themselves in various ways, including stealing other 
users’ passwords and exposing the system. Critical infrastructure often has technological 
limitations, such as the inability to install expensive new equipment for advanced security 
measures such as physiological biometrics. In critical infrastructure, some of these threats 
can be mitigated by denying the use of mobile phones, tablets, and gadgets or disabling 
cameras on the equipment. Nevertheless, if a phishing attack succeeds, an insider can use 
his or her login credentials on various systems. Despite the changing cyber environment, 
implementing a new authentication system is essential. This system should capture the bio-
metric characteristics of keystrokes when a user enters a password and compare them to a 
previously entered password. While insiders can potentially obtain a system administrator’s 
password by “looking over their shoulder”  (Krombholz et al. 2015; Mattera and Chowd-
hury 2021) or implement software to gather the password, they cannot replicate the origi-
nal user’s unique typing behavior. This indicates that keystroke biometrics can effectively 
protect system access. However, in today’s environment, physiological biometrics such as 
fingerprint scanners, voice authentication, and iris recognition are in high demand. These 
solutions provide a high level of security. However, deploying such solutions often requires 
the purchase and installation of new, potentially costly hardware. Physiological biometrics 
has several disadvantages. Facial recognition can be affected by hats, glasses, and changes 
in hairstyle. Iris recognition can be deceived by photographs. Additionally, fingerprints can 
be replicated to impersonate another person. (Abdulrahman and Alhayani 2023). In today’s 
wars, phones are accessed using the physiological biometric data of the deceased person to 
take their money or cause damage to their social networks (Ugwuoke et al. 2021; Gofman 
and Villa 2023).

New authentication methods, particularly keystroke dynamics, which essentially 
authenticate users based on their typing behavior, are the subject of ongoing studies 
and discussions (Roy et al. 2022; Budžys et al. 2023; Medvedev et al. 2023). Keystroke 
biometrics is a behavioral authentication method used to verify, for authentication pur-
poses, the unique biometric data of a user’s behavior related to their typing patterns. 
The technology originated in the 19th century when telegraph operators were able to 
identify the sender by their distinctive writing style (Giancardo et  al. 2015). Finding 



Deep learning‑based authentication for insider threat detection… Page 3 of 35   272 

better and new ways to authenticate users when using digital resources is an ongoing 
challenge in a constantly evolving cybersecurity threat landscape. Organizations, criti-
cal infrastructure, cloud storage platforms (Manthiramoorthy et al. 2024), and individu-
als can improve their security posture and protect valuable digital assets by remaining 
proactive and adopting advanced authentication methods based on keystroke dynamics.

Keyboard behavior biometrics can be divided into two main categories: Static authen-
tication (SA) and continuous authentication (CA), also known as dynamic authentica-
tion. Static authentication requires users to enter passwords or passphrases. Continuous 
authentication, on the other hand, monitors the user’s behavior throughout the entire 
session. In continuous authentication, real-time data are collected, analyzed, and used 
to create a profile of the user based on the behavioral patterns of the user during the ses-
sion (Liang et al. 2020). Before gaining access to critical infrastructure systems, users 
are required to enter a strong password in their habitual typing pattern. This prerequisite 
leads us to the area of static authentication. Static authentication based on user typing 
behavior operates like a sentry, requiring individuals to type their password accurately, 
as they usually do. In this research, static authentication was selected to facilitate a 
direct comparison of the results of the newly proposed methodology with the results of 
previous studies. The equal error rate (EER) was chosen for this comparison. It provides 
a standardized basis to assess and compare the performance of different methods. To 
narrow the scope of this paper, this study does not explore the many machine learning 
techniques applied to static authentication to analyze keystroke patterns as numerical 
inputs as described in previous studies (Killourhy and Maxion 2009; Zhong et al. 2012; 
Krishnamoorthy et al. 2018; Elliot et al. 2019; Bicakci et al. 2020). This research inves-
tigates the transformation of numerical values into images and the use of deep learning 
neural networks on keystroke dynamics for static authentication. Processing images for 
convolutional neural networks (CNNs) is considered superior due to the mathematical 
capabilities inherent in neural networks (Sharma et al. 2019; Zhu et al. 2021).

The aim of this research is to propose a new method to transform non-image or tab-
ular data into images and to develop a methodology for authenticating users of criti-
cal infrastructure based on their keystroke dynamics using the siamese neural network 
(SNN). The SNN architecture, consisting of CNN branches, is employed to achieve this 
goal. The selection of this neural network architecture is motivated by its proven abil-
ity to enhance the accuracy of static user authentication, as evidenced by its high per-
formance in anomaly detection  (Zhou et  al. 2020) and in comparison of two or more 
objects (Ondrašovič and Tarábek 2021). Given the unique characteristics of CNNs, this 
study focuses on user identification using visual images, which are transformed from 
tabular data representing keyboard input.

Cybersecurity requires advanced authentication systems, especially in the face of 
increasing digital threats. This study presents a novel gabor filter matrix transforma-
tion (GAFMAT) method for transforming keystroke dynamics into images, which sig-
nificantly enhances the capabilities of SNNs in user authentication. This addresses a 
gap in behavioral biometrics, providing a basis for protecting critical infrastructure from 
insider threats. The proposed approach combined with an SNN is expected to improve 
the accuracy of user authentication using keystroke biometrics. This approach has been 
confirmed and verified in the research presented in this paper. The versatility of the 
proposed method is also considered to be applicable to solving other related problems 
in the field.

The main contributions of this research are as follows:
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• A novel method, GAFMAT, is introduced for transforming non-image data into images. 
This transformation of keystroke dynamics into images reveals essential behavioral fea-
tures associated with password typing.

• This research proposes an artificial intelligence-based user authentication methodology 
that integrates the GAFMAT method for keystroke biometrics. This solution utilizes an 
SNN in combination with CNNs to compare the features of currently and previously 
entered passwords, thereby effectively identifying insiders in critical infrastructure.

• The proposed methodology demonstrates its effectiveness on publicly available datasets 
such as CMU and GREYC-NISLAB. It achieves EERs that are competitive with, and 
often superior to, other state-of-the-art methods.

The paper is structured as follows. Section 2 summarizes related works on fixed-text key-
stroke dynamics for user authentication. Section 3 proposes a methodology for user authen-
tication. Section  4 describes the existing techniques and presents the newly developed 
method for transforming text into images. The experimental setup and the obtained results 
are presented and discussed in Sect. 5. Section 6 provides an overview of the challenges 
and future research directions. Finally, Sect. 7 concludes the paper, highlighting the main 
findings.

2  Related works

Recently, there has been an increasing focus on research on artificial intelligence and 
machine learning for cybersecurity (Mohamed 2023). Artificial intelligence and machine 
learning algorithms not only enhance existing security solutions but also enable the devel-
opment of proactive security measures such as predictive threat analysis. Artificial intel-
ligence has become one of the most important tools for cybersecurity teams. It improves 
threat detection and response accuracy, strengthening defenses against a variety of security 
issues and cyberattacks (Azizan et al. 2021; Alfoudi et al. 2022; Kaur et al. 2023).

In the field of cybersecurity, the deployment of security information and event man-
agement systems is essential for organizations to proactively detect and address security 
threats to protect their business operations. Both network-based (NIDS) and host-based 
(HIDS), intrusion detection dystems (IDSs) play key roles in ensuring robust cybersecurity. 
NIDS monitors network traffic for anomalies, while HIDS focuses on individual systems, 
detecting unusual activity or policy violations, including insider threats. A major problem 
for IDS is data imbalance, especially when detecting rare attacks such as zero-day attacks. 
To address this problem, Alfoudi et al. (2022) proposed to improve density-based spatial 
clustering of applications with noise using a new process based on cluster distance meas-
urements. In addition, Azizan et al. (2021) explored the use of machine learning techniques 
to improve the performance of NIDS in detecting anomalous network flows. By carefully 
analyzing system activity and user behavior, HIDS can identify potential security breaches 
within an organization, including those committed by insiders (Al-Mhiqani et al. 2022).

Identity, authentication, and access control management are responsible for restricting 
access to assets and related objects to authorized users, processes, or devices, and for per-
forming authorized actions. The use of artificial intelligence or machine learning-based 
techniques can improve user authentication. They improve physical biometrics, behavio-
ral biometrics, or multifactor authentication (Martín et  al. 2021; Siam et  al. 2021; Kaur 
et  al. 2023). The paper  (Zhang et  al. 2022) presented a detailed literature review on the 
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application of artificial intelligence in various areas of cybersecurity, including user access 
authentication, network situational awareness, hazardous behavior monitoring, and anoma-
lous traffic analysis. Authentication is a predetermined process of confirming a person’s 
identity to authorize or deny their access to a protected system. To authenticate a user, the 
system must first recognize and identify the user among the other users of the system to 
determine whether the user is a legitimate member of the user group; otherwise, the user 
will be identified as an insider who must be blocked. Identification methods can recog-
nize the user either through passwords or through additional information (e.g., biometrics) 
(Siam et al. 2021). The security system should strengthen user access authentication man-
agement, accurately detect all kinds of suspicious behavior, and implement the detection 
of unauthorized connections. The system should ensure user authentication before opera-
tion (Zhang et al. 2022).

Biometrics is a group of certain physiological and behavioral characteristics that 
uniquely distinguish a person from others. Biometric recognition refers to the use of physi-
cal or behavioral human attributes to identify individuals (Neves et al. 2016). Physiolog-
ical biometrics focuses on the unique physical characteristics of a subject. These attrib-
utes, which are unique to each individual, generally do not change significantly over time. 
Examples of physiological biometrics include fingerprints, iris or retinal patterns, facial 
features, hand geometry, and DNA. This form of biometrics is considered to be relatively 
stable and difficult to falsify due to its basis in genetically acquired biological features. 
Conversely, behavioral biometrics focuses on a person’s unique behavioral patterns or hab-
its. These characteristics are based on how individuals interact with systems or perform 
certain actions. Behavioral biometrics covers various aspects such as keyboard biometrics, 
gait analysis, signature recognition, voice patterns, and even patterns of user interaction 
with devices (Abuhamad et al. 2020). Unlike physiological biometrics, behavioral biomet-
rics can be influenced by external factors and context and can, therefore, change over time.

As previously mentioned, keyboard biometrics are behavioral biometrics and can be 
classified into two main categories: fixed-text (static authentication) and free-text (continu-
ous authentication) analysis. For fixed-text authentication, the user is required to input a 
specific piece of text, usually a password or passphrase. As the text is contextual, it facili-
tates the comparison of typing patterns across different sessions. Researchers in the field 
of biometric authentication have focused on fixed-text scenarios (Giot et al. 2015; Zaidan 
et al. 2017; Shekhawat and Bhatt 2019). By focusing on specific text inputs, such as prede-
fined phrases or sentences, researchers were able to achieve over 93% multiuser identifica-
tion accuracy on the well-known Carnegie Mellon University (CMU) dataset (Killourhy 
and Maxion 2009) using XGBoost (Singh et  al. 2020) and 94.7% accuracy with a feed-
forward multilayer neural network, implementing resilient backpropagation (Gedikli and 
Efe 2020). However, the fixed-text method of keyboard biometric authentication may be 
more vulnerable to cyberattacks. An attacker can learn the specific rhythms associated with 
the fixed text (Serwadda and Phoha 2013; Stanciu et al. 2016).

Biometric authentication research has increasingly focused on free-text authentication 
models (Acien et al. 2020; Ayotte et al. 2020; Lu et al. 2020), as they have demonstrated 
promising results. It aims to reflect the variability and realism of natural language input 
to develop more robust and scalable authentication systems. Free-text keystroke biom-
etrics allow users to enter any text they want, whether it is emails, documents, or other 
forms of natural writing. The advantage of this method is that it can be implemented in 
the background without the direct involvement of the user, making it less intrusive. How-
ever, in this case, it is more challenging to compare writing patterns because the text is not 
consistent across sessions or among different users. Both approaches have strengths and 
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weaknesses, and the choice between them often depends on the specific use case and secu-
rity requirements.

Static authentication is the process of verifying a person’s identity by analyzing their 
typing style when entering a predefined password. When a person types a password, their 
keystroke pattern is captured. These data are used to create a unique keystroke pattern pro-
file that authenticates the user. Publicly available datasets have been utilized by researchers 
for static authentication purposes (Killourhy and Maxion 2009). These datasets are valu-
able resources for researchers in the evaluation and development of building authentica-
tion systems, allowing standardized testing and comparisons between different methodolo-
gies. Notably, the CMU dataset has been extensively examined due to its large number of 
samples per person. The developers of the CMU dataset carried out a system performance 
assessment and obtained an EER of 0.096 using the Manhattan (scaled) distance function 
(Killourhy and Maxion 2009). The EER, which measures the trade-off between the false 
rejection rate (FRR) and the false acceptance rate (FAR) as described and applied for per-
formance measurement in related works (Piugie et al. 2022; Sae-Bae and Memon 2022), 
is a commonly used metric in biometric security systems to measure the effectiveness of a 
system in correctly identifying an individual. Numerous researchers have used this dataset 
with machine learning algorithms (Muliono et al. 2018; Krishna et al. 2019; Liu and Guan 
2019), resulting in enhanced accuracy for multiuser identification, reaching approximately 
94%. In another study, a single multiclass CNN model was trained on 80% of the samples 
using a specific data augmentation technique. This approach resulted in an EER of 0.023, 
while without augmentation, the EER was 0.065 (Çeker and Upadhyaya 2017). An induc-
tive transfer encoder (Monaco and Vindiola 2016) obtained an EER of 0.063.

Table 1 offers a comprehensive comparison of keystroke dynamics methodologies and 
authentication technologies in cybersecurity. Early research on keystroke dynamics focused 
on statistical methods and machine learning techniques to analyze typing patterns. For 
instance, Killourhy and Maxion (2009) introduced a comprehensive benchmark dataset 
and evaluated several anomaly detection algorithms, highlighting the potential of distance 
metrics such as the Manhattan distance for user authentication. Subsequent studies, such 
as Zhong et al. (2012), explored the use of nearest neighbor classifiers and novel distance 
metrics to improve authentication accuracy. More recently, the integration of deep learn-
ing techniques has shown significant promise in enhancing the performance of keystroke 
dynamics-based authentication systems. CNNs and recurrent neural networks (RNNs) 
have been employed to capture complex temporal and spatial patterns in typing behavior. 
For example, Çeker and Upadhyaya (2017) demonstrated the effectiveness of CNNs in 
keystroke dynamics by achieving notable reductions in EER. Similarly, Lu et  al. (2020) 
utilized RNNs for continuous authentication, emphasizing the importance of temporal 
dynamics in typing patterns.

Most studies, including (Killourhy and Maxion 2009; Zhong et al. 2012; Monaco and 
Vindiola 2016), have predominantly used the CMU dataset for their keystroke dynamics 
authentication studies (see Table 1). The popularity of this dataset emphasizes its relevance 
and reliability in the field. Techniques applied in this field include anomaly detection algo-
rithms, distance metrics, machine learning, CNNs and deep learning. The focus of these 
studies is on the fixed-text or static authentication mode. This indicates a strong interest 
in verifying user identity based on specific, consistent input patterns. The most commonly 
used accuracy metric is the EER, which is the most important metric in biometric authenti-
cation systems. The choice of the EER metric provides a balance between security and reli-
ability in authentication systems. This reduces the number of false acceptances and false 
rejections. The choice of datasets for experimentation and validation of the results of this 
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paper, in particular the CMU and GREYC-NISLAB datasets, is in line with established 
practice in the field, as these datasets are widely known and used in the literature.

Deep learning neural networks are increasingly becoming part of user authentication 
systems, and SNNs are one such approach (Zhou et al. 2020). SNNs and triplet networks 
have attracted attention for their effectiveness in comparing and identifying similarities 
between input samples (Koch et  al. 2015; Ondrašovič and Tarábek 2021). This enables 
tasks such as user authentication and verification. Using the capabilities of SNNs, research-
ers have aimed to improve the accuracy, reliability, and security of user authentication sys-
tems in cybersecurity landscapes (Zhou et al. 2020; Tao et al. 2022). An SNN is commonly 
composed of several parallel branches that share the same architecture and weighting 
parameters. By processing input samples in each branch, the network acquires the ability to 
measure and evaluate the similarity or dissimilarity of these samples (Hadsell et al. 2006).

To exploit the potential of SNNs with CNNs, our study explores the transformation of 
keystroke dynamics into images for network processing. The most crucial initial step is to 
explore methods for transforming time series data (keystroke data) into images (visual for-
mat). Such conversion allows CNNs to efficiently extract and learn important features from 
the data, taking advantage of their ability to perform image-oriented tasks such as image 
classification, object detection, and segmentation. It also allows CNNs to identify patterns 
and perform mathematical operations on transformed data, which can increase produc-
tivity compared to using only tabular or numerical data. The ability of CNNs to derive 
higher-level abstractions from the visual representation of tabular data provides favorable 
prospects for improved performance in additional tasks. There are various methods for 
transforming numerical data or time series into images. Some of these include the Markov 
Transition Field, the Gramian Angular Summation Field, the Gramian Angular Difference 
Field, and the Recurrence Plot methods (Estebsari and Rajabi 2020; Medvedev et al. 2023).

3  Methodology

In the emerging field of cybersecurity, especially in times of war (Gofman and Villa 2023), 
there is an increasing demand for advanced IPSs that leverage behavioral biometrics 
through deep neural networks. This approach is becoming increasingly vital as individu-
als face the risk of being forced to disclose passwords or becoming victims of sophisti-
cated phishing attacks. When the threat of conflict approaches, it is essential to consider all 
possible measures to protect national security. This encompasses protecting critical infra-
structure, where a breach leads to catastrophic consequences for national stability. Given 
that malicious insider threats are identifiable (Azizan et al. 2021), incorporating keystroke 
biometrics in user authentication serves as an essential first line of defense against the 
unauthorized use of others’ passwords.

The proposed static authentication process is designed to track the keystroke dynamics 
of the user’s entered password. Each keystroke is associated with a timestamp, and relevant 
features are extracted from time series data, and subsequently transformed into an image 
representation. This image is then compared against a pre-established database to ascertain 
the presence of a similar, previously entered password linked with the username. Access to 
the system is granted if a corresponding match is identified. Conversely, when no matching 
password is identified, the IDS generates an informational log, prompting the user to re-
enter the password.
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If the user fails to enter the password correctly after a certain number of attempts 
defined by group policy, the user’s account becomes locked out. This action triggers the 
intrusion prevention system, which then generates a critical log. Subsequently, specialists 
at the security operation center are alerted (see Fig.  1). Hence, even in scenarios where 
a password within the critical infrastructure is compromised or illegally acquired by an 
unauthorized person, the system is capable of detecting inconsistencies in the input pattern. 
This process effectively shows that the current user is not the legitimate owner of the pass-
word. Such a mechanism significantly increases the system’s resilience to potential security 
breaches.

This approach introduces a significant opportunity to integrate password authentica-
tion techniques into critical infrastructure. The challenge lies in discerning the similarity of 
keystroke dynamics to ascertain whether the password input was executed by a legitimate 
user or an insider. A technique that transforms password patterns to train SNNs is able to 
accurately identify the genuine user associated with an entered password.

The SNN (or triplet network) architecture uses three CNN branches and a triplet loss 
function at the output layer. This setup estimates the distance between images as detailed 
in (Schroff et al. 2015) (see Fig. 2). Throughout this paper, the term “Siamese neural net-
work” will be used, as the triplet network is an enhancement of the SNN (Bromley et al. 
1993; Schroff et al. 2015). More recently, in the context of SNNs, training often involves 
the use of triplets:

• Anchor—a reference sample against which other items are compared,
• Positive—a sample that is similar or related to the anchor,
• Negative—a sample that is not similar or related to the anchor.

During the network training process, triplets are formed. These triplets consist of an anchor 
image, a positive image from the same user, and a negative image from another user. After 
training, the SNN creates corresponding embeddings for all triplets. These embeddings are 
vectors in a multidimensional latent space that represent the input data or images. The idea 

Fig. 1  Schematic representation of the user authentication process using an intrusion detection system and 
an intrusion prevention system based on user typing behavior
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is that similar images will yield embeddings located close to each other in this space, while 
dissimilar images result in embeddings that are more distant (see Fig. 3). To determine the 
similarity between two images, the distance between their embeddings can be computed 
using metrics such as Euclidean distance or cosine similarity. In the context of triplets, the 
distance between the anchor and the positive sample in a multidimensional latent space 
should be small, indicating high similarity. The distance between the anchor and the nega-
tive sample should be significant, indicating low similarity. By exploring these distances, 
decisions can be made about the similarity or dissimilarity of new, unidentified images (or 
samples) compared to known anchors.

The training process of the SNN involves searching for similarities between the posi-
tive and anchor images while promoting dissimilarities between the anchor and negative 
samples. The triplet loss function (Eq.  1) is designed to minimize the distance between 
the anchor and the positive image (as they belong to the same class) while maximizing the 
distance between the anchor and the negative image (as they belong to different classes), 
depending on the margin size (see Fig. 3).

Fig. 2  Schematic representation of the proposed methodology for time series transformation from keystroke 
biometric data features into images and the training process of the SNN with CNN branches

Fig. 3  Example of a triplet before 
and after training an SNN: the 
triplet loss function minimizes 
and maximizes the correspond-
ing distances during network 
training
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where

• ||f (a) − f (p)||2 is the squared Euclidean distance between the embeddings of the anchor 
and positive samples computed in a multidimensional latent space,

• ||f (a) − f (n)||2 is the squared Euclidean distance between the embeddings of the anchor 
and negative samples computed in a multidimensional latent space,

• f  is the embedding function that maps an input to its embedding,
• m is the margin that is enforced between positive and negative pairs.

Numerous researchers have previously used a triplet loss function to train their models, 
considering it a suitable option for user authentication (Ding et  al. 2015; Cheng et  al. 
2016; Dong and Shen 2018; Yan et al. 2021; Sandhya et al. 2022). The triplet loss function 
includes a margin that sets the desired separation between positive and negative samples 
relative to the anchor. The margin within the triplet loss function allows a clear distinction 
between similar and dissimilar samples, ensuring that the distance or dissimilarity between 
the anchor and the negative sample is greater than the distance between the anchor and the 
positive sample by at least a predefined threshold value.

While SNNs with CNN branches perform well in image comparison tasks (Melekhov 
et al. 2016; William et al. 2019; Valero-Mas et al. 2023), their direct applicability for pass-
word keystroke patterns can be challenging due to inherent differences in data structures. 
By transforming keystroke dynamics into images for CNN training, which is a branch of 
the SNN, this approach leverages the strengths of these networks (Sharma et  al. 2019; 
Zhu et al. 2021). This transformation enhances the network’s ability to distinguish certain 
behavioral biometric differences between authentic users and insider typing patterns.

The choice of the SNN combined with CNN branches was based on their effective-
ness in image recognition tasks, as they are able to learn similarity measures between 
input data. Traditional classification networks may struggle with significant class imbal-
ance, while SNNs may be more robust in such scenarios. Instead of classifying a large 
number of classes, they measure similarity to a reference (anchor). SNNs generalize 
well to new data. Once trained, they can compare any new sample to a known refer-
ence without the need for retraining. The specific hyperparameters of the SNN used in 
this study are summarized in Table 2. In the SNN, the total parameters of each branch 
of the CNN mainly depend on the image size. A summary of the CNN used for SNNs, 
with an input image size of 31 × 31 , is provided in Table  3. Each convolutional layer 
is followed by batch normalization and max pooling operations. This is followed by a 
flattened layer, the output of which is used as the input to the dense layer. The last layer 

(1)L(a, p, n) = max
(||f (a) − f (p)||2 − ||f (a) − f (n)||2 + m, 0

)
,

Table 2  Hyperparameters of the 
SNN architecture

Hyperparameters Options

Convolutional layers 3
Kernel number 128
Kernel size 8, 6, 4
MaxPooling filter size 3, 2, 2
Dense 512, 256
Output activation function ReLU
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of the network has 256 outputs that have been normalized using L2 normalization. The 
network output can be considered as an embedding of the original input. The network, 
which has a depth of 12 layers, covers a total of 1,600,128 parameters.

Using the SNN architecture (Bromley et al. 1993; Schroff et al. 2015), the effective-
ness of IDS and IPS can be improved by better identifying the user by their unique 
password input patterns. Consider a given scenario where each password entry is trans-
formed into an image and stored in a database associated with the corresponding user-
name. The system, based on an SNN, is designed to analyze and capture the unique 
typing characteristics of a user as he or she interacts with the system using a keyboard. 
This network processes input data to identify and differentiate individual typing pat-
terns. The behavioral data are then aggregated using complex algorithms to create a 
multidimensional representation in the latent space. This results in individual clusters, 
each corresponding to a different user. These clusters allow for a detailed study of each 
user’s typing behavior.

Each individual possesses a distinct typing style, making us unique in the way we inter-
act with keyboards. If unauthorized access occurs or credentials are compromised, our 
proposed methodology can identify and prevent unauthorized individuals from exploiting 
stolen or purchased passwords to gain access to the system. By leveraging the inherent 
uniqueness of typing patterns, our approach can effectively detect and mitigate unauthor-
ized login attempts. This increases the security and protection of user credentials in the 
system.

4  Non‑image to image data transformation

Building on the methodology described in Sect. 3, this section introduces feature extraction 
from keystroke dynamics, discusses existing methods for transforming data into images, 
and describes a new method proposed in this paper.

Table 3  Summary of the CNN 
used in the SNN architecture

Layer (type) Output shape Number of 
parameters

InputLayer (None, 31, 31, 3) 0
Conv2D (None, 31, 31, 128) 24704
BatchNormalization (None, 31, 31, 128) 512
MaxPooling2D (None, 15, 15, 128) 0
Conv2D (None, 15, 15, 128) 589952
BatchNormalization (None, 15, 15, 128) 512
MaxPooling2D (None, 7, 7, 128) 0
Conv2D (None, 7, 7, 128) 262272
BatchNormalization (None, 7, 7, 128) 512
MaxPooling2D (None, 3, 3, 128) 0
Flatten (None, 1152) 0
Dense (None, 512) 590336
Dense (None, 256) 131328
Lambda (None, 256) 0
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4.1  Keystroke dynamics

Keystroke biometric models are developed by recording keystroke timing, which captures 
the intervals between each key press and release event. Analyzing this timing information 
enables the extraction of various features, such as Hold time, Release-Press time, Press-
Press time, and Release-Release time. These features yield critical insights into users’ typ-
ing patterns (see Fig.  4). This method of collecting time series data forms the basis for 
comprehensive analysis. It enables the extraction of features that effectively describe the 
unique and complex dynamics of individual keystrokes. This process provides valuable 
information on the unique typing patterns of users.

4.2  Image‑based time series data

For some numerical data, the ordering of features can be reversed in a two-dimensional 
space to explicitly represent the relationships among these features. In this way, it becomes 
possible to transform tabular data into images, from which CNNs can learn. By exploiting 
these feature relationships, CNNs may enhance prediction or classification performance 
compared to models trained solely on tabular data (Zhu et al. 2021). In the transformation 
process, each sample of tabular data is converted into an image. In these images, features 
and their values are represented by pixels and pixel intensities, respectively.

A number of methods exist for transforming (or encoding) numerical or non-image data 
into images, such as the gramian angular summation field (GASF), the gramian angular 
difference field (GADF), the Markov transition field (MTF), and the recurrence plot (RP) 
methods. These methods are used in various applications, including biometrics for user 
authentication (Dias et al. 2020; Wang and Oates 2015; Medvedev et al. 2023). The pur-
pose of these transformations is to extract meaningful features from the data, enabling fur-
ther analysis using deep learning techniques. Each method under review emphasizes spe-
cific data characteristics, such as frequency, distribution, similarity, amplitude fluctuations, 
periodicity, or underlying patterns.

Techniques such as GASF, GADF, MTF, and RP can be used to improve the perfor-
mance of deep learning algorithms for user authentication from biometric data. GASF and 
GADF, like MTF, are able to capture important time series features, including periodicity, 

Fig. 4  Vizualizing keystroke 
dynamics capturing model
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trend, and irregularity. The GASF and GADF methods, which are based on the gramian 
angular field (GAF) technique, transform time series signals into images by transferring 
them into polar coordinate space (Wang and Oates 2015). The GASF method considers the 
sum of the angles, whereas GADF emphasizes the difference, thereby highlighting distinct 
aspects of the data. RP is a method for analyzing dynamical systems and time series data. 
It facilitates the uncovering of the overall structure, non-stationarity, and hidden recurrent 
elements of a time series. Additionally, RP provides a graphical representation of recurrent 
dynamics. It characterizes the proximity of states in the state space of a dynamical system 
reconstructed with a time delay (Chen et al. 2018). RP is less effective at encoding very 
long sequences. For very long sequences, the resulting RP images become so large that 
their discretization is relatively small (Zhang et al. 2020). In contrast, MTF transforms time 
series into visual representations. This approach captures significant dynamics and facili-
tates the use of CNNs to extract and analyze features in various domains (Zhao et al. 2022).

These methods represent only a few of the ways in which time series or non-image data 
can be transformed into images for analysis using deep learning techniques. They demon-
strate diverse approaches for transforming time series or non-image data into images suit-
able for deep learning analysis. The choice of an appropriate method largely depends on 
the features of the data and the specific problem to be solved (Medvedev et al. 2023).

The CMU dataset (Killourhy and Maxion 2009) is used as a benchmark for comparing 
various methods, including the new method detailed in the next section. This comparison 
aims to identify the most appropriate methods for the problem under analysis. When the 
password “.tie5roanl” is typed, the keyboard generates 31 different time series, each cor-
responding to the keystroke dynamics of the password. Employing transformation methods 
such as GASF, GADF, MTF, and RP, as described in (Estebsari and Rajabi 2020; Medve-
dev et al. 2023), allows for the transformation of these individual keystroke dynamics into 
images. Consequently, this process yields four different images for each method, all repre-
senting the same password, as illustrated in Fig. 5.

4.3  Gabor filter matrix transformation

Drawing upon insights gained from the analysis of the literature on the transformation of 
non-image data into images, we have developed a novel method named gabor filter matrix 
transformation (GAFMAT). This approach is grounded in the principles of the Gabor filter 
(Kamarainen et  al. 2006). Keystroke dynamics, which include timing and rhythm varia-
tions, are crucial for identifying individual typing patterns. The Gabor filter has high per-
formance in both frequency and time localization, enabling it to capture these variations 
effectively. It has the capability to isolate specific frequencies while simultaneously retain-
ing information about the timing of events in the signal. The keystroke dynamics data may 
contain noise due to variations in typing speed, keyboard differences, or environmental 
factors. The specificity of the Gabor filter provides a natural robustness to such noise. It 
filters out irrelevant fluctuations while preserving the essential characteristics of keystroke 
dynamics (Imamura and Arizumi 2021). The proposed method, GAFMAT, transforms 
time series data into image representations. This novel approach shows promising poten-
tial for improving the analysis and interpretation of keystroke dynamics in authentication 
systems. The Gabor filter has been chosen for its specific design for feature extraction in 
two-dimensional images. The process involves adapting and applying the Gabor filter to 
one-dimensional time series or discrete signals (see Eq. (2)), thereby emphasizing features 
of keystroke dynamics (see Fig. 6). In the figure, there are two curves: the original discrete 
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signal is depicted as a blue line, while the dashed orange line represents the values of the 
discrete signal after applying the Gabor filter. It is important to note that the Gabor fil-
ter, by its nature, highlights features of the discrete signal. As shown in the figure, the fil-
ter particularly emphasizes the peaks of the signal. By using the distinctive properties of 
the Gabor filter, the goal is to improve the representation and visualization of keystroke 

(a) MTF (b) RP

(c) GASF (d) GADF

Fig. 5  Example of a typed password of the same user obtained by different methods: a Markov transition 
field, b Recurrence plot, c Gramian angular summation field, d Gramian angular difference field

Fig. 6  Emphasizing the time series features of keystroke dynamics using the Gabor filter: blue for the dis-
crete signal and dashed orange for the discrete signal after applying the Gabor filter
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dynamics. This improvement facilitates more effective discrimination and analysis of key 
features within time series data.

where

• � : Parameter defining the filter width. A larger � results in a wider filter.
• � : Orientation of the filter. In the 1D case, it effectively scales the x values.
• � : The wavelength of the sinusoidal factor, which determines the frequency of the filter. 

A larger � results in a lower frequency filter.
• � : This is the phase offset of the sinusoidal factor, which can be used to create band-

pass or band-reject Gabor filters.

The GaborFilter function (see Algorithm 1) is used to apply a Gabor filter to the times-
tamps generated by password input. This function takes a discrete signal, representing the 
timestamps of entered passwords, and several parameters, including �, �, � , and � , which 
define the characteristics of the Gabor filter. The function determines the value of the dis-
crete signal and generates a range of values based on the � parameter. These values are 
then transformed using the � parameter. The Gabor filter is calculated by combining the 
exponential and cosine functions based on the provided parameters. The resulting filter is 
then normalized. Finally, the signal is convolved with the Gabor filter, and the output is 
returned as a filtered signal (see Algorithm 1). 

Algorithm 1  Gabor filter algorithm

The GAFMAT algorithm (see Algorithm  2) is specifically designed to create 
an image representation of a given discrete signal by applying the Gabor filter (see 
Algorithm 1). The GaborFilter function uses a discrete signal and a list of parameters 

(2)
gabor = exp

(
−
0.5 ⋅ x�2

�2

)
⋅ cos

(
2� ⋅

x�

�
+ �

)
,

x� = x ⋅ cos �,
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( �, �, �,� ) (see Table 4). The algorithm begins by initializing an empty image array, 
matching the shape of the input signal. It then iterates through various combinations 
of the parameter, applying the GaborFilter function to the discrete signal with each 
iteration. Finally, the algorithm returns the resulting image, which represents the com-
bination of multiple Gabor-filtered versions of the original discrete signal (see Algo-
rithm 2). The outer product of two arrays is computed, producing a new array where 
each element is the product of the corresponding elements from the input arrays. This 
computation involves all possible pairwise products of the original time series array 
and the values obtained by the GAFMAT, which are then systematically arranged 
in a matrix structure (Eq.  3). The resulting matrix image2D represents the pairwise 
products of each element in arrays a and b. The matrix image2D is finally visually 
represented as an image offering a comprehensive visual representation. Such a visu-
alization provides a clear and intuitive understanding of the data, enabling efficient 
interpretation and analysis of key patterns and relationships (see Fig. 7).

Table 4  List of parameters used 
for the GAFMAT algorithm

Parameter Values

� 2, 4, 8, 16
� 0, �

2
 , � , 3�

2

� 16, 8, 4, 2
� 0, �

4
 , �
2
 , 3�

4

Fig. 7  The result of transforming 
the time series features of key-
stroke dynamics into an image 
using the GAFMAT algorithm
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Algorithm 2  GAFMAT algorithm

The newly proposed GAFMAT method enhances the user’s keystroke dynamics by 
scaling up significant values. This scaling results in larger numerical values that are 
accentuated with a variety of colors. Its robustness to common noise and interference 
also distinguishes it from traditional approaches. The next section compares the novel 
method with established techniques and provides an explanation of the results, demon-
strating the effectiveness and uniqueness of the proposed method.

5  Experiments and results

In this section, the performance of the proposed methodology is evaluated. To demon-
strate the distinctive features and effectiveness of the methodology, experiments were 
conducted using two publicly available fixed-text datasets: the CMU dataset and the 
GREYC-NISLAB dataset. The experiments for our study were conducted on an Apple 
MacBook Pro with an M1 Pro chip, featuring a 10-core CPU and a 16-core GPU. Each 
core is split into 16 execution units (EUs), and each EU consists of 8 arithmetic logic 
units (ALUs), for a total of 256 EUs and 2,048 ALUs across the GPU. This powerful 
setup, equipped with 32 GB of unified RAM, ensures the efficient handling of com-
plex computational processes essential for deep learning-based networks, as detailed 
in Table 5. For this study, TensorFlow (Abadi et al. 2015), a widely used public library 
for large-scale analysis and machine learning, was chosen because it can use multiple 
CPUs or GPUs.

(3)image2D =

⎡
⎢⎢⎢⎣

a1b1 a1b2 ⋯ a1bn
a2b1 a2b2 ⋯ a2bn
⋮ ⋮ ⋱ ⋮

anb1 anb2 ⋯ anbn

⎤⎥⎥⎥⎦
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5.1  Performance metrics

Choosing the right metric is critical to evaluate the performance of SNN-based models. 
These metrics assess the accuracy of the model in distinguishing between legitimate and 
unauthorized users, which is very important for ensuring system performance in a dynamic 
cybersecurity environment. Each metric was computed on a per-batch basis in our analysis. 
The validation dataset represents 30% of the total dataset. Subsequently, each metric was 
evaluated for every individual batch, and the average value across all batches was reported 
as the final result. This approach ensured that the metrics were representative of the overall 
performance of the validation dataset while considering the inherent variability between 
batches. A comprehensive set of metrics was employed to assess the performance of the 
trained models, including the following:

• The EER, the most commonly used accuracy metric in biometric authentication sys-
tems (see Table 1)

• Area under the ROC curve (AUC)
• Euclidean distance:

– Between the embeddings of the anchor and positive samples in a multidimensional 
latent space (AP_ED)

– Between the embeddings of the anchor and negative samples in a multidimensional 
latent space (AN_ED)

• Standard deviation of Euclidean distances:

– Between the embeddings of the anchor and positive samples in a multidimensional 
latent space (AP_STD)

– Between the embeddings of the anchor and negative samples in a multidimensional 
latent space (AN_STD)

• Cosine similarity:

– Between the embeddings of the anchor and positive samples in a multidimensional 
latent space (AP_CS)

– Between the embeddings of the anchor and negative samples in a multidimensional 
latent space (AN_CS)

Table 5  Experimental platform 
technical specifications and 
system configuration

Platform Details

Model Apple MacBook Pro 14-inch
Processor model Apple M1 Pro
CPU 10-core
GPU 16-core
RAM 32 GB unified
Disk space 512 GB SSD
Operating system macOS Sonoma
Python framework TensorFlow 2.9.1

Matplotlib 3.7.0
Numpy 1.22.4
Pandas 1.5.3
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• Accuracy (see Eq. (4))

In evaluating the performance of the proposed methodology, special attention was focused 
on the EER as the main metric. The EER was chosen due to its wide acceptance and use in 
biometric authentication systems as a balanced measure of accuracy. The EER is a specific 
point on the ROC curve. It is a rate at which the FAR and FRR are equal, offering a sim-
ple and effective measure of a system’s performance in distinguishing between authorized 
users and impostors. In the experiments conducted, the accuracy metric for both the valida-
tion and test datasets is adapted for the classification task using an SNN. This metric deter-
mines the fraction of cases where a positive score outperforms a negative score, as shown 
in Eq. (4). The positive score represents the Euclidean distance between the embeddings 
of the anchor and positive samples in a multidimensional latent space. The negative score 
corresponds to the Euclidean distance between the embeddings of the anchor and negative 
samples in the same multidimensional latent space.

where

• N is the total number of samples,
• pos_scoresi represents the positive score for the i-th sample,
• neg_scoresi represents the negative score for the i-th sample,
• I(pos_scoresi < neg_scoresi) is an indicator function that returns 1 if the condition 

pos_scoresi < neg_scoresi is true, and 0 otherwise,
• 

∑N

i=1
I(pos_scoresi < neg_scoresi) counts the number of times the positive score is less 

than the negative score.

5.2  CMU dataset analysis and results

Fixed-text datasets are chosen to perform the experiment. One is the Carnegie Mellon Uni-
versity dataset (Killourhy and Maxion 2009), which has been extensively examined due to 
its large number of samples per person and ease of comparison with alternative method-
ologies and results. A total of 51 individuals were enlisted to participate in a typing task 
involving the entry of the strong password “.tie5Roanl”. Each participant completed eight 
data collection sessions, typing the password 50 times per session. This results in a dataset 
of 20,400 password samples.

Prior to commencing the data analysis, a random selection was made to exclude the data 
of five users (see Fig. 8), resulting in a dataset comprising 46 individuals with 18,400 sam-
ples. The excluded data from those five users, consisting of 2000 samples, were set aside 
in a separate folder for testing purposes. This segregation was intended to ensure that the 
network would not be exposed to any of these data during the network training phase. The 
password samples from both the training/validation folder (18,400 samples) and the testing 
folder (five users with 2000 samples) were transformed into image representations. This 
process yielded five datasets for network training/validation, each processed using different 
conversion methods (GASF, GADF, MTF, RP, GAFMAT). Additionally, five folders were 
created, each containing samples (images) of five users for network testing using the same 

(4)Accuracy =
1

N

N∑
i=1

I(pos_scoresi < neg_scoresi),
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transformation methods. In each dataset, each user entered the password 400 times, which 
were then split into two equal parts of 200 attempts each. The system alternated trials to 
classify the user’s password entry behavior. Specifically, every second trial was considered 
an anchor sample of the user’s password behavior, and the trials immediately following it 
were considered positive samples (see Fig. 9). This division was based on the observation 
that users who become familiar with the password improve their typing speed over time 
and develop a more stable typing pattern. Therefore, when comparing anchor samples with 
positive samples, one should compare those which, over time and with the learning of the 
password, would not have drifted apart between trials. As a result, each dataset consisted of 
9200 positive samples (images) and 9200 anchor samples (images). 70% of created triplets 
were used for training and the remaining 30% for validation. Additionally, for testing pur-
poses, 1000 positive images and 1000 anchor images were extracted for the test datasets. 
To create training triplets for the SNN, the anchor and positive samples were taken from 
the same user, while the negative sample was randomly selected from a different user. This 
procedure was repeated for each dataset with different conversion methods.

Fig. 8  The process of preparing 
CMU data for model training/
validation and testing

Fig. 9  Splitting CMU data into 
the anchor and positive samples 
for each transformed dataset 
using the GASF, GADF, MTF, 
RP, and GAFMAT methods for 
triplet preparation
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In the experiment, triplets were fed as input to the SNN, and a margin size of 0.5 
( m = 0.5 , see Eq. 1) was used. This decision was based on our previous research, where an 
investigation was conducted to determine the optimal margin size for various experimental 
setups (Budžys et al. 2023; Medvedev et al. 2023).

The SNN was trained using the Adam optimizer over 100 epochs. To prevent overfit-
ting, an early stopping function was enabled, which stopped training if the model’s per-
formance on the validation dataset did not improve. Additionally, a batch size of 128 was 
chosen for efficient computation and optimization. The batch size was determined after a 
series of experiments to find the balance between computational efficiency and model per-
formance. The validation dataset was used to monitor the performance of the model, and 
the best weights were saved based on the validation loss. Following training, the optimal 
weights from each training epoch were saved, resulting in the storage of five sets of differ-
ent network weights related to GADF, GASF, MTF, RP, and GAFMAT.

Table 6 summarizes the results obtained by each of the different transformation meth-
ods applied to the validation dataset. The results are evaluated according to the metrics 
described in Sect. 5.1. The data in the table indicate that the most accurate methods were 
GADF, with an accuracy of 0.99077, and GAFMAT, with an accuracy of 0.98935. Using 
RP and GASF, the values obtained were 0.98331 and 0.98473, respectively. In contrast, the 
MTF showed a noticeably lower accuracy of 0.94744.

The results in Table 6 suggest that GADF outperforms the other methods in terms of 
distance metrics, as it yields lower AP_ED values than the other methods. This implies that 
the positive images are positioned closer to the anchor. However, the higher AN_ED val-
ues for GADF indicate that the method struggles to distinguish negative images from the 
anchor, in contrast to the superior performance of GAFMAT, which achieved an AN_ED 
value of 1.7637. A higher AN_ED value suggests that the other methods possess the ability 
to better discriminate negative images relative to the anchor. In summary, although GADF 
excels in proximity to the anchor with its lower AP_ED, and its comparative weakness in 
distinguishing negative images is evident from the higher AN_ED values. GADF exhib-
ited the lowest AP_STD value of 0.27487, indicating less variability within the anchor and 
positive samples. Similarly, GADF had the highest AN_STD value of 0.32888, indicating 
more variability within the anchor and negative samples. This trend was also observed for 
the other methods.

Table 6  Results of image 
transformation methods on 
keystroke dynamics data from the 
CMU dataset using the GADF, 
GASF, RP, MTF, and GAFMAT 
algorithms: Metrics-based 
evaluation on validation data

Metrics Non-image to image transformation methods

GADF GASF RP MTF GAFMAT

Accuracy↑ 0.99077 0.98473 0.98331 0.94744 0.98935
EER↓ 0.04794 0.05540 0.05327 0.12074 0.04545

AUC↑ 0.98612 0.98290 0.98394 0.94862 0.98668

AP_ED↓ 0.44127 0.47255 0.43633 0.56487 0.48600
AN_ED↑ 1.72784 1.71689 1.68884 1.59469 1.76378
AP_STD↓ 0.27487 0.29295 0.28245 0.36906 0.31383
AN_STD↓ 0.32888 0.34455 0.34881 0.40005 0.31295
AN_CS↓ 0.45772 0.45264 0.46871 0.46011 0.43755
AP_CS↑ 0.77936 0.76373 0.78183 0.71756 0.75700
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The GADF has the highest AP_CS value of 0.77936, indicating a high cosine similarity 
between the anchor and positive samples. On the other hand, GADF also had the highest 
AN_CS value of 0.45772, indicating a relatively high cosine similarity between the anchor 
and negative samples. The other methods showed similar patterns, where GADF generally 
had higher AP_CS and AN_CS values. In the context of cosine similarity, a higher value 
is generally considered better. When the cosine similarity between two vectors (anchor and 
positive or anchor and negative) is closer to 1, the vectors point in a similar direction and 
have a higher degree of similarity. This is beneficial in many applications where similarity 
or correlation between vectors is important, and can be useful in a variety of tasks, such as 
document similarity, recommender systems, and pattern recognition.

From Table 6, it can be observed that the lowest EER value of 0.04545 was obtained 
using GAFMAT. This indicates a lower threshold at which the trade-off between the FAR 
and FRR is achieved. Other methods also showed relatively low EER values, except for the 
MTF, which had a higher EER of 0.12074. The highest AUC value (0.98668) was obtained 
using the GAFMAT method. The GADF method yielded results close to those of GAF-
MAT, with a value of 0.98612. The use of GASF and RP resulted in AUC values of 0.9829 
and 0.98394, respectively. The MTF had a slightly lower AUC value of 0.94862.

In a comprehensive evaluation, the use of the GAFMAT and GADF methods showed 
promising results on a number of metrics, such as accuracy, distance measure, cosine simi-
larity, EER, and AUC. The empirical results highlight the potential effectiveness of GAF-
MAT and GADF as transformation methods for the analysis of the dataset compared to the 
other methods considered.

In the following research, a comparative analysis was conducted to evaluate the effec-
tiveness of different transformation methods on a test dataset. The test dataset consists of 
previously unseen data samples that were processed using the same transformation method. 
By evaluating the results obtained from each method, we aimed to gain insights into their 
effectiveness and identify possible variations in performance (see Table 7).

The results of the validation data provided in Table 6 indicate clear variations in the 
performance of the different methods, with some methods demonstrating better perfor-
mance than others. However, it is important to highlight that the results obtained on the 
test data (see Table 7) are significantly lower than those obtained on the validation data. 
These differences are consistent across the test dataset, indicating that the performance dif-
ferences observed in the validation dataset are also valid for the test data. The accuracy of 

Table 7  Results of image 
transformation methods on 
keystroke dynamics data from the 
CMU dataset using the GADF, 
GASF, RP, MTF, and GAFMAT 
algorithms: Metrics-based 
evaluation on test data

Metrics Non-image to image transformation methods

GADF GASF RP MTF GAFMAT

Accuracy↑ 0.86800 0.8540 0.82900 0.85400 0.86600
EER↓ 0.21000 0.24500 0.23900 0.24500 0.21500
AUC↑ 0.85928 0.83398 0.83937 0.83398 0.85951
AP_ED↓ 0.73164 0.86555 0.84481 0.86555 0.83616
AN_ED↑ 1.41323 1.50249 1.50904 1.50249 1.52453
AP_STD↓ 0.41727 0.45697 0.47537 0.45697 0.44798
AN_STD↓ 0.43871 0.44504 0.44953 0.44504 0.42488
AN_CS↓ 0.46378 0.40799 0.41154 0.40799 0.40983
AP_CS↑ 0.63418 0.56723 0.57760 0.56723 0.58192
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the models decreased by approximately 10% to 0.86, and the EER increased from 0.05 to 
approximately 0.20. This outcome suggests that the SNN incorrectly classifies one out of 
every five negative samples as positive, highlighting a significant rate of false positives. 
Nevertheless, the analysis shows the promise of using the GAFMAT and GADF methods 
over other methods in analyzing the test dataset.

5.3  GREYC‑NISLAB dataset analysis and results

In the initial phase of the experiments using the CMU dataset, it was empirically deter-
mined that the proposed GAFMAT method achieved the lowest EER value. Therefore, to 
further validate the effectiveness of the proposed methodology, the analysis was extended 
to include an additional dataset of fixed-text passwords. These additional experiments 
allowed us to evaluate the effectiveness of the method on different datasets and to perform 
validation comparisons with results reported in related works.

The GREYC-NISLAB dataset described in (Idrus et  al. 2013) was collected in 2013 
and includes five passwords entered by 110 users. The passwords are as follows: 1. “leon-
ardo dicaprio” 2. “the rolling stones” 3. “michael schumacher” 4. “red hot chilli peppers” 
5. “United States of America” (note: the spelling is as provided in the original data file). 
Each user entered five different passwords ten times with both hands and ten times with 
one hand, depending on whether the user was left- or right-handed. The dataset of a single 
password consists of 2200 samples. In total, the dataset comprises 11,000 data samples cor-
responding to 110 users, with 20 samples per user. Each password has different keystroke 

(a) leonardo dicaprio (b) the rolling stones (c) michael schumacher

(d) red hot chilli peppers (e) united states of america

Fig. 10  Image-based representations of distinct passwords of the same user, generated using the GAFMAT 
algorithm. Password data source: GREYC-NISLAB dataset
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patterns, so the number of keystroke dynamics features ranges from 64 to 92. Using the 
GAFMAT method, each password was transformed into the corresponding graphical repre-
sentations, resulting in password images (see Fig. 10).

The experiments were carried out according to the procedures described in Sect. 5.2. 
The last five users from each password set were selected for testing. The final 2100 samples 
from each password dataset were split at a 70:30 ratio into training and validation sets. The 
results obtained from the validation data were very similar to those from the CMU dataset 
and are presented in Table 8. The results were evaluated according to the metrics described 
in Sect. 5.1.

As shown in Table 8, the network could classify each password with an average accu-
racy of 0.98. Notably, the highest accuracy was achieved for the passwords “United States 
of America” and “michael schumacher”, both with a high accuracy of 0.99. Using the 
Euclidean distances between the anchor and the positive sample (AP_ED), as well as 
between the anchor and the negative sample (AN_ED), the network was able to effectively 
detect differences between the positive and negative samples with respect to the anchor. As 
a result, the triplet loss function resulted in a decrease in the distance between the anchor 
and the positive samples to a range of 0.39−0.45 and an increase in the distance between 
the anchor and the negative samples to a range of 1.48–1.63. These metrics highlight the 
crucial difference between positive and negative samples in metric space. These empirical 
results underscore the effectiveness of our choice of a 0.5 margin (Budžys et al. 2023).

The standard deviation of the distance between the anchor and the positive samples is 
approximately 0.2, and that between the anchor and the negative samples is approximately 
0.39. This indicates that the network tended to admit more positive samples than negative 
samples, as the positive samples were twice as dispersed compared to the mean.

Another metric for quality evaluation, cosine similarity, was effective in distinguishing 
between positive and negative samples in relation to the anchor. The cosine similarity indi-
cates that the positive sample is oriented in one direction relative to the anchor, with a 
value of approximately 0.78. Conversely, the negative samples are oriented in the opposite 
direction and have a value close to 0.5 relative to the anchor sample.

Table 8  Results using different accuracy metrics for passwords from GREYC-NISLAB on a validation 
dataset when transforming time series features of keystroke dynamics into an image using the GAFMAT 
algorithm

Metrics Passwords (GREYC-NISLAB)

Leonardo dicaprio The rolling stones Michaell 
schumacher

Red hot chilli 
peppers

United 
States of 
America

Accuracy↑ 0.97656 0.98698 0.99219 0.97778 0.99220
EER↓ 0.07552 0.04688 0.0651 0.04444 0.04688
AUC↑ 0.97824 0.98667 0.98771 0.98272 0.98847
AP_ED↓ 0.44736 0.43986 0.39958 0.45165 0.39566
AN_ED↑ 1.55644 1.61202 1.48864 1.63478 1.61275
AP_STD↓ 0.24318 0.21992 0.20467 0.21505 0.19676
AN_STD↓ 0.40601 0.37381 0.38351 0.38917 0.38013
AN_CS↓ 0.49905 0.48703 0.52795 0.47839 0.49790
AP_CS↑ 0.77632 0.78007 0.80021 0.77417 0.80217
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The most important indicator for validating the proposed GAFMAT method is the EER. 
For three specific passwords (“the rolling stones”, “red hot chilli peppers”, “United States 
of America”), the EER value varied by approximately 0.045. Moreover, for the “leonardo 
dicaprio” and “œmichael schumacher” passwords, the EER values are 0.07552 and 0.0651, 
respectively. Obviously, in the case of the three passwords, the proposed methodology and 
approach provided an almost similar EER to the CMU dataset. However, it is important 
to note that the sample sizes of the datasets are different. The CMU dataset contains 400 
instances of the same password for each user, while the GREYC-NISLAB dataset has only 
20 samples for each user.

After obtaining the validation results, an experiment was further conducted on the test 
dataset to determine whether the password length would yield better results on unseen 
data. Prior to the training phase, a subset of five users was selected from each password 
dataset, allocating 100 samples for testing each individual password. After the training 
process, during which the optimal values of the weights were stored, the network was 
initialized with these parameters. The results of the evaluation using the test unseen data 
corresponding to the five users mentioned above are summarized in Table 9. The analysis 
shows that the results for the test data have the same trend as the results for the validation 
data, although their values have decreased. As shown in Table 9, the accuracy decreased to 
approximately 0.85. The Euclidean distances between the anchor and the positive samples 
increased, ranging from 0.67 to 0.87. In contrast, the distances between the anchor and 
negative samples remained almost the same as those in the validation data (see Table 8). 
Such observations suggest that even when assessing the quality using test data, the network 
retains the ability to distinguish between positive and negative samples compared to the 
anchor. This trend is also observed for the standard deviation. While the AN_STD remains 
the same as that for the validation dataset, remaining in the range of 0.4–0.49, the AP_STD 
decreases by almost half compared to the Euclidean anchor-positive distance (AP_ED).

Since the objective in our case is to minimize the EER, we consider this indicator as a 
baseline, which in the analysis of the GREYC-NISLAB dataset ranges between 0.14 and 
0.22 for the test data, as shown in Table 9. The user authentication paradigm of the network 
is formulated in such a way that it can compare a newly entered password, transformed 

Table 9  Results using different accuracy metrics for passwords from GREYC-NISLAB on a test dataset 
when transforming time series features of keystroke dynamics into an image using the GAFMAT algorithm

Metrics Passwords (GREYC-NISLAB)

Leonardo dicaprio The rolling stones Michaell 
schumacher

Red hot chilli 
peppers

United 
States of 
America

Accuracy↑ 0.84000 0.86000 0.86000 0.84000 0.92000
EER↓ 0.16000 0.20000 0.22000 0.22000 0.14000

AUC↑ 0.90320 0.85920 0.85400 0.86680 0.89240
AP_ED↓ 0.78894 0.86642 0.67407 0.87670 0.75085
AN_ED↑ 1.55808 1.49985 1.33055 1.55131 1.50073
AP_STD↓ 0.41371 0.40861 0.31141 0.44201 0.43587
AN_STD↓ 0.40956 0.41111 0.49554 0.40963 0.42794
AN_CS↓ 0.41324 0.40843 0.49884 0.39300 0.43711
AP_CS↑ 0.60553 0.56679 0.66297 0.56165 0.62458
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according to the GAFMAT technique, with previous entries, aiming to achieve an EER 
close to zero. Currently, an EER of approximately 0.2 is observed, which indicates that 
improvements are necessary. To summarize, the SNN with a triplet loss function is able to 
distinguish between positive and negative samples in the test data. However, the obtained 
accuracy values are definitely lower than those of the validation data.

The observed EER values indicate that the accuracy of this metric is affected by the 
password length. This is supported by the fact that the CMU dataset contains 31 features, 
and the GREYC-NISLAB dataset contains 64 to 92 password features. In particular, the 
EER for the password “United States of America”, which is the longest in the set with 92 
features, was 0.14 (see Table 9). The EER of the next extended password, “red hot chilli 
peppers”, with 84 features, was 0.22. These observations suggest that the EER is influ-
enced mostly by the password’s inherent features rather than its length.

5.4  General results

The following are the empirical results obtained on the CMU and GREYC-NISLAB data-
sets to evaluate the performance of the proposed GAFMAT algorithm. The comparative 
analysis with other studies is performed by comparing the EER results of the validation 
data from the CMU dataset with those reported in the previous literature on multiclass 
identification (see Table 10). It should be noted that many published papers report results 
based mainly on validation data. Therefore, our comparative analysis with other studies is 
performed using the EER results on the validation data from the CMU dataset. The EER 
results on the test data of the GREYC-NISLAB dataset are used for comparative analysis 
with a recent study on user authentication (Piugie et al. 2022).

Table  10 presents a focused performance evaluation of different authentication methods 
(see Table 1) using the CMU dataset. It aims to emphasize advances in EER reduction on 
CMU data. The method based on the Manhattan distance (scaled) reported by Killourhy and 
Maxion (2009) showed an EER of 0.096, indicating less efficiency in balancing false accept-
ances and false rejections. In contrast, the nearest neighbors method with a new distance met-
ric, as explored by Zhong et al. (2012), showed an EER of 0.084 with outlier removal and 
0.087 without it. Similarly, the inductive transfer encoder approach, applied by Monaco and 
Vindiola (2016), resulted in an EER of 0.063, which, although closer to the result of the GAF-
MAT method, remains less optimal. The CNN used by Çeker and Upadhyaya (2017) achieved 

Table 10  Performance evaluation for CMU dataset passwords on validation data: a comparison of results in 
terms of EER values

References Method EER

This Paper GAFMAT 0.04545
 Killourhy and Maxion (2009) (original) Manhattan distance (scaled) 0.09600
 Zhong et al. (2012) Nearest neighbor (new distance metric) + outlier 

removal
0.08400

 Zhong et al. (2012) Nearest neighbor (new distance metric) 0.08700
 Monaco and Vindiola (2016) Inductive transfer encoder (Manhattan distance) 0.06300
 Çeker and Upadhyaya (2017) CNN 0.06500
 Ivannikova et al. (2017) Dependence clustering with Manhattan distance 0.07700
 Sae-Bae and Memon (2022) Manhattan distance (scaled with standard deviation) 0.09160
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an EER of 0.065, indicating fairly good performance. In addition, methods such as depend-
ency clustering with Manhattan distance (Ivannikova et  al. 2017) and Manhattan distance 
(with standard deviation scaling) (Sae-Bae and Memon 2022) showed EERs of 0.077 and 
0.0916, respectively, indicating lower and insufficient authentication accuracy. This compara-
tive analysis clearly indicates that the GAFMAT method significantly outperforms existing 
methods in terms of authentication accuracy, as evidenced by its significantly lower EER in 
the context of the CMU dataset. The results highlight the potential of the GAFMAT method 
for more accurate and reliable user authentication in cybersecurity applications. The perfor-
mance of the proposed method was specifically compared to that of studies that used the com-
plete sample set of the CMU dataset without excluding outliers, in contrast to a previous study 
(Monaco and Vindiola 2016) in which outliers were removed, resulting in an EER of 0.047, 
but an overall EER of 0.063. In the paper (Sae-Bae and Memon 2022), the highest EER of 
0.045 was obtained, but these results are only for “good” users. The authors of the paper set 
the FAR threshold and calculated what the EER would be for “good”, “average”, and “bad” 
users. Despite these results, the average EER of 0.0916 of all users was taken and compared 
with the results obtained by the methods presented in this paper.

The results obtained on the CMU dataset indicate that transforming the numerical val-
ues into images using techniques such as GADF, GASF, and RP resulted in EER values of 
0.04794, 0.0554, and 0.05327, respectively (see Table 8). These findings highlight the effec-
tiveness of our proposed approach for transforming passwords into images for training the 
SNN, which improved the performance over previous state-of-the-art methods. Significantly, 
our proposed method for converting numerical data into images, called GAFMAT, achieved 
an improved EER value of 0.04545 (see Table 10).

A comparative analysis of the validation and test results of the GREYC-NISLAB dataset 
was carried out in this study, with particular regard to the evaluation of their performance in 
terms of EER and accuracy. This choice was made because recent research on this dataset of 
user authentication tasks has focused on improving accuracy and achieving better EER values 
(Piugie et al. 2022). Therefore, our study aimed to compare our results with these established 
benchmarks.

The information in Table 9 allows comparison of our results with those of other authors 
(Piugie et al. 2022). As indicated in this study, the best results for EER using the GoogleNet 
model were 0.1843 for “leonardo dicaprio”, 0.1423 for “michaell schumacher”, and 0.148 for 
“United States of America”. Meanwhile, our proposed methodology with the implemented 
GAFMAT method achieved EER values of 0.16, 0.22, and 0.14, respectively. Notably, our 
implementation of a 12-layer CNN, while not as deep as the 22-layer deep neural network 
(GoogleNet), yielded results on the test dataset that are comparable to or slightly better than 
the network containing almost twice as many layers.

The results obtained on CMU data clearly demonstrate that the proposed GAFMAT 
method combined with an SNN achieves significantly lower EERs than do existing methods 
such as GADF, GASF, MTF and RP. The method achieved an EER of 0.04545 on the CMU 
dataset. In addition, the method achieved a high level of accuracy for the GREYC-NISLAB 
dataset, with EERs ranging from 0.04444 to 0.07552. The findings emphasize the remarkable 
performance of the proposed solution to distinguish genuine users from impostors.
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6  Challenges and future research directions

Existing methods for detecting insider threats often rely on a combination of user behav-
ior monitoring, anomaly detection, and traditional authentication methods. Our proposed 
methodology, which utilizes the GAFMAT method and an SNN with CNN branches, 
primarily aims to enhance user authentication through the analysis of keystroke dynam-
ics. This approach is more specific than general monitoring of user behavior, as it focuses 
on the nuances of typing patterns to detect anomalies. Unlike many existing systems that 
may require additional hardware for biometric authentication, our system utilizes existing 
keyboard inputs. This not only makes it a cost-effective solution, but also allows for easy 
integration into the current infrastructure without the need for significant modifications or 
upgrades.

6.1  Strengths and limitations

The main strength of our methodology is that it uses only a keyboard, making it easy to 
integrate into existing systems. Empirical studies conducted using the publicly available 
CMU and GREYC-NISLAB datasets confirm the effectiveness of the approach, as dem-
onstrated by a reduction in EER and an enhancement in user authentication accuracy. This 
improvement in results was influenced by transforming the keystroke dynamics patterns 
into images, which are then utilized to train SNNs through supervised learning.

However, the applicability of the proposed methodology to different datasets or real-
world scenarios remains to be thoroughly tested. Experimental observations revealed that 
the EER is influenced by both the length and the complexity of the passwords. It is very 
important to study how different password lengths and complexities affect the model per-
formance, considering the relevance to real-world applications that operate under varying 
password policies and within dynamic authentication environments. The performance of 
the model can also be affected by changes in user behavior over time or variations in typing 
due to environmental factors (e.g., different keyboards or physical conditions).

6.2  Future work

To address the limitations of relying on supervised learning, to increase model adaptability, 
and to reduce dependence on labeled datasets, it is appropriate to incorporate unsupervised 
learning techniques in future enhancements. For example, clustering methods can generate 
representative triplets regardless of whether the data are labeled or not, potentially leading 
to more generalizable models. Another key area of research is to extend the scope of the 
system beyond critical infrastructure to other areas that require secure user authentication.

The system is planned to be integrated into real existing authentication mechanisms in 
critical infrastructure. For new users, the initial step involves the collection of keystroke 
dynamics data by capturing timestamps during password entry. These data are then trans-
formed into images using the GAFMAT method and securely stored in a database. When 
a login attempt is made, the keystroke dynamics of the entered password are immediately 
transformed into an image using GAFMAT. The transformed image is fed to the trained 
SNN. The network processes the image to generate an embedding, which is a vector repre-
sentation of the image in a multidimensional space. The embedding is then compared to the 
embeddings of previously stored password images. This comparison involves computing 
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the distance between the embeddings in the multidimensional feature space. A critical 
aspect of the system is determining a threshold to distinguish legitimate attempts from 
impostor attempts. Initially, a threshold baseline is determined based on historical data of 
genuine login attempts. This baseline represents the typical range of distances observed in 
embeddings of authentic password entries. Decisions on the legitimacy of a login attempt 
are based on the proximity of the input embedding to stored embeddings. If the distance 
falls within the predefined threshold, the login attempt is considered genuine. To detect 
insiders, the system must monitor discrepancies between current keystroke dynamics and 
stored password samples. Significant deviations may trigger additional security measures, 
such as multifactor authentication or the notification of security personnel.

7  Conclusions

This paper proposes a comprehensive artificial intelligence-based user authentication 
methodology for insider threat detection based on behavioral biometrics and deep neural 
networks to improve the effectiveness of intrusion detection systems and intrusion preven-
tion systems. The need for such a system in the modern era, where war and cyberattacks 
are massive, cannot be overemphasized. Recently, potential threats have been observed 
where unauthorized individuals gain access to devices and accounts in critical infrastruc-
ture, causing significant damage.

From a theoretical point of view, this study extends the understanding of behavioral 
biometrics in the field of cybersecurity. It highlights the effectiveness of transforming key-
stroke dynamics into images, which provides a new perspective in the field of biometric 
analysis. This study presents a static authentication process that uses the unique timing 
characteristics of a user’s keystrokes to generate a password input pattern for further analy-
sis. By comparing these patterns against a database of known legitimate password patterns, 
it is possible to determine whether the pattern entered matches the pattern of a known user. 
Thus, even if an unauthorized person learns the user’s password, they still need to replicate 
the user’s unique input behavior to gain access, providing an additional layer of security.

A key contribution of this study is the introduction of the GAFMAT method for trans-
forming non-image or numerical data into images, which enhances the versatility and 
extends the application of data to deep learning tasks. This solution, combined with a Sia-
mese Neural Network (SNN) and triplet loss function, has significant potential for improv-
ing the accuracy of user authentication using keystroke biometrics. This method of trans-
forming numerical values into images has proven its effectiveness on both the CMU and 
GREYC-NISLAB datasets, as evidenced by its competitive and often better Equal Error 
Rate (EER) values compared to those of other state-of-the-art methods. A lower EER of 
0.04545 and an average accuracy of 98.9% were obtained on the CMU dataset. This result 
highlights the accuracy of the method for distinguishing legitimate users from potential 
insider threats. Furthermore, the method demonstrated a high level of accuracy, averag-
ing 98% on the GREYC-NISLAB dataset for different passwords and ranges of EER from 
0.04444 to 0.07552, further confirming its effectiveness.

The practical application of the user authentication methodology, which combines the 
novel GAFMAT method and the SNN, addresses real-world cybersecurity problems in a 
trustworthy and effective way to distinguish legitimate attempts from impostor attempts. 
This research highlights the potential of integrating behavioral biometrics with deep learn-
ing techniques to improve security in today’s digital age.
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Although the results obtained are promising, they reveal the limitations of the applica-
bility of the solution to different datasets and real-world scenarios. In particular, EER is 
sensitive to the length and features of the password, while factors such as password com-
plexity, changes in user behavior, and environmental conditions (e.g., different keyboards) 
can have a significant impact on the performance of the solution. Additionally, our pro-
posed methodology is based on supervised learning, so labeled data are needed to train the 
model.

To mitigate the limitations of supervised learning, future improvements should include 
unsupervised learning techniques to increase the applicability of the model. In addition, 
investigating the integration of this authentication methodology with existing security sys-
tems in critical infrastructure can provide valuable insights into the challenges and benefits 
of its practical implementation.
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