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Notation

N the set of positive integers

Z the set of integers

P the set of primes

C the set of complex numbers

Fq the finite field of order q

bxc the largest integer not larger than x (floor)

dxe the smallest integer not smaller that x (ceiling)

[n] the set of positive integers not larger than n, [1, n] ∩ N

A a set A as well as the indicator function of a set A

A[n] intersection A ∩ [n]

f ∗ g the sum convolution of two functions, f ∗ g(x) =
∑

i f(i)g(x− i)

f ◦ g the difference convolution of two functions, f ◦ g(x) =
∑

i f(i)g(x+ i)

E(A,B) the additive energy of sets A and B

EX the average of a random variable X

A+B the sumset {a+ b, a ∈ A, b ∈ B}

kA the k-fold sumset {a1 + ...+ ak, ai ∈ A}

k∗A the k-fold sumset with no repetitions {a1 + ...+ ak, ai ∈ A, ai 6= aj}

f � g the same as f = O(g)

f ∼ g the same as f � g and g � f

vii





1 Introduction

In this work we will study various arithmetic properties of subsets integers. Phe-

nomena that interest us arise from the simplest operation possible – addition,

which carried out between elements of a set or sets leads to interesting and com-

plicated combinatorics. To give a taste of questions we will investigate, we intro-

duce the main objects of this nature. The first one, a sumset of two sets A and

B, is the set of all possible pairwise sums:

A+B = {a+ b, a ∈ A, b ∈ B}.

The aspect of a sumset that draws the most attention is its size. An estimate

|A + B| > |A| + |B| − 1 for finite sets of integers is an easy exercise, as well as

noting that equality can only occur when A and B are arithmetic progressions

of the same difference. Taking a small step back and asking to describe sets for

which equality does not hold, but that still have small sumset, gets us straight to

the heart of additive combinatorics. Description of such sets is a famous Freiman

theorem proved by Freiman in 1966 and improved a number of times since then.

Closely connected to a sumset is a notion of additive energy, which is the

number of incident sums of elements of A and B:

E(A,B) = |{a+ b = a′ + b′, a, a′ ∈ A, b, b′ ∈ B}|.

Relation between two notions is straightforward in two ways – sets with small

sumset have large additive energy and sets with small additive energy have large

sumset (we will give more precise meaning to the notions of large and small in

Chapter 3). Large sumset or energy, on the other hand, does not imply that

the counterpart should be small and connection here is much more subtle: a

well known Balog-Szemerédi-Gowers theorem states that sets with large additive

energy have large subsets with small sumset.

Lastly, we introduce a notion of representation function of sets A and B, from

which both their sumset and additive energy can be deduced. Representation
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function at a given point x is equal to the number of ways x can be expressed

as a sum a + b, a ∈ A, b ∈ B. It can be quickly recognized to be nothing else

then a convolution of the indicator functions of sets A and B, so overloading the

notation we write it as

A ∗B(x) =
∑
i

A(x− i)B(i).

Famous Sidon sets are defined as sets A having all the sums a + a′, a, a′ ∈ A

different. Another way to describe them is to say that they are the sets with

extremal property of having a representation function A ∗ A as small as possible

– bounded by 2. Finding as dense as possible Sidon sets is much investigated but

still open problem.

In the thesis we will solve several problems that are connected to those men-

tioned above. We describe them in the next section.

1.1 Aims and problems

We give a short summary of the problems considered in this work.

In Chapter 3 we discuss a relation between several notions of unstructured

sets, for example those with large sumset and small additive energy. The main

question of the chapter is the following extension of a theorem by Alon and Erdős:

given finite sets A,B ⊆ Z of equal sizes |A| = |B| = n and with fixed additive

energy E(A,B) = |A||B| + E, what are the sizes of largest subsets A′ ⊆ A and

B′ ⊆ B with all |A′||B′| sums a + b, a ∈ A′, b ∈ B′, being different (we call such

subsets A′, B′ co-Sidon)? We will answer this question within the logarithmic

accuracy for small and large values of additive energy E � n2 and E � n3, and

will extend them (non-optimally, however) to the full range of values of E.

In Chapter 4 we investigate infinite sets A ⊆ N with bounded doubling, that is

sets satisfying |A[n]+A[n]| � |A[n]|, where A[n] = A∩[n]. Full description of such

sets is an open problem raised by Sós. We give a partial answer to this question

under additional restrictions and investigate the doubling of sets of asymptotically

polynomial growth.

In Chapter 5 we consider a generalization of a question concerning maximal

Sidon sets. Call a given set Bh set if all h-fold sums of its elements are different.
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We look for the upper bound on the size of a Bh set in a d-dimensional box [n]d,

and the upper bound of the density of infinite Bh sets in a d-dimensional space

Nd, extending known results of Chen, Jia, Graham and Green.

In Chapter 6 we look for slowly growing infinite sets of positive integers with

an interesting property, that the iterated sumset, a set of all sums of finite subsets,

would not contain a square of an integer. We find an example of exponentially

growing set and extend it to not contain all powers of integers. We also discuss a

subsequent improvement of this result by Dubickas and Stankevičius.

In Chapter 7 we solve a multivariate Cauchy functional equation for mul-

tiplicative functions f : N → C, limiting the additivity condition on primes:

f(p1 + p2 + · · ·+ pk) = f(p1) + f(p2) + · · ·+ f(pk), pi ∈ P. We show that such

equation has essentially unique non-zero solution: f(n) = n for each n ∈ N. This

result for k = 2 has been established earlier by Spiro, and k = 3 by Fang.

1.2 Methods

Throughout the thesis we use a variety of methods which are quite common in

additive combinatorics.

Construction of sets with no large co-Sidon subsets in Chapter 3 relies on the

probabilistic method, which is often used to prove the existence of complicated

combinatorial objects. In order to apply it we use Chernoff and Kim-Vu concen-

tration inequalities for sums and polynomials of indicator random variables, and a

recently established structural description of independent sets in balanced graphs

by Kohayakawa, Lee, Rödl, and Samotij.

Lower bounds for growth of the doubling of polynomial sequences in Chapter 4

are established using an effective version of Freiman’s theorem (due to Konyagin),

which gives an accurate description of finite sets with small sumset.

Most of the upper bounds for size of Bh sets in Chapter 5 are obtained by

elementary combinatorial arguments, however, fine improvements in the case when

h is large rely heavily on Fourier analytical methods, developed by Green for the

one-dimensional case.

Examples in Chapter 6 for sets whose iterated sumset avoids squares are ob-

tained by using elementary number theoretical properties of natural numbers.
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In Chapter 7 we use known bounds for binary, ternary and quinary Goldbach

conjecture as well as a lemma of Spiro.

1.3 Actuality and novelty

Most of the results presented in the thesis are original and correspond roughly

to six publications in mathematical journals [22, 24–26, 64, 68]. Remaining mi-

nority are either well known lemmas, which we prove for completeness, or small

unpublished observations.
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2 Literature review

2.1 Sidon, co-Sidon and Bh sets

Recall that a set A is called Sidon, if all pairwise sums of its elements a+a′, a, a′ ∈

A are different, discounting trivial equalities such as a + a′ = a′ + a. Two gen-

eralizations of this notion that we will investigate in this work are Bh sets, those

with different h-fold sums a1 + · · ·+ ah, ai ∈ A and co-Sidon pairs of sets, that is

sets A and B with different sums a+ b, a ∈ A, b ∈ B.

The central question that motivated research on Sidon and, more generally,

Bh sets (formulated by Sidon himself in 1932 [76]) is that of maximal set: most

numerous Sidon set in the finite interval [n] and the densest Sidon set in the set of

positive integers. Simple counting arguments immediately give bounds |A| � n1/h

for a size of a Bh subset of the interval [n] and |A[n]| � n1/h for the asymptotic

growth of an infinite Bh subset of positive integers. Improving these bounds or

constructing matching examples is far from simple.

The best known upper bound for the maximal Sidon set A ⊆ [n] is

|A| 6 n1/2 + n1/4 + 1/2,

essentially obtained by Erdős and Turán [30] in 1941 and later refined by Lind-

ström [55] and Cilleruelo [15] (Erdős and Turán only reported bound n1/2 +

O(n1/4), but their method can be seen to give the above bound, and Lindström

obtained constant 1).

In the more general setting of maximal Bh subset of [n], Lindström [54] im-

proved the elementary bound for h = 4:

|A| 6 8
1
4N

1
4 +O

(
N

1
8

)
,

and Jia [45] (see also [35]) generalised his argument for all even h = 2k:

|A| 6 k
1
2k (k!)

1
kN

1
2k +O

(
N

1
4k

)
.
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For the case of odd h = 2k − 1, the best known upper bound was given by Chen

and Graham [10,35]:

|A| 6 (k!)
2

2k−1N
1

2k−1 +O
(
N

1
4k−2

)
.

Finally, Green used the techniques of Fourier analysis to further improve main

term constants in the B3 and B4 cases (getting (7
2
)1/3 and 71/4 respectively) and

in the case when h is sufficiently large.

In Chapter 5 we will extend the results of Jia, Chen, Graham and Green to

the d-dimensional case and discuss a particular construction of dense Bh sets by

Ruiz and Trujillo [69]. Here we mention that in the case of dense Sidon sets the

first example with the optimal constant in the main term was given by Singer [77].

Another interesting (and exceptionally dense) example of a Sidon set in the two

dimensional plane was given by Cilleruelo [15]. He constructed an example of the

Sidon set in [n]2 of size n+ log n log log log n.

Infinite Bh sets

Infinite Bh sets are more complicated than finite ones. Somewhat unexpectedly

one cannot construct a Sidon subset A ⊆ N satisfying |A[n]| � n1/2, as was

showed by Erdős who proved that any Sidon set A ⊆ N satisfies

lim inf
n→∞

|A[n]|
√

log n

n
<∞.

This result was generalised for d-dimensional Sidon sequences by Cilleruelo

[15], who showed that Sidon set A ⊆ Nd satisfies

lim inf
n→∞

|A[n]|
√

log n

nd
<∞

and for one dimensional B2k sets by Chen [9], who showed that B2k set A ⊆ N

satisfies

lim inf
n→∞

|A[n]| 2k
√

log n

n
<∞.

Interestingly, no results of this type are known for h odd.

Constructing dense Sidon subsets of N is even more challenging. Using greedy

algorithm or probabilistic method one can construct a Sidon set A satisfying
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|A[n]| > n1/3, which is far from the upper bound. An improvement was obtained

by Ruzsa [71], who constructed a Sidon set A ⊆ N satisfying

|A[n]| > n
√

2−1+o(1).

The construction of Ruzsa was cleverly modified by Cilleruelo and Tesoro [18] to

work in the case h = 3, 4 and by Cilleruelo [13] for all h, resulting in Bh subsets

A ⊂ N of size

|A[n]| > n
√

(h−1)2+1−(h−1)+o(1).

Sidon and co-Sidon subsets of other sets

An interesting generalization of the question about the maximal Sidon set in the

interval or d-dimensional box is a question about the maximal Sidon set in any

given set. The question formulated without any conditions on the initial set was

answered by [49] Komlós, Sulyok, and Szemerédi, who proved that the interval

is essentially the worst case. That is, given a set A one can always find a Sidon

subset of size �
√
|A|, and the equivalent bound holds for Bh sets (or any other

sets, avoiding solutions to linear equation). That should come as no surprise, as

the interval (or box) is the set with the largest additive structure (it has a small

sumset and large additive energy).

Erdős and Alon considered the same question with strong restrictions on the

additive structure of the initial set [2, 27, 28], more precisely, requiring A ∗ A to

be bounded by a constant. One could expect to find a very large Sidon subset

in this case, but that is only partially true, as Erdős gave an example of a set A

with representation function bounded by 4, which has the largest Sidon subset of

size � |A|2/3. In Chapter 3 we consider a similar extremal question of finding

co-Sidon subsets of two sets with given additive energy.

Finding dense co-Sidon subsets is slightly easier than finding dense Sidon sets.

It is not hard to find co-Sidon subsets of an interval attaining the maximal possible

size, for example, and it is also possible to find (and actually describe all of

them) maximal co-Sidon subsets of positive integers – this was done by Benevides,

Hulgan, Lemons, Palmer, Riet, and Wheeler [5]. In Chapter 3 we show that one

can find larger co-Sidon subsets that the Sidon one in the above problem of Alon

and Erdős only when we allow them to be of different sizes.
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Finally, we mention a variation of this problem considered by Lewko and

Lewko [53] who proved, among other statements, that there exist a set with

large sumset and large difference set (within a constant multiple of maximal one)

that does not have a large Sidon and, more strongly, large subsets of bounded

representation function.

2.2 Sets with large additive structure

Sets with large additive structure are those with, contrary to Sidon sets, many

coinciding pairwise sums of their elements. Two most common properties that

signify large additive structure are small sumset |A+A| � |A| and large additive

energy E(A,A) � |A|3. Investigation of such sets has been very extensive and

much is known about them. We will only mention two very well known results

which we will use in this work as the focus of this thesis lies somewhat in the

compliment of this universe. A lot of material on the subject can be found in the

books of Tao and Vu [81], Nathanson [60,61], and Geroldinger and Ruzsa [33].

The central result of additive combinatorics is Freiman’s theorem, stating that

any set A with small sumset |A+A| 6 C|A| is a subset of generalized arithmetic

progression

A ⊆ {b0 + b1z1 + · · ·+ bdzd | zi = 0, . . . , `i − 1 for i = 1, . . . , d},

with constant dimension d and small size `1 · · · `d < s|A|, with constants d, s

only depending on C. Originally proved by Freiman [32], the theorem has been

reproved (simplifying the arguments) by Ruzsa [70] (also see [6]) and improved a

number of times by Chang [7], Schoen [75], Sanders [72] and Konyagin [50]. We

give precise formulation of the theorem and state the bounds on d, s in Chapter 4.

An equivalent question about description of infinite sets of positive integers

with small sumset was raised by Sós [19], with the notion of small sumset stated

as |A[n] +A[n]| � |A[n]|. In Chapter 4 we give a partial answer to this question.

Large additive energy is a slightly weaker condition on the set, as it does not

imply that the set should have a small sumset. Nevertheless, the famous Balog-

Szemerédi-Gowers theorem (proved by Balog and Szemerédi [4] and independently
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by Gowers [34]) states that such set should have a large structural part, that is a

large subset (a constant proportion of the size of original set) with small sumset.

Precise dependence of the doubling C ′ of the structural subset A′ (satisfying

|A′ + A′| 6 C|A′| on the size of additive energy of initial set A (with E(A,A) >

c|A|) is important in many applications of Balog-Szemerédi-Gower theorem. The

best known bound has been obtained by Schoen (personal communication) giving

C 6 (1/c)4.

2.3 Additive properties of number theoretic

sets

Additive properties of sets of number theoretic nature is a classical part of number

theory. One of the well known problems is a Goldbach’s conjecture, raised in 1742

in the correspondence between Goldbach and Euler. Strong version of Goldbach’s

conjecture states that every even integer greater than 2 can be expressed as a

sum of two primes and is among the most challenging conjectures in the whole

mathematics.

Weak version of Goldbach’s conjecture states that every odd prime greater

than 5 can be expressed as a sum of three primes. Its proof has been recently

announced by Helfgott in a series of thee preprints [40–42], culminating a century

long effort started by Hardy-Littlewood and Vinogradov.

Among the intermediate achievements is a result of Tao [80], who proved that

every odd integer larger than 1 can be expressed as a sum of at most 5 primes.

We will rely on this result heavily in the Chapter 7, where we solve multivariate

Cauchy equation

f(p1 + · · ·+ pk) = f(p1) + · · ·+ f(pk)

for multiplicative functions with above additivity condition defined on the set

of primes. This equation was solved for k = 2 by Spiro [78] and for k = 3 by

Fang [31], in both cases obtaining that such equation has essentially unique multi-

plicative solution. This equation with additivity condition defined on various other

sets of number theoretic nature was solved by Chen and Chen [8], Chung [11],

Chung and Phong [12], Phong [63] and De Koninck, Kátai and Phong [20].
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Another gem in the additive number theory is Waring’s problem which, simi-

larly to Goldbach’s conjecture, states that every sufficiently large integer can be

expressed as a sum of at most s kth powers of integers. The first proof that for each

k such finite s indeed does exist was given by Hilbert in 1909 [43], although that

fact that every integer is a sum of four squares was already proved by Lagrange

in 1770.

Since the proof of Hilbert, the main focus in Waring’s problem was finding

the smallest required number of summands s for each power k. The structure of

squares or any powers of integers is much simpler than that of primes, so Waring’s

problem has been largely solved. The value of s is known to the accuracy of ±1,

and is equal to 2k + b(3/2)kc − 2 provided that 2k{(3/2)k}+ b(3/2)kc < 2k which

is conjectured to hold for all k ∈ N. For more details and historical perspective

we point to a wonderful survey by Vaughan and Wooley [82].

In Chapter 6 we investigate the additive structure of the complement of the

squares (or powers) of integers. For a set A (finite or infinite) by SA denote the

set of sums of its finite subsets, so called iterated sumset. Departure point for the

investigation is a question by Erdős in 1986 [29] about the size of the largest subset

A of [n], such that SA would not contain a square. Erdős and later Cilleruelo [14]

gave an example of such set of size � n1/3. Getting the matching upper bound

was much more difficult and took an effort of Alon [1], Lipkin [56], Alon and

Freiman [3], Sárközy [73] and finally Nguyen and Vu [62] to reduce it to

|A| 6 n1/3 logC n

for some constant C. In Chapter 6 we solve the same problem in the infinite

setting. The first example of infinite subset of integers A ⊆ N such that SA
would not contain squares was provided by Luca [58]. We give an example of

a slower growing set and discuss a subsequent improvement by Dubickas and

Stankevičius [23], who gave an example of a set locally matching the Nguyen and

Vu lower bound.

A very similar question concerning the largest subset A ⊆ N such that A+A

would not contain any squares was raised by Erdős and Silverman [38]. In this

case a very large such set can be found due to properties of quadratic residues

modulo some integer. The best known lower bound for the density d(A) of such

12



set (density d(A) of the infinite set A is defined as limn→∞
|A[n]|
n

if it exists) d(A) >

11/32 was obtained by Massias1, and the best known upper bound d(A) 6 2/5

by Schoen [74], improving the results by Lagarias, Odlyzko and Shearer [51,52].

1The paper of Massias Sur les suites dont les sommes des termes 2 a 2 ne sent pas des carres
(which is cited as to be published in some works) does not seem to exist.
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3 Large co-Sidon subsets of sets

with a given additive energy

In the introduction we discussed a relation between the sumset A+B of two sets

A and B and their additive energy E(A,B). In this chapter we we will include a

third measure of (joint) structure of two sets – the maximal value of representation

function A ∗B.

For now we will only concern ourselves with the notion of unstructured sets of

equal sizes |A| = |B| = n. We give four following descriptions of unstructuredness:

I A,B have large sumset |A+B| > cn2,

II A,B have small additive energy E(A,B) 6 Cn2,

III A,B have bounded representation function A ∗B(x) 6 C,

IV A,B are co-Sidon.

These four conditions imply one another in the order IV =⇒ III =⇒

II =⇒ I. First two implications follow immediately from the definitions, while

the third one is the lemma 5.9. Reverse implications do not hold. Sets with

bounded representation function not necessarily are co-Sidon, and sets with small

additive energy can have a representation function with few very large values, for

example take A a Sidon set and B = −A. Lastly, sets with large sumset can each

have large structural part, hence large additive energy.

The question that interests us (and inspired by Balog-Szemerédi-Gowers the-

orem) is whether these reverse implications do hold in a strong way. That is,

maybe whenever A,B satisfy condition N it is possible to find large subsets

A′ ⊂ A,B′ ⊂ B that satisfy condition N + 1? We are unfortunately unable

to answer this question in any of three cases, but we will deal with the implica-

tion IV =⇒ II later in the chapter. However, these questions can be answered

somewhat easily in the symmetric case A = B which we now consider.
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Symmetric case

The problem we stated is considerably easier in the symmetric case, that is when

A = B and we look for one subset A′ with corresponding properties. We start

from the implication IV =⇒ III. The theorem that reverse implication does not

hold for large subsets was already mentioned in the introduction and we formulate

it here in a succinct form:

Theorem 3.1 (Erdős, Erdős-Alon). Given C > 4 and a set A of size n, satisfying

A ∗ A(x) < C,

for each x ∈ Z, the largest guaranteed Sidon subset A′ ⊆ A is of size

|A′| = cn2/3.

Sketch of the proof. The upper bound for the size of maximal Sidon set is proved

by giving an example:

A = {4i + 4I , i ∈ [n], I ∈ [n+ 1, n2 + n]}.

It is very easy to see that this set has representation function bounded by 4, so

one only needs to prove that no subset larger than cn2 is Sidon. The prove is

simple and elegant, so we sketch it here.

Let A′ be a subset of A and count the number of pairs of elements (x, y) from

A′ such that x and y have the same second coordinate (power) I. By Cauchy-

Schwarz inequality the number of such pairs is at least
(|A′|/n2

2

)
n2. If this number

is larger than
(
n
2

)
, by pigeon hole principle two of such pairs will have the same set

of first coordinates (i, i′), thus forming a quadruple (4I+4i, 4I+4i
′
, 4J+4i, 4J+4i

′
),

satisfying forbiden equation x + y = x′ + y′. Comparing these bounds gives the

required inequality.

The lower bound is proved using a simple double counting argument, which

we also use for the case of different sets in the proof of Theorem 3.4, so we do not

repeat it here.

We continue with the next implication III =⇒ II. Reverse implication does

not hold for large subsets in this case as well, but we do not have asymptotically

matching lower and upper bounds in this case.
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Theorem 3.2. Given C > 5
3

and a set A of size n, satisfying

E(A,A) 6 Cn2,

the largest guaranteed subset A′ ⊆ A with A′ ∗ A′ < C ′ is of size

cn2/3 6 |A′| 6 c′n3/4.

Proof. For the upper bound take A a union of n arithmetic progressions Ai of

length n (for simplicity we will construct a set of size n2), such that each pair of

progressions is co-Sidon (for example Ai = {kni, k = 1, . . . , n}). Then additive

energy of A will be equal to the sum of non-trivial energies of progressions plus the

trivial part (by trivial we mean a part of additive energy coming from equalities

a+ b = a+ b, a ∈ A, b ∈ b):

E(A,A) = |A|2 +
∑
i

(E(Ai, Ai)− n2) 6
5

3
n4.

Let A′ ⊆ A have representation function A′ ∗ A′ bounded by C. Then for any

progression Ai the intersection A′ ∩ Ai is a so-called B2[C] set contained in a

progression of length n, so its size is less than c′n1/2, where c′ only depends on

C (the exact dependence is unknown (but asymptotically quadratic c′ ≈ C1/2,

see [17] and references therein). From this we conclude that |A′| 6 c′n3/2 =

c′|A′|3/4, as required.

The lower bound is a special case of Theorem 3.4.

Finally we prove that the implication II =⇒ I also does not have an inverse

for large subsets.

Theorem 3.3. Given c 6 1
2

and a set A of size n, satisfying

|A+ A| > cn2,

the largest guaranteed subset A′ ⊆ A with E(A′, A′) 6 Cn2 is of size

|A′| = c′n1/2.
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Proof. For the upper bound take A a union of arithmetic progressions [n] and

[n, 2n, . . . , n2] (for simplicity we will construct an example of size 2n). Then the

sumset A+A is equal to [n+1, . . . , n2 +n] and is of the stated size. Let A′ ⊆ A be

a subset of A, and denote a larger of the two sets A′ ∩ [n], A′ ∩ [n, . . . , n2] by A′1
2

.

The sumset A′1
2

+ A′1
2

is supported on a set of size 2n− 1, so by Cauchy-Schwarz

inequality (see Lemma 5.9) we have

E(A′1
2
, A′1

2
) > |A′1

2
|4/(2n− 1).

Using this observation we get that if E(A′, A′) 6 C|A′|2, then |A′1
2

|4 6 C(2n −

1)|A′|2, or |A′| 6 c′n1/2 for a corresponding value of c′.

For the lower bound we note that by Komlós, Sulyok and Szemerédi theo-

rem [49] we can find a Sidon set of size of order n1/2 in any set of size n.

3.1 The problem and results

We now formulate our main question of the chapter and give a partial answer.

Note that it is more general than stated in the introduction, as it considers full

range of additive energy, which in the case of sets of equal sizes |A| = |B| = n is

(see Lemmas 3.17 and 3.18)

n2 6 E(A,B) 6 2n3/3 + n/3.

Question. Let A,B be sets of integers of equal sizes |A| = |B| = n and fixed

additive energy E(A,B) = |A||B| + E. What is the largest pair of co-Sidon

subsets A′ ⊆ A,B′ ⊆ B?

The partial answer is given in the following four theorems. The strategy of

proofs depend on the size of additive energy, so we considered two cases for lower

bound and two cases for upper bound. These bounds match when non-trivial

additive energy of A,B is either small (E � n2) or very large (E � n3).

Theorem 3.4. Let A,B be any finite sets of integers such that

E(A,B)− |A||B| = E 6= 0.

For all integers k, ` satisfying 1 6 k 6 |A|/2, 1 6 ` 6 |B| and

k`2 6
|A|2|B|2

2E
, (3.1)
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there exists a pair of co-Sidon subsets A′ ⊆ A, B′ ⊆ B with |A′| = k, |B′| = `.

In particular, in the case of small energy E � n2, and both subsets A′, B′ of

equal size k = `, one can always find a co-Sidon pair A′, B′ satisfying |A′|, |B′| �

n2/3, so that their sumset A′ + B′ has the size |A′||B′| � n4/3, similarly as in

Theorem 3.1. If, however, one of the two subsets is allowed to be larger than the

other, one can get a co-Sidon pair A′, B′ of sizes |A′| � n and |B′| � n1/2 with a

larger sumset |A′ +B′| = |A′||B′| � n3/2.

Theorem 3.4 is far from optimal when the additive energy (and so E) is very

large. It can then by replaced by the following result (which is similar to one of

Komlós, Sulyok and Szemerédi [49]):

Theorem 3.5. Let A,B be any finite sets of integers of sizes |A| = |B| = n,

where n > 106. Then for all positive integers k, ` satisfying

k` 6 n/12800, (3.2)

there exists a pair of co-Sidon subsets A′ ⊆ A, B′ ⊆ B with |A′| = k, |B′| = `.

Theorems 3.4 and 3.5 have their counterparts showing that they are almost

optimal at the extreme ends of additive energy:

Theorem 3.6. For any sufficiently large integer n and any integer E satisfying

n 6 E 6 2n3/3 there exist two sets A,B of sizes |A| = |B| = n and additive

energy E(A,B) = |A||B| + E(1 + o(1)) such that for all integers k, ` satisfying

k > 2` and

k`2 > 40n2 log n
(

1 +
3n2

E
log n

)
, (3.3)

no subsets A′ ⊆ A,B′ ⊆ B with |A′| = k, |B′| = ` are co-Sidon.

Comparing (3.3) with (3.1) (which becomes k`2 6 n4/2E for |A| = |B| = n)

we see that for n 6 E � n2 there is just an extra factor log2 n on the right hand

side of (3.3).

Theorem 3.7. For any sufficiently large integer n and any integer E satisfying

n2 6 E 6 2n3/3 there exist sets A,B of sizes |A| = |B| = n and additive energy

E(A,B) = |A||B|+E(1 + o(1)) such that for all integers k, ` satisfying k > ` and

k` >
4n4

3E
, (3.4)
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no subsets A′ ⊆ A,B′ ⊆ B with |A′| = k, |B′| = ` are co-Sidon.

This time from (3.4) we see that the inequality (3.2) of Theorem 3.5 is optimal

(up to the constant) in the range n3 � E 6 2n3/3.

Finally, for sets with nearly maximal sumset Theorem 3.4 can be improved.

Observe first that if A,B ⊆ Z satisfy

|A+B| = |A||B| − s

for some non-negative integer s < |A|+ |B| then one can remove in total no more

than s elements from A and B so that the remaining sets will be co-Sidon. Indeed,

for such sets we have ∑
x∈A+B

(A ∗B(x)− 1) = s,

so after removing at most s elements from A and B one can assure that A∗B(x) 6

1 for all x ∈ Z. For larger values of s we employ a different strategy which gives

the following result:

Theorem 3.8. Let A,B be any finite subsets of integers with

|A+B| = |A||B| − s

for some s in the range |B|/4 6 s 6 |A||B|/4. Then there exists a pair of co-Sidon

sets A′ ⊆ A and B′ ⊆ B satisfying

|A′| > |A||B|/4s− 1 and |B′| > |B|/2.

A remark on combinatorial background

Before proving the theorems we discuss a related problem, obtained from the

formulated above but with no constraints coming from the arithmetics of integers.

Non-trivial additive energy has the following interpretation in terms of graphs.

Consider a graph with vertices A× B and edges connecting two distinct vertices

(a, b), (a′, b′) whenever a+ b = a′ + b′. If for some x ∈ A+B we have A ∗B(x) =

k > 2 then there are exactly k(k − 1)/2 edges connecting all the vertices (a, b)

for which a + b = x. Otherwise, if A ∗ B(x) = k ∈ {0, 1}, there are no edges
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corresponding to x. Let e(A,B) be the total number of such edges in the graph

with vertices in A×B. Assume that the sum
∑

x∈ZA ∗B(x)2 contains s nonzero

terms k1, · · · , ks. Then the additive energy can be written as follows

E(A,B) =
∑
x∈Z

A∗B(x)2 =
s∑
j=1

k2
j = 2

s∑
j=1

kj(kj − 1)

2
+

s∑
j=1

kj = 2e(A,B) + |A||B|.

Therefore,

2e(A,B) = E(A,B)− |A||B| = E. (3.5)

Furthermore, the above graph is a union of cliques, as a1 + b1 = a2 + b2 and

a2 + b2 = a3 + b3 implies a1 + b1 = a3 + b3. The number of cliques in the graph is

nothing else than the size of sumset |A+B|.

Forgetting that the graph was constructing from two sets and replacing a graph

with a table (which is more natural representation of union of cliques) we get a

following version of our main problem.

Question. Given an n × n table, we color each cell and fix the number E of

monochromatic pairs of cells. What is the largest rainbow subtable (that is sub-

table with all cells of different colors) we can find?

If we would like to ask the same question but give a condition on the size of

sumset rather than energy, the equivalent reformulation would be with condition

on the total number of colors in the table. Such problems do not seem to be

considered before, although a similar situation when only two colors are used in

the initial table |A| × |B| and one looks for a largest subtable colored with one

color have been investigated in [79].

The remaining of the chapter is organized as follows. In the next section we

prove Theorems 3.4 and 3.8. (These proofs are direct and do not involve any

auxiliary results.) In Section 3.3 we prove Theorem 3.5. Then (in Section 3.4) we

give several auxiliary lemmas which will be used in the proofs of Theorems 3.6

and 3.7. The proofs of these two theorems will be completed in Section 3.5.

3.2 Proof of Theorems 3.4 and 3.8

Proof of Theorem 3.4. Take positive integers k 6 |A|/2, ` 6 |B| satisfying k`2 6
|A|2|B|2

2E
and construct a graph on A × B as described earlier (i.e. connect (a, b)
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with (a′, b′) if a+ b = a′ + b′). Consider a spanned subgraph of the graph A× B

with vertices A1 × B1, where A1 ⊆ A, |A1| = 2k, B1 ⊆ B, |B1| = `. There are

exactly (
|A|
2k

)(
|B|
`

)
of such subgraphs. Suppose that each of them contains at least k + 1 edges and

count the total number of edges over all subgraphs. It is easy to see that each

edge of the graph with vertices A×B is counted exactly(
|A| − 2

2k − 2

)(
|B| − 2

`− 2

)
times. Since in view of (3.5) there are e(A,B) = E/2 edges in the graph A× B,

we must have

(k + 1)

(
|A|
2k

)(
|B|
`

)
6

(
|A| − 2

2k − 2

)(
|B| − 2

`− 2

)
E

2
.

This yields

k < k + 1 6
2k(2k − 1)

|A|(|A| − 1)

`(`− 1)

|B|(|B| − 1)

E

2
6

2k2`2E

|A|2|B|2
,

and hence

k`2 >
|A|2|B|2

2E
,

contrary to our assumption. This proves that there exists a subgraph with vertices

A1×B1 satisfying |A1| = 2k, |B1| = ` which contains e(A1, B1) = k1 edges, where

0 6 k1 6 k.

To complete the proof for each of the remaining k1 edges we do the following.

Take an edge connecting the vertices (a, b), (a′, b′) and remove the element a′ from

the set A1. This decreases |A1| by 1 and the number of edges in the subgraph

by at least 1. In this way step by step we remove at most k1 of the elements of

the set A1 so that the remaining subgraph with vertices at A2 × B1 will have no

edges, and thus the pair A2, B1 will be co-Sidon. As

|A2| > |A1| − k1 = 2k − k1 > k

and |B1| = `, any k element subset of A2 and the set B1 is a pair of co-Sidon

subsets with required cardinalities.
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Proof of Theorem 3.8. Set C := {x ∈ Z : A ∗B(x) > 2} and observe that

2|C| 6
∑
x∈C

A ∗B(x) =
∑

x∈A+B

A ∗B(x)−
∑

x∈(A+B)\C

A ∗B(x)

= |A||B| − (|A+B| − |C|)

= s+ |C|.

It follows that |C| 6 s and

∑
a∈A

|(C − a) ∩B| =
∑
x∈C

A ∗B(x) 6 2s.

Then for each k 6 |A| there exists a k element subset A′ ⊆ A such that

∑
a∈A′
|(C − a) ∩B| 6 k

2s

|A|
.

Taking k = b|A||B|/4sc we see that the right hand side of the above formula does

not exceed |B|/2. Therefore, selecting B′ = B \ ∪a∈A′(C − a) we find that

|B′| > |B| −
∑
a∈A′
|(C − a) ∩B| > |B| − |B|/2 = |B|/2

and (A′ + B′) ∩ C = ∅, so A′, B′ are co-Sidon subsets A,B with required cardi-

nalities.

3.3 Proof of Theorem 3.5

In this section we assume that n > 12800 (otherwise no k, ` satisfying the condition

of Theorem 3.5 exist), although most of the statements hold for smaller n as well.

The proof of Theorem 3.5 follows the ideas of [49]. Call a pair of maps

ϕ : A→ Z ∪ {∅} and ψ : B → Z ∪ {∅}

A,B-preserving if for all a, a′ ∈ A and b, b′ ∈ B we have

• ϕ(a) = ϕ(a′) ∈ Z =⇒ a = a′,

• ψ(b) = ψ(b′) ∈ Z =⇒ b = b′,

• a+b = a′+b′ =⇒ ϕ(a)+ψ(b) = ϕ(a′)+ψ(b′) or ∅ ∈ {ϕ(a), ϕ(a′), ψ(b), ψ(b′)}.
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Denote ϕZ(A) = ϕ(A) ∩ Z and ψZ(B) = ψ(B) ∩ Z. Observe that if for A,B-

preserving maps ϕ, ψ the subsets X ⊆ ϕZ(A), Y ⊆ ψZ(B) are co-Sidon, then

ϕ−1(X) ⊆ A,ψ−1(Y ) ⊆ B are also co-Sidon. Then, in order to find large co-Sidon

subsets of A,B, it is sufficient to map sets A,B efficiently to a set (an interval in

this case) that is known to contain large co-Sidon subsets. This mapping is done

in four steps (Lemmas 3.9, 3.10, 3.11 and 3.12) similar to those in [49].

Lemma 3.9. For any A,B ⊆ Z, |A| = |B| = n, there exists a pair of A,B-

preserving maps ϕ, ψ satisfying ϕ(A) ⊆ [1, 42n], ψ(B) ⊆ [1, 42n].

Proof. Consider a union A ∪ B which satisfies |A ∪ B| 6 2n and use the fact

that for any k element set there exist a Freiman isomorphic subset of [1, 4k] (see

Exercise 21, p. 128 in [33]). Recall that sets X and Y are Freiman isomorphic

if there exists a bijective map (Freiman’s isomorphism) f : X → Y such that

x1 + x2 = x3 + x4 ⇐⇒ f(x1) + f(x2) = f(x3) + f(x4). In particular, Freiman’s

isomorphism restricted to A and B forms a pair of A,B-preserving maps.

Lemma 3.10. For any A,B ⊆ [1, k], |A| = |B| = n, there exists a pair of

A,B-preserving maps ϕ, ψ satisfying

ϕZ(A) ⊆ [1, 2n2 log2 k], ψZ(B) ⊆ [1, 2n2 log2 k]

and

|ϕZ(A)| > n/2, |ψZ(B)| > n/2.

Proof. If k < n2 the statement is trivial, so assume the contrary. Observe that

the number of prime divisors of all differences a − a′, where a > a′, a, a′ ∈ A,

and b− b′, where b > b′, b, b′ ∈ B, is less than n2 log k, because there are at most

n(n − 1) of such differences, each does not exceed k − 1 and so it has at most

log k prime divisors for k > 8. There are more than n2 log k primes in the interval

[1, 2n2 log2 k], so take one, q > 2, which does not divide any of these differences.

Each element of A when reduced modulo q belongs to one of the two intervals:

[1, q/2) or (q/2, q], thus naturally dividing A into two parts. Define ϕ by mapping

the larger of these two parts to the corresponding least positive residues modulo
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q and the smaller one to ∅. Define ψ analogously. Clearly, this pair of maps ϕ, ψ

satisfies the conditions of the lemma.

Lemma 3.11. For any A,B ⊆ [1, n5], |A| = |B| = n, there exists a pair of

A,B-preserving maps ϕ, ψ satisfying

ϕZ(A) ⊆ [1, n3/2], ϕZ(B) ⊆ [1, n3/2]

and

|ϕZ(A)| > 9n/20, |ϕZ(B)| > 9n/20.

Proof. Let us index the elements of A and B arbitrarily. For a prime number p

define fp(i, j), 1 6 i < j 6 n, as follows:

fp(i, j) =

1 if p|(ai − aj) or p|(bi − bj),

0 otherwise.

Since ∑
p

fp(i, j) 6 2 log(n5) = 10 log n,

we have ∑
p

∑
(i,j)

fp(i, j) 6
n(n− 1)

2
10 log n < 5n2 log n.

It follows that there exists prime q 6 n3/2 such that

∑
(i,j)

fq(i, j) 6
5n2 log n

π(n3/2)
< n/10, (3.6)

where the above inequality follows from the estimate π(x) > x/ log x which holds

for all x > 17 (see [67]) and the assumption n > 106.

Remove all the elements a, a′ from A for which q|(a−a′) (by (3.6), there are less

than n/10 of them). As in the proof of the previous lemma, split the remaining

elements into two groups according to which interval, [1, q/2) or (q/2, q], their

residues modulo q belong to. Again define ϕ by mapping the larger part (which

contains at least (n − n/10)/2 = 9n/20 elements) to corresponding residues and

the remaining elements (including removed ones) to ∅. Define ψ analogously.
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Lemma 3.12. For any A,B ⊆ [1, n2/8], |A| = |B| = n, there exists a pair of

A,B-preserving maps ϕ, ψ satisfying

ϕZ(A) ⊆ [1, 8n], ϕZ(B) ⊆ [1, 8n]

and

|ϕZ(A)| > n/8, |ϕZ(B)| > n/8.

Proof. Index elements of A and B arbitrarily and choose an odd prime p ∈

[n/4, n/2]. As above, split all the elements of A into two groups according to

which interval, [1, p/2) or (p/2, p], their residues modulo p belong to. Choose the

larger group and do the same for B (remaining elements will be mapped to ∅).

Let q ∈ [4n+ 1, 8n] be another prime. We will chose ϕ and ψ of the form

ϕ(ak) = (ωphk + rk) mod q,

ψ(bk) = (ωpgk + sk) mod q,

where by mod q we mean a map to the least positive residue modulo q. Here rk,

sk are the least positive residues modulo p so that ak = phk + rk, bk = pgk + sk

(ω ∈ [1, q−1] will be chosen below). Define fω(i, j) for w ∈ [1, q−1], 1 6 j < i 6 n,

as

fω(i, j) =

1 if q|(ωphi + ri − ωphj − rj) or q|(ωpgi + si − ωpgj − sj),

0 otherwise.

Since for every pair (i, j) we have∑
ω∈[1,q−1]

fω(i, j) 6 2,

and so ∑
ω∈[1,q−1]

∑
(i,j)

fω(i, j) 6 n2,

there exists ω0 ∈ [1, q − 1] for which∑
(i,j)

fω0(i, j) 6
n2

q − 1
6
n

4
.

Choose ω = ω0 and consider ϕ, ψ as define above. For them to be A,B-

preserving, first remove no more than n/4 elements from the remaining parts of
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A and B, so that all the remaining differences ϕ(a)−ϕ(a′) and ψ(b)−ψ(b′) were

not divisible by q. Then divide the remaining parts of A and B again, according

to which interval, [1, q/2) or (q/2, q], residues of ϕ(ak), ψ(bk) modulo q belong to,

and choose the larger parts. Map them as defined above and map the remaining

elements to ∅.

Proof of Theorem 3.5. Starting from any sets A,B ⊂ Z, |A| = |B| = n, we will

apply Lemmas 3.9, 3.10, 3.11 and 3.12 one after another and obtain the sum

preserving maps ϕ(i), ψ(i), i = 1, 2, 3, 4. The first two steps give the sets

A1 := ϕ(1)(A) ⊂ [1, 42n], B1 := ψ(1)(B) ⊂ [1, 42n],

|A1| = |B1| = n

and

A2 := ϕ
(2)
Z (A1) ⊂ [1, 8n4 log2 4], B2 := ψ

(2)
Z (B1) ⊂ [1, 8n4 log2 4],

|A2|, |B2| > n/2.

Next, take arbitrary bn/2c elements of A2, arbitrary bn/2c elements of B2 and

apply Lemma 3.11 to those sets (without changing notation). Since the role of n

is played by bn/2c, we obtain

A3 := ϕ
(3)
Z (A2) ⊂ [1, n3/2], B3 := ψ

(3)
Z (B2) ⊂ [1, n3/2],

|A3|, |B3| > 9bn/2c/20 > n/5.

Finally, let us take arbitrary dn/5e elements of A3, arbitrary dn/5e elements of

B3 and apply Lemma 3.12 to those sets (again without changing the notation

A3, B3). Now the role of n is played by dn/5e, so we obtain

A4 := ϕ
(4)
Z (A3) ⊂ [1, 2n], B4 := ψ

(4)
Z (B3) ⊂ [1, 2n],

|A4|, |B4| > dn/5e/8 > n/40.

Let k, ` be two integers satisfying k` 6 n/12800. Take X to be the set [1, 160k]

and Y to be the arithmetic progression 160ks, s = 1, 2, . . . , 160`. Then the largest

element of Y is 160k · 160` 6 1602n/12800 = 2n. It is easy to see that X, Y are

co-Sidon subsets of [1, 2n] of sizes 160k, 160`, respectively.
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Note that ∑
t∈[−2n,2n]

|A4 ∩ (X + t)| = |A4||X|,

so there exists a shift t0 ∈ [−2n, 2n] of X such that

|A4 ∩ (X + t)| > |A4||X|
4n

>
n|X|

40 · 4n
=

160k

160
= k.

Analogously, there exists a shift r ∈ [−2n, 2n] of B4 such that

|B4 ∩ (Y + r)| > |B4||Y |
4n

>
|B4||Y |

4n
>

n|Y |
40 · 4n

=
160`

160
= `.

From this we get that A4, B4 contain two co-Sidon subsets of sizes k, `, thus so do

A and B.

3.4 Auxiliary lemmas

The following concentration inequalities of Kim-Vu [47] and Chernoff [44, p. 26]

will be used in a probabilistic construction of the example below. We note that

weaker inequalities would suffice, but we use these as they are easier to apply.

Lemma 3.13. Let ti, i ∈ [1, n], be independent indicator random variables, and

let Y be a polynomial in ti of degree k with positive coefficients. For a set I ⊆ [1, n]

let YI be a partial derivative of Y with respect to the variables ti, where i ∈ I.

Define Mi to be the maximal value of E (YI) over all I ⊆ [1, n] of cardinality i.

Set

M ′ = max
16i6k

Mi and M = max{E (Y ),M ′}.

Then for any λ > 1 we have

P
[
|Y − E (Y )| > (MM ′)

1/2
(8λ)k

√
k!
]
< 2e2−λnk−1.

Lemma 3.14. Let Xi, i ∈ [1, n], be independent, equally distributed indicator

random variables and X =
∑n

i=1Xi. Then for any t > 0 we have

P [X > E (X) + t] 6 e−
t2

2(E (X)+t/3) . (3.7)
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We shall also need the following lemma.

Lemma 3.15. Take two random sets A and B from [1,m], by selecting elements

for each set from [1,m] independently with probability p = n/m, where m1/3 6

n 6 m and m is large enough. Then

n 6 |A|, |B| 6 n+O(n1/2)

with probability greater than 1/9,

E(A,B) = |A||B|+ (2/3 + o(1))n4/m

with probability 1− o(1), and

max
x 6=0

δB(x) 6 2n2/m+ 3 logm

with probability greater than 9/10.

Proof. Let IAj , IBi be the indicator functions of j ∈ A and i ∈ B. Then

|A| =
∑
i∈[1,m]

IAi and E |A| = n.

Selecting t = 2n1/2 in Chernoff’s inequality (3.7), we obtain

P
[
|A| > n+ 2n1/2

]
6 e−2+o(1) < 1/6.

On the other hand, the median of |A| is equal to n, so

P
[
n 6 |A| 6 n+ 2n1/2

]
> 1/2− 1/6 = 1/3.

Analogously, we get the same inequality for B and, since A and B were chosen

independently, this proves the first part.

For the second part, using (3.5) we write

2e(A,B) = E(A,B)− |A||B|

=
∑

x∈[2,2m]

(
A ∗B(x2)− A ∗B(x)

)
=

∑
x∈[2,2m]

∑
i 6=j

IAi IBx−iIAj IBx−j.

When i 6= j all the indicators IAi , IBx−i, IAj , IBx−j are independent (note that only

pairs corresponding to the same set A or B could be dependent, but such de-

pendences are ruled out by condition i 6= j) with expectations equal to p, so for

29



2 6 x 6 m+ 1 we have

E
(∑
i 6=j

IAi IBx−iIAj IBx−j
)

=
∑
i 6=j

E (IAi )E (IBx−i)E (IAj )E (IBx−j)

= (x− 1)(x− 2)p4.

From symmetry E (A ∗B(x)) = E (A ∗B(2m+ 2− x)) we then get

E (2e(A,B)) = 2

( ∑
x∈[2,m]

(x− 1)(x− 2)p4

)
+m(m− 1)p4

= p4(2m3/3−m2 +m/3)

= (2/3 + o(1))n4/m.

In order to use Lemma 3.13 we will bound the averages of the partial derivatives

of 2e(A,B). Extend IAx and IBx to be equal to 0 when x 6∈ [1,m] and without loss

of generality write

M1 = max
j

E (2e(A,B)′IAj
) = max

j
E
(∑
x,i 6=j

IAi IAx−iIBx−j
)
,

which is no more than m2p3, as there are no more than m2 values of (x, i) for

which E (IAi IAx−iIBx−j) is equal to p3 rather than zero. Analogously, we get

M2 = max
{

max
i 6=j

E
(∑

x

IAx−iIBx−j
)
, max

j,x
E
(∑

i 6=j

IAi IAx−i
)}

6 mp2,

M3 = max
i 6=j,x

E IAx−i 6 p,

M4 = 1.

This yields M ′ 6 m2p3 = n3/m and (MM ′)1/2 6 n7/2/m, so selecting λ = n1/16

in Lemma 3.13 we arrive to the required concentration.

For the third part, we use the inequality

P[δB(1) > a] > P[δB(x) > a],

which is valid for all a > 0 and x 6= 0 as 1 has the largest number of represen-

tations as a difference of two elements of the interval [1,m]. We then bound the

probability in question as follows:

P[max
x 6=0

δB(x) > 2n2/m+ 3 logm] 6
∑

x∈[−m+1,m−1]
x 6=0

P[δB(x) > 2n2/m+ 3 logm]

6 2mP[δB(1) > 2n2/m+ 3 logm]

6 2mP[δB(1) > 2(m− 1)p2 + 3 logm].
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In order to estimate the latter probability we write

δB(1) =
∑
x6m/2

I2xI2x−1 +
∑
x6m/2

I2x+1I2x := Σ1 + Σ2.

Note that both Σ1,Σ2 are sums of independent indicator random variables and

E (Σ1) = bm/2cp2, E (Σ2) = (dm/2e − 1)p2.

Hence

E (Σ1) + E (Σ2) = (m− 1)p2

and 2mP[δB(1) > 2(m− 1)p2 + 3 logm] does not exceed the sum

2mP[Σ1 > 2E (Σ1) + 1.5 logm] + 2mP[Σ2 > 2E (Σ2) + 1.5 logm]. (3.8)

Applying Lemma 3.14 with t = E (Σ1) + 1.5 logm we find that

t2

2E (Σ1) + 2t/3
=

E (Σ1)2 + 3E (Σ1) logm+ 2.25 log2m

8E (Σ1)/3 + logm
>

9 logm

8
.

Hence

P[Σ1 > 2E (Σ1) + 1.5 logm] < m−9/8 < 1/40m

for m large enough. Similarly, applying Lemma 3.14 with t = E (Σ2) + 1.5 logm,

we find that

P[Σ2 > 2E (Σ2) + 1.5 logm] < 1/40m

for m large enough. Hence the sum (3.8) does not exceed 2m/40m+ 2m/40m =

0.1, and the result follows.

The following two lemmas are not necessary for the proofs of the results of

this chapter. Rather they establish the stated bounds on the additive energy.

Lemma 3.16. For a set of integers A, the maximal possible sum of ` largest

values of A ◦ A is equal to|A|
2, if |A| < `+1

2
,

|A|`− b `2
4
c, if |A| > `+1

2
.

If ` > 2, then the second bound is only obtained when A is an arithmetic progres-

sion.
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Proof. Note that the sum of ` largest values of A ◦ A is always smaller than the

sum of all values, which is equal to |A|2. This bound can be obtained if ` is larger

than |A+ A|, which is possible when |A| < `+1
2

.

For the case |A| > `+1
2

note that adding additional element to A increases each

value of A ◦A by at most one, so the sum of ` largest values increases by at most

`. This implies that for |A| > `+1
2

the sum of ` largest values will not be larger

than b `+1
2
c2 + (|A| − b `+1

2
c)`, which simplifies to the expression in the statement

of the lemma.

In order to see for which sets this bound can be obtain, one considers a pro-

cedure in which A is constructed by adding elements one by one. First b `+1
2
c

elements (denote their set by A0) have to have their difference set supported on

the set of cardinality `, which is only possible when A0 is an arithmetic progres-

sion. Indeed, for even ` this condition is equivalent to |A0 + A0| 6 2|A0|, and,

since size of difference set is always odd, to |A0 +A0| 6 2|A0|− 1 (which is known

to imply that A0 is an arithmetic progression). The case ` odd is handled in the

same manner. Next, addition of every subsequent element has to increase each

of ` largest values of A ◦ A. Since we start from an arithmetic progression, the

second largest value of A ◦ A is attained at the difference of progression, so we

have to place new element at that distance from the old ones. The only two ways

to achieve this result in a longer progression.

Lemma 3.17. Let A,B be finite sets of integers with |A| > |B|. Then

E(A,B) 6 |A||B|2 − |B|
3

3
+
|B|
3
.

If |B| > 2, the equality is obtained iff A and B are arithmetic progressions with

equal differences.

Proof. We fix the size |A| and argue by induction on the size of B. For |A| = 1

and |B| = 1 the statement is true (an equality holds), so assume that |A| > 2,

and that the statement is known for |B| = ` > 1, ` < |A|. We will prove it for

|B| = `+ 1.

Take one element, say b0, from B and denote the remaining set by B0. By

induction hypothesis E(A,B0) 6 |A|`2− `3

3
+ `

3
. The difference E(A,B)−E(A,B0)

is equal to the number of solutions to equation a − a′ = b − b′, where a, a′ ∈ A,
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b, b′ ∈ B and at least one of b, b′ is equal to b0. There are |B0|+ |B0|+ 1 = 2`+ 1

possibilities for the right hand side and all the differences are distinct, hence the

number of solutions is as large as the sum of 2` + 1 largest values of A ◦ A. As

|A| > 2`+1+1
2

, the second case of lemma 3.16 bounds this by |A|(2` + 1)− `2 − `,

which is precisely the difference (|A|(`+ 1)2 − (`+1)3

3
+ `+1

3
)− (|A|`2 − `3

3
+ `

3
).

Let us check now when does the equality hold. First of all, since 2` + 1 > 2,

lemma 3.16 gives us that A has to be an arithmetic progression. Having this we

know that the largest 2` + 1 values of A ◦ A are attained at the multiples of the

difference d, that is on the set {id, i ∈ [−`, `]}. Clearly, for set of differences b−b′,

where b, b′ ∈ B and one of b, b′ is equal to b0, to coincide with {id, i ∈ [−`, `]}, the

set B has to be an arithmetic progression of the difference d itself.

Lemma 3.18. Let A,B be finite sets of integers. Then

E(A,B) > |A||B|.

Proof.

E(A,B) = |{a+ b = a′ + b′ | a, a′ ∈ A, b, b′ ∈ B}|

> |{a+ b = a+ b | a ∈ A, b ∈ B}| = |A||B|.

3.5 Proofs of Theorems 3.6 and 3.7

For simplicity throughout this section we will omit the floor and ceiling signs in

binomial coefficients. In order to prove Theorem 3.6 we will use the following

lemma from [48]:

Lemma 3.19. Let G be a graph with N vertices, q ∈ N and let 0 6 β 6 1 and R

be real numbers satisfying

R > e−βqN. (3.9)

Suppose the number of edges e(U) induced in G by any set U ⊆ V (G) with |U | > R

satisfies

e(U) > β

(
|U |
2

)
. (3.10)
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Then, for all integers r > 0, the number of independent sets of cardinality q + r

in G is at most (
N

q

)(
R

r

)
.

We will use this lemma to count some specific pairs of co-Sidon sets. A set X

is called ∆-random if maxx∈Z δX(x) 6 ∆.

Lemma 3.20. Let k, `,m be integers satisfying k, ` < m and

k > 4∆m`−2 log `.

Then the number of co-Sidon sets A′ and B′ in the interval [1,m] with |A′| = k,

|B′| = ` and B′ being ∆-random is less than(
m

`

)(
m

4∆m`−2 log `

)(
4m/`

k − 4∆m`−2 log `

)
.

Proof. Let B′ be any ∆-random ` element subset of [1,m] (note that there are at

most
(
m
`

)
of such sets). We will bound the number of subsets A′ ⊆ [1,m] of size

k that are co-Sidon with B′.

Let G be a graph with vertex set [1,m] and a, a′ ∈ [1,m] are connected by

an edge whenever a − a′ ∈ B′ − B′. Note that each independent vertex set in G

corresponds to a co-Sidon pair A′, B′ with A′ ⊆ [1,m], and vice versa.

We will use Lemma 3.19 to bound the number of independent vertex sets in

G of size k. For this we put

R := 4m/`,

β := `2/4∆m,

q := 4∆m`−2 log `,

r := k − q.

Since βq = log ` and N = m, one can easily check that (3.9) holds. We will

show that (3.10) holds as well. This will imply the statement of the lemma, as

one can see easily by substituting the parameter values chosen above.
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Let U be any subgraph of G with |V (U)| > R, then

2e(U) = |{u1 − u2 ∈ B′ −B′, u1, u2 ∈ U, u1 6= u2}|

>
1

∆
|{u1 − u2 = b1 − b2, u1, u2 ∈ U, b1, b2 ∈ B′, u1 6= u2}|

=
1

∆
(E(U,B′)− |U ||B′|).

Cauchy-Schwarz inequality implies E(U,B′) > |U |2|B′|2
|U+B′| > |U |2|B′|2

2m
(see, e.g., p. 63

in [81]), so e(U) > |U |`
2∆

(
|U |`
2m
− 1
)
. Noting that |U | > R = 4m/` implies |U |` >

2m+ |U |`/2 we get the required bound:

|U |`
2∆

(
|U |`
2m
− 1

)
>

`2

4∆m

|U |2

2
> β

(
|U |
2

)
.

This proves (3.10) and completes the proof of the lemma.

Proof of Theorem 3.6. Take m = 2n4/3E and two random sets A and B from

[1,m], by selecting the elements for each from [1,m] independently with proba-

bility p = n/m. As for such m we have m1/3 6 n 6 m, Lemma 3.15 implies that

with probability greater than, say, 1/100 we have n 6 |A|, |B| 6 n + O(n1/2),

E(A,B) = |A||B| + E(1 + o(1)) and B ∆-random for ∆ = 3E/n2 + 9 log n (call

this event I).

Now for each ` define

k` := d20m∆`−2 log `e. (3.11)

We shall prove that with probability 1 − o(1) randomly taken sets A and B will

not contain co-Sidon subsets A′, B′ of sizes k`, ` for the values ` ∈ L that satisfy

n > k` > 2` with additionally property that B′ is ∆-random (call this event II).

Since 1/100+1−o(1) > 1 for n large enough, we will have that both events happen

with positive probability, thus there will exist sets A,B satisfying conditions of

event I and not having co-Sidon subsets of required size (as due to event I set B

will only have ∆-random subsets).

From Lemma 3.20 it follows that number of co-Sidon sets A′, B′ ⊆ [1,m] with

|A′| = k`, |B′| = ` and B′ being ∆-random is less than(
m

`

)(
m

k`/5

)(
4m/`

4k`/5

)
.
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From the union bound, the probability that A,B contain co-Sidon pair of sizes

k`, ` (` ∈ L) can be bounded by

∑
`∈L

(
m

`

)(
m

k`/5

)(
4m/`

4k`/5

)
(n/m)k`+`.

Using the inequality
(
s
t

)
< (se/t)t we can estimate each summand from above by

n`+k``−`−4k`/5k−k`` e`+k`5k` . (3.12)

As n 6 (m∆)1/2 6 `k
1/2
` (see (3.11)) and ` 6 k`/2, we obtain

n`+k``−`−4k`/5k−k`` 6 ``+k`k
`/2+k`/2
` `−`−4k`/5k−k``

= `k`/5k
`/2−k`/2
`

< k
k`/5+k`/4−k`/2
` = k

−k`/20
` .

Combining this with (3.12) and k` > n2/3, |L| 6 n (which are implied by (3.11)

and n > k` > 2`) we bound the sum by

nk
−k`/20
` e`+k`5k` < nk

−k`/20
` 23k` < n1−n2/3/31,

which tends to zero with n→∞.

Finally, note that we can make A and B to be exactly of sizes n (instead

of n 6 |A|, |B| 6 n + O(n1/2)) by removing extraneous elements. This will not

increase the sizes of the largest co-Sidon pair and by selecting which elements to

remove we can assure that this will not effect the additive energy. As (3.11) is

implied by the condition of the theorem, we will have shown that required sets

exist with positive probability which proves the theorem.

Indeed, denote by e(x) (x ∈ A or x ∈ B) the number of equations a+b = a′+b′

(where a, a′ ∈ A, b, b′ ∈ B and a 6= a′, b 6= b′) that x participates in and write

E = E(A,B)− |A||B| = 1

2

∑
x∈A

e(x).

From here it follows that there exists a subset A′ of size |A| − n = O(n1/2) such

that
1

2

∑
x∈A′

e(x) 6
|A| − n
|A|

E = o(E).

Then remove A′ from A and do the same for B.
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Proof of Theorem 3.7. As above take m = 2n4/3E and two random sets A and

B from [1,m], by selecting the elements for each from [1,m] independently with

probability p = n/m. Again, with probability greater than, say, 1/100 we have

n 6 |A|, |B| 6 n+O(n1/2) and E(A,B) = |A||B|+ E(1 + o(1)).

Now simply note that no subsets of [1,m] (and hence no subsets of A and B) of

sizes k, ` with k` > 2m are co-Sidon (see [5] for the proof of this simple statement),

so to prove the existence of required sets, it remains to remove extraneous elements

from A and B as is done above.
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4 Sparse infinite sets with small

sumset

Celebrated Freiman’s theorem describes all finite sets with small sumset. Sós

asked [19] (Problem 4.2) whether it is possible to describe infinite sets with small

sumset:

Question. Let A ⊆ N be an infinite subset of positive integers, and suppose that

|A[n] + A[n]| � |A[n]|.

What can be said about the set A?

One can easily see that sets with positive lower density, that is sets satisfying
|A[n]|
n
� 1, do have small sumset in the above sense. In this chapter we consider

the remaining case of sparse sets, those with lower density equal to zero.

In the first theorem of the chapter we consider sparse sets with bounded jumps,

that is with bounded quotients of subsequent elements of A: ai+i
ai
� 1. We

show that such sets cannot have small sumset. In the second theorem we impose

stronger conditions on the growth of the set A and get a more precise estimate

on the growth of |A[n]+A[n]|
|A[n]| .

To show the strength of above theorems we also give two contrasting examples.

First one is of the sparse set with small sumset (but unbounded jumps, of course)

and the second with the growth of the sumset nearly matching the growth of the

second theorem.

Before we formulate and prove the exact results, we would like to mention

one result of this taste which was obtained by Nash [59], answering a question of

Erdős. He showed that set satisfying limn→∞
|A[n]|
n

= 0 and A + A = N cannot

have a small sumset. Note that the condition of the growth implies that the set

A has to be sparse, and the condition on the sumset implies that it has bounded

jumps. Sets satisfying condition A+A = N1 are called a basis or an additive basis
1actually N \ {1} as in this thesis we take N = {1, 2, 3, . . . }
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of positive integers and are well investigated. We do not discuss them in this work

and direct an interested reader to a classical book Sequences by Halberstam and

Roth [39].

4.1 The problem and results

We start from the first theorem we already mentioned:

Theorem 4.1. Let A ⊆ N be an infinite subset of positive integers satisfying

lim inf
n→∞

|A[n]|
n

= 0 and an+1

an
� 1.

Then |A[n]+A[n]|
|A[n]| is unbounded.

In contrast to this theorem we give an example of a sparse set with small

sumset. Such an example is not hard to come by, so we give an example with

specific conditions on its growth which will serve as a contrast to the Theorem 4.3

as well:

Theorem 4.2. For any numbers σ and ε satisfying 0 < σ < σ + ε < 1, there

exist two constants N = N(σ, ε), µ = µ(σ, ε) and a set A ⊂ N such that

nσ 6 |A[n]| 6 nσ+ε

for each n > N and
|A[n] + A[n]|
|A[n]|

< µ

for each n > 1.

We now consider sets with a stronger condition than bounded jumps, that is

sets of polynomial growth. For these sets we give an estimate on their sumset

depending on their growth. Note that in this case we are interested in the size of

(A+ A)[n] rather than A[n] + A[n]:

Theorem 4.3. Let A be an infinite subset of N such that

0 < lim inf
n→∞

|A[n]|n−σ 6 lim sup
n→∞

|A[n]|n−σ <∞. (4.1)

for some 0 < σ < 1. Then there is a positive constant c(σ) such that
|(A+ A)[n]|
|A[n]|

> c(σ)
log n

(log log n)3 log log log n(log log log log n)3
. (4.2)

for each sufficiently large n.

40



The constant c(σ) is given explicitly in (4.11). The obtained estimate is almost

best possible:

Theorem 4.4. For any ε > 0, there exists a set A ⊂ N satisfying (4.1) such that

|(A+ A)[n]|
|A[n]|

< ε log n (4.3)

for each sufficiently large n.

We conjecture that the lower bound in (4.2) should be of the order log n, in

which case it would be sharp up to a constant in view of Theorem 4.4. This bound

would follow from the conjectural optimal bounds in Freiman’s theorem, i.e., if

the bound (4.5) below (due to Konyagin [50]) could be replaced by d(α), C(α) <

cα. The latter bound in Freiman’s theorem was conjectured by Ruzsa [70] (see

also [60]), although the description of set would likely be a convex set of given

volume and dimension, rather than generalized arithmetical progression, so some

modifications to the proof would be necessary.

In the next section we shall remind the reader Freiman’s theorem and give a

simple auxiliary lemma. In Sections 3, 4 and 5 we prove the stated theorems.

4.2 Effective Freiman’s theorem

Let A ⊂ N be a finite set. Assume that α > 1 is a real number such that

|A+ A| 6 α|A|. (4.4)

Freiman’s theorem then asserts that there are constants d(α) and C(α) such that

A is contained in a generalized arithmetical progression

{b0 + b1z1 + · · ·+ bdzd | zi = 0, . . . , `i − 1 for i = 1, . . . , d},

where d 6 d(α) and

`1`2 . . . `d 6 |A|eC(α).

Originally proved by Freiman [32], the theorem has been reproved (simplifying

the arguments) by Ruzsa [70] (also see [6]) and improved a number of times by
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Chang, Schoen, Sanders and Konyagin, as listed below:

d(α), C(α) < cα2(logα)2, [7]

d(α), C(α) < α1+c log−1/2 α, [75]

d(α), C(α) < cα logc
′
α, [72]

d(α), C(α) < cα(logα)3 log logα(log log logα)3. [50] (4.5)

We will use the Konyagin’s to get an estimate in Theorem 4.3. We will also need

the following lemma:

Lemma 4.5. Let A be an infinite subset of N satisfying (4.1). Then there is a

positive constant κ such that

(a) |A[2n]| 6 κ2σ|A[n]| for each sufficiently large n, say n > n0,

(b) each interval (n, κ1/σn], where n > n0, contains an element of A.

Proof. By (4.1), there are two positive constants c1 < c2 and some real number

n0 > 1 such that

c1n
σ 6 |A[n]| 6 c2n

σ (4.6)

for each n > n0. Set

κ := c2/c1. (4.7)

Then, for n > n0, using (4.6), we obtain

|A[2n]| 6 c2(2n)σ = κ2σc1n
σ 6 κ2σ|A[n]|.

To prove (b) assume that A ∩ (n, κ1/σn] = ∅. Then κ1/σn /∈ A, so there is a

positive number ε such that the set A∩ (n, κ1/σ(n+ ε)] is empty. This, combined

with (4.6) and (4.7), implies

c2n
σ > |A[n]| = |A[κ1/σ(n+ ε)]| > c1(κ1/σ(n+ ε))σ = c2(n+ ε)σ

for n > n0, a contradiction.

4.3 Proofs of Theorem 4.1 and Theorem 4.3

We will use a non-effective version of Freiman’s theorem for the proof of Theo-

rem 4.1, as the result we are aiming for is qualitative.
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Proof of Theorem 4.1. We argue by contradiction and assume that there exists a

set A = {a1, a2, . . . } satisfying conditions

lim inf
n→∞

|A[n]|
n

= 0, (4.8)

∀i ∈ N
ai+1

ai
6 c1, (4.9)

|A[n] + A[n]|
|A[n]|

6 c2. (4.10)

From Freiman’s theorem it follows that for each n there exists a generalized arith-

metic progression

G = {b0 + b1z1 + · · ·+ bdzd | zi ∈ [`i]},

with A[n] ⊆ G, d 6 d(c1, c2) and `1 . . . `d = s|A[n]| 6 s(c1, c2)|A[n]|. Without loss

of generality assume that b1 6 b2 6 . . . 6 bd and note that b0 and b1 cannot be

very large as G has to contain first two elements of A. More precisely, b0 6 a1

and b1 6 a2 − a1. We are not interested in precise constants, so write b0 � 1 and

b1 � 1 (as n→∞).

Let a−1 be the largest element of A[n]. We now show that either b2 � `1

or a−1 � `1. Take an element ak ∈ A[n] such that ak−1 6 b0 + b1`1 < ak

(if such element does not exist we are done). It has to satisfy ak ∈ G, which

implies ak > b2 + b0. On the other hand, from condition 4.9 we know that

ak � ak−1 6 b0 + b1`1. Putting the inequalities together we get b2 � b1`1 � `1

as required.

Similarly we can prove that min{a−1, bi} � `1 · · · `i−1 for all i 6 d: argue by

induction and take ak ∈ A[n] satisfying ak−1 6 b0 + `1b1 + · · · + `i−1bi−1 < ak.

From here we get ak > b0 + bi and ak � ak−1 � li−1bi−1 � `i−1 · · · `1.

Using above inequalities and size estimate in the Freiman’s theorem we can

bound the size of a−1. If at some induction step we obtained that a−1 � `1 · · · `k,

then we know that a−1 � `1 · · · `d. Else the largest element of G (and so a−1) is

smaller than b0 + b1`1 + · · ·+ bd`d � `1 · · · `d and hence in both cases we get that

a−1 � `1 · · · `d � |A[n]|.

Condition 4.9, on the other hand, implies that a−1 has to be greater or equal

to n/c1 (as the next element of A is greater than n), which gives |A[n]| � n – a

contradiction to 4.8.
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The proof of Theorem 4.3 follows essentially the same line but is more precise

to get a quantitative bound.

Proof of Theorem 4.3. Fix a small constant δ > 0 and take a positive constant

c(σ) :=

√
σ(1− σ)

c(σ + log κ)κ24σ−1
− δ, (4.11)

where c is given in (4.5) and κ is given in (4.7).

Assume that A ⊂ N is a set satisfying (4.1) for which (4.2) does not hold.

Then, for each ε > 0, there are infinitely many positive integers n for which

|(A+ A)[n]|
|A[2n]|

6 (c(σ) + ε)
log n

(log log n)3 log log log n(log log log log n)3
.

Since the sumset A[n] + A[n] is contained in (A+ A)[2n] we have

|A[n] + A[n]| 6 |(A+ A)[2n]|.

So, by Lemma 4.5 (a),

|(A+ A)[2n]|
|A[2n]|

>
|A[n] + A[n]|
κ2σ|A[n]|

for each n > n0. It follows that

|A[n] + A[n]| 6 κ2σ(c(σ) + ε)
log n

(log log n)3 log log log n(log log log log n)3
|A[n]|

(4.12)

for infinitely many positive integers n.

Fix one of those n, where n > n1 and n1 will be chosen later. By Freiman’s

theorem bound (4.5), where A := A ∩ [1, n] and

α := κ2σ(c(σ) + ε)
log n

(log log n)3 log log log n(log log log log n)3
> 1 (4.13)

in (4.4), inequality (4.12) implies that the set A[n] is contained in a d-dimensional

arithmetical progression

P := {b0 + b1z1 + · · ·+ bdzd | zi = 0, . . . , `i − 1 for i = 1, . . . , d},

where b0 = b0(n) > 0, b1 = b1(n), . . . , bd = bd(n) are positive integers, and

d 6 cα(logα)3 log logα(log log logα)3,

`1`2 . . . `d 6 |A[n]|ecα(logα)3 log logα(log log logα)3 . (4.14)
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Among all progressions with this property we choose one with the smallest possible

d. Assume without loss of generality that 1 6 b1 6 b2 6 . . . 6 bd. By the

minimality of d, we have `1, . . . , `d > 2.

Let s = s(n) ∈ {1, . . . , d} be the smallest positive integer for which

b0 + (`1 − 1)b1 + · · ·+ (`s − 1)bs > n0,

n0 being the constant of Lemma 4.5. Clearly, b1, . . . , bs−1, `1, . . . , `s−1 < n0 + 1,

because

b0 + (`1 − 1)b1 + · · ·+ (`s−1 − 1)bs−1 < n0.

Since A[n] ⊆ P , for the set A = {a1 < a2 < a3 < . . . }, we have b0 6 a1 and

b0 + b1 6 a2. So both b0 = b0(n) and b1 = b1(n) cannot tend to infinity with n.

Thus b0, b1, . . . , bs−1, `1, . . . , `s−1 (and, in addition, b1 if s = 1) are bounded from

above by an absolute constant c4 = c4(A).

We claim that bs = bs(n) is also bounded by an absolute constant. Indeed, for

s = 1, this is already proved. Suppose that s > 2 and bs(n) > n0 (otherwise there

is nothing to prove). Then the number b0 + (j1 − 1)b1 + · · · + (js−1 − 1)bs−1 for

each collection j1, . . . , js−1 satisfying 1 6 ji 6 li (i = 1, . . . , s− 1) is smaller than

n0 and so smaller than b0 + bs. Hence

b0 + (`1 − 1)b1 + · · ·+ (`s−1 − 1)bs−1 6 a`1`2...`s−1

and

b0 + bs 6 a`1`2...`s−1+1.

It follows that bs = bs(n) 6 ar with r := (bn0c+ 2)bn0c+1 + 1, because

`1, . . . , `s−1 < n0 + 1 < bn0c+ 2

and

s− 1 6 `1 − 1 + · · ·+ `s−1 − 1 < n0 < bn0c+ 1.

Put c3 := max(c4, ar).

Suppose first that s = 1. Then, by Lemma 4.5 (b), the interval (b0 + (`1 −

1)b1, κ
1/σ(b0 + (`1 − 1)b1)] contains an element of A. Thus

b0 + b2 6 κ1/σ(b0 + (`1 − 1)b1) 6 κ1/σc3`1.
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This yields b2 6 κ1/σc3`1. By the same argument, using the inequalities b0 + (`1−

1)b1 6 c3`1, κ1/σ > 1 and Lemma 4.5 (b), we obtain

b0+b3 6 κ1/σ(b0+(`1−1)b1+(`2−1)b2) 6 κ1/σ(c3`1+(`2−1)κ1/σc3`1) 6 κ2/σc3`2`1.

Hence b3 6 κ2/σc3`2`1 and so on, i.e.,

b0 + (`1 − 1)b1 + · · ·+ (`k − 1)bk 6 κk/σc3`k . . . `1 (4.15)

for k = 1, . . . , d− 1, giving

bk 6 κ(k−1)/σc3`k−1 . . . `1 (4.16)

for every k = 2, 3, . . . , d.

In case s > 2, we start with the interval

(b0 + (`1 − 1)b1 + · · ·+ (`s − 1)bs, κ
1/σ(b0 + (`1 − 1)b1 + · · ·+ (`s − 1)bs)].

At the first step, we get

b0 + bs+1 6 κ1/σ(b0 + (`1 − 1)b1 + · · ·+ (`s−1 − 1)bs−1 + (`s − 1)bs)

6 κ1/σ(n0 + (`s − 1)bs) 6 κ1/σ(c3 + (`s − 1)c3) = κ1/σc3`s,

because n0, bs 6 c3. This yields bs+1 6 κ1/σc3`s. Continuing as above, we use less

steps in our inductive argument, so the inequalities (4.15) and (4.16) are also true

for k = s, . . . , d− 1 and for k = s+ 1, . . . , d, respectively.

Now, from (4.15) with k = d − 1 and (4.16) with k = d, we deduce that the

largest element of the progression P is

b0 + (`1−1)b1 + · · ·+ (`d−1)bd 6 κ(d−1)/σc3`d−1 . . . `1 +κ(d−1)/σc3`d−1 . . . `1(`d−1)

= κ(d−1)/σc3`d . . . `1.

Recall that A[n] ⊆ P and the interval (κ−1/σn, n] contains an element of A for

n > κ1/σn0, by Lemma 4.5 (b). Hence the upper bound on the largest element of

P gives

κ−1/σn 6 b0 + (`1 − 1)b1 + · · ·+ (`d − 1)bd

6 κ(d−1)/σc3`d . . . `1

6 κ(d−1)/σc3|A[n]|ecα(logα)3 log logα(log log logα)3 ,
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by (4.14). Thus

n 6 κd/σc3|A[n]|ecα(logα)3 log logα(log log logα)3 .

Using the upper bounds on d, d 6 cα(logα)3 log logα(log log logα)3, and on A[n],

|A[n]| 6 c2n
σ for n > n0, we further get

log n 6 log |A[n]|+ log c3 + c
(

1 +
log κ

σ

)
α(logα)3 log logα(log log logα)3

6 σ log n+ log(c2c3) + c
(

1 +
log κ

σ

)
α(logα)3 log logα(log log logα)3.

Employing (4.13), for each sufficiently large n, say n > n2, we have α > 1 and

α(logα)3 log logα(log log logα)3 < κ2σ−1(c(σ) + 2ε) log n.

Hence

1− σ < log(c2c3)

log n
+ c
(

1 +
log κ

σ

)
(κ2σ−1(c(σ) + 2ε))2. (4.17)

Evidently, log(c2c3)/ log n → 0 as n → ∞. Thus, by the choice of c(σ) in

(4.11), we see that inequality (4.17) does not hold provided that ε is small enough

and n is large enough, say n > n3. Selecting n1 := max(κ1/σn0, n2, n3), we have a

contradiction. This completes the proof of the theorem.

4.4 Proof of Theorem 4.4

Fix a large integer N and select

A := ∪∞j=0Bj,

where

Bj := {N j, N j + 1, . . . , N j + bNσjc − 1}.

For each k ∈ N and each real number n ∈ [Nk−1, Nk), using |Bj| = [Nσj] 6

Nσj, we obtain

|A[n]| 6
k−1∑
j=0

|Bj| 6
k−1∑
j=0

Nσj =
Nkσ − 1

Nσ − 1
< N (k−1)σ Nσ

Nσ − 1
6 nσ

Nσ

Nσ − 1
.

Similarly, for k > 2 and n ∈ [Nk−1, Nk), we have

|A[n]| >
k−2∑
j=0

|Bj| > |Bk−2| > N (k−2)σ − 1 > Nkσ 1

N2
> nσ

1

N2
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for N large enough, so A satisfies (4.1) for each fixed large integer N .

It is sufficient to prove (4.3) for each sufficiently large integer n, so in all what

follows we assume that n is an integer. By the choice of A, it is clear that, for

every k ∈ N,

|(A+ A)[Nk]| 6
∑

06i6j6k−1

|Bi +Bj| 6
∑

06i6j6k−1

(|Bi|+ |Bj|) (4.18)

= k

k−1∑
j=0

|Bj| = k(|A[Nk]| − 1).

Observe that, for n ∈ [Nk−1, Nk−1 + [Nσ(k−1)]− 1],

|(A+ A)[n]|
|A[n]|

=
|(A+ A)[n]|

|A[Nk−1]|+ n−Nk−1

6
|(A+ A)[Nk−1]|+ n−Nk−1

|A[Nk−1]|+ n−Nk−1
6
|(A+ A)[Nk−1]|
|A[Nk−1]|

,

because |(A+ A)[Nk−1]| > |A[Nk−1]| for each sufficiently large N . So, by (4.18),

|(A+ A)[n]|
|A[n]|

6
|(A+ A)[Nk−1]|
|A[Nk−1]|

6 k − 1 6
log x

logN
.

Alternatively, if n ∈ (Nk−1 + [Nσ(k−1)]− 1, Nk], then, by (4.18) again,

|(A+ A)[n]|
|A[n]|

=
|(A+ A)[n]|
|A[Nk]| − 1

6
|(A+ A)[Nk]|
|A[Nk]| − 1

6 k 6 1 +
log n

logN
.

In both cases, for any ε > 0, taking some integer N > N(ε) := [e1/ε]+1 we deduce

that
|(A+ A)[n]|
|A[n]|

6 1 +
log n

logN
< ε log n

for all sufficiently large n.

4.5 Proof of Theorem 4.2

For γ > 1 and 0 < β < 1, let us take A := ∪∞j=0Cj, where

Cj := {b2γjc, b2γjc+ 1, . . . , b2γjc+ b2γjβc − 1}.

Take k ∈ N for which b2γk−1c 6 n < b2γkc. Then

|A[n]| 6
k−1∑
j=0

|Cj| = b2γ
k−1βc+ b2γk−2βc+ · · ·+ 1 6 2γ

k−1β + 2γ
k−2β + · · ·+ 1.
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This is smaller than 2γ
kβ for k large enough. As 2γ

k−2
< n, we get

|A[n]| < 2γ
kβ < nβγ

2

.

Similarly, for k > 2, we obtain

|A[n]| > |Ck−2| = b2γ
k−2βc > nβγ

−3

provided that n is large enough. It follows that A satisfies nσ 6 |A[n]| 6 nσ+ε for

a suitable choice of γ and β, e.g., β5 = σ2(σ + ε)3 and γ5 = 1 + ε/σ and n large

enough.

On the other hand, observe that, for every k ∈ N,

b2γkc+ b2γkβc > b2γkc+ b2γjc

whenever k − j > t := blog(β−1)/ log γc+ 1. Hence

∪k−tj=0(Ck + Cj) ⊆ (Ck + C0) ∪ (Ck + Ck−t).

It follows that

|A[b2γkc] + A[b2γkc]| 6
k−1∑
i=0

| ∪ij=0 (Ci + Cj)|

6
t∑
i=0

| ∪ij=0 (Ci + Cj)|+
k−1∑
i=t+1

|(Ci + C0) ∪ (Ci + Ci−t) ∪ij=i−t+1 (Ci + Cj)|.

Since |Cj| 6 |Ci| whenever j 6 i, the first sum is bounded from above by

t∑
i=0

i∑
j=0

|Ci + Cj| 6
t∑
i=0

i∑
j=0

2|Ci| =
t∑
i=0

2(i+ 1)|Ci| = (2t+ 2)
t∑
i=0

|Ci|.

The second sum is bounded from above by

k−1∑
i=t+1

(|Ci|+ |C0|+ |Ci|+ |Ci−t|+ 2t|Ci|) 6 (2t+ 4)
k−1∑
i=t+1

|Ci|.

Adding these two inequalities we derive that

|A[b2γkc] + A[b2γkc]| 6 (2t+ 4)
k−1∑
i=0

|Ci| 6 (2t+ 5)(|A[b2γkc]|)− 1) (4.19)

for k large enough, because the quotient |A[b2γkc]|/
∑k−1

i=0 |Ci| tends to 1 as k tends

to infinity.

49



Note that (4.19) is an analogue of (4.18). Arguing as in proof of Theorem 4.4

one easily derives that for n satisfying b2γk−1c 6 n < b2γkc the quotient |A[n] +

A[n]|/|A[n]| is bounded from above by the larger of

|A[b2γk−1c] + A[b2γk−1c]|
|A[b2γk−1c]|

and
|A[b2γkc] + A[b2γkc]|

(|A[b2γkc]| − 1)

whenever n is large enough. Thus |A[n]+A[n]|/|A[n]| 6 2t+5 for each sufficiently

large n, by (4.19). This clearly implies that |A[n] +A[n]|/|A[n]| is bounded from

above by an absolute constant µ = µ(σ, ε) for each n > 1.
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5 Bh Sequences in Higher

Dimensions

We start this chapter with a version of a simple and elegant theorem proved by

Ruiz and Trujillo [69], the main idea of which goes back to Erdős and Turán [30]:

Theorem 5.1. Let Fp be a finite field with p > h. Then the set

A :=
{

(x, x2, . . . , xh), x ∈ Fp
}

is a Bh set on (Fhp ,+).

As it is not unusual, proving that a given set is Sidon (or Bh in this case) is

simpler than coming up with the set in the first place1, so we will only discuss the

result itself.

The first thing to notice is that this theorem gives correct asymptotic size (up

to constant) for a maximal size of Bh in a group (Fhp ,+) and, via appropriate map,

in the interval [n] of integers. Indeed, for any Bh set A in a finite group G all the(
h
|A|

)
sums of h different elements have to be different, so |A| � |G|1/h, which is

the size of a set A in the Theorem 5.1.

Secondly, while construction is very elegant and dense, it is not clear, if it is the

densest possible for all h, except the Sidon case h = 2. In this case by calculating

number of differences between different elements of A, which for a Sidon set also

have to be distinct, we get that |A|(|A| − 1) 6 |G| − 1, which gives that the

|A| = p is indeed the maximal cardinality of a Sidon set in G = (F2
p,+). In other

cases h > 2 more clever counting arguments can reduce the constant obtained in

counting different sums, but they do not give constant equal to 1. Obtaining a

good upper bound will be our main concern in this chapter.
1Curiously, essentially this theorem rephrased as a system of equations was given as a prob-

lem #2 in Vilnius University Mathematical Olympiad in 2008, five years before the manuscript
of Ruiz and Trujillo.
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Finally, this construction is a nice illustration of importance of dimension in

the study of Bh sets. Most, if not all, very dense constructions of Bh sequences

make use of it, see [69], [15] and [16] for more examples.

5.1 The problem and results

We turn our attention from finite groups to a set of positive integers – a setting,

in which the original question of Sidon was formulated. Our first question is its

following generalisation: let A be an infinite Bh subset (or sequence) of Nd, and

let |A[n]d| denote the cardinality of A ∩ [n]d. Is it possible that |A[n]d| � nd/2?

We are only able to give an answer in the case of even h, and it is negative, as in

the one-dimensional case:

Theorem 5.2. If A ⊆ Nd is a B2k sequence, then

lim inf
n→∞

|A[n]d| log1/2k n

nd/k
<∞.

While no dense infinite Bh sequences for even h exist, it is possible (as we

saw in the introduction of this chapter) to construct a finite Bh sets, that is

subsets of [n]d. An upper bound on how large such sets can be is naturally of

interest, and our next two theorems extend known results (which were mentioned

in Section 2.1) to the d-dimensional case.

Theorem 5.3. If A ⊆ [n]d is a B2k set, then

|A| 6 (k!)
1
kk

d
2kn

d
2k +O

(
n

d2

2k(d+1)
)
.

Theorem 5.4. If A ⊆ [n]d is a B2k−1 set, then

|A| 6 (k!)
2

2k−1k
d−1
2k−1n

d
2k−1 +O

(
n

d2

(d+1)(2k−1) )
)
.

Finally, for large h it is possible to improve above bounds using Fourier ana-

lytical techniques developed in [37]:

Theorem 5.5. If A ⊆ [n]d is a B2k set and k is large enough, then

|A| 6 (πd)
d
4k (1 + ε(k))k

d
4k (k!)

1
kn

d
2k +O

(
n

d2

2k(d+1)
)
.
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Theorem 5.6. If A ⊆ [n]d is a B2k−1 set and k is large enough, then

|A| 6 (πd)
d

2(2k−1) (1 + ε(k))k
d−2

2(2k−1) (k!)
2

2k−1n
d

2k−1 +O
(
n

d2

(2k−1)(d+1)
)
.

We continue this chapter with the Preliminaries section, where we prove several

lemmas used later. In the subsequent sections we prove above theorems.

5.2 Preliminaries

We start from the following very simple lemma:

Lemma 5.7. Let functions f, g : Z→ R be finitely supported. Then

∑
x

f ∗ g(x)2 =
∑
x

f ◦ g(x)2 =
∑
x

f ◦ f(x)g ◦ g(x).

Proof. All three sums are equal to summation of f(i)g(j)f(i′)g(j′) over quadruples

(i, j, i′, j′) satisfying i+ j = i′ + j′ and correspond to different rearrangements of

the equality as i− j′ = i′ − j and i− i′ = j − j′.

It implies the following very useful estimate:

Lemma 5.8. For any subsets A,B of some additive semigroup G we have

∑
x

A ◦ A(x)B ◦B(x) >
|A|2|B|2

|A+B|
. (5.1)

We deduce it from a more general following result, by taking f, g to be indi-

cators of A and B:

Lemma 5.9. Let functions f, g : G → R be defined on some additive semigroup

and finitely supported, then

∑
x

f ◦ f(x)g ◦ g(x) >
(
∑

x f(x))2(
∑

x g(x))2

| supp(f ∗ g)|
.
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Proof. Start from the equality
∑

x f ∗ g(x)2 =
∑

x f ◦ f(x)g ◦ g(x) of Lemma 5.7

and use Cauchy-Schwarz inequality:∑
x

f ∗ g(x)2 >
(
∑

x f ∗ g(x))2

| supp(f ∗ g)|
=

(
∑

x f(x))2(
∑

x g(x))2

| supp(f ∗ g)|
.

This general result can be used to prove a well known van der Corput lemma,

which was used by Lindström [55], [54] to get a best known bound for a maximal

densities of Sidon and B4 sets. Even though this is not a very suitable place for

such a detour, we cannot resist stating and giving a short proof of this lemma:

Lemma 5.10 (van der Corput). Let function f : Z → R be supported on the

interval [−n, n], then for any positive integer ` we have(∑
x

f(x)
)2

6
2n+ `

`2

∑̀
i=−`

(`− |i|)
∑
x

f(x)f(x+ i).

Proof. Start from inequality of lemma 5.9 and take g to be an indicator function

of an interval [`]. Then g ◦ g(x) is zero outside [−`, `] and equal to i− |`| for any

i ∈ [−`, `], so the left hand side becomes

∑
x

f ◦ f(x)g ◦ g(x) =
∑̀
i=−`

(`− |i|)f ◦ f(i) =
∑̀
i=−`

(`− |i|)
∑
x

f(x)f(x+ i).

It remains to note that for such g we have
∑

x g(x) = ` and supp(f ∗ g) ⊆

[−n+ 1, n+ `].

If one wishes to apply this lemma to get an upper bound for density of Sidon set

in [n], it is sufficient to take an indicator f(x) = A(x) and note that
∑

x f(x)f(x+

i) 6 1 for all i. It remains to chose an optimal ` which is easily done. It was

noted by Cilleruelo [15] that correct choice gives a bound |A| 6 n1/2 + n1/4 + 1/2

– an improvement of 1/2 over the original Lindsröm bound.

We return to our present matters and prove two more lemmas, which will

enable us to use lemma 5.8 in a more general case. For any x = x1 + · · ·+xr ∈ rA,

we let x be the multiset (i.e. set with multiple entries) {x1, . . . , xr}. For a Bh-set

A ⊆ [n]d we define

Dj(z; r) = {(x, y) : x− y = z, x, y ∈ jA, |x ∩ y| = r},
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and write dj(z; r) for its cardinality.

Lemma 5.11. Let A ⊆ [n]d.

(i) If A is a B2k sequence, for 1 6 j 6 k,

dj(z; 0) 6 1;

(ii) If A is B2k sequence, for 1 6 r 6 k,

∑
z∈Zd

dk(z; r) 6 |A|2k−r.

Proof.

(i) If (x, y), (x′, y′) ∈ Dj(z; 0) then we have x + y′ = x′ + y. Since A is a Bh

sequence, the two representations correspond to different permutations of

the same h elements and as x ∩ y = x′ ∩ y′ = ∅, then x = x′ and y = y′.

(ii) There are at most |A|r possible values for x ∩ y (where the intersection is

taken with multiplicities), so

dk(z; r) ≤ |A|rdk−r(z; 0).

Then

∑
z∈Zd

dk(z; r) 6 |A|r
∑
z∈Zd

dk−r(z; 0)

6 |A|r|(k − r)A|2 (using (i))

6 |A|2k−r.

Similarly for a Bh-sequence A ⊆ [n]d we define

D∗j (z; r) = {(x, y) : x− y = z, x, y ∈ j∗A, |x ∩ y| = r},

D∗j (z; r; a) = {(x, y) ∈ D∗j (z, r) : a ∈ x}

and write d∗j(z; r) and d∗j(z; r; a) for their respective cardinalities.

Lemma 5.12. Let A ⊆ [n]d.
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(i) If A is a B2k−1 sequence, for 1 6 j 6 k − 1,

d∗j(z; 0) 6 1;

(ii) If A is a B2k−1 sequence,

d∗k(z; 0) 6
|A|
k
.

(iii) If A is a B2k−1 sequence, for 1 6 r 6 k,∑
z∈Zd

d∗k(z; r) 6 |A|2k−r.

Proof.

(i) We may use the same proof as in (i) previous lemma.

(ii) We show that d∗k(z; 0; a) 6 1. Assume not. Then there exists x = x1 + . . .+

xk, x
′ = x′1 + . . . + x′k, y = y1 + . . . + yk, y

′ = y′1 + . . . + y′k ∈ k∗A such that

x− y = x′ − y′ = z. In addition, without loss of generality, we may assume

xk = x′k = a. Hence we have

x1 + . . .+ xk−1 + y′1 + . . . y′k = x′1 + . . .+ x′k−1 + y1 + . . . yk.

Once again, since A is a B2k−1 sequence, the two representations correspond

to different permutations of the same 2k−1 elements and as x∩y = x∩y = ∅

we must have x = x′ and y = y′, giving a contradiction.

Notice that ∑
a∈A

d∗k(z; 0; a) = kd∗k(z; 0)

and the statement of the lemma follows.

(iii) We may use the same proof as in (ii) in previous lemma.

5.3 Proof of Theorem 5.2.

We fix a large enough positive integer n and set u = bn1/(2k−1)c. For any d-

dimensional vector ~i use the L∞ norm defined as follows:

|~i|∞ = |(i1, i2, ..., id)|∞ = max
16k6d

{|ik|}.
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For any d-dimensional set B denote

B~i = B ∩
d⊗
j=1

((ij − 1)kn, ijkn].

We set

A′ = A ∩ [1, un]d,

C = kA′,

c~i = |C~i|,

∆j =
∑
|~i|∞=j

c~i,

τ(n) = min
n6m6un

|A[m]d|
md/2k

.

Lemma 5.13.

τ(n)2knd log n = O

 ∑
~i∈[1,u]d

c2
~i

 .

Proof. Note that ∑
~i∈[1,u]d

c~i

|~i|∞
d/2

2

6

 ∑
~i∈[1,u]d

1

|~i|∞
d

 ∑
~i∈[1,u]d

c2
~i


6

(
u∑
i=1

did−1

id

) ∑
~i∈[1,u]d

c2
~i


6 O

log n
∑

~i∈[1,u]d

c2
~i

 . (5.2)

On the other hand, for any positive i (1 6 i 6 u) we have,

|C[ikn]d| > c|A[in]d|k,

where c > 0 is an absolute constant depending only on k, and

|A[in]d|k =

(
|A[in]d|
(in)d/2k

)k
(in)d/2

> τ(n)k(in)d/2.
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Hence, for absolute constants c1, c2, c3 depending on d and k,

∑
~i∈[1,u]d

c~i

|~i|∞
d/2

=
u∑
i=1

∆i

id/2

=
u∑
i=1

(
1

id/2
− 1

(i+ 1)d/2

) i∑
j=1

∆j +
1

(u+ 1)d/2

u∑
j=1

∆j

> c1

u∑
i=1

|C[ikn]d|
id/2+1

> c2

u∑
i=1

τ(n)k(in)d/2

id/2+1

= c2τ(n)knd/2
u∑
i=1

1

i

> c3τ(n)knd/2 log n. (5.3)

Combining inequalities (5.2) and (5.3), Lemma 5.13 follows.

Lemma 5.14. ∑
~i∈[1,u]d

c2
~i

= O(nd).

Proof. We have

∑
~i∈[1,u]d

c2
~i
≤

k∑
r=0

∑
|z|∞≤kn

dk(z; r)

=
∑
|z|∞6kn

dk(z; 0) +
k∑
r=1

∑
|z|∞6kn

dk(z; r)

6
∑
|z|∞6kn

1 +
k∑
r=1

|A′|2k−r (using Lemma 5.11 (i) and (iv))

= (2kn)d +O
(
(un)d(1−1/(2k))

)
= O(nd).

We are now able to prove Theorem 5.2:

Proof of Theorem 5.2. From Lemmas 5.13 and 5.14 we have τ(n)2k log n = O(1).
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Hence,

lim inf
n→∞

|A[n]d| 2k
√

log n

nd
= lim

n→∞
inf

n6m6un
|A[m]d| 2k

√
logm

md

6 lim
n→∞

inf
n6m6un

|A[m]d|
md/2k

2k
√

log un

6 2 lim
n→∞

τ(n) 2k
√

log n <∞.

5.4 Proofs of Theorems 5.3 and 5.4

We start from the case h = 2k and first prove the following lemma:

Lemma 5.15. For a finite B2k set A ⊆ Zd∑
x

kA ◦ kA(x)[`]d ◦ [`]d(x) 6 `2d +O(`d|A|2k−1).

Proof. ∑
x

kA ◦ kA(x)[`]d ◦ [`]d(x)

=
∑
x

[`]d ◦ [`]d(x)
k∑
r=0

dk(x; r)

=
∑
x

[`]d ◦ [`]d(x)dk(x; 0) +
k∑
r=1

∑
x

[`]d ◦ [`]d(x)dk(x; r)

6 `2d +O(`d|A|2k−1). (using Lemma 5.11 (i) and (ii))

Proof of Theorem 5.3. We will use Lemma 5.8 with (semi)group Zd, and sets kA

and [`]d (where the positive integer ` will be chosen later). Note that

|kA| >
1

k!
|A|k,

|[`]d| = `d,

|kA+ [`]d| 6 (kn+ `)d.

Thus, using Lemmas 5.15 and 5.8, we have (after simplification)

|A|2k`d

k!2(kn+ `)d
6 `d +O

(
|A|2k−1

)
,
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or

|A|2k 6 k!2(kn+ `)d +O

((
kn

`
+ 1

)d
|A|2k−1

)

6 k!2(kn+ `)d +O

((
kn

`
+ 1

)d
n

(2k−1)d
2k

)
.

To minimise the error term we need
(
n
`

)d
n

(2k−1)d
2k = `nd−1, so we take ` =

n1− d
(d+1)2k giving

|A|2k 6 k!2kdnd +O(nd−
d

(d+1)2k )

6 k!2kdnd(1 +O(n−
d

(d+1)2k )).

Taking 2kth roots ends the proof.

We now continue with the case h = 2k − 1 and again start from a lemma:

Lemma 5.16. For a finite B2k−1 set A ⊆ Zd we have

∑
x

k∗A ◦ k∗A(x)[`]d ◦ [`]d(x) 6
|A|
k
`2d +O(`d|A|2k−1).

Proof. The proof follows the same course as that of Lemma 5.15 except using

Lemma 5.12 (i), (ii) and (iii) in the final step.

Proof of Theorem 5.4. As before we make use of Lemma 5.8, taking sets k∗A and

[`]d in the (semi)group Zd. We have

|k∗A| >
1

k!
|A|k(1− c

|A|
),

|[`]d| = `d,

|k∗A+ [`]d| 6 (kn+ `)d,

where constant c depends only on k. Now Lemmas 5.16 and 5.8 give

(1− c
|A|)

2|A|2k`2d

(k!)2(kn+ `)d
6 `2d |A|

k
+O(|A|2k−1`d),

or
|A|2k`2d

(k!)2(kn+ `)d
6 `2d |A|

k
+O(|A|2k−1`d)
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thus

|A|2k−1 6
(k!)2(kn+ `)d

k
+O

((
kn

`
+ 1

)d
|A|2k−2

)

6
(k!)2(kn+ `)d

k
+O

((
kn

`
+ 1

)d
nd

2k−2
2k−1

)
.

To minimise the error term we need nd−1` = ndnd(2k−2)/(2k−1) so we take ` =

n1− d
(d+1)(2k−1) which gives

|A|2k−1 6 (k!)2ndkd−1 +O(nd−
d

(d+1)(2k−1) )

6 (k!)2ndkd−1(1 +O(n−
d

(d+1)(2k−1) )).

Taking 2k − 1th roots gives the result.

Finite Bh sequences for large h

We start from a set of fairly standard Fourier analytic prerequisites. Let Zdn
be a d-fold direct product of a ring of integers modulo n. For any two vectors

(elements of the product ring) a = (a1, a2, . . . , ad) and b = (b1, b2, . . . , bd) define

scalar product as

a · b =
d∑
i=1

aibi.

Ring Zdn with such scalar product is a Hilbert space, so for any function f : ZdN →

C we define a Fourier transform

f̂(r) =
∑
x∈ZdN

f(x)e
2πir·x
N , ∀r ∈ Zdn.

We extend our definition of difference convolution to complex valued functions

f, g as

(f ◦ g)(x) =
∑
i

f(i)g(x+ i),

and assume right associativity for repeated convolutions, that is

f1 ◦ f2 ◦ · · · ◦ fk = f1 ◦ (f2 ◦ · · · ◦ (fk−1 ◦ fk)).

We shall denote f ◦2k(x) = (f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
2k times

)(x) and note that for an indicator

function of a set A, A◦2k(x) is the number of ordered representations of x =

a1 + · · ·+ ak − ak+1 − · · · − a2k for a1, a2, . . . , a2k ∈ A. We shall use the following

two well-known identities:
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Lemma 5.17 (Parseval’s Identity). If f, g : Zdn → C are two functions then

nd
∑
x∈Zdn

f(x)g(x) =
∑
r∈Zdn

f̂(r)ĝ(r).

Lemma 5.18. If f, g : Zdn → C are two functions then

(̂f ◦ g)(r) = f̂(r)ĝ(r).

We are now ready to give proofs to the Theorems 5.5 and 5.6.

Proof of Theorem 5.5. We regard A as a subset of Zdkn+v where v is sufficiently

small compared to n, so that A◦2k(x) remains the same for x ∈ [−v, v]d as it was

when we regarded A as a subset of Zd. Similarly as in the earlier proofs, we will

consider an indicator [`]d, where ` we be chosen asymptotically much smaller than

v.

Notice that, for all x ∈ [−v, v]d, A◦2k(x) 6 (k!)2kA ◦ kA(x), hence arguing as

in the proof of Lemma 5.15 we obtain

∑
x∈Zdkn+v

A◦2k(x)([`]d ◦ [`]d)(x) =
∑

x∈[−`,`]d
A◦2k(x)([`]d ◦ [`]d)(x)

6 (k!)2`2d +O
(
|A|2k−1`d

)
. (5.4)

Parseval’s identity (Lemma 5.17) and Lemma 5.18 give

∑
x∈Zdkn+v

A◦2k(x)[`]d ◦ [`]d(x) =
1

(kn+ v)d

∑
r∈Zdkn+v

Â◦2k(x) ̂[`]d ◦ [`]d(x)

=
1

(kn+ v)d

∑
r∈Zdkn+v

|Â(r)|2k| ˆ[`]d(r)|2

>
1

(kn+ v)d

∑
|r1|+···+|rd|6k/2

|Â(r)|2k| ˆ[`]d(r)|2. (5.5)

Claim 5.19. | ˆ[`]d(r)| > `d − 2π|r1+r2+···+rd|`d+1

kn
.
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|`d − ˆ[`]d(r)| 6
∑
x∈[`]d

∣∣∣1− e 2πir·x
kn+v

∣∣∣
=

∑
x∈[`]d

∣∣∣∣1− cos

(
2πr · x
kn+ v

)
− i sin

(
2πr · x
kn+ v

)∣∣∣∣
6 `d

(
2π(|r1|+ |r2|+ · · ·+ |rd|)(`− 1)

kn+ v

)
6

2π(|r1|+ |r2|+ · · ·+ |rd|)`d+1

kn
,

proving Claim 5.19.

Claim 5.20.
∑

|r1|+···+|rd|6k/2

|Â(r)|2k > |A|2k
(
k

πd

) d
2

(1− ε(k)).

Note that the set

{x1r1 + · · ·+ xdrd : |r1|+ · · ·+ |rd| 6 k/2, x ∈ [n]d}

is contained in an interval of length k
2
n. Therefore for such r, vectors in the com-

plex plane corresponding to elements of A in Fourier transform will not cancel each

other. Furthermore, we can expect elements of A to be more-or-less distributed

in the whole of [n]d, thus rotating by n/2 in each dimension should almost align

the sum of the these vectors with the real axis.

|Â(r)|2k =

∣∣∣∣∣∣
∑

x∈Zdkn+v

A(x)e2πi
x1r1+···+xdrd

kn+v

∣∣∣∣∣∣
2k

=

∣∣∣∣∣∣
∑

x∈Zdkn+v

A(x)e2πi
(x1−n/2)r1+···+(xd−n/2)rd

kn+v

∣∣∣∣∣∣
2k

>

∣∣∣∣∣∣
∑

x∈Zdkn+v

A(x) cos

(
π(r1 + · · ·+ rd)

k

)∣∣∣∣∣∣
2k

.

Since |r1|+ · · ·+ |rd| 6 k/2, this is greater or equal than

|A|2k
∣∣∣∣1− π2(r1 + · · ·+ rd)

2

2k2

∣∣∣∣2k .
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Now we can give a bound for the sum:

∑
|r1|+···+|rd|6k/2

|Â(r)|2k > |A|2k
∑

|r1|+···+|rd|6k/2

∣∣∣∣1− π2(r1 + · · ·+ rd)
2

2k2

∣∣∣∣2k

> |A|2k
∑

|r1|+···+|rd|6k5/8

∣∣∣∣1− π2(r1 + · · ·+ rd)
2

2k2

∣∣∣∣2k .
Since k is large, this is greater or equal than

|A|2k
∑

|r1|+···+|rd|6k5/8

∣∣∣∣1− π4(r1 + · · ·+ rd)
4

4k4

∣∣∣∣2k e−π2(r1+···+rd)2k .

In the last step we used inequality 1 − s > e−s(1 − s2), which is true for s 6 1.

Note that, under restrictions |r1|+ · · ·+ |rd| 6 k5/8, we have∣∣∣∣1− π4(r1 + · · ·+ rd)
4

4k4

∣∣∣∣2k → 1

as k → ∞. The remaining sum can be rearranged using the Cauchy-Schwarz

inequality:

∑
|r1|+···+|rd|6k5/8

e
−π2(r1+···+rd)

2

k >
∑

|ri|6 k5/8

d

e
−dπ2(r21+···+r

2
d)

k

=
d∏
i=1

∑
|ri|6 k5/8

d

e
−π2dr2i

k .

Now the claim follows from the fact∑
|ri|6 k5/8

d

e
−π2dr2i

k →
∫ ∞
−∞

e
−π2dt2

k dt =

(
k

πd

)1/2

.

Combining equations (5.4) and (5.5) with Claims 5.19 and 5.20, we obtain

(k!)2`2d +O
(
|A|2k−1`d

)
>

`2d

(kn+ v)d

(
1− π`d

n

)2 ∑
|r1|+|r2|+···+|rd|6 k

2

|Â(r)|2k

>
`2d

(kn+ v)d

(
1− π`d

n

)2

|A|2k
(
k

πd

) d
2

(1− ε(k)).

So, using trivial bound,

|A|2k 6
(k!)2(kn+ v)d +O

(
nd(2− 1

2k
)`−d

)
`d

(kn+v)d

(
1− π`d

n

) (
k
πd

) d
2 (1− ε(k))

.
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We can minimise the error term by choosing ` = v = n1− d
2k(d+1) which, using

Taylor’s expansions, gives

|A|2k 6 (πd)
d
2 (1 + ε(k))k

d
2 (k!)2nd

(
1 +O

(
n−

d
2k(d+1)

))
.

Taking 2kth roots gives the result.

Proof of Theorem 5.6. This uses essentially the same proof except arguing as in

Lemma 5.16 to obtain the equivalent of equation (5.4):∑
x∈Zdkn+v

A∗2k(x)([`]d ∗ [`]d)(x) 6 |A|k!(k − 1)! `2d +O
(
|A|2k−1`d

)
.
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6 Infinite sets with powerless

iterated sumset

Let A ⊆ N be a finite or infinite set of positive integers. By its iterated sumset or

set of subset sums we will call a set SA = {
∑

a∈A′ a | A′ ⊆ A, |A′| < ∞}. In this

chapter we will consider a specific version of the following general question:

Question. Given B ⊆ N, does there exist an infinite set A ⊆ N with iterated

sumset SA not containing any elements from B? If it does, how dense can it be?

It should be of no surprise that existence and density of such set A depends

on the density of B. In fact, we will see in Section 6.1 that for A to exist it is

sufficient that B has zero lower density (i.e. d(B) = lim infn→∞ |B[n]|/n = 0). If,

on the other hand, one considers B with positive lower density, it soon becomes

clear that divisibility properties of elements of B become more important than

how numerous it is. To illustrate this we give two examples.

The first one is the set of all odd positive integers B = {1, 3, 5, 7, . . . } whose

density d(B) is 1/2. For such B required set A does exist and the densest one

is the set of all even positive integers {2, 4, 6, 8, . . . } with density d(A) = 1/2.

The second example is the set of all even positive integers B = {2, 4, 6, 8, . . . },

for which no infinite sequence A as required exists. Moreover, if B is the set

of all positive integers divisible by m, where m ∈ N is large, then the density

d(B) = 1/m is small. However, by a simple argument modulo m it is easy to see

that there is no infinite set A ⊂ N (and even no set A with > m distinct positive

integers) with the property that its distinct elements always sum to a number

lying outside B.

This observation allows us to make few further observations considering the

existence of A: if B can be divided into two parts B = Bp ∪B6p with all elements

in B6p not divisible by some prime p and lower density of Bp equal to zero, than

we can find the set A ⊆ pN by using theorem below. On the other hand, if set
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B contains all but finitely many multiples of some prime, the required set A will

not exist. It is possible, however, to construct infinite subsets of positive integers

that do not satisfy any of these conditions and it is still unknown how to deal

with them.

The problem of finding densest set A for a given B is much harder. One could

prove some general bounds (using a greedy algorithm for example) but they are

likely very far from optimal. In this chapter we will concentrate on a specific cases

of B being squares of integers and any powers of integers. Finite versions of these

problems were considered before as we discussed in the Section 2.3. The infinite

version of these problems were first considered by Luca [58]. In the case of perfect

squares B = {1, 4, 9, . . . } he found an example A = {22n + 1, n ∈ N}, which has

double exponential growth. In the case of all powers B = {1, 4, 8, 9, . . . } he gave

an example {2p1p2···pn + 1, n > n0}, where pk is the kth prime and n0 is a large

enough constant. This example is even more sparse.

We will give (in Sections 6.2 and 6.3) denser examples of sets A in both cases.

They still are of exponential growth and have been improved by Dubickas and

Stankevičius [23]. We discuss their example in Section 6.4.

6.1 Sets with asymptotic density zero

We start from the existence of A for sets B with zero lower density. We prove two

slightly more general statements.

Theorem 6.1. Let m ∈ N and let B = {b1 < b2 < b3 < . . . } be an infinite

sequence of positive integers satisfying lim supn→∞(bn+1 −mbn) =∞. Then there

exists an infinite sequence of positive integers A such that every sum over some

elements of A, at most m of which are equal, is not in B.

Proof. Take the smallest positive integer ` such that b`+1 − b` > 2, and set a1 :=

b` + 1. Then a1 /∈ B. Suppose we already have a finite set {a1 < a2 < · · · <

ak} such that all possible (m + 1)k − 1 nonzero sums δ1a1 + · · · + δkak, where

δ1, . . . , δk ∈ {0, 1, . . . ,m}, do not belong to B. Put ak+1 := bl + 1, where l is the

smallest positive integer for which bl+1 − mbl > 1 + m + m(a1 + · · · + ak) and

bl > ak. Such an l exists, because lim supn→∞(bn+1 −mbn) =∞.
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Clearly, bl > ak implies that ak+1 > ak. In order to complete the proof of the

theorem (by induction) it suffices to show that no sum of the form δ1a1+· · ·+δkak+

δk+1ak+1, where δ1, . . . , δk+1 ∈ {0, 1, . . . ,m}, lies in B. If δk+1 = 0, this follows by

our assumption, so suppose that δk+1 > 1. Then δ1a1 + · · · + δkak + δk+1ak+1 is

greater than ak+1 − 1 = bl and smaller than

1+m(a1+· · ·+ak+ak+1) 6 bl+1−mbl−m+mak+1 = bl+1−mbl−m+m(bl+1) = bl+1,

so it is not in B, as claimed.

For m > 2, it can very often happen that bn+1 < mbn for every n ∈ N, even if

set B has zero lower density. For such a set B Theorem 6.1 is not applicable and

a slight modification in the proof is required.

Theorem 6.2. Let m ∈ N and let B be an infinite sequence of positive integers

with zero lower asymptotic density. Then there exists an infinite sequence of

positive integers A such that every sum over some elements of A, at most m of

which are equal, is not in B.

Proof. Once again, take the smallest positive integer ` such that b`+1 − b` > 2,

and put a1 := b` + 1. Then a1 /∈ B. Suppose we already have a finite set {a1 <

a2 < · · · < ak} such that all possible (m+ 1)k − 1 nonzero sums δ1a1 + · · ·+ δkak,

where δ1, . . . , δk ∈ {0, 1, . . . ,m}, do not belong to B. It suffices to prove that there

exists an integer ak+1 greater than ak such that, for every i ∈ {1, . . . ,m}, the sum

iak+1 + δkak + · · ·+ δ1a1, where δ1, . . . , δk ∈ {0, 1, . . . ,m}, is not in B.

Suppose that B = {b1 < b2 < b3 < . . . }. For any h ∈ N, the set {hb1 <

hb2 < hb3 < . . . } will be denoted by hB. Put Bi := m!
i
B for i = 1, 2, . . . ,m. Since

d(Bi) = 0 for each i = 1, . . . ,m, we have d(B1 ∪ · · · ∪ Bm) = 0. Thus, for any

v > m!(mS + 1), where S := a1 + · · ·+ ak, there is an integer u > m!ak such that

the interval [u, u+ v] is free of the elements of the set B1 ∪ · · · ∪Bm.

Put ak+1 := bu/m!c + 1. Clearly, ak+1 > ak. Furthermore, for any i ∈

{1, . . . ,m}, no element of Bi lies in [u, u + v]. Thus there is a nonnegative in-

teger j = j(i) such that m!bj/i < u and m!bj+1/i > u+ v. (Here, for convenience

of notation, we assume that b0 = 0.) Hence iak+1 > iu/m! > bj and

iak+1 +mS < iak+1 + imS 6 i(u/m! + 1 +mS) < i(u+ v)/m! < bj+1.
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In particular, these inequalities imply that, for each i ∈ {1, . . . ,m}, the sum

iak+1 + δkak + · · ·+ δ1a1, where δ1, . . . , δk ∈ {0, 1, . . . ,m}, is between bj(i) + 1 and

bj(i)+1 − 1, hence it is not in B. This completes the proof of the theorem.

As we already mentioned above theorems are sharp in some sense, as for any

ε > 0 there exists a set with d(B) < ε and no corresponding A.

On the other hand, there exists a set B with d(B) = 1 and an existing infinite

set A. To construct such set start from A = {22i , i ∈ N} and take B = N \ SA.

Clearly B has density 1.

6.2 Infinite sets whose elements do not sum to

a square

Sets of exponential growth with iterated sumset avoiding squares or powers are

not hard to come by, for example one can take 22n−1, n = 1, 2, . . . . Any sum of

its distinct elements

22n1−1 + · · ·+ 22nl−1 = 22n1−1(1 + 4n2−n1 + · · ·+ 4nl−n1),

where 1 6 n1 < · · · < nl, is not a perfect square, because it is divisible by 22n1−1,

but not divisible by 22n1 .

Smaller, but still of exponential growth, is the sequence 2 · 3n, n = 0, 1, 2, . . . .

No sum of its distinct elements is a perfect square, because

2(3n1 + · · ·+ 3nl) = 2 · 3n1(1 + 3n2−n1 + · · ·+ 3nl−n1) = h2

implies that n1 is even, so 2(1 + 3n2−n1 + · · · + 3nl−n1) must be a square too.

However, this number is of the form 3k + 2 with integer k, so it is not a perfect

square.

A natural way to generate an infinite sequence whose distinct elements do not

sum to square is to start with c1 = 2. Then, for each n ∈ N, take the smallest

positive integer cn+1 such that no sum of the form cn+1 + δncn + · · ·+ δ1c1, where

δ1, . . . , δn ∈ {0, 1}, is a perfect square. Clearly, c2 = 3, c3 = 5. Then, as 6+3 = 32,

7 + 2 = 32, 8 + 5 + 3 = 42, 9 = 32, we obtain that c4 = 10, and so on. In the

following table we give the first 18 elements of this sequence, which were computed

by Andrius Stankevičius:
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n cn log cn n cn log cn

1 2 0.6931 10 2030 7.6157

2 3 1.0986 11 3225 8.0786

3 5 1.6094 12 8295 9.0234

4 10 2.3025 13 15850 9.6709

5 27 3.2958 14 80642 11.2977

6 38 3.6375 15 378295 12.8434

7 120 4.7874 16 1049868 13.8641

8 258 5.5529 17 3031570 14.9245

9 907 6.8101 18 12565348 16.3464

Here, the values of log cn are truncated at the fourth decimal place. At the

first glance, they suggest that the limit lim infn→∞ n
−1 log cn is positive. If so,

then the sequence cn, n = 1, 2, 3, . . . , is of exponential growth too. It seems that

the sequence cn, n = 1, 2, 3, . . . , i.e.,

2, 3, 5, 10, 27, 38, 120, 258, 907, 2030, 3225, 8295, 15850, 80642, 378295, 1049868, . . .

was not studied before. At least, it is not given in N.J.A. Sloane’s on-line ency-

clopedia of integer sequences http://www.research.att.com/njas/sequences/. We

thus raise the following problem:

Question. Is lim infn→∞ n
−1 log cn positive or zero?

In the opposite direction, one can easily show that cn < 4n for each n > 1. Here

is the proof of this inequality by Cilleruelo (private communication). Suppose that

cn < 4n. If cn+1 6 cn + 4n, then cn+1 < 4n + 4n < 4n+1. Otherwise, for each j =

1, 2, . . . , 4n, there exists a set I = Ij ⊆ {1, 2, . . . , n} such that cn + j + S(I) = s2
j ,

where S(I) :=
∑

i∈I ci and sj ∈ N. There are 2n different subsets I of {1, 2, . . . , n},

so the set {4n− 2n, . . . , 4n− 1, 4n} with 2n + 1 elements contains some two indices

j < j′ for which the corresponding subsets I (and so the values for S(I)) are

equal. Subtracting cn + j + S(I) = s2
j from cn + j′ + S(I) = s2

j′ , we deduce that

j′−j = (sj′−sj)(sj′+sj). Since j′−j 6 2n, we have sj′+sj 6 2n, i.e., sj′ 6 2n−1.

Hence

4n − 2n < j′ < cn + j′ + S(I) = s2
j′ 6 (2n − 1)2 = 4n − 2n+1 + 1,
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a contradiction.

Of course, cn < 4n implies that lim supn→∞ n
−1 log cn < log 4. Our next theo-

rem shows that, for any fixed positive ε, there is a sequence A = {a1 < a2 < a3 <

. . . } whose distinct elements do not sum to a square and whose growth is small

in the sense that lim supn→∞ n
−1 log an < ε.

Theorem 6.3. For any ε > 0 there is a positive constant K = K(ε) and an

infinite sequence A = {a1 < a2 < a3 < . . . } ⊂ N satisfying an < K(1 + ε)n for

each n ∈ N such that the sum of any number of distinct elements of A is not a

perfect square.

Proof. Fix a prime number p to be chosen later and consider the following infinite

set

A := {gp2m + p2m−1 : g ∈ {0, 1, . . . , p− 2}, m ∈ N}.

Each element of A in base p can be written as g100 . . . 0 with 2m− 1 zeros, where

the ‘digit’ g is allowed to be zero. So all the elements of A are distinct.

First, we will show that the sum of any distinct elements of A is not a perfect

square. Assume that there exists a sum S which is a perfect square. Suppose

that for every t = 1, 2, . . . , l the sum S contains st > 0 elements of the form

gp2mt + p2mt−1, where g ∈ {0, 1, . . . , p− 2} and 1 6 m1 < m2 < · · · < ml. Clearly,

st 6 p− 1. Let us write S in the form

S = s1p
2m1−1 + h1p

2m1 + s2p
2m2−1 + h2p

2m2 + · · ·+ slp
2ml−1 + hlp

2ml

= p2m1−1(s1 + h1p+ · · ·+ slp
2ml−2m1 + hlp

2ml−2m1+1) = p2m1−1(s1 + pH).

Now, since s1 ∈ {1, . . . , p− 1} and since H is an integer, we see that S is divisible

by p2m1−1, but not by p2m1 , so it is not a perfect square.

It remains to estimate the size of the nth element an of A. Write n in the

form n = (p − 1)(m − 1) + r, where r ∈ {1, . . . , p − 2, p − 1} and m > 1 is an

integer. Suppose that the elements of A are divided into consecutive equal blocks

with p− 1 elements in each block. Then all the elements of the mth block are of

the form g100 . . . 0 (with 2m− 1 zeros), where g = 0, 1, . . . , p− 2. Hence the nth

element of A, where n = (p − 1)(m − 1) + r, is precisely the rth element of the

mth block, i.e., an = a(p−1)(m−1)+r = (r − 1)p2m + p2m−1. It follows that

an 6 (p−2)p2m+p2m−1 < p2m+1 = p2(n−r)/(p−1)+3 < p2n/(p−1)+3 = p3e(2n log p)/(p−1).
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Clearly, (2 log p)/(p− 1)→ 0 as p→∞. Thus, for any ε > 0, there exists a prime

number p such that e(2 log p)/(p−1) < 1+ε. Take the smallest such a prime p = p(ε).

Setting K(ε) := p(ε)3, we obtain that an < K(ε)(1 + ε)n for each n ∈ N.

6.3 Infinite sets whose elements do not sum to

a power

Observe that distinct elements of the sequence 2 · 6n, n = 0, 1, 2, . . . , cannot sum

to a perfect power. Indeed,

S = 2(6n1 + · · ·+ 6nl) = 2n1+13n1(1 + 6n2−n1 + · · ·+ 6nl−n1),

where 0 6 n1 < · · · < nl, is not a perfect power, because n1 + 1 and n1 are exact

powers of 2 and 3 in the prime decomposition of S. So if S > 1 were a kth power,

where k is a prime number (which can be assumed without loss of generality),

then both n1 + 1 and n1 must be divisible by k, a contradiction.

This example is already ‘better’ than the example ap1p2...pn + 1, n = n0, n0 +

1, . . . , given in [58] not only because it is completely explicit, but also because the

sequence 2 · 6n, n = 0, 1, 2, . . . , grows slower.

As above, we can also consider the sequence 2, 3, 10, 18, . . . , starting with e1 =

2, whose each ‘next’ element en+1 > en, where n > 1, is the smallest positive

integer preserving the property that no sum of the form δ1e1 + · · ·+ δnen + en+1,

where δ1, . . . , δn ∈ {0, 1}, is a perfect power. By an argument which is slightly

more complicated than the one given for cn, one can prove again that en < 4n for

n large enough.

However, our aim is to prove the existence of the sequence whose nth element

is bounded from above by K(ε)(1 + ε)n for n ∈ N. For this, we shall generalize

Theorem 3 as follows:

Theorem 6.4. Let U be the set of positive integers of the form qα1
1 . . . qαkk , where

q1, . . . , qk are some fixed prime numbers and α1, . . . , αk run through all nonnegative

integers. Then, for any ε > 0, there is a positive constant K = K(ε, U) and an

infinite sequence A = {a1 < a2 < a3 < . . . } ⊂ N satisfying an < K(1 + ε)n for
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n ∈ N such that the sum of any number of distinct elements of A is not equal to

uvs with positive integers u, v, s such that u ∈ U and s > 2.

In particular, Theorem 4 with U = {1} implies a more general version of

Theorem 3 with ‘perfect square’ replaced by ‘perfect power’.

Proof. Fix two prime numbers p and q satisfying p < q < 2p. Here, the prime

number p will be chosen later, whereas, by Bertrand’s postulate, the interval

(p, 2p) always contains at least one prime number, so we can take q to be any of

those primes. Consider the following infinite set

A := {gpm+1qm + pmqm−1 : g ∈ {1, . . . , p− 1}, m ∈ N}.

The inequality pm+2qm+1 + pm+1qm > (p − 1)pm+1qm + pmqm−1 implies that all

the elements of A are distinct. Also, as above, by dividing the sequence A into

consecutive equal blocks with p− 1 elements each, we find that

an = rpm+1qm + pmqm−1

for n = (p− 1)(m− 1) + r, where m ∈ N and r ∈ {1, . . . , p− 2, p− 1}.

Assume that there exists a sum S of some distinct an which is of the form

uvs. Without loss of generality we may assume that s > 2 is a prime number.

Suppose that for every t = 1, 2, . . . , l the sum S contains st > 0 elements of

the form gpmt+1qmt + pmtqmt−1, where g ∈ {1, . . . , p − 1} and 1 6 m1 < m2 <

· · · < ml. Clearly, st 6 p − 1, so, in particular, 1 6 s1 6 p − 1. Then, as

above, S = pm1qm1−1(s1 + pqH) with an integer H. If q > p > qk, then p, q /∈ U,

so the equality uvs = pm1qm1−1(s1 + pqH) implies that s|m1 and s|(m1 − 1), a

contradiction.

Using an = rpm+1qm + pmqm−1, where n = (p− 1)(m− 1) + r and p < q < 2p,

we find that

an < (p− 1)q2m+1 + q2m−1 < q2m+2 < (2p)2(n−r)/(p−1)+4 < (2p)4e(2n log(2p))/(p−1).

For any ε > 0, there exists a positive number pε such that e(2 log(2p))/(p−1) < 1+ε for

each p > pε. Take the smallest prime number p = p(ε) greater than max{pε, qk},

and put K(ε, qk) = K(ε, U) := 2p(ε)4. Then an < K(ε, U)(1 + ε)n for each n ∈ N,

as claimed.
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6.4 Other constructions

We start from the exposition of two constructions that solve the finite version of

the problem. The first construction was given by Erdős [29] and it is as follows:

Example 6.5. Let p be a prime of order n2/3 and k the largest integer such that

kp 6 n and 1 + · · ·+ k < p. Then the set A = {p, 2p, . . . , kp} has iterated sumset

with no powers.

The set A given in the example is a subset of [n] and is of size ∼ n1/3. To see

that that its iterated sumset indeed avoids powers it is sufficient to notice that the

sum of any subset of A is divisible by p but not divisible by p2. Second example

is given by Cilleruelo [14]:

Example 6.6. Let p be the largest prime smaller than n1/3. Then the set A =

{p, p2 + p, 2p2 + p, . . . , (p− 2)p2 + p} has iterated sumset with no powers.

Again the set A ⊆ [n] is of cardinality ∼ n1/3 and any its subset has its sum

divisible by p but not by p2.

Lastly, we give and infinite example of Dubickas and Stankevičius [23] that

improve the examples given earlier in the chapter.

Example 6.7. Let p1 < p2 < . . . be arbitrary sequence of primes. Put p0 = 1 and

Ak =

{
(jp2

k + pk)
k−1∏
i=0

p2
i | j = 0, 1, . . . , pk − 2

}
, k > 1.

Take A = ∪∞k=1Ak. Then SA contains no powers of integers.

Again it is easy to see that each subset has sum divisible by some pk but not

by p2
k. In order to get a slow growing set A one needs to select primes pk carefully.

In particular, if they satisfy p1 · · · pk−1 < pk < 1.4p1 · · · pk−1 one gets a set A with

A[n]� n1/9.

Another way is to take any sequence of real numbers {gn} with limn→∞ gn = 0

and primes satisfying pk > pk−1 and (p1 · · · pk−1)2 < gpk . In this case one gets

a set A locally nearly matching the lower bound, that is with infinitely many

integers ni satisfying A[ni] > n
1/3
i g

−1/3
ni . We direct the reader to their paper for

more details.
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7 Multiplicative functions

additive on primes

Recall that a function f : N→ C is called multiplicative if

f(ab) = f(a)f(b) for all a, b ∈ N satisfying gcd(a, b) = 1. (7.1)

It is well known that a Cauchy functional equation f(x+ y) = f(x) + f(y) solved

for functions defined on integers (or rationals) has two multiplicative solutions:

f(x) = x and a trivial one f(x) = 0. Spiro [78] has got a similar conclusion from

a slightly weaker additivity condition. He proved that the only multiplicative

function f which satisfies f(p0) 6= 0 for at least one prime number p0 and is

additive on the set of primes, i.e. f(p+ q) = f(p) + f(q) for all primes p, q, is the

identity function f(n) = n for each n ∈ N.

Fang [31] derived the same conclusion for multiplicative functions f which are

additive on sums of three primes, namely, f(p + q + r) = f(p) + f(q) + f(r) for

all primes p, q, r. In this chapter we extend this result to multiplicative functions

which are additive on sums of k primes, where k > 2 is a fixed integer.

Theorem 7.1. Let k > 2 be a fixed integer. If a multiplicative function f : N→ C

satisfies

f(p1 + p2 + · · ·+ pk) = f(p1) + f(p2) + · · ·+ f(pk) (7.2)

for any primes p1, p2, . . . , pk and f(p0) 6= 0 for at least one prime p0 then f(n) = n

for each n ∈ N.

We shall only prove the theorem for k > 3, since the case k = 2 has been

treated earlier in [78]. However, the case k = 3 (which was also treated earlier

in [31]) is included here, since our proof is slightly different.

Note that selecting a = 1 and b = p0 in (7.1) we obtain f(p0) = f(1)f(p0).

Since f(p0) 6= 0, this implies

f(1) = 1. (7.3)
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Our aim is to show that under conditions of Theorem 7.1 the equality

f(p) = p (7.4)

holds for each prime number p and then (via Lemma 7.7 below) to extend this

equality to f(n) = n for each n ∈ N.

This chapter is organized as follows. In the next section we give some results

on the representation of integers as sums of prime numbers. Then in Section 3 we

prove two auxiliary results on functions f : N→ C satisfying (7.2) for some fixed

k > 3. These two (Lemmas 7.6 and 7.7) are the key results in our approach. The

proof of Theorem 7.1 is then completed in Section 7.3, by proving (7.4).

7.1 Representation of integers as sums of

primes

By a classical result of Vinogradov on the ternary Goldbach problem, every suf-

ficiently large odd number can be expressed as the sum of three primes. Liu and

Wang [57] showed that this is true for all odd integers greater than

n(V ) := e3100.

Under assumption of the generalized Riemann hypothesis every odd integer greater

than or equal to 7 is the sum of three primes (see [21]). On the other hand, the bi-

nary Goldbach conjecture asserts that every even integer greater than or equal to 4

can be expressed as the sum of two primes. This famous conjecture is still open, al-

though it has been checked up to 2·1010 (see [36]), and then up to 4·1014 (see [66]).

Recently, Oliveira e Silva (see http://www.ieeta.pt/∼tos/goldbach.html) has

checked it up to 4 · 1018, so in this paper let us take

n(B) := 4 · 1018, (7.5)

where n(B) is the largest known integer until which the binary Goldbach conjec-

ture has been verified.

An important ingredient in our proof of Theorem 7.1 is a recent result of

Tao [80] who showed that
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Theorem 7.2. Every odd number greater than 1 can be expressed as the sum of

at most five prime numbers.

This improves an earlier result of Ramaré [65] who showed that every even

number is the sum of at most six primes. In [46] Theorem 7.2 was proved under

assumption of the Riemann hypothesis.

More precisely, we will use the following two implications of Theorem 7.2:

Lemma 7.3. Every even number greater than or equal to 12 can be expressed as

the sum of exactly six primes.

Proof. The claim trivially holds for n = 12 and n = 14. Consider an even number

n > 16. The number n−13 > 1 is odd, so it can be written as the sum of at most

5 primes. Since 13 can be written as the sum of 1, 2, 3, 4 or 5 primes (13, 2 + 11,

3 + 3 + 7, 2 + 2 + 2 + 7, 2 + 2 + 2 + 2 + 5), we conclude that n = n− 13 + 13 can

be written as the sum of exactly six primes.

Lemma 7.4. For any k > 7 every number greater than or equal to 2k can be

expressed as the sum of exactly k primes.

Proof. Take any integer n > 2k. Consider the number n − 2(k − 6) if n is even

and n− 3− 2(k− 7) if n is odd. Both of them are even and greater than or equal

to 12. By Lemma 7.3, they can be expressed as the sum of six primes. Then n

itself can be written as the sum of exactly 6 + k − 6 = k primes, as claimed.

Below, we will also use Lemma 3 from [31] (see also [78]):

Lemma 7.5. Let νp(n) be the exponent of the prime number p in the prime

factorization of n, and let

H := {n : νp(n) 6 1 if p > 1000; νp(n) 6 b(9 log 10)/ log pc − 1 if p < 1000} .

(7.6)

Then for any integer m > 1010 there exist at least four prime numbers q1, q2, q3, q4 <

m such that m+ qi ∈ H (i = 1, 2, 3, 4).
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7.2 Two auxiliary lemmas

The next lemma uses the notation introduced in (7.5). (Note that in this lemma

we are not using the multiplicativity of f .)

Lemma 7.6. Fix k > 3. Let f : N→ C be a any function satisfying (7.2). Then

f(p) = (p− 2)f(3)− (p− 3)f(2) (7.7)

for all primes p 6 n(B). Moreover, if k > 6 then (7.7) holds for all primes p.

Proof. Observe that if some prime numbers p1, p2, p3, q1, q2, q3 satisfy p1+p2+p3 =

q1 + q2 + q3, then f satisfies

f(p1) + f(p2) + f(p3) = f(q1) + f(q2) + f(q3).

Indeed, for k = 3 this follows immediately from the condition (7.2), whereas for

k > 4 we can add k − 3 equal summands (say 2) to both sides, then use the

condition (7.2) and remove unnecessary terms f(2) from both sides.

Equality (7.7) certainly holds for p = 2 and p = 3, since then it is an identity.

By the above observation, equality 2+2+5 = 3+3+3 implies f(5) = 3f(3)−2f(2)

and equality 2+2+7 = 3+3+5 implies f(7) = f(5)+2f(3)−2f(2) = 5f(3)−4f(2),

so (7.7) holds for p = 2, 3, 5, 7.

Assume that 11 6 q 6 n(B) is the smallest prime for which equality (7.7)

is false. (The proof of the first part is finished if there is no such q.) Consider

the number q − 1. It is even, greater than 4 and smaller than n(B), so, by the

definition of n(B), it can be written as the sum of two primes p1 + p2. Clearly,

p1, p2 < q. From q+ 3 + 3 = 7 + p1 + p2 and the validity of (7.7) for p = 3, 7, p1, p2

it follows that

f(q) = f(p1) + f(p2) + f(7)− f(3)− f(3)

= (p1 − 2 + p2 − 2 + 5− 2)f(3)− (p1 − 3 + p2 − 3 + 4)f(2)

= (q − 2)f(3)− (q − 3)f(2),

a contradiction.

To prove the second part we assume that there exists a prime p for which (7.7)

does not hold and take the smallest p > n(B) with this property, so that

f(p) 6= (p− 2)f(3)− (p− 3)f(2).
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Let us express the number p+ 11 as two different sums sum of 6 primes. Firstly,

write it as p + 2 + 2 + 2 + 2 + 3. This is also 13 + q, where q := p− 2 is an odd

number. As in the proof of Lemma 7.3, since q can be expressed as the sum of

at most 5 primes, the number 13 + q can be expressed as the sum of exactly six

primes p1 + · · ·+p6, all of them smaller than p, so this is a different representation

of the same number as the sum of six primes. Then, since k > 6, from equality

p + 2 + 2 + 2 + 2 + 3 = p1 + · · · + p6 and equality (7.7) for p = p1, . . . , p6, 2, 3 it

follows that

f(p) = f(p1) + · · ·+ f(p6)− 4f(2)− f(3)

= (p1 + · · ·+ p6 − 13)f(3)− (p1 + · · ·+ p6 − 14)f(2)

= (p+ 11− 13)f(3)− (p+ 11− 14)f(2)

= (p− 2)f(3)− (p− 3)f(2),

a contradiction. This completes the proof of the lemma.

The next lemma shows that (7.4) can be indeed extended to f(n) = n for

every n ∈ N.

Lemma 7.7. Suppose that a multiplicative function f satisfies (7.2) for some

fixed k > 3. If f(p) = p for each prime number p then f(n) = n for each n ∈ N.

Proof. By (7.1) and (7.3), it suffices to show that

f(pα) = f(p)α

for each prime number p and each integer α > 2, since the case α = 1 is covered

by the condition of the lemma.

Suppose first that p is an odd prime. By Vinogradov’s theorem, every suffi-

ciently large odd integer n > n(V ) = e3100 is the sum of three primes. Take a

prime number q > n(V ) + 2(k − 3) and write the number pαq − 2(k − 3) > n(V )

as the sum of three primes p1 + p2 + p3. Then the odd integer pαq is the sum of

the following k primes p1, p2, p3, 2, . . . , 2. Applying (7.2) and the condition of the

lemma, we find that

f(pαq) = f(p1) + f(p2) + f(p3) + (k − 3)f(2) = p1 + p2 + p3 + 2(k − 3) = pαq.
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Hence pαq = f(pαq) = f(pα)f(q) = f(pα)q, by (7.1) and f(q) = q. Dividing both

sides by q, we obtain f(pα) = pα. By the multiplicativity of f and f(1) = 1, this

yields

f(n) = n for each odd n. (7.8)

To complete the proof it remains to show that f(2α) = 2α for each integer

α > 2. If k is even then k > 4 and, selecting as above some prime number

q > n(V )+2k−5, we can express the odd number 2αq−3−2(k−4) > n(V ) as the

sum three primes p1 +p2 +p3. Thus 2αq is the sum of k primes p1, p2, p3, 3, 2, . . . , 2

(where k− 4 primes are equal to 2). We then arrive to the conclusion f(2α) = 2α

in the same manner as above.

In the case when k > 3 is odd the proof is different and uses Dirichlet’s

theorem on prime numbers in arithmetic progression. Note that the number

2α−1 + 2 − k is odd whenever k is odd, so the integers 2α and 2α−1 + 2 − k are

coprime. By Dirichlet’s theorem, the arithmetic progression 2αs + 2α−1 + 2 − k,

s = k, k + 1, . . . , contains infinitely many primes. Take one of them, say, q.

Clearly, q := 2αs + 2α−1 + 2 − k is odd. Selecting in (7.2) two primes equal to q

and k − 2 primes equal to 2, we find that

2α(2s+1) = 2q+2(k−2) = 2f(q)+(k−2)f(2) = f(2q+2(k−2)) = f(2α(2s+1)).

By (7.1) and (7.8), we see that the right hand side is equal to f(2α)(2s + 1).

Dividing both sides by 2s+ 1 we obtain f(2α) = 2α, as required.

7.3 Proof of Theorem 7.1

In view of (7.3) and Lemma 7.7 in order to complete the proof of Theorem 7.1 it

remains to prove (7.4). We first establish (7.4) for k > 6. In this case Lemma 7.6

asserts that f(p) = (p− 2)f(3)− (p− 3)f(2) for all prime numbers p.

Take any prime number p > k. From Lemmas 7.3 and 7.4 we know that

2p > 2k can be expressed as the sum of exactly k primes p1, . . . , pk. Using the

multiplicativity of f , we find that

f(2)f(p) = f(p1)+ · · ·+f(pk) = (p1 + · · ·+pk−2k)f(3)− (p1 + · · ·+pk−3k)f(2).
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Hence

f(2) ((p− 2)f(3)− (p− 3)f(2)) = (2p− 2k)f(3)− (2p− 3k)f(2)

and

p(f(2)− 2)(f(3)− f(2))− (k − f(2))(3f(2)− 2f(3)) = 0. (7.9)

Since this equality holds for all primes p > k, dividing by p and letting p→∞

in (7.9) we derive that (f(2)−2)(f(3)−f(2)) = 0. Hence f(2) = 2 or f(2) = f(3).

In the first case, substituting f(2) = 2 into (7.9) and using k > f(2) = 2, we find

that f(3) = 3f(2)/2 = 3. Hence

f(p) = (p− 2)f(3)− (p− 3)f(2) = 3(p− 2)− 2(p− 3) = p

for all primes p > 2.

We will show next that the second case, f(2) = f(3), is impossible. Indeed,

we then must have

f(p) = (p− 2)f(3)− (p− 3)f(2) = (p− 2)f(2)− (p− 3)f(2) = f(2)

for all prime numbers p. Taking any prime p > k and applying (7.9) with f(2) =

f(3) we obtain (k − f(2))f(2) = 0, i.e. f(2)2 = kf(2). Now let us take two odd

primes r 6= q and express the even integer 2rq as the sum of k primes. This gives

f(2)3 = f(2)f(r)f(q) = f(2rq) = f(2) + · · ·+ f(2) = kf(2),

because f(p) = f(2) for all primes p. Hence f(2)3 = kf(2). It follows that

f(2)3 = f(2)2, thus f(2) = 1 or f(2) = 0. In the first case, f(2) = 1, we find

that k = f(2) = 1, a contradiction. In the second case, f(2) = 0, we must have

f(p) = f(2) = 0 for all prime numbers p, which is not allowed by the condition

of the theorem. This proves (7.4) for each k > 6.

We next prove (7.4) for k ∈ {3, 4, 5}. In this case we proceed as in [31]. (In

principle, the method developed in [31] and [78] can be extended to some k greater

than 5 as well by increasing the number of primes in Lemma 7.5 from four primes

to more primes, but this eventually increases the constant 1010 of Lemma 7.5

beyond the constant n(B), so one needs an alternative argument to cover all k.)

Some parts of the proof for small k are the same, but we include them here for

completeness.
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Lemma 7.8. Let k = 3, 4 or 5, and let f be a multiplicative function satisfy-

ing (7.2). Then for all primes p 6 n(B) we have either f(p) = p or f(p) = 0.

Proof. From Lemma 7.6 we know that such a function f satisfies (7.7) for all

primes p 6 n(B). Depending on the value of k, we consider the equalities

f(2) + f(2) + f(3) = f(7) for k = 3,

or

f(2) + f(3) + f(3) + f(3) = f(11) for k = 4,

or

f(2) + f(2) + f(2) + f(2) + f(3) = f(11) for k = 5.

After substituting f(7) = 5f(3) − 4f(2) and f(11) = 9f(3) − 8f(2) (see (7.7))

from each of these three equalities we find that 2f(3) = 3f(2). Hence

f(p) = (p−2)f(3)− (p−3)f(2) = 3(p−2)f(2)/2− (p−3)f(2) = pf(2)/2 (7.10)

for each prime p 6 n(B).

Now, again depending on the value of k, consider the following equalities

f(2) + f(2) + f(2) = f(2)f(3) = 3f(2)2/2 for k = 3, or 5f(2) = f(2) + f(2) +

f(3)+f(3) = f(2)f(5) = 5f(2)2/2 for k = 4, or f(2)+f(2)+f(2)+f(2)+f(2) =

f(2)f(5) = 5f(2)2/2 for k = 5. (These follow from the multiplicativity of f and

(7.10) applied to p = 3 and p = 5.) Every one of those implies f(2) = 2 or

f(2) = 0. Thus, by (7.10), either f(p) = p for all primes p up to n(B) or f(p) = 0

for all primes p up to n(B).

Finally, let k = 3, 4 or 5, and let f be a multiplicative function satisfying the

conditions of Theorem 7.1. We claim that then f(n) = n for all n ∈ H, where H

is defined in (7.6). Of course, this assertion implies (7.4) for k = 3, 4, 5, because

the set of prime numbers is a subset of the set H defined in (7.6).

From Lemma 7.8 we know that for all primes p 6 n(B) we have either f(p) = p

or f(p) = 0. We will show that first case extends to f(n) = n for all n ∈ H and

that the second extends to f(n) = 0 for all n ∈ H. Since all primes are in H, the

latter function does not satisfy the conditions of Theorem 7.1. We will only show
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how to extend the case f(p) = p, as the case f(p) = 0 can be handled exactly the

same.

We first prove that f(n) = n for all n 6 n(B). By the definition of the

constant n(B), every even number n in the range 4 6 n 6 n(B) can be written

as the sum of two primes. Hence every number n in the range 6 6 n 6 n(B)

can be written as the sum of three primes (simply subtract 2 or 3 to get an even

number greater than or equal to 4). Similarly, every n satisfying 8 6 n 6 n(B)

is the sum of four primes and every n in the range 10 6 n 6 n(B) is the sum

of five primes. From (7.2) and equality f(p) = p for primes p 6 n(B) it follows

that f(n) = n for 10 6 n 6 n(B). For the remaining few numbers we can use the

multiplicativity property of f . Indeed, take any integer a in the range 1 6 a 6 9

and write 11f(a) = f(11a) = 11a. This yields f(a) = a.

In order to prove that f(n) = n holds for all n ∈ H we use the induction on

n. Let n ∈ H, n > n(B), be the smallest integer for which the equality f(n) = n

has not yet been proven.

If n is not a prime power, then we can factor n as n1n2, where gcd(n1, n2) = 1,

n > n1, n2 > 2. By the definition of H (see (7.6)), both n1, n2 belong to H. Hence,

by induction and multiplicativity, f(n) = f(n1n2) = f(n1)f(n2) = n1n2 = n. On

the other hand, if n is a prime power then, by the definition of the class H, it has

to be a prime, say, n = p. We consider the cases k = 3, 4, 5 separately.

For k = 3 take m := n + 2 = p + 2. Using Lemma 7.5 select four primes

p1, p2, p3, p4 smaller than p + 2 such that p + 2 + pi ∈ H for i = 1, 2, 3, 4. At

least three of them are odd, and at least one of these three, say p1, is smaller

than p − 2. Then p + 2 + p1 is in H and is even, but not a power of 2, by the

definition of H given in (7.6). Thus p + 2 + p1 can be factorized as n1n2, where

n1, n2 are coprime and smaller than p, since p + 2 + p1 < p + 2 + p − 2 = 2p.

Observe that 2, p1, n1, n2 ∈ H, by the definition of H. Therefore, by induction and

multiplicativity, f(p)+f(2)+f(p1) = f(n1)f(n2) yields f(p) = n1n2−2−p1 = p.

For k = 4 we take m := p+2+2 and again using Lemma 7.5 select four primes

p1, p2, p3, p4 smaller than p + 4 such that p + 2 + 2 + pi ∈ H for i = 1, 2, 3, 4. As

above, at least three of those primes are odd. If one of these three is smaller than

p − 4, we can proceed as in the case k = 3 (factorize and use induction as both

factors are smaller than p). If not, then one of them, say p1, has to be equal to

85



p− 2 or to p+ 2. Then p+ 2 + 2 + p1 is divisible by 4, so we can factor it as n1n2,

where both n1, n2 are coprime and greater than 2, hence smaller than p. Now we

can use the induction and multiplicativity as above to obtain f(p) = p.

Finally, for k = 5 take m := p + 2 + 2 + 2 and once again find four primes

p1, p2, p3, p4 smaller than p+ 6 such that p+ 2 + 2 + 2 + pi ∈ H for i = 1, 2, 3, 4. If

one of the three odd primes is smaller than p− 6, continue as in the case k = 3.

Else, one of them, say p1, has to be equal to p − 4, p or p + 4, since all three

numbers p− 6, p− 2, p+ 2 cannot be prime. Then p+ 2 + 2 + 2 + p1 is divisible

by 4 and we continue as in the case k = 4 to obtain f(p) = p. This completes the

induction.
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8 Conclusions

From the results obtained in the previous chapters we derive the following con-

clusions:

• The size of the largest co-Sidon subset pair A′ ⊆ A,B′ ⊆ B depends on the

additive energy of the initial pair of sets E(A,B).

• Infinite sparse sets with bounded jumps can not have bounded doubling.

• The size of B2k set in d-dimensional cube [n]d is asymptotically bounded by

(k!)
1
kk

d
2kn

d
2k . The size of B2k−1 set in d-dimensional cube [n]d is asymptoti-

cally bounded by (k!)
2

2k−1k
d−1
2k−1n

d
2k−1 .

• Divisibility properties of natural numbers are useful in constructing dense

sets with square (or power) free iterated sumset

• Multivariate Cauchy functional equation with the additivity condition re-

stricted to primes has essentially unique non-zero solution.
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